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Abstract
This thesis is an extension from the thesis "To what degree is the VIX benchmark computed by CBOE repre-
sentative of its definition?" presented on June 16 in 2018.
The primary purpose of this thesis is to investigate a consistent way of Fourier pricing with the Heston model
and whether or not the estimates can be improved by extending the amount of CIR processes in order to catch
the non-linear behavior of VIX options.
Beginning with a brief introduction, explaining the VIX and its theoretical calculations when following the
Heston dynamics. The introduction paves way explaining the basic definitions used when defining the choice
of the respective model. Later, an in depth analysis of the Fourier Gauss-Laguerre algorithm when pricing
European type put and call options will be thoroughly explained.
Finally, discussions regarding the parameter estimates as well as extensions of vol-of-vol terms will be further
scrutinized.
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Introduction
The VIX measures a 30-day expected volatility on the U.S. stock market, derived from real time, mid-quote
prices of S&P500 Index (SPX) call and put options. Often mentioned as the world’s most recognized measures
of volatility its considered as a "good" daily indicator. Real time VIX values and calculations are further inves-
tigated in Ålander et al 2018 [22].
Derivatives on volatility indices such as the VIX index is widely used a tool for hedging against volatility risk.
Variance swap contracts, used by operators on the market, are now enabled to a pure exposure to volatility or
hedge against exposures of volatility in portfolios.
Liquid markets consisting of VIX options, futures and other over the counter market options have led to the
need of continuously improving the consistency of pricing the derivatives on such products. Derivative prices,
including their hedging prices, should be based on realistic assumptions of the joint dynamics of underlying
assets and variance swaps, including the ability to match observed prices of derivatives, having reasonable liq-
uidity. Any continuous time model with stochastic volatility should imply joint dynamics of underlying assets.
The Heston model proposed by Steven Heston, is widely used due to its assumption of stochastic volatility.
An attempt in catching the non-linear behaviour of VIX options the thesis experiments with adding up to four
extra CIR processes.
Driven by multidimensional Brownian motion, the models are widely used to model consistent prices on volatility
derivatives. Although, pricing history underlines the extreme importance of modeling discontinuities in present
and future prices. Evidence of jump discontinuities shows in the fluctuations in recent crises, not exclusively
purely economy related.

Figure 1 reveals simultaneous large drops in the S&P500 index, with clear volatility spikes, with strong negative
correlation between the two levels. The behaviour between the S&P500 and the VIX index is further investi-
gated in Ålander et al 2018 [22].
Realistic models, modeling the variance swaps, needs to be consistent with respect to the dynamics of the
empirical evidence in figure 1 as its evident for pricing the derivatives. The jumps are also important when
producing positive skew of implied volatilities of VIX options.

Figure 1: The CBOE computed VIX plotted against the S&P500 index.
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Problem description
Writing this thesis, the main objective was to capture the non-linear behavior of volatility options. Throughout,
the volatility options will be referred to as the VIX options. As the reader is about to witness, the VIX is derived
from out of the money S&P500 options, making it a reasonable assumption to conclude that the VIX options
will be dependent on the S&P500 options, i.e. derivative squared. Starting off with the simplest of models, the
Black-Scholes model under the risk-neutral Q measure.

dS(t) = rS(t)dt+ σS(t)dW (t), r ∈ R, σ ∈ R+, σ > 0

The Black-Scholes model defines the dynamics of an underlying asset S(t), with r being the risk-free interest
rate and having a constant volatility term σ. Assuming that the interest is known, the model is to be enacted
as a one parameter model. The model is very simple and will have trouble in modelling the non-linear behavior
of the VIX options. Although, extending the model with a stochastic volatility term would result in the Heston
Model.

dS(t) = rS(t)dt+
√
V (t)S(t)dZ(1)(t), r ∈ R

dV (t) = κ(θ − V (t))dt+ σ
√
V (t)dW (1)(t), κ, θ, V (t), σ ∈ R+

〈dZ(1)(t), dW (1)(t)〉 = ρdt, −1 ≤ ρ ≤ 1

The Heston model defines the dynamics of an underlying asset S(t), with r being the risk-free interest rate,
although having stochastic volatility instead of a constant volatility as in the Black-Scholes model. The Heston
model will also have a mean reversion term κ, a long term volatility θ and a volatility of volatility term σ.
By extending the Black-Scholes model into a Heston model, the model now consists of five parameters. The
increased amount of parameters in the Heston model will have a higher accuracy in modelling the non-linear
behavior of the VIX options, because of the stochastic volatility (CIR) process. Throughout the thesis, the
Heston model is assumed to be insufficient in order to model the non-linear behavior of the VIX options. In
order to to capture the non-linearity of the VIX options, the thesis tries to construct a stochastic volatility
of volatility behaviour, i.e. enacting σ as a stochastic process. Modelling the volatility of volatility term as
a stochastic process has been tried before in Foque and Saporito (2018), although obtaining an analytical
expression without using excessive assumptions and approximations is very hard. This thesis tries to construct
a stochastic volatility of volatility factor by extending the amount of independent volatility (CIR) processes in
order to derive parameters being able to capture the non-linearity of the VIX options.

dV (i)(t) = κi(θi − V (i)(t))dt+ σi

√
V (i)(t)dW (i)(t), i ∈ N κi, θi, V

(i)(t), σi ∈ R

〈dZ(i)(t), dW (i)(t)〉 = ρidt, 〈dW (i)(t), dW (j)(t)〉 = 0, i, j ∈ N − 1 ≤ ρ ≤ 1

Extending the amount of independent volatility processes is assumed to improve the accuracy when pricing
VIX options, although increasing the complexity of the model. The thesis will scrutinize three models denoted
as the Heston model, the Triple Heston model and the Quintuple Heston model, having one, three and five
mutually independent volatility processes. Determining which one of the models having the highest accuracy is
done comparing the ask-bid spread of each of the models. The ask-bid spread refers to taking the mean of all
calculated model prices lying between the ask and bid price of each option, resulting in a quote value between
zero and one, referring to a zero or one-hundred percent fit to real market prices.
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Computing VIX in accordance to the CBOE method
Calculating the VIX according to the Chicago Bureau of Exchange (CBOE) follows a simple yet complex three
step method.

• Step 1: Out of the money S&P500 puts and calls centered at an at the money strike K0 are selected as
data when calculating the CBOE VIX. Here, only the non-zero bid prices are used.

• Step 2: Calculating the volatilities for near and next term options is done using the formula,

σ2
n = 2

Tn

∑
i

∆Ki

K2
i

ernTnQ(Ki)−
1
Tn

[
Fn
K0
− 1
]2
, n = 1, 2

The VIX directly reflects the prices of the selected options, whereas ∆Ki is the sole contribution of
an option to the VIX value, inversely the contribution is proportional to the square of the strike price
corresponding to the option.

• Step 3: Computing the actual VIX level is done using the formula,

V IX = 100×

√(
T1σ2

1

[
NT2 −N30

NT2 −NT1

]
+ T2σ2

2

[
N30 −NT1

NT2 −NT1

×
]
N365

N30

)

Parameters

Tn: being time to expiration standardized in minutes per year (τ + t);

Tn = Mcurrentday +Msettelmentday +Motherdays

525600
NT1 : being the number of minutes to settlement of the near-term options

NT2 : being the number of minutes to settlement of the next-term options

N365: being the number of minutes in a year assuming 365 days

N30: being the number of minutes in 30 days

F : being the forward index level desired from index option prices

rn: being the interest rate

K1: being the first strike below the forward index level F for the near-term options

K2: being the first strike below the forward index level F for the next-term options

Q(Ki): being the mid quote price or the midpoint of the bid-ask spread for the respective option with strike Ki

∆Ki: being the interval between strike prices which is half the difference between the strike on either side of
Ki i.e;

∆Ki = Ki+1 −Ki−1

2
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Characteristic function
Throughout this thesis, the main objective pursues an analytical expression for the stock’s characteristic equa-
tion. When having obtained the characteristic equation, the probability density function can be obtained. This
subsection gives the reader a brief definition regarding the characteristic equation.

Definition 1. The characteristic function of a variable X, having real values, defines its probability distribu-
tion. If the random variable associates with a specific probability distribution, then the Fourier transform of
the probability density function is the characteristic function. Hence, the Fourier inverse of the characteristic
function gives the probability density function.

FX(x) = E
[
I{X≤x}

]
ϕX(t) = E [exp(itX)] , ϕX : R→ C

=
∫
R

exp(itX)dFX(x)

=
∫
R

exp(itX)fX(x)dx

=
∫ 1

0
exp(itQX(p))dp (1)

Where FX is the cumulative distribution function of X, with the integral being of Riemann-Stieltjes (integration
by parts admitted). Given that the r.v. X has a pdf fX(x), then the corresponding Fourier transform with sign
reversal in the complex exponential, then the formula in equation (1) is valid, due to the Hermitian property.
Thus, QX(p) is the quantile function of X, i.e. the inverse cumulative distribution function of X.

• ϕX(0) = E [exp(itX)|t = 0] = E [exp(0)] = 1

• |ϕX(t)| ≤ 1

• ϕ(−t) = ϕ(t)

• E[Xk] = i−kϕkX(0)

• ϕa1X1+a2X2+...+anXn(t) = ϕa1X1(a1t)ϕX1(a2t) . . . ϕXn(ant) (independence)

Definition 2. Let X(t) be a stochastic process on (Ω,Ft, {Ft}t≥0,Q), the conditional characteristic function
given the filtration is denoted by,

ϕQ
X(T )|Ft

(z) = EQ[exp(izX(T ))|Ft].
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The Fourier transform
Having obtained the characteristic function as defined previously, the second objective pursues an Fourier inver-
sion of the characteristic function, obtaining the probability density function. This subsection gives the reader
a brief overview of the basic theory behind Fourier transformations. For the observant reader, a characteristic
function is a Fourier transform.

