

Department of Automatic Control

Classifying Sensor Data
Using Recurrent Neural Networks

Oscar Niles

MSc Thesis
TFRT-6096
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2020 by Oscar Niles. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2020

Contents
1 Introduction 6

1.1 Background . 6
1.2 Problem Description . 6
1.3 Thesis Objective . 7
1.4 Data Sets . 7
1.5 Previous Work . 9

2 Machine Learning Theory 12
2.1 Neural Networks . 12

2.1.1 Recurrent Neural Networks and Long Short-Term Mem-
ory Networks . 14

2.2 Multimodal Networks . 15
2.3 Embedding . 15
2.4 Evaluating models . 17

3 Execution 19
3.1 Mortar Data . 19
3.2 Data Pre-processing . 19
3.3 Time Series Classification Neural Network 19
3.4 Sensor Name Classification Neural Network 21
3.5 Multimodal Neural Network 22

4 Results and Discussion 24
4.1 Final Time Series Neural Network 24
4.2 Final Name Neural Network 25
4.3 Final Multimodal Neural Network 26

5 Conclusion 29

6 Future Work 29

3

Abstract
Nearly 40 percent of overall energy usage in the European Union is used by
buildings and 85 percent of that is for heating and cooling them[4]. This
massive amount of energy is thought to be able to be lowered by introducing
smarter control of the building systems. Technology to do this is continuously
being developed and improved. The newest analysis system developed by
Schneider Electric uses cloud technology to apply a centrally developed algo-
rithm to buildings around the world. It is fed information from the physical
buildings through a Building Management System, BMS. As there are no
universal naming schemes for building sensors, the process of connecting an
existing building to the service is done manually. With the massive amount
of sensors in a single building, this process is tedious, time consuming and
error prone. This thesis is a continuation of previous work [1] on the same
topic. It aims to find a way to fully- or at least semi-automate the connecting
process using Recurrent Neural Networks, RNN, to analyze time series data
and sensor names.

The goal for this thesis was reaching over 90% accuracy on a simple data set
and having a top 3 accuracy good enough to simplify the connection problem
significantly on a more complex data set. This goal was achieved, although
some concerns about the data set not accurately portraying the real world
scenario remain.

4

Acknowledgments
I want to thank my supervisors, both from Schneider Electric and LTH. for
their continued support and quick availability when I had questions and was
overwhelmed by the number of balls that had to be juggled at the same time.
Without your guidance and understanding I would not have been able to
finish this project.
Another thank you goes to my family, who have supported me through all
these years in university and given me this possibility to explore myself and
find what I enjoy doing.
And at last a big shout out to all the friends I’ve made in Lund. While Lund
has not been the greatest location for me and my interests, you guys made my
time here so much better and I will cherish these memories forever. Thanks
for everything.

5

1 Introduction

1.1 Background
Buildings use 38%[4] of all energy consumed in the European Union. Of that
energy 85% is used for heating and cooling. With climate change seriously
threatening the future of the world as we know it, decreasing greenhouse
emissions and energy consumption are key targets to reach for a more secure
future. Without increasing the effectiveness of heating and cooling buildings,
the EU will most likely not be able to reach its climate objectives, such
as lowering the emission of greenhouse gasses by 80-95% by the year 2050
compared to the levels of 1990[4]. The ease of installation is very important
to make these systems profitable and attractive for larger companies. Larger
buildings are usually equipped with a Building Management System, BMS,
that receives data from sensors located in the building. A current trend is
to connect this BMS to cloud services such as advanced fault detection and
building energy dashboards. In Figure 1.1 the connection between different
BMS’s and the cloud is depicted. A big challenge arises from the fact that
the analysis services are independent of what BMS the data streams come
from. As there is no universal naming scheme for sensors, meaning the names
vary depending on building owners, countries, and system vendors, quickly
connecting a building to a cloud hosted service is often a problem. As an
example, Figure 1.2 and 1.3 show how the name of the same sensor is vastly
different when comparing a Swedish and an American building.
Currently, connecting a BMS to an analytic system is tedious manual labour.
Big buildings can have thousands of signals and with an unclear naming
scheme it could take weeks of work to get it connected. This thesis tries to
automate or at least semi automate this process by analyzing names and raw
time series data from the different BMS’s using recurrent neural networks and
classifying these inputs into different classes representing different sensor types.
These classes would for example be zone_air_temperature or co2_sensor.
More specifically the chosen solution is based on a long short term memory,
LSTM, architecture.

