
MASTER’S THESIS 2020

Software Configuration
Management in a DevOps
context
Erik Hochbergs, Laroy Nilsson Sjödahl

ISSN 1650-2884
LU-CS-EX 2020-08

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-08

Software Configuration Management in a
DevOps context

Erik Hochbergs, Laroy Nilsson Sjödahl

Software Configuration Management in a
DevOps context

Erik Hochbergs
tys12eh2@student.lu.se

Laroy Nilsson Sjödahl
fpr08lni@student.lu.se

January 27, 2020

Master’s thesis work carried out at Praqma AB.

Supervisors: Christian Pendleton, cpe@praqma.net
Albert Rigo, alr@praqma.net

Lars Bendix, lars.bendix@cs.lth.se

Examiner: Ulf Asklund, ulf.asklund@cs.lth.se

mailto:tys12eh2@student.lu.se
mailto:fpr08lni@student.lu.se
mailto:cpe@praqma.net
mailto:alr@praqma.net
mailto:lars.bendix@cs.lth.se
mailto:ulf.asklund@cs.lth.se

Abstract

Software configuration management is rarely explicitly discussed within the
context of DevOps, and vice versa. Literature on DevOps often mentions parts
of software configuration management as being important, but specifics on how
it is done within DevOps is often left out, which creates a disconnect between
software configuration management and DevOps regarding its usage in DevOps,
and the benefits of it. There is a lack of an operational definition of DevOps,
which creates di�erent expectations, because organizations and people have dif-
fering understanding on what DevOps is and how it is done, or can be done,
in practice. DevOps has also become somewhat of a buzzword, which further
obscures what DevOps is, and what one can expect from it. Depending on the
source, there are di�erent ways of accomplishing DevOps, but there appears to
be principles and practices which are commonly used in DevOps. We attempt
to map out these commonalities by characterizing DevOps based on literature
and interviews with companies. We propose guidelines for adapting activities
in software configuration management to a DevOps context. It is not intended
to be a one-size-fits-all method, each part is treated as a piece which has a de-
fined purpose, what problems it intends to solve, with examples of how it can be
implemented.

Keywords: DevOps, Software configuration management, Characteristics of DevOps,
Software configuration management activities, Internal dependencies, External depen-
dencies, Guidelines, Graphs, Process plan

2

Acknowledgements

Wewould like to thank our academic supervisor Lars Bendix for his immense support through-
out the thesis. We would also like to thank our industrial supervisors Christian Pendleton
and Albert Rigo, and the rest of the o�ce at Praqma, for their continuous support and feed-
back, and also for providing opportunities to participate in CoDe-Conf and Code Camp,
which provided much inspiration and feedback.

Lastly, we want to thank the companies who participated in our interviews, and who also
were part of our validation process, for their contributions.

3

4

Contents

1 Introduction 7

2 Background 9
2.1 Problem statement . 10
2.2 Methodology . 11

2.2.1 Information collection . 12
2.2.2 Analysis . 14
2.2.3 Alternate methods . 15
2.2.4 Validation . 16

2.3 Characterizing DevOps . 16
2.4 Introduction to SCM . 20

3 Characteristics of DevOps 25
3.1 Ranking and visualizing characteristics and their dependencies 31

3.1.1 Ranking of DevOps characteristics 31
3.1.2 Dependency graph of DevOps characteristics 32

4 SCM in a DevOps context 35
4.1 SCM in practice . 35
4.2 Dependency graph of SCM activities . 38
4.3 SCM and DevOps combined . 39
4.4 Analysis . 42
4.5 Result . 47

4.5.1 RQ1a: What SCMconcepts and principles are needed and not needed
in a DevOps context? . 47

4.5.2 RQ1b: What new SCM concepts and principles can be added to the
SCM toolbox? . 50

4.5.3 RQ1c: How to adapt relevant SCM concepts and principles in a
DevOps context? . 51

5

CONTENTS

5 Discussion and Related Work 55
5.1 Reflections and limitations . 55
5.2 Related work . 56

5.2.1 SoftwareConfigurationManagement Practices for eXtreme Program-
ming Teams . 57

5.2.2 What is DevOps? A Systematic Mapping Study on Definitions and
Practices . 58

5.2.3 Vad karaktäriserar DevOps? . 59
5.3 Validation . 60
5.4 Future work . 61

6 Conclusion 63

Bibliography 65

Appendix A DevOps interview template 71

Appendix B SCM interview template 73

6

Chapter 1

Introduction

Software configuration management (SCM) is a valuable tool for providing an infrastructure
where items and information can move around, structured and controlled. It also provides
support for collaborative activities, and touches on practically all aspects of product devel-
opment (Bendix, 2019).

DevOps has become a very popular developmentmethod, and the term has become some-
what of a buzzword (Sharma, 2014). Because of its widespread usage no singular definition
of DevOps exists, which creates di�erent expectations based on di�erent experiences and
understandings of what DevOps is, and how it is done.

SCM, or parts of SCM, is sometimes mentioned in literature regarding DevOps as being
important or part of DevOps, but specifics on its implementation or usage is often left out.
In much the same way as with the DevOps literature, little literature seems to exist on SCM
discussing DevOps, and its usage, which seems to point to a need for more research in this
area.

This lack of a common definition, or operational definition, of DevOps, in addition to
sparse information regarding SCM in this context, and the role of DevOps in SCM, presents
di�culties in understanding the role of SCM in DevOps, why SCM can be valuable, or why
it might not be, and how to use it. Because SCM is (or should be) method agnostic (Bendix,
2019), it should be possible to combine these two methods, which partly sets the premise for
this thesis.

The purpose of this thesis is to explore what SCM activities, principles, and practices are
needed in DevOps, and how these SCM activities can be implemented. In addition we pro-
vide guidelines for doing so within the context of DevOps, aimed towards both established
companies and newer companies, e.g. start-ups, who wants to move towards DevOps and
provide a source for how SCM can be adapted to it, and also how DevOps companies who
wants to move towards SCM.

With this as background, our main research question was formulated:

• RQ1: We want to explore and investigate what SCM is needed in a DevOps context and how
to implement it.

7

1. Introduction

Which was further split in three parts as:

• RQ1a: What SCM concepts and principles are needed and not needed in a DevOps context?

• RQ1b: What new SCM concepts and principles can be added to the SCM toolbox?

• RQ1c: How to adapt relevant SCM concepts and principles in a DevOps context?

These research questions were explored in literature and through interviews, and resulted in
a characterization of DevOps, providing a basis and context for our thesis on which we could
analyze DevOps both through the literature, as well as how companies themselves viewed
and implemented DevOps or wanted to implement DevOps, its relationship with SCM, also
based on literature definitions and interviews with companies on how they used SCM, and
lastly guidelines for how SCM can implemented in DevOps.

In the following chapter we will first provide background and context for the thesis, intro-
duction to the problem, methodology, initial characterization of DevOps based on literature,
and a short introduction to SCM, to provide the reader with the initial information needed
for the following chapters.

Then follows the chapter Characterization of DevOps, containing the cumulative char-
acterization of DevOps, based on both literature and interviews, as well as a graph showing
connections between the identified characteristics.