Definition 3. For a continuous f : R→ R, the corresponding Fourier transform is denoted as,

f̃(z) = F(f(k))(z) =
∫ ∞
−∞

f(k) exp(zk)dk.

The inverse Fourier transform of f̃ , for a complex valued z = α+ iω, us given by,

F−1(f̃(z))(k) = 1
2π

∫ ∞
−∞

f̃(α+ iω) exp(−k(α+ iω))dω,

such that,
α ∈ {|

∫ ∞
−∞

exp(−(α+ iω)k)f̃(α+ iω)dω| <∞} ∪ {|f̃(α+ iω)| <∞}.

The Fourier transforms exists along the imaginary axis in the complex plane, hence for a complex z = α+ iω,∫ ∞
−∞
|f(k) exp(k(α+ iω))|dk =

∫ ∞
−∞
|f(k) exp(kα)|dk.

In essence, the finiteness of F(f(k))(α+ iω) is non dependent on Im(z).

The transforms have the following convolutional properties for continuous functions f, g : R→ R,

• F(f ∗ g) = F(f)F(g)

• F(fg) = F(f) ∗ F(g)

• F−1 (F(f)F(g)) = f ∗ g

• F−1 (F(f) ∗ F(g)) = fg

9
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Fourier Gauss-Laguerre
According to the fundamental theorem of asset pricing, the value of a European-style contract at time t, having
maturity at T ,

Π(t, T, S(t),K) = e−r(T−t) E [P(S(T ),K)|Ft]
Above, P is denoted as the payoff-function of a European-style contract, generally specified as,

P(eln(S(T )), eln(K), p, c) = max(c(eln(S(T )) − eln(K), 0))p

Where the parameters p denotes the type of the contract, i.e. one for standard, zero for binary and strictly
exceeding one for power options. For simplicity and relevance, p is set to one, since the thesis only concerns
standard European options. The Fourier transform with respect to the strike K reads,

F (P(S(T ),K, c)) =
∫
R

max
(
c
(
eln(S(T )) − eln(K)

)+
)
ezKdK, z ∈ C

Considering c = 1, i.e. a European call option:∫
R

max
((

eln(S(T )) − eln(K)
)+
)
ezKdK =

∫ S(t)

∞
(eln(S(T )) − eln(K))ezKdK

=
[
eS(t)+zK

z
− eK(z+1)

z + 1

]S(t)

∞

= eS(t)(z+1)

z(z + 1)
By the Fourier inversion theorem, the payoff function for the stock at maturity T can be defined as,

P(S(T ),K) = 1
2π

∫ ∞
∞

e−(α+iω) ln(K)F (P(S(T ), α+ iω, 1)) dω

Taking the conditional expectation with respect to the Q-measure,

Π(t, T, S(T ),K) = e−r(T−t)

2π

∫ ∞
−∞

e−(α+iω) ln(K)) EQ[F (P(S(T ), α+ iω, 1) |Ft]dω

Using the definition of the characteristic equation by breaking out 1 = −i2,

= e−r(T−t)

2π

∫ ∞
−∞

e−(α+iω) ln(K)

(α+ iω)(α+ iω) E
Q[ei ln(S(T ))(ω−iα−i)|Ft]dω

= e−r(T−t)

2π

∫ ∞
−∞

e−(α+iω)

(α+ iω)(α+ iω + 1)ϕ
Q
ln(S(T ))|Ft

(ω − iα− i)dω (2)

Recall that the characteristic equation under Q of the logarithm of S(T ) conditional on the filtration {Ft}t≥0
can be calculated. Furthermore, the parameter α needs to be positive,

Π(t, T, S(T ),K) = e−r(T−t)

2π

∫ ∞
−∞

e−(α+iω)

(α+ iω)(α+ iω + 1)ϕ
Q
ln(S(T ))|Ft

(ω − iα− i)dω

Assuming the option price is real,

= e−r(T−t)

2π

∫ ∞
−∞

Re
(

e−(α+iω)

(α+ iω)(α+ iω + 1)ϕ
Q
ln(S(T ))|Ft

(ω − iα− i)
)
dω

First of all, the integral has to exist, making α irrelevant. Although, α has to be chosen such that the integrand
must not exhibit overpronounced peaks, or other elements exceeding numerical thresholds such as extreme
values and oscillations. Optimizing α,

α∗ = argmin
α∈A+

S(T )

(
max
ω∈R

∣∣∣∣ ∂∂ωRe
(

e−(α+iω)

(α+ iω)(α+ iω + 1)ϕ
Q
ln(S(T ))|Ft

(ω − iα− i)
)∣∣∣∣) |ω=0
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= argmin
α∈A+

S(T )

(∫
ω∈R

∣∣∣∣ ∂∂ωRe
(

e−(α+iω)

(α+ iω)(α+ iω + 1)ϕ
Q
ln(S(T ))|Ft

(ω − iα− i)
)∣∣∣∣)

A+
S(T ) := {α > 0|

∣∣ϕln(S(T ))|Ft
(ω − iα− i)

∣∣ <∞}
Assuming the conditional characteristic function exists, conditional on a filtration, the integral in equation (2)
has to be truncated to an interval of the form B := {B = [a, b]|B ∈ R}.

Another approach, consider the Gauss-Laguerre Quadrature error term, denoted as E and the weights in the
Gauss-Laguerre quadrature denoted as n, (M. Abramovitz, I. Stegun 1972, page 890).

E(ε) := (n!)2

(2n)!
∂2n

∂ω2n

(
ω → Re

(
e−(α+iω)

(α+ iω)(α+ iω + 1)ϕ
Q
ln(S(T ))|Ft

(ω − iα− i)
))

|ω=ε
, ε ∈ (0,∞)

The least computationally expensive way of computing the integrand of equation (2) is given by the inequality,∣∣∣∣Re( e−(α+iω)

(α+ iω)(α+ iω + 1)ϕ
Q
ln(S(T ))|Ft

(ω − iα)
)∣∣∣∣ ≤ ∣∣∣∣( e−(α+iω)

(α+ iω)(α+ iω + 1)ϕ
Q
ln(S(T ))|Ft

(ω − iα)
)∣∣∣∣

≤ e−(α+iω)

(α+ iω)(α+ iω + 1)ϕ
Q
ln(S(T ))|Ft

(−iα)

Hence, the optimal α+ can be chosen st,

α+ = argmin
α∈A+

S(T )

(
e−(α+iω)

(α+ iω)(α+ iω + 1)ϕ
Q
ln(S(T ))|Ft

(−iα)
∣∣ω = 0

)

In essence, the range of evident α’s is given by Jensen’s inequality,

∣∣ϕln(S(T ))|Ft
(ω − iα− i)

∣∣ ≤ EQ
[
|ei ln(S(T ))(ω−iα−i)|

∣∣∣∣Ft

]
Breaking out a moment generating function,

EQ[|eln(S(T ))(α+1)||eln(S(T ))iω||Ft]

Using the boundedness of the characteristic function ϕln(S(T ))|Ft
(ω) ≤ 1,

=⇒
∣∣ϕln(S(T ))|Ft

(ω − iα− i)
∣∣ ≤ EQ[S(T )1+α|Ft]

Meaning, if S(T )1+α is integrable, i.e.,

A+
S(T ) ⊇ {α > 0|EQ[S1+α(T )|Ft] <∞}

Knowing for a fact that every (1 + α̂)-integrable variable is also (1 + α)-integrable conditional that α < α̂.
Using a result from Bao Rollin et al. (2010) [13], finding the largest negative and smallest positive zero of the
polynomial, conditional on the models setup following Heston, Triple Heston or Quintuple Heston dynamics, is
an approximation of the interval A+

j ,

a(z) = (−ρ3σ3z3 + ρσ3z3)(3κρ2σ2z3 − ρσ3z3 − κσ2z3 + 6ρ2σ2z2 − 6σ2z2)...

...+ (−3κ2ρσz3 + κσ2z3 − 12κρσz2 + 6σ2z2 − 24ρσz)κ3z3 + 6κ2z2 + 24κz + 48

In order to prevent eventual numeric overflow, the interval can be further shrunk, using the roots in the above
equation to construct the intervals A+ = [a, b]

Ã+ := [0,min(0.999(b− 1), 50000)]

11
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Gauss-Laguerre
4 A quadrature rule approximates the definite integral or function as a weighted sum of function values at
specified points within the domain of integration, e.g.,∫ 1

−1
f(x)dx ≈

n∑
i=1

wif(xi), polynomial of degree 2n− 1 or less

Gauss-Laguerre quadrature is an extension of Gaussian quadrature for approximating integrals of the following
kind, ∫ ∞

0
exp(−x)f(x)dx ≈

n∑
i=1

wif(xi)

Where the Laguerre polynomial Ln(x) defined as:

wi = xi
(n+ 1)2[Ln+1(xi)]2

For a more general function f ,∫ ∞
0

f(x)dx =
∫ ∞

0
exp(x) exp(−x)f(x)dx =

∫ ∞
0

exp(−x)g(x)dx, where g(x) := exp(x)f(x)

Continuing with the integrand from equation (2), by symmetry,
1

2π

∫ ∞
−∞

Re
(

e−(α+iω)

(α+ iω)(α+ iω + 1)ϕ
Q
ln(S(T ))|Ft

(ω − iα− i)
)
dω

= 1
π

∫ ∞
0

Re
(

e−(α+iω)

(α+ iω)(α+ iω + 1)ϕ
Q
ln(S(T ))|Ft

(ω − iα− i)
)
dω

Gold Search Algorithm
Definition 5. f is unimodal if for [a, b] ∈ I, ∃p ∈ [a, b]:

f decreasing on [a, p], f increasing on [p, b]
Definition 6. Suppose f unimodal on [a, b], choose c, d ∈ [a, b], st. a < c < d < b. If f(c) ≤ f(d), the minimum
must occur inside [a, d], and b is replaced by c, the search continues on [a, c]. If f(d) ≤ f(c) the minimum occurs
in [c, b], and a is replaced by c, the search continues on [c, b].

