
Collaborative Drug Discovery
with Blockchain Technology

Christoffer Olsson

Department of Electrical and Information Technology
Lund University

Supervisor: Mohsen Toorani

Examiner: Thomas Johansson

September 3, 2020

c© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

The cost of developing and researching novel molecular compounds in the phar-
maceutical industry is very high today. If an actor accidentally releases too much
information about a novel molecule to the public the molecule becomes prior art,
and as an effect, can not be patented. This has resulted in a fragmented space
where collaboration across organizations is virtually non-existent.
We propose a blockchain-based platform where participants can partially upload
information of molecules while maintaining full ownership of the asset. This way
novel molecules do not become prior art and gives the developer of the molecule
the ability to reveal to the world that they have a molecule with a certain property,
without actually revealing the molecule itself. Larger organizations could use this
to auction out molecules that they are not interested in bringing to clinical trials
or market, smaller organizations could use it to attract funding for a molecule that
they have developed, and researchers could use it to timestamp that they knew
the properties or a structure of a molecule at a certain date.
A prototype is implemented using the blockchain technology Hyperledger Fabric
and is analyzed from security and performance perspectives. Given the right cir-
cumstances, Fabric provides a set of functionalities that can be used to make
sure that ownership is maintained, integrity is protected, and critical information
remains confidential. From a performance perspective, Fabric provides a good
throughput and latency in the order of milliseconds. However, the number of
participants that can maintain the network seems to be limited in the prototype.
These results should be seen as preliminary as no fine-grained optimization was
conducted. Further work required to make the prototype production-ready and
open problems are also discussed.

i

ii

Popular Science Summary

Developing pharmaceutical molecules is expensive. Organizations that develop
pharmaceutical molecules pour a vast amount of resources into developing even
a single molecule. In order to protect the rights of the molecule that was devel-
oped patents are used. However, to receive a patent the organization has to reveal
exactly how their new molecule functions. This means that if an organization
reveals what they are working on to others there is a high chance that they can
not patent their work. This means that organizations risk being punished if they
try to collaborate. Since it is so expensive to develop new molecules several actors
in the space would like to collaborate.
Blockchain technologies aim to solve these kinds of problems. Namely, how can
actors that do not trust each other collaborate? We expect actors that do not trust
each other to try to cheat the system. To prevent them from cheating smart con-
tracts, consensus protocols and the blockchain data structure are used. A smart
contract is a piece of code that participants can use in order to transact value
amongst themselves. In the case of this thesis, they transact representations of
molecules. Consensus protocols are protocols that make sure that all participants
agree on the result of the smart contracts. Finally, the blockchain data structure
is a chain of blocks. Each block points to the preceding block. It is used to verify
that no data has been corrupted. Hyperledger Fabric is such a blockchain technol-
ogy.
A prototype is developed using Fabric. The prototype allows participants to up-
load partial information of molecules that they are developing. This way, they can
reveal to the world what they are working on without exactly revealing the struc-
ture of the molecule. Using this, they can find other people that are interested in
collaboration without losing their ability to claim a patent later. Individuals that
are not interested in patents, e.g. scientists, can upload the full molecule in order
to prove that they knew a molecule at a certain date. The developed prototype
is analyzed from a security and performance perspective and open problems that
need to be solved before the prototype is production-ready are also discussed in
the thesis.

iii

iv

Table of Contents

1 Introduction 1
1.1 History of Decentralized Computing 1
1.2 The Pharmaceutical Industry . 3
1.3 Problem Statement . 3
1.4 Contributions . 4
1.5 Outline . 4

2 Theoretical Background 5
2.1 Tokenization . 5
2.2 Intellectual Property . 5
2.3 Decentralized vs. Distributed . 7
2.4 CAP-Theorem . 7
2.5 Hyperledger Caliper . 8
2.6 Consensus . 8
2.7 Crash Fault-Tolerant Consensus Protocols 8
2.8 Byzantine Generals’ Problem . 10
2.9 Blockchain Datastructure . 15
2.10 Bitcoin . 15
2.11 Cryptography . 16
2.12 Digital Certificates . 18
2.13 Chemical Identifiers . 20

3 Hyperledger Fabric 23
3.1 Overview . 23
3.2 State modeling . 25
3.3 Peer Gossip . 26
3.4 Orderers . 27
3.5 Transactions . 28
3.6 Chaincode . 30
3.7 Endorsement Policies . 31
3.8 Identification . 32
3.9 TLS communication . 33

v

4 Problem Analysis and Modelling 35
4.1 Patents and Trade Secrets in Industry 35
4.2 High-Level Solution to the problems 35
4.3 Modelling . 36
4.4 Entities and Assets . 37
4.5 Data format . 38
4.6 Operations . 39
4.7 Use cases . 39

5 Implementation 43
5.1 Entities . 43
5.2 Data Format Implementation . 44
5.3 Interacting with the application . 45

6 Security Analysis 47
6.1 Information Taxonomy . 47
6.2 Security Goals . 48
6.3 Chaincode Security . 51
6.4 Security Attacks . 54

7 Performance Analysis 59
7.1 Previous Work . 59
7.2 Discussion of Results . 61
7.3 Conclusions on Evaluation Results 64

8 Conclusions & Future Work 71
8.1 Future Work . 72

References 77

A Chaincode 81
A.1 Source Code . 81

vi

List of Figures

2.1 OM(1) Byzantine Follower . 12
2.2 OM(1) Byzantine Leader . 12
2.3 Blockchain Structure . 15
2.4 Ethanol . 21
2.5 Methamphetamine . 22

3.1 Transaction Flow . 24
3.2 World State . 25

4.1 High Level Overview of Proposed Solution 36
4.2 Reference Model . 37

5.1 Implementation of the Prototype 43
5.2 API for the Platform . 45

7.1 Evaluation results: Upload Molecule 66
7.2 Evaluation results: List History of Asset full transaction 67
7.3 Evaluation results: List History of Asset query transaction 68
7.4 Evaluation results: Transfer Ownership 69

vii

viii

List of Tables

2.1 OM(1) Byzantine follower . 11
2.2 OM(1) Byzantine leader . 12

ix

x

List of Algorithms

1 OM(m): Simple algorithm that solves byzantine generals’ problem . 11
2 Practical Byzantine Fault Tolerant Protocol 13
3 Pre-Prepare . 13
4 Prepare . 13
5 Commit . 14
6 ECDSA Signature Generation . 17
7 ECDSA Signature Verification . 17

xi

xii

Chapter 1
Introduction

Research and development in the pharmaceutical is a highly closed and siloed en-
deavor. Actors have a hard time collaborating, research and development suffer
from inefficiencies and money is wasted. As a response to this, several actors are
calling for a more transparent and open collaboration. Larger companies should
ideally want to pool resources and share the fruits of their research and smaller
companies want an easier time receiving funding for research. The problem so far,
however, has been that there is no easy way to keep track of contributions and
ownership of propriety. This has resulted in a somewhat paranoid space where it
is very hard for competing actors to trust each other. As a result collaboration for
the benefit of all is virtually non-existent [31].
We propose a solution where rights for molecules are tokenized and stored using
the blockchain platform Hyperledger Fabric [2]. This is a vast undertaking and
this thesis has no ambition to solve the problem in its entirety. What is proposed,
however, is a prototype that can be used as a stepping stone to fully realize a
system where a multitude of pharmaceutical actors can share resources while pro-
viding strong reassurance that the correct actors receive and retain their intellectual
propriety.

1.1 History of Decentralized Computing

Tannenbaum & Van Steen [45] define a distributed system as a collection of inde-
pendent computers that appears to its users as a single coherent system. As the cost
of computers has fallen dramatically during the last decades, combined with the
fact that computer networking has become increasingly faster and more reliable,
more people have moved toward distributed computing. Distributed computing
has enabled humankind to build software systems at scale. No single computer
could process the amount of data that flows through a medium to large-sized orga-
nization today. As society becomes further digitized, more value from our physical
lives are moved onto computer systems. In the end, there is nothing that phys-
ically prevents the owner of one of these systems to misuse the data that flows
through it. This is problematic where several actors want to share a computing
system as equals. Historically, someone owned the master-key to the databases
and this actor had to be trusted not to abuse their position.
As a reaction to this, there has been a surge in the interest of decentralized com-

1

2 Introduction

puting systems. Namely, systems where no single entity controls the entirety of
the computing stack. Even though this concept has been around for a while, e.g.
Bitgold [44], peer-to-peer torrenting [11], it could be argued that the dream of
decentralized systems took off for real with the invention of Bitcoin [28]. Bitcoin
proved that it is possible to build a distributed system where trust has been dis-
intermediated, at scale.
In essence, Bitcoin is a distributed timestamp server with a built-in stack-based
virtual machine [28]. Users of the network can pass scripts to the virtual machine.
The purpose of these scripts is to sign over ownership of coins to other users. By
design, the scripting language is simple in order to decrease the attack surface of
the network. Using consensus mechanisms, the results of script executions will
eventually be consistent across all well-behaved nodes. This begs the question,
what if the virtual machine inside of Bitcoin is extended to a fully-featured Turing
machine? This idea is what first spawned Ethereum [7] and subsequently, other
smart contract platforms. A smart contract is a concept proposed by Nick Szabo
[43], where the specification of a contract is formalized so that it can be executed
by a computer. Essentially, a smart contract is a piece of code that moves value
from one entity to another depending on its execution path. Code that moves
value has existed for several decades. One does not need smart contracts to op-
erate e.g. a bank or a digital market. The idea is that smart contracts should
be able to create markets where there is little of or no need for an intermediary
party. Even though it is theoretically possible to build any program, e.g a bank,
using Ethereum it has proved difficult to do so in practice. The public nature of
Ethereum means that anyone can join the network and participate. This is not
optimal for enterprise use if confidentiality is of importance. Using Ethereum, all
data is copied to every node in order to be verified. Also, the push-only nature of
public blockchains means that it is hard to revert bugged smart contract imple-
mentations. Finally, it has proven to be hard to scale throughput in public smart
contract platforms, while maintaining security.
In order to answer the shortcomings of public smart contract platforms, the Linux
Foundation initiated a project called Hyperledger [23]. Hyperledger is a collection
of smart contract platforms, with the key difference that they are permissioned.
That is, all participants of the network are invited, as opposed to a public net-
work, where anyone can participate. This way a consortium of organizations can
establish a network amongst themselves, keeping unwanted participants out of the
network, while providing trust disintermediation. Fabric is thoroughly discussed
in Chapter 3 and is the smart contract platform used to implement the prototype
proposed in this thesis. Another Platform called Corda was also considered. How-
ever, Corda is more suited toward financial services as of today, whereas Fabric is
a general-purpose smart contract platform.

Introduction 3

1.2 The Pharmaceutical Industry

Open collaboration is on the rise in the pharmaceutical industry [1]. The idea is
that this will accelerate the development of new compounds benefiting both par-
ties in such an agreement. Astra Zeneca, a major pharmaceutical actor in Sweden,
identified that as more collaborations are established it gets increasingly difficult
to keep track of ownership rights, origin, and usage rights. This is due to the
fact that ownership rights to compounds used to mainly belong to a single com-
pany. Today rewards and risks of molecule development need to be shared across
several organizations [1]. This means that most compound tracking tools are not
designed to enable cross-organization collaboration in a painless way. They pro-
pose a system called Compound Passport Service. A Passport, according to their
definition, is the digital rights to a compound. This way, they could less painfully
keep track of which actor owns what right to compounds, even when working with
external collaborators. This also means that they could automate usage rights
to assets. Furthermore, they assess that open collaboration will probably con-
tinue to increase and express an interest in other systems that can further increase
cross-organization collaboration in a painless way [1].

1.3 Problem Statement

This thesis proposes a prototype that aims to partially solve the problem that Astra
Zeneca identified using Hyperledger Fabric. The difference is that the proposed
prototype aims to work across several pharmaceutical organizations both large
and small in a trust disintermediated way using blockchain technology. We were
looking for answers to the following questions:

1. How does Hyperledger Fabric work? How is its architecture designed? How
does one use it? - This is answered in Chapter 3.

2. Problem Analysis - What problems can be identified and how can they be
solved? Discussed in Chapter 4.

3. How will compounds be modelled? - This is discussed in Chapter 4.

4. What does an implementation of the Data Model look like? - Discussed in
Chapter 5.

5. How secure is the prototype? - This is discussed in the Chapter 6.

6. Will the prototype scale to a high number of participants? - It is important
that many actors can join the network. Therefore a performance analysis
was conducted. This is discussed in Chapter 7.

7. What needs to be considered to bring the prototype to a production-ready
version? - This is discussed in Chapter 8.

4 Introduction

1.4 Contributions

This thesis mainly contributes the following:

• An analysis and a proposed solution to Astra Zeneca’s problem [1]: Even
though there exist other platforms for molecule tracking [1], building such
a platform using Fabric is novel as far as we are aware.

• A high-level security analysis of the proposed prototype: There exists no
overarching discussion on the security properties of Fabric. The paper that
introduces Hyperledger Fabric [2] briefly mentions it, and official documen-
tation [19] of Fabric is still marked as work in progress.

• A performance evaluation of the proposed prototype: There exists literature
that evaluates the performance of Fabric [46, 30, 29, 17, 41]. However, they
focus on either a fixed network topology or a smaller amount of entities
and do not investigate how Fabric scales when one adds a larger amount of
entities to the network.

• A discussion on open problems identified while working on the prototype:
The open problems can be separated into two categories: What it means to
tokenize molecules, and technical problems that are needed to be solved in
order to make Fabric scale.

1.5 Outline

The thesis is structured as follows:

• Chapter 2 provides a background on important topics needed in order to
understand this thesis and smart contract platforms in general.

• Chapter 3 provides a thorough description how Hyperledger Fabric works
on a high level.

• Chapter 4 provides an analysis on the problem of open collaboration of
molecules, why collaboration is needed, and how one can translate the prob-
lem and its solution into the blockchain domain.

• Chapter 5 provides a discussion of the prototype implemented for this thesis.

• Chapter 6 provides a high-level security analysis of the implemented proto-
type.

• Chapter 7 provides a performance evaluation for the implemented prototype
using various network topologies.

• The thesis is concluded with Chapter 8, which provides a discussion on open
problems that need to be solved before the prototype can be brought to a
production-ready state.

Chapter 2
Theoretical Background

2.1 Tokenization

Tokenization is the minting of an asset that represents some other phenomenon
[3]. A token can represent one’s right to park a car in a parking lot, the rights to
a physical painting, or the right to a revenue stream from some other asset. In the
case of this thesis, a token is a digital representation of a chemical compound. In
short, pretty much anything can be tokenized. The challenge lies in keeping the
tokenized representation in accordance with the physical asset. This is known as
the Oracle Problem [13]. Namely, how can one safely convert physical assets to
digital tokens when there exist incentives to cheat?

Fungible and Non-Fungible Tokens

Fungibility is when one unit of a good is interchangeable with another [3]. For
example, national currencies are fungible. One dollar is considered equal to another
in a transaction as they are both worth the same. Paintings, however, are highly
non-fungible. The value of one painting varies wildly from the value of another.
Some goods can be partially fungible. Bitcoin is an example of this. Even though
one bitcoin is interchangeable to another, one can track the exact history of all
transactions that lead to the current state of the coin [28]. As an effect one coin
could be evaluated differently to another, depending on the histories of the two
coins.

2.2 Intellectual Property

Intellectual property (IP) are property rights regarding intangible creations of
the human mind [37]. Intangible creations are abstract constructions. In essence,
they are the opposite of concrete properties such as physical goods, or owned land.
Examples of intangible creations are computer software, music, art, and business
plans. Intangible products can have a physical manifestation once they are written
to a physical medium. For example, software can be stored on a physical hard-
drive. The reason a society needs rights for intangible creations is because they
are inexhaustible. An inexhaustible good is a good that has an infinite number of
uses. For example, once a certain business plan is public knowledge, everyone can

5

6 Theoretical Background

use it. This is a stark contrast to physical goods like apples. Each apple can only
be eaten once. IP can be categorized as follows [37]:

• Copyright law - Laws relating to the rights of copying the physical manifes-
tation of an intellectual property. For example, who has the right to copy
and commercialize a book.

• Trademarks - Laws regarding recognizable brands. For example, who has
the right to use a certain picture to promote their products.

• Design Rights - Laws regarding design of products. That is, who has the
right to use a certain design for a physical product.

• Patents - Laws regarding technical innovations. That is, who has the right
to use certain technical innovations.

• Trade Secrets - Laws regarding secrets that one can possess. Certain secrets
give competitive advantages, and trade secret laws aim to help protect these
secrets in a fair way.

Given that intangible products are virtually free to duplicate, IP law aims to
protect the rights of, and provide incentives to people that innovate [37]. For
example, the moment someone writes a novel, the novel is protected by copyright
laws. Anyone that copies the book unlawfully can be taken to court. IP laws
vary across jurisdictions. For this thesis mainly Patents and Trade Secrets are of
interest.

2.2.1 Patents

A patent is an exclusive right to a technical innovation [37]. A patent does not
give the right to produce the technical innovation, but it does give the holder the
right to exclude anyone else from producing the innovation. In order to receive a
patent, the recipient has to disclose the technical details of the innovation to the
public. The idea is that the inventor will be incentivized to reveal their innovation
to the public, thus benefiting humankind as a whole, while receiving a monopoly
for a limited time. The monopoly, in turn, can be used to regain the money that
was invested into the invention. For an invention to be patentable the following
must be fulfilled [37]:

1. Novelty : The invention has to be novel. Prior Art is a term used to describe
what knowledge humankind as a whole possesses about technical products.
For an innovation to be novel it has to be outside of the prior art.

2. Inventive Step: The innovation has to have an innovative step. That is,
it has to be an actual technical innovation and solve a technical problem.
Moreover, this technical innovation must not be obvious to skilled people in
whatever field the innovation came from.

3. Industrial Applicability : There must be reasonable belief that the product
can be produced industrially.

Theoretical Background 7

2.2.2 Trade Secrets

When one applies for a patent one has to reveal the technical details of the innova-
tion. In some situations, this is not ideal, for example, if one expects the product
to live longer than the duration of the patent or if one believes that it is hard to
enforce the patent due to the nature of the technical product. In this situation it
might be better to rely on Trade Secrets [37]. A product can be protected by trade
secret laws if one believes that the disclosure of the secrets will harm the owner
of the secrets. That is, something can be considered a trade secret if it gives the
owner a competitive edge.
Protection around trade secrets is not as strong as it is for patents. For example,
if a competitor discovers one’s trade secret via research, the competitor is free to
use the discovery commercially. However, one can explicitly mark certain IP as a
trade secret. Any unlawful disclosure of the secret can then be taken to court [37].

2.3 Decentralized vs. Distributed

The terms decentralized and distributed are ubiquitous when discussing blockchain.
Distributed is a physical characteristic of a system. It means that the system is
distributed across processes. Decentralized systems are a subset of distributed sys-
tems. They are also dispersed across processes. The difference lies in governance.
A decentralized system is a system where decisions are not centrally organized.
Decentralization is not an absolute but a scale. The most radically decentral-
ized system is something like a true peer-to-peer network, for example, Bittorent
where there is no leader at all. However, a system where a handful of actors make
decisions could also be considered decentralized.

2.4 CAP-Theorem

A distributed system can not be both consistent and available during a network
partition [15]. A distributed system can only have two out of three of the following
properties at all times.

1. Consistency : Components of a network return the correct value for each
request. That is, if one writes x = 5 to a distributed system, all queries for
x will return 5.

2. Availability : When sending a message to a node, it will respond.

3. Partition Tolerance: The network functions even when one node can not
send any message to another node.

This is known as the CAP-theorem (Consistency, Availability and Partition Tol-
erance) [15]. This has major implications for distributed systems, as network
partitions will happen due to the distribution of computers. In practice one has
to choose consistency & partition tolerance, or availability & partition tolerance.