Next, the chapter SCM in a DevOps context contains the cumulative definition of SCM,
based on both literature and interviews, as well as a graph showing connections between
di�erent SCM activities. It also presents the resulting graph of combining the DevOps and
SCM graphs, and subsequent analysis of this. Lastly, it provides the results in relation to our
research questions.

Following is a chapter on discussion and related work, which presents a discussion of the
thesis, related work, validation of the results, reflections and limitations of the thesis, and
future work.

Lastly, a chapter concluding the thesis, containing a summary of the results of the thesis.

8

Chapter 2

Background

There is a lack of a unified definition of DevOps which creates di�erent expectations, because
organizations and people have di�ering understanding on what DevOps is and how it is done
in practice. Since there are many opinions on how to do DevOps (and even whether DevOps
is something you do, or if it is something you are (Kornilova, 2017)), DevOps is not necessarily
the same process, or set of processes, in every development context, and misunderstandings
occur when discussing the subject, due to di�erent personal experiences, understanding, and
views or opinions. Some compare DevOps to a buzzword (Sharma, 2014) or a feeling, rather
than a set of concepts and principles, but also all of it at the same time. Even if the word “De-
vOps” has become heavily overused because of its popularity, an overall goal is still somewhat
clear and we have tried to condense it to: The ability for organizations to e�ciently deliver
services and applications (TechInsights, 2013; Sharma, 2014). The details of how this is ac-
complished can di�er, but there appears to be a subset of principles and practices that are
commonly used inDevOps, which we attempt tomap out. To accomplish the goal of DevOps,
Software configuration management (SCM) needs to be taken into consideration. Regard-
less of development method used (e.g. agile or waterfall), certain parts are often present, e.g.
a group of people with varying degrees of defined roles (e.g. a cross-functional team or a
clearly defined role), who needs to work together to accomplish some goal. To this end, SCM
is agnostic towards any specific development method. To accomplish this and to incorpo-
rate the overall goal of DevOps and keep up with the market speed, the workflow from idea
to, for instance, a finished product, must be as e�cient and e�ective as possible. In these
cases SCM comes in very handy as it provides an infrastructure for a project or organization,
which can cover almost any topic related to software development. What SCM very broadly
does is identifying configuration items (CI) in a software product or project, controls these
items, and reports and records change activities to the CIs. It does not matter if one work
with testing, development, requirements, quality assurance, or project manager, SCMwill be
a great help. Moreover, SCM helps people to coordinate, which will in turn help with the
workflow, when integrating each piece into an actual product. Therefore, knowing SCM and
implementing the di�erent techniques into projects will be a valuable asset (Bendix, 2019).

9

2. Background

In literature on DevOps, SCM or components of SCM, are sometimes mentioned as a prac-
tice in DevOps, but the specifics on how it is done are left out (Jabbari et al., 2016), and any
relationship or di�erence, or needs between DevOps and SCM can be di�cult to see, and
point out, without knowledge of them.

The thesis project was done with the help of Praqma. Praqma is an IT consultancy bu-
reau that focuses on continuous delivery and DevOps. Their main goal is to help large and
small companies deliver quick, safe, and sustainable software. This is a valuable asset when
competing with the market demands. However, they do not only have a great knowledge in
the philosophy of development, but also activities and tools surrounding it. Instead of being
specialist around specific areas, they promote the wider knowledge, and see themselves as full
stack developers. Therefore, Praqma became a great collaboration partner, with expertise in
both DevOps and Software configuration management, which gave us valuable information
and discussions during the thesis project.

Our master thesis will provide Praqma and others with guidelines of how to adapt SCM
to a DevOps context. These guidelines will be the product of our result and conclusion of
the thesis, which will in detail provide an analysis of these parts on how SCM can be done in
DevOps. This in turn will make companies more aware of the importance of SCM inDevOps,
and what SCM to use in DevOps, and help them along the way to use and improve DevOps
in their organization.

In the coming sections the problem will be discussed, and the research questions pre-
sented in the context of the problem. The chosen methodology for the thesis project will be
presented, and certain choices regarding it will be discussed. An initial characterization of
DevOps will be presented, and lastly a short introduction to Software Configuration Man-
agement which presents some of the most important topics for understanding the rest of the
report.

2.1 Problem statement
In this section the research questions will be formulated based on the background, and the
discussed problems, will be listed, and motivation and discussion will be provided for each.

Analyzing the outlined background and problems, and the lack of resources explicitly
discussing SCM and DevOps, there appears to be a need to explore the relationship between
them, and how SCM can support and be a part of DevOps, as well as to provide a resource
which discusses this clearly, using relevant terminology. This led to the formulation of our
overall research question and goal:

RQ1: We want to explore and investigate what SCM is needed in a DevOps context and how to
implement it.

From RQ1, three parts were identified as additional research questions, by separating it,
to help answer RQ1 in its entirety with higher granularity. Because it is unclear what SCM
is needed in DevOps, that is the first part to explore to get a clearer image of the SCM needs
in DevOps:

RQ1a: What SCM concepts and principles are needed and not needed in a DevOps context?

10

2.2 Methodology

While investigating this, we also want to explore the possibility of the addition of concepts or
principles not necessarily covered in SCM already, but could be, which might have a positive
impact, or is perhaps already used in DevOps:

RQ1b: What new SCM concepts and principles can be added to the SCM toolbox?

Finally we want to investigate how these concepts and principles both can be implemented,
and also how they might be implemented already, in a DevOps context:

RQ1c: How to adapt relevant SCM concepts and principles in a DevOps context?

In order to investigate these research questions, characteristics of DevOps needs to be es-
tablished, for us to be able to analyse SCM within these parts that are part of DevOps. This
will be done in two parts, literature study to establish a characteristic based on theory, both
academic and other published resources. The second part will be through interviews with
companies, who are self-identifying as DevOps, or are moving in that direction, to collect
their views on DevOps, how they work, and their views on our characteristics. This will then
be analysed and compiled into a set of characteristics which the research questions will focus
on. We decided to not formulate this part as a research question, as it is not our main focus
to provide a definitive characterization or definition of DevOps, but it is needed to build a
basis for the research questions within the context of DevOps in this report.

2.2 Methodology
This section discusses and analyzes how the thesis was conducted. Given that our research
questions are closely connected to DevOps as a basis, the initial step will be to characterize,
through literature study, DevOps as a process and its overall problems and needs in order to
have a well defined-context for the three sub-parts of our research question. This will provide
us with a number of characteristics outlining DevOps, not defining it, which we can use in
our later analysis. We also compile a list of important topics in SCM through literature study
in parallel.

After this initial step we wanted to collect information from companies who produces
software, and who self-identify as DevOps, to map their processes to our prior analysis, to
further strengthen our classification of the characteristics of DevOps, and provide context
to their specific situation. The reason for this initial step is that an initial cursory search for
a description or definition of DevOps proved di�cult, and an example is the wikipedia page
on DevOps, which is severely lacking for our purposes.

Because of time constraints, the number of interviews has to be limited, but enough to
provide information. Therefore, four companies was interviewed with a focus on DevOps,
as the characterization and classification of DevOps was not our main focus, followed by six
interviews with companies regarding SCM in their DevOps. More interviews for the SCM
part, because this is our main focus. This was followed by an analysis of how SCM is used
in companies or teams, which self-identify as DevOps, to identify the relationship between
them, if there was one, which in turn would help us answer our research questions. This anal-

11

2. Background

ysis was performed iteratively, as data was collected during the course of the project, and was
the foundation of formulating guidelines for using SCM in DevOps. These guidelines were
send out to eight companies (all the interviewed companies plus one other) for validation
purposes, this to ensure the su�ciency of the guidelines and letting external parties provide
feedback regarding the validity of our results.