c = a+ (1− r)(b− a) = ra+ (1− r)b, d = b− (1− r)(b− a) = (1− r)a+ rb, for 1
2 < r < 1

Wanting r to be constant over each subinterval, meaning that r must be chosen carefully. If r chosen judicially,
a new point e. Either an old interior point c or d will be used as intertior point in next subinterval, while the
other point becomes endpoint in the next iteration. For every iteration, a point e has to be chosen to calculate
f(e), hence the carefully chosen r.

c− a = (1− r)(b− a) and b− c = r(b− a)

b− d = (1− r)(b− a) and d− a = r(b− a)
Given f(c) ≤ f(d),

d− a
b− a

= c− a
d− a

Using equation the above,
r(b− a)
b− a

= (1− r)(b− a)
r(b− a) , =⇒ r = 1− r

r
=⇒ r = −1

2 ±
√

1 + 4
2

Hence is Given by the GR:

r =
√

5− 1
2 ,

Which corresponds to the lowest root of the Fibonacci sequence:
Fn = Fn−1 + Fn−2, where F1 = F2 = 1

12
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The 3-dimensional Itô Lemma
Heston’s stochastic volatility model treats t,X(t) and V (t) as variables, the Itô Lemma can easily be extended
to three variables. Assuming the system of a standard Black-Scholes SDE and an Cox-Ingersoll-Ross process
(CIR),

dX(t) = µXdt+ σXdW
(1)(t)

dV (t) = µV dt+ σV dW
(2)(t)

The Wiener processes W (1,2)(t) are dependent, having correlation,

E
[
dW (1)(t)dW (2)(t)

]
t

= ρdt, −1 ≤ ρ ≤ 1, t ≥ 0

Using Taylor’s expansion theorem, for f(t,X, V ) being twice differentiable, the dynamics can be determined by,

df(t,X, V ) =
[
ft + µXfX + µV fV + 1

2
(
fXXσ

2
X + 2fX,V σXσV + fV σ

2
V

)]
dt+[σXfX ] dW (1)(t)+[σV fV ] dW (2)(t)

Deriving the three variable Itô Lemma starts with the difference,

df(t,X(t), V (t)) = f(t+ dt,X(t+ dt), V (t+ dt))− f(t,X(t), V (t))

Using Taylor’s expansion to expand f (t+ dt,X(t+ dt), V (t+ dt)),

f (t+ dt,X(t+ dt), V (t+ dt)) = f(t,X(t), V (t)) + ft(dt) + fx(dX(t)) + fV (dV (t) + . . . (3)

. . .+ 1
2

[
fttdt

2 + ftXdtdX(t) + ftV dtdV (t) + fXtdX(t)dt+ fXXdX
2(t) + fXV dX(t)dV (t)...

+fV tdV (t)dt+ fV XdV (t)dX(t) + fV V dV
2(t)

]
.

The reader should be familiar with,

〈dt, dt〉 = 0, 〈dt, dX(t)〉 = 〈X(t), dt〉, 〈dt, V (t)〉 = 〈V (t), dt〉 = 0,

Thus,
〈dW (1)(t), dW (2)(t)〉 = 〈dW (2)(t), dW (1)(t)〉 = ρdt.

Accordingly, substituting into equation (3), the resulting expansion becomes,

df(t,X(t), V (t)) = µXfXdt+ σXfXdW
(1)(t) + µV fV dt+ σV fV dW

(2)(t) + ftdt...

...+ 1
2

[
fXXσ

2
Xdt+ fV V σ

2
V dt] + fXV (σXσV ρdt)

]
=
[
µXfX + µV fV + ft + fXV σXV σXσV ρ+ 1

2(fXXσ2
X + fV V σ

2
V )
]
dt+ σXfXdW

(1)dt+ σV fV dW
(2)(t).

13
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The models
Cox-Ingersoll-Ross model
Introduced in 1985 as an extension of the Vasicek model, the Cox-Ingersoll-Ross model, i.e. the CIR model,
describes the evolution of interest rates. Corresponding to a one factor model, the interest is only driven by
market risk, having applications within derivative pricing.

dr(t) = κ(θ − r(t))dt+ σ
√
r(t)dW (t)

Whereas, κ(θ − r(t)) ensures the mean reversion to the long time value of the interest rate θ. The standard
deviation factor σ

√
r(t) prohibits the possibility of negative interest rates in the model, through the Feller

condition,
2κθ ≥ σ2, σ > 0

The closed form distribution can be interpreted as a r.v. rt+τ = Y/λ, where λ is denoted as,

λ = 4κ exp(−κdt)
σ2(1− exp(−κdt))

Whereas, Y follows a non-central chi square distribution with d = 4θκ/σ2 degrees of freedom.

As the reader is about to witness, the Heston model has a stochastic volatility term following the dynam-
ics of a CIR process, meaning that substituting the interest for volatility gives,

dV (t) = κ(θ − V (t))dt+ σ
√
V (t)dW (t)

The characteristic function can be written on affine form,

ϕV (t)(z) = E[eizV (t)] = exp(A(T − t) +B(T − t)V (t))

Whereas the terms A(T − t), B(T − t) can be defined as follows.

A(T − t) = z exp(−κ(T − t))
(1− σ2

2(κz(1−exp(−κ(T−t))) )

B(T − t) = −2κθ
σ2 log

(
1− σ2

2(κz(1− exp(−κ(T − t))))

)
Whereas the derivation of the CIR characteristic function is very similar to the Heston model shown in appendix.

Multi-dimensional Cox-Ingersoll-Ross model
Having the same assumptions as above, the multi-dimensional CIR model can be written, for simplicity, for five
dimensions,

dV (i)(t) = κi(θi − V (i)(t))dt+ σi

√
V (i)(t)dW (i)(t),

〈dW i(t), dW j(t)〉 = 0, i, j = 1, 2, 3, 4, 5
Since the characteristic function of the volatility can be written on affine form, the function can be written as,

ϕV (t)(z) = exp
(
A1(T − t) +B1(Tt)V (1)(t) +A2(T − t) +B2(T − t)V (2)(t)...

...+A3(T − t) +B3(T − t)V (3)(t) +A4(T − t) +B4(T − t)V (4)(t) +A4(T − t) +B5(T − t)V (5)(t)
)

Where the the terms,
Ai(T − t) = z exp(−κi(T − t))

(1− σ2
i

2(κiz(1−exp(−κi(T−t))) )

Bi(T − t) = −2κiθi
σ2
i

log
(

1− σ2
i

2(κiz(1− exp(−κi(T − t))))

)
, i = 1, 2, 3, 4, 5

14
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The Heston model
Describing the evolution of the volatility of a specific underlying asset, whereas the volatility lacks deterministic
properties, can be done using Heston’s model. Throughout, the volatility is considered as stochastic and follows
a random process.

dS(t) = rS(t)dt+
√
V (t)S(t)dZ(1)(t)

dV (t) = κ (θ − V (t)) dt+ σ
√
V (t)dW (1)(t)

Where the dynamics of the volatility process follows a CIR model. Scrutinizing the CIR, V (t) can hit zero an
infinite amount of times, even though assuming V (t) > 0. Solving the problem is done introducing the Feller
condition,

2κθ ≥ σ2, σ > 0

In essence, the Feller condition implies that the upward drift is sufficiently large in order to make the origin
absolute inaccessible. Determining the dynamics of the log stock price,

X(t) = ln(S(t))

The Itô dynamics are given by,

dX(t) = dS(t)
S(t) −

(dS(t))2

2S2(t)

= rdt+
√
V (t)dZ(1)(t)− V (t)

2 dt

=
(
r − V (t)

2

)
dt+

√
V (t)dZ(1)(t)

The characteristic function for X(t) = ln(S(t)) can be written on affine form,

ϕX(t)(z) = exp(C1(T − t) +B1(T − t)X(t) +D1(T − t)V (t) + izX(t))

Although, keeping in mind that the CIR processes and the logarithm of the stock price does have a correlation
term,

〈dZ(1)(t), dW (1)(t)〉 = ρ1dt

The analytical expression for th Heston model is stated as follows, given that we can the logarithm of the stock
can be written on affine form and using the independence property of the characteristic function,

ϕln(S(t))(z) = exp
(
iz(X(t) + r(T − t)) + C1(T − t) +D1(T − t)V (1)(t)

)
In essence, the parameters are distinguished in the following way, derived further in appendix, p: 27-33.

d1 =
√

(izρ1σ1 − κ1)2 + σ2
1(iz + z2),

C1(T − t) = κ1θ1

σ2
1

(
(izρ1σ1 − κ1 − d1) (T − t)...

...− 2 ln
(

(κ1 − izρ1σ1)(1− exp(−d1(T − t))) + d1(exp(−d1(T − t)) + 1))
2d1

))

D1(T − t) = (1− exp(−d1(T − t))
(

(iz)2 − iz
(κ1 − izρ1σ1)(1− exp(−d1(T − t))) + d1(exp(−d1(T − t)) + 1)

)

15
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Triple Heston model
Obtaining dynamics of a model replicating a stochastic volatility of stochastic volatility is assumed to be able
to capture the non-linear behaviour of the term structure of the VIX options. This subsection provides the
reader with sufficient information, based on the definition in the previous section. The model studied here is
an extension of the Heston model.

dS(t) = rS(t)dt+
√
V (1)(t)S(t)dZ(1)(t) +

√
V (2)(t)S(t)dZ(2)(t) . . .