8 Theoretical Background

2.5 Hyperledger Caliper

Hyperledger Caliper is a tool that can be used to benchmark blockchains [24].
One defines either connections information to an existing Fabric network or a
new Fabric network. Moreover, one also defines benchmark tests that are run by
Caliper. Caliper collects performance metrics and generates reports when it is
run. Caliper was used in the course of the thesis to run performance evaluations.
This is further discussed in Chapter 7.

2.6 Consensus

A core issue of distributed systems is to reach consensus among processes. Pro-
cesses that share state have to somehow agree on how the state is updated. A
consensus protocol is a protocol where there are at least 2 processes [14]. The pro-
cesses communicate via sending messages. The processes need to reach consensus
on values proposed by one or more of these processes. The following properties
can be defined for the consensus problem [26]:

1. Safety : Can be defined as: Nothing bad will ever happen. That is, the
execution of the algorithm will not produce faulty results.

2. Liveness: Can be defined as: Computation will progress. That is, the algo-
rithm will not halt.

2.7 Crash Fault-Tolerant Consensus Protocols

A class of consensus protocols are considered crash fault-tolerant. Safety and
liveness of the protocol are not threatened if a certain number of processes crash.
Crash fault-tolerant protocols are a subset of Byzantine fault-tolerant protocols,
which can handle arbitrary failures. Byzantine fault-tolerant (BFT) protocols are
discussed below.

2.7.1 Raft

Raft [32] is a crash fault-tolerant consensus protocol. Previous crash fault-tolerant
protocols were criticized for being too complicated. As a response to this, Raft
was constructed to be an easy to understand protocol. In theory, this should make
it more reliable as it is easier for humans to understand the implementation [32].
Raft is a consensus protocol that manages a replicated log by forming a cluster of
nodes. A leader is elected by the set of nodes. The leader proposes new values
and commits the value to the other nodes that are called followers. If a leader is
not present elections are held. A potential new leader is called a candidate. Each
node has a local value called the term number. Nodes always follow leaders with
the highest term number [32].

Theoretical Background 9

Leader Election

If a leader exists, it periodically sends heartbeats to the followers. If a node
misses a heartbeat, it holds an election. The node enters the candidate state and
increments its term number. It votes for itself and sends a message to all other
nodes that it is holding an election. The message contains the term number. Three
outcomes are possible [32]:

1. The followers receiving the election proposal recognizes that the candidate
node has the highest term number. They respond that they will now follow
the candidate node. Once it receives a majority of votes it considers itself
leader and starts sending heartbeats to the followers.

2. The other nodes know a leader with a higher term number. They reject
the candidate node. It could also be the case that they receive a message
from another leader node with a higher term number during the election.
Nodes always follow nodes with the highest term number. The candidate
will eventually become a follower once it receives a message from the leader
that had the higher term number.

3. If two nodes hold an election at the same time, there could be a deadlock
if neither of them can receive a majority of votes. In this case, the election
will time out and nodes are free to become new candidates in a new election
round.

The nodes rely on random timers to avoid deadlocks. For example, if two nodes
have the same term number, they are both eligible to become leaders. Therefore,
when the election times out they wait a short but random amount of time. This
way it becomes less likely that they will reach an election deadlock.

Log Replication

A client sends values it wants to commit to the log to the leader peer. Once a leader
peer receives a request to commit a value it sends the value to all followers along
with an index and its term number. The term number is used so that followers
can verify that the received value is from an eligible leader. The index is a number
starting from one. Each committed value increases the index by one. The index
is used to keep track of values. The followers respond that they have committed
the value to their log. Once the leader has received a confirmation message from a
majority of the followers it considers the value properly committed and responds
that the commit was successful to the client. The leader has total authority over
the log. If logs become inconsistent among nodes, followers always replicate the
leader’s log.

Safety and Liveness of Raft

Safety is maintained by the leader. As long as the leader is correct, all followers
will eventually replicate its log. Moreover, when elections are held or nodes time
out, there can be some downtime when the cluster decides on its next leader. In
this situation, followers ignore messages from leaders whose term number is lower

10 Theoretical Background

than the highest term number they know of until a leader emerges with a high
enough term number.
Liveness is maintained during process crashes by the leader election: if a leader
times out a new leader will emerge eventually. However, this only holds if at least
a majority of nodes can hold an election. If more than half of the cluster crashes,
the remaining nodes can not elect a new leader and thus the log replication is
halted.

2.8 Byzantine Generals’ Problem

Crash fault-tolerant protocols work under the assumption that nodes behave ac-
cording to the protocol. Crashes can be handled, but what happens if one or
more nodes behave arbitrarily? This is what is known as the Byzantine Generals’
Problem [27]. Consider an army consisting of one general and his lieutenants sur-
rounding a city. They have to coordinate if they are to attack or retreat from the
city. They communicate via messages. However, one or more of the commanders
might be traitors and behave in a way that prevents the well-behaved commander
from reaching the same plan. Regarding safety, we consider protocol execution
successful if all lieutenants reach the same conclusion because the general that
proposes can be a traitor. Moreover, we define retreat as a default value. This
way one does not have to consider messages that are lost, or if the general simply
refuses to deliver any messages [27]. A general is equivalent to an elected leader
in Raft. Lieutenants are equivalent to followers. For consistency, we will refer to
commanders as nodes. A node that diverges from protocol is considered byzantine.
Moreover, we consider nodes sending messages containing a decision on 0/1 instead
of retreat/attack. A byzantine node potentially threatens all desired properties of
a consensus protocol that does not take byzantine faults into account.
An example demonstrates how severe byzantine faults can be. A byzantine node
in Raft could set its term number to a very high number and then hold an election.
It is likely that this node would become the new leader. The node could then alter
the established log in a malicious way. This destroys the safety of the protocol.
Moreover, the node could refuse to deliver commit messages from honest clients.
This would destroy the liveness of the protocol. The core issue of byzantine faults
is that it removes all restrictions on participating nodes, rendering them free to
behave in an arbitrary way. Lamport et al. [27] showed that any deterministic
byzantine fault-tolerant protocols maintain safety and liveness given that at least
3m+ 1 nodes are well-behaved, where m is the number of byzantine nodes.

2.8.1 Naive Byzantine Fault-Tolerant Protocol

The OM(m) algorithm solves the byzantine generals’ problem for m traitors [27].
Let m be the number of traitors and 3m + 1 be the number of nodes. A naive
approach to solving the byzantine generals’ problem is to have all followers relay
the message they received from the leader to all other followers. This way followers
select the value that a majority of other nodes have selected. The OM(m) algo-
rithm is described in algorithm 1. To further illustrate the algorithm an example

Theoretical Background 11

is provided. Two situations have to be considered, when the leader is byzantine
and when a follower is byzantine.

Algorithm 1: OM(m): Simple algorithm that solves byzantine gen-
erals’ problem

Result: All followers reach same conclusion
if m=0 then

Leader sends value to followers;
Followers accept value;

else
Leader sends value to followers;
Each follower sends value to other followers;
Accepted value for followeri ← Majority of values from other
nodes;

OM(m-1), where new leader ← followeri;
end

Byzantine Follower

Consider one leader (L) and three followers (F1, F2, B) of which one is byzantine
(B). The leader sends 1 to every follower. The byzantine node sends 0 to the other
followers. The OM(m) algorithm is illustrated as a tree in Figure 2.1. Table 2.1
contains the values that each follower node received. Each row depicts the message
that the follower received from the other followers. This way the nodes can safely
select 1 as the result by simply choosing the value that they received in a majority
of the messages.

Byzantine Leader

The other situation is when the leader itself is byzantine. The leader sends 0 to
the first follower and 1 to the other followers. The algorithm execution is depicted
in Figure 2.2. In Table 2.2 the values each follower receives from other nodes are
depicted. By taking the majority of each row, each follower can safely elect 1 as
the result.

Name L F1 F2 B
F1 1 - 1 0
F2 1 1 - 0
B 1 1 1 -

Table 2.1: OM(1) Byzantine follower

12 Theoretical Background

L

F1

F2

1

B

1

1

F2

F1

1

B

1

1

B

F1

0

F2

0

1

OM(1)

OM(0)

Figure 2.1: OM(1) Byzantine Follower

B

F1

F2

0

F3

0

0

F2

F1

1

F3

1

1

F3

F1

1

F2

1

1

OM(1)

OM(0)

Figure 2.2: OM(1) Byzantine Leader

Name B F1 F2 F3
F1 0 - 1 1
F2 1 0 - 1
F3 1 0 1 -

Table 2.2: OM(1) Byzantine leader

2.8.2 Practical Byzantine Fault Tolerant Protocol

Practical Byzantine Fault Tolerant Protocol (PBFT) [8] is another byzantine fault
tolerant protocol. There are plans to implement this algorithm in near future re-
leases of Fabric [19]. Letm be the number of byzantine nodes and R = {0, . . . , 3m}
denote the set of nodes. We have |R| = 3m + 1. All messages passed between
nodes are signed. v ∈ R is called view which defines the current leader. Leader
election is done via Round Robin: the current leader is v mod |R|. The next
leader is v + 1 mod |R|. The algorithm is described in algorithm 2 and contains
three steps: pre-prepare, prepare, and commit. The purpose of pre-prepare is for
the current leader to propose a unique sequence number n for the request to the
followers. If any of the requirements fail the follower will reject the proposed n.
Pre-prepare is described in algorithm 3, in which m is number of byzantine nodes,
n is a sequence number, σ is a signature, v is the current view and d is Hash(m).
The purpose of prepare is for the followers to agree on the sequence number n.

Theoretical Background 13

Once a follower has received 2m valid prepare messages from other followers with
the same n the follower accepts the sequence number. Prepare is described in
algorithm 4. Finally, the purpose of commit is to commit the value. Once all
nodes have established a unique and shared sequence number n for the request
they will try to commit the request from the client. Commit is described in algo-
rithm 5. Once the client receives m + 1 confirmation messages from the nodes it
considers the request committed and is free to make new requests to the consensus
consortium.

Algorithm 2: Practical Byzantine Fault Tolerant Protocol
Result: Committed value to shared log
Client sends request to Leader;
if valid request then

1. Pre-prepare;
2. Prepare;
3. Commit;

end
Nodes send response to client;
if Number of identical responses > m then

Client accepts;
end

Algorithm 3: Pre-Prepare
Result: Accepted or rejected n
Leader sends (d, v, n, σ) to all followers;
foreach followeri do

if d, v, n, σ are valid then
if (v,n) has not been processed for another d then

follower Accepts n;
end

end
end

Algorithm 4: Prepare
Result: Accepted or rejected n
foreach followeri do

Send (n, d, i, v, σ) to other followers;
if Received values: n, d, i, v, σ are valid then

if 2m > Valid prepare messages received then
followeri, Accepts n;

end
end

end

14 Theoretical Background

Algorithm 5: Commit
Result: Accepted or rejected commit
foreach nodei do

Send commit message containing (d, v, n, σ) to other nodes;
if Received values:(d, v, n, σ) are valid then

if 2m > Valid commit messages received then
nodei Accepts commit;

end
end

end

Safety and Liveness of PBFT

Safety and Liveness of PBFT is guaranteed if there are no more than m byzantine
nodes for a network of 3m+ 1 nodes [8]. If m byzantine nodes are followers, they
can not threaten liveness nor safety as the protocol is designed to reach consensus
no matter what value they propose. If they refuse to respond to requests the
algorithm is designed to reach a safe consensus by ignoring their messages using
time-outs. If the leader is byzantine, the network holds an election called a view-
change. A view-change occurs if a follower suspects that the leader is faulty. The
suspecting follower sends a view change request to other followers. The new leader
is v + 1 mod |R|. Once the new leader has collected 2m + 1 confirmations, the
network can progress [8].

2.8.3 Nakamoto Consensus

Nakamoto Consensus, also known as proof-of-work, is the consensus protocol used
in Bitcoin [28]. It moved the concept of consensus from a deterministic framework
to a probabilistic. Leader election works via a cryptographic game that is hard
to compute, but easy to verify, namely finding partial pre-image collisions for the
latest state of the ledger. When a participant finds a collision they can claim to
be the leader of the next state update. There can exist several potential leaders
at the same time. A solution to the cryptographic puzzle is also called a block
discovery. All nodes accept all solutions but none of them are considered final. We
also define difficulty: the more competitors that are participating a number called
the difficulty is raised which determines how hard it is to solve the cryptographic
game.
The moment a competitor hears of a solution, he stops working on the current
problem and starts using the latest solution as the input for the next pre-image
hash collision search. This way solutions to the cryptographic game are chained
and built on top of one another. The state that is deemed the true one is always
the one with the most accumulated difficulty, which could also be phrased as the
longest chain of solutions to the cryptographic game. This way the consensus
on state is probabilistic as one chain of solutions could be overtaken by another.
This can happen when competitors that have better hardware or are just luckier
out-compete a chain. However, if one waits, the probability that a certain block
in the chain gets reverted falls sharply as more solutions are stacked on top of it.

Theoretical Background 15

Safety and Liveness

Safety in Nakamoto consensus could be defined as only correct blocks are included.
Safety is maintained if a majority of nodes only accept valid blocks. Proof-of-
works decreases the likelihood that competitors produce faulty blocks, as they have
to sacrifice electricity to solve the computational puzzle. Moreover, an attacker
could produce an alternate chain consisting of valid blocks that is longer than the
current chain. This would destroy safety as the attacker could overwrite blocks
that are considered committed. The probability that an attacker can revert a
specific block decreases as the chain grows. Nakamoto [28] argues that blocks will
arrive according to a Possion Process. In effect, this means that block discovery is a
non-stateful process. The more competitors that participate in the block discovery
process the harder it will be for the malicious actor to discover a block. As the
chain grows from the block the attacker wants to revert, they have to solve an
ever longer sequence of puzzles to arrive at a chain that can replace the legitimate
chain. One can consider a block to be valid once enough blocks have been stacked
on top of it.
Liveness is maintained because any entity can participate in the puzzle. If one
competitor halts, the network can rely on other competitors to progress the chain
of blocks.

2.9 Blockchain Datastructure

The blockchain is the core data structure for distributed systems where immutabil-
ity is of importance [28]. It is called blockchain because blocks of data are chained
using cryptographic hashes. The blockchain can be illustrated as in Figure 2.3. We
can compute the hash of the last block N which contains a hash of block (N − 1),
which in turn contains a hash of the block (N − 2) and so on until we reach the
block (N −N), called the genesis block. If a single bit has changed in any of the
blocks the whole hashchain will diverge, making it easy to detect that a block has
been corrupted.

2.10 Bitcoin

Bitcoin is probably the most well-known blockchain-based distributed system [28].
Its application is money. That is, the distributed system facilitates a token that
users can transact. Its consensus mechanism along with the blockchain data struc-

Figure 2.3: Blockchain Structure

16 Theoretical Background

ture is designed to solve the double-spend problem [28]. A double-spend is when
some entity spends a resource more than once. Double-spends breaks a monetary
system as one can spend one unit of money several times.
Bitcoin uses a blockchain to track the history of its tokens, making it tractable to
maintain immutability of transactions. To protect the integrity of the blockchain,
Nakamoto consensus is used. The competitors in the game are usually called min-
ers. In order to incentivize people to compete in the game, a reward is given for
each solution that is found to the winner. The winner of the competition gets
to write the next block in the blockchain. This way, the winning miner gets to
select the transactions that are added to each block. The idea is that the reward
one can receive from competing in the Nakamoto consensus game will incentivize
people to partake in the competition. This means two things for the stability of
the network.

• People who can profit from attacking the network might as well join the
mining pool to receive rewards.

• As more computers join the global mining pool, difficulty gets higher and it
gets harder to out-compete honest miners.

These two steps work in a virtuous cycle. The more miners join, the harder it is
to attack the network. The harder it is to attack the network, the more confidence
people will have in it. So far this cycle has worked and Bitcoin has been running
with virtually no down-time for more than 10 years. It remains to be seen if this
consensus protocol will be as stable in the future.

2.11 Cryptography

This section discusses the cryptographic components that Fabric utilizes.

2.11.1 Elliptic Curve Digital Signatures

A digital signature is a scheme that provides authenticity and integrity of a mes-
sage. Given a private key, an actor can sign a message. If the message is tampered
with, the signature will be rendered invalid. Moreover, the signature serves as
proof that the message was created by the owner of the private key. Digital sig-
natures can be constructed and verified using elliptic curve cryptography (ECC)
more specifically, elliptic curve digital signature algorithms (ECDSA) [25].

Elliptic Curve Cryptography

An elliptic curve can be used to construct a commutative group over a field. A
cryptographic elliptical curve is defined as follows:

y2 = x3 + ax+ b mod p (2.1)

where y, x ∈ Fp, Fp denotes a finite field, and p is prime. We define the group E
as:

{(x, y) : y2 = x3 + ax+ b ∪ {O}} (2.2)

Theoretical Background 17

where O denotes a point at infinity. If the parameters for the curve are selected
appropriately we can define a scalar multiplication for the group as follows:

nP = R (2.3)

where P and R ∈ E. Moreover, if the parameters have been selected appropriately
it becomes intractable to find n such that nP = R. This is what is known as
the elliptic curve discrete logarithm problem (ECDLP). This property is used to
construct the signature scheme [25].

Elliptic Curve Digital Signature Algorithm

Let da be the secret key of Alice. Let Ha be her public key. Alice wishes to send
a message m and have it signed by her private key and verified by her public
key. The message itself is not part of the signature. Instead a truncated hash is
calculated from the message m. The hash is truncated by taking leftmost bits to
bitlength n, where n is the order of the subgroup. We denote the truncated hash z.
Finally, G is the base point of the elliptic curve that generates the cyclic subgroup.
To construct a signature Alice uses algorithm 6. To verify Alice’s signature, Bob
uses algorithm 7. Note that P = v1G+ v2Ha is based on the fact that the inverse
for the scalar multiplication is intractable given appropriate parameters [25].

Algorithm 6: ECDSA Signature Generation
Result: Signature: (r, s)
Select random k ∈ {1, ..., n}
P ← kG
r ← xp mod n where xp is x-coordinate of P
if r = 0 then

Start over
end
s = k−1(z + rda) mod n
if s = 0 then

Start over
end
return (r, s)

Algorithm 7: ECDSA Signature Verification
Result: Valid Signature?
v1 ← s−1z
v2 ← s−1r
P ← v1G+ v2Ha

if r = xp mod n then
return True

else
return False

end

18 Theoretical Background

2.11.2 Hash Functions

A cryptographic hash function is a function whose image looks random. Using
hashes one can construct a fingerprint without revealing the data itself. Formally,
they can be defined as follows:

h : D →M (2.4)

where D = {0, 1}∗ and M = {0, 1}n. "∗" Indicates that the string can be of
arbitrary, countable length [40].
For a hash function to be secure it needs to be a highly non-invertible mapping.
Highly in this case is subjective, but it should be of such a degree that one will
have a hard time finding collisions even if one has access to powerful computers.
These security properties can be further refined as [40]:

1. Pre-image Resistance - Given an output: y ∈ M from h, it should be hard
to find corresponding input x ∈ D such that h(x) = y.

2. Second Pre-image Resistance - Given an input: x1 ∈ D, it should be hard
to find another input x2 ∈ D such that h(x1) = h(x2).

3. Collision Resistance - It should be hard to find inputs x1 and x2 such that
h(x1) = h(x2).

A function that has these properties can be considered a cryptographically secure
hash function. As of version 1.4, Fabric uses Secure Hash Algorithm 256 (Sha256)
[19]. Sha256 takes an arbitrary lengthed sequence of bytes and outputs a sequence
of length 256 bits.

2.12 Digital Certificates

Digital certificates aim to solve the problem of identity when using computers.
Even though digital signatures can prove that a message originated from a certain
actor, there is no way of knowing who this actor is. Digital certificates solves this
problem by binding a public key to a digital document. This document, in turn,
is signed by an entity called a Certificate Authority (CA), which is known to give
out credible certificates [19].