2.2.1 Information collection
There are many ways to collect data, such as questionnaires or surveys, focus groups, case
studies, and interviews. When deciding which methods are appropriate, we have a need to
balance the width and depth of the data collected, as well as the control of precise feedback
while and after collecting information. This section contains the information collection ac-
tivities done during the phase before the analysis part of our thesis.

Literature study
Our lack of knowledge, and the poor description and definition of DevOps on pages like
wikipedia, made the literature study necessary. This to make the master thesis trustworthy,
and not take place in a vacuum, without any references. Therefore, to find and collect reliable
literature we first had a brainstorming session, where we found a best fit process for us. The
process started with a collection of literature, where we both read abstracts and skimmed
through papers to determine relevance. The literature was collected with the help of our su-
pervisor Lars Bendix, and the platforms Lubsearch and Google Scholar. When this was done,
we did a more thorough reading on the literature that was collected. During the reading we
wrote down pieces that we reacted on, and thought would be useful, followed by a frequency
analysis on the data. This was done to find words that was frequently used in the sources de-
scribing principles, practices, or other noteworthy topics. Lastly, the resulting list of terms
collected were the basis for our initial set of characteristics of DevOps.

Interviews
We have chosen to mainly focus on interviews. The individual interviews will have a semi-
structured approach. This means there are going to be questions that have a more of a direct
answer and questions that are more open for discussion. With the participant’s permission
each interview will be recorded, to allow for both of us to take a more active role during the
interviews, instead of focusing on parsing the conversation as it happens. This also allows us
to review the interviews in greater detail afterwards.

The choice of interviews is based on wanting to have flexibility, the ability to follow
up immediately on a given answer or thought in a discussion, and to be able to steer the
conversation based on the answers. This is much more di�cult and time consuming if other
forms of information collection is used, such as questionnaires or surveys (since you would
need to follow up afterwards). There is also the ability to control the depth of each interview
as deemed needed, while the width is controlled by the number of interviews in relation to
the number of companies.

When constructing the interview questions, the characteristics identified during the lit-
erature review formed a basis for what information the questions should generate. A brain-

12

2.2 Methodology

storming session around these characteristics formed a number of broad questions regarding
a software development process, with the purpose of steering the conversation towards these
subjects. From each broad question a number of follow-up questions were also brainstormed,
with the purpose of collecting specific information on the subject, if the interview partici-
pant did not touch on it. These questions were pilot tested by employees at Praqma to verify
that the questions are valid in our context, and generated the wanted information. After
each performed interview, the questions were also evaluated according to what worked in
practice, and what did not. The changes made to questions based on this feedback were e.g.
specific wordings, and additional follow-up questions, addition of entirely new questions,
or removal of them. In order to get a better view of the participating companies, and their
representatives, we have collected a short summary, describing, e.g., the type of company, the
role of the interviewee, and which interviews they participated in. This can be viewed in the
matrix in 2.1.

13

2. Background

Company Type of company Size The interviewer’s role in
the company Kind of interview

Company 1 Agile Established

Architect consultant,
where the main role is
how to do DevOps in
the company

DevOps

Company 2
Parts are waterfall, de-
velopment moving to-
wards agile/DevOps

Established
35 years at the company,
15 years Configuration
manager

DevOps & SCM

Company 3

Company that works
with both software and
hardware (applications
and embedded sys-
tems), moving towards
agile/DevOps

Established

O�cial roll is Config-
uration manager, helps
the company to develop
tool chains and to adapt
to Devops

DevOps & SCM

Company 4 Agile Established

Configuration manager,
six years as a consul-
tant at the company,
where the main role is to
helpDevelopment teams
with DevOps and IaC

DevOps & SCM

Company 5
Parts are waterfall,
moving towards ag-
ile/DevOps

Established System engineer SCM

Company 6 Agile software company Established

Worked as a configu-
ration manager for 15
years, but is now a build
manager at the company

SCM

Company 7
Parts are waterfall,
moving towards ag-
ile/DevOps

Established
Product Handling Prin-
cipal Developer and
Configuration manager

SCM

Table 2.1: Description of the participating companies interviewed

2.2.2 Analysis

To provide a context for the data and extract useful information, we had to understand, inter-
pret, structure, and explore the collected data in meaningful ways using analytical processes.
This section contains the analysis process for DevOps and SCM, which led to Figure 4.2,
where connections between SCM activities, DevOps characteristics, and DevOps activities
were drawn.

14

2.2 Methodology

Analysis of collected DevOps data
For the interviews on characteristics of DevOps, each recorded interview was summarized in
a bullet list shortly after each interview, sorted under the general theme of the question being
discussed. The interviews were divided among the two of us for e�ciency when more than
one interview was held in a short time period (otherwise both would analyze and compare),
and certain parts we found di�cult to interpret were analyzed by both, and the resulting
bullet lists were also inspected by each of us.

This allowed us to quickly get an overview of what subjects related to our characteristics
from the literature study each interview touched upon, and also details regarding them for
later discussion. The interview lists was then broken up, and with the use of an a�nity dia-
gram (Arvola 2014) each item were mapped to one of our DevOps characteristics, to organize
the collected data, which allowed for a quick overview of the most commonly discussed or
used characteristics based on the interview data.

During the analysis of the interviews and the mapping of characteristics, we did further
literature studies. The data from the literature studies, and the data from the interviews
bullet lists were then used to strengthen our classification of characteristics of DevOps, and to
produce a compiled result. We used the compiled results to rank the DevOps characteristics
after importance. However, in order to add more value to the research and to further analyze
the DevOps characteristics a directed graph was made, where the directed graph was used to
map dependencies between the di�erent characteristics.

Analysis of collected SCM data
As in the analysis of the DevOps data, each interview of the SCM activities was recorded and
summarized into a bullet list shortly after each interview, sorted under the general theme of
the question being discussed. However, the SCM interviews were more scattered than the
DevOps interviews, which led to us both having time to analyze each interview, and inspect
each resulting bullet list. To organize the collected data, and provide a quick overview of
the most commonly discussed SCM activities an a�nity diagram were used, where each item
from the SCM interview was mapped to an SCM activity.

Through our interviews, we also analyzed how SCM could be used in practice, and in-
vestigated di�erences (if any) between the literature study and the interviews responses to
strengthen our classification of SCM, and in turn produce a compiled result. The compiled
result was then later used to draw a SCM graph, where the graph clarified and visualized the
connections and dependencies between the SCM activities, which created a better under-
standing over the internal sequences.

2.2.3 Alternate methods
While deciding on appropriate methods of collecting information, we need to account for
the time constraints of the thesis project, which restricts us from using certain methods to
the extent that we would like.