. . .+
√
V (3)(t)S(t)dZ(3)(t)

dV (1)(t) = κ1

(
θ1 − V (1)(t)

)
dt+ σ1

√
V (1)(t)dW (1)(t)

dV (2)(t) = κ2

(
θ2 − V (2)(t)

)
dt+ σ2

√
V (2)(t)dW (2)(t)

dV (3)(t) = κ3

(
θ3 − V (3)(t)

)
dt+ σ3

√
V (3)(t)dW (3)(t)

Deriving the characteristic equation from the above equations is surprisingly easy, since we allow the models
Wiener processes corresponding to each CIR term to independent of each other, in essence,

〈dW (i)(t), dW (j)(t)〉 = 0, i, j = 1, 2, 3

Although, keeping in mind that the CIR processes and the logarithm of the stock price does have a correlation
term,

〈dZ(i)(t), dW (i)(t)〉 = ρidt, i = 1, 2, 3

The analytical expression for the Triple Heston model is stated as follows, given that we can the logarithm of
the stock can be written on affine form and using the independence property of the characteristic function ,

ϕln(S(t))(z) = exp
(
iz(X(t) + r(T − t)) + C1(T − t) + C2(T − t) + C3(T − t) . . .

. . .+D1(T − t)V (1)(t) +D2(T − t)V (2)(t) +D3(T − t)V (3)(t)
)

In essence, the parameters are distinguished in the following way, further derived in the appendix,

dj =
√

(izρjσj − κj)2 + σ2
j (iz + z2),

Cj(T − t) = κjθj
σ2
j

((
izρjσj − κj − dj

)
(T − t)...

...− 2 ln
(

(κj − izρjσj)(1− exp(−dj(T − t))) + dj(exp(−dj(T − t)) + 1))
2dj

))

Dj(T − t) = (1− exp(−dj(T − t)))
(

(iz)2 − iz
(κj − izρjσj)(1− exp(−dj(T − t))) + dj(exp(−dj(T − t)) + 1)

)
j = 1, 2, 3

Approximating A+
j is done taking the largest negative and smallest positive zero of the polynomial,

aj(z) = (−ρ3
jσ

3
j z

3 + ρjσ
3
j z

3)(3κjρ2
jσ

2
j z

3 − ρjσ3
j z

3 − κjσ2
j z

3 + 6ρ2
jσ

2
j z

2 − 6σ2
j z

2)...

...+ (−3κ2
jρjσjz

3 + κjσ
2
j z

3 − 12κjρjσjz2 + 6σ2
j z

2 − 24ρjσjz)κ3
jz

3 + 6κ2
jz

2 + 24κjz + 48

j = 1, 2, 3
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Quintuple Heston model
Obtaining dynamics of a model replicating a stochastic volatility of stochastic volatility is assumed to be able
to capture the non-linear behaviour of the term structure of the VIX options. This subsection provides the
reader with sufficient information, based on the definition in the previous section. The model studied here is
an extension of the Heston model.

dS(t) = rS(t)dt+
√
V (1)(t)S(t)dZ(1)(t) +

√
V (2)(t)S(t)dZ(2)(t) . . .

. . .+
√
V (3)(t)S(t)dZ(3)(t) +

√
V (4)(t)S(t)dZ(4)(t) +

√
V (5)(t)S(t)dZ(5)(t)

dV (1)(t) = κ1

(
θ1 − V (1)(t)

)
dt+ σ1

√
V (1)(t)dW (1)(t)

dV (2)(t) = κ2

(
θ2 − V (2)(t)

)
dt+ σ2

√
V (2)(t)dW (2)(t)

dV (3)(t) = κ3

(
θ3 − V (3)(t)

)
dt+ σ3

√
V (3)(t)dW (3)(t)

dV (4)(t) = κ4

(
θ4 − V (4)(t)

)
dt+ σ4

√
V (4)(t)dW (4)(t)

dV (5)(t) = κ5

(
θ5 − V (5)(t)

)
dt+ σ5

√
V (5)(t)dW (5)(t)

Deriving the characteristic equation from the above equations is surprisingly easy, since we allow the model to
Wiener processes corresponding to each CIR term to independent of each other, in essence,

〈dW i(t), dW j(t)〉 = 0, i, j = 1, 2, 3, 4, 5

Although, keeping in mind that the CIR processes and the logarithm of the stock price does have a correlation
term,

〈dZi(t), dW i(t)〉 = ρidt, i = 1, 2, 3, 4, 5
The analytical expression for the quintuple Heston model is stated as follows, given that we can the logarithm
of the stock can be written on affine form and using the independence property of the characteristic function,

ϕln(S(t))(z) = exp
(
iz(X(t) + r(T − t)) + C1(T − t) + C2(T − t) + C3(T − t) + C4(T − t) + C5(T − t) . . .

. . .+D1(T − t)V (1)(t) +D2(T − t)V (2)(t) +D3(T − t)V (3)(t) +D4(T − t)V (4)(t) +D5(T − t)V (5)(t)
)

In essence, the parameters are distinguished in the following way, further derived in the appendix,

dj =
√

(izρjσj − κj)2 + σ2
j (iz + z2),

Cj(T − t) = κjθj
σ2
j

((
izρjσj − κj − dj

)
(T − t)...

...− 2 ln
(

(κj − izρjσj)(1− exp(−dj(T − t))) + dj(exp(−dj(T − t)) + 1))
2dj

))

Dj(T − t) = (1− exp(−dj(T − t))
(

(iz)2 − iz
(κj − izρjσj)(1− exp(−dj(T − t))) + dj(exp(−dj(T − t)) + 1)

)
j = 1, 2, 3, 4, 5

Approximating A+
j is done taking the largest negative and smallest positive zero of the polynomial,

aj(z) = (−ρ3
jσ

3
j z

3 + ρjσ
3
j z

3)(3κjρ2
jσ

2
j z

3 − ρjσ3
j z

3 − κjσ2
j z

3 + 6ρ2
jσ

2
j z

2 − 6σ2
j z

2)...

...+ (−3κ2
jρjσjz

3 + κjσ
2
j z

3 − 12κjρjσjz2 + 6σ2
j z

2 − 24ρjσjz)κ3
jz

3 + 6κ2
jz

2 + 24κjz + 48
j = 1, 2, 3, 4, 5
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Theoretically calculated VIX for the Heston Model
The theoretical formula for the VIX can be described as the future, (τ units), expected squared volatility, with
respect to the filtration Ft, under the risk neutral measure Q.

1
τ
EQ
[ ∫ t+τ

t

V (u)du
∣∣Ft

]
Beginning from the CIR model extracted directly from the Heston model.

dV (t) = κ (θ − V (t)) dt+ σ
√
V (t)dW (1)(t)

Directly integrating for t < s ≤ u, similar to the slution of an ODE,

V (u)− V (t) =
∫ u

t

κ(θ − V (s))ds+
∫ u

t

σ
√
V (s)dW (1)(s)

=⇒ V (u) = V (t) +
∫ u

t

κ(θ − V (s))ds+
∫ u

t

σ
√
V (s)dW (1)(s)

By taking the expectation, conditionally on the martingale measure Q, one obtains,

EQ
[
V (u)

∣∣Ft

]
= EQ

[
V (t) +

∫ u

t

κ(θ − V (s))ds
∣∣Ft

]
(4)

= V (t) + κθ(u− t)− κEQ
[ ∫ u

t

V (s)ds
∣∣Fs

]
Making the substitution,

m(u) = EQ
[
V (u)

∣∣Ft

]
yields,

m(u) = V (t) +
∫ u

t

κ(θ −m(s))ds .

Which results in the following Ordinary differential equation,
ṁ(u) = κ(θ −m(u)), m(t) = V (t).

Changing the variables, one obtains the standard ODE form,
m̃(u) = (θ −m(u)) =⇒ ˙̃m(u) = −κm̃(u)

The ODE can obviously be solved by finding an integrating factor, Pu = e
−
∫ u
t
κdx,

m̃(u) = (θ − V (t))e−κ(u−t) =⇒ m(u) = θ − (θ − V (t))e−κ(u−t).

Substituting the analytical solution for m(u) into equation (4) gives,
1
τ
EQ
[ ∫ t+τ

t

V (u)du
∣∣Ft

]
= 1
τ

∫ t+τ

t

m(u)du

= 1
τ

∫ t+τ

t

(θ − (θ − V (t))e−κ(u−t))du

=
(
θ − θ − V (t)

κτ
(1− e−κτ )

)
= V (t) (1− e−κτ )

κτ
+ (e−κτ − 1 + κτ)

κτ
θ

The above definition will be referred to as the theoretical VIX under the assumption that the volatility follows
the Heston model under the Q measure. Calculating the realized volatility for the multidimensional Heston
model is gathered as follows,

N∑
j=1

Yj(t) =
N∑
j=1

(
Vj(t)

(1− e−κjτj )
κjτj

+ (e−κjτj − 1 + κjτj)
κjτj

θj

)
=

N∑
j=1

((Cj +DjVj(t)) , N ∈ N
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Calibration of the multi-factor Heston model
Determining the multi-factor Heston models respective parameters to match market prices of real VIX options,
referred to as the model calibration problem, i.e. the inverse pricing problem.
When computing the option prices, following the Heston multi-factor dynamics, the computation needs non
observable parameters from the market data, hence the problem of using empirical estimates. Pragmatically,
it is neither valid nor conceivable to directly match market prices. In essence, the calibration problem becomes
an optimization problem, aiming to minimize the pricing error between model and market prices for put and
call options on the S&P500. The squared differences between the model and market prices, results in a measure
error, defined as the nonlinear least square method, applied on the Heston model.
Finding the set of parameters Θ, minimizing the objective function G is calculated using the built in Matlab
function lsqnonlin.

min
θ∈Θ
||G(θ)||22 = min

θ∈Θ
(G(θ1)2 +G(θ2)2 + . . .+G(θn)2)

If we let G(Θ) be the deviance, i.e. error, between the market data price and the Fourier Gauss Laguerre priced
set of options,

G(Θ) =
N∑
i=1

(
Π∗(Ti,Ki)−ΠΘ(t, log(S(t)), Ti,Ki)

)
Resulting in,

min
θ∈Θ
||G(θ)||22 = min

θ∈Θ

(
N∑
i=1

(
Π∗(Ti,Ki)−ΠΘ(t, log(S(t)), Ti,Ki)

)2)
, Θ ⊆ Rm, m ∈ N

The function allows options such as setting a lower and an upper bound for the parameters, whereas the bound
is set to Θ ∈ [−∞,∞], allowing the parameters to be set to any value. The initial parameters are set to the old,
non-calibrated parameters. Establishing a penalty function, set to the inverse value of the matrix consisting of
the variance of each parameter. Introducing a weight, usually having a value around ATM prices. The aim is
to replicate the model prices, as close to the mid quote prices as possible, therefore the weights are put on the
very smallest spreads. The weight is therefore defined as,(

max
(
spread
2 ∗ 1.96 , 0.01

))−1

The market data prices consists of bid and ask prices of European put and call options on the S&P500 index,
information that the lsqnonlin can take as inputs.