2.12.1 Certificate Authorities and Public Key Infrastructure

A Public Key Infrastructure (PKI) is a set of roles, policies, hardware, software
and procedures needed to create, manage, distribute, use, store and revoke digital
certificates and manage public-key encryption. CAs issue new certificates that are
added to the PKI. Moreover, they also keep track of revoked certificates. Cer-
tificates can be revoked if some actor misbehaves, or if they lose a corresponding
private key to a public key [19].

Theoretical Background 19

2.12.2 Root CAs and Intermediate CAs

A root CA is an entity that issues self-signed certificates. Participants that use
the PKI trust certificates that are signed by root CAs. This makes them security-
critical. If a root CA gets compromised it will be impossible for any participant
to trust any signed certificate. An intermediate CA is a CA that has received a
certificate signed by a root CA or another intermediate CA. They can in turn issue
certificates signed by themselves. This way one can establish a chain of trust over
several CAs, making it easier to maintain the PKI. For example, some organization
could facilitate a root CA that has provided certificates to an intermediate CA
whose only responsibility is to issue certificates to a particular subdivision of the
organization. This way certificate handling can be partitioned [19].

2.12.3 X.509 Certificates

Hyperledger Fabric uses X.509 certificates. In short, a certificate is nothing more
than information about an entity, a public key and some meta-data that is signed
by some entity. An example certificate that Fabric could use is given in Listing 2.1.
This certificate contains information about an entity named orderer.example.com,
belonging to an organization called example.com. The certificate has a public key,
that serves as an identifier for a message sent by orderer.example.com. The cer-
tificate is signed by another entity found under the tag Authority Key Identifier.
If one trusts this identity to be a legitimate authority of certificates, one can trust
that messages signed by orderer.example.com to originate from this actor. The cer-
tificate is tamper-proof thanks to the signature at the bottom of the document. If
anyone attempts to change the certificate the signature would be rendered invalid.

1 C e r t i f i c a t e :
Data :

3 Vers ion : 3 (0 x2)
S e r i a l Number :

5 0b : 6 4 : c4 : 5 d : f a : 9 f : a0 : f 1 : d0 : d3 : 9 8 : 9 e : 1 0 : c7 : e7 : 2 b
S ignature Algorithm : ecdsa−with−SHA256

7 I s s u e r : C = US, ST = Ca l i f o rn i a , L = San Francisco , O = example . com , CN
= ca . example . com

Va l id i t y
9 Not Before : Nov 20 10 : 16 : 00 2019 GMT

Not After : Nov 17 10 : 16 : 00 2029 GMT
11 Subject : C = US, ST = Ca l i f o rn i a , L = San Francisco , CN = orde r e r .

example . com
Subject Publ ic Key In fo :

13 Publ ic Key Algorithm : id−ecPublicKey
Public−Key : (256 b i t)

15 pub :
Omitted

17 ASN1 OID: prime256v1
NIST CURVE: P−256

19 X509v3 ex t en s i on s :
X509v3 Key Usage : c r i t i c a l

21 D i g i t a l S ignature
X509v3 Basic Const ra int s : c r i t i c a l

23 CA:FALSE
X509v3 Authority Key I d e n t i f i e r :

25 keyid :AD:B8 : 4 2 :BE: F7 : 5F : 0 3 :D9 :C6 :DD:AF: 8 9 :AC:1D: 6 0 : 4 0 : 1 5 : 3 8 : 8 0 :
F0 :C7 : 4 9 : 4 5 :C6 :EC:FB:1E: 8 9 : 6C:C9 :2C:11

27 Signature Algorithm : ecdsa−with−SHA256
Omitted

Listing 2.1: Example X.509 Certificate

20 Theoretical Background

2.13 Chemical Identifiers

A chemical identifier is a string that denotes some chemical substance [18]. These
chemical identifiers are essential in providing a standardized way of describing
molecules. A chemical identifier has to have the following properties [18]:

1. The identifier must not be ambiguous.

2. Different compounds must have different labels.

A single compound can have several identifiers. The labels discussed here are
linear notations [18]. That is, the structure of the labels do not have geometric
components and can be described on a single line. This makes them ideal for digital
representation. Mainly, there are three identifiers we consider: InChi, InChiKey
and Smiles. The reason these three are considered is because they are a common
way to represent molecules and are ubiquitous in the pharmaceutical industry [31].

2.13.1 InChi

The International Chemical Identifier (InChi) is a chemical identifier developed by
International Union of Pure and Applied Chemistry (IUPAC) [18]. It is a linear
string representation of substances. An InChi starts with an identifier InChi=,
followed by a version identifier 1S, in which S denotes that it is a standard repre-
sentation. We only consider standard InChi. Inchi labels consist of several layers
and sub-layers which are separated by slashes. Each layer, except for the first one
are identified by a single character identifier. The layers are the following:

1. Main Layer - Parent Structure

(a) Chemical Formula: The only sublayer without an identifier. It is
mandatory. It denotes the atoms of the substance. The ordering
of the atoms are carbon, hydrogen, followed by remaining atoms in
alphabetical order.

(b) Skeletal Connections Layer (with prefix c): Denotes how non-hydrogens
are connected with bonds.

(c) Hydrogen Layer (with prefix h): Denotes how hydrogens are connected
to other atoms.

2. Charge Layer : Denotes charge information

(a) Protonation Sublayer (with prefix f): Denotes which atoms have been
protonized or de-protonized. That is, which atoms have protons re-
moved or added.

(b) Charge Sublayer (with prefix q): Denotes the total charge of the parent
structure.

3. Stereochemical Layer : Denotes stereo information i.e. geometric information
about the compound.

4. Isotopic Layer : Denotes isotopic information i.e. atoms that differ in num-
ber of neutrons.

Theoretical Background 21

H C1

H

H

C2

H

H

O3

H

Figure 2.4: Ethanol. Main layer atoms are enumerated 1 through 3.

We only consider the main layer in this thesis.
In order to illustrate how InChi works an example is provided. InChi=1S/C2H60
is the most basic way to represent the Ethanol molecule. Ethanol consists of two
carbon, six hydrogen and one oxygen atom. The string does not reveal anything
about the structure of the molecule. To annotate the structure, the molecule
is labeled InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3. The two carbon atoms are
enumerated 1 and 2 respectively, and the oxygen is enumerated 3. "c" represents
the skeleton structure. 1-2-3 indicates that atom 1 has a connection to atom 2, and
atom 2 has a connection to atom three, respectively. h3H,2H2,1H3 denotes that
atom 3 has one hydrogen, atom 2 has 2 hydrogen and atom 1 has three hydrogen.
Figure 2.4 depicts a two-dimensional rendering of the molecule where the atoms
have been enumerated. There exist procedures to canonically enumerate the atoms
and construct the InChi string for molecules [18]. They are not included in this
thesis.

2.13.2 InChiKey

An InChiKey is a hash of an InChi string. InChiKeys are helpful when indexing
molecules in a database. If one knows an InChi string or a specific InChi represen-
tation of a sublayer, an InChiKey can be derived. This InChiKey can be used to
search in the database [18]. It is a 27 long character string constructed by hashing
the InChi string, using Sha256. The InChiKey consists of three sections separated
by dashes. The first 14 characters are derived by hashing the main layer. The first
8 characters in the second section are derived by hashing all layers, except for the
main layer and charge layer. The last 2 characters of the second section denote if
the InChi string was standard (S) or normal (N) and the version of the InChiKey.
A denotes it is version 1. Finally, the last character denotes protonation, which is
not considered in this thesis. The InChiKey structure can be depicted as follows:

XXXXXXXXXXXXXX︸ ︷︷ ︸
Hash of main layer

− Y Y Y Y Y Y Y Y︸ ︷︷ ︸
Hash of other layers

S/N︸︷︷︸
Standard

A/B...︸ ︷︷ ︸
Version

− Z︸︷︷︸
Protonation

2.13.3 SMILES

SMILES is another linear representation of molecules. SMILES is easier for hu-
mans to read than InChi, whereas InChi is easier for computer programs to inter-
pret. SMILES works as following [48]:

22 Theoretical Background

N

H

Figure 2.5: Methamphetamine. The representation is hydrogen re-
pressed. All unmarked nodes are carbon atoms.

1. Atoms are represented by their atomic symbols. Capital letters refer to
non-aromatic atoms and lower-case letters refer to aromatic atoms. Bonds
are represented by - (single bond), = (double bond), # (triple bond), *
(aromatic bond) and . represents a disconnected structure. If no bond is
specified, single bonds are interpreted as default. For example, c#c repre-
sents two carbon atoms that are connected by a triple bond.

2. Atoms that can be interpreted ambiguously are surrounded by []. For ex-
ample, Sc denotes a Sulfur connected with a single bond to an aromatic
carbon and [Sc] denotes scandium.

3. SMILES is hydrogen-repressed, meaning that, hydrogens are omitted when
there is no risk of ambiguity. For example, c represents a single carbon that
is connected to four hydrogens.

4. Parentheses are used to construct branches. The bond of the branch is
placed leftmost inside of the parentheses. For example, CC(=O)C repre-
sents a carbon chain where the second carbon has a double bond to an
oxygen.

5. Ring structures are constructed by surrounding the ring with 1. For ex-
ample, c1ccccc1 represents Benzene. If rings are nested the following rings
are constructed by enumerating the number. For example, c1cc2ccccc2cc1
represents a carbon structure with two nested rings.

6. Charge is denoted by surrounding atoms with -/+. For example, C- denotes
a carbon with one electron missing.

An example SMILES string for the methamphetamine molecule is provided. It
looks as follows: CC(CC1=CC=CC=C1)NC. It is depicted in Figure 2.5. It con-
sists of two carbon atoms connected to a carbon ring on one side and a nitrogen
on the other side. The carbon atoms in the ring are connected by double bonds.
All other bonds are single bonds. Here one also sees that the representation is
hydrogen repressed.

Chapter 3
Hyperledger Fabric

3.1 Overview

A Fabric network consists of organizations that contain entities. Each entity has
a unique identity. The following entities and artifacts are defined for Fabric [2]:

Entities

• Peer : Maintains the ledgers. There exist two types of peers: endorsing and
non-endorsing peers. Endorsing peers maintain ledgers and have capabili-
ties to endorse transactions on behalf of clients. Non-endorsing peers only
maintain ledgers.

• Orderer : Maintains the integrity of the network. They build blocks from
endorsed transactions, establish consensus amongst themselves, and send
blocks to peers.

• Client : Any program that connects to the Fabric network to execute trans-
actions or query information.

• Certificate Authority : Any entity that can issue certificates for a Fabric
network.

Artifacts

• Ledger : Each channel contains one ledger. Ledger is a synonym for a
blockchain. It contains the state of every chaincode that is installed on
that channel.

• Chaincode: Chaincode is known as smart contracts in other blockchain sys-
tems. Chaincode has the ability to update and read data from the ledgers.

• Channel : A channel is a partition of the state of the network. Different
entities can establish different channels amongst themselves in order to hide
data from entities that are not part of that channel.

• Membership Service Provider (MSP): An interface that abstracts away de-
tails of identity handling and cryptography. An MSP is a module that lives
inside peers and orderers. There will be at least one MSP in each peer and
orderer.

23

24 Hyperledger Fabric

3.1.1 Transactions

Transactions are client-invoked commands that update the state of the chaincode.
This section gives an overview on how they work. They are described in detail in
section 3.5. Fabric uses a transaction execution paradigm called Execute-Order-
Validate, depicted in Figure 3.1. On a high level, it works as follows [2]:

1. A client sends a transaction proposal to one or more endorsing peers.

2. The endorsing peers simulate, verify and sign the transaction proposal, but
do not update any state. The client collects the signed results from the
endorsing peers.

3. The client sends the endorsed result to the ordering service. The ordering
service takes any transactions it receives and orders them in a block. This
establishes a total order of transactions.

4. The orderer sends the block to all peers of that channel. The peers validate
the transactions and append the block to the ledger.

Execute-Order-Validate solves two problems identified in the so-calledOrder-Execute
execution paradigm [2]. Order-Execute is a transaction execution paradigm where
transactions are totally ordered before they are executed. This paradigm is used
in e.g. Ethereum. First, if transactions have to be totally ordered before they
are executed, they can not be executed in parallel. Using Execute-Order-Validate,
transactions can be executed in parallel as they are executed before they are or-
dered. Any transactions that are invalid due to invalid signatures or double spends
are marked as invalid and do not update state. Second, because orderers are ag-
nostic about the validity of transactions, the execution does not have to be totally
deterministic. This way one can use any programming language as is when writ-
ing chaincode for Fabric as long as a proper interface is defined for the chaincode
environment.

Figure 3.1: Transaction Flow [2]

Hyperledger Fabric 25

3.2 State modeling

The world state is a versioned key/value abstraction that chaincode uses to reason
about state further defined below. The world state is determined by the blockchain
that lives inside peers. Figure 3.2 depicts how the world state and blockchain are
tied together. There exist several states of the world: one for each chaincode that
is deployed. Formally, state in Fabric is modeled as a versioned key/value store
[19]. The state s is defined as the mapping K → (V × N), where K is a set of
keys, V is a set of values, N is a countably infinite set of ordered values, and
s(k) = (v, n). We define the following variables: k ∈ K, v ∈ V and n ∈ N . Two
empty types, ⊥ ∈ N and ⊥ ∈ V are also defined. When a world state is initiated,
all k are mapped to (⊥×⊥). We also denote s(k).value = v and s(k).version = n.
The operations that are defined on the key/value store are defined as follows:

puts(k, v) updates state s→ s′ such that s′(k) = (v, next(n))

gets(k) = s(k)
(3.1)

Only the key referenced in puts(k, v) is updated: for all k′ 6= k we will have
s′(k′) = s(k′).

3.2.1 Read/Write-Sets

When transactions are simulated a so called read/write-set is generated [19]. The
read-set contains all keys referenced by the transaction with corresponding version
numbers. The write-set contains all referenced keys that are to be updated in the
world state [19]. The read-set prevents double spending: If a key is updated using
the write-set in a transaction, any following reference to that key of the same
version will be invalid. The read-set is defined as follows:

{(ki, ni) | ki ∈ K, ni ∈ N}. (3.2)

An example read-set is {(k1, n1), (k2, n3), (k3, n1)} that contains three keys. Two
of the keys are of version n1 and one key is of version n3. The write-set is defined
as follows:

{(ki, vi) | ki ∈ K, vi ∈ V } (3.3)

Figure 3.2: World State [19]

26 Hyperledger Fabric

An example write-set could look like {(k1, v1), (k2, v2), (k3, v3)} which contains the
keys k1, k2, k3 and aims to update them to v1, v2 and v3, respectively.
An example is provided to illustrate how read/write sets prevent double spending.
Define a world state as following: {(k1, n1, v0), (k2, n3, v0)}. There exist two keys,
one of version n1 and another of version n3. They both map to the value v0.
Consider the two transactions T1 and T2 defined as follows:

T1 = gets(k1); puts(k2, v1)

T2 = puts(k1, v1)

Both of these transactions would succeed. T1 reads k1 and then writes to k2. Since
different keys are referenced there is no conflict. T2 does not read any keys, and
consequently, succeeds. Consider the transactions T3 and T4 defined as follows:

T3 = puts(k1, v1)

T4 = gets(k1); puts(k2, v1)

Since T3 updates the value at k1, its version will now be next(n1). T4 has a read-
set that stated that k1 is of version n1. If this key was to be updated that would
be akin to a double spend and thus the transaction is invalid [19]. The client that
proposed the transaction is free to make a new transaction proposal where the
read-set has been updated to reflect the current state of the world.

3.3 Peer Gossip

A gossip protocol is used to disseminate data between peers. Peers gossip data to
a random set of peers connected to the same channel. The number of peers they
broadcast messages to is configurable. The gossip protocol provides the following
primary functions [19]:

• It manages peer discovery and channel memberships. By using gossip, peers
can keep track of which other peers are online and their identities.

• It disseminates data across the network. Any peer that is in a bad state can
request data from other peers to synchronize itself with the network.

• It enables newly connected peers to retrieve configuration and state from
other peers that are up to date.

3.3.1 Leader Election

In each organization, a leader peer is elected. The leader peer will be responsible
for maintaining a connection with the ordering service. It retrieves new blocks
that are created by the ordering service and disseminates them to other peers in
their organization. This way, one conserves bandwidth to the ordering service as
not all peers have to maintain a connection to it [19]. Leaders can be elected in
two ways:

• Dynamically - The peers in the organization vote on which peer should
be leader. With dynamic election, an elected leader periodically sends
heartbeat-messages to its followers.

Hyperledger Fabric 27

• Statically - A peer is manually configured to be leader. Static election is
done via configuration.

If there is a network partition, the two partitions can each elect a leader which
both maintain a connection to the ordering service. When the partition is mended,
one of the leaders revokes their leadership and becomes a follower.

3.3.2 Anchor Peers

Peers normally need to send messages to peers in other organizations. Anchor
peers allow peers to gossip across organizations. Other peers can then connect to
the anchor peer to learn about other peers in the network [19]. It is recommended
that each organization has at least one anchor peer. The anchor peers should be
configured to be highly available. If a new peer joins the network it needs to learn
about the other peers in the network in order to participate. If anchor peers are
offline this can hinder discoverability of other peers [19].

3.4 Orderers

Orderers have two operations defined on them [19]:

• Broadcast(blob): Broadcast blob to a channel. Invoked by clients.

• Deliver(SeqNo, prevhash, blob): Sends SeqNo, prevhash and blob to peers
on channel. Invoked by orderers when they have a blob to deliver to a peer.

The parameters are defined as follows: blob is an arbitrary message, SeqNo is a
monotonically increasing sequence number and prevhash is defined as:
hash(SeqNoi−1||prevhashi−1||blobi−1). Deliver invocations are ordered. We define
the current Deliver as Deliveri and the previous as Deliver(i−1) If i = 1 there does
not exist a corresponding Deliver for (i − 1). Therefore, each channel has to be
bootstrapped with a genesis block. In the case of Broadcast, it is common for
blob to be an endorsed transaction proposal, and for Deliver, a block of ordered
transactions. When Broadcast is invoked, a subsequent Deliver will be invoked in
order to deliver a block to relevant peers. The process can be illustrated as:

Client→ Broadcast→ Orderer

Orderer → Deliver→ Peer
(3.4)

Properties of the Ordering Service

Using Broadcast and Deliver the two following properties of the ordering service
can be defined [19]:

1. Safety : Orderers are the entities that maintain the integrity of the network.
The following properties are enabled by a correct ordering service:

(a) Agreement : For all Deliveri and all corresponding SeqNoi, all correct
peers will eventually retrieve the same prevhashi and blobi.

28 Hyperledger Fabric

(b) Hashchain Integrity : For all pairs ofDeliveri andDeliver(i−1), a hashchain
can be constructed using prevhash. The hashchain can be used to ver-
ify integrity.

(c) No skipping : For all pairs of Deliveri and Deliver(i−1), if Deliveri was
invoked then Deliver(i−1) was already invoked.

(d) No creation: Any Deliver that is delivered at a correct peer is preceded
by a Broadcast.

Combining these properties, correct peers that communicate with the order-
ing service will retrieve the same information. Safety is dependent on the
correctness of the orderers, if they lose their ability to maintain integrity,
the whole network loses it.

2. Liveness: Liveness depends on the consensus protocol implemented for the
orderers. Using a byzantine fault tolerant protocol liveness can be guaran-
teed if no more than n−1

3 Orderers are byzantine [27]. If Raft is used then
liveness can be maintained if at least half of the orderers are available and
correct [32].

