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Abstract

Multigrid algorithms are algorithms used to find numerical solutions to differen-
tial equations using a hierarchy of grids of different coarseness. This exploits the
fact that short-wavelength components of the solutions converges at a faster rate
than the long-wavelength components when using some basic iterative methods,
such as the Jacobi method or the Gauss-Seidel method. These iterative methods
are also called smoothers since they have the effect of smoothing out the errors.

In this thesis, two classes of smoothers based on time integration methods
are studied using the one dimensional linear advection equation as model prob-
lem. The first class is a class based on explicit Runge-Kutta methods, and the
other class is derived from considering implicit Runge-Kutta methods. For both
classes it is possible to derive a matrix M, dependent on the coefficient func-
tion in the linear advection problem and the parameters of the smoother, which
describes the evolution of the error. To optimize the smoothers parameters are
chosen so that the eigenvalues of M are optimized.

If the coefficient function is constant it is possible to derive a closed form
expression for the eigenvalues of the resulting matrix M. However, in the vari-
able coefficient case it is not possible, and for large matrices it is impractical
to compute the eigenvalues using iterative methods. Therefore, the theory of
Generalized Locally Toeplitz (GLT) sequences is used to instead approximate
the distribution of the eigenvalues. This results in an approximate optimiza-
tion problem. The results show that this is an effective method for obtaining
parameters for the smoothers in the variable coefficient case.

Populärvetenskaplig sammanfattning

Många fysiska problem, s̊a som väderprognoser, luftflöden runt en flygplansvinge
och vattenv̊agor, kan modelleras av differentialekvationer. Dessa kan inte alltid
lösas analytiskt, men idag är v̊ara datorer kraftfulla nog att lösa m̊anga av
dessa modeller numeriskt, dvs. genom att diskretisera problemet och approx-
imera lösningen p̊a ett rutnät. Lösningarna för modellerna kan beskrivas som
summor av v̊agor med l̊anga och korta v̊aglängder. När man använder simpla it-
erativa lösare, ocks̊a kallade för smoothers, s̊a konvergerar de korta v̊aglängderna
fortare än de l̊anga. Problemet med dessa lösare är just den l̊angsamma konver-
gensen av de l̊anga v̊aglängderna. Dessa konvergerar snabbare om man använder
grövre nät. I multigrid-algoritmer använder man sig därför av flera rutnät av
olika täthet för att f̊a snabb konvergens av b̊ade korta och l̊anga v̊aglängder
av lösningen. Syftet med det här arbetet är att studera hur parametrar kan
väljas för tv̊a andra typer av smoothers med hjälp av n̊agot kallat GLT-teori
(Generalized Locally Toeplitz theory).
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Chapter 1

Introduction

To find the numerical solution of unsteady flow problems one can use a multi-
grid strategy. When using basic iterative methods to solve these problems,
such as the Jacobi method or the Gauss-Seidel method, the short-wavelength
components of the solutions converge faster than the long-wavelength compo-
nents. Since this has the effect of smoothing out the error, these methods are
called smoothers. The bottleneck of these methods is the slow convergence of
the long-wavelength components. To circumvent this problem, multigrid algo-
rithms uses several grids of different coarseness to speed up the convergence of
the long-wavelength components.

These methods were shown by Caughey and Jameson [1] to be able to solve
steady Euler flows in three to five multigrid cycles, which can be executed
in a matter of seconds on a PC. However, with the multigrid strategy tuned
for steady flow problems, the convergence rate for unsteady flow problems is
deteriorated.

In [2], Birken showed that the convergence rate could be improved by opti-
mizing the smoother of the multigrid method to unsteady flow problems. For
this Birken used a class of smoothers based on explicit Runge-Kutta (RK)
schemes, referred to as RK smoothers, which have low storage costs and scale
well in parallel. It is possible to derive a matrix M created from the stability
polynomial of the Runge-Kutta scheme which describes how the error evolves
with each smoothing step. The RK smoothers are optimized by choosing pa-
rameters for the RK scheme such that the eigenvalues of M (corresponding to
the short-wavelength components) are minimized. Thus, the optimization of
these smoothers requires knowledge about the eigenvalues of M.

The constant coefficient linear advection equation, considered in [2], results
in a matrix M for which an explicit expression for the eigenvalues can be deter-
mined analytically. However, this is not possible in the variable coefficient case,
and if very fine grids are considered in the discretization of the problem, it is
impractical to solve for the eigenvalues iteratively, since the matrices are large.
Therefore, Bertaccini et al. proposed using the theory of Generalized Locally
Toeplitz (GLT) matrix sequences [3] to instead approximate the distribution of
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8 CHAPTER 1. INTRODUCTION

the eigenvalues and thus generalizing the strategy to variable coefficient convec-
tion–diffusion equations [4].

GLT matrix sequences are built up by combining Locally Toeplitz sequences
which in turn are generalizations of Toeplitz matrix sequences. A GLT sequence
is described by a function, called the symbol of the GLT sequence. This symbol
describes the asymptotic singular value distribution of the matrix sequence.
With some additional assumptions on the matrices in the sequence, the symbol
also describes the asymptotic eigenvalue distribution of the sequence.

The optimization of two different classes of smoothers is studied, using the
GLT theory, with the one dimensional variable coefficient linear advection equa-
tion as model problem. The first one is the class of explicit Runge-Kutta
smoothers as mentioned above, and the other one is a class of W-smoothers
(the convective part of the additive W-methods in [5]) which is a smoother de-
veloped from considering implicit Runge-Kutta schemes. There is no unique
set of optimal parameters for these smoothers that work for all problems [2], so
improving the method of solving for the parameters plays a role in the efficiency
of these smoothers.

In chapter 2 the model problem and the discretization of the problem is
described in detail. The discretization of the model problem results in a linear
system of the form Au = b. Chapter 3 explains how to solve this system using
multigrid methods. The RK smoothers are described in chapter 4 as well as how
to optimize them in the constant coefficient case. In chapter 5 the GLT theory
is explained. Here, the eigenvalue distribution of matrices of different sizes from
the same GLT sequence are compared to the symbol of the matrix sequence
to see how well the symbol approximates the distribution of the eigenvalues of
the matrices. Different coefficient functions result in different GLT sequences
and symbols. Therefore, this is done for some different coefficient functions.
The GLT theory is used to set up an approximate optimization problem for the
parameters of the RK smoothers in the variable coefficient case in chapter 6.
Here, a method for creating a lookup table for the parameters of the smoothers
is also proposed. Chapter 7 introduces the W-smoothers, and describes how to
optimize these smoothers, both in the constant coefficient case and the variable
coefficient case. Numerical results are given with some discussion in chapter 8.
Finally, some conclusions are given in chapter 9.



Chapter 2

Model problem and
discretization

The model problem used in this thesis is the one dimensional linear advection
equation with periodic boundary conditions, i.e.

ut(x, t) + (a(x)u(x, t))x = 0, a(x) > 0, a(x) ∈ R ∀ x ∈ [xmin, xmax], (2.1)

u(x = xmin, t) = u(x = xmax, t), (2.2)

which describes the bulk motion of a wave, and can be solved given an initial
value

u(x, t = 0) = u0. (2.3)

In the above equation, the subscripts t and x refers to partial derivatives with
respect to the time variable t and spatial variable x.

2.1 Constant coefficient advection equation

Here, the boundaries of x are set to xmin = 0 and xmax = 1 for simplicity, as
this can be done without loss of generality. To solve (2.1) numerically, the grid
is discretized using n + 1 equidistant grid points creating n grid cells of width
∆x = 1/n (Figure 2.1). Here the grid points xi+1/2 are defined as xi+1/2 = i∆x,
where half integers are used so that grid cell i ranges from xi−1/2 to xi+1/2. The
boundary grid points corresponding to 0 and 1 are thus x1/2 = 0 and xn+1/2 = 1.

Figure 2.1: Discretization of the grid.
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10 CHAPTER 2. MODEL PROBLEM AND DISCRETIZATION

First, the case where a(x) ≡ a is constant is considered. To get a finite
volume scheme, the advection equation (2.1) is integrated over each grid cell:

0 =

∫ xi+1/2

xi−1/2

ut(x, t)dx+

∫ xi+1/2

xi−1/2

(au(x, t))xdx

=

∫ xi+1/2

xi−1/2

ut(x, t)dx+ a(u(xi+1/2, t)− u(xi−1/2, t))⇔

0 = (ui(t))t +
a

∆x
(u(xi+1/2, t)− u(xi−1/2, t)), i = 1, 2, ..., n,

(2.4)

where ui is the cell average of cell i, i.e. ui(t) := 1
∆x

∫ xi+1/2

xi−1/2
u(x, t)dx, i = 1, ..., n.

Let the solution vector be given by u = (u1, u2, ..., un)T = (u1(t), u2(t), ..., un(t))T ,
which represents a step function (Figure 2.2).

Figure 2.2: Part of the solution vector u = (u1, u2, ..., un)T . The value of
u(xi+1/2) is chosen to be represented by the value of the step function on the
left side, i.e. ui.

To represent u(xi+1/2) and u(xi−1/2) in terms of the values of this step
function, one must choose to either use the value of the step function on the left
or right side of the grid point. Using an upwind scheme, the function evaluations
are weighted towards the side where the information is coming from. Since
a > 0, the wave is travelling in the positive x-direction. Therefore, the left
value is chosen. This leads to the system of ODEs

(ui)t +
a

∆x
(ui − ui−1) = 0, i = 1, 2, ..., n, (2.5)

which is an approximation of (2.4). Here u0 := un because of the periodic
boundary conditions. This system of ODEs can be written in matrix form

ut +
a

∆x
B̃nu = 0, (2.6)
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where B̃n is an n× n matrix given by

B̃n =


1 −1
−1 1

−1 1
. . .

. . .

−1 1

 , (2.7)

and u = (u1, u2, ..., un)T as defined above. Let superscripts denote the current
time step. To get the fully discretized form of the linear advection equation,
(2.6) is discretized in time using an implicit Euler step of size ∆t. This leads to
the linear system

uk+1 = uk + ∆tuk+1
t

= uk − a∆t

∆x
B̃nuk+1 ⇔(

In +
a∆t

∆x
B̃n

)
uk+1 = uk ⇔

Ãnuk+1 = uk,

(2.8)

where

Ãn := In +
a∆t

∆x
B̃n. (2.9)

Here In denotes the n× n unit matrix.

2.2 Variable coefficient advection equation

If a is not assumed to be constant (still with a(x) > 0 ∀ x), the finite volume
upwind scheme for (2.1) becomes

(u1)t +
1

∆x
(a1+1/2u1 − an+1/2un) = 0

(ui)t +
1

∆x
(ai+1/2ui − ai−1/2ui−1) = 0, i = 2, ..., n,

(2.10)

where ai+1/2 := a(xi+1/2), and the corresponding matrix form is given by

ut +
1

∆x
Bnu = 0, (2.11)

where

Bn =


a3/2 0 . . . −an+1/2

−a3/2 a5/2

−a5/2 a7/2

. . .
. . .

−an−1/2 an+1/2

 . (2.12)
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As in the constant coefficient case, (2.11) is discretized in time with implicit
Euler and time step ∆t, which leads to the fully discretized form

uk+1 = uk + ∆tuk+1
t

= uk − ∆t

∆x
Bnuk+1 ⇔

Anuk+1 = uk,

(2.13)

where

An = In +
∆t

∆x
Bn. (2.14)

Note that for a constant a, the matrix Bn is simply aB̃n, which results in
An = Ãn as above.



Chapter 3

Multigrid methods

To solve the linear system (2.13) for the next step uk+1, one can use multigrid
methods [6, 7]. The aim of this section is to explain what multigrid methods
are and why they are used.

