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ABSTRACT

In this project the locations of the proton and neutron drip-lines are predicted using neu-

ral networks and theoretical data obtained by applying the HFBTHO program [19]. For

each of the neural networks a comparison is made between neural network predictions and

experimental data in the region experimental data exists. By comparing the effectiveness

of the networks at reproducing experimental results with the effectiveness of the HFBTHO

program it is found that extensive improvements can be made these results. This indicates

that the application of machine learning exists as a potential method for making corrections

to theoretical modes. Whether the final predictions are sufficiently trustworthy to reach

a conclusion is difficult to determine however this seems to be a potential path for future

development into obtaining data.
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1 INTRODUCTION

In recent years, along with the discovery of new elements, there has been a renewed in-

terest in the properties of nuclei in the super heavy and exotic regions of the nuclear chart.

These properties are the focus of many studies within the fields of atomic physics, chemistry

and nuclear physics where attempts are made to determine the chemical and physical prop-

erties of these less understood nuclei. The difficulty of performing experimental studies on

nuclei with short half lives makes the application of theoretical models the main approach

for determining properties of interest. Within nuclear physics one of the main properties of

interest is the nuclear binding energy of each nucleus, as binding energy provides information

about it’s relative stability. An issue with theoretical approaches within nuclear physics is

that the approximated errors of values obtained experimentally for nuclear binding energies

are orders of magnitude better than what is obtained from theoretical models [10]. The

application of Neural networks and other methods of Machine learning, with their contin-

ued advancement, exist as a potential method of providing corrections to the theoretically

determined values in order to bridge this gap.

This work will focus on exotic nuclei and the application of neural networks in determining

the position of the neutron and proton drip-lines. The drip-lines designate the limit of

nuclear stability and occur when the nucleus goes from requiring energy to remove nucleons

to producing energy when they are removed, as such any nucleus beyond the drip-line will

decay immediately. The topic of exotic nuclei specifically has become a focus recently with

experimental results from recently built Radioactive isotope beam facilities such as RIBF at

RIKEN involving exploration of neutron halo structure using breakup reactions[21]. Neutron

halo structure refers to a nucleus structure consisting of a central nucleus with orbiting

more loosely bound neutrons. Other similar experiments concerning exotic nuclei are being

performed or planned at SPIRAL2 at GANIL in France[6], FAIR at GSI in Germany and

FRIB at MSU in the USA. With continued experimental studies it remains important to

have predictions for the drip-line location in order to plan future experiments and expand

knowledge concerning possible locations of the drip-line.

This report is structured such that section 2 (Theory and Background) will first explain

the basics of neural networks, followed by some of the general properties of nuclei and dis-

covered properties unique to exotic nuclei including the method of determining the location
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of the neutron drip-line. Section 2 will then go on to explain the model used in this work to

obtain theoretical results for properties of nuclei. Section 3 will then describe the method

by specifying the parameters used for the HFBTHO program. Section 4 then presents and

discusses results obtained through the different methods applied, including a basic neu-

ral network result, theoretical model results and the results of neural networks trained by

applying information obtained from the theoretical model. This is followed by section 5,

concluding the report and considering potential future directions for study. Additionally

in appendix A and B the specific neural network setup used in this work and additional

information concerning HFBTHO parameters can be found respectively.
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2 THEORY AND BACKGROUND

2.1 Neural Networks

A neural network is a method of Machine learning which functions using several inter-

connected nodes organised into layers. The name originates from the resemblance to a brain

with it’s connected neurons. As visible in figure 2 a neural network is structured such that

it starts with an input layer followed by a number of hidden layers and ends in an output

layer.

FIG. 1: Basic representation of a neural network

with three input nodes no hidden layers and one

output node, From [3]

FIG. 2: Basic representation of a neural network

with three input nodes one hidden layer with

three nodes and one output node, From [3]

The value of each node can be determined by calculating the weighted sum of nodes

connected behind it, with each layer modified by an activation function. This could be

visualised by considering each arrow in figures 1 and 2 to be the application of a weight

to the value of the originating node. The value of the output node of Figure 1 is by this

method expressed by:

y = ψ

(∑
i

wixi

)
(1)

where wi are the weights applied to the input values xi and ψ is the activation function of

the neural network which maps the weighted sum to the output. For a more complicated

system each layer will have a bias and there will be multiple sums, Figure 2 requires the
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expression:

y = by +
∑
j

wjψ

(
bh,j +

∑
i

wi,jxi

)
, (2)

where by is the bias to the output node, wh,j are the weights for the hidden layer nodes, bh,j

are the biases to the hidden layer nodes, and wx,i,j are the input layer weights to the hidden

layer nodes. The output of these expressions is the prediction of the network. Improving

the predictions is done by comparison to a target set where a loss score determined using:

Score =
∑
i

(yi − ti)2 , (3)

where ti are the target values. This loss score is a measure of the quality of the prediction

and is used by an optimizer to improve the neural network. The optimizer works to minimize

the loss score by adjusting the weights in the neural network. The network is then run with

the new weights gaining a new loss score, where this process is repeated until a satisfactory

loss score is achieved.