3.5 Transactions

Transactions change the state of the ledgers. A client proposes a transaction
to endorsing peers as determined by the chaincode policy. The endorsing peers
endorse the transaction, given that the client has the appropriate authorization.
When the client has collected enough endorsed transaction proposals, it sends the
endorsed transaction to the ordering service which orders transactions into blocks.
When a block is ready it is delivered to peers on that channel which in turn update
their ledgers accordingly [2]. This section describes the transaction flow in detail.

Transaction Proposal

Propose is a transaction proposal defined as:

Propose = (PROPOSE, tx, [anchor]) (3.5)

in which PROPOSE is a fixed string, Anchor is an optional element that specifies
version numbers of read keys, i.e. the transaction gets anchored to a specific version
of keys and tx is defined as:

tx = (clientID, chaincodeID, txPayload, timestamp, clientSig) (3.6)

where clientID is the ID of the client, chaincodeID is the ID of the chaincode that
is to be invoked, txPayload is the content of the transaction as defined further
below, timestamp is a positive integer that denotes the time when the transaction
was created, and clientSig is the signature from the client.
A transaction proposal can be of two types: Invoke-transaction orDeploy-Transaction.
An invoke-transaction invokes an existing chaincode. For an invoke-transaction,
the txPayload is defined as (operation,metadata). Operation is the name of

Hyperledger Fabric 29

the function inside of the chaincode, as well as corresponding parameters to that
function. A deploy-transaction proposes a deployment of a new chaincode, where
txPayload is defined as (source,metadata, policies). Source is the source-code
of the chaincode and policies specifies the endorsement policy for that chaincode
[19]. Transactions are identified by txID = hash(tx) [19].
The client sends the transaction to one or more endorsing peers, depending on the
policy of the chaincode. If the client aims to install new chaincode, it needs to
send the transaction proposal to at least the number of peers that are required to
sign the installation, defined by the channel configuration [19].

Transaction Simulation

When the endorsing peers receive the transaction proposal they simulate it. This
means that they execute the transaction but no state is updated [2]. Specifically,
when an endorsing peer receives a Propose, it first verifies the signature. If the
signature is valid and the client has the correct authorization, the peer simulates
the transaction by executing the requested chaincode specified by chaincodeID
using what was defined in txPayload. The result of this simulation is a read/write-
set that defines which keys in the chaincode world state were affected [19]. Then,
the peer endorses the transaction and constructs a message defined as [19]:

(ENDORSED, txID, txProposal, epSig) (3.7)

in which: ENDORSED is a fixed string, txID is the identifier of the transaction,
and epSig is the signature from the endorser. Finally, txProposal is defined as:

txProposal = (epID, txID, chaincodeID, txContentBlob, readset, writeset)
(3.8)

where: epID is the identifier of the Endorsing Peer, txID is the identifier of the
transaction, chaincodeId is the identifier of the chaincode, txContentBlob is a rep-
resentation of the transaction proposal, readset is the readset from transaction
execution, and writeset is the writeset from transaction execution. The endorse-
ment message is sent back to the client that proposed the transaction.

Broadcast of Endorsed Transaction

The client collects enough endorsed transaction proposals. Enough is defined by
the chaincode’s endorsement policy. The client invokes Broadcast(blob) on the
ordering service, where blob is the set of endorsed transaction proposals that the
client has collected from endorsing peers. It can invoke Broadcast in two ways:
either by directly sending it to an orderer or by proxying it via some other entity
such as a Peer [19].

Delivery of Blocks

The orderers order transaction proposals into blocks to establish a total ordering of
transactions and then deliver the blocks to relevant peers [2]. When a peer receives
a block of transactions via Deliver(SeqNo, prevhash, blob = Block), it executes the
following to validate the transactions in the block:

30 Hyperledger Fabric

1. If state updates have been applied for all SeqNoi up to i−1, the peer applies
a state update for SeqNoi. If not, the peer queries the ordering service or
other peers for any missing Deliver [19].

2. Once a peer is ready to update its state for SeqNoi, it validates the en-
dorsement field of the transactions in the block. It compares the endorse-
ment policy of the referenced chaincode and the signed endorsements of each
transaction. If the endorsement is not valid, the transaction is added to the
ledger but marked as invalid and no further actions are taken.

3. If the endorsement is valid the peer validates the read-set of the transaction
proposal. If a conflict is detected the transaction is marked as invalid and
no further steps are taken. If there are no conflicts in the read-set the
transaction is marked as valid and the state of the world is updated using
the write-set [19].

In order to keep track of valid and invalid transactions in a block, a bit-mask is
utilized. An invalid transaction is marked with 0 and a valid one is marked as 1
[19].

3.6 Chaincode

Chaincode is a program with a pre-defined interface that is run inside a secured
docker container [2]. A chaincode program reads and updates the world state
that is determined by a ledger that resides in some channel. Chaincode drives all
business logic of a Fabric network. Chaincode is usually known as smart contracts
in other blockchain contexts. The difference is that chaincode is a program that
can contain multiple smart contracts. In most cases, the terms can be used inter-
changeably.
A chaincode developer writes chaincode for some business application and deploys
it to peers. Endorsement policies are determined on a chaincode by chaincode
basis. Note that all peers of the channel in question still verify all transactions.
Only endorsing peers of a chaincode should have the chaincode itself installed onto
them [19].

3.6.1 Special Types of Chaincode

There exist five pre-defined chaincodes that are used by the network to handle
low-level interactions [19]:

• Lifecycle System Chaincode (LSCC) - This chaincode is installed on all peers
and handles packaging, signing, installing, instantiation and upgrading of
chaincodes on that peer.

• Configuration System Chaincode (CSCC) - Installed on all peers, handles
configuration transactions related to a channel.

• Query System Chaincode (QSCC) - Installed on all peers, handles all queries
that a transaction can invoke e.g. block querying, transaction querying.

Hyperledger Fabric 31

• Endorsement System Chaincode (ESCC) - Runs only on endorsing peers.
Handles transaction-proposal endorsements.

• Validation System Chaincode (VSCC) - Runs on all peers, handles trans-
action validations, i.e. verifies endorsements on a transaction and performs
read/write-set versioning.

3.6.2 Developing Chaincode using a SDK

Any programming language that has access to a Source Development Kit (SDK)
that exposes an interface to interact with Fabric smart contracts can be used
to develop Fabric chaincode [2]. In this thesis, the SDK for Golang was used.
Listing 3.1 defines the most basic smart contract that one could write using Golang
[21]. Using this structure one binds functions to the Chaincode struct. Init is
called once when the contract is instantiated. Invoke is called every time the
chaincode is invoked.
type Chaincode s t r u c t {

2 }

4 // Cal led when chaincode i s i n s t an t i a t e d
func (cc ∗Chaincode) I n i t (stub shim . ChaincodeStubInter face) sc . Response {

6 fcn , params := stub . GetFunctionAndParameters ()
re turn shim . Success (n i l)

8 }

10 // Cal led when chaincode i s invoked
func (cc ∗Chaincode) Invoke (stub shim . ChaincodeStubInter face) sc . Response {

12 fcn , params := stub . GetFunctionAndParameters ()
re turn shim . Success (n i l)

14 }

Listing 3.1: Basic Chaincode

3.7 Endorsement Policies

An endorsement policy is a condition on what endorses a transaction. Peers
have access to a set of endorsement policies that can be referenced by a deploy-
transaction. These endorsement policies are parameterized through parameters
that are defined by the deploy-transaction. Although possible in principle, it is
forbidden to add custom endorsement policies via deploy-transactions. An en-
dorsement policy has to be bounded, deterministic, secure and performant [19].

Endorsement Policies in the CLI-implementation

In order to understand Endorsement Policies, it is helpful to see how they are
implemented in the Command Line Interface (CLI) that Fabric provides. The
syntax of an endorsement policy, P , is defined as [19]:

P = EXPR(E[, E . . .]) (3.9)

where EXPR is one of the predicates: And, Or, or n-outOf, and E is EXPR or
a principal. A principal is the union of a participant’s ID and attributes [19]. For

32 Hyperledger Fabric

example, assume the following participants:

{ID : Hal F inney, Attributes : (Admin,Member)}
{ID : Satoshi Nakamoto, Attributes : (Member)}

The two principals would be:

{Hal F inney, (Admin,Member)}
{Satoshi Nakamoto, (Member)}

Two example endorsement policies P1 and P2 could be:

P1 = Or(Admin, Satoshi Nakamoto)

P2 = Or(Admin,AND(Hal F inney, Satoshi Nakamoto))

In P1, either an admin or Nakamoto would have to endorse a transaction to be
valid. In P2, either an admin would have to endorse the transaction or both Finney
and Nakamoto would have to endorse the transaction.

3.8 Identification

All entities in a Fabric network have identity. The identity is defined by some
digital certificate and must contain two fields: ID and Attributes. ID is an identifier
that uniquely identifies an entity and the attributes define what roles that entity
has and to which groups it belongs to. The union of the ID and the attributes is
called a principal. The principal defines permissions and access restrictions in a
Fabric network [19].

Organizational Units

The attributes defined above defines to which organization an identity belongs.
Organizations can be further divided into organizational sub-units, i.e. one could
have an organization called Org1 which has organizational sub-units Org1-Factory
and Org1-Sales. This gives one the ability to partition access rights [19].

3.8.1 Membership Service Providers

The MSP is a component of Fabric that abstracts away the details of identification
in the network [2]. It is possible to have more than one MSP per network. An MSP
identifies which Root CAs and Intermediate CAs are trusted to define members
of an organization [19]. MSPs can be of two different types, local and channel.
Each peer and orderer have a locally defined MSP. A local MSP allows an entity
to verify the message from the network and defines access rights when directly
communicating with the entity. Channel MSPs are established when a channel is
created. Each entity that is part of a channel will establish a channel MSP for
that channel. The channel MSP defines identities and access rights for all members
that are part of the channel [19]. An instance of the MSP contains the following
items [19]:

Hyperledger Fabric 33

• Root Certificates: A set of self-signed X.509 certificates from root CAs.

• Intermediate Certificates: A set of X.509 certificates from intermediary CAs.

• Organizational Units (OU): A set of organizational units. Used to partition
members of an organization into sub-groups, e.g. members and admins.

• Administrators: Identities that have elevated access.

• Revoked Certificates: Certificates that have been revoked.

• Node Identity : Contains the identity of the node that is hosting the MSP
in the form of an X.509 certificate.

• KeyStore: Contains keys that the entity uses to sign messages.

• TLS Root Certificate: Set of TLS root certificates.

• TLS Intermediate Certificate: Set of TLS intermediate certificates.

All messages that are sent in Fabric contains the identifier of the sender. Moreover,
all messages are signed by the sender. Any message that does not follow this format
is invalid. Since all messages are signed, the MSP can also verify if the origin of the
message is from the alleged sender of the message. Finally, the MSP can also verify
if the sender of the message has the proper level of authorization by comparing the
principals of the sender with whatever action the sender requested in the message.
When another entity in the network receives a message, it can verify the sender of
the message by passing the identifier of the sender to the MSP at the appropriate
level. That is, if a message is communicated across a channel, the channel-MSP
can verify the identifier of the sender. If the message is sent directly to an entity,
the entity can use its local MSP to verify the id of the sender [19, 2].

3.9 TLS communication

Transport Layer Security (TLS) is a protocol that enables secure communication
between applications. The protocol considers two actors: client and server. The
client initiates a TLS session by contacting the server. Asymmetric cryptography,
e.g. ECC, is used to establish a session key. This session key is then used to
encrypt all data for the duration of the session using symmetric encryption. When
the session is being set up either the server transacts its certificate to the client, or
both the client and the server transact their respective certificates to each other.
Using a TLS certificate, they can authenticate the other party.
All communication in Fabric can be done via TLS [19]. Fabric uses TLS version
1.2. This enables secure communication between entities. In Fabric, all entities are
both TLS-servers and TLS-clients. An entity is a TLS-server when other entities
connect to it and a TLS-client when it connects to other entities. If an entity has
been configured to use TLS, it will reject any communication to it that is not done
via TLS.

34 Hyperledger Fabric

Chapter 4
Problem Analysis and Modelling

4.1 Patents and Trade Secrets in Industry

The pharmaceutical industry relies heavily on both Patents and Trade Secrets to
generate value [5]. Intellectual property (IP) management deeply affects the every-
day activities of businesses, as it affects their ability to protect and derive value
from research [5]. A miss in the search of the prior art can mean that a product is
either un-patentable or that some other company already owns a patent that will
block commercialization of the developed product. As of 2011 the cost of bringing
a product to market was estimated to be around $300 million to $1000 million and
that it takes some 8-10 years from project inception to delivery [39]. This means
that there is a substantial monetary risk to confidentiality breaches of ongoing
compound development. Companies risk that their research gets unlawfully dis-
closed if they collaborate across organizations. If the compound becomes public
knowledge it is not patentable. Furthermore, pharmaceutical companies can not
rely on trade secrets alone as the world is global and highly connected. The prob-
ability that competitors reverse-engineer, or independently discover a product is
non-negligible [39]. Patents are needed to protect IP. Finally, technical solutions
to share information of ongoing compound development has been lacking so far
[1].
These factors make cross-organizational collaboration hard. The risk of sharing
information is too large. At the same time, there is a need to do so. Since the
space is siloed it is likely that several actors work on the same problems. A tech-
nical solution that could enable a partial reveal of trade secrets, while maintaining
a strong guarantee of confidentiality and auditability could dramatically reduce
development time and costs [31].

4.2 High-Level Solution to the problems

The solution to the problem is a platform that allows partial or full reveals of
intellectual property. Actors should be able to reveal properties of their intellectual
property without making the intellectual property prior art. This way other actors
can search for assets with certain properties. Once an actor finds an asset with
certain attributes they can acquire rights to the asset. Using this asset new assets
can be developed which can be partially uploaded to the platform. Moreover, if

35

36 Problem Analysis and Modelling

the newly developed asset is not part of the prior art it can potentially be patented
or be used for clinical trials. The rights of the asset can be acquired in potentially
two ways. Either the rights can be bought outright, giving the new owner full
control over the rights of the asset. Otherwise, rights can be shared. In this
scenario, the original creator of the asset could be eligible to royalties if the new
owner commercializes the asset. The idea is to create incentives for participants
in the network to share information with each other by providing accreditation to
actors that contribute molecules to the network.
Figure 4.1 provides an overview of this cycle. Consider two organizations that
develop molecules. Organization 1 has a compound that they tokenize. It is
now considered an asset. They upload either the full information of the molecule
or parts of it to the Fabric network (1). Organization 2 acquires shared rights
or buys the full rights to the asset (2). They use the newly acquired asset to
develop a new compound which they tokenize into a new asset. Organization
2 uploads the new asset in order to prove that they are the discoverers of the
molecule (3). Organization 1 proves that they are contributors to the original
molecule via the network (4). Note that an organization does not have to upload
molecules to the network. They are free to do whatever they want with their
assets. However, if the accreditation mechanism is constructed correctly, actors
will be incentivized to share whenever they can as there exist potential monetary
gains if other organizations pay for their IP.

Figure 4.1: High Level Overview of Proposed Solution

4.3 Modelling

The scope of a decentralized globally available IP system for the entirety of the
pharmaceutical industry is too wide for this thesis. In order to move towards

Problem Analysis and Modelling 37

this potential solution, an agile approach has to be adopted. A minimum viable
product that incorporates bare-bones functionality will be modeled in this thesis
that can be used as a stepping stone to analyze how Fabric could potentially be
used to build the final solution. In Chapter 8 it is discussed which future decisions
have to be taken in order to fully realize a global IP system for the pharmaceutical
industry. In the rest of this chapter, we discuss how molecules and entities can be
modeled, and which operations the platform should provide.

4.4 Entities and Assets

We define a Fabric network as a collection of organizations. Entities are the
participants of the network. An organization contains members. A member is
either a peer, orderer, CA, client or a user. Each entity has an identity and a
set of roles. The union of the identity and the roles is defined as the principal.
Moreover, organizations establish channels amongst themselves. Each channel
contains a ledger that is used to store assets. We define tokenized molecules as
assets. We consider the ledger a key/value store. Each entity, channel, and network
has an MSP defined at that level. At each channel, we define chaincode which
contains smart contracts that drive the business behaviour of the network. For each
chaincode or channel, we define an endorsement policy. The MSP takes a principal
and compares it to the endorsement policy at that level to verify identity and if the
identity has proper authorization. A user is anyone using the application that the
platform offers via a client. Finally, an admin is a user that has access to elevated
authorization for any of the members. Figure 4.2 describes pictographically how
a network looks.

Figure 4.2: Reference Model [19]

38 Problem Analysis and Modelling

4.5 Data format

Tokenized molecules consists of the following fields:

1. Version (Mandatory) - Version number of this data format.

2. Identifier (Mandatory) - A unique identifier for an asset. Mandatory so that
each asset has an unique index.

3. Name (Mandatory) - A text string that represents a natural name for the
asset.

4. Synonyms (Optional) - Other names for the same asset.

5. Other Search Terms (Optional) - Other terms that can be used when search-
ing for the asset. For example, InChi key.

6. Timestamp (Mandatory) - A timestamp of when the asset was first uploaded.
Mandatory, for non-repudiation and accountability.

7. Asset Owner (Mandatory) - The owner of the asset stored in the blockchain.

8. IP Owner (Optional) - Claimed ownership for the IP of molecule. If the
owner is not known this field could be set to disputed, public domain, or
unknown.

9. Value (Optional) - A monetary value assigned to the molecule, e.g. potential
selling price in dollars.

10. Sales Price IP (Optional) - Selling price for the IP of the asset.

11. Bids (Optional) - Offers from potential buyers of rights to asset.

12. Biological Target (Optional) - Identifies biological functions of the molecule.

13. Structure (Optional) - Representation of molecule structure, i.e. SMILES
or InChi.

14. Other Data (Optional) - Any other important data

15. Mother Molecule (Optional) - Index of tokenized molecule that served as
inspiration for this molecule.

16. Physical Information (Optional) - Physical location of molecule, quantity,
shipping information, and other information used to enable physical sharing
of molecule.

17. Contact Information (Optional) - Information on whom to contact for this
asset.

Problem Analysis and Modelling 39

4.6 Operations

The following operations are defined for the platform. Operations can be added
and modified if necessary.

1. Register New User - A user of the network with admin privilege can register
a new user in the network.

2. Update User Information - An admin user of the network can update user
information.

3. Upload Molecule - Tokenize a molecule according to the data format de-
scribed in section 4.5 and save it in the blockchain.

4. Search Molecule - Search for molecules that match some query, e.g. struc-
ture, list of names, and biological targets.

5. Update Molecule - Update information of a molecule. Any owner of an asset
can change any information. In future versions there should be configurable
rights to change information of assets, e.g. multi-signature from several
stake-holders.

6. List History of Asset - List complete history of an asset. In future versions
it should be possible to retrieve only a subset of history.

7. Transfer Ownership - Move ownership of an asset from one user to another.
In this version the owner of the asset can do this. In future versions more
complex logic should be available on whom is allowed to transfer ownership.
For example, several employees of a company that owns some asset might
have to sign for the transfer of the ownership.

4.7 Use cases

This section describes some possible scenarios where actors use the network to
handle assets.

Academic Molecule Tokenization for Educational Purposes

A student in some course could design and synthesize a possibly novel molecule.
It is not known, however, if the molecule is novel. The ledger can be used to store
the structure of the molecule, the creator’s ID, as well as the current owner. In
this case the IP could be waived, as the molecule was discovered in a course and
not in an enterprise. The state of the IP for molecules is also stored in the ledger.
This means that anyone can re-use the molecule that the student discovered and
build upon their discovery. However, the ID of the student that discovered the
molecule is forever stored in the ledger, meaning that they could prove that they
were the discoverer of the molecule. Naturally, there could exist evidence of the
same molecule outside of the ledger. In this case, disputes of the inventor will have
to be taken off-chain.
Two operations are mainly of interest here; Search and Upload Molecule. Search
is used by the student to verify that their discovery is indeed novel, as far as the

40 Problem Analysis and Modelling

ledger is concerned. If they believes it is, Upload Molecule is used to store the
molecule data on the ledger. Future actors interested in the molecule could use
Search to retrieve the molecule discovered by the student in order to build upon
her discoveries. The student themselves could also retrieve the molecule via Search
in order to prove that they were the original discoverer of the molecule.