1.2 Problem Description
Assume there is a set of 100 sensors. Every sensor measures some quantity in
a regular interval and saves the measurement and the time of measurement.
The saved measurements for one sensor will henceforth be referred to as
time series data. From these sensors the names and time series data over
an unspecified amount of time can be extracted. The time series data may

6

Figure 1.1: Buildings with different BMS systems(presented in green and
blue) connect to the same analysis system. This system has to be able to
handle the different naming schemes

be incomplete with some data points missing randomly. Also assume every
sensor fits into one of 10 different classes. The aim is to find a method that
can tell which class a sensor belongs to by analyzing the time series data, as
well as the sensor name.

1.3 Thesis Objective
The primary objective of this project is to find suitable methods to automate
the classification problem described in section 1.2 above using recurrent neural
networks. A secondary objective is to semi-automate the process by letting
the network output the top 3 guesses for a time series

1.4 Data Sets
For this project, data was taken from mortardata.org. Mortar data is an
online database for building data[3]. As of early 2020 it contains 107 buildings,
spanning over 26000 data streams. Using their python API it is possible to
get data frames of these streams, which then can be stored locally as csv
files. This physical backup increased the speed of testing, as downloading the

7

Figure 1.2: Model of an American air-handling unit. The name of the circled
sensor is shown in the green square.

data from the server every time would be very time consuming. The API
uses a SPARQL-like query language called brick queries to request data from
the server. Such a query can be found in Figure 1.4. Through the API, the
sampling rate can be chosen as well. The sensors may send their measurement
to the BMS anywhere from every few seconds to once an hour or even more
seldom. It was decided to sample every 15 minutes, as, according to [3], most
sensors are sampled with that frequency into mortar data.
The data received through the API is divided into two parts. One contains the
time series data for all sensors that fit the query, with a unique ID representing
each sensor. The second part maps these unique ID’s to the actual sensor
names. In the end, data from 16 different sensor types were used. The classes
and the number of day long samples are listed in Table 1. These classes again
show how even after being imported into mortar data, there are more than
one class that measure the same thing. The room temperature set point and
zone air temperature set point classes could be combined into one class as a
room is one example of a zone. In Figure 1.5, a sample of four different kinds
of signals is shown. The top two plots show the set point and actual value
for the same room. As can be seen they are very similar and therefore hard
to discern and classify correctly. With fast enough sampling they might be
easier to separate as the set point will change to a new value instantaneously,
while the real room temperature would need time to adjust and reach the
new set point temperature. A neural network could pick up on the rate of
change to classify correctly, but because of the sampling frequency used in
this thesis, as long as the change of temperature takes less than 15 minutes,
the change would look instantaneous to the neural network. Furthermore,
the data points received from mortar data are rounded to the nearest .25
interval, meaning low changes in temperature are not registered at all. This

8

Figure 1.3: Model of a Swedish air-handling unit. The circled sensor is the
same as in Figure 1.2. The name again is shown in the green square. Notice
how much the naming schemes differ.

Figure 1.4: An example of a mortar query.

again makes the classification more difficult, as a real temperature sensor
would have small fluctuations around the set temperature, which would help
the neural network to learn the behaviour differences of a set point and real
measurement.

1.5 Previous Work
Classifying time series data has been thoroughly researched in the past. Not
much has been published for the case of using it to classify building sensors
from different parts around the world though. A few articles were found
on the topic of building sensor classification. One such is [2], in which an
active learning method is proposed for naming and classifying building sensors
from sensor metadata. The goal was to minimize the number of correctly

9

Class Name # of samples
Zone Air Temperature 65664
Zone Air Temperature Set Point 60180
CO2 672
Damper Position 3288
Discharge Air Temperature 2880
Electric Meter 228
Heating Communication 192
Min Supply Air Flow Set Point 3288
Occupancy 786
Outside Airflow 48
Outside Air Temperature 6312
Relative Humidity 426
Room Temperature Set Point 18
Supply Air Static Pressure 2412
Supply Air Temperature Set Point 36270
Supply Air Temperature Heating Set Point 42

Table 1: Table showing the 16 different classes and the number of samples
for each class.

labeled training examples needed for an accurate prediction. The solution
uses hierarchical clustering combined with random forest classifiers to classify
sensors from 4 campus buildings. Their solution reached 98% accuracy, while
using 28% fewer training examples when compared to regular expression
based methods.