In order to further improve the neural network an additional method called cross valida-

tion can be applied. This method splits the target and input sets into a number of smaller

sets, several networks are then trained, where each network is trained on all but one of the

smaller sets. After the networks are trained they make predictions on the remaining set and

obtain a prediction score for their effectiveness on a set were they where not trained. The

network with the best prediction score is then taken as the final model. This set division

can be visualised in table I.

Full set: set 1 set 2 set 3 set 4 set 5 set 6

run 1: set 1 set 2 set 3 set 4 set 5 test set

run 2: set 1 set 2 set 3 set 4 test set set 6

run 3: set 1 set 2 set 3 test set set 5 set 6

run 4: set 1 set 2 test set set 4 set 5 set 6

run 5: set 1 test set set 3 set 4 set 5 set 6

run 6: test set set 2 set 3 set 4 set 5 set 6

TABLE I: Visualisation of input and test data division for multiple runs of a cross validation

method of neural network improvement.
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The advantage of cross validation in this work is that it is a method of optimising based

on the effectiveness of the network at making predictions outside the set where the network

is trained. As this work will focus on extrapolation into the exotic region of the nuclear

chart this improvement in predictions outside the trained set is crucial.

2.2 Nuclear Basics

There exist multiple methods for approximating the properties of the nucleus in order to

make effective nuclear models. This work relies on the Hartree-Fock-Bogolyubov method, a

self-consistent mean field theory approach explained in a later chapter. A more commonly

used model is the nuclear shell model. However, it is important to understand why ap-

proximations are necessary in the first place. Ideally the structure and dynamics of atomic

nuclei could be described on the basis of the fundamental underlying theory of the strong

interaction, quantum chromodynamics (QCD). The issue that arises is that the protons

and neutrons that make up the nucleus are complex systems constructed from quarks and

gluons. While free nucleon-nucleon interactions can be measured experimentally and are

well described theoretically, inside an atomic nucleus the interaction between two nucleons

changes based on the presence and locations of other nucleons in the system. This leads

to a necessity of using effective interactions to describe the interactions between protons

and neutrons in an atomic nucleus. The strong interaction between nucleons is a van der

Waals like interaction that governs a two-component quantum many-body system. Direct

analytical calculations of such systems are currently not possible [15].

In the nuclear shell model the basic idea is to approximate the potential part of the Hamilto-

nian for the Schrödinger equation of the system of nucleons that makes up the nucleus with

a central potential. This approximation gives rise to groups of energy levels referred to as

shells which are filled following the Pauli exclusion principle. In order to determine values

for nuclear properties of nuclei one needs a method of determining the Hamiltonian and

solving the Schrodinger equation of the system. In a simplified scenario where we restrict

discussion to one and two-body interactions we can solve the Schrodinger equation of the

system by splitting the Hamiltonian of the system into a one particle H1 and two particle H2

operator. The one particle operator consists of the kinetic energy of the system along with

the central potential. The two particle operator then represents the interactions between
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nucleons in the N-body system giving a Hamiltonian as shown in equation (4).

H = H1 +H2 =
N∑
i=1

[
− ~2

2m
∇2
i + V (r)

]
+

N∑
i 6=j

V (~ri, ~rj) (4)

From here there are multiple methods to continue, including the configuration interaction

method and the self-consistent mean field approach. The configuration interaction method

expresses the wavefunction as a combination of Slater determinants [24]. Solving this for a

many body problem then requires expansion of the wavefunction into a mixed states basis.

This means solving a matrix of Slater determinants the dimensions of this matrix growing

rapidly with an increase in nucleons involved. In general the Hamiltonian in (4) is not

sufficient and requires additional many-nucleons interaction terms, for example the original

Skyrme formulation considered a 3 body contact interaction, that was then reduced to a

density dependent two-body interaction in the case of even-even nuclei[11].

2.3 Exotic Nuclei

Exotic nuclei are nuclei with a high ratio of neutrons to protons, or protons to neutrons

when compared to stable nuclei. These ratios result in the nuclei having different properties

and nuclear structure from non exotic nuclei. Two examples of this in the neutron drip-line

region where nuclei have a large ratio of neutrons compared to protons are neutron skins

and neutron halos, where the nuclei have a skin of neutrons around a central nucleus or

loosely bound orbiting neutrons respectively.

”Neutron skin” refers to the broader distribution of neutrons when compared to protons

in nuclei with a high ratio of neutrons. The effect occurs due to a distribution of neutrons

and protons symmetrically according to the amount of each nucleon type being energetically

favorable [20]. The thickness of the neutron skin can be represented by the difference:√
〈r2〉n −

√
〈r2〉p (5)

where
√
〈r2〉a (a = n, p) represents the root mean square standard deviation of a point

like particle a from the centre of the nucleus. The existence of neutron skin has been

observed experimentally for 6He and 8He using high-energy radioactive nuclear beams[12].

For these isotopes specifically the neutron skin thickness has been found to be ≈ 0.9fm [26].

These results and the accounting for neutron skin is important due to its effect on the slope
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parameter of the symmetry energy[12], a parameter of particular importance concerning the

equation-of-state of neutron-star matter [16].

Another interesting property of exotic nuclei in the same region is the neutron halo. In

the region of the neutron drip-line 11Li was discovered to have a far greater matter radius

than what is expected based on the scaling of nuclear mass radii for stable nuclei. Stable

nuclei in general have a mass radius that scales as A1/3, where A is the mass number while

11Li had a mass radius around 30% greater than expected[14]. Neutron halos were discovered

through an interaction cross section based experiment and the result for 11Li suggested ”a

large deformation or a long tail in the matter distribution”[25]. There exist both single

neutron and multiple neutron halos and both cases are caused by loosely bound valence

neutrons moving in an extended region around the core nucleus[7].