Organization with Unique Molecules Looking for Buyers of Intellectual Property

A confidential asset has been uploaded to the ledger by some organization. They
are looking for a potential buyer of the IP of this molecule. In this scenario, the
exact structure of the molecule is not uploaded to the ledger. The organization
that upload the molecule sets the IP owner field to reflect that they own the IP.
They also upload physical and chemical properties of the molecule using biological
target and other data. However they do not reveal anything about the structure.
The benefit of using this model lies in the fact that one can be transparent about
ownership and properties of molecules without revealing the exact nature of the
molecules. This also leads to increased exposure of assets to potential buyers. A
potential buyer can use Search Molecule to find a molecule that fits their needs.
Once they find a suitable molecule the owner can use Transfer Ownership to
transfer the ownership of the asset.

Researcher or Company Seeking Funding to Further Develop an Asset

A researcher or a company uploads a molecule to the ledger similar to the previous
scenario but the intent is to attract investors. Once investors are attracted, the IP
of the asset could be modified to reflect whatever deal the researchers and investors
agree upon. This way researchers get funding and can prove that they were indeed
the researchers of the asset. The investors get provable evidence that they have
a stake in the ownership of the molecule as a smart contract could update the
ownership rights of the molecule to reflect the deal that researchers and investors
agreed upon.
Update Molecule can be used to update the asset to reflect that there exist several
owners of it by changing the IP Owner field. Later, the inventors of the molecule
can use List History of Asset to prove that the original asset was created by them.

Open Source like collaboration of molecules development

A researcher that has an interest in collaborating openly on molecules could upload
the full molecule to the ledger. This way anyone could retrieve the full information
of the molecule in order to help research it and potentially related molecules. The
owner of the asset loses the confidentiality of the molecule data and any potential
patent claims. However, they can use List History of Asset to prove that they
were the original uploader of the asset.

Ownership Transfer of Assets

The owner of the tokenized asset could be updated via a smart contract. This way
IP rights could be transacted like any token. The benefit of using a blockchain for

Problem Analysis and Modelling 41

this is that the history of ownership is always stored. This way a researcher could
sell an asset, without losing the claim that they were the discoverer or researcher
of the asset. In this scenario the operation Transfer Ownership is of interest as it
can be used to transfer the owner of an asset.

42 Problem Analysis and Modelling

Chapter 5
Implementation

An implementation of the proposed solution is provided. It is currently deployed
on a cloud-based machine. The source code for the prototype is hosted on a set
of private Github repositories. The prototype consists of a single peer, a single
orderer, a single channel, a single chaincode and a rest-server that enables the end-
user to interact with the network through a web browser. The prototype leverages
Swagger [42] to specify an application protocol interface (API) for the prototype.
The prototype is used to test what chaincode functionality makes sense and to
analyze what future features are required to enable a platform of molecule assets.
Graphically the system is depicted in Figure 5.1.

Figure 5.1: Implementation of the Prototype

5.1 Entities

The code that defines the peer, orderer and channel consist of .yaml and .sh
files. They closely follow the samples that the official fabric-samples repository

43

44 Implementation

[20] offers. These files are used to generate appropriate certificates, key pairs,
configuration and docker files used to start the network. Two organizations are
defined for the network. An orderer organization and a Peer organization. The
Peer organization has two users defined for it: one normal user and one admin
user.

5.1.1 Access Control

The access control of each member is defined by the configuration transaction
that creates the network. The identity of each member is authenticated using
x.509 certificates. The certificates are pre-generated before the network starts. As
an effect, no CA is needed for the prototype.

5.1.2 User Model Implementation

Users of the network are partitioned into two separate models. One user type that
is recognized natively by Fabric, and a user that belongs to the chaincode. From
Fabric’s perspective, a user is an organization member with a certificate from a
legitimate source. That is, a Fabric user can invoke chaincode if they submit a
transaction that is signed with the corresponding public key of the user. The user-
defined in chaincode is defined as a struct containing the fields name and ID. ID
is a unique identifier, and name is a natural name that is not necessarily unique.
Using this model one does not need to issue a certificate for everyone that wishes
to interact with the platform. An organization could elect an individual who is
enrolled as a proper Fabric user. This individual could manage assets on behalf of
other members of their organization by creating users in the chaincode model.

5.2 Data Format Implementation

One channel is used for the application. This way the business data is not parti-
tioned in any way. Moreover, the underlying database-software that is used by the
peer is CouchDB [4]. The reason CouchDB is used is because CouchDB has so-
phisticated search functionalities. The molecule model is implemented as a Golang
struct and is defined in Listing 5.1. There also exists another database that can
be used with Fabric called LevelDB [16]. LevelDB is more suitable if one does not
need to do complex searches, as the instance of LevelDB lives inside the peers as
a module. A CouchDB instance is its own separate container and as a result, the
peer and the database instance have to communicate across containers.
type Molecule s t r u c t {

2 ObjectType s t r i n g ‘ j son : "docType" ‘
Vers ion in t ‘ j son : " ve r s i on " ‘

4 Index s t r i n g ‘ j son : " index " ‘
Name s t r i n g ‘ j son : "name" ‘

6 Synonymes [] s t r i n g ‘ j son : "synonymes" ‘
Submitter s t r i n g ‘ j son : " submitter " ‘

8 Timestamp s t r i n g ‘ j son : " timestamp" ‘
Owner s t r i n g ‘ j son : "owner" ‘

10 Value i n t ‘ j son : " value " ‘
SalesPr iceIPR in t ‘ j son : " sa l e sPr i ce IPR " ‘

12 Bids i n t ‘ j son : " bid " ‘
B i o l og i c a lTa rg e t s t r i n g ‘ j son : " b i o l o g i c a lTa r g e t " ‘

14 St ructure s t r i n g ‘ j son : " s t ru c tu r e " ‘

Implementation 45

Data [] s t r i n g ‘ j son : "data" ‘
16 MotherMolecule s t r i n g ‘ j son : "motherMolecule " ‘

Phys i ca lStorage s t r i n g ‘ j son : " phys i ca lS to rage " ‘
18 Contact s t r i n g ‘ j son : " contact " ‘

AssetType s t r i n g ‘ j son : " assetType " ‘
20 }

Listing 5.1: Molecule Model

5.2.1 The Chaincode

The operations themselves are defined as a chaincode that is deployed on the single
peer. The chaincode is a Golang-program that leverages a source development kit
(SDK) [19] that Fabric provides for the language. The code for the chaincode is
defined in Listing A.1, available in appendix A.1.

5.3 Interacting with the application

The operations defined in Chapter 4 are implemented as an API. A user connects
to the network via a web browser-based front-end generated by Swagger. Behind
the front-end, a rest-server sits that proxies user requests to the peer and orderer
of the network. The rest-server is a NodeJS [34] application. It leverages Express
[33] to drive API calls and the Fabric SDK [22] to connect to the Fabric network.
In practice, the rest server is the actual member of the peer organization. The
reason it is implemented like this is due to simplicity. This way one does not need
authentication mechanisms between the front-end and the rest server. During the
course of the thesis, the implementation has only been run locally and thus the
machine running the rest server and the front-end has been the same. The API is
defined in Figure 5.2.

Figure 5.2: API for the Platform

46 Implementation

Chapter 6
Security Analysis

This chapter provides an overview of security aspects of Fabric. The reference
model is equivalent to the prototype model.

6.1 Information Taxonomy

Information Taxonomy defines the nature of data that is to be protected [10]. We
consider tokenized molecules that are uploaded to the network as the information
that is to be protected. The four information taxonomy attributes for assets are
defined as follows [10]:

• Form: We only consider molecules in a tokenized format.

• Sensitivity : A molecule has two levels of sensitivity. Molecules that have
been made public property need integrity protection, but only confidentiality
protection from non-members of the network. Importantly, auditability has
to be preserved so that the correct owner of the molecule can claim credit
for it. For assets that could be patented or commercialized in the future,
both confidentiality and integrity of the asset has to be protected even from
other members of the network.

• Location: All assets can be in one of the following places: In clients, in peers
and orderers. When entities send information to one another this is done so
over the internet. Depending on circumstance information can be found in
peers, orderers, and clients from other organizations.

• State: Information can be in one of the following five states: creation, trans-
mission, storage, processing or destruction. Molecules can only be created
once and never be destroyed. Once they are created they will be stored for-
ever. Molecules are transmitted to peers and orderers after creation. Peers
that are synchronizing their state will require that molecules are transmit-
ted. Molecules are processed inside of peers, using chaincode.

Fabric uses the following cryptographic primitives [19]:

1. In Fabric version 1.4, SHA256 is the only available hashing function.

2. Fabric uses ECDSA to create signatures.

3. The default MSP implementation uses X.509 certificates.

47

48 Security Analysis

6.1.1 Assumptions

We make two assumptions when analyzing the security of the prototype:

1. Participants of the network consider reputational damage: The cost to pro-
duce faulty messages for participants is virtually zero in Fabric. In public
blockchains there exists a cost to produce blocks, e.g. miners have to sac-
rifice computing power to generate blocks. The only cost of diverging from
the Fabric protocol for an adversary that is part of the network is potential
reputational damage. Therefore one has to consider whom they invite to
the network. An actor that is not afraid to damage their reputation could
cheat the protocol for their own gain. However, ill-behaved actors can be
booted from the network.

2. The CAs and PKI are secured : Since all of Fabric’s security is built on
identities and signatures, the CAs and PKI have to be secure. How to
secure PKIs and CAs can be found in other literature and is not considered
in this thesis.

3. Perfect Cryptography : Fabric uses well known cryptographic primitives. In
the security analysis, we assume that they can not be attacked.

6.2 Security Goals

This section describes the Security Goals for the prototype. The definitions of
the goals are defined in the Reference Model for Information Assurance & Secu-
rity (RMIAS) [10]. The CIA (Confidentiality, Integrity, Availability) triad is a
way to define security aspects of a system [47]. Cherdantseva and Hilton [10] ex-
pand the CIA triad to provide a more fine-grained description of security services.
Apart from already described security services they also include: Accountability,
Auditability, Authenticity, Non-repudiation and Privacy. Fabric enables them in
the following way:

• Confidentiality - Fabric is designed to be a permissioned blockchain, only
invited members can participate. Given that participants protect their net-
worked devices properly this provides a high level of confidentiality against
non-members of the network. When communicating between entities, TLS
can be enabled which protects the confidentiality of messages, especially
when sent over insecure communication channels like the Internet [19]. Fur-
thermore, the Fabric network can be further partitioned using channels. Any
entity that is not part of the channel will be denied access. Using channels,
one can hide data from entities that are part of the same network [2]. The
prototype only utilizes one channel, however. Finally, Fabric has private
data. Using private data one only commits the hash of the private data
to the blockchain, while saving the data at a set of predefined, presumably
trusted peers [19]. This way one can even hide data from entities that are
part of a channel. Private data is not part of the prototype, however.

• Integrity - Integrity is mainly protected using the blockchain [2]. If a single
byte is changed in the chain of hashes, the final hash of the chain will diverge

Security Analysis 49

from its true value [28]. Assuming that the ordering service is correct,
one can depend on it to only deliver legitimate blocks. Moreover, peers
can verify that their state of the blockchain is the same as the rest of the
network by comparing the hash of the latest block with other peers. This is
best done with entities that are trusted to be correct, e.g. using peers from
one’s own organization. By replaying the content of the blockchain one can
reconstruct the state of a chaincode. This way a peer can reconstruct state
independently, only needing to trust the final hash of the blockchain [2].
Integrity is further enhanced by the need to sign every transaction because
an actor that sends malicious data to the network can be tracked down using
their identity. The actor could face legal consequences or be banned from the
network if they sends malicious messages to the network. Clients can verify
the integrity of executed chaincode by requesting that their transaction be
executed at several peers. The chaincode execution produces a read/write-
set for referenced keys [19]. If this set contains inconsistencies across peer
executions this might point to the fact that either the chaincode is non-
deterministic, or that some peers are cheating. This feature can be enforced
by chaincode execution policies. Moreover, peers validate each transaction
in the final step of the transaction lifecycle to make sure that the state is
updated correctly, and that the read/write set has not been tampered with
[2].

• Availability - Fabric is designed to be a distributed system [2]. This means
that availability is protected by having several entities that provide the same
services. One organization can deploy several peers that all can endorse
transactions. If one peer crashes or gets attacked the other peers could
potentially still provide the same services.

• Accountability - Accountability is when one can hold some actor accountable
for his actions [10]. Since all transactions in Fabric are signed it is easy to
hold the appropriate actor accountable given that their keys have not been
compromised [2]. Transactions that lack the correct level of authorization
will be blocked by the entities of the network and be logged. Consequences
of malicious actions are not defined by Fabric. The owners of the network
will have to determine what happens to users that are acting maliciously.

• Auditability - Auditability is the ability to monitor the events that have
taken place inside a system. For a system to be auditable the auditability
must be mandatory. Otherwise, ill-behaved actors would avoid the mon-
itoring [10]. Fabric has strong auditability thanks to the blockchain. All
transactions are stored in the blockchain, even invalid ones [2]. One can
track transaction requests of authenticated users. The peers and orderers
also provide logging that could optionally be saved and used to enhance au-
ditability. The maintainers of the entities have to explicitly save and share
these as they are not part of the transaction life-cycle.

• Authenticity - Authenticity is the ability to verify identities and how trust-
worthy these actors are and how trustworthy the data they present are [10].
Authenticity of data presented to the network is not a feature of Fabric.

50 Security Analysis

This is due to the fact chaincode is a general computer program. Data pre-
sented to Fabric can be arbitrary. Therefore, it is up to the developers of
the network to find ways to guarantee that data that gets included in the
network is authentic. This is a general problem of tokenization. How does
one know that data included in a blockchain from the external world is valid?
This is further discussed in Chapter 8, as it is one of the biggest challenges
identified during this thesis.

• Non-repudiation - Non-repudiation is the ability to prove that some actor
did or did not do some action [10]. Fabric has non-repudiation. Any valid
message in the network contains identity with a corresponding signature
[2]. Given that the key that is used to sign for the identity has not been
compromised, no actor can deny that a message did not originate from
them. Moreover, an actor can prove that a message did originate from them
by signing another message using the same public identity of the disputed
message.

• Privacy - Fabric has some privacy features. First, it is a permissioned
blockchain, meaning that only invited actors can participate. This means
that the Fabric network can be run in a secured network. Second, each
organization is responsible for enrolling members. This means that an orga-
nization can protect identities by enrolling users under whatever name they
choose. However, they can not hide the fact that a member is part of their
organization. Privacy of data itself is also protected by the fact that the
network is permissioned. If a transaction contains personal information, the
permissioned nature of the network means that privacy of the data itself can
be protected from external actors. This can be further enhanced by using
channels. Lastly, private data can be used to hide data on a channel. This
way only a select number of peers will be able to see the private data [19].

Security countermeasures are measures taken to enforce the security goals. They
can be classified into four categories according to RMIAS [10].

1. Organizational : Policies that organizations employ to increase the likelihood
that a product is secure.

2. Human-Oriented : Relates to organizational culture, training, and ethics
that decreases the likelihood of human faults when developing and operating
security-sensitive products.

3. Technical : Technical countermeasures are technical mechanisms that in-
crease the security of a product. For example, cryptography, authentication,
or access control.

4. Legal : Legal countermeasures are countermeasures where legislation is uti-
lized to increase the security of a product. For example, non-disclosure
agreements can decrease the likelihood of confidentiality breaches. In the
case of the prototype, a participant could be forced to sign a contract that
they will not misuse the platform and risk facing legal measures if they do.

We only consider technical countermeasures in the security analysis.

Security Analysis 51

6.2.1 Authentication and Access Control

Entities of the network are divided into organizations. An organization can con-
tain sub-organizations. Each organization forms a trust domain. Entities trust
other entities from their trust domain. It is assumed that members of the same
organization will not attack each other [2]. The prototype uses the standard MSP
implementation provided by Fabric. It uses X.509 certificates for identification
[19]. One should handle certificates as in any other software project. Any cer-
tificate authority can be used to generate certificates, given that they follow the
specifications discussed in section 3.8. The MSP uses certificates that have been
installed on it in combination with public keys and signatures included in mes-
sages to authenticate entities. Certificates of peers, orderers, and CAs have to be
installed out-of-band. That is, one generates certificates for them using some CA
and then distributes them outside of the Fabric network. Certificates of clients
can be installed out-of-band or in an online mode [19]. Online mode, in this case,
means that one can enroll clients programmatically, using the Fabric network. In
order to revoke a certificate one adds the certificate to be revoked to the appro-
priate MSP’s certificate revocation list.
Members of organizations have roles as defined in section 3.8 which define autho-
rization of a member. An MSP uses a known channel configuration in combination
with an authenticated identity to define authorization for a member on that level.
Resources in Fabric are protected via access control [19]. To enable access control
at the channel level, Fabric uses an Access Control List (ACL) to define access to
resources for entities. The ACL is defined on a channel by channel basis and is con-
figured using a channel-configuration transaction. A resource from the network’s
perspective is an endpoint that clients can interact with. For example, a smart
contract is a resource. Policies are used to define which authorization is needed
to access a resource. For example, OR(Org1.member,Org2.admin) defines that
a member of Org1 or an admin of Org2 is needed to access a resource. Moreover,
access control can be defined inside chaincode by using the GetCreator function
defined in the SDK used to develop chaincode [21]. GetCreator returns informa-
tion on the creator of the transaction. This way one can define access control on
the chaincode level.

6.3 Chaincode Security

The security analysis of chaincode can be considered separate from the underlying
Fabric network. When analyzing the chaincode security we assume the underlying
network to be secure. There must be a high probability that chaincode is correct
and secure. If chaincode is exploitable, a potential attacker could steal from other
participants. Smart contract security is an ongoing research topic. Most papers
focus on Ethereum as it is the second largest blockchain measured in market cap-
italization, as well as it being the oldest smart contract platform.
Praitheeshan et al. [36] provided a survey on Ethereum smart contract vulnera-
bilities. Considering that smart contracts move value, there exists an incentive to
attack them. Furthermore, the public nature of Ethereum means that anyone can
participate in the network. This is mitigated by Fabric due to its permissioned

52 Security Analysis

nature. Moreover, there exists no easy way to upgrade Ethereum smart contracts
due to the decentralized nature of the network. Using Fabric one needs to coor-
dinate smart contract upgrades with a smaller set of participants. They identify
two key vulnerabilities that are of interest:

• Timestamp dependent contracts: A timestamp-dependent contract is a smart
contract that uses timestamps in its execution. An entity could change time
to manipulate code execution. For example, if time is an input parameter
to a chaincode, a client could pass an incorrect timestamp to exploit it.
One way to solve this is to avoid timestamps altogether. If timestamps are
required one could rely on trusted entities to provide time, e.g. members
from one’s own organization. Potentially, a third party could be responsible
for providing legitimate timestamps.

• Transaction ordering problems: Smart contract platforms are asynchronous
systems. A smart contract that is dependent on another smart contract
and assumes an order of execution is vulnerable to race conditions. For
example, if one contract is dependent on a second contract, the state of
the second contract could be updated before the first contract execution is
finished. In the case of Fabric, this could be two peers that execute the
first contract separately. The first peer retrieves one result from the second
contract and the other peer retrieves another result. This way they have
retrieved different results from the second contract and might reach different
conclusions on the final state of the first contract.

