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Abstract

In this thesis, alternatives for replacing an RFID card + PIN based access control
solution for office buildings with a mobile applications are evaluated. The proposed
solutions are based on a probabilistic fingerprinting approach where distributions
of RSSI are approximated and stored in a fingerprint database during an initial
offline phase. Unlike traditional fingerprinting applications, the solution utilize the
fact that only position relative to the different doors is required by solely creating
fingerprints at each doors position as opposed to in a grid of the building. In the
following online phase, Maximum Likelihood Classification is applied to find the
best match between a users RSSI and objects in the database, granting access to
the respective door.

Alterations are made to the original solution to counteract a) restrictions imposed
on the Android API which slow down Wi-Fi RSSI scanning and b) decreased ac-
curacy with too many doors densely placed. The alternate Wi-Fi solution uses
the previously received RSSI sample to create a coarser estimation of location,
allowing the user to choose between the three closest doors for instant authenti-
cation. For improved accuracy with tightly grouped doors, a geomagnetism based
solution is used that use fingerprints similar to the Wi-Fi solution, but that are
not subjects to spacial variations in the same manner.

Additionally, behaviour of Wi-Fi signals in an indoor office environment is mea-
sured in terms of spatial variations and line of sight obstruction. In turn, different
AP setups and how they affect localization performance are evaluated, along with
improvements made to the RSSI sampling process to account for human obstruc-
tion of AP line of sight during use.

Finally, results from testing in a dedicated test environment show that all of the
solutions can be suitable for real use in different scenarios. The thesis provides
concrete conclusions of how each solution can be applicable for different use cases,
or improved upon further with other hardware or technologies.
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Popular Science Summary

The most common way of providing access control to buildings is the
combination of an RFID card and a PIN code. However, carrying
around a card and briefly interacting with the door unit is not very
convenient for the frequent user. This work has produced several mo-
bile solution alternatives that, using Wi-Fi and the earths geomagnetic
field, determines user proximity to the doors to grant or deny access.

Since many companies employ an RFID + PIN based solution as a safety measure,
it is reasonable to assume that many would desire a more convenient option, pro-
vided that safety aspects are not compromised. As most individuals carry a mobile
phone with them daily, a logical approach is to move the functionality to a mobile
application. Assuming that the application is only distributed to authorized users,
similar to the RFID card, the remaining challenge can be equated with detecting
which door such a user is located at when desiring access.

This thesis has resulted in three variations of a mobile application aimed at this
task, that are applicable in different scenarios. The initial solution uses the com-
mon indoor localization algorithm of Wi-Fi fingerprinting, where a database of
different locations is built by sampling Wi-Fi signal strength at the doors loca-
tions. Locating the user is then a simple problem of matching the measurements
received live with the database ones, the closes match is the closest door to the
user. The accuracy is adequate but restrictions in Android makes it slow and
inconvenient to use in practice since the user has to wait too long for the Wi-Fi
scan results.

To provide a faster solution, an alteration was made to instead show the three
closest doors, allowing the user to open a door by pressing the corresponding but-
ton on the application. The reasoning behind this is that the system now can use
the previous scan, which still provides sufficient accuracy for having the correct
door among the top 3. The accuracy is more than sufficient for localization as
long as doors are not placed too densely.

For use cases where many doors are required to be placed within close proximity
of each other, the last solution combines Wi-Fi positioning with a geomagnetic
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component. Modern mobile phones are equipped with inertial sensors that can
sense the geomagnetic field intensity. Since the magnetic field is incredibly stable
within a set position, it is perfect for labeling different positions similar to Wi-Fi
by building up a database. The accuracy with this solution is excellent but the
main problem is that it is difficult to produce enough unique fingerprints for an
entire building. The solution was then to combine with the Wi-Fi solution to let
the Wi-Fi determine a rough estimation of the position while the geomagnetism
determines the finer position in this general area.
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Chapter1
Introduction

1.1 Background

As the world is becoming more security aware there is an increased demand on
secure solutions for authentication and authorization, both from a purely network
based perspective but also from a physical perspective. A common way of address-
ing the issue today is by using an RFID card + PIN combination. This solution
might not always be the most convenient, as you always must carry your card
with you and carry out a brief interaction with the unit. An alternative is to use
your mobile phone, which you most likely already always have in your pocket. A
modern mobile phone contains many different technologies and sensors such as
NFC, BLE, Wi-Fi, Location, etc., and many buildings have smart readers on their
doors that could communicate with said mobile technologies. As the basis for this
project, mobile based applications, where emphasis is put on higher ease of use
rather than improved security, will be evaluated. Using the RFID + PIN solution
as comparison, the mobile based solution should provide quicker and more conve-
nient access without compromising the security aspect.

Multi-factor authentication is an authentication process which combines several
authentication factors to make the system more secure than just using a single
factor. One factor being compromised will not give an intruder access to the sys-
tem but rather all factors must be present. There are four factors that are the
most common [16]:

• What the user knows - passwords,pin code etc.

• What the user has - smart cards, smartphone etc.

• What the user is - face, voice, fingerprint etc.

• Where the user is - GPS, IP address etc.

C. Wang et al. [17] argues that including more factors - while making the system
more secure - can also make the system too complicated or tedious to use. The
example of taking a front photo for face ID, pressing a thumb for fingerprint and
enter a password each time you wish to unlock your phone makes the statement
clear. The system might be secure but the efforts are too cumbersome for a regular
user that interacts frequently with the system. A. Dmitrienko et al.[6] brings
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2 Introduction

up how mobile two-factor authentication solutions - which require no additional
hardware such as smartcards - are a good trade-off between security, usability and
cost. This thesis - similar to C. Wang et al. - aims to combine several factors in a
way that is organic and does not take unnecessary effort from the user, while also
not introducing additional hardware.

1.1.1 Problem Definition

Based on the classic authentication factor categories object-based, knowledge-
based, biometrics-based and location-based, the aim of this project is to com-
bine several authentication factors to scale down the user effort required as far as
possible while remaining within acceptable levels of security. As a constraint of
this project, no emphasis is put on security aspects beyond ensuring that the new
solutions are comparable to the original solution in terms of number and quality
of authentication factors.

The problem of improving the solution in terms of effort required can be split
into two parts:

• Providing a faster way of identifying which door is to be opened and that the
user is in its vicinity, thus limiting the manual interaction with the door or at-
tached readers.

• Automatically or more rapidly identifying that the user is authorized to en-
ter the door, reducing the need of interaction with the application (e.g. password
input/fingerprint scanning).

In practice, the first issue is equivalent to providing a way of localizing the phone
relative to the doors, or in other ways sensing its vicinity.

1.1.2 Related Work

In this section, studies that have addressed problems similar to this thesis are
presented. Furthermore, papers that address either of the aforementioned sub
problems are discussed.

In related projects, solutions typically included few but technical authentication
factors to either achieve high security at the cost of convenience, or low to no ef-
fort solutions with lacking evidence of security. Additionally, many of the solutions
only aim to authenticate the user to a single client (e.g. a computer), while this
project involves the extra step of identifying which door is being requested access
to.

Mobile Authentication Solutions

SoundAuth is a solution that utilizes ambient sound to authenticate users with
minimal effort [3]. SoundAuth can reliably detect whether two devices are co-
located and uses this as the second authentication factor that requires zero effort.
However, this thesis aims to authenticate towards several doors that can all be in
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the same macro location. Separating these with sound would prove difficult and
counter-intuitive.

ZEMFA is another solution that uses both a smartwatch and a smartphone to
capture the mid/lower body’s and the wrist/arm’s so-called gait patterns in order
to authenticate users. [4] This allows the system to authenticate users with zero
effort from the user. However, additional hardware in terms of a smartwatch is
needed.

Sound-Proximity uses RF (radio frequency) signals to communicate and authen-
ticate with a challenge-response protocol when you are in close proximity to your
car. It is an improvement to the Keyless-go system innovated by Mercedes-Benz
in the 90s and it allows the user to reduce needed interaction with the car. [5] A
system like this could be utilized with a car being the door station and the key
being your phone. The problem that needs addressing is that for the car system
there is one key for one car but to be able to open all doors in a building, the key
must work on all doors.

OWC (Optical Wireless Communication) is a complementary or alternative to
the radio frequency communication, like RFID for example. It can be divided into
four categories: free space optical (FSO) communications, visible light communica-
tions (VLC), light-fidelity (Li-Fi), and optical camera communications (OCC). [14]

VLC (Visual Light Communication) is a technique where the fast switching possi-
ble with LED lights are being utilized for wireless communication. L. Fan et al [11]
use this technology for a mobile access control solution by modulating the LED
signal coming from a smartphone’s flash light. However, VLC has the requirement
of having a photodiode receiver which is also true for FSO and Li-Fi.
The most interesting OWC technology for this thesis - since it does not require
additional hardware - is OCC which is compatible with regular cameras. [14] OCC
can be used similar to VLC with fast light switching to avoid flickering but com-
mercial cameras with 25-50 fps are only suitable for video recording. This can be
solved by modulating the signal the receiver side. [15] This would allow for wireless
communication with the door-station and reduce interaction. For example, each
user could have a unique flash sequence to identify themselves with.