FIG. 3: Demonstration of the method for determining the drip-line location, the two large dots

indicating the location determined for two neutron the drip-line. The blue line is produced using

experimental data while the red line is theoretical predictions produced by the HFBTHO program.

The neutron drip-line itself is the limit of nuclear stability in the neutron direction.

The one neutron drip-line is intrinsically connected with the separation energy of a single

neutron (S1n). In terms of binding energy the one neutron drip-line occurs when S1n(N,Z) =
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B(Z,N − 1) − B(Z,N) is approximately zero[13], where B(Z,N) is the binding energy of

the nucleus with proton number Z and neutron number N . This can be considered to be

the point at which the nucleus goes from gaining total binding energy to losing total binding

energy when a neutron is added to the nucleus. At such a point it would be energetically

favorable to immediately emit the new neutron causing the nucleus to ”drip” neutrons when

additional neutrons are added. The limitations of the program applying the theoretical

model in this work restricts us to only considering even-even nuclei leading our investigation

to be about the location of the two neutron drip-line. Similarly to the one neutron drip-line

this occurs when S2n(N,Z) = B(Z,N − 2)−B(Z,N) is approximately zero shown in figure

3. The advantage of the two neutron drip-line over the one neutron drip-line is the one

neutron drip-line occurs earlier and there can exist stable nuclei beyond the one neutron

drip-line. This occurs due to even-even nuclei having higher binding energy than even-odd

nuclei in general, an example of this is helium where 6He and 8He are orders of magnitude

more stable than both 5He and 7He. The two neutron drip-line then more accurately signifies

the point after which there are no stable nuclei.

2.4 Hartree-Fock-Bogolyubov

The program applied to obtain theoretical properties of the investigated nuclei is the HF-

BTHO program. This program finds the ”Axially Deformed Solution of the Skyrme-Hartree-

Fock-Bogolyubov Equations using The Transformed Harmonic Oscillator Basis” [19][18]. As

such the theoretical model central to this work is the Hartree-Fock-Bogolyubov model.

2.4.1 Hartree-Fock Method

The Hartree-Fock Method introduced by D. Hartree, V. Fock and J. C. Slater was de-

veloped with the goal of approximating the ground state properties of a general N-body

problem in Quantum Physics. The original main application of this method was the study

of the Coulomb Hamiltonian consisting of electrons interacting with static nuclei within

atomic physics. When applying this method to nuclear physics one again begins with the

Hamiltonian, in this case an A-body Hamiltonian with A being A = N + Z the sum of the

number of neutrons N and the number of protons Z. This A-body Hamiltonian H can be
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expressed as shown in equation 6

H = − ~2

2m

A∑
i=1

∆i +
∑
i<j

V (xi − xj) (6)

where ~ is the Planck constant, m is the mass of the nucleon here the approximation ne-

glects the minor difference in mass between protons and neutrons in order to simplify the

expression, ∆i is the Laplacian with respect to the xi variables, V is the given potential and

the points xi(1 ≤ i ≤ A) are generic points on R3.

The Hamiltonian H is an operator acting on the closed subspace H consisting of anti-

symmetric functions Φ of x = (x1, ..., xA) ∈ (R3)A such that:

Φ(xσ(1), ..., xσ(A)) = (−1)|σ|Φ(x1, ..., xA) (7)

for all xi ∈ R3(1 ≤ i ≤ A) and for all permutations σ of {1, ..., A}, here |σ| represents the

signature of σ. In order to determine the ground state of this A-body system one considers

that the ground state can be found with equation (8)[17]:

E = Inf

{
(HΦ,Φ)L2/Φ ∈H ,

∫
(R3)A

|Φ|2dx = 1

}
(8)

In nuclear physics it’s important to consider nuclei with large A where one cannot directly

compute equation (8). A suggested approximation by Hartree [8] was to consider wavefunc-

tions Ψ in the form:

Φ(x1, ..., xA) =
A∏
i=1

ψi(xi) (9)

Since this equation does not satisfy the symmetry constraint (7) V. Fock and J. C. Slater

suggested the better choice of Φ as:

Φ(x1, ..., xA) =
1√
A!

∑
σ

(−1)|σ|
A∏
i=1

ψσ(i)(xi) =
1√
A!
det(ψi(xj)) (10)

With this approximation and the expression for the ground state in (8) one can obtain the

following expression for the Hartree-Fock ground state.