There could also be general software vulnerabilities such as buffer overflows, integer
overflows, command injections, etc. [36]. These are not unique to smart contracts
and can exist in chaincode, as it is a general-purpose program. In order to decrease
the likelihood that software contains faults static analysis and formal analysis
can be utilized. Static analysis is an analysis of source code without executing
the code. Static analysis can help with finding code patterns that are known to
cause issues. Formal analysis is a form of static analysis that provides some proof
that a program is correct according to some specification. Several papers propose
rigorous development processes in order to minimize the risk of these vulnerabilities
using static and formal analysis [36, 38, 6]. No formal verification tool for Golang
chaincode was found. Beckert et al. [6] modified KeY, a formal verification tool for
Java to verify correctness of Java chaincode. There also exists a suite of verification
tools for Ethereum: Oyente, ZEUS, etc. [36]. A static analysis tool for Golang
chaincode was found, namely, ChainSecurity’s Chaincode Scanner [9]. It analyzes
chaincode for the following potential critical issues:

1. Goroutines - Concurrency is discouraged in chaincode as it is easy to get
concurrency wrong.

2. The chaincode object should not contain fields.

3. When operating on a ledger, it should not rely on global variables.

4. Certain non-deterministic libraries should not be utilized.

5. One should not iterate over maps using ranges as this operation is non-
deterministic.

Security Analysis 53

Non-determinism is something that could break the integrity of a blockchain, so
it is helpful that the analyzer finds occurrences where non-determinism in the
chaincode is likely. Moreover, the analyzer also presents less critical issues as
warnings:

1. Number of arguments should be validated in each function. This way one
can stop function execution if the end-user passes too few or too many
arguments.

2. Read after writes introduces performance overhead. This is, one writes to
a key in the ledger, only to read the same key from the ledger after. This
invokes the underlying database an unnecessary amount of times.

3. Error variables should always be handled

4. Any variable that is read from the ledger should be used.

The implement chaincode found in section A.1 was scanned using ChainSecurity’s
chaincode scanner. None of the above-mentioned issues were found which provides
some degree of certainty that the chaincode is correct.

6.3.1 Security Development Life Cycle

Since chaincode has a large attack surface, Security Development Life Cycle can be
utilized to reduce the probability of introducing exploits when developing chain-
code. Security Development Life Cycle is when security measures are integrated
into the development of software [10], and spans all components of an organization.
We only consider technical implementations that increase the likelihood of correct
chaincode. The following components were developed as part of the development
lifecycle to the prototype and are hosted in a set of private repositories:

1. Automatic Build Tool - Buildbot, a build tool developed in pure Python, is
part of the development life cycle. Each commit to the codebase triggers a
build. Each build automatically builds the code, runs tests, does static anal-
ysis and deploys the new commit. This speeds up the development process
and minimizes the risk of human errors when deploying code. Moreover,
since tests are run automatically commits that break the system are quickly
identified.

2. Static Code Analysis - At each build, the chaincode is statically analyzed
using golangci-lint. golangci-lint is a code linter for Golang that can uncover
common errors in code. For example, it can help identify errors that are not
handled.

3. Unit Testing - At each build, the code is unit tested using Golang’s built-in
test tool. If tests are developed correctly they can help detect if bugs are
introduced into newly committed code.

4. End to End Tests - At each build, a mock network is set up locally. Using
this mock network transactions are executed in order to observe if the new
commit introduces faults using Hyperledger Caliper.

54 Security Analysis

5. Automatic Deployment to Test Environment - The newly committed code
is automatically deployed to a network that is designed to be as close as
possible to a production environment. This network is available around the
clock and provides an ideal environment where functionality can be tested.

6.4 Security Attacks

This section describes some common attacks and how they are prevented in Fabric.

6.4.1 Impersonation attacks

Assuming that no private key is compromised, any message that is sent will be
signed by its creator. One can trust that messages received was not created by
an adversary. If TLS is not used, it is possible to send a message to an adversary
as authentication is one-way. Using TLS, the authentication becomes two-way.
Moreover, all entities maintain a list of outgoing connections defined by config-
uration [19]. One can specify that entities only communicate with entities that
are known to be part of the network. Human errors can be mitigated by using
automated node discovery. Using this, connections to other entities are discovered
by asking known peers for information. Malicious peers could provide connections
to malicious entities. If TLS communication is enabled, then any communication
with an unauthorized entity will be rejected.

6.4.2 Byzantine Peers

A substantial portion of the communication in Fabric is gossip between peers. A
compromised peer has the potential to attack the network. They threaten the
main security consideration in the following way:

1. Integrity - A byzantine peer could alter transactions that flow through it.
Since transactions are signed, this would make them invalid and thus byzan-
tine peers do not threaten the integrity of messages that are passing through
them. However, the peer could sign its own message that contains data
where integrity has been broken. For example, a byzantine peer could send
the wrong transaction results to a client and sign it with its own keys. This
can be mitigated if important transactions require signatures from several
peers.

2. Availability - Since gossip is used, the refusal to propagate information of a
byzantine peer can be mitigated by communicating with other peers. If the
byzantine peer happens to be the sole leader peer in an organization, i.e. it
is the only peer with a connection to the ordering service, then an election
needs to be held before the availability of the attacked organization can be
resumed.

3. Confidentiality - The worst security issue regarding a byzantine peer is prob-
ably related to confidentiality. A compromised peer could be well-behaved
but disclose confidential data. Fabric provides no mechanism to detect if an
entity leaks information unlawfully.

Security Analysis 55

In the end, one has to ask if byzantine peers are likely. It could be the case that it
is entirely reasonable to fully trust peers inside one’s own organization. However, if
communication happens across organizations there could be more cause for concern
as peers from other organizations are potentially from a competing organization.

6.4.3 Byzantine Orderers

As of Fabric version 1.4, the network breaks if orderers are byzantine. Currently,
there exists no byzantine fault-tolerant consensus protocol for the orderers [19].
Byzantine behavior of orderers could break the whole network. This is poten-
tially a fatal security flaw for production systems. The Hyperledger Foundation is
working to have a byzantine fault-tolerant protocol available as soon as possible.
However, since all transactions are signed in Fabric, one could make a case that the
probability of an orderer diverging from the consensus protocol is small. If an or-
derer is caught being malicious the owner could face legal actions. This is the case
if they send malformed messages that attack liveness or safety of the network. It
might be easier to hide attacks where orderers delay or refuse to deliver messages.
In this case, the attacker could blame slow internet connection or disconnections
while attacking the liveness of the system.

6.4.4 Replay Attacks

A replay attack is when someone replays a message that was previously sent [47].
In Fabric, transactions contain a nonce. This way each transaction will only be
handled once by each entity. Moreover, since each transaction contains a versioned
write-set a replayed transaction will not update any state of chaincode [19].

6.4.5 Man in the Middle Attacks

A man in the middle (MITM) attack is when a malicious actor gets hold of a
message before it arrives at its destination [47]. Since Fabric messages are signed
active attacks are not possible. If TLS is enabled attackers can not read the
content of the message. Moreover, if an entity has been configured to use TLS it
will reject all non-TLS based communication. However, traffic analysis is possible.
A MITM attacker could deduce some information by analyzing which entity is
sending messages even if they can not see the content of the messages.

6.4.6 Denial-of-Service (DoS) Attacks

A single node could be spammed by an attacker that has access to the network.
A healthy network should have a reasonable amount of peers and orderers. This
way it becomes harder to perform DoS attacks on a network as the attacker would
need to attack several entities. If one entity is being attacked, honest actors could
turn to other entities in order to transact their messages. A Fabric network is
susceptible to denial of service attacks from clients that are part of the network.
When running evaluations a client sending more transactions than the peers could
commit to a ledger affected the availability of the network. One should ask if
clients are likely to spam the network as their actions are logged by all peers and

56 Security Analysis

orderers. However, depending on the application it could be hard to differentiate
between attacks and a flood of honest transactions. A potential mitigation is to
introduce some rate limit. It could be implemented in the clients, or by placing
network entities behind some load balancing mechanism.

DoS mitigation using early authentication

Denial of service attacks can be mitigated by authenticating early in the communi-
cation protocols [47]. If an attacker has to reveal identity early when establishing
communications this makes it easier to detect that a flood of messages is coming
from the same identity. The following holds for the transaction life-cycle discussed
in Chapter 3:

1. Transaction proposals are sent from a client to endorsing peers and have the
following format: (clientId, chaincodeId, txPayload, timestamp, clientSig).
The endorsing peer verifies the clientID with respect to the clientSig, be-
fore processing the transaction [19].

2. Endorsed transaction proposals are sent back to the client from one or more
endorsing peers. Fabric documentation does not specify if the client verifies
the signatures.

3. The client sends the endorsed transaction to the ordering service. According
to Fabric documentation endorsed transaction messages only contain the
signatures from the endorsing peers [19].

4. When the transaction is delivered to peers from the ordering service, the full
transaction will be visible to the peers. This way they can always disregard
any malformed transaction [19].

In step 3 of the transaction life-cycle, there is weakened authentication and could
potentially suffer from a weakened denial of service protection. However, if TLS is
enabled for all entities in the network early authentication is enforced throughout
the network.

Other types of DoS Defenses

Other types of DoS attack protections includes: client puzzles which is akin to
proof-of-work described in Chapter 2, protocol-fail-stop which stops the commu-
nication when bogus messages are detected, or increasingly strong authentication
as communication progresses [47]. None of these strategies are implemented in
Fabric version 1.4. However, since Fabric is intended to be run as a permissioned
network, denial of service attacks could be mitigated via other common defense
mechanisms, e.g. firewall protection where any communication from potentially
malicious actors can be discarded quickly.

6.4.7 Transaction malleability

A client proxying messages to the ordering service via peers is subject to a mal-
leability attack. This can happen in step 3 of the transaction life-cycle discussed

Security Analysis 57

in Chapter 3. In this step, the client needs to send an endorsed transaction to the
ordering service. If the client does not have access to a direct connection to the
ordering service it must proxy it to the ordering service via a peer. The peer can
not fabricate endorsements and thus non-repudiation is not at risk. However, the
proxying peer can remove endorsements from the transactions, potentially making
it invalid [19].

6.4.8 Sybil Attacks

A sybil attack is when one participant of a network generates a large number of
identities in order to gain a disproportionate influence over the network [12]. In
the case of Fabric that would be one malicious actor possessing several certificates
that they can use to drive malicious behavior. Assuming that the certificate au-
thority for an organization is not compromised Sybil attacks are not possible as
the malicious actor can not generate their own identities. However, the actors
controlling a certificate authority could generate as many identities as they like
to. This could open up an attack vector potentially. Imagine a chaincode where
the result of some transaction is based on votes from users. An organization could
generate a disproportionate amount of certificates in order to gain an advantage
in the voting process.

6.4.9 Eclipse Attacks

An eclipse attack happens when all incoming and outgoing connections of a victim
entity are to malicious actors [12]. Consider a client that connects to three peers
in order to increase the likelihood that transaction results are executed correctly.
If all three of these connections happen to be to malicious peers the client has
been subject to an eclipse attack. These attacks are of limited use in Fabric as all
communication is done via signed messages. That is, an attacker can not fabri-
cate and send messages to the eclipsed entity as it would reject them. Moreover, if
TLS is used, the entity being attacked will not establish a communication with the
attacker as the attacker’s identity will not be recognized. Eclipse attacks are miti-
gated using configuration. One should always configure an entity to communicate
with at least one trusted entity.

6.4.10 Double Spend Protection

A double spend is a set of two transactions that are in conflict with one another
that both get accepted by the network [12]. It is an integrity issue. In the case of
Fabric, a double spend would be two transactions that get accepted into a ledger,
where the first transaction updates a key-version pair, followed by a transaction
that updates the value for the same version of the key. How state is modeled
was discussed in Chapter 3. In the case of molecules, this would be akin to
someone transferring ownership of a molecule (T1), followed by another transfer
of ownership of the same molecule, by the same user (T2). Namely:

T1 = put(k1, v1)

T2 = get(k1); put(k1, v2)

58 Security Analysis

This would break integrity of the network, as one user could transfer ownership
of a single molecule to several users. Given a secure network, double spending is
stopped by the validation step in the transaction flow. If a key in the world state is
referenced after it has been updated there will exist a conflict in the read/write-set.
As a result, the transaction will be marked as invalid by the peer [2].

Other Double Spend Attacks

Both Raft [32] and PBFT [8] are deterministic consensus protocols. That is, each
round of consensus is final. This means that once consensus has been established
for a round it will not be reverted. This prevents a class of double spend attacks
found in other blockchains such as Bitcoin. Due to the probabilistic nature of
nakamoto consensus, there exists a set of potential double spend attacks that rely
on the unfinality of the consensus protocol, e.g. finney attack, race attack, brute
force attack. [12]. In Nakamoto consensus a block that was discovered recently
has a probability to be reverted as one chain could outgrow another [28]. None of
these attacks are possible using Raft or PBFT due to their finality. However, one
could possibly persuade peers to revert blocks, and thus enable double spending
that rely on unfinality of blocks.

Chapter 7
Performance Analysis

This chapter provides a performance analysis of the prototype described in Chap-
ter 5. We used Caliper [24] to run a performance analysis on the developed chain-
code using varying network topologies. The Hyperledger Foundation put together
a document describing key points when analyzing the performance of blockchain
networks [35]. The key metrics defined by the document are:

1. Read Latency : Time from read request submission to response from the
network.

2. Read throughput : How many reads are completed in a time period. Reads in
Fabric also leverage the transaction lifecycle discussed in Chapter 3. These
transactions are referred to as query transactions with the difference that
they are stopped after the execute step [19].

3. Transaction Latency : The time from submission of a transaction to a re-
sponse from the network that the transaction succeeded.

4. Transaction throughput : Number of committed transactions per second
(tps). Note that even invalid transactions are added to the ledger in Fabric
[19].

7.1 Previous Work

This section summarizes some previous work on the analysis of Fabric. The sub-
jects discussed here can be used to guide future decisions as the prototype is
developed further.

7.1.1 Performance Evaluation

Thakkar et al. [46] investigated how Fabric version 1 performed under various
configurations. Following is a selection of their findings that are relevant to the
future development of the prototype proposed in this thesis.

1. Transaction latency increased linearly as transaction arrival rate increased
until a certain threshold was reached, namely around 140 tps. At this thresh-
old, more transactions arrived than the verification system chaincode could

59

60 Performance Analysis

handle and thus it became the bottleneck. This means that transaction
latency started increasing.

2. If transactions arrived slower than blocks were filled, an increase in block
size increased the transaction latency linearly. This is due to the fact that
as blocks are larger they can include more transactions. This means that
transactions are held longer on average in the ordering service. However,
if transactions per second are larger than the block saturation level, it is
preferred to have larger blocks as they can hold more transactions, and thus
more transactions are committed at a higher rate.

3. Including more organizations in a n− outOf endorsement policy increased
transaction latency linearly. For 175 tps, 1-outOf had a transaction delay of
around 250ms, and 4-outOf had a transaction delay of around 300ms. How-
ever, nesting endorsement policies had an exploding effect on the transaction
delay. Using a OR[AND(a, b, c), AND(a, c, d), AND(b, c, d), AND(a, b, d)]
endorsement policy increased transaction delay to 30 seconds for 175 tps.
This indicates that one should avoid nesting endorsement policies and favor
n− outOf when possible.

4. CouchDB performs significantly worse than LevelDB. This is due to the
fact that LevelDB lives inside of the peers, whereas the peers have to make
HTTP calls to interact with couchDB. The more reads and writes that were
included in a single transaction the worse CouchDB performed. This is due
to the fact that shared locks are used in CouchDB and thus the more reads
and writes that are made means that more agents will compete for lock
time. Therefore the amount of reads and writes that a transaction makes
should be minimized or batched when possible.

There exist other literature that analyze Fabric performance [29, 17, 41]. However,
most of them are focused on a somewhat fixed topology, i.e. no literature was found
where someone analyzed how a Fabric network performed under a larger amount
of peers and orderers, e.g. in order of hundreds of orderers. The paper that
introduces Fabric [2] claim good evaluation results for one hundred peers. Their
results are discussed further below.

7.1.2 Impact of Network Delays on Performance

Nguyen et al. [30] set up a Fabric network over an area network between France and
Germany. In their experiments, they used Fabric version 1.2.1. They artificially
introduced delays between the two sites in order to analyze how Fabric behaves
under different network delays. By increasing the artificial delay by 3.5 seconds,
they had up to 135 seconds of delay between the write of the last blocks on the
different sites. This threatens the consistency of the network as one partition
of it is several blocks ahead of the other one. The consistency threat arose due
to a specific topology that they created. Namely, the part of the network that
created new transactions had a delay-free connection to the ordering service. As
the orderers are responsible for liveness of the whole network [2], that partition of
the network could progress and continuously wrote new blocks. The other partition

Performance Analysis 61

of the network that was subject to the artificial delay had to wait to receive
the blocks. This way the healthy partition of the network kept on progressing
while the delayed partition fell further behind. This highlights some important
considerations. First, one has to assess the likelihood of network delays in an
established Fabric network. If delays are likely, and more importantly potentially
large, one should not make strong consistency assumptions, as a partition of the
network could fall behind and thus hold an outdated state of the world. As the
ordering service, in this case, was healthy the state was updated correctly but
only eventually. Second, the problems identified when introducing network delays
potentially puts a constraint on who should maintain orderers. The consistency
issue, in this case, can be mitigated if one of the orderers would be part of the
partition that was under delay. This way the ordering service would have to wait
for the delayed orderer before progressing, given that a consensus protocol with
stronger consistency guarantees is used, e.g. Raft with strong consistency enabled.
However, this will only work up until a certain level of delay, as eventually the
delayed orderer will be considered disconnected by the consensus protocol.
Nguyen et al. [30] also found that orderers could be crashed by introducing delay.
When an orderer sends a block, it waits for a confirmation from the peer before
sending the next block. When delays were severe enough, the block buffer in
the orderer would be overfilled and as a result, it halted. They mitigated this
by increasing the buffer size of the orderer. This could be further mitigated by
using disk space to store blocks that do not fit in the buffer or by introducing a
dynamically resizable buffer during network delays. However, it is unknown if this
has been addressed in later Fabric versions.

7.2 Discussion of Results

This section provides a discussion on the observed results from the performance
evaluation. We tested transaction latency, throughput, and success rate for the op-
erations Upload Molecule, List History of Asset, and Transfer Ownership using the
full transaction lifecycle. Latency, throughput, and success rate when doing query
transactions for List History of Asset was also analyzed. The reason these three
operations were selected is because Register New User is very similar to Upload
Molecule and Update Molecule is very similar to Transfer Ownership. Moreover,
Search Molecule requires a large set of already existing molecules to be interesting.
The testing environment can be described as following [35]:

1. Consensus Protocol : Raft [32] was used as consensus protocol for all tests.
Ideally, a BFT protocol should have been tested as well. Since no official
implementation did exist only Raft was used for the evaluation.

2. Geographic Distribution: All of the tests were done on a single machine.
Ideally, several machines should be used for testing but only one machine
was available to us at the time.

3. Hardware: The single machine had 128GB of RAM, and a Ryzen Thread-
ripper 1950X (3.4GHz base, 4GHz boost with 16 cores).

62 Performance Analysis

4. Network Model : Different network topologies were tested. Their sizes varied
from one up to 26 organizations. Each organization contained two peers.
Two peers seems to be a reasonable starting point for analysis as each or-
ganization has access to one backup peer. Moreover, for each network, the
number of orderers varied from one up to 31 orderers. A higher number
of orderers were tested. However, at higher orderer numbers, the tests ei-
ther started having a consistent success rate of zero, or the entire test suite
started crashing. These test results are not included in the thesis.
The block configuration for the ordering service were configured as follows:
AbsoluteMaxBytes (how large a block can be) was 99MB,MaxMessageCount
(maximum number of messages in a block) was 10, PreferredMaxBytes (how
large blocks should be preferably) was 512KB and the BatchTimeout (how
long the orderers should wait before packaging transactions into a block)
was 2 seconds. All other parameters used default values.