10

Figure 1.5: 4 examples of different signals. The top 2 show the set point and
actual zone temperature for the same room. These two classes can be very
hard to discern. The bottom 2 are for a CO2 sensor and a damper position
sensor.

11

2 Machine Learning Theory

2.1 Neural Networks
Neural networks are computing systems that resemble the structure of the
brain. They consist of nodes, also called neurons, that can perform a mathe-
matical operation on an input and send the output to other nodes for further
computations. A node can take multiple weighted inputs from other nodes to
compute a singular output. The nodes are often organized in layers, where
each layer performs a different, often non-linear, transformations of the data.
The function chosen for the transformation is called the activation function.
The data travels from the input layer through a number of hidden layers until
it reaches the output layer. An example of a neural network model can be
found in Figure 2.1.
In this thesis, neural networks are used to classify time series data. In tra-
ditional programming, the programmer writes a program that states the
rules and actions that are performed on an input to get a desired output.
In machine learning, a model is instead given inputs and the corresponding
output, and the network’s purpose is to find the rules and actions to reach
the given output for as many samples as possible. Starting off, the neural
network has no knowledge about the data it is being fed. For example, if its
goal is to classify pictures as containing a car or not, it will before training
not have any idea of what typical car characteristics (like 4 wheels, doors,
the general shape of the frame) are. Instead it is given a set of pictures that
have been manually labeled as ’car’ or ’no car’ and the network produces
identifying characteristics by processing the correctly labeled data. This
automatic process of finding characteristics can find deep seated dependencies
in data that might have been very hard to spot by the human eye. The key
to getting an accurate classifier is to have a varied and extensive data set
to train with. To see how well the network is performing, a loss function
is established. This loss function is a function that decreases in value the
better the output of the neural network corresponds with the given labels.
The optimal loss function for a neural network is problem dependent. For
example, for a binary classification problem usually binary cross entropy (see
Equation 1) is recommended, while for a multiclass classification categorical
cross entropy (see Equation 2) is preferred.

L(y, ŷ) = − 1
N

N∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi), (1)

Where:
• N - number of samples

12

• ŷi - predicted probability of the observation belonging to class yi

• yi - binary indicator (0 or 1) corresponding to the correct classification
for observation i

L(y, p) = − 1
N

N∑
o=1

M∑
c=1

yo,clog(po,c) (2)

Where:

• N - number of samples

• M - number of classes

• yo,c - binary indicator (0 or 1) if class label c is the correct classification
for observation o

• po,c - predicted probablility observation o is of class c.

Figure 2.1: Model of a feedforward neural network with 4 inputs nodes, 1
hidden layer with 3 nodes and 1 output. The arrows symbolize how the
output of nodes is propagated through the network. Each arrow has its own
weight.

13

2.1.1 Recurrent Neural Networks and Long Short-Term Memory
Networks

The thing that differentiates recurrent neural networks from standard neural
networks is the ability to have feedback loops. The lack of feedback loops can
be seen in Figure 2.1 as the graph is acyclic. A feedforward neural network
would see every data point in a time series independently, meaning it’s not
able to catch temporal changes by looking at the preceding values. A recurrent
neural network works by having an internal state, called the memory, that is
affected by every data point fed to the network. This updated state is then
given as an input for the next data point in the time series. A model for
RNN’s can be seen in Figure 2.2. RNN’s can be seen as feed forward networks
of infinite length where each layer is a copy of the folded layer with the same
weights and structure. The output of one of these layers is then used as input
for the next layer together with the next time series value from the input. An
RNN can have additional stored states that are commonly called gates. One
common architecture for recurrent neural networks with additional gates is
the so called long short-term memory network, LSTM. A model showing the
architecture of an LSTM cell can be seen in Figure 2.3. The core idea behind
LSTM’s is the horizontal line going through the top part of the cell. This
is the memory which can be manipulated by the next input and the latest
output. The memory is an array with variable length, in which information
that could affect future outputs is stored. The LSTM can be split up into 3
different parts:

• Forget gate layer. (Figure 2.4a)

• Input gate layer and new candidates. (Figure 2.4b)

• Output gate layer. (Figure 2.4c)

Like the name of the forget gate layer implies, in this part of the LSTM
structure it is decided which parts of the memory should be deleted.
In the input gate layer, the current input and last output are used to update
the memory state and adding new valuable information to it.
In the output gate it is decided what shall be given as output for the next
cell. This output is a filtered version of the memory state.
As an example, let us look at a language model that tries to predict the next
word in a text based on the previous ones. In this problem, the cell state
might include the time of something happening, so that correct temporal verb
forms can be used. When the LSTM encounters a new temporal phrase, we
want it to forget the last time-related word. This is done in the forget gate
layer. In the input gate layer the new temporal phrase should be added to

14

the state. In the output gate layer, since the last input seen was a temporal
phrase, the LSTM might want to output if the text takes place in the past,
present or future, so that the verb of the sentence can be conjugated correctly.