Case studies provide great depth, but are time-consuming, whichmight limit the number
of companies studied greatly, which potentially goes against our initial goal of providing a
wider solution. Questionnaires are a simple way of collecting more data quickly, but their

15

2. Background

generally static format and the fact that peoplemight very well interpret questions di�erently
might provide more uncertainty in our data. The lack of ability to immediately follow up on
interesting parts, or clarification and expansion, is a clear negative. Focus groups provides
great range and depth, but can be harder to analyze and to organize.

2.2.4 Validation
During the course of the thesis project, Praqma provided the opportunity to hold a workshop
regarding the characteristics of DevOps. The workshop was designed to focus on discussion
between the participants, and for us to answer any questions or clarify when needed. The
time at which the workshopwas held was very close to the preliminary completion of our sub-
task of characterizing DevOps, which provided a timely opportunity to get feedback on the
results and to validate them. Specifically, the workshop was focused on our graph describing
dependencies between DevOps characteristics, and discussions on both the characteristics
themselves, and the dependencies. We also submitted this report to a number of companies
for external validation, of which the results are presented and discussed in chapter 5.

2.3 Characterizing DevOps
The lack of a unified definition of DevOps presents an obvious problem, mainly that in order
to perform interviews on the subject, and to investigate our research questions we want to
have a basis for discussion, and concrete information that characterizes DevOps. This section
describes common characteristics of DevOps (table 2.2), as identified during our literature
study, and provides an academic characterization of DevOps, which we use as a basis for
educating ourselves, and in extension for preparing interviews and subsequent analysis and
refinement of these characteristics in combination with what we encountered in the industry.

Holistic
The DevOps culture want, among other things, to increase trust, respect and understanding
(França et al., 2016; Ståhl et al., 2017). Therefore, in DevOps it’s important to have a holistic
view. For instance, this means that it doesn’t matter if ones code is in QA, the production
server, or in development. You as a team are responsible for your code in all environments,
and you have to make sure that it performs as expected (Casey, 2019). Moreover, a holistic
view is key to increase the understanding and decrease the gap between business stakeholders
(Sharma, 2014).

Culture/Social aspects
The “social aspects” and “culture” of DevOps is mentioned frequently in literature, which
probably is an indication of value (França et al., 2016; Sharma, 2014; Ståhl et al., 2017; Bendix
and Pendleton, 2019; Erich et al., 2014; Kornilova, 2017). As well as describing it as a DevOps
culture, which should be encouraged, to promote DevOps principles and practices. Examples
mentioned are trust, communication, being open to change, respect, personal responsibility,
cultural aspects, collaboration (França et al., 2016; Ståhl et al., 2017). Others describe it more

16

2.3 Characterizing DevOps

concisely as a focus on people, processes, and tools, to promote the DevOps culture (Sharma,
2014; Bendix and Pendleton, 2019).

Automation
Automation refers to automate tasks where possible. This includes any task that is repetitive
and performed manually frequently (França et al., 2016). Reasons for this are that manual,
repetitive tasks consume time and e�ort, may lower consistency, and repeatability, so au-
tomation counters these issues and provides reliable and repeatable processes (França et al.,
2016; Sharma, 2014).

Quality assurance
Quality assurance is broadly a way of assuring quality of products or processes, e.g. by follow-
ing an established standard. The importance of quality assurance in DevOps is emphasized
in many sources (e.g. (Kornilova, 2017; França et al., 2016; Jabbari et al., 2016)). Using quality
assurance throughout the implementation of DevOps, the quality of the involved processes
and products can be monitored and evaluated (França et al., 2016; Roche, 2013).

Shift left
Shift left moves testing and QA, operations earlier in the delivery cycle. This means that, for
instance, the quality for a product will increase and test cycles will be shortened. Moreover,
by moving operations concerns earlier in the process, the development and quality assurance
can test against systems that behaves like the product system. This means that in DevOps
one can see how the application performs and behaves before deployment, which, for exam-
ple, reduces unpleasant surprises in production (Sharma, 2014). Furthermore, with shift left
down time and security issues will decrease, which will make the company to move faster
(Kornilova, 2017).

Teamwork/Collaboration/Communication
To get an e�cient teamwork between operators and developers, there needs to be a good set
of collaboration and communication among the teams (Jabbari et al., 2016). Collaboration
and communication is therefore key for DevOps to work. However, keep in mind that these
two practices does not solve all problems. For instance, good communication and collabora-
tion, but slow processes does not lead to better deployments (Sharma, 2014).

Monitor/Measure
Often mentioned as a basic component of DevOps as an important part of operations, mon-
itoring and measuring is intended to be incorporated early in the development cycle, to not
only monitor a system in production and customer feedback, but also the functional and
non-functional aspects of a system in development (with e.g. continuous automated testing)
(França et al., 2016; Sharma, 2014). The purpose is to monitor characteristics of an appli-
cation or system, and collect metrics, which acts as feedback to the application or system,
di�erent processes in e.g. development or production, and provides an overview of a product

17

2. Background

or system in development and in production based on these metrics in a way that is accessi-
ble and understandable to the people involved. These can then be used to create new ideas,
improve processes, discover problems, used in planning, validate quality, etc. (França et al.,
2016; Sharma, 2014; Erich et al., 2014; Jabbari et al., 2016; Kornilova, 2017; Ståhl et al., 2017).

Sharing
Sharing refers to spreading and sharing knowledge and information to team members and
relevant parties (e.g. (Erich et al., 2014)). This includes for example project information
and information about principles and practices regarding the development process in the
context of DevOps, expertise from specific people, and making them accessible by everyone
involved in order to lessen dependencies on certain people and provide information about
the project, and create an environment where team members are educated, informed, and
understand their processes and goals. (França et al., 2016).

Feedback loops
In DevOps it is important to make organizations react, and make changes, more rapidly. To
achieve this the organization needs to get quick feedback, which are based on e.g. metrics
collected and tracked during the monitoring activities, or customer feedback, and which are
then acted upon by e.g. adjusting project plans and priorities, production environments,
changing release plans. This is done by amplifying feedback loops (Sharma, 2014; Auerbach,
2017). To amplify these feedback loops there needs to be communication channels that allows
stakeholders to act on and access all feedback (Jabbari et al., 2016; Sharma, 2014).

Integration
As mentioned over and over in the literature, continuous integration is a big part of DevOps
(Kornilova, 2017; Sharma, 2014). Furthermore, when doing frequent integration one decrease
the integration cost because changes are detected and resolved early in the development life
cycle (Bendix and Ekman (2007)).

Delivery
The key point of DevOps is to reduce the cycle time for a service or product. This includes
everything from initial idea to production release to customer feedback to improvement on
that specific feedback. (Sharma, 2014; Jabbari et al., 2016). To achieve a reduced cycle time
one can, for example, automate the delivery pipeline, react quickly to changes, add continu-
ous feedback, add continuous integration and shorten release cycles (Jabbari et al., 2016).

Testing
Testing, including continuous (and especially automated) testing, is an important part of
DevOps, which is used continuously during the development process to e.g. assure quality,
correctness, get fast feedback (Daskalopoulos, 2019; Sharma, 2014; Jabbari et al., 2016). It is
also recommended to employ automated testing as part of the tracked metrics in the moni-
toring activities (Sharma, 2014), and that testing is performed in an environment similar to

18

2.3 Characterizing DevOps

the production environment, which helps keep the product in a “shippable” state (Ståhl et al.,
2017).