When adding extra CIR processes to the Heston model, acquiring multi-factor Heston models, the processes are
assumed to be mutually independent, although dependent on the underlying asset S(t). Assuming independence,
the optimization holds for the extended parameter space,

Θ = {V (1)(0), κ1, θ1, σ1, ρ1, V
(2)(0), κ2, θ2, σ2, ρ2, V

(3)(0), κ3, θ3, σ3, ρ3, V
(4)(0), κ4, θ4, σ4, ρ4, V

(5)(0), κ5, θ5, σ5, ρ5}

Throughout, when using the function lsqnonlin the parameters are allowed to obtain any value. Nevertheless,
since κ, θ, V (0) are assumed to be positive, an exponential transform is executed in order to secure those values.
Similarly, the ρ parameters are transformed by using a hyperbolic tangent function, since the asymptotic values
are -1 and 1 respectively.
Having acquired new, calibrated, parameters using the S&P500 option data, the Fourier Gauss Laguerre method
is used once again to calculate the new price of each option, using the new parameters.
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Calculating the VIX options
To begin with, the calibrated parameters achieved are used and substituted into the one, three and five di-
mensional log characteristic function of the CIR process, although the set of ρ parameters can be neglected
throughout, since the CIR processes are mutually independent. The instant value of VIX, is given by,

Y (t) = C +DV (t)

where the constants C,D are defined as of the Theoretical VIX calculations,

C = 1− exp(−κ(TM ))
κTM

D = θ

(
κTM + exp(−κTM )− 1

κTM

)
, TM = 30

365
Starting off with the call case of the square root of the VIX, with its Fourier transform evaluated as, evaluated
for Re(z) < 0

F((
√
Y (t)−K)+)(z) =

∫ ∞
K2

exp(zy)(√y −K)dy

=
∫ ∞
K2

exp(zy)
∫ √y
K

dvdy

Rearranging the order of integration,

K < v ≤ √y, K2 ≤ y <∞ ⇐⇒ K ≤ v <∞, v2 ≤ y <∞

and breaking out constants gives,

F((
√
Y (t)−K)+)(z) =

∫ ∞
K

∫ ∞
v2

exp(zy)dydv

=
∫ ∞
K

exp(−(−z)v2)
−z

dv =
∫ ∞
K

√
2π
−2z

1√
2π
−2z

exp
(
− v2

2
−2z

)
dv.

The observant reader immediately realises the standard normal cdf occurring,

F((
√
Y (t)−K)+)(z) =

√
π

−z

(
1−N (K

√
−2z)

−z

)
=
√

2π
−2z

(
N (−K

√
−2z)

−z

)
The inverse Fourier transform can then be calculated as,

F−1
((√

Y (t)−K
)+
)

(y) = 1
2π

∫ ∞
−∞

exp(−zy)
√
π

(
N (−K

√
−2z)

(−z)−3/2

) ∣∣
z=z̄+iωdω

Taking the conditional expected value w.r.t. the risk neutral measure Q,

EQ
[
F−1((

√
Y (t)−K)+|Ft)

]
= 1

2π

∫ ∞
−∞

E[exp(−zY (0))|Ft]
√
π

(
N (−K

√
−2z)

(−z)−3/2

) ∣∣
z=z̄+iωdω

Since E[exp(−zY (0))|Ft] is equal to the moment generating function MY (0)|Ft
(−z). Changing variable ẑ = z,

st z̄ > 0,

= 1
2
√
π

∫ ∞
−∞

exp(−r(T − t))MY (0)|Ft
(ẑ)
(
N (−K

√
−2ẑ)

(−ẑ)−3/2

) ∣∣
ẑ=z̄+iωdω

Secondly, the analytical strip of the moment generating function is calculated. The normal function is calculated
with the help of the complex valued Faddeeva function found in appendix on p:33. The put case is evaluated
similarly.

VIX term structure
The VIX term structure for a set of calculated expected volatilities on the S&P500 index having different time to
maturity. These are the VIX9D, VIX, VIX3M, VIX6M, VIX1Y corresponding to 9-day, 30-day, 3-month,
6-month and yearly expectations of future volatility.
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Results
The S&P500 option prices are captured at 04:36:00 Chicago time and the VIX option prices are captured at
04:35:00 Chicago time, in essence GMT minus six, seen in figure(3-8). Calibration of the option prices for
Heston, Triple Heston and Quintuple Heston are shown in figure(9,11,13). Figure(10,12,14) shows the inside
spread with respect to S&P500 options of the respective model. Figure (15-23) shows the theoretical VIX
plotted against the real VIX prices. The below tables shows the calibrated parameters on S&P500 options
captured at 04:36 and shows the corresponding inside spreads when the parameters are used into calculating
the theoretical VIX against options captured at the three respective times.

Parameter estimates
Params Heston Triple Heston Quintuple Heston
V(1)(0) 0.009885 0.005308 0.006627
κ1 11.84 0.005657 6.507
θ1 0.02593 0.01728 0.03542
σ1 0.001696 7.352 1.166
ρ1 -0.9999 -0.9054 -0.9536
V(2)(0) 0.01140 0.00002463
κ2 8.537 1.597
θ2 0.03250 0.001121
σ2 1.191 0.8797
ρ2 -0.9862 -0.5742
V(3)(0) 0.003773 0.01788
κ3 0.000005970 32.72
θ3 1.011 0.0001799
σ3 0.4831 5.066
ρ3 -0.2708 -0.9899
V(4)(0) 0.000009984
κ4 0.1534
σ4 1.990
ρ4 0.5500
V(5)(0) 0.005245
κ5 0.0003012
θ5 0.6344
σ5 0.5618
ρ5 -0.4332

Inside spreads with respect to VIX options
Time Heston Triple Heston Quintuple Heston
04:35 0.2961 0.3007 0.1617
09:58 01177 0.1246 0.0666
13:38 0.1395 0.1122 0.0680
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Discussion
Throughout the thesis, experimenting with the original Heston model, extending with extra Cox-Ingersoll-Ross
terms, in order to capture the non linear behaviour of VIX options. The non-linearity explained, since the
S&P500 index is constructed by the stock performance of 500 big companies listed on stock exchanges in the
US. Thereafter, sloppy explained, acquiring traded options on the S&P500 index constructs the VIX index.
Finally, acquiring options in the VIX index grants, obviously, VIX options. Since there are two underlying
platforms, in essence the stock market and the options market, having different dynamics and liquidity, the
main idea was to model the VIX options with a stochastic-vol-of-vol term.
Stating the obvious and as mentioned before, the Heston model consists of a stochastic volatility term following
a CIR process. With the CIR processes having a deterministic volatility term, defined as the vol-of-vol term.
With the vol-of-vol being deterministic, it could face troubles trying to model the non-linearity of the VIX
options. Therefore, by extending the original Heston model with adding independent CIR processes, the model
could be able to capture the looks of the VIX options.

Parameter estimation
Due to choice of the Golden Search algorithm, an initial guess is always done when trying to optimize the
characteristic function. Dealing with the initial guess, the worse the initial guess, the higher amounts of steps
is needed to find extreme values. With a higher amount of steps comes longer computational time for the
algorithm to price the options. Stating the obvious, the higher dimension of the parameter space, the longer the
calculation time, e.g. it takes longer time to price options having five parameters than twenty-five parameters,
as for the Heston and Quintuple Heston models. Finally, if the algorithm is way off, the algorithm could face
problems calculating the moments of the characteristic functions.
Throughout the thesis, the S&P500 data from 04:36 was used when calibrating the parameters with the non-
linear least squares algorithm. The dynamics of the S&P500 index was assumed to follow a single, triple or a
quintuple Heston model. The same parameters was then used when calculating the VIX prices, whereas the
dynamics of the VIX was assumed to follow a single, triple or quintuple Cox-Ingersoll-Ross process. Concluding,
the main difference between the two approaches is the stock dynamics found in the Heston model, as the VIX
explains the volatility found in the S&P500 index. Hence, the parameter ρ is not used when calculating the
theoretical VIX under the Heston model.
The initial values in the Gold-search algorithm used points following a standard normal distribution. Although,
having estimated a set of parameters, the same set was used as new initial values when re-running the algorithm.
The tactic was a great success, resulting in higher ask-bid spreads. The tactic was continuously used until fully
optimized.

Scrutinizing the parameters found under the results, especially the Triple Heston model. The model violates the
Feller condition as the product of two times κ3 and θ3 is lower than the vol-of-vol term σ3. This means that the
volatility is allowed to hit zero. Whether the violation inflicts damage on the parameter could be interpreted
in the low estimates of σ1 of the Triple Heston model.

Interestingly, the Quintuple Heston model does acquire very low parameter estimates for V (1)(0) and V (4)(0),
these parameter estimates could be a result of the over-fitting of the Quintuple Heston’s 25 parameters.

Observing the last two pairs of parameters in the Quintuple Heston model, there is a significant change in
the parameters. Whilst ρ4 indicates a positive correlation, ρ5 indicates a correlation closer to zero than minus
one. The problem might occur in the failure of the optimizer to converge to a good point. The Quintuple
Heston model surely is over fitted, although gaining a better inside spread. The correlation terms are truly
interesting, indicating that higher stock prices lowers volatility. In essence, through vast downfalls in the stock
market, the overall volatility would interestingly increase.