E = Inf

{
E(ψi, ..., ψA)/ψi ∈ L2(R3),

∫
R3

ψiψ
∗
jdx = δij for 1 ≤ i, j ≤ A

}
(11)

where [17]:

E(ψi, ..., ψA) =
~2

2m

A∑
i=1

∫
R3

|∇ψi|2dx+
1

2

∑
i,j

∫
R3×

∫
R3

|ψi(x)|2V (x− y)|ψj(y)|2dxdy

− 1

2

∑
i,j

∫
R3×

∫
R3

ψi(x)ψ∗j (x)V (x− y)ψ∗i (y)ψj(y)dxdy (12)
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This equation can be expressed in terms of density matrix[17]:

E(ψi, ..., ψA) =
~2

2m

∫
R3

τdx+
1

2

∫
R3×

∫
R3

ρ(x)V (x− y)ρ(y)dxdy

− 1

2

∫
R3×

∫
R3

V (x− y)|ρ(x, y)|2dxdy (13)

where τ(x) is the density of the kinetic energy given by τ =
∑A

i=1 |∇ψi|2, ρ(x) is the

density given by ρ =
∑A

i=1 |ψi(x)|2 and ρ(x, y) is the density matrix given by ρ(x, y) =∑A
i=1 ψi(x)ψ∗i (y). In both cases the second and third terms are generally referred to as the

direct term and the exchange term respectively. The density matrix form in equation (13) is

interesting as it shows that the energy of the A-body system can be expressed as a functional

of the density matrix in a way that is similar to the density functional theory.

2.4.2 Bogolyubov Transformation

The Bogolyubov Transformation is a method of including pairing correlations through

the concept of independent quasiparticles. In a mean-field model like the one considered in

the Hartree-Fock Method one has a set of single-nucleon wave functions[1].

{ψi(~x), i = 1, ..., N} , ~x = (~r, s, o) (14)

Where ~r is the position in spacial coordinate, s is the spin index and o is the isospin index

of the nucleon, and N > A is the number of single particle wavefunctions larger than the

number of nucleons. Here creation and annihilation operators are introduced â+i and âi

respectively for a nucleon in the single-particle state ψi(~x) expressed with:

â+i =

∫
d3r
∑
so

ψi(~x)â+x (15)

where â+x is the creation operator for eigenstates of nucleon position. Considering the

independent-particle model where the state of the nucleus is described by the Slater deter-

minant |Φ〉 = det {ψi(~x), i = 1, ..., A} one can use these operators to formally characterise

the independent-particle by â+i |Φ〉 = 0 and âi |Φ〉 = 0 for i = 1, ..., A for occupied and and

unoccupied states respectively. The Bogolyubov transformation then defines independent

quasiparticles as[19]:

bk =
∑
i

(
U∗ikai + V ∗ika

+
i

)
, and b+k =

∑
i

(
Vikai + Uika

+
i

)
(16)
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connecting single particle states to quasiparticle states. In matrix form equation (16) can

be rewritten as:  b

b+

 =

U+ V +

V T UT

 a

a+

 (17)

where in both cases the matrices U and V satisfy the relations [19]:

U+U + V +V = I, UU+ + V ∗V T = I, UTV + V TU = 0, UV + + V ∗UT = 0 (18)

2.4.3 Hartree-Fock-Bogolyubov equations

The Hartree-Fock-Bogolyubov method begins by considering a two-body Hamiltonian in

terms of the annihilation and creation operators of a system of fermions:

H =
∑
i1i2

ei1i2a
+
i1
ai2 +

1

4

∑
i1i2i3i4

v̄i1i2i3i4a
+
i1
a+i2ai3ai4 (19)

where v̄i1i2i3i4 = 〈i1i2|V |i3i4 − i4i3〉 are anti-symmetrized two-body interaction matrix ele-

ments. With the Hartree-Fock-Bogolyubov method the ground state wave function |Φ〉 is

defined as the quasiparticle vacuum bk |Φ〉 = 0 [19]. The expectation value of the Hamilto-

nian in (19) can then be expressed as an energy functional in terms of the normal one-body

density matrix ρ and the pairing one-body density matrix κ:

ρii′ =
〈
Φ|a+i′ ai|Φ

〉
=
(
V ∗V T

)
ii′
, κii′ = 〈Φ|ai′ai|Φ〉 =

(
V ∗UT

)
ii′

(20)

giving

E[ρ, κ] =
〈Φ|H|Φ〉
〈Φ|Φ〉

= Tr

[(
e+

1

2
Γ

)
ρ

]
− 1

2
Tr [∆κ∗] (21)

where

Γi1i3 =
∑
i2i4

v̄i1i2i3i4ρi4i2 and ∆i1i2 =
∑
i3i4

v̄i1i2i3i4κi3i4 . (22)

One finally obtains the Hartree-Fock-Bogolyubov equations by considering variation of the

energy functional (21) with respect to ρ and κ giving:e+ Γ− λ ∆

−∆∗ −(e+ Γ)∗ + λ

U
V

 = E

U
V

 (23)

with a Lagrange multiplier λ correcting the average particle number.
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2.4.4 Skyrme Hartree-Fock-Bogolyubov equations

The Skyrme energy functional models the effective interaction between nucleons[1]. In-

cluding Skyrme forces the energy density functional in (21) becomes [19]

E[ρ, ρ̃] =

∫
d3~r H(~r) (24)

where ρ̃ is the local pairing density and

H(~r) = H(~r) + H̃(~r) (25)

is the sum of the mean-field and total pairing energy densities. The densities H(~r) and H̃(~r)

depend on ρ(~r), ρ̃(~r), τ(~r) and the spin current density Jij(~r). These are the local (diagonal)

densities, that are expressed as [19]:

ρ(~r) = ρ(~r, ~r), ρ̃(~r) = ρ̃(~r, ~r),

τ(~r) = ∇r∇r′ρ(~r, ~r′)|~r′=~r, Jij(~r) = 1
2i

(∇i −∇′i) ρj(~r, ~r′)|~r′=~r.
(26)