Figure 2.2: Model of a recurrent neural network. On the left is the folded
version, while on the right the unfolded version is shown. x is the input-, h
the hidden- and o the output state. U,V,W are the weight matrices.

2.2 Multimodal Networks
Multimodal networks are a neural network structure where multiple neural
network model’s, using different kinds of input data, are combined and used
to predict the label. The general structure of a multimodal model can be
seen in Figure 2.5. This is helpful both to counteract overtraining, as each
model will have a different structure and averaging the outputs will lead
to less dependence on one model overtraining. Another helpful effect of a
multimodal is that several networks working on different connected input
data can be evaluated together to form a better prediction. In this thesis
for example, the ensemble consists of 2 different models. One of the models
uses the time series data, while the other uses the sensor names as input. A
multimodal network is usually expected to perform better than it’s individual
parts or at least as good as the most accurate submodel.

2.3 Embedding
For a neural network to be able to analyze text strings, the text strings have
to be preprocessed into a form that can be handled by the keras library. This

15

Figure 2.3: Model of an LSTM cell with all different states, their activation
function and how they interact with the inputs. xt is an input, ht−1 is last
iterations output and ct−1 is the memory state at the end of the last cell.

(a) Forget gate layer (b) Input gate layer (c) Output gate layer

Figure 2.4: Different parts of an LSTM cell

preprocessing involves padding the strings to the same length and representing
the string as a series of numbers. The second part is called word vectorization
and can be done in multiple different ways. A common way is the bag of
words approach, where a dictionary of words is used. In this dictionary each
word is given a number. The words in the original string are looked up in the
dictionary and the corresponding number is put into a vector. This approach
is limited by the fact that the words in the string have to be present in the bag
of words and that the string has to only consist of full words. As can be seen
in Section 1.1 the sensor names at least partially contain letter sequences that
don’t form words, meaning a bag of word approach is not possible. Another
approach for word vectorization is called n-grams. For this, the string is
split into an array, where each element of the array is a sequence of n letters
from the string. As an example lets take the word memory and split it into
trigrams.

16

Figure 2.5: Structure of a multimodal neural network. This example figure
uses text, speech and an image as input to 3 different submodels and then
concatenates the outputs of these. This concatenated output vector is then
used to calculate a final output.

m e m o r y

The trigrams for this word would be

m e m e m o m o r o r y

Using an alphabet of allowed characters and Equation 3 each possible trigram
can then be given a unique number representation. An array of these numbers,
padded with zeros so all samples have the same length, is then used as input
for the neural network.

(a0, a1, a2) −→ N2 · a0 + N · a1 + a2 (3)

where:

• an is the alphabet index of the n-th character in the trigram.

• N is the size of the alphabet.

The alphabet used contained all letters, all numerical digits and common
delimiters, mathematical signs and punctuation. Going back to our example
"Memory"; The trigrams can be calculated to be

35425 14211 35950 41521

2.4 Evaluating models
The data set was divided into a train and test data set where 80% of the
data was randomly selected to be put into the training data set, while the

17

remaining 20% were put into the testing set. The testing data set contains
data unknown to the neural network during training, meaning evaluating the
percentage of right guesses on the testing set gives an estimate for how well
the network is performing. Comparing the test accuracies of different models
was the main way of evaluating them. Moreover, confusion matrices were
used to spot classification difficulties. A confusion matrix is a way to show
how hard classes are to discern from each other. It’s a square matrix with
as many rows and columns as there are different classes. The row signifies
which class a sample belonged to, while the column signifies the predicted
class by the neural network. For example, if a sensor belongs to Class 2, but
was predicted to belong to Class 3, then a one should be added to the matrix
in position (2,3). By doing this for all samples in the testing data set, the
classes that were hard to discern will be visible.