Regarding the results posted in figure 10,12 and 14, the inside spread, i.e. the best bid and ask prices of-
fered among put and call options, significantly increases with the amount of CIR processes, e.g. the Quintuple
Heston achieves better results than the Triple Heston model and the Triple Heston outperforms the Heston
model, by reading the results table.
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Model efficiency
Handling the characteristic functions of each model was surprisingly easy since each of the CIR processes are
assumed to be mutually independent, although correlated with the actual stock. Nevertheless, due to the
fact that the characterstic functions are one dimensional, the Fourier transform can also be carried out in one
dimension as well. A next step in adding extra complexity could be adding a non-zero correlation between
the CIR processes, i.e. a square root diffusion process. Although, adding correlation to the CIR processes
would obviously make the analytical expression for the characteristic as well as calibrating the model a proper
nightmare.
The advantages of using the Heston model over the more complex ones is clearly the computation time. To
acquire proper optimized parameters, the optimizer has to be run several times, making the Heston model
super efficient due to the fact that it only takes about a minute to calculate the parameters. Although,
extending the set of parameters significantly increases the computational time for optimizing the parameters
with the Quintuple Heston model usually stretching over five hours, making it very time consuming to rerun
the optimizer several times. Nevertheless, the Quintuple Heston gets the best ask-bid spread when plotted
against the S&P500 options, being slightly over 0.5, whilst the Heston model achieves significantly less than
0.5. However, the Triple Heston model is neither the least computationally efficient nor the most efficient due
to it’s ask-bid spread being slightly less than the Quintuple Heston model when plotted against the S&P500
options.
Finally, the real results, the calibrated parameters from each of the three models are used respectively to
calculate the theoretical VIX. The results are found in figure 15 to 23. The Heston model does a great job
in replicating the VIX options, even though the CIR process is one dimensional and should have trouble with
non-linearity of the VIX options, with an ask-bid spread of 0.2961. The Triple Heston gets the best results,
with an ask-bid spread staggering 0.3007 and the Quintuple Heston model achieves the worst results with an
ask-bid spread of 0.1617. The Quintuple Heston model seems to have problem in converging to good points to
optimize its parameters. Although, the Triple Heston model might suffice in understanding the non-linearity of
the VIX options, it might actually be able to capture the behavior, i.e. a Heston model might not be sufficient.
Thus, calculating the theoretical VIX options with the same parameters against new data acquired at 09:58 and
13:38 did have a negative impact on the ask-bid spreads. Stating the obvious, the ask-bid spreads decreases over
time. Although, interesting enough, the Heston model seems to outperform the Triple Heston model regarding
their ask-bid spreads at the options captured at 13:38 with an ask-bid spread of 0.1395 and 0.1122 respectively.
The Heston and Quintuple Heston models gets a better fit at 13:38 than 09:58.
Overall, the theoretical VIX calculations seems to be more efficient for the first three maturities and it certainly
does have issues modelling the higher maturities. Scrutinizing, there seems to be a systematic error since the
theoretical prices are almost always higher than the ask/bid prices, thus never below the ask/bid prices.

Stochastic vol-of-vol
The main idea behind this thesis was to capture the non linear behavior of the VIX options. As seen in the end
of this thesis, alternative ways of modeling the dynamics had a common factor, in essence, trying to model the
underlying stock with a stochastic vol-of-vol term. Since the Heston model has a stochastic volatility term, but
solely a deterministic vol-of-vol constant σ, the idea of expanding the amount of CIR process was basically to
replicate a stochastic σ term. Scrutinizing the extensions from the Heston model, adding extra CIR processes
certainly adds extra complexity. Indicating, what distinguishes the Heston model from the Quintuple model
is that there are five instead of twenty-five parameters pricing the VIX option, although theoretically, it’s still
not a stochastic vol-of-vol term. In order to construct a stochastic vol-of-vol term could be to extend the
independent Wiener processes W (t) to be dependent of each other, i.e. adding an extra correlation parameter
to every set of five parameters. Another way of modeling the stochastic vol-of-vol could be by adding a jump
diffusion process, following an arbitrary distribution. Although, calibrating the models would be very complex
and time consuming but could be a great topic for future work. Nevertheless, adding extra CIR processes seems
to work pretty well. The Heston model might have troubles capturing the more extreme non-linear behavior
and the problem seems to be fixed by adding extra complexity in the form of extra CIR processes.
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Fourier optimality
Deciding whether or not pricing with Fourier methods is optimal or not can be described in figure 2. The
Fourier method is briefly compared with using Monte Carlo pricing for put and call options. Concluding, the
two methods are pricing the same thing, i.e. European puts and calls. The most significant thing happens when
scrutinizing the execution time for each method, where the Monte Carlo method executes the calculation at
5.85 and 5.81 seconds for puts and calls respectively, meanwhile the Fourier method prices at 0.251 and 0.285
respectively.
Speaking about inefficiency, the Monte Carlo is in this case, not generally, the more inefficient method of pricing
European put and call options, since the Fourier method gives good results in order to its low execution time.
The comparison was based underlying assets following the Heston dynamics.

Figure 2: At the money prices for put and call options with Fourier/MC methods
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Experimental models
Throughout, as in the main topic of this thesis, the main purpose was to investigate new models in order to get
a consistent pricing of volatility options. Even though the thesis successfully used multi-factor Heston models,
several other approaches was also scrutinized.

General solution using Riccatti ODEs in multivariate affine stochastic volatility
models
Backward Stochastic Differential Equations (BSDEs) has been granted extra attention during the past few years
as a new way of modelling multivariate affine stochastic models. Although, there are very few explicit solutions
for these equations. By generalising results from Kallsen and Muhle-Karbe (2010), Anja Richter from Baruch
College, US, proposed a method of solving generalized Riccatti ordinary differential equations. The method was
suppose to introduce a flexible and comprehensive class of quadratic BSDEs, having the solution of and explicit
solution of an ODE, i.e. analytically tractable.

Y (t) = F (X(T ), O(T ))−
∫ T

t

Tr(Z(s)∗dW (s))−
∫ T

t

Tr(Ẑ∗(s)dQ̂(s))...

...−
∫ t

0

∫
S+
d
\{0}

Ks(ξ)(µX(ds, dξ)− (ds, dξ)) +
∫ T

t

(f, s,X(s), Y (s), Z(s), Ẑ(s),K(s))ds

For t ∈ [0, T ], and F depends on X and O. The Brownian motion W of the underlying (affine) process X with
the generator being a Borel measureable function f : [0, T ]× S+

d × R×Md ×Md × R→ R
The biggest problem, acquiring a complex valued matrix case for the underlying stock dynamics, as we could
only find a real valued case as in Marie-France Bru (1990) [24]. Even though more effort could have been put
on this model, it would become a nightmare to calibrate the model to real data.

Heston stochastic vol-of-vol
Another approach that was proposed was modelling a Heston Stochastic vol-of-vol model, worked out by Foque
and Saporito (2018) [10]. Scrutinizing a parsimonious generalization of the Heston model, where the term
modelled as σi throughout this thesis, in essence the vol of vol was considered stochastic. Clarifying, a stochastic
vol-of-vol Heston model. The model had its fundamentals in the course litterature proposed by Foque in
Multiscale Stochastic Volatility of equity, Interest Rate and Credit Derivatives (2011) [17]. The objective,
finding a first-order approximation, given by the Heston’s quasi closed formula with corresponding parameters.
Foque and Saporito tricked us into this topic by indicating that the model could be efficiently calculated since
only Fourier integrals and simple ODEs was to be solved.

dS(t) = (r − q)S(t)dt+
√
V (t)S(t)dWS(t)

dV (t) = κ(m− V (t))dt+ ηt
√
V (t)

dWS(t)dWV (t) = ρSV

ηt = η(Y ε(t), Zδ(t))

dY ε(t) = V (t)
ε
α(Y (t)ε)dt+

√
V (t)
ε
β(Y ε(t))dWY (t)

dZδ(t) = V (t)δc(Zδ)dt+
√
δV (t)g(Zδ(t)g(Zδ(t))dWZ(t)

dW i(t)dW j(t) = ρijdt, i, j = S, V, Y, Z

2κm ≥ sup
t∈[0,T ]

η(Y ε(t), Zδ(t)), inf
t∈[0,T ]

η(Y ε(t), Zδ(t)) > 0

Stating the obvious, assuming that the system of differential equations has a unique strong solution for fixed
(ε, δ) in the fast and slow reverting stochastic vol-of-vol components. The stochastic vol-of-vol should also be
measurable, bounded, bounded away from zero (Feller condition), smooth and integrable for complex valued z.
Finally, α and β should follow a unique invariant distribution whereas they are also mean-reverting.
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To begin with, the model was unable to find an analytical expression for the characteristic function without
the use of overwhelming assumptions and approximation. Setting up the calibration, realizing the complex
nightmare of trying to calibrate with the stochastic vol-of-vol term ηt. Similar to Anja Richter’s generalization,
this topic would be great in a future dissertation.

Conclusion
This thesis provides encouraging results regarding the application of the Heston model, extended with multi
factor CIR processes to price volatility derivatives. The results show that extensions of the Heston model is
favourable for further exploration, e.g. by adding extra components. Further, the method of calibrating the
model to real S&P500 option prices and plotting them against real VIX option prices permits measurement
of the favourable success of the technique, used when estimating the option prices. Summarizing, the Triple
Heston model seems to be the best one to use, since it is better in capturing the non-linear behavior of the VIX
options as well as being very computationally efficient and inexpensive.
Nevertheless, the biggest setback writing this thesis was due to the complexity of other models, when modeling
stochastic vol-of-vol. Authors around the world have a tendency to favor approximations crafted by themselves
and since there are a lot of authors researching in this specific topic, there are a huge number of approximate
solutions when it comes to consistent modeling of VIX derivatives.
Finally, the thesis would have benefited by comparing the Heston model and its extensions to other models
measuring stochastic vol-of stochastic vol.
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Appendix
Derivation of Heston characteristic function
By Itô’s lemma

df(t,X(t), V (t)) = ϕX(t)

(
(C ′(T − t) +B′(T − t)X(t) +D′(T − t)V (t)) dt+ . . .