UWB (Ultra-wideband) is a technology that provides higher positioning preci-
sion than Wi-Fi (down to 10cm), however it requires additional hardware. [44].
Additionally, most smartphones do not support UWB. It was however added into
iPhone 11 [45], which might be a sign of what is to come. UWB is based on
sending short pulses which operate over several frequencies simultaneously. This
makes UWB less impacted by other radio frequency interference and the short
pulses make it easy to filter out multipath effects. Additionally, UWB does not
suffer from line-of-sight problems and can easily penetrate walls, equipment and
clothing. [46]
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Wi-Fi Based Solutions

The RSSI (Received Signal Strength Indication) of different Wi-Fi access points
can be utilized together with different localization techniques in order to estimate
the position of Wi-Fi enabled devices such as smartphones.[1][2] In [1], the common
localization techniques of trilateration and fingerprinting are compared in terms
of accuracy, computational complexity and resource limitations. Additionally, the
experiments investigate the optimal number of access points, and achieve optimal
results when using the 3 or 4 APs with strongest RSSI. [2] Combines the received
RSSI with corresponding BSSI (MAC address) of each AP in order to create
fingerprints - i.e. measurements of what the RSSI looked like at a certain time,
not to be confused with biometric fingerprints - that will not get confused with
other locations with similar signal strength.

1.2 Restrictions

Figure 1.1: Axis Network Door Station A8207-VE.

The aim of this thesis was to develop a mobile multi-factor authentication solu-
tion either towards the Axis A8207-VE network door station unit, see Figure 1.1,
or a solution that works independently without a door station unit. The door
station has an ultra wide-angle lens 6MP IP camera, an integrated RFID reader
with keypad, a microphone and speaker with acoustic echo cancellation and noise
reduction. There is also additional hardware such as relays, HDMI output and
RS485.[7] Early on in the project discussions it was decided to not introduce new
hardware but to work only with what is available in the unit and in the building.

As stated in the problem definition, security issues beyond the baseline are out
of the scope for this project. Similarly, all forms of usability, user experience and
other design related aspects are omitted. Thus, the design and layout of the system
and application itself is focused solely on ease of testing and evaluation.



Chapter2
Approach

2.1 Method

To find a good solution for the problem, four different solutions have been evaluated
and iterated upon to solve existing known problems or unknown arisen problems.
All of the solutions aims to fulfill the original request for reduced interaction.

2.1.1 QR Scanner with Fingerprint Authentication

To provide a basis for comparison and a fallback solution to use in case other au-
thentication functionality malfunctions, the first solution utilizes fingerprint scan-
ning functionality (biometrics) of the mobile phone to generate a QR code that is
then shown to the door station unit to gain access.

This combination can be directly compared to the original RFID + PIN solution
in terms of security, where possession of the phone corresponds to possession of
the card ("something you have"), bio-metric authentication corresponds to prov-
ing your identity with the photo on the card("who you are"), and a third factor
is provided by proximity to the door ("where you are").

As the application can be created with existing and available technology, using
the Axis Visitor Access [8] for QR generation and recognition as well as Androids
API for fingerprint authentication, [9] it was chosen as the minimum viable way
of fulfilling the original requirements.

Performance is measured in terms of total interaction time, interaction time with
the door station unit, authorization range and rate of failure, and this data is used
as a benchmark for comparison with other solutions and improvements. Lastly,
the application itself will work as a platform for building the improved solutions
on, containing all functionality in one place to facilitate testing and evaluation.

5



6 Approach

2.1.2 Wi-Fi Location with Fingerprint Authentication

The second solution will focus on the fourth factor mentioned in Section 3.1, lo-
cation, or "where you are". The idea is that through Wi-Fi localization it can
be determined which door the user is closest to without any interaction with the
actual door-station.

Every user has a smartphone with the mobile application on it ("something you
have") which they authenticate toward. First, in order to access the app you need
to provide a fingerprint ("who you are"). Secondly, once you have accessed the
application and are standing outside the door, the user can click an "OPEN VIA
WIFI" button which will send the current Wi-Fi data to the server that in turn
determines which door the user is closest to ("where you are") and open it.

Performance is measured in terms of accuracy, i.e. how often is the algorithm
correct in which door you are closest to. Being "closest" to a door in this instance
means being within the threshold distance within which no adjacent door should
be chosen by the localization algorithm.

2.1.3 Three Doors Solution

Figure 2.1: Illustration of three door idea.
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As an alternative solution to the Wi-FI scan, a solution is provided that simply
displays the three closest doors at the time, as seen in Figure 2.1. The displayed
doors continuously update as new scans are being completed. This solution is
based upon the fact that it is not reliant on rapid RSSI scan completions. Since
"old" data - up to six seconds - is sufficient enough to determine the general area,
which should not contain more than three doors placed densely enough to risk
being displayed.

To evaluate this solution, it is established how quickly after moving to a new
door the correct door option shows up in the application. Since the solution uses
the latest signal strength data available, it may take a certain amount of time to
display the correct door immediately after moving there, depending on the layout
of fingerprints. This average time is measured for a given fingerprint configuration
as a performance metric as well as how often no waiting is required.

2.1.4 Wi-Fi Combined with Geomagnetism

To improve the original Wi-Fi solution in subsection 2.1.3, a geomagnetic compo-
nent is combined with the Wi-Fi data for faster localization. In this solution, the
Wi-Fi localization is used to determine macro location, i.e. proximity while geo-
magnetic fingerprints are used to determine micro location. Similar to the Wi-Fi
solution the user will use the mobile application ("something you have"), access it
with a fingerprint ("who you are") and then click "OPEN VIA GEO" which will
determine which door you are closest to and open it ("where you are"). However,
for this solution there will be a marker on the door where you are supposed to
place the phone before pressing open.

In subsection 2.2.6 geomagnetism is discussed further and found to have spatial
discrimination problems since there is a high risk of finding the same values at
several positions in a building. This is what prompted the combination of Wi-Fi
with geomagnetism since Wi-Fi can provide the macro location i.e. which build-
ing/floor/corridor while geomagnetism then can provide micro location i.e. which
door is the best match in this macro location.

To evaluate the solution, tests are performed to estimate how much the geomag-
netic fingerprint changes in a set location to determine the range for a unique
fingerprint. Subsequently, tests at different doors were carried out to measure
the range of the geomagnetic values in the area. With both of these tests, it is
possible to determine the amount of possible fingerprints at a door. If there are
a lot of unique fingerprints at each door then the risk for overlap in the x closest
doors given from the Wi-Fi solution is minimized. If the overlap is small then
more fingerprints can be considered from the Wi-Fi solution and this will improve
the accuracy since the magnetic fingerprints are very stable. The only time this
solution is wrong is when the right fingerprint is not included within the possible
matches.
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2.2 Theory

In this section a majority of the underlying theory and terminology needed to
understand the rest of the paper is introduced. Moreover, some possible problems
are mentioned that are later investigated in section 3.2 and further discussed in
chapter 4.

2.2.1 Micro and Macro Localization

Figure 2.2: Cost and performance for smartphone-based indoor lo-
calization. [37]

Positioning systems are naturally divided into categories based on their strengths
and weaknesses, Figure 2.2 shows such a comparison. The cost usually rises with
the need for additional hardware which is something this thesis aims to avoid, see
section 1.2.

This thesis will continuously refer to the terms micro and macro localization which
are terms that are contextualized a little bit in Figure 2.2. GPS is a good example
of a macro localization technology that does a good job of determining in which
area you are but does not offer any fine grained localization such as which room
inside that building. RFID, sound and visible light are all micro technologies
since they are short ranged and therefore can only determine exact location while
larger areas get blurred together. Wi-Fi and geomagnetism are somewhere in be-
tween although Wi-Fi and geomagnetism lingers more towards macro and micro
respectively.
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2.2.2 Received Signal Strength Indication

In the context of Wi-Fi networking, Received Signal Strength Indication, or RSSI,
is a measurement of the relative power of a received radio signal in a client device.
RSSI is typically measured in decibels relative to milliwatt (dBm) and ranges
between around -30 dBm for excellent reception and -90 dBm on the border of
visibility. [12] As decibels are measured on a logarithmic scale, this means that an
RSSI drop of 3 dB corresponds to a halving of signal strength.

The signal strength in an indoor environment can vary substantially depending
on the layout. FCC regulations require Wi-Fi signals to operate at very low power
levels which means that a concrete wall is enough to degrade the accuracy. Fur-
thermore, users holding a mobile device can block the signal to an access point,
resulting in a 10-15 dBm signal drop.[20] This is because water’s resonance fre-
quency is 2.4 GHz and humans consists of 70% water.[47] Taking into account
the previous paragraph regarding logarithmic scale, a drop of this magnitude is
devastating.

Moreover, RSSI values are shown to vary significantly between different brands
of smartphones. Crucially, if one phone does the offline fingerprinting then an-
other brand might mismatch the fingerprints in the online localization phase.[21]
Signal differences all the way up to 25 dB have been measured in the same loca-
tion, rendering some algorithms useless. However, a way to counteract this is to
utilize signal strength ratios instead of the absolute values. [22]

Hardware such as the router and access point can also make RSSI readings vary
greatly, even between chipsets of the same brand. G. Lui et al. also present some
interesting behaviour of hardware where certain signals drop greatly and then re-
cover, oscillations in the signal and even some chipsets that seem to cache the
RSSI data. It is also concluded that 2.4 GHz suffers from increased interference
which gives the signal readings higher variance. [32]

The RSSI typically changes on large distances due to so called large scale varia-
tions. This allows RSSI fingerprinting to be utilized for positioning since it makes
the signal signature change when a user moves to different parts of the room, i.e.
different distances from the access points.[23] The way RSSI changes with distance
can be described by a path loss model, see Equation 2.1. d is the distance from a
node, n is specific for an environment and C is a constant. [48]

RSSI = −10 · n · log10(d) + C (2.1)

However, there are also small scale variations that are harder to deal with. Within
centimeters range the signal can change in the size of 10 dB. [23]
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2.2.3 Fingerprinting Localization Technique

Fingerprinting is a widely used localization technique that consists of two different
phases.