Where i and j are the indices of the Jacobian matrix, indicating the coordinates for the

gradients and densities [11]. In this case the density matrices ρ(~r, ~r′),ρi(~r, ~r
′), ρ̃(~r, ~r′) and

ρ̃i(~r, ~r
′) are defined using the non-local versions of the density definitions [19]:

ρ(~rσ, ~r′σ′) = 1
2
ρ(~r, ~r′)δσσ′ + 1

2

∑
i(σ|σi|σ′)ρi(~r, ~r′)

ρ̃(~rσ, ~r′σ′) = 1
2
ρ̃(~r, ~r′)δσσ′ + 1

2

∑
i(σ|σi|σ′)ρ̃i(~r, ~r′)

(27)

These are the standard definitions using the spin-dependent one-body density matrices with

σ indicating spin. This work only considers spin-dependent one-body density matrices allow-

ing for the replacement of the time-odd pairing tensor κ with the time-even pairing density

matrix ρ̃(~rσ, ~r′σ′) = −2σ′κ(~r, σ, ~r′,−σ′). The final Skyrme Hartree-Fock-Bogolyubov equa-

tions resulting from variation of the energy functional (24) with respect to ρ and ρ̃ is then:

∑
σ′

h(~r, σ, σ′) h̃(~r, σ, σ′)

h̃(~r, σ, σ′) −h(~r, σ, σ′)

U(E,~rσ′)

V (E,~rσ′)

 =

E + λ 0

0 E − λ

U(E,~rσ)

V (E,~rσ)

 (28)

where h(~r, σ, σ′) and h̃(~r, σ, σ′) are local fields. The values for h(~r, σ, σ′), h̃(~r, σ, σ′), H(~r)

and H̃(~r) and be expressed and calculated explicitly, the explicit expressions considered in

this work can be found in the HFBTHO program article[19].
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3 METHOD

For repeat ability purposes and further insight into the specifics of the origin of the results

this section will describe parameters used for the HFBTHO program.

3.1 HFBTHO program and application

The HFBTHO program solves the nuclear many body problem numerically by applying

the above Skyrme Hartree-Fock-Bogolyubov equations (28). There have been different ap-

proaches for obtaining numerical solutions such as the two basis method in which the canon-

ical basis is constructed through a combination of the imaginary-time evolution method and

a diagonalization of the Hartree-Fock-Bogolyubov Hamiltonian matrix[28]. The HFBTHO

program instead expands the Hartree-Fock-Bogolyubov solution to the basis of either a har-

monic oscillator or transformed harmonic oscillator. For the work performed in this thesis we

use version 2.00d of the HFBTHO program which applies additional corrections[18]. After

compiling and preparing the program, an input file is used to specify the parameters for the

program. These parameters are shown in table II. Explanations for the default parameters

can be found in the HFBTHO v2.00d publication[18] while the parameters varied for this

work will be discussed here.

The number of shells parameter is used to specify the number of shells used in for

the calculations, where the number of states in the Harmonic oscillator basis equals to

(Nsh + 1)(Nsh + 2)(Nsh + 3)/6 as defined by the program. 14 was chosen as a compro-

mise between run time and accuracy as the run time of the program increases polynomially

with the increase in number of shells. The proton number and neutron number param-

eters specify which nuclei the program is run on. The number iterations and accuracy

parameters where increased and decreased respectively to improve precision of results. The

add initial pairing parameter was set to True to ensure pairing correlations remain non-

zero. The set temperature and temperature parameters were changed as investigation into

their effects found the default value 0 caused a sharp increase in computation time without

significantly improving results[5].
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HFBTHO GENERAL

number of shells = 14 oscillator length = -1.0 basis deformation = 0.0

proton number = 24 neutron number = 26 type of calculation = 1

HFBTHO ITERATIONS

number iterations = 400 accuracy = 1.E-6 restart file = -1

HFBTHO FUNCTIONAL

functional = ’SLY4’ add initial pairing = T type of coulomb = 2

HFBTHO PAIRING

user pairing = F vpair n = -300.0 vpair p = -300.0

pairing cutoff = 60.0 pairing feature = 0.5

HFBTHO CONSTRAINTS

lambda values = 1, 2, 3, 4, 5, 6, 7, 8

lambda active = 0, 0, 0, 0, 0, 0, 0, 0

expectation values = 0.0, -1.7 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HFBTHO BLOCKING

proton blocking = 0, 0, 0, 0, 0 neutron blocking = 0, 0, 0, 0, 0

HFBTHO PROJECTION

switch to THO = 0 projection is on = 0 gauge points = 1

delta Z = 0 delta N = 0

HFBTHO TEMPERATURE

set temperature = T temperature = 0.04

HFBTHO DEBUG

number Gauss = 40 number Laguerre = 40 number Legendre = 80

compatibility HFODD = F number states = 500 force parity = T

print time = 0

TABLE II: Table showing parameters of input file for HFBTHO program where non-highlighted

values are default and highlighted values are changed for this work
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Finally the second value of the expectation values parameter was varied between:

− 10
0.4eln(A)×1.3333

110
and 10

0.4eln(A)×1.3333

110
(29)

for each nucleus to obtain results for different deformations of the nucleus. These values

where chosen based on previous investigation finding that they produced a good range of

deformations[5]. A parameter that is kept as default but can have a large effect on the

program is the functional parameter which designates which Skyrme functional is used. In

this case the Sly4 (Skyrme Lyon 4) interaction is used as it is well tested and is improved

by the neural network in a nice way. Another potential choice would be the UNEDF1

interaction which can be better for describing binding energies[2].
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4 RESULTS

4.1 Initial neutron drip-line prediction

As the HFBTHO program is computer resource intensive and it needs to be applied to

a large number of nuclei, it is helpful to have an initial prediction for the neutron drip-line

location. This will allow for a more informed choice for which nuclei one needs to apply the

program to. Figure 4 shows the prediction made with a neural network trained to reproduce

experimental binding energy values with only neutron number and proton number as inputs.

The produced figure provides a reference point for more trusted future methods along with

an initial estimate for neutron drip-line location.

The figure was produced by running multiple instances of the neural network each pro-

ducing a model used to predict the neutron drip-line location. For every model the root

mean square standard deviation between the model’s predicted binding energies and the

experimental values is obtained and considered to be the model error. The model with

lowest model error is then considered the best model while the error bars for this model

are obtained using an error approximation method. This error approximation method func-

tions by sampling a set containing all models with a model error equal to or less than twice

the best model error, then for each proton number the lowest and highest neutron number

locations of the drip-line from the sampled set are plotted as the error bars. For each of

the figures the neural network was run 100 times producing 100 predictions for the neutron

drip-line location.

It can be seen that when trained without theoretical results there is a large variance in

neutron drip-line location for different models shown by the wide error estimate in figure 4.

This makes this form of prediction unhelpful for determining the location of the drip-line.

However, it remains useful as a point of comparison. The aspects interesting for compari-

son are the distribution of deviation from experimental results, the total root mean square

deviation of 4.66MeV and the width of the error approximation obtained.
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FIG. 4: Location of neutron drip-line along with error estimation predicted by neural-network

without theoretical values, the blue line is the prediction while the dashed blue line is the error

estimation. The even-even nuclei with experimental data are shown along with the difference

between the best model’s predicted binding energy and the experimental data for each of these

nuclei

4.2 HFBTHO predicted neutron drip-line

In figure 4, 86 of the 100 models had a root mean square deviation less then or equal to

twice the best model and where used for the error bars. With a general estimate for the

upper bound of potential neutron drip-line locations the HFBTHO program was run for the

859 AME16 available experimental even-even nuclei together with 3944 even-even nuclei

to the right of the experimental data to find the drip-line. The difference between these

theoretical results and experimental data along with predicted neutron drip-line location

are shown in figure 5. The line produced has no error approximation as rather than the
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location of the drip-line this result should be interpreted as the location of the drip-line as

calculated by the HFBTHO model with the discussed parameters.

FIG. 5: The location of neutron drip-line predicted by theoretical HFBTHO solutions using the

Sly4 interaction is shown with a red line. The even-even nuclei with experimental data are shown

along with the difference between the HFBTHO solved binding energies and the experimental data

for each of these nuclei

Observing the resulting deviation distribution in figure 5 it is visible that while being good

for low nucleon numbers the theoretical values get worse as the nucleon number increases.

An exception to this seems to be the magic numbers where the theoretical values again

approach experimental ones. The most likely source for this increase in deviation is the

number of shells parameter when performing HFBTHO calculations. The importance of a

sufficiently large value for the parameter increases as the mass number A increases. For

low values of A the number of shells = 14 produces good results for the HFBTHO program

while as A increases a larger value is required. Ideally a larger value for the number of shells
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parameter would be chosen such as 20 or 25 however the polynomial increase in computing

time as the parameter increases is a limiting factor[11].

For reference the predictions by the initial prediction network and theoretically produced

values of neutron drip-line location are shown in figure 6.

FIG. 6: Location of the neutron drip-line along with error estimation by neural-network. (see main

text for details) Red solid lines: theoretical neutron drip-line from HFBTHO. Purple lines neural

network prediction for the neutron drip-line (solid) and error approximation (dashed). Additionally

the even-even nuclei with experimental data are shown along with the difference between the best

model’s predicted binding energy and the experimental data for each of these nuclei

Observing the result one can see that the theoretical results fit quite well within the error

bars of the basic network predictions.
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4.3 Improved neural network neutron drip-line prediction

Figure 7 shows the neural network with only proton and neutron numbers as input but

trained to reduce the difference between HFBTHO values and the experimental values.

FIG. 7: Location of the neutron drip-line along with error estimation by neural-network. (see main

text for details) Red solid lines: theoretical neutron drip-line from HFBTHO. Purple lines neural

network prediction for the neutron drip-line (solid) and error approximation (dashed). Additionally

the even-even nuclei with experimental data are shown along with the difference between the best

model’s predicted binding energy and the experimental data for each of these nuclei

In figure 7 all 100 of the 100 models had a root mean square deviation less then or equal

to twice the best model and where used for the error bars. Comparing the results with figure

6 one can see an immediate improvement in both the variation in drip-line location and

root mean square deviation. Another thing to note concerns the distribution of deviation

around the magic numbers, here the deviation from experimental results is worse than the

pure HFBTHO results in figure 5, this is visible by looking at the regions around Z = 50 to
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Z = 70 at N = 82 and Z = 82 at N = 126. The cause of this is likely slight over-correction

by the neural network in these regions.