3.1 Iterative methods

At each time step, a linear system of the form

Au = b (3.1)

has to be solved for u where u = uk+1, and b = uk is known from the previous
time step. The subscript of A = An describing the size of the matrix has
been removed to simplify the derivations. Here the focus will be on solving this
system using iterative methods. Let u denote the exact solution of (3.1) and
let x denote the current approximation of u. The error is then defined as

e = u− x. (3.2)

For the constant coefficient case (2.9), the eigenvectors of A = Ã are given by

the Fourier modes ṽj = (ṽj,1, ..., ṽj,n)T with ṽj,l = eij 2πl
n . The error can be

described in terms of these Fourier modes

e =

n/2∑
j=−n/2+1

cjṽj , (3.3)

and it can be shown that, when A represents the discretization of a differential
equation, iterating toward u using a simple method such as the Jacobi method
or the Gauss-Seidel method, the error components with high frequencies (cjṽj
where |j| is high) are damped considerably faster than components with low
frequencies (cjṽj where |j| is low) [6, 7].

13



14 CHAPTER 3. MULTIGRID METHODS

Since |j| ∈ [0, n/2], let high frequency components of the error be defined
as the components cjṽj with |j| ≥ n/4 and let low frequency components of
the error be defined as the components with |j| < n/4, so that (approximately)
half the components are defined as high frequency components and (approxi-
mately) half are defined as low frequency components. One way to see that it is
reasonable that the high frequency components are damped faster, in both the
constant coefficient and the variable coefficient case, is through equations (2.5)
and (2.10). High frequency error components corresponds to short distance er-
rors (short wavelengths) and the low frequency error components correspond to
long distance errors (long wavelengths). At each step of the iteration, the time
derivative (ui)t of a cell is only affected by the values of the neighbouring cells.
Thus, it takes fewer iterations for the information to travel between cells with
just a few cells between them and correct the local errors, than between cells
with a large number of cells between them and correct the global error.

Since the high frequency components of the errors are eliminated faster than
low frequency components, this has the effect of smoothing out the error. These
iterative solvers are therefore also referred to as smoothers.

3.2 Coarse grid correction

The main idea behind multigrid algorithms is to speed up the convergence of
the low frequency error components by the use of coarser grids, i.e. grids with
less nodes, where the information travels farther with each step of the iteration.
Some of the low frequency components of the error on the fine grid become high
frequency components on the coarse grid.

Multiplying (3.2) with A from the left results in the residual equation

Ae = Au−Ax = b−Ax⇔
Ae = r,

(3.4)

showing that the error satisfies the same equation as u but with the residual
r := b − Ax on the right hand side instead of b. If the error was known
exactly, then the solution of Au = b could be determined exactly since u =
x + e. One method for improving the approximation x is thus to get a good
approximation ē of the error e through the residual equation, and then updating
the approximation x by

x← x + ē. (3.5)

To speed up the convergence of the low frequency error components, instead of
iterating on the fine grid, the residual is transferred to the coarse grid (explained
in the next subsection) where the approximation of the error is computed. The
error is then transferred back to the fine grid and x is updated using (3.5).

3.2.1 Restriction and prolongation

Let h = ∆x denote the cell width for the original grid and create a coarser grid
by removing every other grid point from the fine grid so that the coarse grid
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has half as many grid cells and the cell width 2h. To distinguish between the
two grids, let the superscript of a matrix or vector denote the cell width of the
grid on which it is evaluated. The vectors are transferred between the grids
using the n

2 × n restriction matrix R (from fine to coarse grid) and the n × n
2

prolongation matrix P (from coarse to fine grid) defined by

R =
1

2


1 1

1 1
. . .

. . .

1 1

 , (3.6)

and

P = 2RT =



1
1

1
1

. . .

. . .

1
1


. (3.7)

The vector xh is thus transferred from the fine grid to the coarse grid by

x2h = Rxh,

which corresponds to joining two adjacent cells by taking their average, and the
vector x2h is transferred from the coarse grid to the fine grid by

xh = Px2h,

which corresponds to splitting one cell into two by duplicating the value of the
cell. These transfer operations conserves the integral of the corresponding step
functions over the spatial domain.

3.3 Two-grid algorithm

A multigrid method with two grids or levels, one fine grid (the top level) and
one coarse grid (bottom level), could be implemented as follows:

1. Choose an initial guess xh.

2. Presmoothing: Perform a number of smoothing steps on xh.

3. Calculate the residual rh = bh −Ahxh.

4. Coarse grid correction:
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(a) Restrict the residual to the coarse grid: rh → r2h = Rrh.

(b) Restrict the matrix Ah to the coarse grid: Ah → A2h.

(c) Solve for the error e2h on the coarse grid through the residual equa-
tion A2he2h = r2h.

(d) Prolong the error back to the fine grid: e2h → eh = Pe2h.

(e) Update xh through xh ← xh + eh
5. Postsmoothing: Perform a number of smoothing steps on xh.

Here, the matrix A2h is defined as the advection equation discretized on the
coarse grid with ∆x = 2h.

3.4 V-cycle

To approximate the error e2h in step 4c one can use the same iterative method
used for the smoothing in the presmoothing and postsmoothing steps. A good
initial guess for the error is ē2h,(0) = 02h, since performing one smoothing step
on x in Ax = b with initial guess xl is equivalent to performing one smoothing

step on the error el in Ael = rl with the specific initial guess ē
(0)
l = 0 and

updating xl using (3.5) [6].
To show this for a linear method where A = N −NM and the next step

xl+1 is given by
xl+1 = Mxl + N−1b (3.8)

(which is the case for methods such as the Jacobi method and the Gauss-Seidel

method), let ē
(1)
l denote the approximation of the error e after one smoothing

step on ē
(0)
l = 0, i.e. ē

(1)
l = Mē

(0)
l + N−1rl = N−1rl. Then the next step

xl+1 when instead performing the smoothing step on the error and updating
according to (3.5) is

xl+1 = xl + ē
(1)
l

= xl + N−1rl

= xl + N−1(b−Axl)

= xl −N−1Axl + N−1b

= (I−N−1A)xl + N−1b

= Mxl + N−1b

, (3.9)

which is the same as (3.8), proving that the two methods of updating xl are
equivalent.

Using recursion, it is possible to speed up the convergence of the low fre-
quencies of the error on the coarse grid by moving to even coarser grids with
mesh widths 4h, 8h, ... and so on until the grid is coarse enough, i.e. A is small
enough that Ae = r can be solved quickly with a direct method. This results
in the following multigrid algorithm called a V-cycle.
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Algorithm 1: v cycle(x, A, b, ν1, ν2, level)

Result: Improved approximation of x.
if level > 0 then

Presmoothing: x = smoother(x, A, b), ν1 times
Calculate residual: r = b−Ax
Restrict residual: rrest = restrict(r)
Restrict matrix: Arest = restrict matrix(A)
Initiate e on the coarse grid: e = 0
Compute approximation of e recursively:

e = v cycle(e, Arest, rrest, ν1, ν2, level − 1)
Prolong and update: x = x + prolong(e)
Postsmoothing: x = smoother(x, A, b), ν2 times

else
Solve directly for x in Ax = b

Again, the matrices A4h,A8h, ... on the coarser grids are created by discretiz-
ing the problem on those grids. For effective use of algorithm 1 it is assumed
that the coarsest grid has few enough grid points, i.e. that A is small enough,
that Ax = b can be solved quickly with a direct method. If this is not the case,
the bottom level of the V-cycle could instead consist of a number of smoothing
steps.

3.5 Storage and computational cost

The amount of storage needed on the finest grid scales linearly with the grid
size. Assume that the finest grid requires N bytes of storage. Each subsequent
grid requires half as much storage as the previous one, so if M grids are used,
the total storage cost is given by

N

(
1 +

1

2
+

1

22
+ ...+

1

2M−1

)
. (3.10)

This is a geometric sum with the upper bound

N

1− 1
2

= 2N. (3.11)

The computational cost of the multigrid algorithm is commonly measured in
work units (WU) [6, 7]. 1 WU is defined as the cost of performing one smooth-
ing step on the finest grid. The cost of intergrid transfer operations typically
amounts to 10-20% of the cost of an entire cycle, and is usually neglected. If
ν1 is the number of presmoothing steps and ν2 is the number of postsmoothing
steps, then the computational cost of the finest grid is (ν1+ν2)WU. Each subse-
quent grid requires half as much computational work as the previous, resulting
in a geometric sum with the upper bound

(ν1 + ν2)WU

1− 1
2

= 2(ν1 + ν2)WU (3.12)
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Thus, the cost of storage and computation for a V-cycle is less than twice
the cost of storage and computation of the finest grid alone regardless of the
number of grids used. These computations were made for the one dimensional
case (since the model problem used here is the one dimensional linear advection
equation). For more dimensions, the bounds are even better [6]. For example,
the factor 2 in (3.11) and (3.12) become 4/3 for two dimensions and 8/7 for
three dimensions.



Chapter 4

Explicit Runge-Kutta
smoothers

Now, except for the number of smoothing steps and the number of grids, the
only thing left to define is what smoother to use, which is the main subject of
this thesis. One class of smoothers studied in this thesis is a class of explicit
Runge-Kutta methods (RK methods) following [2, 4].

4.1 Pseudo time stepping

Consider the initial value problem given by

xt∗ = f(x),

x0 = x(t∗0).
(4.1)

The time t∗ is written here with a star as superscript to show that this is a
pseudo time introduced only for iterating towards the solution of Au = b. To
use this to find the solution of Au = b, let f(x) = b −Ax. If xt∗ = f(x) → 0
as t∗ → ∞, then Ax → b as t∗ → ∞. This is the case if the real part of the
eigenvalues of A are positive [8], which they are for the matrices here. This
can be proven using the Gershgorin Circle Theorem [9], which states that each
eigenvalue of a complex square matrix M with elements mij are located in at
least one of the Gershgorin disks

Di := {z : |z −mii| ≤
∑
j 6=i

|mij |}. (4.2)

Lemma 1. The real part of the eigenvalues of the matrices A = An defined in
(2.14) are positive.

Proof. First of all, with B := Bn from (2.12), Let λB,j be an eigenvalue of B

19
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and let vj be the corresponding eigenvector. Then

A = I +
∆t

∆x
B⇔

Avj =

(
I +

∆t

∆x
B

)
vj

=

(
1 +

∆t

∆x
λB,j

)
vj ,

(4.3)

and thus, the eigenvalues λA,j of A are given by

λA,j = 1 +
∆t

∆x
λB,j j = 1, 2, ..., n. (4.4)

Now, by looking at the Gershgorin disks of BT (with B := Bn from (2.12))
one can deduce that the real part of the eigenvalues of BT , and therefore also
of B (since B and BT have the same characteristic polynomial

det(BT − λI) = det(BT − λIT ) = det([B− λI]T ) = det(B− λI), (4.5)

they have the same set of eigenvalues), are non-negative: since the radii of the
disks | − ai+1/2| = ai+1/2 have the same value as the the centers of the disks on
the real axis, all disks are located in the right complex half-plane and intersect
the imaginary axis at the origin. In particular, all eigenvalues of B are located
on or inside the circle with radius amax := maxx a(x) > 0 and centered at amax
since all other Gershgorin disks are inside this circle (Figure 4.1). Therefore,
since ∆t/∆x > 0, it follows from (4.4) that the real part of the eigenvalues of
A are positive.