. . .+ (B(T − t) + iz) dX(t) +D(T − t)dV (t) + . . .

. . .+ 1
2 (B(T − t) + iz)2 (dX(t))2 +B(T − t)D(T − t)dX(t)dV (t) + 1

2C
2(T − t)(dV (t))2

)
= ϕX(t)

(
(C ′(T − t) +B′(T − t)X(t) +D′(T − t)V (t) + iz) dt+ . . .

. . .+ (B(T − t) + iz)
(
r − 1

2V (t)
)
dt+ (B(T − t) + iz)

√
V (t)dZ(t) + . . .

. . .+ 1
2 (B(T − t) + iz)σV (t)dt+B(T − t)D(T − t)σV (t)ρdt+ 1

2σ
2V (t)dt

)
According to the Tower Property of conditional expectation, the drift equals zero. The initial conditions
that t = T and f(iz) = exp(izX(T )), implies, C(0) = B(0) = D(0) = 0. Setting X(t) = V (t) = 0 to solve
the system of equations.

−B′(T − t) = 0, B(0) = 0 =⇒ B(T − t) = F ∈ N =⇒ B(T − t) = 0

Meaning that the characteristic function looks like,

E[exp(izX(t))] = exp(C(T − t) +D(T − t)V (t) + izX(t))

D′(T − t) = −1
2 iz − κD(T − t)− 1

2z
2 + 1

2σ
2(D(T − t)2 + ρσizD(T − t)

= −1
2

(
− iz
σ2 −

z2

σ2 +
(

2ρiz
σ
− 2κ
σ2

)
D(T − t) + C2(T − t)

)

=⇒ D′(T − t)
D2(T − t) +

( 2ρiz
σ −

2κ
σ2D(T − t)−

(
iz+z2

σ2

)) = −σ
2

2 (5)

Solving the roots for D(T − t) using the quadratic formula,

r1,2(T − t) = − izρσ − κ
σ2 ±

√
−ρ

2z2

σ2 −
2iρzκ
σ3 + κ2

σ4 + iz + z2

σ2

Substitute β =
√
−ρ2z2

σ2 − 2iρzκ
σ3 + κ2

σ4 + iz+z2

σ2

r1,2(T − t) = α±
√
B

Rearranging the denominator in equation (5),

D′(T − t)
(D(T − t)− (α− β)) (D(T − t)− (α+ β)) = −1

2σ
2

Partial fraction decomposition gives,

1
(D(T − t)− (α− β)) (D(T − t)− (α+ β)) = G

(D(T − t)− (α− β)) + H

(D(T − t)− (α+ β)) (6)
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=⇒ 1 = G (D(T − t)− (α− β)) +H (D(T − t)− (α+ β))

Dividing into two cases,

Let D(T − t) = α+ β =⇒ 2βH = 1 =⇒ H = 1
2β

Let D(T − t) = α− β =⇒ −2βG = 1 =⇒ G = − 1
2β

Substituting the coefficients into equation (6),

D′(T − t)
(D(T − t)− (α− β)) (D(T − t)− (α+ β)) =

(
− 1

2β

(D(T − t)− (α− β)) +
1

2β

(D(T − t)− (α+ β))

)
D′(T − t)

The differential equation can now be solved for D(T − t),

−σ
2

2 =
(

− 1
2β

(D(T − t)− (α− β)) +
1

2β

(D(T − t)− (α+ β))

)
D′(T − t)

=⇒ −
∫ s=T

s=t

σ2

2 ds =
∫ s=T

s=t

(
− 1

2β

(D(T − t)− (α− β)) +
1

2β

(D(T − t)− (α+ β))

)
dC(T − s)

=⇒ −
[
σ2

2 s

]s=T
s=t

=
[
− 1

2β ln(C(T − s)− (α− β)) + 1
2β ln(C(T − s)− (α+ β))

]s=T
s=t

Assuming that D(0) = 0,

=⇒ σ2

2 (T − t) = − 1
2β

(
ln(β−α)− ln(D(T − t)− (α−β))

)
+ 1

2β

(
ln(−(α+β))− ln(D(T − t)− (α+β))

)

Rearranging,

= 1
2β

(
ln(D(T − t)− (α− β)) + ln(−(α+ β))

)
− 1

2β

(
ln(D(T − t)− (α+ β)) + ln(β − α)

)
Knowing that the logarithmic law indicates ln(x) + ln(y) = ln(xy)

= 1
2β

(
ln((D(T − t)− (α− β))(−α− β))

)
− 1

2β

(
ln((D(T − t)− (α+ β))(β − α))

)
Knowing that the logarithmic law indicates ln(x)− ln(y) = ln(xy )

= 1
2β ln

(
(D(T − t)− (α− β))(−α− β)
(D(T − t)− (α+ β))(β − α)

)
Multiplying 1

2β on each side,

=⇒ −βσ2(T − t) = ln
(

(D(T − t)− (α− β))(−α− β)
(D(T − t)− (α+ β))(β − α)

)
Executing an exponential transform on each side,

=⇒ exp(−βσ2(T − t)) = (D(T − t)− (α− β))(−α− β)
(D(T − t)− (α+ β))(β − α)

=⇒ −
(
β − α
α+ β

)
exp(−βσ2(T − t)) = D(T − t)− (α− β)

D(T − t)− (α+ β)
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=⇒ −
(
β − α
α+ β

)
exp(−βσ2(T − t)) (D(T − t)− (α+ β)) = D(T − t)− (α− β)

=⇒ D(T − t) + β − α
β + α

exp(−βσ2(T − t))D(T − t) = (α− β) + (β + α) exp(−βσ2(Tt))

=⇒ D(T − t)
(

1 + β − α
β + α

exp(−βσ2(T − t))
)

= (α− β) + (β + α) exp(−βσ2(T − t))

=⇒ D(T − t) = (α− β) + (β − α) exp(−βσ2(T − t))
1 +

(
β+α
bb+α

)
exp(−βσ2(T − t))

Which is the closed expression for D(T − t), solving for β,

β =
√
−ρ

2z2

σ2 −
2iρzκ
σ3 + κ2

σ4 + iz + z2

σ2

β = 1
σ2

√
(ρ− κ) + σ2(iz + z2)

Setting d =
√

(ρ− κ) + σ2(iz + z2) giving,
β = 1

σ2 d

Simplifying D(T − t) even further,

D(T − t) =
(α− M2

σ4 ) + (M2

σ4 − α) exp(−d(T − t))

1 +
(

M2
σ4 −α
M2
σ4 +α

)
exp(−d(T − t))

=
(α− M2

σ4 ) + (M2

σ4 − α) exp(−d(T − t))
M2
σ4 +α
M2
σ4 +α

+
(

M2
σ4 −α
M2
σ4 +α

)
exp(−d(T − t))

=
(α− M2

σ4 ) + (M2

σ4 − α) exp(−d(T − t))
M2
σ4 +α+

(
M2
σ4 −α

)
exp(−d(T−t))

M2
σ4 +α

Multiply each side of numerator and denominator by M2

σ4 + α,

=
(M2

σ4 + α)
(

(α− M2

σ4 ) + (M2

σ4 − α) exp(−d(T − t))
)

M2

σ4 + α+ (M2

σ4 − α) exp(−d(T − t))

Multiplying by exp(d(T−t))
exp(d(T−t)) ,

=
(M2

σ4 + α)
(

(α− M2

σ4 ) + (M2

σ4 − α) exp(−d(T − t))
)

M2

σ4 + α+ (M2

σ4 − α) exp(−d(T − t))

(
exp(d(T − t))
exp(d(T − t))

)

=
(α2 − M2

σ4 ) exp(d(T − t)) + (M2

σ4 − α2)
(M2

σ4 + α) exp(d(T − t)) + (M2

σ4 − α)

=
(exp(d(T − t))− 1)(α2 − M2

σ4 )
(M2

σ4 ?α) exp(d(T − t)) + (M2

σ4 − α)

=
(exp(d(T − t))− 1)

(
− z

2ρ2

σ2 − 2izρκ
σ3 + κ2

σ4 − 1
σ4

(
−z2ρ2σ2 − 2izρσκκ2σ2iz + σ2z2))

(M2

σ4 + α) exp(d(T − t)) + (M2

σ4 − α)
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=
(exp(d(T − t))− 1)

(
− z

2ρ2

σ2 − 2izρκ
σ3 + κ2

σ4 + z2ρ2

σ2 + 2izρκ
σ3 − κ2

σ4 − iz
σ2 − z2

σ2

)
(M2

σ4 + α) exp(d(T − t)) + (M2

σ4 − α)

=
(

exp(d(T − t))− 1
σ2

)(
−iz − z2

(M2

σ4 − izρσ−κ
σ2 ) exp(d(T − t)) + (M2

σ4 + izρσ−κ
σ2

)

= exp(d(T − t))− 1
σ2

(
iz + z2

1
σ2 (izρσ − κ− d)) exp(d(T − t))− (izρσ − κ+ d)

)

= (exp(d(T − t))− 1)(iz + z2)
(izρσ − κ− d) exp(d(T − t))− (izρσ)− κ+ d)

( 1
−(izps−k+d)

1
−(izps−k+d

)

=
(exp(d(T − t))− 1)

(
−(iz+z2)
izps−k+d

)
1−

(
izρσ−κ−d
izps−k+d

)
exp(d(T − t))

N = izρσ − κ− d
izρσ − κ+ d

=⇒ D(T − t) =
(exp(d(T − t))− 1)

(
− iz+z2

izρσ−κ+d

)
1−N exp(d(T − t))

=
(exp(d(T − t))− 1)