18

3 Execution

3.1 Mortar Data
Starting off, the focus was on understanding how to access the data available
on mortardata. Luckily, the way to access was well documented with examples,
tutorials and a query builder using a graphical user interface to make creating
the queries as easy as possible. There were still some problems with the
mortardata approach, as the servers could be unreliable and it took a long
time to get the first batch of data for training.

3.2 Data Pre-processing
Through the API one can configure the sampling rate and how to handle
sensors with higher sampling frequency than the one requested through the
API. It was chosen to sample with 15 minute intervals and if multiple points
were found the mean value of them was taken. Functions were written for
splitting up the data frames into daily intervals, with time series data of
length 96, and checking the number of missing data points. Missing data
points were replaced with the mean value of the day. Daily data frames with
more than 30% missing data points were discarded completely. A second
column containing a flag for replaced values was added, meaning the final
dimensions of a time series sample was 96x2.
The names are first encoded using trigrams as explained in section 2.3 and
then padded to all be the same length . The names were padded to size 60,
as this was a bit bigger than the longest name.

3.3 Time Series Classification Neural Network
While the mortar data servers were unavailable, ways to implement and
theory on recurrent neural networks and especially LSTMs was considered.
After having a better grasp on implementing LSTMs, a first LSTM network
for simple binary time series classification was created. The structure of
the network was an input layer, an LSTM layer containing 60 LSTM cells,
followed by a fully connected dense layer using a sigmoid activation function.
It was chosen to work with 60 LSTM cells through advice from the supervisor
and by testing different options and comparing results. Here 60 gave a good
result without needing too much time to train. The optimizer used was
ADAM and the loss function was chosen to be binary cross entropy.
By this point, data from a couple different sensor types had been downloaded
from mortardata. To start of with an easy classification problem, two different

19

air temperature measurements were used as the training set. These two were
"discharge air temperature", meaning the temperature of the air leaving the
HVAC system and "zone air temperature", measuring the temperature in a
room. A simple LSTM with 60 cells was enough to get a 100% test accuracy
on this data set, so the next goal was to get a harder data set, where this
simple network was not good enough. For this, more classes were added to
the problem. While the new time series data was being downloaded, a second
input for every data point in the time series was added. The added input is a
flag, either 0 or 1, signifying if a data point was originally missing. The goal
of this was to train the neural network towards being more reliant on the
real values. One-hot encoding was used to signify which class a time series
belonged to. Also, as there were more than two classes now, the loss function
was changed to categorical cross entropy.
After adding 14 additional classes and retraining the network the top one
accuracy was roughly 50%. A model of this network can be seen in Figure 3.1.
As the goal of this project was also to semi-automate the problem, a second
accuracy metric was added to the neural network. This metric checked if any
of the top three guesses for a sample were correct. The top three accuracy
metric gave very promising results even with this simple network.

20

Figure 3.1: Structure of final time series neural network. It consists of an
input, an LSTM and an output layer. The numbers to the right of each layer
represents its input and output size. The none dimension denotes that the
length (meaning the number of separate samples) of the input can be chosen
freely. The samples dimension is fixed as 96x2 for the time series input (see
section 3.2). As 60 cells were used for the LSTM, the output of the LSTM
has dimensions 60x1, which is then fed to the dense layer for classification.
The output size of the dense is 16, as there are 16 classes to choose from.

3.4 Sensor Name Classification Neural Network
After this, the focus was put on building a model that uses the sensor names
to classify the sensors. For this the names first of all have to be embedded
into a vector space, as described in Section 2.3. This manipulation of the
data was done before sending it as an input to the neural network. The built
network can be seen in Figure 3.2. Dropout was used to counteract overfitting
of the data[8]. This network had reached a very high top one accuracy of
98.39%.

21

Figure 3.2: Structure of final names neural network. It consists of an input,
an embedding, an LSTM and an output layer. The max input name length
was chosen to be 60, as this was a bit bigger than the longest name. The
numbers to the right of each layer represents its input and output size. The
none dimension denotes that the length (meaning the number of separate
samples) of the input can be chosen freely.