Figure 4.1: The circle of radius amax := maxx a(x) centered at amax.
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The solution of (4.1) can be approximated with the explicit s-stage RK
scheme given by

x
(0)
l = xl

x
(j)
l = xl + αj∆t

∗f(x
(j−1)
l ), j = 1, ..., s− 1

xl+1 = xl + ∆t∗f(x
(s−1)
l )

(4.6)

where ∆t∗ ∈ R and αj ∈ [0, 1] ∀ j.
One iteration of the RK smoother consists of taking one step in pseudo time

t∗ of size ∆t∗ using the RK scheme (4.6). Let αs = αs+1 = 1, and let the
stability polynomial

Ps(z) =

s∑
r=0

(
s+1∏

m=s−r+1

αm

)
zr, (4.7)

and the polynomial

Ss(z) =

s−1∑
r=0

(
s∏

m=s−r
αm

)
zr, (4.8)

be defined. Then (4.6) can be described by

xl+1 = Ps(−∆t∗A)xl + Ss(−∆t∗A)∆t∗b, (4.9)

which can be seen by working backwards:

xl+1 = xl + ∆t∗(b−Ax
(s−1)
l )

= xl + ∆t∗(b−A(xl + αs−1∆t∗(b−Ax
(s−2)
l )))

= ...

=

[
xl + (−∆t∗A)xl + αs−1(−∆t∗A)2xl + ...+

(
s−1∏
m=1

αm

)
(−∆t∗A)sxl

]

+

[
∆t∗b + αs−1(−∆t∗A)∆t∗b + ...+

(
s−1∏
m=1

αm

)
(−∆t∗A)s−1∆t∗b

]

=

[
I + (−∆t∗A) + αs−1(−∆t∗A)2 + ...+

(
s−1∏
m=1

αm

)
(−∆t∗A)s

]
xl

+

[
I + αs−1(−∆t∗A) + ...+

(
s−1∏
m=1

αm

)
(−∆t∗A)s−1

]
∆t∗b

= Ps(−∆t∗A)xl + Ss(−∆t∗A)∆t∗b.
(4.10)

From this it is possible to deduce that the RK smoothers satisfy (3.8) with
M = Ps(−∆t∗A) and N−1 = Ss(−∆t∗A)∆t∗. To show this, A = N−NM has
to be proven. First, note that the relation

I− Ps(−∆t∗A) = ∆t∗Ss(−∆t∗A)A (4.11)
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holds. This relation is shown as follows.

Ps(−∆t∗A) =

s∑
r=0

(
s+1∏

m=s−r+1

αm

)
(−∆t∗A)r

= as+1(−∆t∗A)0 +

[
s∑
r=1

(
s+1∏

m=s−r+1

αm

)
(−∆t∗A)r−1

]
(−∆t∗A)

= I−∆t∗

[
s∑
r=1

(
s+1∏

m=s−r+1

αm

)
(−∆t∗A)r−1

]
A

= I−∆t∗

[
s−1∑
r=0

(
s∏

m=s−r
αm

)
(−∆t∗A)r

]
A

= I−∆t∗Ss(−∆t∗A)A⇔
I− Ps(−∆t∗A) = ∆t∗Ss(−∆t∗A)A.

(4.12)
From this follows that

N−NM = N(I−M)

=
1

∆t∗
Ss(−∆t∗A)−1(I− Ps(−∆t∗A))

=
1

∆t∗
Ss(−∆t∗A)−1∆t∗Ss(−∆t∗A)A

= A,

(4.13)

where (4.11) was used in the third equality.

4.2 Evolution of the error

Let u be the solution to Au = b and let xl be the current approximation of u
as above. Also, let the error el be defined as in (3.2), i.e. el = u − xl. Since
xl+1 = Mxl + N−1b and A = N −NM ⇔ N−1 = A−1 −MA−1, taking one
step with the RK smoother results in

el+1 = u− xl+1

= u− (Mxl + N−1b)

= u−Mxl −N−1b

= u−M(u− el)− (A−1 −MA−1)b

= u−Mu + Mel − (u−Mu)

= Mel.

(4.14)
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4.3 Optimizing M

Let vj denote the eigenvectors of M and let λj denote the corresponding eigen-
values. If the error at step k is described in terms of the eigenvectors

ek =

n/2∑
j=−n/2+1

cj,kvj (4.15)

then the error after m iterations is

ek+m = Mmek

=

n/2∑
j=−n/2+1

cj,kλ
m
j vj .

(4.16)

Here the eigenvectors of A created from the variable coefficient case are assumed
to approximately behave as the eigenvectors of Ã in the constant coefficient case,
so the components cj,kvj will be referred to as high frequency components if
|j| ≥ n/4 and low frequency components if |j| < n/4. To optimize the overall
convergence of the smoother, one would need to minimize maxj |λj | with respect
to the parameters of the RK method, i.e. the coefficients αi, i = 1, ..., s−1, and
the pseudo time step ∆t∗. However, since the low frequency components are
handled by moving to a coarser grid in the multigrid method, the smoother is
instead optimized for the convergence of the high frequency error components,
i.e. to minimize the smoothing factor max|j|≥n/4 |λj |, and the optimization
problem becomes

min
∆t∗,α1,...,αs−1

[
max
|j|≥n/4

|λj |
]

(4.17)

with ∆t∗ ∈ R and αj ∈ [0, 1] ∀ j. Thus, to optimize the explicit RK smoother,
the eigenvalues of M are needed.

4.4 Eigenvalues of M

Let Mn denote the matrix M of size n × n, i.e. Mn = Ps(−∆t∗An). Since
the eigenvectors of Mn are the same as the eigenvectors for An, and since
An = In+ ∆t

∆xBn is constructed using the matrix Bn, the eigenvalues of Bn are
computed first.

4.4.1 Constant coefficient

In the constant coefficient case, the eigenvalues of the matrix B̃n defined in (2.7)
can be determined analytically. Let D1,n be the matrix created by removing
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the first row and the last column from B̃n − λ̃BIn, i.e.

D1,n =


−1 1− λ

−1 1− λ
. . .

. . .

−1

 (4.18)

Then the determinant of this matrix is

det(D1,n) = (−1)n−1. (4.19)

Thus, by expanding det(B̃n − λ̃BIn) along the first row:

det(B̃n − λ̃BIn) = 0⇔
(1− λ̃B)n + (−1)n+1(−1) det(D1,n) = 0⇔

(1− λ̃B)n − 1 = 0⇔

λ̃B,j = 1− exp

(
−i

2πj

n

)
, j ∈ Z : j ∈ (−n

2
,
n

2
],

(4.20)

where i is the imaginary unit. In this text, to distinguish the imaginary unit
from the index, the imaginary unit i will always be non-italic.

Let vj be the jth eigenvector of B̃n. Then

Ãnvj =

(
In +

a∆t

∆x
B̃n

)
vj

=

(
1 +

a∆t

∆x
λ̃B,j

)
vj ,

(4.21)

and from this follows that the eigenvalues of Ãn are given by

λ̃A,j = 1 +
a∆t

∆x
λ̃B,j

= 1 +
a∆t

∆x

[
1− exp

(
−i

2πj

n

)]
, j ∈ Z : j ∈ (−n

2
,
n

2
].

(4.22)

Finally, since

Mnvj = Ps(−∆t∗Ãn)vj = Ps(−∆t∗λ̃A,j)vj , (4.23)

the eigenvalues of Mn are given by

λ̃P,j = Ps(−∆t∗λ̃A,j)

= Ps

(
−∆t∗

[
1 +

a∆t

∆x

[
1− exp

(
−i

2πj

n

)]])
, j ∈ Z : j ∈ (−n

2
,
n

2
].

(4.24)
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4.4.2 Variable coefficient

In the variable coefficient case, it is not as easy to determine the eigenvalues.
By following the same process above for the eigenvalues of Bn defined in (2.12),
one would end up at the following expression:

det(Bn − λBIn) =

n∏
i=1

(ai+1/2 − λB)−
n∏
i=1

ai+1/2 = 0, (4.25)

for which there is no general solution in radicals for n ≥ 5 (Abel’s impossibility
theorem). While it is possible to approximate the eigenvalues using iterative
methods, it becomes computationally expensive as the size of the matrix gets
large.

In the next chapter it will be shown that it is possible to get an explicit
expression that approximates how the eigenvalues of the matrices Bn and An

from (2.14) are distributed, assuming that n is large.



26 CHAPTER 4. EXPLICIT RUNGE-KUTTA SMOOTHERS



Chapter 5

Generalized Locally
Toeplitz Sequences

The theory of generalized locally Toeplitz (GLT) sequences [3] can be used to get
information about the distribution of singular values, and given some additional
assumptions, also the distribution of eigenvalues, of large matrices.

In this text, a matrix sequence is a sequence of the form {An}n, where An ∈
Cn×n, and n ∈ N. All definitions in this chapter are taken from [3].

Definition 2. Let {An}n be a matrix sequence, and let f : D ⊂ Rk → C be a
measurable function defined on a set D with 0 < µk(D) < ∞. Also let σi(An)
denote the ith singular value and λi(An) denote the ith eigenvalue of the matrix
An. Then

• {An}n has a singular value distribution described by f , denoted by {An}n ∼σ
f , if

lim
n→∞

1

n

n∑
i=1

F (σi(An)) =
1

µk(D)

∫
D

F (|f(x)|)dx, ∀F ∈ Cc(R). (5.1)

(Cc(C) (resp., Cc(R)) refers to the space of complex-valued continuous
functions defined on C (resp., R) with bounded support.) f is then called
the singular value distribution symbol of {An}n.

• {An}n has a spectral (or eigenvalue) distribution described by f , denoted
by {An}n ∼λ f , if

lim
n→∞

1

n

n∑
i=1

F (λi(An)) =
1

µk(D)

∫
D

F (f(x))dx, ∀F ∈ Cc(C). (5.2)

f is then called the spectral (or eigenvalue) distribution symbol of {An}n.

27
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What this means is that if {An}n has a singular value distribution described
by f and if n is large enough, then the singular values σi(An) are approximately
equal to the samples of |f | over a uniform grid in D, and equivalently for the
eigenvalues λi(An) and f , if {An}n has an eigenvalue distribution described by
f .

The aim of this chapter is to give an understanding of GLT sequences. An
explanation of Toeplitz sequences is given in section 5.1. This is then generalized
into locally Toeplitz (LT) sequences in section 5.2, and finally into GLT sequences
in section 5.3. Some properties, including asymptotic eigenvalue and singular
value distributions of GLT sequences are given in subsection 5.3.1.

In this text, a matrix sequence is a sequence of the form {An}n, where An ∈
Cn×n, and n ∈ N.

5.1 Toeplitz sequences

Recall the matrix

B̃n =


1 −1
−1 1

−1 1
. . .

. . .

−1 1


that arose in the semi-discretized form of the constant coefficient case (2.6).
This is a special type of matrix called a Toeplitz matrix.

Definition 3. A matrix A where each diagonal is constant:

A = [aj−i]
n
i,j =



a0 a1 a2 . . . an−1

a−1 a0 a1

a−2 a−1 a0
. . .

...
. . .

. . . a1

a−(n−1) a−1 a0

 (5.3)

is called a Toeplitz matrix.

A Toeplitz matrix can be defined by a function f using Fourier analysis. The
reason for doing this is that the function f also contains information about the
eigenvalues of the Toeplitz matrix, as will be seen in section 5.3.

Definition 4. Let f : [−π, π]→ C be a function in L1([−π, π]), and let n ∈ N.
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The nth Toeplitz matrix associated with f , denoted Tn(f), is defined as

Tn(f) = [fj−i]
n
i,j=1 =



f0 f1 f2 . . . fn−1

f−1 f0 f1

f−2 f−1 f0
. . .