In the first phase, commonly referred to as the "offline phase", some geographi-
cally unique data is collected and stored as a fingerprint in a database. As it is
impossible to sample at every possible physical location, fingerprints are typically
combined into a radio map grid with a set distance between cells.[13] The granu-
larity of the fingerprints - see Figure 2.3 - depend on the desired level of accuracy,
where a coarse grid of fewer, large fingerprints can be sufficient to achieve a very
rough estimate of position, but where a detailed grid of many small fingerprints
are required for greater accuracy.

In the second phase, the "online phase", the tracked client device captures the
same type of data in real-time for comparison with the values in the database,
determining the most similar fingerprint and thus also an estimate of position.

Figure 2.3: Coarse vs. fine grained fingerprint maps.

Due to the fact that RSSI can be easily accessed with little to no hardware mod-
ification of modern mobile phones and other portable devices, and that Wi-Fi
networks already are available in many indoor environments, Wi-Fi RSSI is the by
far the most commonly used fingerprinting measurement in recent papers and stud-
ies. In theory however, any data that can be measured and varies geographically
in a similar manner could be used for the same purpose, and other measurement
examples that are used on their own or proposed in research papers include blue-
tooth RSSI, magnetometer data and landmark features (locational characteristics
observable e.g by camera).

2.2.4 Deterministic Fingerprinting

To determine the closest match between a real-time sample and a fingerprint in
the database, systems typically utilize one of two different algorithm types; either
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a deterministic or a probabilistic approach. Deterministic algorithms minimize
the distance between a detected signal vector and those of the database to get
the closest match corresponding to the estimated position. The distance metric
may or may not be relative to the actual physical distance, and some common de-
terministic algorithms include k Nearest Neighbour (kNN) utilizing the euclidean
distance between vectors, the Centroid method calculating the average of distances
to single access points in the database, and more advanced methods such as the
support vector machine (SVM) and artificial neural networks (ANN).[24][26].√∑

(x̄′i − x̄i)2 (2.2)

Equation 2.2 shows the Nearest Neighbour formula utilized in kNN.

2.2.5 Probabilistic Fingerprinting

In deterministic algorithms, the fingerprints consist of the average RSSI value that
was sampled over the duration of the offline phase. This leads to lost information,
as the mean says nothing about the underlying distribution of signal strength.
Probabilistic algorithms address this by instead storing the RSSI probability dis-
tribution of each access point as fingerprints. Some studies suggest that the signal
strength distribution can be assumed to be Gaussian[23][28] while others conclude
that this is not always the case and that the distribution might be negatively
skewed or even bi-modal.[30][31] In the online-phase, probabilistic algorithms are
used to retrieve the location that maximizes the posterior probability of each lo-
cation in the fingerprint database, given the real time sample data. This is done
through a combination of Bayes theorem and Maximum A Posteriori estimation[26]

Bayes’ Theorem

Bayes’ theorem, (also known as Bayes’ rule, Bayes’ law) as described in Equa-
tion 2.3 describes the probability of event A occurring, given occurrence of event
B.

P (A|B) =
P (B|A)P (A)

P (B)
(2.3)

In probabilistic fingerprinting, this can be used to describe the problem as:

P (FP|AP_RSSI) =
P (AP_RSSI|FP)P (FP)

P (AP_RSSI)
, (2.4)

where AP_RSSI = (RSSI1, RSSI2, ...RSSIn) is the vector of observed signal
strength to corresponding n access point points in the online phase, and FP is a
location fingerprint in the database.

When using Bayes’ theorem in fingerprinting, the goal is to acquire the most
likely position FP given an RSSI vector AP_RSSI [40] i.e.

argmaxFP [P (FP|AP_RSSI)] (2.5)
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Using Equation 2.4, Equation 2.5 can be rewritten as following:

argmaxFP [
P (AP_RSSI|FP)P (FP)

P (AP_RSSI)
] (2.6)

Since P (AP_RSSI) is a constant and the same for everyone [40], i.e. the prob-
ability to get a certain observation vector AP_RSSI will not change with which
FP that is considered, this means that it can be removed. Moreover, since the
previous location is not taken into account in the algorithm, the probability to be
at a certain position can be seen as a uniform distribution [26]. This means that
also P (FP) does not have to be considered in the maximization, leaving the final
formula as:

argmaxFP [P (AP_RSSI|FP)] (2.7)

The conditional probability P (AP_RSSI|FP) can be estimated in several ways
[26], one of them being estimating the distribution from normalized histograms
which is the chosen method for this thesis, as further described in subsection 3.2.2.

Maximum Likelihood Classification

Deterministic algorithms discussed in subsection 2.2.4 such as Nearest Neighbour
work relatively well but they do not take into account standard deviation [33]. As
N. Pritt [33] has concluded, the distributions to different APs can vary greatly.
Signals that are not in line-of-sight (NLOS) have a much wider distribution and
this needs to be reflected in the AP scoring.

As mentioned in the previous paragraph, the prior probability is uniform and
does not have to be included in the maximization. This makes Maximum A Pos-
teriori equal to Maximum Likelihood and allows us to incorporate the theory of the
previous section. The standard normal distribution probability density function
looks as following:

P (AP_RSSI|FP) =
1

σ
√

2π
e−

1
2 ( x−µσ )2

(2.8)

However, the signals from different APs can be considered independent, which
means Equation 2.8 can be rewritten. With Si being standard deviation of APi,
x̄i is mean of APi and x′ is the current RSSI at unknown position. [33]

P (AP_RSSI|FP) =
1

(
∏
si)(2π)n/2

e
− 1

2

(
Σ
x̄′
i
−x̄i
si

)2

(2.9)

By taking the natural log and multiplying with -1 and removing constants the
result is: [33]

g(x̄′) = ln(
∏

si) +
1

2

∑(
x′i − x̄i
si

)2

(2.10)

Which is the function that is minimized in order to acquire the maximum likelihood
estimation. Multiplication with -1 to simplify is what makes the function be
minimized instead of maximized as one would expect when trying to maximize a
probability.
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2.2.6 Geomagnetism

Earth’s magnetic field, also referred to as geomagnetism, is a signal that can be
utilized for indoor localization. It is more cost effective than Wi-Fi since it requires
no additional hardware except for the smartphone itself. Additionally, geomag-
netism supposedly outperforms Wi-Fi in differentiating locations. [37]

The earth’s magnetic field consists of several parameters but are usually expressed
in x,y and z coordinates.[34] The geomagnetic field intensity (GFI) is very stable
on the same place on the earth. However, a lot of local anomalies and distortions
are caused by ferromagnetic materials such as pipes and rebar as well as by the
steel construction of most buildings. [34][35] This is what makes it plausible to
use for indoor localization.

GFI is stable in theory but in practice it is not so easy to use effectively be-
cause the GFI values change with the phone’s attitude.[35] Figure 2.4 shows the
coordinate system for an Android smartphone that is used with the Sensor API.
Obviously, rotating the phone or tilting it will change the axis values and in turn
change the GFI value.

Figure 2.4: Coordinate system (relative to a device) that’s used by
the Sensor API. [36]

This attitude problem can be solved in two ways; either by transforming the
magnetometer readings from local coordinate system - the phone’s coordinates
from Android Sensor API - to global coordinate system or using the magnitude of
the magnetometer vector. However, simply using the magnitude brings a spatial
discrimination problem since there is only one dimension and high risk of similar
values at several positions. [35] [51]
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Transformation of 3D magnetometer readings

The relationship between the local coordinate system and the global coordinate
system can be described by three angles called pitch (x-axis), roll (y-axis) and
yaw (z-axis). These angles can be calculated from any Android phone’s gyroscope
with a simple API call. However, the gyroscopes inside smartphones are low-cost
and can not reach sufficient accuracy, often displaying 40 degrees error or more.
[38] On the other hand, the direction of gravity in smartphones is stable and can
therefore be used for fingerprinting. [39]

Figure 2.5: World coordinate system (blue), Local coordinate system
(black).

Transformation is done by decomposing the three-axis magnetometer m into a
vertical and horizontal component, mv and mh. [34] The direction of the gravity
vector is the opposite as the global coordinate system’s Z-axis. Which means that
the magnetometer reading in the local coordinate system can be projected onto
the gravity vector to acquire the vertical - as well as the horizontal - component
in the global coordinate system. If the angle between m and mv is assumed to be
cos(π2 − θ) then the vertical projection can be described by: [35]

mv = ‖m‖ cos(
π

2
− θ) (2.11)

Finally, knowingmv andm it is trivial to acquiremh through the Pythagorean
theorem:

mh =
√
‖m‖2 −m2

v (2.12)

Calibration

The magnetometer inside smartphones is prone to be disrupted by noise produced
by ferrous materials, such as keys in your pocket. This causes the magnetometer
readings to be off and manual re-calibration might be needed to achieve expected
results. [51]
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2.2.7 Environment

For the purpose of this thesis, a custom environment has been set up with four
access points that are always visible in the testing area. However, in most realis-
tic applications the environment is noisy and it is not always known where APs
are located. Furthermore, they are not set up in a way that is advantageous for
location of mobile devices.

Due to the ubiquitous nature of Wi-Fi signals it is realistic to have up to 20-
40 audible APs in a building. [41] If all audible signals are considered then a few
that are just on the edge of audibility are going to be weak in signal strength.
This in turn will mean that every scan a set amount of APs will likely be missing
from the result list. [42]

Most works counteract this by choosing a set of important APs that are to be
used in the offline fingerprint database. LocAuth [43] ranks the network nodes
according to highest average signal strength, highest correlation rating as well as
amount of appearances out of a set amount of scans. However, in a noisy envi-
ronment this might mean missing out on important information. If a signal from
AP B is missing in the online fingerprint and fingerprint A has AP B then there
is a low chance that fingerprint A is the right location. Furthermore, adjacent
positions share a lot of similar visible APs where the low signal and low visibility
APs provide valuable information to differentiate APs. [42]

One problem that arises in a noisy environment is that APs which have suffi-
cient signal strength sometimes do not show up in the readings. According to
M. K. Hoang et al. there is a correlation between the amount of APs and the
drop-out rate where increasing the amount of audible APs will also increase the
drop-out rate. [41] Y. Li et al. [42] found that around 60% of APs have less than
50% visibility and around 20% have less than 10% visibility. To clarify, in a noisy
environment these drop-out APs are not necessarily on the edge of visibility but
can have quite good signal strength when they show up.