3.5 Multimodal Neural Network
At this point the work on the multimodal network using both the time
series data and sensor names to classify was started. For this both the
previously created networks were put into the new model and their outputs
were concatenated and sent to a last fully connected layer. A figure of the
model can be found in Figure 3.3. The data set used until now was very
unbalanced, with some classes having over 1000 times the data points of
others. To counteract this, all classes data were oversampled, using repeated
data, to have the same amount of data points as the most populated class.
The network was then completely re-trained with this data set using the
ADAM[6] optimizer and the loss function categorical crossentropy. Training
this network for a couple of epochs had a very peculiar result. After the first
three epochs the accuracy was extremely high, but after that it went down
to nearly 0% in the other epochs. The network classified all samples into
the same class. After exploring the topic further the optimizer was switched
from ADAM to RMSprop[5] as ADAM can have difficulties to converge in
certain cases. This first seemed to fix the error, but with enough data and
training the same problem occured. The cause for this is probably related to

22

the exploding gradient[7], a common problem for recurrent neural networks,
where the error gradient accumulates and leads to very large updates, making
the network unstable. A way to solve this problem would be to implement
gradient clipping[7], but as the network had very high accuracy before the
gradient exploded it was decided to just use the weights of the epoch before
it exploded. This neural network was the final one built for this thesis.

Figure 3.3: Structure of final multimodal neural network. The part marked
in green is the name neural network and the part marked in red is the time
series network. The numbers to the right of each layer represents its input
and output sizes. The input dimensions are the same as for the multimodal’s
parts. These outputs are then concatenated and sent to a fully connected
dense layer for classification.

23

4 Results and Discussion
In this section the results of the final time series, name and multimodal neural
networks, will be discussed. The goal of this is to see if and how much better
the multimodal network performed compared to its parts individually.

4.1 Final Time Series Neural Network
For the network only using times series data, the top one test accuracy
plateaued at 75%. The network was trained for 10 epochs with the accuracy
during training stabilizing after epoch 3 at roughly 72%. A confusion matrix
for the top one accuracy can be found in Figure 4.1. Like mentioned above,
the setpoint and zone temperature signals were hard to discern for the network
using only time series because of their similar characteristics. Other classes
that were hard to classify correctly were occupancy, discharge air temperature
and supply air temperature setpoint. Occupancy and heating communication
seem indistinguishable to the network. Looking at the csv files, it can be seen
that both signals are a simple binary flag set to either 0 or 1. The signals could
be connected in the way that an occupied room will require more heating.
This means that a command will be sent via the heating communication as
soon as a room is occupied. This would lead the sensors to have very similar
looking characteristics making them hard to discern. Looking at the top three
accuracy, it reached a value of 92%. So time series data might be enough
to semi-automate the process. The neural network can be implemented as
a prestep to configuring the cloud connection, giving reasonable guesses for
what classes a time series could belong to before a user manually picks the
right one from the suggestions. One of the biggest difficulties was discerning
temperature set points from actual values. It could be better to add the
classes together and then do an experiment where temperature setpoints are
changed by a couple of degrees and see which sensors change instantly and
which need time to reach the temperature.

24

Figure 4.1: Confusion matrix for the final time series neural network.

4.2 Final Name Neural Network
Looking at the name neural network, the test accuracy turns out to be 97.5%
and the top three accuracy is 99.69%. These results are good, but it is unclear
how realistic this data set of names is. Some examples of names for Zone air
temperature sensors are:

• STOR.ZONE.AHU03.RM3342.Zone_Air_Temp

• WELL.ZONE.AHU01.RM015A.Zone_Air_Temp

• SOCS.AHU.AHU03.Zone_Air_Temp

Most other sensors of this type follow a similar naming scheme. Having the
actual sensor class in all sensor names and having them all follow the same
scheme simplifies the problem immensely and is unrealistic for a real data
set. As mentioned in Section 1.2, there is no generic naming scheme that the
whole world conforms to for building sensors. It is probable that mortardata
has had to anonymize the sensor names[3] as to protect their clients privacy

25

Figure 4.2: Confusion matrix for the names neural network

or that the data is from buildings that have been configured by the same
company. So while the Neural Network performed very well on this data
set, using this neural network to classify sensors following different naming
schemes will most probably be fruitless. In Figure 4.2 the confusion matrix
for the name classifying neural network is shown. As can be seen in the
confusion matrix, another uncertainity about this dataset is how unbalanced
it is. While room temperature sensors are very common in buildings and
therefore a lot of different names are available, other classes such as CO2
sensors are much rarer and only 29 names were available through mortar data.