...
. . .

. . . f1

f−(n−1) f−1 f0

 , (5.4)

where fk is the kth Fourier coefficient of f :

fk =
1

2π

∫ π

−π
f(θ)e−ikθdθ. (5.5)

The matrix sequence {Tn(f)}n is called the Toeplitz sequence generated by f .

Given a Toeplitz matrix, the function f can be easily found as a Fourier series
with Fourier coefficients given by the elements of the matrix. For example, the
matrix B̃n is the nth Toeplitz matrix associated with f(θ) = 1−e−iθ−ei(n−1)θ.

5.2 Locally Toeplitz sequences

In the variable coefficient case, the matrix describing the semi-discrete form
(2.11) was

Bn =


a3/2 0 . . . −an+1/2

−a3/2 a5/2

−a5/2 a7/2

. . .
. . .

−an−1/2 an+1/2

 .

If a(x) is not constant, then this is not a Toeplitz matrix. However, as n→∞
it resembles the structure of a toeplitz matrix locally in the sense that small
subblocks of Bn are close to being Toeplitz matrices. To define Locally Toeplitz
sequences rigorously, a number of other definitions first have to be made.

Definition 5. Let a : [0, 1] → C, and let n ∈ N. The nth diagonal sampling
matrix generated by a, denoted Dn(a), is defined as

Dn(a) = diag
i=1,...,n

a(
i

n
) =


a( 1
n )

a( 2
n )

. . .

a( 1
n )

 . (5.6)
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Definition 6. Let m,n ∈ N, a : [0, 1] → C, and f ∈ L1([−π, π]). The locally
Toeplitz operators of a and f are defined as the following n× n matrices:

LTmn (a, f) = D(a)⊗ Tb nm c(f)⊕Onmodm, (5.7)

where the tensor (Kronecker) product ”⊗” is applied before the direct sum ”⊕”,
i.e.

LTmn (a, f) =


a( 1
m )Tb nm c(f)

a( 2
m )Tb nm c(f)

. . .

a(1)Tb nm c(f)

Onmodm

 .
(5.8)

Here On denotes the n× n zero matrix, and b·c denotes the floor function.

Note that each block a( im )Tb nm c(f) in (5.8) is a Toeplitz matrix, and that
every Toeplitz matrix Tn(f) is also a locally Toeplitz operator with Tn(f) =
LTmn (1, f) for any m ∈ N.

The matrix Bn is not a locally Toeplitz operator which can be easily seen by
noting that the matrix Bn is not a blockdiagonal matrix. However, it resembles
a locally Toeplitz operator as n → ∞. This resemblance can be defined using
the concept of approximating classes of sequences.

Definition 7. Let {An}n be a matrix sequence and let {{Bn,m}n}m be a se-
quence of matrix sequences. Then {{Bn,m}n}m is an approximating class of
sequences (or a.c.s.) for {An}n if the following property holds: ∀ m ∃ nm : n ≥
nm ⇒

An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)n, ||Nn,m|| ≤ ω(m), (5.9)

where the quantities nm, c(m), and ω(m) only depend on m, and

lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

This is denoted by {{Bn,m}n}m
a.c.s.−−−→ {An}n.

Thus, if {{Bn,m}n}m is an approximating class of sequences for {An}n and
n and m are large, then the matrix An is equal to the matrix Bn,m plus two
matrices that are close to the zero matrix in two different ways:

• The matrix Rn,m has a low rank relative to the size of the matrix.

• The matrix Nn,m has a small norm. (Any norm, since all norms are
equivalent.)
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Given these definitions, Locally Toeplitz sequences can now be defined.

Definition 8. Let {An}n be a matrix sequence, let a : [0, 1]→ C be Riemann
integrable, and let f ∈ L1([−π, π]). Then {An}n is a locally Toeplitz (LT)
sequence with symbol a⊗ f , denoted by {An}n ∼LT a⊗ f , if

{LTmn (a, f)}n
a.c.s.−−−→ {An}n.

Here a⊗ f is the tensor-product of a and f , i.e. (a⊗ f)(x, θ) := a(x)f(θ).

The matrix sequence {Bn}n created by Bn is an LT sequence with symbol

κB(x, θ) = a(x)(1− exp(−iθ)), (5.10)

i.e. {Bn}n ∼LT κB(x, θ) as shown in [4]. (The matrices in the matrix se-
quence this was shown for had a different first row. However, the difference
between the matrices could be added into the matrix Rn,m in the definition of
an approximating class of sequences.)

5.3 Generalized Locally Toeplitz sequences

The concept of LT sequences can be further generalized by combining different
LT sequences.

Definition 9. Let {An}n be a matrix sequence, and let κ : [0, 1]× [−π, π]→ C
be a measurable function. Then {An}n is a generalized locally Toeplitz (GLT)
sequence with symbol κ, denoted by {An}n ∼GLT κ, if the following property

holds: ∀ m ∈ N there exists a finite number of LT sequences {A(i,m)
n }n ∼LT

ai,m ⊗ fi,m, i = 1, ..., Nm such that

•
∑Nm
i=1 ai,m ⊗ fi,m → κ in measure, and

•
∑Nm
i=1{A

(i,m)
n }n

a.c.s.−−−→ {An}n.

Any linear combination of LT sequences is a GLT sequence, since then the
above condition holds with Nm constant for all m (note that an LT sequence
multiplied by a scalar is an LT sequence). In particular, every LT sequence
{An}n ∼LT κ = a⊗ f is also a GLT sequence.
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5.3.1 Properties of GLT sequences

If a sequence of matrices is a GLT sequence and the symbol of the GLT sequence
is known, then the singular value distribution, and with additional assumptions
also the eigenvalue distribution, of the matrix sequence is known. Here follow
some useful properties of GLT sequences given in [3].

Proposition 10. The following properties hold for GLT sequences:

GLT1 If {An}n ∼GLT κ then {An}n ∼σ κ. If in addition the matrices An
are Hermitian, then {An}n ∼λ κ.
GLT2 If {An}n ∼GLT κ and each matrix An can be separated into An =
Xn + Yn where

• each Xn is Hermitian,

• ||Xn||, ||Yn|| ≤ C for some constant C independent of n, and

• ||Yn||1/n→ 0 as n→∞,

then {An}n ∼λ κ.
GLT3 The following hold:

• {Tn(f)} ∼GLT κ(x, θ) = f(θ) for f ∈ L1([−π, π]),

• {Dn(a)}n ∼GLT κ(x, θ) = a(x) for a : [0, 1]→ C here a is continuous a.e.,
and

• {Zn}n ∼GLT 0 if and only if {Zn}n ∼σ 0.

GLT4 If {An}n ∼GLT κ and {Bn}n ∼GLT ξ, then

• {A∗n}n ∼GLT κ̄

• {αAn + βBn}n ∼GLT ακ+ βξ ∀ α, β ∈ C

• {AnBn}n ∼ GLTκξ

GLT4 is equivalent to stating that the space of GLT sequences forms a
*-algebra of matrix sequences. GLT3 and GLT4 can be used to determine
the symbol of a matrix sequence, and GLT1 and GLT2 are used for getting
information about the singular values and eigenvalues of matrix sequences for
which the symbol is known. Points 2 and 3 from GLT4 can be used to give the
following useful corollary.

Corollary 11. Let {An}n ∼GLT κ and let P be a polynomial. Then the
sequence {P (An)}n satisfies {P (An)}n ∼GLT P (κ).
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Proof. Applying the third point from GLT4 multiple times leads to the formula

{Akn}n ∼GLT κk. (5.11)

Let the degree of the polynomial P be denoted by s and let ak, k = 0, ..., s
denote the coefficients of the polynomial. Then applying the second point from
GLT4 (linearity) in addition to (5.11) leads to

{P (An)}n = {
s∑

k=0

akA
k
n}n ∼GLT

s∑
k=0

akκ
k = P (κ). (5.12)

Thus, if the symbol of the matrix sequence {An}n is known, the symbol of
{P (An)}n is also known.

To optimize a smoother, one would preferably like to know the eigenvalue
distribution of the matrix sequence in addition to knowing the singular value
distribution (which will be seen to be the case for the matrix sequences in this
thesis). However, since the eigenvalues are bounded by the largest singular value

|λj | ≤ max
i
σi ∀ j ∈ [1, n], (5.13)

it is still possible to get useful information about the eigenvalues even if only
the singular value distribution is known.

5.4 Symbols of {An}n and {Bn}n
As stated above, the matrix sequence {Bn}n with Bn defined as in (2.12) is an
LT sequence with symbol

κB(x, θ) = a(x)(1− exp(−iθ)). (5.14)

Since all LT sequences are also GLT sequences, this is also a GLT sequence.
From this follows that {Bn}n ∼σ κB(x, θ) by GLT1 in proposition 10. Since
these matrices are not Hermitian, the sequence does not satisfy the second part
of GLT1. However, it does satisfy GLT2 by seperating each Bn into Bn =
Xn + Yn where

Xn :=


a3/2

a5/2

a7/2

. . .

an+1/2

 (5.15)
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is Hermitian since a(x) ∈ R, and

Yn :=


0 −an+1/2

−a3/2 0
−a5/2 0

. . .
. . .

−an−1/2 0

 . (5.16)

Since all norms are equivalent, it is enough that ||Xn|| and ||Yn|| are bounded
with respect to the 1-norm, which they are with the bound C = maxx a(x).

Since ||Yn||1 is bounded by C it also follows that ||Yn||1/n
n→∞−−−−→ 0. Thus

{Bn}n ∼λ κB(x, θ) (5.17)

by GLT2.
By GLT3 the symbol of the identity matrix In is simply 1. If ∆t/∆x is

assumed to be constant, then by GLT4 the matrix sequence {An}n defined in
(2.14), i.e.

{An}n =

{
In +

∆t

∆x
Bn

}
n

,

is a GLT sequence with the symbol

κA(x, θ) = 1 +
∆t

∆x
κB(x, θ)

= 1 +
∆t

∆x
a(x)(1− exp(−iθ)).

(5.18)

Even if {An}n did not satisfy the additional assumptions given in GLT1 or
GLT2 for the symbol to describe the eigenvalue distribution, it is still true that
{An}n ∼λ κA(x, θ). This can be seen by looking at the eigenvalues of An for
a fixed n and then letting n tend to infinity. As was deduced in (4.4), the
eigenvalues of An are given by

λA,j = 1 +
∆t

∆x
λB,j j = 1, 2, ..., n.

Since this is true for all n, it follows that the asymptotic eigenvalue distribution
of An is given by

1 +
∆t

∆x
κB(x, θ) = κA(x, θ). (5.19)

Note that this would be true whether {An}n was a GLT sequence or not.
For the different levels of the multigrid algorithm, the value of ∆t/∆x is

doubled and halved when moving between levels (since ∆t is fixed and ∆x
is doubled when moving to a coarser grid). To get the approximation of the
eigenvalue distribution of a matrix An for a given level, one would have to fix
∆x and use the symbol for the corresponding matrix sequence. Here, with some
abuse of notation, the eigenvalue distribution of the sequence {An}n with ∆x =
1/n dependent on n will be said to have an eigenvalue distribution described by
κA in (5.18), where κA is dependent on ∆x.
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5.5 Numerical examples

To see how closely the eigenvalues are distributed according to the symbol for
various n, or at least how well the eigenvalues covers the image of the symbol,
some numerical tests were done. The values

xmin = 0,

xmax = 2, and

∆t = 3/25,

were used for the discretization in all examples below. For each test, defined by
which function a(x) that was used, matrices An of size n = 128, 1024, 4096, 8192
were created. The eigenvalues were then computed in python using the function
scipy.linalg.eig from the SciPy library.