Planning

Another principle that has to be included in DevOps is planning (Sharma, 2014; Jabbari et al.,
2016). A release plan o�er capabilities to customers, which can include, among other things,
project plans, release roadmaps and delivery schedules. These release plans often includes
meetings and spreadsheets, which stakeholders across the business take part of (take time).
However, explicit processes and automation enables predictable releases, and eliminates the
needs of spreadsheets and meetings (Sharma, 2014).

Deployment

Deployment is the set of actions thatmakes a product, or update, available for use. In DevOps
one goal is to optimize this process, and key factors that are often mentioned are continuous
integration and continuous delivery, that aims to automate the process of getting the product
deployable, and in extension the deploying itself, continuous deployment (Sharma, 2014;
França et al., 2016; Auerbach, 2017; Jabbari et al., 2016).

Change management

This title is more of an umbrella term used for cases where handling changes is discussed.
Few sources explicitly discuss change management in the sense of structured approach, as in
SCM (but some mention it as a practice in DevOps, e.g. (Jabbari et al., 2016; Auerbach, 2017)
which also mentions change advisory board meetings, which is part of the change control
process in ITIL). Several sources stress the importance of being able to react to change, e.g.
(Jabbari et al., 2016; Ståhl et al., 2017), or reacting to change over following a plan (Ståhl et
al. 2017; Casey 2019) and focusing on smaller releases (Jabbari et al., 2016). Change is also
mentioned as a metric that can be tracked for QA purposes, e.g. change fail rate, deployment
rate, and time to deployment (Kornilova, 2017), and also tracking changes in general, for e.g.
traceability between code and deployment (Auerbach, 2017).

Infrastructure as code

The concept of infrastructure as code is often mentioned together with DevOps (Jabbari
et al., 2016; Kornilova, 2017; Ebert et al., 2016). It refers to treating the infrastructure (such
as networks and virtual machines) as code, so the configurations can be version controlled
and tested, and debugged, using the same tools the DevOps uses for the source code, and
provides a consistent environment which helps reduce issues that might appear otherwise,
such as bugs because of di�erent configurations (Ebert et al., 2016; Guckenheimer, 2017).

19

2. Background

Holistic Culture/Social aspects Automation Quality assurance
Shift left Teamwork/Collaboration Monitor/Measure Sharing

Feedback loops Integration Delivery Testing
Planning Deployment Change Management Infrastructure as code

Table 2.2: An overview of the characteristics of DevOps

2.4 Introduction to SCM
Software Configuration Management (SCM) is a task that involves identifying, organizing
and controlling changes and modifications to software, in order to e.g. establish what com-
ponents make up a system, di�erent versions or variants of a system, how to handle changes
made to these components, making the status of these components visible, and enabling col-
laboration through coordination of work with principles and practices, processes, and tool
support. Because this thesis is mainly focused on SCM, it is important to have some under-
standing of what it is, and be familiar with important areas of it. This section will list and
describe topics in SCM (table 2.3) that we will later use in our thesis as a basis for analysis
and discussion.

Configuration Identification
Configuration identification refers to identifying distinct components of a given system to
be managed by software configuration management. These are called configuration items,
and their features are recorded and versioned separately, which adds traceability during a
project where each issue or change can be mapped to a unique configuration item (Bendix
and Ekman, 2007). The configuration items can be a single item, or a collection of many,
e.g. a module containing multiple files. The granularity of the configuration items identi-
fied during configuration identification should be decided by the value it adds (Bendix and
Ekman, 2007; Kelly, 1996).

Configuration Control
Configuration control formalizes changes in e.g. software, through a change control process.
This process includes evaluation of the change request, coordination, approval of the change
request (or disapproval), and lastly the implementation of the proposed change, followed by
verification of the implementation. A change control board (CCB) performs the evaluation,
and an impact analysis to evaluate the impact the change would have, and is then imple-
mented by a developer, and is tested to verify the implementation is correct according to the
change request (Bendix and Ekman, 2007; C&A, nd).

Configuration Status Accounting
Configuration Status Accounting provides the ability to get metrics about configuration
items (CIs) and activities related to these. This could for instance be progress reports, trans-
action logs, and change logs, CCB actions, or feedback from impact analysis. With Configu-
ration Status Accounting one can at any time, during the life cycle, track information about

20

2.4 Introduction to SCM

a product, which in turn provides traceability for the system, its components (the CIs), and
decisions. The CSA also provides visibility for a system by organizing and tracking these
changes and decisions during a project, and presents a full view of the system and its com-
ponents, and their status, at any given time (Bendix and Ekman, 2007; Daniels, 1985). The
persons who are authorized to gather the information could be anyone in a project - tester,
programmers, QA to mention some. Furthermore, a modern Configuration Status Account-
ing uses a ConfigurationManagement Database (CMDB), where users send, so called queries,
to get real-time data (Bendix, 2019).

Configuration Audit
The purpose with audits is to evaluate the product, and see if it meets the configuration
documentation and if all change requests are met. One can carry out an audit when the
product has reached a su�cient level, which could be, for instance, when approaching a
release date. There are two di�erent kinds of formal audits; the physical configuration audits
and the functional configuration audits. The di�erence between these formal audits are that
the physical configuration audit focus on, if the product meets the physical description of the
product, while the functional configuration audit is a type of check to see if the product is
performing according to changes, specifications and requirements (Daniels, 1985). The team
that guarantees that the SCM activities has been controlled and applied during a in-process
audit are often the QA team (Bendix and Ekman, 2007).

The outcome of a configuration Audit doesn’t need to be perfect. In the end it’s up to the
project manager to decide if the product should be released or not. However, when a Con-
figuration Audit gets approved a new baseline for the product will be created. The baseline
creates a stable product version that will be remained untouched until the next Configuration
Audit (Bendix, 2019).

Version Control/Collaboration tools
Version control tools is a valuable asset to keep track of history for configuration items (doc-
umentation or source code). The version control tools provides the ability to store configu-
ration items and set versions. The versions that are set can not change, and are unique, which
means that at any time in the process recreation of a version can take place. The items being
stored are accessible at all times, and can be shared along project members, which provides
automatic support for Configuration Status Accounting (Bendix and Ekman, 2007; Asklund
et al., 2004). When sharing files along project members, each member should isolate them-
selves, and create virtual workspaces. This to prevent members from changing files directly
in the repositories. However, this in turn results in two new problems; simultaneous up-
dates, and double maintenance. Simultaneous updates occur when members make e.g code
changes to the same version. This creates the risk, when changes being uploaded, that one
overwrites the other. Double maintenance occurs when one isolate themselves within their
ownworkspace. This lead to thatmultiple workspaces will be created. These workspaces will,
after some time, cease to be identical, and several versions of each file existing simultaneously,
and needs therefore to be updated with any changes made during the time of isolation before
being able to update the repository, and keep oneself synchronized with the repository being
used. To solve these three problems, which were introduced by Wayne Babich, one needs to

21

2. Background

have a good set of collaboration tools (Bendix and Ekman, 2007).

Build Management
Build management refers to the process that handles the building and defining of a system.
When building a system, the many components, modules, and dependencies are collected in
a system model, from which all these parts are linked together. A given system model can be
used to derive di�erent variants of the system using a build management tool, and this can
all be automated (Bendix and Ekman, 2007).