5. Software Components: The chaincode was written in Golang. Moreover,
for the tests, LevelDB was used as the state database in peers instead of
CouchDB. The two different databases were discussed in Chapter 5.

6. Test Tools and Frameworks: Caliper was used to run the tests. Caliper was
selected as it was the only benchmarking tool identified for Fabric.

7. Type of Data: The data being used was simple mock data. The size of
the data was in the order of kilobytes. Transactions in the order size of
megabytes were also tested. However, these tests quickly started to fail. As
a result, those results were deemed unsatisfactory, and are not included in
the thesis.

8. Workload : The workload was generated by Caliper. A fixed rate was used,
i.e. transactions were sent at a fixed rate. For each operation, transactions
were sent at the rates 1 tps, 2 tps, and 5 tps. The duration of each round
was 30 seconds. For each operation, each round was run 5 times. After each
of these 5 rounds, Caliper paused its transaction sending for 60 seconds.
This was used to allow the network to stabilize after each test round.
The following operations defined in Chapter 4 were tested: Upload Molecule,
Transfer Ownership, and List History of Asset. List History of Asset was
run two times. One time as transaction invocations, and another as trans-
action queries. Transaction invocations go through the full transaction life-
cycle and transaction queries stop once the client receives a result from the
execution step. In theory, a query should be faster than a full invocation. In
summary, a total of 12 test suites were run: 4 operations (Upload Molecule,
List History of Asset, List History of Asset Query, Transfer Ownership), 3
arrival rates (1 tps, 2 tps, 5 tps). Each round was repeated 5 times and the
final result for each test suite was retrieved by averaging the results from
the 5 repeated rounds.

Performance Analysis 63

Upload Molecule

Figure 7.1 shows the results from the evaluation of Upload Molecule. The size of
the molecules uploaded was in the order of kilobytes. For the transaction arrival
rates of 1 and 2 tps, every network seems to work fine up until 26 orderers and 16
organizations. After that, the success rate quickly goes to zero. However, for the
arrival rate of 2 tps for 26 organizations and 6 orderers, the success rate increased,
whereas it was lower for 21 organizations. For the arrival rate of 5 tps, every
network seems to work fine up until 11 organizations. After that, the rates trend
to zero with varying speed depending on the number of orderers. For 31 orderers,
the success rate went to zero after 11 organizations for all transaction rates.
The latency has, in general, a positive trend and the throughput a negative. How-
ever, in the case of 1 orderer for Upload Molecule at the rate 5 tps, one sees that
latency is lower for 16 organizations than for 11 organizations. This could be
because the success rate is lower. Transactions that fail quickly provide a lower
latency. For 21 organizations with 1 and 6 orderers the latency is higher when the
transaction arrival rate was 1 tps than it was for 2 tps. In this case, the difference
can not be explained by the 2 tps arrival rate having a lower success rate as it is
higher than for 1 tps. It is unknown at this stage why this occurred as one would
expect a lower transaction rate to yield better results.
We expect that it is acceptable for end-users of the platform to accept a lower
throughput and higher latency when uploading molecules. A latency in the order
of minutes or even hours could be acceptable as long as the platform provides
strong confidentiality and integrity of the data that is uploaded. However, it is
concerning that the network halts completely at 31 orderers. This is more of an
availability problem, but if it is severe enough then end-users will become too
frustrated as they wait for the network to stabilize. It should be noted that there
might still exist querying capabilities even if the transaction lifecycle has halted.
End-users could query peers directly for blockchain data. If the peer is reasonably
up to date, then they can at least retrieve information, even if they can not upload
new molecules.

List History of Asset

Figure 7.2 depicts how List History of Asset behaved using full transaction in-
vocations, and Figure 7.3 depicts how List History of Asset behaved when the
transactions were query transactions. As expected, query transactions are much
faster than full transaction invocations. The highest average latency for the query
transaction was around 0.08 ms and the highest average latency for the full trans-
action was around 30 ms. This is beneficial for the prototype as we expect there
to be orders of magnitude more reads than writes to the platform. The success
rate for List History of Asset full transactions was around 100 percent until 21
orderers and 21 organizations. For 31 orderers, the success rate went to zero from
6 organizations and onward. List History of Asset query transactions had high
success rates up until 21 organizations and 21 orderers. List History of Asset query
transactions could sustain a success rate of at least 50 percent for 31 orderers up
until 11 organizations, and up until 21 organizations for 1 through 26 orderers. 6
orderers could sustain up to even 26 organizations at a success rate of 50 percent.

64 Performance Analysis

Transfer Ownership

Figure 7.4 illustrates how Transfer Ownership behaved under various network
topologies. As with Upload Molecule we expect that it is tolerable if this operation
has a higher latency and slower throughput. An end-user can probably wait a
couple of minutes to transfer the ownership of an asset as long as the platform
is secure. For the arrival rates of 1 tps and 2 tps, and network sizes up to 16
organizations the latency was never higher than 30ms. For the arrival rate of 5
tps the highest latency was around 45ms, which occurred at 6 orderers and 16
organizations. As with the other operations, the transactions started to fail as the
number of orderers and peers increased.

7.3 Conclusions on Evaluation Results

The results of the tests are somewhat underwhelming. We would like the network
to support hundreds of organizations that maintain orderers and peers in the long
run. At this point it is hard to know exactly what causes the transactions to fail.
Better error reporting, logging, and documentation from both Fabric and Caliper
are needed to understand where bottlenecks exist. The results look reasonable until
16 organizations and 26 orderers. After that we could conclude that the networks
are too unstable to derive satisfactory conclusions. According to the paper that
introduced Fabric [2], they managed to run a network with one hundred peers
at transaction arrival rates that were orders of magnitude higher than what was
used in this thesis. However, they do not specify exactly how they configured
their networks. This makes it hard to replicate their results. Moreover, Caliper
consistently crashed as the number of network entities increased. Caliper is a very
young project, so its reliability will hopefully improve in the future. According to
documentation the following could help make the network more scalable:

1. The election timeout for the ordering service could be set too low in the
default configuration of Fabric [19]. If the ordering service is busy serving
blocks, they could miss leader heartbeats and as a result, trigger an election.
This way they could end up in a state where they are never able to catch
up and as a result, the whole network halts.

2. In order to enable a high transaction throughput, a favorable way to design
the chaincode is to commit changes to an asset instead of absolute changes
[20]. This is because an absolute change requires a read of the asset. That
is, one loads the asset from the ledger and makes a change to it. If there
is a high transaction arrival rate the probability that the readset is out of
date once it reaches the verification phase increases. Using a so-called delta
approach one simply writes the difference in changes to an asset. This way
there will be no read/write-conflict as all transactions are write-only.

3. Fabric is designed to be a distributed system. In the paper that introduces
Fabric [2] it is claimed that entities rely heavily on CPU intensive crypto-
graphic operations. It is possible that the results can be considered invalid as
all of the tests were run on a single machine and that results would improve
drastically if one would disperse entities across several machines.

Performance Analysis 65

4. How block creation is configured could be bad. Due to a lack of time only
one block creation configuration was tested in this thesis. In the paper
that introduces Fabric [2] they claim that a block size of 2 MB was optimal
for their evaluations. However, they do not state if this is the maximum
block size or the preferred size. Moreover, nothing is stated about MaxMes-
sageCount, or BatchTimeout. Varying these parameters could improve the
performance of the prototype.

Scaling Fabric to a high number of participants seems to be non-trivial. An impor-
tant lesson from the evaluations is that one can not simply use any configuration
for a higher number of participants. One has to have a deep understanding of dis-
tributed systems and Fabric in order to understand how to configure the network.
Also, it seems highly worthwhile to configure sophisticated logging mechanisms so
that one can analyze where bottlenecks exist. Moreover, it could be argued that
the documentation on how to configure Fabric is unsatisfactory at this moment.
This is not surprising as Fabric is a new project. For example, Fabric v1.4 is the
first long-term support release of the project.

66 Performance Analysis

(a) Upload Molecule (1 tps) (b) Upload Molecule (2 tps)

(c) Upload Molecule (5 tps)

Figure 7.1: Average latency, transaction throughput, and success
ratio for the Upload Molecule operation for the arrival rate of
1,2, and 5 tps. The transactions arrive at a fixed rate for 30
seconds.

Performance Analysis 67

(a) List History of Asset (1 tps) (b) List History of Asset (2 tps)

(c) List History of Asset (5 tps)

Figure 7.2: Average latency, transaction throughput, and success
ratio for the List History of Asset full transaction operation for
the arrival rate of 1,2, and 5 tps. The transactions arrive at a
fixed rate for 30 seconds.

68 Performance Analysis

(a) List History of Asset Query (1 tps) (b) List History of Asset Query (2 tps)

(c) List History of Asset Query (5 tps)

Figure 7.3: Average latency, read throughput, and success ratio for
the List History of Asset query transaction operation for the
arrival rate of 1,2, and 5 tps. The transactions arrive at a fixed
rate for 30 seconds.

Performance Analysis 69

(a) Transfer Ownership (1 tps) (b) Transfer Ownership (2 tps)

(c) Transfer Ownership (5 tps)

Figure 7.4: Average latency, transaction throughput, and success
ratio for the Transfer Ownership operation for the arrival rate
of 1,2, and 5 tps. The transactions arrive at a fixed rate for 30
seconds.

70 Performance Analysis

Chapter 8
Conclusions & Future Work

There exists a great need to revolutionize how intellectual property is handled in
the pharmaceutical industry. The current way it is handled seems to stifle inno-
vation greatly since different actors work separately on the same problems. Due
to how prior art works there exists no incentive for anyone to collaborate as the
monetary risk is too great. Bitcoin has shown that similar issues can be solved
in a highly distributed manner. Our hope is to achieve something similar in the
pharmaceutical industry. That is, building a distributed system with strong au-
ditability and integrity where ownership of assets is truly in the hands of molecule
developers and researchers.
When developing the prototype proposed in this thesis, Fabric was selected as
the blockchain technology. The technology stack seems to provide a good enough
throughput of transactions and very fast querying capabilities. We expect there
to be orders of magnitudes of more reads than writes if the platform can attract
users. This is promising for the prototype. However, it is very concerning that the
amount of orderers seems to be capped around 26. It is likely that the number
of orderers could become higher as the configuration of the network is improved.
An open question for the future is if a byzantine fault-tolerant protocol is worth
the performance penalty it imposes. Considering that it was non-trivial to scale
Raft to a higher number of orderers, we should expect a byzantine fault-tolerant
protocol to be even harder to scale.
Assuming that entities trust other entities from the same network there exist no
obvious security vulnerabilities in Fabric. However, the security was only ana-
lyzed from a conceptual point of view and a very thorough security analysis will
be needed in the future to make sure that the prototype provides the desired se-
curity properties.
We remain cautiously optimistic that the full vision proposed in this thesis can
be realized in the future. However, a handful of open problems were identified
during the course of the thesis that will have to be solved before the prototype can
be deemed production-ready. In the case that they can not be solved, a different
technological stack will be needed to enable an open collaboration on pharmaceu-
tical molecules. The prototype is only a first step, however, and once this thesis
is concluded the real work begins.

71

72 Conclusions & Future Work

8.1 Future Work

The security of the proposed platform is completely essential. If security is broken
everyone will lose trust in the system and abandon it. There exists a myriad
of examples where poor development processes in companies have led to severe
reductions in security. One notable example is a crash of the airplane Boeing 737.
After analysis, it turned out that there was a software bug that likely caused it. A
bug in the proposed solution could potentially mean enormous monetary damage
to all participants of the network and completely destroy the trust that people
have in the product. On the other hand, organizations like NASA manage to
deploy software in unknown environments with success e.g. when sending Voyager
1 into deep space there were no rollbacks. If there is a bug in the software it will
be there for the lifespan of the vehicle. As the project progresses one has to assess
the correct development process in order to minimize the risk of catastrophic bugs.
Most likely, if no attention is put toward building a security-oriented development
process, security will suffer over the long run.

Tokenization - How to bridge the gap between the external world and the
blockchain?

Let bitcoin be the token that is transacted on the Bitcoin blockchain. The token
bitcoin has no externalities, it lives entirely inside of the blockchain and any value
accrued to it comes from an external valuation. The only externality Bitcoin has is
the miners which, through proof of work, convert physical energy into new blocks.
Putting Bitcoin’s controversial nature aside, it is hard to dispute that the tokens
living inside of the blockchain make total sense. There is no external information
needed for an end-user of Bitcoin to trust that a bitcoin is valid, provided that
they trust the network.
The contrary is true for molecule tokenization. In this case, we move something
from outside of the blockchain onto the blockchain. As far as the blockchain is
concerned, if you can produce the keys for a token, then you are the legitimate
owner. Using a naive implementation where any user of the network can upload
anything, we should expect someone to tokenize a molecule that is legal according
to the blockchain, but where it is obvious for other users that the tokenization
does not make sense. An example of this could be a user uploading a molecule
that is widely known to be a common property e.g. someone uploading the oxy-
gen molecule and claiming full ownership of it. This situation would produce a
divergence of the state of the blockchain and the perceived view of the external
world. This illustrates the fact that some governance mechanism is needed and a
lot of thought has to be put into what it means to tokenize something physical.

Governance and Legal Disputes, Arbiter or Voting Mechanisms

There could be disputes regarding molecules that simpler smart contracts can not
resolve. Some mechanism will be needed to resolve these. These could be resolved
in two ways or using a combination thereof. Either there could be actors in the
network that serve as some sort of arbiter. This could, for example, be legitimated

Conclusions & Future Work 73

lawyers that have access to special smart contracts that overrule certain actions
e.g. unlawful transfer of ownership. Another approach could be to resolve issues
using voting mechanisms where the participants of the network vote on which out-
come they think is most reasonable.
How the network handles disputes is critical to how widely the platform will be
adopted. On one hand, an arbiter is a point of centralization that could be per-
suaded to act unjustly. For example, maybe a judge from one country tends to
favor companies from the same country. On the other hand, if disputes are re-
solved via voting, a set of actors may coordinate their votes to disadvantage other
members. Therefore serious thought has to be put into how disputes are resolved.
The best solution may be a combination of both arbiters and voting, and the best
solution could even depend on the nature of the dispute. This is likely one of the
hardest problems to solve in order to realize an open collaboration on molecules.

How should derived molecules be valued?

A use-case scenario for the proposed solution is for some entity to use an uploaded
molecule to drive research. This begs the question, how should one value molecules
that are derived from other molecules on the blockchain? The owner of the base-
molecule will be well-defined. The same owner could make a case that they are
obliged to part of the reward for the derived molecule. Most likely, the value of the
derived molecule will be hard to define using a simple smart contract, and some
mechanisms will need to be constructed that can solve disputes in this scenario.

Should the code of the platform be open-sourced?

The essence of this project is to enable trust between competing actors. This is
done via using a blockchain where the owner of the private keys legitimately owns
the associated token. Smart contracts are used to drive business logic. The ability
to verify that the smart contracts follow specifications is made easier if the code is
open-source. If the source is closed then the participants would have to trust the
developers of the smart contracts not to cheat them. This could potentially make
it harder to attract users to the platform. On the other hand, it could be important
to protect the source code to prevent other actors from stealing technology. This
decision most likely comes down to monetization and network effects. For example,
if the platform is monetized via selling membership-subscriptions the money is not
made directly from the code itself and could be potentially open-sourced. Also,
if there is a substantial network-effect where a critical amount of users belong
to the network, the probability that someone else could build the same platform
might diminish. In the end, the developers of the platform need to make money in
order to maintain it, so that should drive this decision. However, if it is possible,
open-source code should certainly be considered.

Is a Byazntine Fault-Tolerant Consensus Procotol worth it?

The current implementation of the prototype uses the Raft consensus protocol
for the orderers. As discussed Raft is Crash Fault-Tolerant. This means that
the network survives situations where orderers crash, disconnect or are to slow

74 Conclusions & Future Work

to respond. Since computer crashes and dropped internet connections happen
a crash fault-tolerant protocol should be used. However, if one of the orderers
deviates from the protocol they have the potential to stop the network in its
entirety. As discussed previously Byzantine Fault-Tolerant protocols are used to
mitigate this. The drawback of byzantine fault-tolerant protocols is that they scale
significantly worse than crash fault-tolerant protocols. This begs the question, do
we expect orderers to behave maliciously? If this is the case then a byzantine fault-
tolerant protocol should indeed be used, but this could potentially significantly
limit the number of participants that can maintain orderers in the network. Since
identities are known in the network all ill-behaving actors could face legal action
and banishment from the network, which might be enough to disincentive bad
behavior. This comes down to the nature of the participants and how many that
will want to be full maintainers of orderers.

Bootstrapping the network - Start with Non-commercial Molecules

One approach to realize the full vision presented in this thesis is to start building
the first production version of the prototype only for non-commercial molecules.
Non-commercial molecules, in this case, means molecules where no monetary gain
is expected from the end-user of the platform. This means that larger risks can
be taken on the developers side, meaning that, development can be more rapid
and experimental. This is crucial in order to be able to discover good solutions for
the problems discovered during the thesis. If no-one is expecting to make money
of the molecules, critical errors in the Fabric network will not be as severe. An
example of where these kinds of molecules could be found is in University classes.
If the University and students agree to publish the molecules in the public domain
they stand to gain from helping develop the Fabric network while minimizing the
risk of monetary damage.

How much power should the developers of the platform have?

One issue that has to be discussed further is how much power the developers of
the platform should have. Since the whole purpose of a blockchain technology
is to minimize trust-reliance between participants, the developers can not have
absolute control over the platform. If that would be the case a normal distributed
database would be preferable as it is easier to scale on a technical level. On the
other hand, the developers need some room to make decisions. They need some
way to develop the network, fix bugs and handle ill-behaved actors. Crucially, the
developers also need some way to make money off the platform, as otherwise, they
could not keep maintaining it. This is a hard decision. On one end there is radical
decentralization, e.g. bitcoin, where there exists no clear owner. On the other end,
there exist proprietary systems, where the developers have control the full rights
of the system. The essence of blockchain is to enable trust, meaning that, if one
slides too far into proprietary territory the utility of using blockchain diminishes.

Conclusions & Future Work 75

No static analysis tool for JavaScript chaincode

There also exist chaincode bindings for JavaScript. No static analysis tool for
JavaScript chaincode was identified. This provides an opportunity for someone
to implement it. This could be in the scope of another masters’ thesis or for the
project owners to contribute to the Fabric ecosystem. Yamashita et. al. [49]
implemented a static analysis tool for Golang chaincode. They provide a list
of steps that their tool goes through in order to detect potential errors in their
chaincode. The same procedure could be used to implement a static analysis tool
for JavaScript chaincode.

76 Conclusions & Future Work

References

[1] D. M. Andrews, S. L. Degorce, D. J. Drake, M. Gustafsson, K. M. Higgins,
and J. J. Winter. Compound passport service: supporting corporate collection
owners in open innovation. Drug discovery today, 20(10):1250–1255, 2015.

[2] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al. Hyperledger fabric:
a distributed operating system for permissioned blockchains. In Proceedings
of the Thirteenth EuroSys Conference, page 30. ACM, 2018.

[3] A. M. Antonopoulos and G. Wood. Mastering ethereum: building smart
contracts and dapps. O’Reilly Media, 2018.

[4] Apache. Couchdb homepage. https://couchdb.apache.org/. Accessed:
2020-01-14.

[5] J. D. Atkinson and R. Jones. Intellectual property and its role in the phar-
maceutical industry. Future medicinal chemistry, 1(9):1547–1550, 2009.

[6] B. Beckert, M. Herda, M. Kirsten, and J. Schiffl. Formal specification and
verification of hyperledger fabric chaincode. In Proc. Int. Conf. Formal Eng.
Methods, pages 44–48, 2018.

[7] V. Buterin et al. Ethereum white paper. GitHub repository, pages 22–23,
2013.