FIG. 8: Location of the neutron drip-line along with error estimation by neural-network. (see main

text for details) Red solid line: theoretical neutron drip-line from HFBTHO. Purple lines neural

network prediction for the neutron drip-line (solid) and error approximation (dashed). Additionally

the even-even nuclei with experimental data are shown along with the difference between the best

model’s predicted binding energy and the experimental data for each of these nuclei

Finally figure 8 shows the neural network results for a network that takes proton number,

neutron number, deformation, neutron pairing energy and proton pairing energy as inputs

and trains to reduce the difference between HFBTHO results and experimental results. 21

deformations between approximately −0.5 and 0.5 where used along with the correlating

pairing energies for each deformation.

Again in figure 8 all 100 of the 100 models had a root mean square deviation less then or
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equal to twice the best model and where used for the error bars. The inclusion of pairing

energies for different deformations was of interest due to the importance the HFBTHO

program places on pairing correlation when determining binding energies. The results in

figure 8 show considerable improvement in root mean square deviation being an order of

magnitude better than previous results. An unfortunate side effect however is that the

produced drip-line does not seem to be as affected by the magic numbers as the results in

7 which was an expected property of a good drip-line prediction.

These final results show an improvement of 96.21% in the root mean square deviation

indicating the effectiveness of the application of neural networks in recreating experimental

results. The final root mean square deviation of 0.245MeV is also of a similar order of

magnitude to Bayesian neural network approaches performed [22]. The predicted drip-line

location also correlates well with the obtained theoretical drip-line location. There remain

however aspects of this work that could be improved to improve the results. The neural

networks applied in this work function by applying corrections to the results produced by

the HFBTHO program, increasing the accuracy of these theoretical results would increase

the trustworthiness of the drip-line prediction. This is especially important for the final

method producing figure 8 where more HFBTHO data is included in the training of the

network. The main improvement would come from and increase in the number of shells

parameter. This would require setting aside far more time for the obtaining of HFBTHO

values however is especially important for the neutron drip-line calculations where the high

number of neutrons are less bound and require more shells to be modeled correctly. Also due

to requiring a value of 20 or greater for the number of shells parameter to function correctly

the transformed harmonic oscillator basis was not used in this work, with the increase in

number of shells this basis could be used. Finally there exists a third version of the HF-

BTHO program which applies additional corrections and could be used to improve accuracy.

Examples of changes made in the newer version are, inclusion of the full Gogny force and

calculation of the nuclear collective inertia [23]. Additional improvements could also be

made to the final neural network setup, for example 1000 nodes in one hidden layer was

chosen for the neural network node setup based on hyperparameter optimization done by A.

Idini[10]. However this optimisation was done with input and training sets similar to figure

4 with only neutron and proton numbers as input and trained without theoretical data. An
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additional hyperparameter optimization could be done for networks with additional inputs

based on HFBTHO data in order to determine a better hidden node setup. Additionally

normalisation of input parameters could be improved and further investigation into which

input parameters that could be included produce the best effects could be conducted.

The method of producing the results in figure 8 was repeated for the proton drip-line

for figure 9 in order to apply the most successful method in making a prediction for the

proton drip-line as well.

FIG. 9: Location of the n and p drip-lines along with error estimation by neural-network. (see

main text for details) Red solid lines: theoretical p- and n- drip-lines from HFBTHO. Purple lines

neural network prediction for the n- drip-line (solid) and error approximation (dashed). Orange

lines: same as for purple but p- drip-line. Additionally the even-even nuclei with experimental

data are shown along with the difference between the best model’s predicted binding energy and

the experimental data for each of these nuclei
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5 SUMMARY AND OUTLOOK

This work is an investigation into the application of neural networks in making predic-

tions for both nuclear binding energies and the neutron and proton drip-line locations. The

results in this work can be largely gathered into three investigations, the effectiveness of

simple prediction methods, improvements that can be made for better predictions and final

drip-line predictions.

Two initial predictions where made, one through applying a basic neural network setup,

and the other made by applying theoretical results from the HFBTHO program. The basic

network was trained to reproduce experimental results taking proton and neutron numbers

as input and achieved a root mean square standard deviation from experimental results

of 4.656MeV. The theoretical predictions achieved a root mean square standard deviation

from experimental results of 6.460MeV. The fact that the neural network was able to more

closely reproduce experimental results than the HFBTHO program indicated the potential

for network application in predicting experimental results.

With initial predictions made the neural network was improved by providing theoretical

information to the neural network in two different ways. First the network was trained

to decrease the difference between theoretical and experimental results by applying a cor-

rection, this network still only took proton and neutron numbers as input and achieved

a root mean square standard deviation from experimental results of 1.715MeV. Another

improvement was made to this network by increasing the number of inputs, by providing

the network input information about the pairing energies of the neutrons and protons for

different nuclei deformations the network achieved a root mean square standard deviation

from experimental results of 0.244MeV. The inclusion of theoretical values in neural network

training improved deviation from experimental results by an order of magnitude indicating

the validity of this method of binding energy prediction.