(
−σ2 iz+z2

izρσ−κ+d

)
σ2(1−N exp(d(T − t)))

=
(exp(d(T − t))− 1)

(
−σ2 (iz+z2)(izρσ−κ−d)

(izρσ−κ+d)(izρσ−κ−d)

)
σ2(1−N exp(d(T − t)))

=
(exp(d(T − t))− 1)

(
(−σ2z2−izσ2)(izρσ−κ−d)

−(σ2+izσ2)

)
σ2(1−N exp(d(T − t)))

=⇒ D(T − t) = (exp(d(T − t))− 1)(izρσ − κ− d)
σ2(1−N exp(d(T − t)))

Where,
d =

√
(izρσ − κ)2 + σ2(iz + z2), N = izρσ − κ− d

izρσ − κ+ d

Now, to C(T − t),
C ′(T − t) = irz + κθD(T − t)

Integrating each side, ∫ t=T

s=t
A′(T − s)ds =

∫ t=T

s=t
(irz + κθC(T − s)) ds

=⇒ C(T − t) = irz(T − t) + κθ

∫ t=T

s=t
C(T − s)ds

Substituting for D(T − t),

=⇒ C(T − t) = irz(T − t) + κθ

∫ t=T

s=t

(exp(d(T − s))− 1)(izρσ − κ− d)
σ2(1−N exp(d(T − s))) ds

= irz(T − t) + 1
σ2κθ(izρσ − κ− d)

∫ t=T

s=t

exp(d(T − s))− 1
1−N exp(d(T − s))ds

= irz(T−t)+ 1
σ2κθ(izρσ−κ−d)

[
− ln(N exp(d(T − t))− 1)

M
+ ln(N exp(d(T − t))− 1)

MN
+ ln(exp(d(T − t)))

M

]s=T
s=t
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= irz(T − t) + 1
σ2κθ(izρσ − κ− d)

((
− ln(N − 1)

M
+ ln(N − 1)

MN

)
. . .

. . .−
(
− ln(N exp(d(T − t))− 1)

M
+ ln(N exp(d(T − t))− 1)

MN
+ ln(exp(d(T − t)))

M

))

= irz(T − t) + 1
σ2κθ(izρσ − κ− d)

(
1
d

(ln(N exp(d(T − t))− 1)− ln(N1)) + 1
dN

(ln(N − 1)...

...− ln(N exp(d(T − t))− 1))− d(T − t)
d

)
= irz(T − t) + 1

σ2κθ(izρσ − κ− d)
(

1
d

ln(N exp(d(T − t))− 1
N − 1 ) + 1

dN
ln( N − 1

N exp(d(T − t))− 1)− (T − t)
)

= irz(T − t) + 1
σ2κθ(izρσ − κ− d)

(
1
d

ln(1−N exp(d(T − t))
1−N ) + 1

dN
ln( 1−N

1−N exp(d(T − t)) )− (T − t)
)

= irz(T − t) + 1
σ2κθ(izρσ − κ− d)

N ln( 1−N exp(d(T−t))
1−N ) + ln( 1−N

1−N exp(d(T−t)) )
dN

− (T − t)


= irz(T−t)+κθ

σ2

−(ρσiz − κ− d)(T − t) + (ρσiz − κ+ d)

N ln( (1−N exp(d(T−t))
1−N + ln( 1−N

1−N exp(d(T−t))

d


= irz(T−t)+κθ

σ2

(
−(ρσiz − κ− d)(T − t) + (ρσiz − κ+ d)

(
N ln( (1−N exp(d(T−t))

1−N + ln( 1−N exp(d(T−t))
1−N

d

))

= irz(T − t) + κθ

σ2

(
−(ρσiz − κ− d)(T − t) + (ρσiz − κ+ d)

(
N − 1
d

ln(1−N exp(d(T − t))
1−N

))

= irz(T − t) + κθ

σ2

(
−(ρσiz − κ− d)(T − t) + (ρσiz − κ+ d)

(
ρσiz−κ−d
ρσiz−κ+d − 1

d
ln(1−N exp(d(T − t))

1−N

))

= irz(T − t) + κθ

σ2

(
−(ρσiz − κ− d)(T − t) +

(
ρσiz − κ− d− ρσiz + κ− d

d

)(
ln(1−N exp(d(T − t))

1−N

))
=⇒ C(T − t) = riz(T − t) + κθ

σ2

(
−(ρσiz − κ− d)(T − t)− 2 ln(1−N exp(d(T − t))

1−N )
)

Simplifying even further, with the objective to reduce the amount of deterministic constants, the right hand
side expression is targeted,

−2 ln
(

1−N exp(d(T − t))
1−N

)
= −2 ln

1−
(
izρσ−κ−d
izρσ−κ+d

)
exp(d(T − t))

1−
(
izρσ−κ−d
izρσ−κ+d

)


The obvious thing is to multiply by the denominator of N ,

= −2 ln
(
izρσ − κ+ d− (izρσ − κ+ d) exp(d(T − t))

2d

)

= −2 ln
(

(κ− izρσ) (exp(d(T − t))− 1) + d (exp(d(T − t)) + 1)
2d

)
Knowing that using the logarithmic properties,

−(izρσ − κ− d) = ln(exp(−1))(izρσ − κ− d)
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For notational issues, the interest rate term will be separated from the expression, giving the new expression
for C(T − t),

=⇒ C(T−t) = κθ

σ2

(
(izρσ − κ− d) (T − t)− 2 ln

(
(κ− izρσ)(1− exp(−d(T − t))) + d(exp(−d(T − t)) + 1))

2d

))
Doing the same for the expression D(T − t), focusing on removing the N term,

D(T − t) = (1− exp(−d(T − t)))(izρσ − κ− d)
σ2(exp(−d(T − t))−N)

Multiplying with the denominator of N on each side of the fraction,

= (1− exp(−d(T − t)))(d2 + κ2 − 2iκρσz − ρ2σ2z2)
σ2(exp(−d(T − t))(izρσ − κ+ d)− izρσ + κ+ d)

= (1− exp(−d(T − t)))(d2 + κ2 − 2iκρσz − ρ2σ2z2)
σ2(κ− izρσ)(1− exp(−d(T − t)) + d(exp(−d(T − t)) + 1)

Using the expression for d2,
d2 = (izρσ − κ)2 + σ2(iz + z2)

=⇒ D(T − t) = (1− exp(−d(T − t)) (iz)2 − iz
(κ− izρσ)(1− exp(−d(T − t))) + d(exp(−d(T − t)) + 1)

In essence,
d =

√
(izρσ − κ)2 + σ2(iz + z2)

C(T−t) = κθ

σ2

(
(izρσ − κ− d) (T − t)− 2 ln

(
(κ− izρσ)(1− exp(−d(T − t))) + d(exp(−d(T − t)) + 1))

2d

))
D(T − t) = (1− exp(−d(T − t))

(
(iz)2 − iz

(κ− izρσ)(1− exp(−d(T − t))) + d(exp(−d(T − t)) + 1)

)
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Approximation of the complex error function
Defining an error function for complex inputs is done using Gauss error function, i.e. the complex error
function, for z ∈ C,

erfc(z) = 2√
π

∫ ∞
z

exp(−t2)dt = 1− erf(z)

= Which obviously is symmetric and the error function for z ∈ R,

erf(z) = 2√
π

∫ z

0
exp(−t2)dt

The complex error function is entire and has no singularities, except at infinity. Assuming that the function’s
Taylor series always converges, the asymptotic expansion by 7.1.23 in [9],

√
πz exp(z2)erfc(z) ≈ 1 +

∞∑
m=1

(−1)m 1 ∗ 3...(2m− 1)
(2z2)m , z →∞,

∣∣∣∣arg(z) < 3π
4

∣∣∣∣
The infinite series for the Complex error function 7.1.29 in [9], for z := x+ iy,

erf(x+iy) = erf(x)+exp(−x2)
2πx ((1− cos(2xy)) + i sin(2xy))+ 2

π
exp(−x2)

∞∑
n=1

exp(−n2/2)
n2 + 4x2 (fn(x, y) + ign(x, y))+ε(x, y)

Defining the polynomials,

fn(x, y) = 2x− 2x cosh(ny) cos(2xy) + n sinh(ny) sin(2xy)

gn(x, y) = 2x cosh(ny) sin(2xy) + n sinh(ny) cos(2xy)

|ε(x, y)| ≈ 10−16|erf(x+ iy)|

Now, defining the scaled complex complimentary error function, i.e. the Faddeeva function, for z ∈ C,

w(z) := exp(−z2)erfc(−iz) (7)

= exp(−z2)
(

1 + 2i√
π

∫ z

0
exp(t2)dt

)
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Figures

Figure 3: S&P500 option prices

Figure 4: VIX option prices
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Figure 5: S&P500 option prices

Figure 6: VIX option prices
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Figure 7: S&P500 option prices

Figure 8: VIX option prices
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Figure 9: Calibration of option prices using the Heston model

Figure 10: Inside spread of the Heston model
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Figure 11: Calibration of option prices using the Triple Heston model

Figure 12: The CBOE computed VIX plotted against the S&P500 index
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Figure 13: Calibration of option prices using the Quintuple Heston model

Figure 14: Inside spread of the Quintuple Heston model
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Figure 15: 04.35, VIX options priced with 1 dimensional CIR

Figure 16: 04:35, VIX options priced with 3 dimensional CIR
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Figure 17: 04:35, VIX options priced with 5 dimensional CIR

Figure 18: 09:58, VIX options priced with 1 dimensional CIR
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Figure 19: 09:58, VIX options priced with 3 dimensional CIR

Figure 20: 09:58, VIX options priced with 5 dimensional CIR

43



Consistent pricing of VIX options - Wilhelm Ålander

Figure 21: 14:38, VIX options priced with 1 dimensional CIR

Figure 22: 14:38, VIX options priced with 3 dimensional CIR
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Figure 23: 14:38, VIX options priced with 5 dimensional CIR
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