4.3 Final Multimodal Neural Network
The test accuracy for this network was 99.89%. As expected, the multimodal
model performed better than both parts on their own. The final confusion
matrix can be seen in Figure 4.3. The resulting confusion matrix seems pretty
much perfect. A problem with the approach used for the multimodal network,
is that the same name can appear in both the training and test set. As all

26

sensors have several days of data and all samples need a corresponding sensor
name, all names are in the data set multiple times. When the data set is split
up into training and test sets, 20% of the samples are randomly chosen for the
test set, without checking if the same name is in the training set. If unlucky,
this could mean that all names are both in the training and testing data set.
This would lead to an invalid testing set as the sample is not actually totally
new. If the multimodal network mostly relies on the names for classification,
which seems reasonable with how much higher the accuracy for that part of
the network is in isolation, the test data set could be seen as containing no
new information. A counter argument can be given, as the model discussed
in section 4.2 did not have the same problem of duplicates in the test and
training data set and was able to classify accurately. Further tests would be
needed to see the validity of the test results. One idea would be to produce a
new data set by changing the names slightly by hand for a testing data set,
while keeping the time series data the same and predicting classes for this
data set. An example of this would be to take a sensor name like

EPS.ZONE.AHU02.RM3314_TP_LAB.ROOM_STPT

and changing the underlined building, room and lab name to

EPS.ZONE.AHU05.RM5423_FTL_LAB.ROOM_STPT

27

Figure 4.3: Confusion matrix for the multimodal neural network.

28

5 Conclusion
In conclusion, the goal of this thesis was reached. Using an ensemble LSTM
network to classify sensor signals and names seems like a viable option for
decreasing the time spent connecting a BMS to a cloud service. An alternative
easier to implement solution would be a semi-automated system. With a few
changes to the code, the networks could suggest a number of its predicted
classes, depending on how sure the network is. On easy to predict samples
the network could choose automatically. A user would would then just have
to intervene on samples the network is unsure on and choose the right class
from the suggestions manually. A fully automated classifying solution could
be achievable, depending on how wide spread mortar data will be in the
future and how much pre-processing is done by mortar data to generalize the
data. If it becomes popular enough and the data is normalized enough, it is
believed that the solution proposed in this thesis would work without any
changes.

6 Future Work
The next step for continued testing would be to get a more varied and complex
data set to work with. Especially the sensor names would have to follow more
than one naming scheme to see how this network would perform in a real
world scenario. Also, as the number of names is very limited for some classes
compared to the number of time series data, adding more names or varying
the name of a sensor in different samples for the ensemble network by hand
can give a more valid test result.
Another change in the data set that would be useful, is to get more data from
buildings in different climates. It seems like most of the buildings registered
in mortar data are from North America and Europe. Adding buildings from
more tropical climates would lead to a more varied data set, where for example
air humidity would have a different mean value in the tropical countries. It
would be interesting to see how the network handles time series data with
different mean values, but otherwise similar behaviour.
The lacking data set is definitely the biggest problem of this work and the
viability of this solution for global use is questionable until it has been
upgraded.

29

References
[1] Anna Åberg and Christine Sjölander. “Building Data Classification and

Association”. eng. In: (2018). Student Paper. issn: 0280-5316.
[2] Bharathan Balaji et al. “Zodiac: Organizing Large Deployment of Sensors

to Create Reusable Applications for Buildings”. In: (Nov. 2015), pp. 13–
22. doi: 10.1145/2821650.2821674.

[3] Gabe Fierro et al. “Mortar: an open testbed for portable building ana-
lytics”. In: BuildSys ’18. 2018.

[4] Marc Hall and Clare Ferguson. “Energy efficiency in buildings”. In: (2016).
url: https://epthinktank.eu/2016/07/08/energy-efficiency-in-
buildings.

[5] Geoff Hinton. unpublished. url: http : / / www . cs . toronto . edu /
~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[6] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. cite arxiv:1412.6980 Comment: Published as a conference
paper at the 3rd International Conference for Learning Representations,
San Diego, 2015. 2014. url: http://arxiv.org/abs/1412.6980.

[7] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “Understanding
the exploding gradient problem”. In: CoRR abs/1211.5063 (2012). arXiv:
1211.5063. url: http://arxiv.org/abs/1211.5063.

[8] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”. In: Journal of Machine Learning Research
15.56 (2014), pp. 1929–1958. url: http://jmlr.org/papers/v15/
srivastava14a.html.

30

Document name

Date of issue

Document Number

Author(s) Supervisor

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