This leads to a problem of missing data and it needs to be solved before it is
possible to estimate the probability distributions. The common solution is to
replace the missing data with a low value reading such as -110 dBm. For a de-
terministic approach this is fine but in a probabilistic model this will ruin the
distribution estimation. [42] Additionally, even for a deterministic approach this
would be sub-optimal for the drop-out problem stated above, where strong sig-
nals seamlessly disappear. The low strength constant -110 dBm is based on the
assumption that the signals that disappear are weak signals.

Y. Li et al. [42] proposes a solution which takes into account these unseen APs
by calculating the probability to fail to see the AP after M scans. In other words,
when finding an AP that has not been found in the offline fingerprint phase the
probability is calculated as the probability to fail to discover it M times and then
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finding it the next time.

f(M) = (1− p)M · p,where p =
1

M + 1
(2.13)

Equation 2.13 shows the probability f(M) to fail to see an AP after M scans.

2.3 Implementation

In this section, description of - and reasoning behind - important implementation
choices for all the solutions are presented.

2.3.1 Client/Server-model

For the purpose of this thesis, a Client/Server-model was built in order to carry
out our experiments and evaluation. The client is written as an Android applica-
tion in Java and it communicates with the server through Java’s Socket class [18].
The client either sends it’s location when the user wants to open a door or it sends
fingerprint data which will be stored in the database together with corresponding
door ID.

The server is also written in Java and utilizes the Java class ServerSocket [19]
to listen to incoming connections. First a ServerSocket instance is created on the
right port and then the program waits for a connection to connect and then re-
turns the Socket which communication will be carried out over.

For the sake of evaluating the proposed solutions of this thesis and to limit imple-
mentation time unrelated to the core problem, the server is hosted on a dedicated
PC on a local network. Furthermore, a mock database system is used that simply
stores and manages data in text files on the dedicated server PC.
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2.3.2 QR Solution

Figure 2.6: Axis Visitor Access.

Figure 2.6 shows how Axis Visitor Access is used as a commercial product. In
the first step, a QR code is generated from a PC application containing creden-
tials (full name + temporary card number) of a guest and is then distributed
to them via email. The software also enrolls the user as an authorized guest in
the specified entry manager hardware. In this solution, a QR code is created in
the same manner and hard coded in the application for testing and evaluation
purposes. In step two, the user opens the mobile application and scans his/her
finger in order to display the QR image. The mobile application is written in
Java using Android Studio, and the bio-metric authentication is performed using
the android.hardware.fingerprint [9] package to query whether the scanned finger
matches the fingerprint enrolled on the mobile phone.
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2.3.3 Wi-Fi Solution

Figure 2.7: Image of the start screen of the application.

When access through a door is requested and "OPEN VIA WIFI" is pressed (see
Figure 2.7), the client initiates a scan for available Wi-Fi access points through the
android API class ’WifiManager’ [27]. More concretely, this is done through the
’startScan’ method, which passively scans for nearby access points and returns in-
formation such as RSSI, BSSID (mac address), SSID (network name) etc. for each
of them. Simultaneously, a callback is registered though the use of the Java class
BroadcastReceiver[10] that waits for the asynchronous event that the ’startScan’
method returns. Upon arrival, an instance of the class SendThread is created on a
new thread, which establishes a WebSocket connection to the server on the given
port. The thread then sends the BSSID + RSSI for all access points detected to
the served, before finally terminating.

The server either receives a location which is supposed to be used to generate
a new fingerprint or it is sent a request to find a best match. In both cases the
data received is a list of RSSI values combined with their respective BSSI, i.e. mac
address. However, if the first case happens and the server wants to generate a new
fingerprint then the server also receives the DOOR ID which the data belongs to.
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The server then continues to listen on the socket while storing the received data in
a separate text file, see Figure 2.8. D in this case is the DOOR ID, follow by the
mac address and then the RSSI value. The final value is just a timestamp. Every
time the server is started it will read this text file to calculate the mean RSSI value
to each mac address for each DOOR ID as well as the standard deviation for each
mac address.

Figure 2.8: One fingerprint data sample in text file.

On the other hand, if the received data is a request for a best match then
the DOOR ID is replaced with "loc" see Figure 2.9. The server will not continue
listening but will handle the received data instead. Handling the data means
determining a best match with the fingerprints that are available in the text file.

Figure 2.9: Data sent in an OPEN VIA WIFI request.

The algorithm used is the Maximum Likelihood Classification discussed in
section 2.2.5, more concretely Equation 2.10. Since all standard deviations si in
Equation 2.10 as well as all mean values xi are loaded when starting the server.
x
′

i is inserted into the formula which are the RSSI values that are received from
the client. In the Figure 2.9 example these x

′

i values correspond to -42, -43, -49
and -54. The DOOR ID that minimize this function is then determined the best
match. For the alternate Wi-Fi solution in subsection 2.1.3 the 3 best results are
instead saved and sent back to the client so that it can display the results.

2.3.4 Wi-Fi Combined with Geomagnetism

In the geomagnetism solution a lot of the underlying structure is the same as the
alternate Wi-Fi solution except that the 3 doors are not sent back to the client
but rather used internally in the server to determine a geomagnetic best match.
Moreover, the solution can be scaled up to not just consider 3 closest door but
however many that is optimal for the local setup. This is further discussed in
section 4.3.
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Figure 2.10: One of 50 consecutive samples sent in a OPEN VIA
GEO request.

When "OPEN VIA GEO" is pressed, both the Wi-Fi location data, as dis-
played by Figure 2.8, as well as 50 geomagnetic samples - see Figure 2.10 - are sent.
The first value is the vertical projection of the GFI mentioned in subsection 2.2.6,
followed by the horizontal component.

Similar to the Wi-Fi solution this magnetic fingerprint data is collected and stored
in a text file. This text file is read when the server is started and then the mean for
both components are calculated for each DOOR ID. In this solution the algorithm
is a traditional nearest neighbour algorithm as mentioned in Equation 2.2. x̄′i is
the magnetic horizontal component in the database read from the text file and
the x̄i is the corresponding magnetic component received from the client, see Fig-
ure 2.10. The same is done for the vertical component. The best magnetic match
is the DOOR ID which minimizes the sum of this equation for both components.
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Evaluation

3.1 Experimental Setup

This section focuses on the setup used in the experiments presented in the Result
section. The custom AP setup in Figure 3.1 with dynamic scanning is used if
nothing else is mentioned.

3.1.1 QR Scan Time

QR scanning can not fail in the same way as a location estimation since it is more
binary, it simply works or not. Therefore, the time for it to work is the more inter-
esting metric. A user does not want to be stuck trying to scan the QR code forever
because it is hard to figure out how to hold the phone. It seemed relevant to not
only test by ourselves but also by someone who does not know how the system
works or the optimal way to scan with the door stations particular camera. Since
it is a wide-angle lens as mentioned in section 1.2, it is not obvious how to hold
the phone optimally. The results are provided in Table 3.1.

The results were gathered by measuring the time it takes for the system to accept
a QR code presented to the camera. The screen was at 50% brightness and already
unlocked from the start of the time measurement.

3.1.2 Wi-Fi Signal Behaviour

To examine the behavior of Wi-Fi signals in a typical office environment, a local
network consisting of four TP-link RE305 AC1200 Wi-Fi repeaters are mounted
as shown in Figure 3.1. The number of access points are chosen in accordance
to [25] which states three to four APs as the optimal number in certain scenarios
where APs are scarcely located.

21
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Figure 3.1: Custom AP setup.

Large Scale Variations

To determine the variations in received signal strength across the office and thus
the feasibility of creating unique yet densely placed fingerprints, the RSSI loss
over distance needs to be examined. To investigate these large scale variations,
a sampling device is placed in a static position one metre from AP2 with clear
line of sight. The device then samples the RSSI from AP2 once every seventh
second for ten minutes. The process is repeated with increments of one metre up
to a distance of ten metres. Lastly, the received values are averaged out at each
measure point, taking into account the movement of employees in the area and
other noise.

RSSI Probability Distribution

In order to counteract the RSSI small scale variations mentioned in the theory
subsection 2.2.2 and utilize the generally more accurate probabilistic algorithms in
Wi-Fi localization, some knowledge of the underlying RSSI distribution is required.
To estimate the distribution of signal strength, a sampling device is placed in the
center of the room to sample the RSSI from every access point once every seventh
second for one hour. The frequency of measured RSSI values to each access point
is combined into normalized histograms using Microsoft Excel, as is presented
in the Results section. This data is then used to calculate mean and standard
deviance, to be used in the probabilistic localization algorithm as further described
in subsection 2.2.5. The same test is carried out when the sampling device is not
in line-of-sight of the APs to see the effect on the distribution.
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Non-line-of-sight Propagation

To establish how dropping line of sight towards an access point affects the RSSI
level and thus also the fingerprint placement options, the sampling device is placed
on each side of a nine centimeter thick wall with otherwise clear line of sight to
AP4, where it samples the RSSI values of said AP for one hour each. The observed
signal strength values and distributions are presented in the Results section.