Teamwork/Parallel work
Teamwork includes e�ort, interaction and communication, which needs to be e�ectively
executed and organized for it to work. There are three important issues when working in
parallel;

• Coordination: Everyone needs to understand what colleagues do, and why. For in-
stance, there needs to be frequent communication about baselines and changes to the
entire team, and stakeholders.

• Roles and responsibility: Everyone being responsible often leads to no one assuming
responsibility. There needs to be people that can be held accountable for milestones,
changes on components, and features outcomes.

• Complexity: Complex tasks needs to be broken down, and distributed to owners with
suitable milestones, which can in turn be tracked and monitored to measure and com-
municated to team members (Appleton et al., 1998).

In order to collaborate in the team, and to e�ciently performwork in parallel, a well planned
development environment is needed, which includes collaborative tools such as version con-
trol tools, which lets you work in parallel, in accordance with the previously mentioned ben-
efits of version control and collaborative tools.

Workspace Management
The version control tool keeps track of di�erent configuration item (CI) of di�erent versions
in a project, which are often stored in a repository. In the repository, through the version con-
trol tool, the history of each CI is available, and a given workspace can be composed of any
configuration of these versions, not only the latest version. It should not be possible for a
developer to work directly from the repository. This is because the versions that are kept
in the repository should be immutable. To be able to make changes one needs to make a
copy of the chosen documents or modules, make the changes, and then add the change to
the repository. This in turn will make it possible for developers to work within a controlled
environment, which means that they will not be a�ected by changes from other developers.
Workspace management creates the ability to make a workspace from a set of files from a
repository, make changes to these files, and to add the changed files to the repository. How-
ever, when making changes to files in the workspace, the workspace management must also
provide the ability to update the workspace with selected files from the repository. Problems

22

2.4 Introduction to SCM

avoided using a personal workspace are e.g. working on the same files (shared data problem),
and double maintenance by updating the repository from each isolated workspace. A good
version control tool will also make sure you apply your changes to the latest version of the
file(s) before being allowed to update the repository (simultaneous update problem), which
involves updating your workspace first, in case the version in the repository is no longer
the same as the version your own files are based on (the version of the file(s) you originally
checked out). (Bendix and Ekman, 2007; Asklund et al., 2004; Feiler, 1991).

Change Management

It is important that change management cover all changes to a system. Change management
needs to track changes from the origin of the change to the implemented source code. To
be able to do this, change management needs to include processes and tools that support
the tracking of changes and the organization. Also, there needs to be some sort of traceabil-
ity between changes and its implementation. Therefore, these tools needs to be tools that
gather explicit data under the process of making a change request, and the whole process
until eventual implementation and preserves traceability between the change request and its
corresponding implementation. Another aspect of change management is that it also pro-
vides important metrics about a project (Bendix and Ekman, 2007).

Release Management

Release management handles formal releases to a customer, and also internal and less formal
releases, e.g. a developer releasing to a project. A formal release needs physical and functional
audits before being released, to either establish a baseline for the system, or verify the baseline
against e.g. documentation so that the correct system has been built, or both. Releases to a
project can be a developer applying changes in code, and how and when this integration of
changes occurs needs to be established. A bill of materials might be used to record how the
release was built, and what it consists of, to ensure that the release can be recreated. Many
of the steps of a release can be automated, e.g. test cases, integrating the changes into the
code, delivery of the changes to an environment, and even deploying to a customer, and
part of release management is deciding how and when (and if) each of these things are to be
performed (Bendix and Ekman, 2007).

SCM Plan

A document describing the SCM activities regarding an organization or a project. The SCM
plan acts as a system, or reference, to be used, and creates awareness about the SCM activities
amongst the involved parties. The SCM plan can be implemented incrementally, but the
overall outline of the “final” SCM system (not necessarily all the details) could be specified
from the beginning, and then introduced in steps (Leon, 2014).

23

2. Background

Configuration Identification Configuration Control Configuration Status Accounting
Configuration Audit Version control Build Management

Teamwork/parallel work Workspace Management Change Management
Release Management SCM Plan

Table 2.3: An overview of the described SCM topics

24

Chapter 3

Characteristics of DevOps

This chapter provides the compiled results of our characterization of DevOps through our
initial literature study, literature encountered during the DevOps interviews, and the fol-
lowing interviews performed concerning DevOps in practice at four companies who uses or
are moving towards DevOps. This will in turn strengthen our classification in section 2.3
of the characteristics of DevOps in the cases where there are overlaps, and also provide dif-
ferences, e.g. between di�erent types of companies and how they might implement these
characteristics. Di�erences and changes from the initial characterization through literature
study will be discussed under each of the listed characteristics, and this chapter will represent
the characterization of DevOps we use during the rest of this report.

Culture
In interviews, speaking to di�erent industry people, and during the DevOps conference
“code-conf 2019”, issues regarding the cultural, social, and holistic aspects were usually dis-
cussed under the umbrella term Culture. In accordance with this, we have also combined
these characteristics under the term Culture, and refer to section 2.3. Most interviews em-
phasized responsibility, both as a team and on a personal level. The responsibility extends
outside the produced code, and encompasses the entire development process, including e.g.
pipelines. Also removing dependencies on specific people who might have specific and crit-
ical knowledge, since that essentially creates an internal handover within the team, and iso-
lates knowledge instead spreading it.

Culture itself is self-reinforcing (Fournier, 2019), which means that the culture should
probably extend outside teams themselves, or at least not having conflicting principles and
practices on the outside.

It has also been suggested that a culture focusing on optimizing the sharing of informa-
tion, trust, innovation, and risk taking, is a good metric for performance (Forsgren et al.,
2019). In order to foster a culture encompassing these types of characteristics, it is important
to also maintain a measure of psychological safety within the culture. This means that team

25

3. Characteristics of DevOps

members should feel safe to take risks, try new things, and make mistakes, and be able to be
vulnerable and be able to ask questions in a friendly environment (Fournier, 2019; Forsgren
et al., 2019). With this wide scope, culture definitely appears to be a very important aspect
of DevOps as a whole.

Automation
The interview answers regarding the characteristic automation correlated well to section 2.3.
They all agree upon that automation should take place where possible. Some focus areas for
automation from the interviews are:

• Testing, to better support continuous testing,

• Logging for monitoring purposes,

• CI/CD and deployment pipelines,

• Infrastructure.

This is to produce reliable and repeatable processes, by decreasing manual and repetitive
tasks, which in turn decreases errors in a system (Smeds et al., 2015). The automation charac-
teristics also support DevOps-capabilities such as planning, collaboration, integration, test-
ing, monitoring, feedback, and other characteristics throughout development, which pro-
vides a more stable service and software development process. This in turn help employees
to be more e�ective and productive (Smeds et al., 2015). Moreover, automation is required
in the operation processes in DevOps. This to keep up with the market speed, make the op-
eration processes more flexible, and eliminate manual processes. Furthermore, to improve
and ensure the quality of products test automation is a necessity in the development process
(Lwakatare et al., 2015). With this said, we can with confidence say that automation is an
important characteristic of DevOps.