5.5.1 Sine function

The first test was done with the function

a(x) = 1 + 0.7 sin

(
4πx

xmax − xmin

)
(5.20)

(Figure 5.1). Figure 5.2 shows plots of the eigenvalues of An for the various
n. The orange, green and red points show the eigenvalues for the matrix in
the constant coefficient case, where the constant a = amin, a = amean, and
a = amax respectively. Remember that these eigenvalues are given exactly by
the explicit expression in (4.22). The area between the orange and the red circles
corresponds to the image of the symbol κA(x, θ). Note that since ∆x = 2/n is
changed with increasing n, the ranges for the eigenvalues are also changed with
n.

As expected from the GLT theory, the distribution of the eigenvalues gets
closer to the image with increasing n. For values of n < 128, all eigenvalues
were located inside the green circle created from the eigenvalues for An with
a(x) ≡ amean.
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Figure 5.1: The function a(x) = 1 + 0.7 sin
(

4πx
xmax−xmin

)
along with lines repre-

senting the maximum, the minimum, and the mean of a(x).

Figure 5.2: Eigenvalue plots for A128, A1024, A4096, and A8192, created by

a(x) = 1 + 0.7 sin
(

4πx
xmax−xmin

)
.
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5.5.2 Monotone convex function

The second test was done with the function

a(x) = 1 + x2 (5.21)

(Figure 5.3). The result is shown in Figure 5.4. As expected, the distribution
get closer to the image of κA(x, θ) as n is increased in this case as well.

For this coefficient function, the eigenvalues are outside of the green circle
even for low values of n (even for n as low as n = 4). Another result that differs
from the sine function case is that the eigenvalue distribution converges more
slowly towards the red circle. A possible reason for these results is that the
mean of a(x)

amean =
1

2

∫ 2

0

1 + x2dx =
1

2

[
x+

x3

3

]2

0

=
7

3
≈ 2.33 (5.22)

shown as the green line in Figure 5.3 is below the midpoint 3 of the range of
the function a(x) ∈ [1, 5]. This means that the point evaluations ai+1/2 for the
discretized version of a(x) are weighted towards the lower half of the range. For
this reason, a third test was done with a concave function.

Figure 5.3: The function a(x) = 1 + x2 along with lines representing the maxi-
mum, the minimum, and the mean of a(x).
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Figure 5.4: Eigenvalue plots for A128, A1024, A4096, and A8192, created by
a(x) = 1 + x2.

5.5.3 Concave function

The third test was done with the function

a(x) = 1 + 8x− 4x2 (5.23)

(Figure 5.5). This function is a concave function that was chosen to have the
same range as the monotone convex function a(x) ∈ [1, 5]. Here, the mean of
a(x)

amean =
1

2

∫ 2

0

1 + 8x− 4x2dx =
1

2

[
x+ 4x2 − 4x3

3

]2

0

=
11

3
≈ 3.67 (5.24)

is above the midpoint 3 of the range. The eigenvalue distributions for this
function are shown in Figure 5.6. As suspected, the distribution in this case
converges faster towards the red circle and slower towards the orange circle
compared to both the sine function, and the monotone convex function case.
Overall the convergence seems to be the fastest for the concave function case.
This is not necessarily true in general for GLT sequences, but is the case here for
this discretization of the linear advection equation. The key point here is that
the convergence of the eigenvalues towards the image of the domain through the
symbol depends on a(x) even if they result in the same image of the symbol.
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Figure 5.5: The function a(x) = 1 + 2x − x2 along with lines representing the
maximum, the minimum, and the mean of a(x).

Figure 5.6: Eigenvalue plots for A128, A1024, A4096, and A8192, created by
a(x) = 1 + 2x− x2.
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Remark. A question that arises is whether it can be assumed that all eigen-
values are located within the image of the symbol as they appear to do for the
examples given here. That all eigenvalues are located on or inside the red circles
in Figures 5.2, 5.4, and 5.6, can be proven by again turning to the Gershgorin
circle theorem. Given a coefficient function a(x), the eigenvalues of the resulting
matrix Bn are located on or inside the circle centered at amax, as was stated in
section 4.1. Since the eigenvalues of An are given by (4.4), i.e.

λA,j = 1 +
∆t

∆x
λB,j j = 1, 2, ..., n,

the eigenvalues of An must all be located on or inside the circle centered at

1 +
∆t

∆x
amax

with radius amax, which describes the red circles in the figures.



Chapter 6

Optimizing explicit
Runge-Kutta smoothers

Using the theory of GLT sequences it is now possible to approximate the distri-
bution of the eigenvalues of Mn = Ps(−∆t∗An) with An defined as in (2.14).

6.1 Symbol of {Mn}n
By Corollary 11, the symbol of the matrix sequence {Mn}n is

κM (x, θ) = Ps(−∆t∗κA(x, θ))

= Ps

(
−∆t∗

[
1 +

∆t

∆x
a(x)(1− exp(−iθ))

])
.

(6.1)

If a(x) ≡ a is constant and if θ only takes the discrete values θ = 2πj/n, j ∈
Z : j ∈ (−n2 ,

n
2 ], then this becomes the same expression as (4.24), which is the

exact expression for the eigenvalues of Mn in the constant coefficient case.
Since xt∗ = b − Ax → 0 as t∗ → ∞, one would ideally want to take as

large pseudo time steps ∆t∗ as possible. Since these smoothers are created from
explicit schemes, the pseudo time step ∆t∗ is restricted by a CFL condition [10]
dependent on the coefficient function and the discretization of the function.

Let

r :=
∆t

∆x
, (6.2)

c :=
∆t∗∆t

∆x
, (6.3)

and define
z(c, x, θ; r) := − c

r
− ca(x)(1− exp(−iθ)). (6.4)

The symbol can then be written as

κM (x, θ) = Ps(z(c, x, θ; r)). (6.5)

41
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Using the variables r and c avoids some divisions and multiplications with po-
tentially very small numbers in addition to simplifying the expression. Thus,
instead of optimizing directly for ∆t∗ here, ∆t∗ is instead solved from the opti-
mized value of c in (6.3), which is a value closely related to the CFL condition.
With the same idea as in subsection 5.4, to see that the eigenvalue distribution
of {Mn}n is given by its symbol, let vA be an eigenvector of An with n fixed
and let λA be the corresponding eigenvalue. Then the following holds

MnvA = Ps(−∆t∗An)vA = Ps(−∆t∗λA)vA. (6.6)

Since this is true for each fixed n, it follows that (by letting n tend to infinity)

{Mn}n ∼λ Ps(−∆t∗κA(x, θ)) = Ps(z(c, x, θ; r)). (6.7)

Hence, convergence of the RK smoother requires that parameters are chosen so
that

max
x,θ
|Ps(z(c, x, θ; r))| < Hn, (6.8)

for a bound Hn defined by

Hn :=
maxx,θ |Ps(z(c, x, θ; r))|

|λmax(Mn)|
n→∞−−−−→ 1, (6.9)

as this would imply that |λmax(Mn)| < 1.

6.2 Approximate optimization problem

The parameters of the s-stage RK smoother to optimize are the coefficients
αi, i = 1, ..., s and c. The approximate optimization problem becomes

min
c,α1,...,αs

[
max

(x,θ)∈[xmin,xmax]×[π/2,π]
|Ps(z(c, x, θ; r))|

]
, (6.10)

where ∆t∗ is solved from c by ∆t∗ := c∆x
∆t . The domain for θ is cut down to

[π/2, π] for the following reasons. Firstly, to optimize for the convergence of high
frequency components, the domain [−π, π] is cut in half into [−π,−π/2]∪[π/2, π]
(this corresponds to |j| ≥ n/4 in the discrete case). Secondly, since |Ps(z)| =
|Ps(z)|, where z is the complex conjugate of z, and since the complex conjugate
of exp(−iθ) is exp(iθ), the domain [−π,−π/2]∪ [π/2, π] is cut in half once again
into [π/2, π].

6.2.1 Parameters from optimization problem on coarse
grids

Since the eigenvalue distribution results from the GLT theory are asymptotic,
there is no guarantee that the parameters ∆t∗, α1, ..., αs obtained from the op-
timization problem above are accurate for grids with few grid points. However,
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if all of the eigenvalues are located within the image given by the symbol, as
they were in the numerical examples above, then

max
x,θ
|Ps(z(c, x, θ; r))| ≥ |λmax(Ps(−∆t∗An)| (6.11)

and the parameters should at least guarantee convergence (of the high frequency
components) if the value of maxx,θ |Ps(z(c, x, θ; r))| is below one, i.e. Hn ≥ 1
in (6.8). That all eigenvalues are at least located on or inside the red circles in
Figures 5.2, 5.4, and 5.6, was proven in the remark in section 5.5.

6.2.2 Invariance of parameters on fine grids

One thing to note is that if the grids are fine enough, i.e. if n is large enough,
so that 1/r = ∆x/∆t ∝ 1/n is small relative to a(x)(1− exp(−iθ)), then

z(c, x, θ; r) := − c
r
− ca(x)(1− exp(−iθ) ≈ −ca(x)(1− exp(−iθ)). (6.12)

Since z(c, x, θ; r) is then approximately independent of r, and therefore the cell
width ∆x, the optimal parameters c, α1, ..., αs are approximately constant on
different levels of the multigrid algorithm. Thus, if a fine enough grid is used
for the discretization of the problem, it is potentially not necessary to solve the
problem for every level of the algorithm. The only parameter that needs to be
changed for the RK smoother between levels with a large n is then

∆t∗ =
c∆x

∆t
(6.13)

which is doubled and halved when moving between levels.

6.2.3 Using linear functions

With the optimization problem defined as in (6.10), it is not necessary to know
the exact distribution when solving the optimization problem. It is only nec-
essary to know the image of the domain [xmin, xmax] × [π/2, π] through the
distribution function. Let c and r be fixed. Since a(x) ∈ R ∀ x, the image of
[xmin, xmax]× [π/2, π] through

z(c, x, θ; r) = − c
r
− ca(x)(1− exp(−iθ))

is equivalent to the image of [amin, amax]× [π/2, π] through

z(c, x, θ; r) = − c
r
− cx(1− exp(−iθ)),

where amin := minx a(x) and amax := maxx a(x).
Therefore, solving (6.10) with the spatial domain [amin, amax] and the linear

coefficient function a(x) = x is equivalent to solving (6.10) using any function
a(x) with the same extrema amin and amax. From this follows that, at least in
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theory, the parameters obtained from solving (6.10) using a linear function solves
the optimization problem for the set of all functions with the same extrema
amin and amax (even if they have different spatial domains). In practice, if this
problem is solved using a method such as grid search, as is done in this thesis, the
solutions obtained can be slightly different. However, given a fine enough grid
when performing the grid search, the results should be approximately the same,
since asymptotically the values should cover the entire image of the domain
through the symbol.

6.2.4 Lookup table

The above idea can be further developed. If it is necessary to quickly get
parameters for problems with different coefficient functions ak(x), where the
extrema (ak)min and (ak)max are not necessarily the same, an idea is to solve
the problem (6.10) using the linear coefficient function a(x) = x, and the spatial
domain [Cmin, Cmax] that covers all the ranges [(ak)min, (ak)max] created by the
extrema, i.e. where

Cmin ≤ (ak)min ≤ (ak)max ≤ Cmax, ∀ k (6.14)

and the function a(x) = x. Although the parameters obtained from this opti-
mization problem are not optimal for each given problem, they will guarantee
convergence of the high frequency components of the errors for the different
problems given that

max
(x,θ)∈[Cmin,Cmax]×[π/2,π]

|Ps(z(c, x, θ; r))| < 1

holds. To see this, let

D1 := [Cmin, amin]× [π/2, π],

D2 := [amin, amax]× [π/2, π], and

D3 := [amax, Cmax]× [π/2, π].