3.1.3 Wi-Fi Performance Evaluation

Figure 3.2: Fingerprints 4,5 metres.

To evaluate the performance of the Wi-Fi based solution, fingerprints are placed
as shown in Figure 3.2 with a minimal distance of 4.5 metres separating them. To
create the fingerprints, the sampling device is held manually with the test person
facing down the corridor. The RSSI value from access points in the chosen net-
work(s) are then sampled for five minutes, while rotating the device within 180
degrees from the starting position. The averages of the values to each AP are then
combined to a fingerprint for each location.

As an initial step of evaluation of the online phase, a test person is placed im-
mediately on top of every fingerprint in Figure 3.2. The test person then requests
access to the closest hypothetical door via the mobile application. After that, the
server calculates the best fingerprint match in the database and prints it to the
terminal. The process is repeated for 50 iterations and the success rate for each
fingerprint is presented in Table 3.2.
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In a realistic scenario, the user will obviously rarely be positioned exactly on
top of the fingerprint location. Therefore, it is important to examine the amount
of leeway existing in terms of distance to the fingerprint while maintaining a suf-
ficient level of accuracy. Optimally, walking within 2.25 metres in any direction
from a fingerprint should always yield the same result. Due to the small scale
variations this is not feasible in reality, and to determine this sensitivity a set of
sampling points are set up according to Figure 3.3, one meter from the fingerprints
in different directions. The drop-off in accuracy is then tested in the same manner
as on the fingerprint itself. Note that the placement of other fingerprints plays a
big part in determining the accuracy, as our solution does not use a traditional
grid structure as Figure 2.3. In other words, the closer B is placed in relation to
A in Figure 3.2 the harder it will be to maintain desired accuracy further from
the fingerprint. For example, in the given scenario there is a distance of 4.5 me-
ters between A and B. Moving 2.25 meters toward B from A would mean you are
2.25 meters from both fingerprints and calculating the correct estimate becomes
ambiguous.

Figure 3.3: Fingerprint offsets of 1 meter.

With the introduction of the three doors solution in subsection 2.1.3 there was
also a need to evaluate the effectiveness. Since the main problem with the original
Wi-Fi solution was the scan time to complete this solution was evaluated focusing
on waiting time. The evaluation was done by - starting from a random location in
the room - walking to a fingerprint and then taking the time for the fingerprint to
show up as one of the three doors options in the menu, see Figure 2.1. The choice
was made to test fingerprint B and E since this would hopefully catch several
scenarios. E is a relatively easy estimation with not so many fingerprints in both
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directions while B is a harder match because there are three or more fingerprints
in either direction. For example, E will usually be a part of top three matches in
all of the left part of the room see Figure 3.2. However, B is not always covered in
both parts of the room. In the right side you might find only F,G and C as well
as on the top there might be D, E and A. Therefore, moving between these zones
might produce more bad estimations for B. The results are presented in Table 3.7.
The results are divided into how often the estimation was completely correct, how
many times the right estimation was in the top 2 and lastly how many times in the
top 3. The most important metric is that the right door is in the top 3 since the
order does not really matter when the user just has to click one of the 3 buttons.

Sampling Methodology

The offline phase is not trivial to carry out. How long to scan each location and
how the scanning is carried out needs to be addressed. Leaving a sampling device
in the fingerprint location to scan continuously for a long duration gives a lot of
data but perhaps not the most useful. Sampling in this manner might produce a
disparity between the online and the offline phase. At the online phase the user is
holding the phone and might block certain APs, which changes the signal strength
severely.

This thesis has chosen to divide the sampling into two categories, static sam-
pling and dynamic sampling. Static is when the phone is not held by a user when
sampling but instead scans for a long duration. Dynamic is when the phone is
held by a user and also rotated in a 180 ◦angle continuously during the sampling.
Furthermore, the dynamic sampling duration is significantly shorter.

Performance Impact of Access Point Placement

To minimize the amount of required hardware while maintaining sufficient Wi-Fi
coverage, existing access points in the office buildings are typically placed centrally
in the ceiling of corridors and open space areas, following a one dimensional path
through the building unlike the first custom AP setup in Figure 3.1. To mimic and
evaluate how such a configuration affects the performance of the Wi-Fi localization
possibilities, a second custom network is mounted as displayed in Figure 3.4.
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Figure 3.4: One dimensional access point configuration.

The offline phase is carried out in an identical manner as for the first custom
network, once again performing so called "dynamic sampling" to record finger-
print A-G of Figure 3.2 by sampling Wi-Fi RSSI while rotating the device over
five minutes. The accuracy is then measured over 50 authentication attempts per
chosen fingerprint, and the resulting scores are presented in Table 3.3

Moreover, the Wi-Fi solution is also evaluated on a noisy network, see subsec-
tion 3.2.5 for details. In this test the solution is evaluated on a network that is not
made for localization with unknown AP placements and with a lot of noise from
walls and floors. The performance of the position estimation was first measured
when only considering a few of the fingerprints, see Table 3.5. In other words,
the position estimation could never be fingerprints D, E, F or G, see Figure 3.2.
As mentioned in subsection 3.1.3, the placement of the fingerprints as well as the
granularity matter greatly which is why this test was performed. The test was then
also done when all fingerprints could be considered, results disclosed in Table 3.5.

3.1.4 Magnetic Field Indoor Behavior

To establish what can be regarded as a "unique" fingerprint, the geomagnetic field
intensity is measured in the same location for 15 seconds to determine the fluctua-
tions of the readings. The test is performed once with a user holding the sampling
device in approximately the same area over the duration, and once with the phone
in a completely static position without any user interference. Figure 3.10 and Fig-
ure 3.9 shows how the intensity varies over the duration in both of the test cases
respectively.

To plan efficient fingerprint placement, knowledge of how many distinct finger-
prints are theoretically possible to create in the same location is required. To
investigate this, a set location is sampled continuously, noting the highest and low-
est value that the geomagnetic field intensity reaches. The sampling is performed
by moving the sampling device across the area in different dimensions until an
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estimate of all possible values in the zone have been acquired. The location is
chosen to be a plane with a width of one metre and a height between 90 and 150
centimetres, intended to be applicable on a door frame with the height of which a
user could comfortably reach. The process is repeated for door frames located at
fingerprints B, C, and E with resulting values as presented in Table 3.11.

3.2 Results

This section provides the results of experiments carried out in this thesis. The
underlying method and setup is described in section 3.1.

3.2.1 Large Scale Variations

Figure 3.5: RSSI values measured at incremented distances to a
single line-of-sight AP.

As the theory suggest, the RSSI values change with distance. A regression line is
plotted in the same graph and the RSSI values have a linear decline in the 1-10
meter range.
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3.2.2 RSSI Distribution

Figure 3.6: AP in line-of-sight RSSI distribution.

When the access point is in line-of-sight of the AP, the distribution is very pointy
with a clear maxima in -56.

Figure 3.7: AP in non line-of-sight RSSI distribution.

When the AP is not in line-of-sight the distribution is a lot wider, i.e. the
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standard deviation is higher. There is no clear maxima-point but instead several
points with almost identical probabilities.

3.2.3 QR Solution Performance

Experienced user Novice user
(s) (s)
2.89 5.09

Table 3.1: Average time showing a QR code before scan succeeds.

An experienced user that knows about the system does the scanning in almost
half the time of a novice user.

3.2.4 Custom Network Performance

The solution was evaluated for static and dynamic sampling respectively, this
choice is motivated in subsection 4.2.5.

Fingerprint Correct with Dynamic Correct with Static
(%) (%)

A 84 88
B 72 52
C 84 52
E 98 76
F 80 36
G 98 100

Table 3.2: Performance of Wi-Fi localization algorithm on the first
custom network with static vs dynamic sampling.

Dynamic sampling is significantly higher on average, never dropping below
72% accuracy. In the following test dynamic sampling was always utilized.

Second Custom Network

To test how placement of access points affects localization performance, a second
setup was tested as shown in Figure 3.4.
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Fingerprint Correct
(%)

A 84
B 70
C 96
E 48
F 26
G 36

Table 3.3: Localization performance with APs placed in a line.

Interesting with this setup was that it worked quite well on fingerprints A,
B and C, all achieving an accuracy similar to the first setup. It was not until
the fingerprints on the opposite side were tested that the subpar performance was
revealed, with all of E, F and G performing worse than 50%.

Meter Accuracy

Fingerprint 6 meters 4.5 meters
(%) (%)

A 100 84
B 88 72
C 98 84

Table 3.4: Accuracy with different distances between fingerprints.

3.2.5 Noisy Network Performance

Fingerprint Only ABC Fingerprints All Fingerprints
(%) (%)

A 98 62
B 96 54
C 100 16

Table 3.5: Correct position estimation with only fingerprints A, B
and C versus all fingerprints.

The amount of fingerprints greatly affect the results, the accuracy on fingerprint
C goes from 100% to 16% when introducing fingerprint D, E, F and G.
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3.2.6 Combined Network Performance

Fingerprint Combined Only Custom Only Noisy
(%) (%) (%)

A 80 84 62
B 86 72 54
C 100 84 16

Table 3.6: Correct position estimation with all fingerprints when
utilizing both the noisy network and the first custom network.

Increased accuracy can be achieved by combining networks to maximize coverage.
The combined network provides overall higher accuracy and even reaches 100% on
fingerprint C up from 84% and 16% respectively.

3.2.7 Three Doors Solution Performance

Fingerprint Average Wait Time Zero Wait
(s) (%)

B 1.61 72
E 1.35 64

Table 3.7: Waiting times for the right door to show up as one of
the three options.

Majority of times the user does not have to wait at all and when it is necessary the
waiting times are lower than both the QR solution and the original Wi-Fi solution.