Quality Assurance
Assuring quality (chapter 2.3) was important during the interviews, and there were some
di�erences in the implementation of this. In some cases there were established Quality As-
surance teams (for example in cases where the companies themselves and their products were
more strictly regulated, and often when the company also produced hardware), and in other
cases, the development processes themselves represented a degree of assurance in terms of
quality, e.g. by continuously testing, monitoring, and usage of an automated pipeline. There
seems to be an emphasis on QA being part of DevOps, rather than an external group (as
that would add a hand-over which breaks the flow of DevOps, and e.g. interrupts a CI/CD
environment), and through other aspects of DevOps achieve QA, e.g. an automated CI/CD
pipeline likely has some form of testing which is run already (Yigal, 2016; Lwakatare et al.,
2015). Based on this, we still value QA as a concept highly, and with the reasoning that other
processes in DevOps directly, or indirectly, contributes to maintaining and improving qual-
ity, and assuring quality throughout development and beyond, the sum total of QA can likely
be very high without the need for a dedicated QA team.

26

Shift left
Not explicitly mentioned during interviews, but the general meaning was present in most, as
in chapter 2.3. Many wanted to introduce testing and monitoring early in the development
cycle. For instance, by moving continuous testing, monitoring and continuous integration
sooner in the process, we can prevent, detect and correct errors earlier in the process. This in
turn is less time consuming than waiting for a formal review (Forsgren et al., 2019). This was
confirmed in the interviews, where they all mentioned that they, after introducing testing
and monitoring early, were able to find defects and errors earlier and faster in the delivery
lifecycle. Something that was not mentioned in the interviews, but was found in the liter-
ature, was to let operation work side by side with development. Failures that is observed
in production is rarely encountered early in the development life cycle. This because, the
procedures for development and operations may di�er. Operation procedures can be much
more manual, and use di�erent tools than the development procedures. Letting operation
and development work together will reduce the failure rate in production (Schrag, 2016). As
mentioned in section 2.3, another way to lower the failure rate in production is to make all
environments look more like production. By reducing the failure rate in production the cost
for application failure in production will most likely decrease (Schrag, 2016). Therefore, shift
left can be seen as an important characteristic of DevOps.

Collaboration
Asmentioned in all interviews, collaboration is an important characteristic of DevOps. How
they performed this collaboration and communication could vary from company to company,
and team to team. Some companies had distributed teams, which often led to communication
and collaboration through chat platforms, discussions forums, and formal meetings. How-
ever, if the teams were close, Ad-hoc, informal meetings, open doors (meetings with physical
contact) was more common. DevOps tries to extend the collaboration between development
and operational personnel. By doing this, there will be a higher degree of information shar-
ing, a broadening of skill sets, and an increased feeling of shared responsibility between the
two organizations (Lwakatare et al., 2015). Furthermore, by introducing more cross-team
collaboration there will be an increased confidence in security posture (Mann, 2019). With
this wider knowledge, we can say that collaboration is an important aspect when working
with DevOps.

Monitor/Measure
Monitoring was a DevOps characteristic that was mentioned in all interviews. Accordance
with section 2.3, monitoring was integrated early in the development cycle. Both develop-
ment and operation could take part of the monitored data through dashboards. The dash-
boards could, for instance, present customer feedback in production, and functional and
non-functional aspects in development. An organization that follows the DevOps approach
should have the capability to detect and recover from service failures without delays. To de-
tect these service failures immediately, it is a necessity to havemonitoring (Smeds et al., 2015).
Another challenge with monitoring in DevOps is the process of monitoring relevant data in
an e�ective way, which can be solved by introducing the DevOps characteristic collaboration
between development and operation (Lwakatare et al., 2015).

27

3. Characteristics of DevOps

Sharing
Mentioned in all interviews in varying degrees in accordance with section 2.3, and e�orts to
share knowledge were present on some level everywhere. Some experienced di�culties with
certain key people who maintain their fixed role, which introduces handovers within teams,
which isolates knowledge, and reduces the workflow.

Some specific measures taken in the interviewed companies were, e.g., wiki-like pages
for documentation of source code or services, as well as guides or check lists for processes
and other important information related to performing work in a structured way. Another
example was chat groups where individuals could ask, and answer, questions or talk across
di�erent teams or organizations, to facilitate the flow of information and better channels for
sharing it. There is an obvious advantage to promote sharing within a team or organization
as the collective knowledge of the processes and tools involved with the work being done, and
the work itself, is more likely to accumulate over time. The dependency on individual people
is lower, since the specialized or critical knowledge these people possess is being actively
shared. In fact, the sharing could very well involve a large number of people and parties, e.g.
beyond the DevOps teams themselves, there is management and other specialists within a
company that could (or should) be involved (Rushgrove, 2016). Other characteristics benefit
from sharing, e.g. collaboration and culture (Lwakatare et al., 2015; Smeds et al., 2015). In
some cases sources might talk about "the culture of sharing" (Rushgrove, 2016), which indeed
seems to be a way of working, and continuously learning and improving.

Feedback loops
To react to changes, and make changes more rapidly, quick feedback is important (section
2.3). The companies that were interviewed all had feedback loops, but in various degrees. In
some companies, there could be processes with time-consuming asynchronous testing meth-
ods. These methods led in many cases to slow feedback. To compensate for the slow feedback
and produce fast feedback again, the companies decided to usemonitoring side by side. How-
ever, monitoring was not only used as a compensation of slow feedback, but was also used
to increase and add feedback in the delivery lifecycle. Even if there were various degrees of
feedback in the companies, all mentioned that feedback was an important characteristic, and
that they in some extent strived to add as much feedback as possible (at least in every step of
the process). Furthermore, feedback loops for an organization is essential to stay competitive
and keep up with technological change, where delivering valuable and reliable products is
important to keep trust and satisfaction among customers and stakeholders (Forsgren et al.,
2019).

(Continuous) Integration
All interviews discussed continuous integration (chapter 2.3). There are di�erences in im-
plementation depending on the type of company, e.g. companies who have tight restrictions
(e.g. Smeds et al. 2015) based on security and stability, as well as producing accompanying
hardware, had a harder time practicing this to the extent they wished, but in some places
trials were being held to find ways of getting around this. Companies mainly focused on
Software generally did not have as tight restrictions (but there are exceptions, of course, e.g.

28

financial or banking software where security and stability is important), and could practice
this to a larger extent.

All interviewed companies regarded continuous integration as important in DevOps, and
to integrate early and often. There can be many layers to what is called continuous inte-
gration, and other characteristics directly support it, such as automation (because a CI/CD
pipeline is automated), and in turn CI supports other characteristics, such as QA and shifting
left (because a CI/CD pipeline often contains automated testing, building, or other analysis
tools being run).

(Continuous) Delivery
As with continuous integration, continuous delivery (chapter 2.3) is something most com-
panies wanted to move towards, but di�erences based on the same reasons as in continuous
integration restricted the implementation of it. Notable examples are cases where a full sys-
tem composed of hardware and software needs to be validated according to strict rules and
regulations, which creates a wall where one needs to wait for the other, and the following
validation process is very long, which also a�ects implementation of changes, and further
development on that specific project.

As mentioned in Continuous Integration, Continuous Delivery (CD) can bring positive
e�ects as it streamlines the delivery process (Smeds et al., 2015). CD itself is the next step
after CI, as you build and deliver a product or service. This process is to be automated, and
through this automated process the goal is to keep the product or service in a deliverable
state, meaning you are able to deliver at any point.