Then

max
(x,θ)∈[amin,amax]×[π/2,π]

|Ps(z)| = max
(x,θ)∈D2

|Ps(z)|

≤ max
(x,θ)∈(D1∪D2∪D3)

|Ps(z)|

= max
(x,θ)∈[Cmin,Cmax]×[π/2,π]

|Ps(z)|

< 1,

(6.15)

where the variables for z = z(c, x, θ; r) were left out to shorten the expressions
in the derivation.

Now if the extrema (ak)min and (ak)max are not known in advance, as is
the case for example when solving the discretized inviscid Burgers’ equation
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where the coefficient function is changed at each time step, one can create a
lookup table where parameters have been found for different ranges, for example
[0, 1], [0, 2], [0, 3], ..., and then choose parameters from the smallest range in the
lookup table that covers [amin, amax]. Zero has been used as the lower boundary
for all ranges in this example since a(x) > 0 ∀ x. More generally, the lookup
table can be two dimensional with different lower and upper bounds, and given
that this table can be precalculated, it can use a lot more accurate ranges.
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Chapter 7

W-smoothers

Another class of smoothers studied in this thesis is the class of W-methods.
These were derived as additive W-methods for solving convection-diffusion equa-
tions in [5]. Here, only the convective (advective) part of the additive W-
methods is considered and the derivation is slightly different here to be con-
sistent with the definitions in the derivation of the Runge-Kutta smoothers in
chapter 4. This is a class of methods which comes from considering implicit
Runge-Kutta methods for solving the initial value problem (4.1) instead of the
class of explicit Runge-Kutta methods.

7.1 Pseudo time stepping

The initial value problem (4.1) is restated here for clarity:

xt∗ = f(x),

x0 = x(t∗0).

W-methods are derived by first considering a singly diagonally implicit Runge-
Kutta (SDIRK) method given by

k(0) = f(xl)

k(j) = f(xl + ∆t∗(αj−1k
(j−1) + ηk(j))), j = 1, ..., s,

xl+1 = xl + ∆t∗k(s),

(7.1)

where, in general, s nonlinear equation systems have to be solved for the stage
derivatives k(j). If η = 0 this would be equivalent to the explicit RK method
considered in chapter 4 with

x
(0)
l := xl, and

x
(j)
l := xl + αj∆t

∗k(j).
(7.2)

47
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The s nonlinear equations are not solved exactly here, but instead approxi-
mated using one Newton step each with initial guess zero, resulting in what is
called Rosenbrock methods. Approximating stage derivative k(j) is equivalent
to approximating k in

k− f(xl + ∆t∗(αj−1k
(j−1) + ηk)) = 0. (7.3)

Let
gj(k) = k− f(xl + ∆t∗(αj−1k

(j−1) + ηk)) (7.4)

so that the problem becomes gj(k) = 0. Then

dgj(k)

dk
= I− η∆t∗

df(xl + ∆t∗(αj−1k
(j−1) + ηk))

dx
. (7.5)

Let k
(j)
1 denote the value after one Newton step and let the initial guess be

denoted by k
(j)
0 . Then k(j) is defined as

k(j) := k
(j)
1

= k
(j)
0 −

(
dgj(k

(j)
0 )

dk

)−1

gj(k
(j)
0 )

= −
(

dgj(0)

dk

)−1

gj(0)

=

(
I− η∆t∗

df(xl + αj−1∆t∗k(j−1))

dx

)−1

f(xl + αj−1∆t∗k(j−1))

= (I− η∆t∗Jj)
−1f(xl + αj−1∆t∗k(j−1)), j = 1, ..., s,

(7.6)

where

Jj :=
df(xl + αj−1∆t∗k(j−1))

dx

=
df(x

(j−1)
l )

dx
.

(7.7)

Now the problem of solving s nonlinear equation systems has turned into a
problem of solving s linear equation systems. Finally, the matrices I− η∆t∗Jj
are approximated by a matrix W. This results in the W-methods with stage
derivatives

k(j) = W−1f(xl + αj−1∆t∗k(j−1)), j = 1, ..., s, (7.8)

which can be rewritten in the same form as the explicit RK methods

x
(0)
l = xl,

x
(j)
l = xl + αj∆t

∗W−1f(x
(j−1)
l ), j = 1, ..., s− 1

xl+1 = xl + ∆t∗W−1f(x
(s−1)
l ).

(7.9)
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In the same way as with the RK smoother, to solve the equation system
Au = b, the time derivative is set to f(x) = b −Ax, and one iteration of the
W-smoother consists of taking one step in pseudo time t∗ of size ∆t∗.

Here the focus is to test the GLT theory for the optimization of the W-
smoothers rather than deciding for a good approximation matrix W, so the
matrix W is defined to be W = I− η∆t∗J1. With f(x) = b−Ax⇒ J1 = −A
this results in

W = I + η∆t∗A. (7.10)

Since Jj = −A for all j = 1, ..., s here, this effectively results in Rosenbrock
smoothers.

7.2 Evolution of the error

Since the equations in (7.9) with f(x) = b −Ax are equivalent to the explicit
RK scheme with A changed to W−1A, and with b changed to W−1b, the
evolution of the error for the W-smoother is the same as the evolution of the
error for the explicit RK-smoother with A changed to W−1A, i.e.

el+1 = Ps(−∆t∗W−1A)el, (7.11)

with Ps(z) defined as in (4.7):

Ps(z) =

s∑
r=0

(
s+1∏

m=s−r+1

αm

)
zr.

Let M(W ) := Ps(−∆t∗W−1A) denote the matrix describing the error evolution
of the W-smoother, so that

el+1 = M(W )el. (7.12)

7.3 Optimization problem

The optimization problem for the W-smoother is found by following the same
procedure as in chapter 4. With the error evolution given by (7.12), the exact
optimization problem becomes

min
∆t∗,α1,...,αs−1,η

[
max
|j|≥n/4

|λj |
]

(7.13)

where λj are the eigenvalues of the matrix M(W ). Note that η, which is a
parameter for W, is an additional parameter to optimize here.
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7.3.1 Eigenvalues of W−1A

If λ̃j is an eigenvalue of W−1A, then λj = Ps(−∆t∗λ̃j) is an eigenvalue of

M(W ). Therefore, the eigenvalues of W−1A have to be determined. Let vj be
an eigenvector of A, and let λA,j be the corresponding eigenvalue. Then with
W defined as in (7.10)

vj = W−1Wvj

= W−1(I + η∆t∗A)vj

= (1 + η∆t∗λA,j)W
−1vj

⇔W−1vj =
1

1 + η∆t∗λA,j
vj ,

(7.14)

and from this follows that

W−1Avj = λA,jW
−1vj =

λA,j
1 + η∆t∗λA,j

vj . (7.15)

Thus the eigenvalues λ̃j of W−1A are given by the expression

λ̃j =
λA,j

1 + η∆t∗λA,j
, j = 1, 2, ..., n, (7.16)

where n denotes the size n× n of the matrix A.

7.3.2 Eigenvalue distribution of M(W )

As before, let the subscript n denote the size of the matrices. Since the eigenval-
ues of W−1

n An are given by (7.16), the eigenvalues of M(W )
n = Ps(−∆t∗W−1

n An)
are given by

Ps(−∆t∗λ̃j) = Ps

(
−∆t∗λA,j

1 + η∆t∗λA,j

)
. (7.17)

Therefore, the asymptotic eigenvalue distribution of Ps(−∆t∗W−1
n An) is given

by

Ps

(
−∆t∗κA(x, θ)

1 + η∆t∗κA(x, θ)

)
= Ps

(
−∆t∗

[
1 + ∆t

∆xa(x)(1− exp(−iθ))
]

1 + η∆t∗
[
1 + ∆t

∆xa(x)(1− exp(−iθ))
]) ,

(7.18)
where κA(x, θ) is the eigenvalue distribution of A given by (5.18):

κA(x, θ) = 1 +
∆t

∆x
a(x)(1− exp(−iθ)).

By introducing the variables r, c, and z as in (6.2), (6.3), and (6.4):

r :=
∆t

∆x
,

c :=
∆t∗∆t

∆x
,

z(c, x, θ; r) := − c
r
− ca(x)(1− exp(−iθ)),
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and the additional variable

zW (η, c, x, θ; r) =
z(c, x, θ; r)

1− ηz(c, x, θ; r)
(7.19)

The expression in (7.18) can be written as:

Ps

(
z(c, x, θ; r)

1− ηz(c, x, θ; r)

)
= Ps(zW (η, c, x, θ; r)) (7.20)

Since the matrix sequence created by taking the inverse of the matrices
in a GLT sequence is not necessarily a GLT sequence, {W−1

n An}n, and thus

{M(W )
n }n, are not necessarily GLT sequences. Therefore, even though the eigen-

value distribution is given by (7.20), it is in general not the symbol of the matrix

sequence {M(W )
n }n.

7.3.3 Approximate optimization problem

With the asymptotic eigenvalue distribution of M(W )
n given by (7.20), the ap-

proximate optimization problem becomes

min
c,α1,...,αs,η

[
max

(x,θ)∈[xmin,xmax]×[π/2,π]
|Ps(zW (η, c, x, θ; r))|

]
. (7.21)

7.3.4 Invariance of parameters

As was shown in subsection 6.2.2, if the grid is fine enough, i.e. if n is large
enough, then

z(c, x, θ; r) := − c
r
− ca(x)(1− exp(−iθ) ≈ −ca(x)(1− exp(−iθ)).

From this follows that

zW (η, c, x, θ; r) =
z(c, x, θ; r)

1− ηz(c, x, θ; r)
≈ −ca(x)(1− exp(−iθ))

1 + ηca(x)(1− exp(−iθ))
(7.22)

is approximately independent on r, so that the parameters c, α1, ..., αs, η are
approximately equal for different levels of the multigrid algorithm.

7.3.5 Using linear functions and lookup tables

The image of zW (η, c, x, θ; r) using an arbitrary coefficient function a(x) with
the extrema amin and amax is the same as the image of zW (η, c, x, θ; r) us-
ing the linear coefficient function a(x) = x with spatial domain [amin, amax].
Thus, following the same reasoning as in subsection 6.2.3 one can optimize the
coefficients using linear functions with the domain [amin, amax] instead of the
coefficient function in the problem formulation. From this follows that the idea
of a lookup table can be used for the W-smoothers as well.
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Chapter 8

Results and discussion

8.1 Description of example problems

The smoothers were tested on three different linear advection problems (2.1),
that only differed on the coefficient functions. The three different coefficient
functions used in these problems were the functions (5.20), (5.21), and (5.23)
used in the numerical examples in chapter 5, i.e. the sine function

a(x) = 1 + 0.7 sin

(
4πx

xmax − xmin

)
,

the monotone function
a(x) = 1 + x2,

and the concave function

a(x) = 1 + 8x− 4x2.