Fingerprint Correct Top 2 Top 3
(%) (%) (%)

A1 68 84 94
A2 76 96 100
B1 82 98 100
B2 46 94 100
C1 98 100 100

Table 3.8: Top 3 performance data on offset locations.

Positions that would struggle to provide the desired accuracy in the original
solution have more often than not 100% accuracy of displaying the correct door
among the three best options.
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3.2.8 Geomagnetic Field Intensity Indoor Behaviour

Figure 3.8: The possible variations in the geomagnetic field in 0.5m
area around a door

The variations are way too high in a 0.5m area for this solution to be used in the
same manor as the Wi-Fi solution were general area is sufficient.
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(a) Smartphone is placed statically without any human interaction.

(b) Smartphone is held in the hand of a user.

Figure 3.9: Geomagnetic field intensity transformed into a vertical
and horizontal component measured in a static location on a
Huawei p20 Pro handset.
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(a) Smartphone is placed statically without any human interaction.

(b) Smartphone is held in the hand of a user.

Figure 3.10: Geomagnetic field intensity transformed into a vertical
and horizontal component measured in a static location on a
One Plus 6 handset.
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Smartphone Vertical Vertical Horizontal Horizontal
Avg. Diff Avg. Diff
(µT) (µT) (µT) (µT)

Huawei p20 Pro Static -35.50 1.52 17.03 1.57
Huawei p20 Pro Held -35.13 2.35 16.91 2.83
One Plus 6 Static -37.87 5.21 17.08 4.72
One Plus 6 Held -37.56 6.3 16.87 5.92

Table 3.9: Collection of specific numbers from Figure 3.9 and Fig-
ure 3.10. Diff is the difference between maximum and minimum
values.

The One Plus 6 shows a more fluctuations in the values, sometimes reaching
a difference of more than 6 µT while the Huawei is a lot more stable over time.
However, neither phone shows any alarming difference in values between when it
is held by a user or placed statically.

Smartphone Vertical Diff Horizontal Diff
(µT ) (µT )

Huawei p20 Pro 0.91 1.59
One Plus 6 2.30 2.18

Table 3.10: The vertical and horizontal difference when considering
the average of 50 "OPEN VIA GEO" requests.

As described in subsection 2.3.4, an "OPEN VIA GEO" request sends 50 con-
secutive samples to the server which calculates the average. When considering this
average instead, the differences have dropped from what was previously measured
in Table 3.9. Crucially, the difference for the One Plus 6 which was disastrously
high seems to balance out when working with averages.

Fingerprint Vertical value range Horizontal value range
(µT) (µT)

B 16-24 32-40
C 8-25 36-48
E 16-24 31-41

Table 3.11: Geomagnetic field intensity value ranges measured
around fingerprints.

It is apparent from Table 3.11 that fingerprint C has a much larger range
and possibility to extract a lot more fingerprints. Working with the numbers
that was found in Table 3.10, Huawei p20 Pro could optimally produce 32 unique
fingerprints on B. Furthermore, for One Plus 6 this number is still a respectable 9.
Naturally for C this number is even higher. However, this is the optimal scenario
when all combinations are possible, which might not always be the case.
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Chapter4
Discussion

4.1 QR Performance

As mentioned in subsection 2.1.1, QR was mainly pursued to have a simple so-
lution that solves the original problem of replacing the card. Directly comparing
with the other solutions is not trivial since for example accuracy with QR is bi-
nary, either the scan succeeds or not. Therefore we chose average time to wait for
a scan to succeed as the most relevant measurement. Since one of the big problems
encountered with the original Wi-Fi solution was time this proved relevant.

An experienced user is in this case not realistic to a normal scenario and it is
doubtful that this average time would be achieved by any normal user. When
doing the test we were very aware of exactly what height and angle to use which
will not be the case usually. However, it provides some sort of lower bound on
the time. A more realistic time is the novice user which was done by persons not
knowing the system at all.

4.2 Wi-Fi

Our original Wi-Fi solution is in some way involved in all of the different solutions.
The solutions have therefore been influenced greatly depending on how well the
Wi-Fi localization works.

4.2.1 Scanning Wi-Fi in Android

The initial Wi-Fi solution introduced a delay problem with the Wi-Fi scanning
that is done in Android. The idea was to be able to walk up to a door and upon
arrival press "OPEN VIA WIFI". However, it became apparent that the scanning
is done passively in Android and not actively. This means that to get a new scan
result the unit has to wait for APs to broadcast their signal strength and can not
make this procedure faster. The result is a wait time of up to 7 seconds before re-
ceiving a new scan result. For an application that is supposed to make the system
more convenient, this was simply not acceptable. If several seconds was acceptable
then the QR solution would be better in this regard.
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Moreover, scanning for Wi-Fi in Android has been heavily restricted during the
years mainly to improve performance, security and battery life. [49] The only
way to get around this throttling is with Android 10 compatible devices that can
activate developer mode and thus disable Wi-Fi throttling. This is obviously a
practical issue since Android 10 is not available on all devices yet and more of a
workaround than a solution. IndoorAtlas is a company that sells different indoor
positioning solutions and they also have not found a way around this but are sim-
ply stating that devices that run Android 8 or lower - i.e. predate the throttling -
as well as Android 10 are compatible with the Wi-Fi solutions. [50] So there does
not seem to be any more sophisticated solution as of yet.

4.2.2 Accuracy

The accuracy was always going to depend a lot on the chosen setup. Like men-
tioned in subsection 2.2.3, the traditional approach is to build a radio map grid
and determine accuracy based on how many grids away the estimation is from
true position. A dense grid meant increased possible accuracy while a coarser grid
would naturally present a more macro location. However, we made a conscious
decision to not have a grid structure but rather limit our fingerprints to door lo-
cations. Therefore a lot of the accuracy depends on how far apart and positioned
the doors are to each other. As expected, placing the doors further away from
each other improves the accuracy, see Table 3.4. 4.5 meters was found to be the
point were the accuracy is acceptable, going below this threshold will produce re-
sults that are not acceptable. Furthermore, as we discovered from Table 3.3 and
Table 3.5, the accuracy might be very good in one direction while disappointing
in the other. If it is possible to choose AP placements, it can utilized to achieve a
desired accuracy.

4.2.3 Improved Scaling

As stated in subsection 2.2.3, the standard fingerprinting technique is to build a
grid structure inside the building. This is usually one of the biggest arguments
against fingerprinting since it requires a lot of manual labor to generate these
hundreds or thousands of fingerprints as well as the computational costs associated
with such a huge database. [56] However, for our solution it is only necessary to
have fingerprints scarcely placed at the doors themselves which reduces this scaling
problem significantly.

4.2.4 Environment Effects

As mentioned in subsection 2.2.7 the environment can pose some problems for the
algorithm which have to be addressed. This prompted the tests at subsection 3.2.5
which evaluated the noisy network in the building. We found that the setup of the
fingerprints mattered greatly. Table 3.5 shows how the position estimation works
with only the A, B and C fingerprints in the system. Almost flawless with close
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to a 100% accuracy on all of them. This made us think that the drop-out prob-
lem mentioned in subsection 2.2.7 is not the main problem for the noisy network
we tested on. The bigger problem seems to be trouble separating between finger-
prints. When all of the fingerprints are included then a lot of the time the opposite
fingerprints are confused with each other. At A the system often estimates E and
at B often F etc. Resulting in the - much worse - results that are also presented
in Table 3.5.

When utilizing the noisy network there is only a single AP that is visible through
all the scans, the rest come from APs that reach the phone through the floor or
through several walls. The spatial discrimination is thus subpar, moving a few me-
ters in either direction might not effect the signal enough compared to the noise
of penetrating several walls and/or floors. Consider Figure 3.7, already by just
blocking line-of-sight with a wall we can see that the signal strength standard de-
viation is a lot higher. There are 6 values that occur approximately as often, while
in line-of-sight that number is 3. If we follow the regression line in Figure 3.5 we
see that moving 5 meter - approximately the difference between fingerprint A and
E - the signal should change with 7 dBm. In other words, there might be a lot
of situations where these possible offsets nullify each other. Consider if the noise
makes the signal change 6 dBm in one direction and the change of distance 7 dBm
in the other direction. The mean values are calculated in our offline sampling and
if this noise consistently happens - which it does - then on average the offsets could
each other out. Remember, this data is just when the signal goes through one wall
relatively close to an access point. A lot of the reachable access points are much
further away and face more disturbance.

Another explanation would be that its an effect of the placement of the APs
in the building. What is apparent from Table 3.5 is that in one direction it is no
problem to differentiate the access points. In fact, the accuracy is better than our
custom setup. However, since the APs are not set up for indoor localization there
are places where the accuracy is poor. Figure 4.1 shows an example of this, access
points that seem to be far apart in a particular room or building might still be
the same distance away from the access point locations. Especially since access
points are usually placed in the middle of rooms to cover as much area as possible,
the risk for symmetry is large. This was further tested in our second custom AP
setup, as Table 3.3 shows, this setup provided similar symmetry problems. A, B
and C all yielded a high level of accuracy, but when testing the other side, E, F
and G are all below 50%.
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Figure 4.1: Noisy network access point signal spread.

This prompted the testing of a combined network, where the idea was to bring
together the best of both the noisy network and the original custom network.
The amount of APs available on the noisy network makes it in theory better at
discriminating positions and building unique fingerprints but as discussed in the
previous paragraph, some locations are too similar. The idea is to then bring in
the custom network in these troubling areas to provide that needed discrimination,
see Figure 4.2.

Figure 4.2: Addition of custom network access point to the noisy
network.