With a network setup chosen predictions where made for the proton and neutron drip-line

locations, these predictions are shown in figure 9. These results can provide a reference

point for future investigations in the regions of the drip-lines. The results achieved also pro-

vide evidence for the application of neural networks being a reasonable option for making

predictions within nuclear physics.
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There exist several potential directions for further investigation including methods of

improving the current results and additional applications for the methods applied in this

work. The current results could be improved through an increase in the number of shells

parameter of the HFBTHO program increasing the accuracy of theoretical values for larger

nuclei. Use of a newer version of the program and the application of a transformed har-

monic oscillator basis are alternative routs for theoretical value improvements. Additionally

investigation into other programs that apply theoretical models to obtain theoretical results

could be done. Further improvements could be made the the choice of hidden nodes of the

neural network by performing additional hyperparameter optimization. Finally the methods

applied here could be applied in the investigation of Q-alpha values for super heavy nuclei.

Similarly to predicting the neutron drip-line, by expanding the region where HFBTHO val-

ues are calculated it would be possible to use the networks from this work to make Q-alpha

value predictions.
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APENDIX A: SPECIFIC NEURAL NETWORK

The neural network used in this this work applies the python programming library Keras

based on Tensorflow[4]. In this work the applied neural network was configured in the

following way:

The number of input and output nodes where taken as 50 and 1 respectively, allowing for

the input of multiple characteristics obtained from the HFBTHO program while only the

resulting binding energy is of interest in this work.

The number of hidden layers and nodes per hidden layer where chosen as 1 and 1000

respectively, this choice correlates with an investigation into the validity of neural network

use in binding energy predictions by A. Idini[10].

The epochs, referring to the number of iterations allowed when minimizing the loss func-

tion was chosen as 2500.

The activation function used for input layers was a “sigmoid” activation function while

a ”ReLU” activation function was used for the hidden layer.

Due to the low number of hidden layers no dropout was used leaving dropout rate as

zero.

The weights and biases were initialised by taking random numbers with a mean value

of 0 and standard deviation of 0.05. This varied the starting point of the network causing

multiple runs to result in different final weights, alowing for the reduction of the importance

of starting weights in the final predictions

The RMSprop optimizer was chosen for use as optimizer.

For cross validation 10 sets where used where the Python library scikit-learn was used

for the data processing in cross validation.

The experimental data used in training and comparison comed from the 2016 atomic

mass evaluation or AME16[9][27].
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APENDIX B: ADDITIONAL HFBTHO PROGRAM INFORMATION

This Apendix will go give a short description of the parameters of the HFBTHO program

which where not discussed in the main text where descriptions where obtained from the

HFBTHO v2.00 documentation [18]. The oscillator length parameter allows fer the input

of a desired oscillator length in fm.

The basis deformation parameter allows for the axial deformation of the basis with only

axial quadrupole deformations possible, negative values correspond to an oblate basis.

The type of calculation paramiter defines the type of calculation to be performed where 1

signifies standard HFB calculations and for -1 the code will approximate particle-number

projection by the Lipkin-Nogami prescription.

The restart file parameter determines whether the calculation will begin from an existing

solution (-1) or begin by solving the Schrödinger equation for a Woods-Saxon potential (1).

The type of coulomb parameter determines the Coulomb potential is considered, with 0

representing no direct or exchange term, 1 representing only the direct term and 2 repre-

senting the inclusion of both the direct and exchange terms.

The user pairing paramiter when set to true (T) aloes the user to set some charactaristics

of the paring interaction.

The vpair n parameter sets the value of the pairing strength (in MeV) for neutrons.

The vpair p parameter sets the value of the pairing strength (in MeV) for protons.

The pairing cutoff parameter sets the energy cutoff (in MeV) where all quasiparticles with

energy lower than the cutoff are taken into account in the calculation of densities.

The pairing feature parameter enables one to tune the properties of the pairing force where

for value 0 the pairing force has pure volume character, for value 1 the pairing force is only

active at the surface and inbetween 0 and 1 the pairing force has mixed volume-surface

characteristics.

The lambda values are a series of 8 integers which define the multipolarity of the multipole

moment constraints.

The lambda active parameters defines which of the multipole moments operators will be

used as constraints.

The expectation values parameters specifies the value of the constraint for each multipo-

larity.
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The proton blocking and neutron blocking parameters determine the blocking configuration

for protons and neutrons respectively.

The switch to THO parameter controls the use of the transformed harmonic oscillator ba-

sis.

The projection is on parameter determines whether or not particle number projection (af-

ter variation) is used.

The gauge points parameter determines the number of gauge points used in particle number

projection.

The delta Z and delta N parameters specify the values for δZ and δN used for HFB result

projection if particle projection is on.

The number Gauss and number Laguerre parameters specify the number of Gauss-Hermite

and Gauss-Laguerre integration points for integrations along the elongation and perpendic-

ular axis respectively.

The number Legendre determines the number of Gauss-Legendre integration points for the

calculation of the direct Coulomb potential.

The compatibility HFODD parameter enforces the same HO basis as in HFODD when set

to true. The number states parameter is used when compatibility with HFODD is enforced

and determines the total number of states in the basis.

The force parity parameter when set to true enforces the conservation or breaking of parity

depending on the multipolarity of the multipole moments used as constraints.

Finally the print time can be used to display the time taken by some of the major routines.
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