[8] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

[9] chainsecurity. Chaincode Scanner. https://chaincode.chainsecurity.
com/. Accessed: 2020-01-14.

[10] Y. Cherdantseva and J. Hilton. A reference model of information assurance
& security. In 2013 International Conference on Availability, Reliability and
Security, pages 546–555. IEEE, 2013.

[11] B. Cohen. Incentives build robustness in bittorrent. In Workshop on Eco-
nomics of Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[12] M. Conti, E. S. Kumar, C. Lal, and S. Ruj. A survey on security and privacy
issues of bitcoin. IEEE Communications Surveys & Tutorials, 20(4):3416–
3452, 2018.

77

https://couchdb.apache.org/
https://chaincode.chainsecurity.com/
https://chaincode.chainsecurity.com/

78 References

[13] A. Egberts. The oracle problem-an analysis of how blockchain oracles un-
dermine the advantages of decentralized ledger systems. Available at SSRN
3382343, 2017.

[14] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Technical report, Massachusetts Inst of
Tech Cambridge lab for Computer Science, 1982.

[15] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. Acm Sigact News, 33(2):51–59,
2002.

[16] Google. Leveldb github. https://github.com/google/leveldb/blob/
master/db/builder.cc. Accessed: 2020-01-14.

[17] Y. Hao, Y. Li, X. Dong, L. Fang, and P. Chen. Performance analysis of
consensus algorithm in private blockchain. In 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 280–285. IEEE, 2018.

[18] S. R. Heller, A. McNaught, I. Pletnev, S. Stein, and D. Tchekhovskoi.
Inchi, the iupac international chemical identifier. Journal of cheminformatics,
7(1):23, 2015.

[19] Hyperledger. Architecture Deep Dive. https://hyperledger-fabric.
readthedocs.io/en/release-1.4/. Accessed: 2020-01-14.

[20] Hyperledger. Github fabric samples. https://github.com/hyperledger/
fabric-samples/tree/release-1.4/. Accessed: 2019-10-13.

[21] Hyperledger. SDK for Golang. https://godoc.org/github.com/
hyperledger/fabric-sdk-go. Accessed: 2020-01-14.

[22] Hyperledger Foundation. Fabric sdk go. https://github.com/
hyperledger/fabric-sdk-go. Accessed: 2020-01-14.

[23] Hyperledger Foundation. Hyperledger - Open Source Blockchain Technolo-
gies. https://www.hyperledger.org/. Accessed: 2020-01-14.

[24] Hyperledger Foundation. Hyperledger caliper. https://www.hyperledger.
org/projects/caliperl. Accessed: 2020-01-14.

[25] Johannes Bauer. Ecc tutorial. https://www.johannes-bauer.com/
compsci/ecc/. Accessed: 2020-01-14.

[26] L. Lamport. Proving the correctness of multiprocess programs. IEEE trans-
actions on software engineering, (2):125–143, 1977.

[27] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–
401, 1982.

[28] S. Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system, 2008.

[29] Q. Nasir, I. A. Qasse, M. Abu Talib, and A. B. Nassif. Performance analysis of
hyperledger fabric platforms. Security and Communication Networks, 2018,
2018.

https://github.com/google/leveldb/blob/master/db/builder.cc
https://github.com/google/leveldb/blob/master/db/builder.cc
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://github.com/hyperledger/fabric-samples/tree/release-1.4/
https://github.com/hyperledger/fabric-samples/tree/release-1.4/
https://godoc.org/github.com/hyperledger/fabric-sdk-go
https://godoc.org/github.com/hyperledger/fabric-sdk-go
https://github.com/hyperledger/fabric-sdk-go
https://github.com/hyperledger/fabric-sdk-go
https://www.hyperledger.org/
https://www.hyperledger.org/projects/caliperl
https://www.hyperledger.org/projects/caliperl
https://www.johannes-bauer.com/compsci/ecc/
https://www.johannes-bauer.com/compsci/ecc/

References 79

[30] T. S. L. Nguyen, G. Jourjon, M. Potop-Butucaru, and K. Thai. Impact of
network delays on hyperledger fabric. arXiv preprint arXiv:1903.08856, 2019.

[31] N. Nilsson. personal communication. MSc, PhD, Head of Open Innovation,
LEO Pharma.

[32] D. Ongaro and J. Ousterhout. In search of an understandable consensus algo-
rithm. In 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC}
14), pages 305–319, 2014.

[33] OpenJS Foundation. Expressjs homepage. https://expressjs.com/. Ac-
cessed: 2020-01-14.

[34] OpenJS Foundation. Nodejs homepage. https://nodejs.org/en/. Accessed:
2020-01-14.

[35] H. Performance and S. W. Group. Hyperledger blockchain performance met-
rics. Technical report, Hyperledger Foundation, 2018.

[36] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss. Security analysis meth-
ods on ethereum smart contract vulnerabilities: a survey. arXiv preprint
arXiv:1908.08605, 2019.

[37] PRV. Patent och registreringsverket. https://www.prv.se/en/. Accessed:
2020-01-14.

[38] S. Rouhani and R. Deters. Security, performance, and applications of smart
contracts: A systematic survey. IEEE Access, 7:50759–50779, 2019.

[39] C. N. Saha and S. Bhattacharya. Intellectual property rights: An overview
and implications in pharmaceutical industry. Journal of advanced pharma-
ceutical technology & research, 2(2):88, 2011.

[40] D. R. Stinson. Cryptography: theory and practice. Chapman and Hall/CRC,
2005.

[41] H. Sukhwani. Performance modeling & analysis of hyperledger fabric (per-
missioned blockchain network). Duke University: Duke, UK, 2018.

[42] Swagger. Swagger homepage. https://swagger.io/. Accessed: 2020-01-14.

[43] N. Szabo. Smart contracts: building blocks for digital markets. EXTROPY:
The Journal of Transhumanist Thought,(16), 18:2, 1996.

[44] N. Szabo. Bit gold. Website/Blog, 2008.

[45] A. S. Tanenbaum and M. Van Steen. Distributed systems: principles and
paradigms. Prentice-Hall, 2007.

[46] P. Thakkar, S. Nathan, and B. Viswanathan. Performance benchmarking
and optimizing hyperledger fabric blockchain platform. In 2018 IEEE 26th
International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 264–276. IEEE, 2018.

[47] M. Toorani. Security protocols in a nutshell. arXiv preprint arXiv:1605.09771,
2016.

https://expressjs.com/
https://nodejs.org/en/
https://www.prv.se/en/
https://swagger.io/

80 References

[48] U.S Environmental Protection Agency. Smiles tutorial. https://archive.
epa.gov/med/med_archive_03/web/html/smiles.html. Accessed: 2020-01-
14.

[49] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun. Potential risks of
hyperledger fabric smart contracts. In 2019 IEEE International Workshop
on Blockchain Oriented Software Engineering (IWBOSE), pages 1–10. IEEE,
2019.

https://archive.epa.gov/med/med_archive_03/web/html/smiles.html
https://archive.epa.gov/med/med_archive_03/web/html/smiles.html

Appendix A
Chaincode

A.1 Source Code

/∗
2 ∗ SPDX−License−I d e n t i f i e r : Apache−2.0

∗/
4

package main
6

import (
8 " bytes "

" encoding / j son "
10 "fmt"

12 " github . com/ hyper l edger / f a b r i c / core / chaincode /shim"
sc " github . com/ hyper l edger / f a b r i c / protos / peer "

14)

16 var l ogge r = shim . NewLogger (" chaincode−l o gg e r ")

18 // Chaincode i s the d e f i n i t i o n o f the chaincode s t ru c tu r e .
type Chaincode s t r u c t {

20 }

22 /∗
Type De f i n i t i o n s

24 ∗/

26 type User s t r u c t {
ID s t r i n g ‘ j son : " id " ‘

28 Name s t r i n g ‘ j son : "name" ‘
}

30
type Molecule s t r u c t {

32 ObjectType s t r i n g ‘ j son : "docType" ‘
Vers ion i n t ‘ j son : " ve r s i on " ‘

34 Index s t r i n g ‘ j son : " index " ‘
Name s t r i n g ‘ j son : "name" ‘

36 Synonymes [] s t r i n g ‘ j son : "synonymes" ‘
Submitter s t r i n g ‘ j son : " submitter " ‘

38 Timestamp s t r i n g ‘ j son : " timestamp" ‘
Owner s t r i n g ‘ j son : "owner" ‘

40 Value i n t ‘ j son : " value " ‘
SalesPr iceIPR in t ‘ j son : " sa l e sPr i ce IPR " ‘

42 Bids i n t ‘ j son : " bid " ‘
B i o l og i c a lTa rg e t s t r i n g ‘ j son : " b i o l o g i c a lTa r g e t " ‘

44 Structure s t r i n g ‘ j son : " s t ru c tu r e " ‘
Data [] s t r i n g ‘ j son : "data" ‘

46 MotherMolecule s t r i n g ‘ j son : "motherMolecule " ‘
Phys i ca lStorage s t r i n g ‘ j son : " phys i ca lS to rage " ‘

48 Contact s t r i n g ‘ j son : " contact " ‘
AssetType s t r i n g ‘ j son : " assetType " ‘

50 }

52 type AssetType in t

54 const (
Con f iden t i a lAs s e t AssetType = io t a

81

82 Chaincode

56 NewAsset
NewPublicAsset

58 KnownAsset
KnownPublicAsset

60)

62 /∗
Chaincode

64 ∗/

66 // I n i t i s c a l l e d when the chaincode i s i n s t an t i a t e d by the b lockcha in network .
func (cc ∗Chaincode) I n i t (stub shim . ChaincodeStubInter face) sc . Response {

68 fcn , params := stub . GetFunctionAndParameters ()
fmt . Pr in t ln (" I n i t () " , fcn , params)

70 return shim . Success (n i l)
}

72
// Invoke i s c a l l e d as a r e s u l t o f an app l i c a t i on reques t to run the chaincode .

74 func (cc ∗Chaincode) Invoke (stub shim . ChaincodeStubInter face) sc . Response {
fcn , params := stub . GetFunctionAndParameters ()

76
switch fcn {

78 case "TransferOwnership " :
re turn cc . TransferOwnership (stub , params)

80 case "GetHistoryForAsset " :
re turn cc . GetHistoryForAsset (stub , params)

82 case "UploadMolecule " :
re turn cc . UploadMolecule (stub , params)

84 case "CreateUser " :
re turn cc . CreateUser (stub , params)

86 case "UpdateUser" :
re turn cc . UpdateUser (stub , params)

88 case "QueryMolecules " :
re turn cc . QueryMolecules (stub , params)

90 de f au l t :
r e turn shim . Error ("No match in func t i on name")

92 }
}

94
func (cc ∗Chaincode) CreateUser (stub shim . ChaincodeStubInter face , args [] s t r i n g)

sc . Response {
96 id := args [0]

name := args [1]
98

use rEx i s t s , e r r := stub . GetState (id)
100 i f e r r != n i l {

re turn shim . Error (" Fa i l ed to v e r i f y i f user a l ready e x i s t s ")
102 }

i f u s e rEx i s t s != n i l {
104 return shim . Error ("User a l ready e x i s t s ")

}
106

newUser := User{
108 ID : id ,

Name : name ,
110 }

l ogge r . I n f o f (fmt . Sp r i n t f ("New User : %+v" , newUser))
112

newUserAsJSONBytes , e r r := j son . Marshal (newUser)
114 i f e r r != n i l {

re turn shim . Error (" Fa i l ed to marshal l new user to bytes ")
116 }

118 e r r = stub . PutState (id , newUserAsJSONBytes)
i f e r r != n i l {

120 return shim . Error (" Fa i l ed to update s t a t e f o r new user ")
}

122 return shim . Success ([] byte ("New user was created "))
}

124
func (cc ∗Chaincode) UpdateUser (stub shim . ChaincodeStubInter face , args [] s t r i n g)

sc . Response {
126 id := args [0]

name := args [1]
128

userAsBytes , e r r := stub . GetState (id)
130 i f e r r != n i l {

re turn shim . Error (" Fa i l ed to r e t r i e v e o ld user ")
132 }

i f userAsBytes == n i l {

Chaincode 83

134 return shim . Error ("User does not e x i s t ")
}

136
user := &User {}

138 e r r = json . Unmarshal (userAsBytes , user)
i f e r r != n i l {

140 return shim . Error (" Fa i l ed to unmarshal l user ")
}

142
user .Name = name

144
userAsJSONBytes , e r r := j son . Marshal (user)

146 i f e r r != n i l {
re turn shim . Error (" Fa i l ed to Marhsal user as Json bytes ")

148 }

150 e r r = stub . PutState (id , userAsJSONBytes)
i f e r r != n i l {

152 return shim . Error (" Fa i l ed to update s t a t e f o r user ")
}

154 return shim . Success (userAsJSONBytes)
}

156
func (cc ∗Chaincode) QueryMolecules (stub shim . ChaincodeStubInter face , args []

s t r i n g) sc . Response {
158 i f l en (args) < 1 {

return shim . Error (" I n c o r r e c t number o f arguments . Expecting 1")
160 }

162 queryStr ing := args [0]

164 r e s u l t s I t e r a t o r , e r r := stub . GetQueryResult (queryStr ing)
de f e r r e s u l t s I t e r a t o r . Close ()

166 i f e r r != n i l {
re turn shim . Error (e r r . Error ())

168 }

170 // bu f f e r i s a JSON array conta in ing QueryRecords
var bu f f e r bytes . Buf f e r

172 bu f f e r . WriteStr ing (" [")
bArrayMemberAlreadyWritten := f a l s e

174 f o r r e s u l t s I t e r a t o r . HasNext () {
queryResponse ,

176 e r r := r e s u l t s I t e r a t o r . Next ()
i f e r r != n i l {

178 return shim . Error (e r r . Error ())
}

180 // Add a comma be fo r e array members , suppress i t f o r the f i r s t array member
i f bArrayMemberAlreadyWritten == true {

182 bu f f e r . WriteStr ing (" , ")
}

184 bu f f e r . WriteStr ing ("{\"Key\" : ")
bu f f e r . WriteStr ing ("\"")

186 bu f f e r . WriteStr ing (queryResponse . Key)
bu f f e r . WriteStr ing ("\"")

188 bu f f e r . WriteStr ing (" , \"Record\" : ")
// Record i s a JSON object , so we wr i t e as−i s

190 bu f f e r . WriteStr ing (s t r i n g (queryResponse . Value))
bu f f e r . WriteStr ing ("}")

192 bArrayMemberAlreadyWritten = true
}

194 bu f f e r . WriteStr ing ("] ")
fmt . P r i n t f ("− getQueryResultForQueryString queryResult : \ n%s\n" , bu f f e r . S t r ing

())
196

return shim . Success (bu f f e r . Bytes ())
198 }

200 func (cc ∗Chaincode) TransferOwnership (stub shim . ChaincodeStubInter face , args []
s t r i n g) sc . Response {

//@TODO: make sure stub . GetCreator i s equal to cur rent owner
202 index := args [0]

newOwnerID := args [1]
204

assetAsBytes , e r r := stub . GetState (index)
206 i f e r r != n i l {

re turn shim . Error ("Error in r e t r i e v i n g a s s e t ")
208 }

i f assetAsBytes == n i l {
210 return shim . Error ("Asset does not e x i s t ")

84 Chaincode

}
212

newOwnerAsbytes , e r r := stub . GetState (newOwnerID)
214 i f e r r != n i l {

re turn shim . Error (" Fa i l ed to r e t r i e v e new owner")
216 }

i f newOwnerAsbytes == n i l {
218 return shim . Error ("User does not e x i s t ")

}
220

a s s e t := Molecule {}
222 e r r = json . Unmarshal (assetAsBytes , &a s s e t)

i f e r r != n i l {
224 return shim . Error (" Fa i l ed to unmarshal assetAsBytes " + e r r . Error ())

}
226

newOwner := User {}
228 e r r = json . Unmarshal (newOwnerAsbytes , &newOwner)

i f e r r != n i l {
230 return shim . Error (" Fa i l ed to unmarshal newOwnerAsBytes")

}
232

l ogge r . I n f o f (fmt . Sp r i n t f ("New Owner : %+v" , newOwner))
234

a s s e t . Owner = newOwner . ID
236

assetAsJSONBytes , e r r := j son . Marshal (a s s e t)
238 i f e r r != n i l {

re turn shim . Error (" f a i l e d to marshal a s s e t as bytes ")
240 }

242 e r r = stub . PutState (index , assetAsJSONBytes)
i f e r r != n i l {

244 return shim . Error (" Fa i l ed to update a s s e t s t a t e ")
}

246 return shim . Success (assetAsJSONBytes)
}

248
func (cc ∗Chaincode) GetHistoryForAsset (stub shim . ChaincodeStubInter face , args

[] s t r i n g) sc . Response {
250 key := args [0]

252 h i s to ry , e r r := stub . GetHistoryForKey (key)
de f e r h i s t o r y . Close ()

254
i f e r r != n i l {

256 return shim . Error (" Fa i l ed to r e t r i e v e History f o r key")
}

258
var r e s u l t [] byte

260 f o r h i s t o r y . HasNext () {
modi f i cat ion , e r r := h i s t o r y . Next ()

262 i f e r r != n i l {
re turn shim . Error (" e r r o r in i t e r o f h i s t o r y ")

264 }
r e s u l t = append (r e su l t , mod i f i c a t i on . Value . . .)

266 }
return shim . Success (r e s u l t)

268 }

270 func (cc ∗Chaincode) UploadMolecule (stub shim . ChaincodeStubInter face , args []
s t r i n g) sc . Response {

//@TODO: make sure that index does not a l ready e x i s t !
272 argumentMap := args [0]

274 l ogge r . I n f o f ("Argument Map: " + argumentMap)

276 newAsset := Molecule {}

278 e r r := j son . Unmarshal ([] byte (argumentMap) , &newAsset)
i f e r r != n i l {

280 l ogge r . Er ro r f (e r r . Error ())
re turn shim . Error (" Fa i l ed to unmarshal l bytes : " + e r r . Error ())

282 }

284 newAssetAsJSONBytes , e r r := j son . Marshal (newAsset)
i f e r r != n i l {

286 l ogge r . Er ro r f (e r r . Error ())
re turn shim . Error (" Fa i l ed to marshal l bytes : " + e r r . Error ())

288 }

Chaincode 85

290 e r r = stub . PutState (newAsset . Index , newAssetAsJSONBytes)
i f e r r != n i l {

292 l ogge r . Er ro r f (e r r . Error ())
re turn shim . Error (" Fa i l ed to put s t a t e f o r new a s s e t : " + e r r . Error ())

294 }
return shim . Success (newAssetAsJSONBytes)

296 }

Listing A.1: The chaincode

	Introduction
	History of Decentralized Computing
	The Pharmaceutical Industry
	Problem Statement
	Contributions
	Outline

	Theoretical Background
	Tokenization
	Intellectual Property
	Decentralized vs. Distributed
	CAP-Theorem
	Hyperledger Caliper
	Consensus
	Crash Fault-Tolerant Consensus Protocols
	Byzantine Generals' Problem
	Blockchain Datastructure
	Bitcoin
	Cryptography
	Digital Certificates
	Chemical Identifiers

	Hyperledger Fabric
	Overview
	State modeling
	Peer Gossip
	Orderers
	Transactions
	Chaincode
	Endorsement Policies
	Identification
	TLS communication

	Problem Analysis and Modelling
	Patents and Trade Secrets in Industry
	High-Level Solution to the problems
	Modelling
	Entities and Assets
	Data format
	Operations
	Use cases

	Implementation
	Entities
	Data Format Implementation
	Interacting with the application

	Security Analysis
	Information Taxonomy
	Security Goals
	Chaincode Security
	Security Attacks

	Performance Analysis
	Previous Work
	Discussion of Results
	Conclusions on Evaluation Results

	Conclusions & Future Work
	Future Work

	References
	Chaincode
	Source Code