In theory it will be similar to the macro and micro localization that we dis-
cussed in subsection 2.2.1, where the noisy network provides the macro location.
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In our example, this macro location would for example be fingerprint C and F
since the noisy network has trouble separating these two. Then the custom net-
work can easily separate them. By combining the networks the risk of estimating
B with true position C is reduced because of the noisy network being effective in
this direction. Table 3.6 shows the result of the combination and we can see that
A is still around the same accuracy but there is clear improvement in both B and
C where the combined network performs a lot better. For C we achieved a flawless
100% accuracy with this system from a previous 84% on the custom network.

4.2.5 Fingerprint Sampling Methodology

Initially, the idea was to do the offline sampling by placing a phone in the finger-
print location for an hour to capture all possible value possibilities. However, we
found that placing the phone statically in a single location was not representative
of a realistic scenario. As [47] states and as mentioned briefly in subsection 2.2.2,
the body greatly effects the signal. When placing the phone statically as we did
initially, we never blocked any signal with our bodies which will happen in most
cases when trying to open a door in the localization phase. RADAR was one of
the first Wi-Fi localization solutions and they calibrated using four different ori-
entations at each fingerprint to deal with this problem of blocking access points.
[52] We addressed the problem by sampling dynamically by holding the phone in
the hand and rotate in a 180◦ angle to capture as many cases as possible. Re-
alistically, this could not be done for as long time as the static sampling where
one could simply leave the phone. Even so, sampling for a much shorter time
dynamically still provided better results than the static sampling, see Table 3.2.

An interesting outlier is fingerprints A and C where the static sampling actually
provides better results. There will most likely always be positions where the static
sampling is the better option, with our first custom setup as Figure 3.1 shows, all
the access points are on one side of fingerprint A. We were testing by facing down
towards AP2 and AP3. In this orientation none of the APs are likely blocked by
the body and static sampling therefore works better. Moreover, if we are facing
down towards AP2 at fingerprint G, we are most likely blocking AP1 and AP4
which makes the algorithm think that the position is further away. Since G is the
fingerprint furthest away it works quite well. If there would be a fingerprint H
that is beyond G then we could expect worse results on G with the static sam-
pling. In general, we found that doing the dynamic sampling helps the worst case
a lot, as we can see in Table 3.2 we don’t have any 50% performance anywhere.
But this is because we are diluting the values by rotating and purposely blocking
APs. By doing this we are allowing more leeway in the signal but we will not
achieve the perfect accuracy if there never is any blocking of the signal, as is the
case at fingerprint A when facing down towards AP3. Furthermore, the dynamic
sampling is a better fit for the three doors solution presented in subsection 2.1.3.
Since this solution utilizes continuous scanning while the user is walking, there
is no guarantee for orientation or location of the user at the time of scanning.
Therefore coarser average values are more representative of an area than an exact
orientation measurement.
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4.2.6 Wi-Fi for Macro Location

As an effect of the scanning throttling mentioned earlier in this section, we had to
find a solution that is faster and still works well without too much interaction. We
realized that expecting to be able to just press "OPEN VIA WIFI" when you reach
the door would not be possible. If we would be scanning continuously and send
the latest scan result to the server the data would be old and not representative
of the current location. On the other hand, if we instead initiate a scan when
reaching the door as the initial idea was, then there is the wait time problem with
the passive scanning in Android. The idea was then to instead use Wi-Fi for macro
location and let the user decide which door they want to open from the 3 best
matches. Undoubtedly, making the user have to choose increases the interaction
somewhat from what we initially expected but it delivers good results. Since the
signal strength is linear with distance as we see from Figure 3.5, scanning between
fingerprint locations still gives good results. Table 3.8 shows how the result varies
in these offset locations. We wanted to see how accurate it is when the scan does
not occur right on top of the fingerprint as it will rarely be the case when moving to
a door. As presented by the results we achieve almost 100% accuracy of displaying
the right door in the top 3. Furthermore, as the primary motivator was to reduce
wait time at the door we tested the average wait time at a few fingerprints, see
Table 3.7. From having to wait a whole scan in our initial solution - which takes
around 4-7 seconds - the wait time is instead under 2 seconds on average and there
are also a majority of times where there is no wait time at all.

4.3 Magnetic Field Solution

The original idea was to use geomagnetic fingerprinting in the same manner as
Wi-Fi fingerprints, i.e. by saving the values at a door location and then the
algorithm can calculate the nearest neighbour match when you are in this vicinity.
However, as Figure 3.8 shows, the geomagnetic value fluctuates unpredictably in
small areas. Essentially, geomagnetism suffers from small scale variations but with
no large scale variations. Moving 1m in one direction away from the current value
and it is impossible to guess what the value will be. There is no path loss as
Wi-Fi has, see Equation 2.1. This meant that if the "OPEN VIA GEO" button
is not pressed in exactly the same height and in the same location, there was no
guarantee that the fingerprint would be similar. However, what was found is that
the signal is extremely stable in the same location. Therefore the solution instead
became a set scanning location to open the door as Figure 4.4 depicts.

4.3.1 Geomagnetic Fingerprints

As the variations shown in Figure 3.10 and Figure 3.9 of a completely stationary
device, different smartphones show very different stability in the same location
with negligible impact of user presence. Fortunately, when averaging the values
over 50 samples - which is what is done at the online phase of the geomagnetic
solution - the difference is not as severe, see Table 3.10. Especially for the more
unstable handset - in this case the One Plus 6 - the decrease is by a factor of 2.73
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and 2.71 for the vertical and horizontal component respectively. The findings of
Table 3.10 are used to set the required spacing between field intensity values in
order to ensure uniqueness. As the intensity varies by up to 2.30µT and 2.18µT,
this fact gives ground to a recommendation of placing the fingerprints at least
2.3µT and 2.18µT apart in the vertical and horizontal direction respectively in
order to avoid overlapping.
Worth noting is that the example of optimal amount of extracted fingerprints
from Table 3.11 discussed in subsection 3.2.8 is rarely a possibility but rather a
contextualization to give the numbers some practical weight. This is because all
combinations can usually not be achieved practically. To use the numbers in Ta-
ble 3.11 as an example, 16µT in the vertical component of B might just appear
with 35-40µT in the horizontal range, thus limiting a lot of combinations.
It is especially important to have uniqueness of the magnetic fingerprints in scenar-
ios where the two doors are in the same macro location and therefore risk getting
included in the results from the Wi-Fi scan. In scenarios where two doors never
risk being seen at the same time, e.g. by being placed in different buildings and
thus having fingerprints based on completely different APs, this guideline can be
completely disregarded and the magnetic fingerprints could theoretically have the
exact same value. In Table 3.11 we see this problem of two doors having similar
value ranges in quite close locations. There is definitely the possibility that B will
be included in a scan at E. Here it is important to avoid the overlapping mentioned
in the previous paragraph and place the fingerprint - see Figure 4.3 - in a way that
uniqueness is provided.

Despite the sensitivity to positional variations, Figure 3.10 and Figure 3.9 shows
the geomagnetic field intensity to be very stable within a fixed location. This is
validated in [34] [39] where field intensity over the same trajectories are compared
over several days up to three months, as well as measurements performed over the
course of this project yielding the same values over several months. This is what
allowed the compromise solution of having a dedicated small area where the user
would hold her/his phone while opening the door. The physical design and layout
of this area can be chosen as desired, for example by a line with an associated
icon on the wall adjacent to the door, such as demonstrated in Figure 4.3 and
Figure 4.4.
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Figure 4.3: Magnetic field fingerprint mobile zone example.
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Figure 4.4: Magnetic field fingerprint mobile zone example with
phone.

4.3.2 Geomagnetic Solution Compared to Three Doors

At first glance - and in what holds true for certain scenarios - the magnetic field
solution is indeed very similar to the solution of displaying the three closest doors.
If the three best matches can be determined, is it not better to simply press the
door that you want to open, rather than installing a second system and relying on
a second algorithm to decide? The answer depends heavily on the environment in
which the system would be utilized. In a scenario such as in figure Figure 3.2, the
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evaluations show that the three door solution performs well, with only 1.35 seconds
of average wait time and 64% attempts with instant success even in the worst case.
The absolute worst case scenario here means receiving a Wi-Fi scan just before
walking into the zone that would correctly estimate the position, thus having to
wait the better part of a new scan (around 6 seconds). The worst case scenario of
the magnetic field solution is more common and can be quite hazardous, as it will
open a door no matter what. This means that even if the magnetic field fingerprint
is a perfect match, if the door is not among the top three results, another door
will be opened in its place based on the closest match to the magnetic fingerprint.
This would occur every time the three door solution does not result in "zero wait".

Fortunately, the magnetic field solution can be remedied in ways not applicable
to the three doors solution. The number of closest doors taken into account can
easily be modified, so in theory every single door can be considered in the calcula-
tions, although the algorithm obviously imposes a requirement of having magnetic
fingerprints that are sufficiently unique, as discussed earlier. This becomes a more
scalable option than displaying the closest doors, as such a list quickly becomes
inconvenient to use, further aggravated by displayed doors changing order every
time a new Wi-Fi scan is completed. For example, an office building where each
wing contains up to five separate doors used in the access control system and no
other such doors in the area, the program can be modified to consider the five clos-
est doors and thus receive an accuracy of 100% provided the unique fingerprint
criteria are met.

4.3.3 Accuracy

To achieve optimal accuracy with the magnetic field solution, a certain amount
of domain knowledge is required from the installer, both in terms of layout of the
building and regarding limitations and workings of the application. The current
geomagnetic field intensity can be displayed in real time on the client phone, al-
lowing the installer to know and decide what values are chosen as fingerprints.
The installer needs to match these values with the number of doors in close prox-
imity to each other. Assuming a double sided corridor setup with densely placed
doors such as in figure Figure 3.2, each door has five adjacent doors, thus requiring
six unique fingerprints. Moving further along the corridor in either direction, the
fingerprint values from the opposite side can be freely reused provided they are
available.