For these tests the boundaries 0 and 2 were chosen so that x ∈ [0, 2]. With this
spatial domain, the image of the sine function is the range [0.3, 1.7], and the
images of the monotone function and the concave function are both the range
[1, 5]. This resulted in the problem

ut(x, t) + (a(x)u(x, t))x = 0, a(x) > 0, a(x) ∈ R ∀ x ∈ [0, 2],

u(x = 0, t) = u(x = 2, t).
(8.1)

The problems all used the step function

u0 =

{
5, x ∈ [0, 1)

1, x ∈ [1, 2)
(8.2)

as initial value, and the problems were discretized so that the fine grid (top
level) had n = 213 = 8192 grid cells so that ∆x = 2/213 = 2−12. For each

53
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problem, one step forward in time was taken using the multigrid method with
step size ∆t = 3/25. With this cell width and this time step size, the CFL
number for the sine problem is

CFL =
amax∆t

∆x
=

1.7 · 3/25

2−12
= 652.8, (8.3)

and the CFL number for the monotone problem and the concave problem is

CFL =
5 · 3/25

2−12
= 1920. (8.4)

Since implicit Euler was used for the time steps, the solutions are stable even if
the CFL numbers are large.

8.2 Construction of multigrid algorithm

Since the optimization problems (6.10) and (7.21) are independent of the num-
ber of pre- and postsmoothing steps, not too much focus was put into optimiz-
ing these numbers. For the RK smoothers, five presmoothing steps and five
postsmoothing steps were used in the multigrid algorithm (ν1 = 5, ν2 = 5), and
for the W-smoothers one presmoothing step and one postsmoothing step were
used (ν1 = 1, ν2 = 1). On the lowest level consisted of one smoothing step (i.e.
no direct solve was done). These were empirically found to be reasonable values,
albeit not necessarily optimal.

8.3 Determining coefficients for the smoothers

Parameters for the RK-smoothers and W-smoothers were determined using the
optimization problems (6.10) and (7.21) respectively. These problems are too
difficult to solve exactly. Therefore, approximate solutions were computed using
grid search, i.e. by discretizing the parameter space and exhaustively searching
through the discretized space for the best parameters.

8.4 Explicit Runge-Kutta smoothers

The first smoothers studied here were explicit Runge-Kutta smoothers with 2
and 3 stages, here referred to as RK2 and RK3. To perform the grid search
for the coefficients, a bounded region was required. The αi’s are bounded by
[0, 1] by definition, and the search space for the eigenvalue distribution function
is defined in the approximate optimization problem. The only parameter left
is c. Here c ∈ [0, 2] was chosen. Since Ax → b as t∗ → ∞ and ∆t∗ ∝ c, the
optimal value of c should be as large as possible without making the solution
become unstable. Thus, the region for c is large enough if the calculated optimal
value of c is not on or close to (due to numerical errors) the upper boundary 2.
Otherwise a larger region is needed.
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For each optimization problem, a uniform grid of 400 × 200 × 200 × 200
points was chosen for the parameter space c×α1×x×θ for RK2 and a uniform
grid of 400× 200× 200× 200× 200 points was chosen for the parameter space
c× α1 × α2 × x× θ for RK3.

8.4.1 Simplified Runge-Kutta smoother

Using the idea from section 6.2.2, the implementation of the RK smoothers was
simplified by letting the αis be the ones calculated for the finest grid for all
levels of the algorithm and only change ∆t∗ by doubling it when moving down
levels in the multigrid algorithm. This way, only two values need to be stored
for RK2 (c and α1, or alternatively ∆t∗ and α1, for the top level) and only
three values need to be stored for RK3 (c, α1, and α2 for the top level). Since
the matrices here are relatively small, the coefficients might turn out to be too
inaccurate for the lower levels of the algorithm.

The parameters for the finest grid for the different problems can be found
in Table 8.1. Both the values of c and ∆t∗ are included in the table, as c was
the value optimized in the optimization problem and ∆t∗ is the value used in
the smoother. The values of maxx,θ |Ps(z)| are also included in the table as
this shows an upper bound for the convergence rate of the high frequency error
components on the top level.

The monotone and the concave functions resulted in the same values for
the coefficients (of RK2 and of RK3), as was expected from the discussion in
subsection 6.2.3, i.e. that since both coefficient functions were designed to have
the same image [amin, amax] = [1, 5], they both result in the same optimization
problem. They also resulted in similar values of maxx,θ |Ps(z)|, i.e. they should
have similar convergence rate for the high frequency error components for a given
level of the algorithm, given that the grid is fine enough that the distribution
from the GLT theory approximates the eigenvalue distribution accurately.

Table 8.1: Coefficients of RK2 and RK3 for the top level of the three problems
(referred to by their function).

smoother function c ∆t∗ α1 α2 max |Ps|

RK2
sine 1.01 2.630e-3 0.265 - 0.7397
monotone 0.335 8.724e-4 0.27 - 0.7187
concave 0.335 8.724e-4 0.27 - 0.7187

RK3
sine 1.585 4.128e-3 0.105 0.3 0.6313
monotone 0.525 1.367e-3 0.11 0.315 0.6039
concave 0.525 1.367e-3 0.11 0.315 0.6039

Using the coefficients in Table 8.1, the smoothers were tested on the three
example problems. In the initial tests, 13 grids were used in the multigrid
algorithm so that the bottom level had 2 grid cells. The error e was calculated
after each V-cycle by comparing the estimation from the multigrid algorithm
to the solution given by the solver scipy.sparse.linalg.spsolve() from the SciPy



56 CHAPTER 8. RESULTS AND DISCUSSION

library in python (sparse matrices were used to optimize the performance). The
program was terminated either after 1000 V-cycles or if the tolerance 10−12

had been reached, i.e. if ||e||2 ≤ 10−12. The number of V-cycles to reach the
tolerance for the different problems are shown in Table 8.2.

Table 8.2: Number of V-cycles until the tolerance ||e||2 ≤ 10−12 was reached.
For the sine problem, the error diverged when using RK3. However, when the
number of grids was lowered to 12, the multigrid algorithm converged after 21
V-cycles.

smoother function Number of V-cycles

RK2
sine 20
monotone 16
concave 23

RK3
sine did not reach - (24 with 12 levels)
monotone 17
concave 26

The error diverged when solving the sine problem using RK3. The reason for
this is that the parameters from the finest grid are too inaccurate for the coarsest
level. These parameters, i.e. α1 = 0.11, α2 = 0.315, and ∆t∗ = 4.128 ·10−3 ·212,
give the value

max
(x,θ)∈[0,2]×[π/2,π]

|Ps(z(c, x, θ; r))| ≈ 249 (8.5)

for the coarsest level (to guarantee convergence, a value of less than one is
needed). When the number of grids was changed to 12 instead, the algorithm
converged after 24 V-cycles.

The initial value, the solution after one time step from the SciPy solver, and
the solution after one time step from the multigrid algorithm using RK2 are
shown for each of the example problems in Figure 8.1. The solutions from the
multigrid algorithm overlap with the solutions from the SciPy solver showing
that the multigrid algorithm computes the correct solution.

Except for the sine problem, lowering the number of grids for the methods
did not improve upon the number of V-cycles. This is shown in Table 8.3 and
Figure 8.2.
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(a) Sine function. (b) Monotone function.

(c) Concave function.

Figure 8.1: Solutions of the example problems after one time step. The blue
lines show the initial values, the orange lines show the solutions calculated using
a solver from the SciPy library in python and the green lines show the solutions
from the multigrid algorithm.

Table 8.3: Number of V-cycles to reach tolerance for the three different problems
using the multigrid method with different number of grids. A dash represents
that the algorithm did not reach the tolerance within 1000 V-cycles.

Number of grids 1 2 3 4 5 6 7 8 9 10 11 12 13

RK2
sine - - 375 162 77 37 19 19 19 19 19 19 20
monotone - - - 475 223 109 54 27 16 16 16 16 16
concave - - - 488 230 112 56 28 23 23 23 23 23

RK3
sine - - 235 103 49 25 24 24 24 24 24 24 -
monotone - - 690 301 143 70 34 17 17 17 17 17 17
concave - - 713 312 147 72 35 26 26 26 26 26 26
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(a) Sine function. (b) Monotone and concave function.

Figure 8.2: Lin-log plots of the results from Table 8.3. The green lines represent
RK2 and the red lines represent RK3.

In general, increasing the number of grids improved the convergence rate.
When using few grids, the three stage smoother RK3 performed better than the
two stage smoother RK2. However, when a lot of grids are used, RK2 performed
slightly better than RK3. The likely reason for this is that, since the degree
of the stability polynomial for RK3 is higher than the degree of the stability
polynomial for RK2, the value of the polynomial is more affected by the 1/r
term of

z = − c
r
− ca(x)(1− exp(−iθ)) = −c

[
1

r
+ a(x)(1− exp(−iθ))

]
,

which changes between levels.
Approximately the same number of V-cycles are needed for solving the mono-

tone function and solving the concave function when only using few grids (for
both RK2 and RK3). This was a likely outcome since both problems have similar
upper bounds for the convergence rate for the high frequency error components
on the finer grids, as was discussed above.

8.4.2 Using linear functions

Using the idea from subsection 6.2.3, the optimization problem (6.10) was solved
with the coefficient functions changed to linear functions

a(x)→ x

and the range set to [amin, amax]

[xmin, xmax]→ [amin, amax].

For the sine function the range is a ∈ [0.3, 1.7], and for the monotone and
concave functions the range is a ∈ [1, 5]. The results are shown in Table 8.4.
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Table 8.4: Coefficients of RK2 and RK3 for the top level. Here linear functions
were used instead of the coefficient functions. The range [0.3, 1.7] corresponds
to the sine function and the range [1, 5] corresponds to the monotone function
and the concave function.

smoother range c ∆t∗ α1 α2 max |Ps|

RK2
[0.3, 1.7] 1.01 2.630e-3 0.265 - 0.7397
[1, 5] 0.335 8.724e-4 0.27 - 0.7187

RK3
[0.3, 1.7] 1.585 4.128e-3 0.105 0.3 0.6313
[1, 5] 0.525 1.367e-3 0.11 0.315 0.6039

As expected, the results in this table are the same as the results in Table 8.1
for the corresponding coefficient functions a(x).

8.4.3 Lookup table

Since a lookup table can be calculated in advance, the regions used in a look up
table can be very accurate. However, the more accurate the regions, the more
time is needed to calculate the coefficients for the lookup table (and the more
storage is needed). Thus, the effect of using a somewhat inaccurate lookup table
was tested by calculating coefficients for regions a bit larger than [amin, amax].
If a lookup table was created for the ranges [0, n] for n = 1, 2, ...N for some
integer N ≥ 5, then the smallest range covering [0.3, 1.7] corresponding to the
sine problem would be the range 0, 2 and the smallest range covering [1, 5]
corresponding to the other two problems would be [0, 5]. Therefore, coefficients
were solved for for the ranges [0, 2] and [0, 5] (Table 8.5).

Table 8.5: Coefficients for RK2 and RK3 for the top level (calculated using
linear functions).

smoother range c ∆t∗ α1 α2 max |Ps|

RK2
[0, 2] 0.995 2.591e-3 0.24 - 0.9974
[0, 5] 0.395 1.029e-3 0.23 - 0.9990

RK3
[0, 2] 1.685 4.388e-3 0.085 0.245 0.9956
[0, 5] 0.675 1.758e-3 0.085 0.245 0.9982

These coefficients were used to solve the three example problems (Table 8.6
and Figure 8.3). With RK2, the algorithm converges. However, when using
RK3 with the coefficients from Table 8.5 the error diverged, even when only
using few grids.
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Table 8.6: Number of V-cycles to reach tolerance when using coefficients from
Table 8.5.

Number of grids 1 2 3 4 5 6 7 8 9 10 11 12 13

RK2
sine - - 378 165 78 38 21 21 21 21 21 21 21
monotone - - 913 400 190 93 46 25 24 23 23 23 24
concave - - - - 217 96 78 76 76 76 75 76 76

RK3
sine - - - - - - - - - - - - -
monotone - - - - - - - - - - - - -
concave - - - - - - - - - - - - -

Figure 8.3: Lin-log plot of the results for RK2 from Table 8.6.