The largest advantage of the magnetic field solution is the fact that it is able
to maintain its accuracy even with doors placed directly next to each other. As
table Table 3.2 displays, performance of a purely Wi-Fi based system dwindles
with doors placed 4,5 meters in several directions, and with regards to how RSSI
values change over distance it is safe to assume that the system would quickly
become too unreliable for use with further decreasing door spacing. However, the
unpredictability of the magnetic field that poses problems when trying to do gen-
eral fingerprints works in our advantage when trying to increase accuracy. Since
the signal does not change reliably with distance, there is nothing that stops us
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from having sub one meter accuracy.
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Chapter5
Future Work

5.0.1 Phone Models and Operating Systems

An important aspect to consider before implementing the system in a real envi-
ronment is to evaluate how the solutions perform on different operating systems,
such as iOS. Furthermore, the Wi-Fi based solution was only tested on a single
phone model (OnePlus 6), and the geomagnetic solution tested on two models
(OnePlus 6 and Huawei P20 Pro). Issues relating to Wi-Fi might not only include
a scan cap as seen in Android 9, but also a variance in received RSSI in the same
area depending on the network card of the phone. With the geomagnetism based
solution, Table 3.9 demonstrates how the field intensity can vary between phone
models and, albeit not warranting a need for improvements or alternate solutions
in this case, might do so for other models.

Despite not being explicitly tested, availability on iOS was consciously taken
into consideration for the different solutions, and Wi-Fi scanning is available e.g as
in Apples own application AirPort Utility[53]. Porting the application to iOS, ge-
omagnetic data can be obtained with the Core Motion framework and the CMDe-
viceMotion class.[54][55]

5.0.2 Extensive Evaluations

Due to many factors such as limited available suitable test space, Wi-Fi hardware
and pure labour cost of carrying out experiments, covering every use case and even
establishing an accurate measurement of performance is a difficult task to achieve.
The results presented in this thesis give a good indication of how the solutions
might perform in different scenarios and provide strong guidelines for what needs
to be considered in different situations. However, the sample size of both access
point layouts and fingerprint is quite limited, and similar performance in other
environments is not guaranteed. An indication of performance can be obtained
quite easily by a potential adopter, using the application to create fingerprints
as desired within the current network and thereby deciding on which solution is
most suitable in the environment, such as magnetic fingerprints if the doors are
too densely placed, erecting additional access points if accuracy is poor and so on.
If this system is to be implemented in a further extent, it is advisable to validate
accuracy in additional office environments.

49



50 Future Work

5.0.3 Improved Algorithms

In this thesis, several relatively simple implementations of different algorithms
were combined to achieve the end result. The entire approach was based around
producing decent results with an existing technology, and when deemed sufficient,
mainly improving it further by adding additional factors rather than refining the
single factor solution. For example, when Wi-Fi accuracy worked with sufficient
accuracy focus was put on solving the slow scanning rather than improving the
algorithm.

One such improvement would be in the probabilistic fingerprinting. The curve
is estimated with a normalized gaussian. However, some information could be lost
by doing this. M. Lin et al. [58] propose using a polynomial fitting curve instead
which might produce a more accurate curve estimation of the data. Another im-
provement would be to reduce the effects of different phones. Both with the Wi-Fi
solution and the geomagnetism, different phones can give different values or ac-
curacy. Utilizing ratios as previously discussed in subsection 2.2.2 is a possibility
to counteract different phone models implications. The brute force solution would
of course be to have a set of fingerprints for all the popular phone models, the
practical feasibility of such a system is up for discussion. Another proposed solu-
tion to the problem could be that individual phones stores local fingerprints, if an
area is different for a specific phone there could be the possibility to overwrite this
position with a local value that is phone specific. How this would work practically
is not trivial and needs to be further pursued.

5.0.4 Security Aspects

As mentioned already in the introduction of this thesis, the security aspect was
never a focus. We do acknowledge however that for a potential adopter of the
system this is obviously a concern. Here we present some implementations that
can make the system more secure.
One very real concern is a man-in-the-middle attack where someone would listen
on the network and act as either client or server to disturb the system. One way to
counteract this could be to introduce full-duplex communication, some handshake
that makes sure that the two communicators are who they say. Most commonly
this is done by public key exchanges and would be advisable to apply if the system
is used in a real application area.
Secondly, a timestamp in the data sent could be used to prevent spoofing done
by unauthorized parties. This would limit, for example, unauthorized parties to
eavesdrop and reuse correct data sent by valid users.
Using a medium such as Wi-Fi elevates the risks of these attacks since a lot of
Wi-Fi networks are public. If possible, limiting the Wi-Fi to private users will also
add another layer of security.

There is also the possibility to add more factors to the authentication but then
there is a risk that the system loses its simplicity for the user. However, if one was
to introduce more factors, a good option would be face detection. These factors
could easily be combined if there is a camera at the door, simply done by checking
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if the face at the door matches the user that wants to open.
An interesting compromise between convenience and security that is used in a lot
of systems is to introduce more factors on different times. For example, an office
building could introduce a PIN code outside of office hours on top of the presented
solutions.

5.0.5 Alternative Hardware

If the constraint of not adding additional hardware no longer needs to be consid-
ered, or if the consumer is installing the system in a brand new location, there are
two approaches that stand out in terms of promising performance improvements.
These technologies are Round Trip Time (RTT) supported WiFi and Ultra Wide
Band (UWB), both of which could employ a similar algorithm to what was used
in the WiFi solution.

RTT

WiFi Round Trip Time is a technique that measures the time it takes for a signal to
travel between two WiFi enabled devices and back, thus obtaining a measurement
of distance between the units. It is stated that a measurement between a client
device and 3+ access points likely yields an accuracy of 1-2 meters [57], which
would improve the accuracy of the fingerprinting algorithm. The largest advan-
tage however is the possibility to instantly receive the scan results, circumventing
the restrictions imposed on the WifiManager API. These scanning restrictions on
Android 9, despite the cumbersome workarounds introduced in Android 10, com-
bined with WiFi-RTT being introduced in Android 9 make it seem probable that
there is a technological push towards a new standard for Wi-Fi localization. The
new standard is called the IEEE 802.11mc standard, which allows for measuring
of Round-trip-time (RTT) in Wi-Fi enabled devices.

The downside of this technology is that it is only supported by a handful of devices
and even less access points. It is going to take a few years before a lot of buildings
support this kind of technology in their access points even if smartphones will have
it soon. However, it seems likely to be the more future proof solution as the only
step required would in theory be to replace current Wi-Fi access point with RTT
enabled hardware, and still being able to use the old scanning methodology until
enough clients support the system. As proximity to the office doors still needs
to be determined, distance to the relevant access points can the be stored in the
same manner as RSSI fingerprints, and the closest match calculated with the same
algorithm. With RTT, a deterministic approach with interval values such as 1.5
< x < 2.5 stored in place of the RSSI value could reach very high accuracy, but
further testing would need to ensure that the distance always falls within said
interval and in turn that no overlapping occurs.

Ultra-wideband

Another emerging technology for indoor localization than in fact provides even
greater accuracy than RTT is the Ultra-wideband (UWB) radio technology. As
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described in subsection 1.1.2, UWB is a short range transmission protocol that
utilize a broad spectrum of frequencies (>500MHz) to send short pulses that can
achieve a localization accuracy as small as 10 cm [44].

For the access control purpose investigated in this thesis, an improved localiza-
tion accuracy does not always imply a more accurate final product, and precision
better than one meter would become superfluous as this level of accuracy would
realistically never be needed to discriminate between two door locations. This
means that the decision between potential implementation of an RTT or UWB
based system mainly becomes a cost related issue, and an evaluation comparing
the two options in terms of hardware cost and implementation capabilities would
be required beforehand.

Another option provided both by RTT and UWB is to use an access point as
a proximity sensor for each door, simply giving access to a user if he/she has
pressed the "open" button in the application while being within a set distance
of a single AP representing a single door. This would obviously require a much
larger amount of hardware to achieve the exact same goal, but is still worth men-
tioning as the implementation would be the by far most simple, and could be the
most lucrative solution if the intended area of use only has a handful of doors to
monitor.
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Conclusions

The goal of this thesis was to investigate possible mobile solutions to replace the
common RFID + PIN solution for access control. In this endeavor, several solu-
tions have been proposed and evaluated which have proved effective in different
aspects.

One of the areas this thesis aimed to explore was if the fingerprinting method-
ology is applicable without using the traditional grid structure of fingerprints and
instead utilize fingerprints only at the doors in question. Since utilizing a grid is
mainly for tracking an object, the labor intense process this brings with no guaran-
tee of increased accuracy is superfluous. Placing the fingerprints in the important
locations both decreases the manual work and the computational costs while still
producing good accuracy.

The accuracy of the Wi-Fi localization is deemed sufficient for the purpose de-
scribed in this thesis. However, the limitations introduced by Google on the An-
droid API which makes scanning for Wi-Fi slow leaves the original Wi-Fi solution
cumbersome. One way to work around these limitations in the API is by scanning
continuously and letting the user choose between the three best matches. Another
way is to incorporate the inertial sensors in the phone - such as the magnetometer
and the gravity sensor - with the Wi-Fi solution to faster and more accurately
estimate position.

The placement of the access points matter greatly for the accuracy. The sys-
tem applied to an existing network has no guarantee to work well. However, by
setting up custom access points combined with the existing network, increased
accuracy can be achieved. Breaking symmetry with the access point placements
is important.

Lastly, the Wi-Fi based solution has room for smooth integration with newer
hardware if new buildings are planned or if even finer localization is required in
certain locations.
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