Since setting the lower boundary to 0 might be too limiting for the perfor-
mance, a test was done with 0.1 as the lower boundary, so that coefficients were
solved for the ranges [0.1, 2] and [0.1, 5]. The coefficients are shown in Table 8.7,
and the results from solving the problems using these coefficients are shown in
Table 8.8 and Figure 8.4.

Table 8.7: Coefficients for RK2 and RK3 for the top level.

smoother range c ∆t∗ α1 α2 max |Ps|

RK2
[0.1, 2] 0.95 2.474e-3 0.255 - 0.9072
[0.1, 5] 0.39 1.016e-3 0.25 - 0.9608

RK3
[0.1, 2] 1.545 4.023e-3 0.095 0.275 0.8538
[0.1, 5] 0.645 1.680e-3 0.09 0.265 0.9360



8.4. EXPLICIT RUNGE-KUTTA SMOOTHERS 61

Table 8.8: Number of V-cycles to reach tolerance using coefficients from Ta-
ble 8.7.

number of grids 1 2 3 4 5 6 7 8 9 10 11 12 13

RK2
sine - - 396 172 82 39 20 19 19 19 19 19 19
monotone - - 924 404 191 94 47 23 19 19 19 19 19
concave - - 957 419 199 96 73 72 71 71 71 71 71

RK3
sine - - - 106 50 36 36 36 36 36 36 36 36
monotone - - - - - - - - - - - - -
concave - - - - - - - - - - - - -

Figure 8.4: Lin-log plot of the results from Table 8.8. The green lines represent
the results for RK2 and the red line represents the results for the sine problem
for RK3.

When using many grids, the convergence rate improved. When using RK2
with 13 grids, the improvement was most noticeable for the monotone problem,
where the solution was found in 19 V-cycles instead of 24, about 21% less. For
RK3, the algorithm converged for the sine problem. However, the errors of the
other problems still diverged. When using few grids, the improvement is not
so clear. For example, the convergence rate was a bit worse for the sine and
monotone problems when using the RK2 smoother with only 3 grids. Thus, the
performance can potentially be improved by using a two dimensional lookup
table, with different upper and lower boundaries. However, no clear conclusion
can be drawn from the examples with 0.1 as lower boundary for the ranges.
(In practice, the regions used for the lookup table can be considerably more
accurate.)

If a lookup table is used, RK3 requires more accurate regions than RK2,
which is more likely to converge if the parameters of the smoother are sub-
optimal.



62 CHAPTER 8. RESULTS AND DISCUSSION

8.5 W-smoothers

As with the Runge-Kutta smoothers, only W-smoothers with 2 and 3 stages,
referred to as W2 and W3, were studied. The optimization problem is given by
(7.21). The only additional parameter for the W-smoothers is η, chosen to have
the range [0, 1]. Since these methods are derived from implicit Runge-Kutta
schemes, they can use a lot larger pseudo step sizes. By using a very large fixed
value of c, one can optimize for one less parameter. Here c was set to c = 1016,
giving ∆t∗ ≈ 2.604 · 1013. For a given level, a grid of 200 × 200 × 200 × 200
points was chosen for the parameter space α1 × η × x × θ for W2 and a grid
of 200 × 200 × 200 × 200 × 200 points was chosen for the parameter space
α1 × α2 × η × x× θ for W3.

8.5.1 Simplified W-smoother

The implementation of the W-smoothers was simplified in the same way as the
RK smoothers, i.e. by only using the coefficients calculated for the finest grid,
and multiplying ∆t∗ by two when moving down levels. The coefficients obtained
for the different smoothers for the fine grid of n = 8192 grid cells are shown in
Table 8.9.

Table 8.9: Coefficients of W2 and W3 for the top level of the three problems.

smoother function ∆t∗ α1 α2 η max |Ps|

W2
sine 2.604e13 0.25 - 0.5 2.958e-31
monotone 2.604e13 0.25 - 0.5 9.861e-32
concave 2.604e13 0.25 - 0.5 9.861e-32

W3
sine 2.604e13 0.1 0.32 0.4 2.220e-16
monotone 2.604e13 0.045 0.275 0.45 1.863e-17
concave 2.604e13 0.045 0.275 0.45 1.813e-17

As expected from subsection 7.3.4, the coefficients calculated for the mono-
tone and concave function were the same. The values of max |Ps| in this table
are worse for the three stage smoother W3 than they are for the two stage
smoother W2. This could mean that a finer grid is needed for the search space
for the parameters α1, α2, and η.

Since the values of max |Ps| are so small for both W2 and W3, meaning
that the high frequency error components should converge very fast, at least
for the top level, the number of presmoothing steps and postsmoothing steps
in the multigrid algorithm were set to ν1 = ν2 = 1. The results are shown in
Table 8.10. The results were slightly better for W2 here, which was somewhat
expected considering the values of max |Ps| in Table 8.9. Since the algorithm
converges in one V-cycle here even without using multiple grids, it is likely
better to use these iterative algorithms not as a part of a multigrid scheme but
instead by themselves (note that the smoothers here are effectively Rosenbrock
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smoothers, and that this statement is not necessarily true in general for W-
smoothers, where other approximation matrices W are used). In this case it is
better to solve for coefficients in the entire theta-range θ ∈ [−π, π] instead of
optimizing only for the high frequency error components.

Table 8.10: Number of V-cycles to reach tolerance using W2 and W3 with
parameters from Table 8.9.

Number of grids 1 2 3 4 5 6 7 8 9 10 11 12 13
sine 1 1 1 1 1 1 1 1 1 1 1 1 1

W2 monotone 1 1 1 1 1 1 1 1 1 1 1 1 1
concave 1 1 1 1 1 1 1 1 1 1 1 1 1
sine 3 1 1 1 1 1 1 1 1 1 1 1 1

W3 monotone 2 1 1 1 1 1 1 1 1 1 1 1 1
concave 6 1 1 1 1 1 1 1 1 1 1 1 1

8.5.2 Using linear functions

The optimization problem was solved using linear functions with the ranges
[0.3, 1.7] and [1, 5]. The same grids were used for the parameter space as above
to compare the values to Table 8.9. The results are shown in Table 8.11.

Table 8.11: Coefficients for W2 and W3 for the top level. The range [0.3,
1.7] corresponds to the sine function and the range [1, 5] corresponds to the
monotone function and the concave function.

smoother range ∆t∗ α1 α2 η max |Ps|

W2
[0.3, 1.7] 2.604e13 0.25 - 0.5 2.958e-31
[1, 5] 2.604e13 0.25 - 0.5 9.861e-32

W3
[0.3, 1.7] 2.604e13 0.055 0.275 0.55 1.536e-16
[1, 5] 2.604e13 0.045 0.275 0.45 1.959e-17

The only parameters that differed here compared to the corresponding prob-
lem in Table 8.9 were the ones calculated for W3 for the range [0.3, 1.7], which
corresponds to the sine problem, further suggesting that a finer grid was needed
for the W3 smoother. Since the parameters differed, the sine problem was solved
using W3 with parameters from this table. The results are shown in Table 8.12.

Table 8.12: Number of V-cycles to reach tolerance solving the sine problem with
W3 with coefficients from Table 8.11.

number of grids 1 2 3 4 5 6 7 8 9 10 11 12 13
W3 sine 2 1 1 1 1 1 1 1 1 1 1 1 1

With parameters from Table 8.11, the sine function was still solved in 1
V-cycle when using multiple grids. When no additional grids were used, the
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problem was solved in two V-cycles, which is fewer V-cycles than when coeffi-
cients from Table 8.9 were used. Thus, it is not necessarily worse to use linear
functions when solving for coefficients.

8.5.3 Lookup table

The idea of a lookup table was tested for W2. Since W3 performed worse than
W2 in the tests above, and likely need needs finer grids for the parameter search
space, this was not tested for W3. The coefficients calculated for the ranges [0,
2], [0.1, 2], [0, 5], [0.1, 5] are shown in Table 8.13.

Table 8.13: Coefficients for W2 for the top level.

smoother range ∆t∗ α1 η max |Ps|

W2

[0, 2] 2.604e13 0.25 0.5 1.483e-28
[0, 5] 2.604e13 0.25 0.5 2.840e-29
[0.1, 2] 2.604e13 0.25 0.5 2.367e-30
[0.1, 5] 2.604e13 0.25 0.5 2.367e-30

The coefficients calculated for these ranges are the same as the ones for the
original coefficient functions, which shows that the lookup table idea also works
for these problems for the smoother W2.



Chapter 9

Conclusion

In this thesis two different classes of iterative methods, or smoothers, were
studied in the context of multigrid algorithms with the one dimensional linear
advection equation as model problem. The first one was a class of explicit
Runge-Kutta smoothers (RK smoothers). These smoothers can be optimized
by optimizing the eigenvalues of the matrix M := Ps(−∆t∗A) where Ps(z)
is the stability polynomial of the RK scheme, ∆t∗ is a parameter of the RK
smoother, and A comes from the equation system Au = b to be solved. The
variable coefficient linear advection problem results in a matrix M where there
is no general expression for the eigenvalues, and for large matrices it becomes
costly to solve for the eigenvalues iteratively.

Generalized Locally Toeplitz (GLT) theory can be used to find a function,
called the symbol, of a GLT sequence, that describes the asymptotic singular
value distribution, and given some extra assumptions also the asymptotic eigen-
value distribution, of the matrices in the sequence. The larger the matrices, the
more accurately the distributions are described by the symbol. The GLT the-
ory can be used to set up an approximate optimization problem to find good
parameters for the RK smoothers.

For the two stage RK smoother, RK2, the coefficients (excluding the pseudo
time step ∆t∗) did not change considerably between the grids and the algorithm
converged even when the coefficients were a bit sub-optimal. The three stage RK
smoother, RK3, was more affected by the size of the grid, and in all cases here,
when a lot of grids were used in the multigrid algorithm, it was outperformed
by RK2. This might be less of an issue, however, if the bottom level of the
algorithm is fine enough (so that the term 1/r = ∆t/∆x is small). In addition,
when using RK3, the error was more prone to diverge when the coefficients were
sub-optimal.

Given the structure of the optimization problem, it is not necessary to use
the coefficient function a(x) from the problem. Instead one can use a linear
function defined to have the same range as a(x). Therefore, given a range,
solving the optimization problem for a linear function solves the optimization
problem for all coefficient functions with the same range. This makes it possible
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to create a lookup table for the coefficients that can be created in advance
given the discretization of the problem. For this, using RK2 rather than RK3
has some benefits. Firstly, solving for the parameters is less costly in terms of
computing time and storage needed, meaning that more accurate regions may
be used. Secondly, as mentioned above, if the coefficients are a bit sub-optimal,
with RK2 the algorithm is more likely to still converge.

The other class of smoothers studied here was the class of W-smoothers
that was developed from considering implicit Runge-Kutta schemes. These
smoothers are similar to the RK smoothers and are optimized in a similar way.
The eigenvalues to optimize here are the eigenvalues of the matrix M(W ) :=
Ps(−∆t∗W−1A). The ideas of using linear functions and creating a lookup
table for the coefficients work here as well.

Since these smoothers are developed from implicit schemes, the pseudo time
step taken can be significantly larger than for the explicit RK smoothers. This
means that much better convergence rates can be achieved, and for the prob-
lems here the algorithm was able to converge in one V-cycle for the two stage
smoother W2 even when only one grid was used. The three stage smoother,
W3, needed at least two grids to be able to converge in one V-cycle. A possible
reason for this worse performance is that a finer grid might have been needed
in the grid search for the parameters of the smoother.
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