(Continuous) Deployment
Continuous deployment is the next step of continuous delivery (chapter 2.3) and deploys
the product or service into production, and the restrictions that might exist on that step
also restricts deployment as integration, delivery and deployment cannot be automated to
the same extent in those cases (Smeds et al., 2015). Again, software companies who had few
restrictions could build a pipeline automating this entire chain for parts of, or all of, their
products or services.

(Continuous) Testing
As mentioned in all interviews, testing or rather continuous testing is needed in DevOps.
The interviewed companies all strived after the same goals; to do it early in the process and
as often as possible, with the help of automation. When products is expected to reach a
certain level of quality, with few bugs, testing should be done early and under each step of
the process. Also, it will be less expensive for a company to have continuous testing, than
testing solely at the end of the process. In turn, continuous testing provides the ability to get
fast feedback loops, continuous delivery, and continuous integration (Vega, 2019).

Planning
Mentioned in the interviews, all companies used some sort of planning in the form of project
plans, release roadmaps, and delivery schedules. In the context of DevOps, working agile

29

3. Characteristics of DevOps

there is sprint planning, which can be viewed as continuous planning throughout the develop-
ment, as well as sprint reviews (Jabbari et al., 2016). In addition, information obtained from
monitoring activities and other activities which provide information about development or
the state of the product or service, such as testing, can loop back every iteration and be used
in further sprint planning or decision making. However, the road for a successful DevOps
adoption can be unique for each organization. The key is to learn from previous challenges
and adapt to the future, which is done with the help of continuous planning (Smeds et al.,
2015).

Change management
Mentioned as important in all interviews, and largely in accordance with chapter 2.3. Minor
di�erences exist, mainly whether the company is more traditional (e.g. moving from water-
fall towards a more agile approach) or more agile, where the strictness of the process itself
can vary, but even in those cases there are exceptions. However, it’s argued that having more
formal heavyweight change process approvals have a negative impact on the delivery perfor-
mance, where formal processes had no visible impact of lowering change failure rates. Instead
organization should move away from these formal processes, and move more against (shift
left) to peer reviewed-based approvals. These peer reviewed-based approvals in turn prevent,
detect, and correct changes much earlier in the development lifecycle. They also had less
impact on the performance, where letting employees work together improved stability and
availability among teams (Forsgren et al., 2019).

Infrastructure as Code
Not as widely mentioned during interviews, but often in conjunction with cloud services,
as in Infrastructure as a Service which is supported by Infrastructure as Code. The nature
of Infrastructure as Code (chapter 2.3) is such that it is strongly supported by automation
(Lwakatare et al., 2015; Smeds et al., 2015), which leads us to be confident in it being a good
characteristic.

Some interviews also discussed Infrastructure as Code (IaC) being used for testing envi-
ronments, where the environment could be version controlled and easily set up, and taken
down through this practice throughout development. Beyond testing environments, most, if
not all, actions performed on infrastructure can be automated, and this includes configuring
and deploying or updating quickly, and eliminating repeated manual tasks (Lwakatare et al.,
2015).

Agile and Lean
Agile (development) is a characteristic which was overlooked during the initial literature
study, perhaps because it was so widely mentioned, which resulted in it being taken for
granted by us. The agile manifesto lists the following principles (Beck et al., 2001):

– Individuals and Interactions over processes and tools

– Working Software over comprehensive documentation

– Customer Collaboration over contract negotiation

30

3.1 Ranking and visualizing characteristics and their dependencies

– Responding to Change over following a plan

These principles or practices are recurring in other characteristics listed, or supports
them, e.g. culture, feedback loops, and collaboration.

Another new characteristic, which we have chosen to pair with agile development is
Lean software development. Lean can be described through seven principles as follows (Pop-
pendieck and Poppendieck, 2003):

– Eliminate waste

– Amplify learning

– Decide as late as possible

– Deliver as fast as possible

– Empower the team

– Build integrity in

– Optimize the whole

These principles are also recurring in other characteristics, or supports them, e.g. culture,
sharing, automation, and collaboration.

As a whole, both Agile and Lean principles seems to heavily support the culture within
DevOps, which leads us to believe this characteristic is important.

3.1 Ranking and visualizing characteristics
and their dependencies

This section analyzes di�erent ways of representing importance for each DevOps characteris-
tic and their relations to each other, which will in turn provide us with valuable information
for the following chapter.

3.1.1 Ranking of DevOps characteristics
To give us an idea of which characteristics were more important than others (if any), we tried
to rank the DevOps characteristics based on our perceived importance (figure 3.1). However,
when the ranking was completed, it felt like it did not really represent importance, but rather
levels of abstractions. For instance, it was hard to compare Quality assurance with e.g. au-
tomation and monitoring, because of the di�erences in abstraction levels, where automation
and monitoring are concrete tasks which are implemented, while quality assurance not nec-
essarily is. Another thing that occurred to us was the question of why Quality assurance,
planning, and infrastructure as code would be least important. Should this be interpreted
that one can do DevOps without these? Probably not. All characteristics are important,
and is needed to some extent when doing DevOps. Therefore, we felt that figure 3.1 gave

31

3. Characteristics of DevOps

rise to more questions than answers, which led to us rethinking our idea, and find possible
alternatives to represent the characteristics in relation to each other.

Figure 3.1: ranked characteristics of DevOps, where the smallest cir-
cle describes the most important characteristics, the second smallest
the second most important characteristics, and so on

3.1.2 Dependency graph of DevOps characteristics
Because we did not agree with the ranking of the characteristics, we decided to explore alter-
nate ways of representing importance. This resulted in a directed graph (Figure 3.2), where
each vertex is a characteristic of DevOps, and each edge represents a dependency to another,
as in the first supporting the other, or is required. An interesting observation in this graph
is that some characteristics support many others, e.g. automation, whereas others are built
by other supporting characteristics, e.g. culture and QA. These characteristics also di�er in
type, as automation is something you implement, and culture is more abstract, so the graph
also shows di�erent levels of abstraction of the characteristics, ranging from very concrete
characteristics to more abstract ones.

There also seems to be di�erent types of dependencies if the original definition is broken

32

3.1 Ranking and visualizing characteristics and their dependencies

down, such as a characteristic being a prerequisite for another, as in the case of e.g. au-
tomation and CI, CD, etc. as these characteristics contain automation as a way to perform
them. If time was not constrained, these are some directions that would be very interesting
to explore, but for the purposes of our thesis we feel that the graph is su�cient as is, and
adequately shows our identified characteristics, and relationships between them, and rather
than presenting a ranking of importance, provides our interpreted importance of each char-
acteristic in relation to each other, as well as what one might need to implement a certain
characteristic, or achieve a certain characteristic, and lastly that every characteristic indeed
is part of the graph.

Figure 3.2: Characteristics of DevOps and dependencies between
them

Example of how relationships were formed
Here we will provide a few examples of the reasoning behind the relationships between the
characteristics in the graph above.

• Automation - As automation removes tasks from continuous human influence, and

33

3. Characteristics of DevOps

formalizes tasks, its application is very wide. Examples of areas where one could au-
tomate steps or tasks are in a CI/CD pipeline, testing, feedback, IaC, etc. where tasks
can be described in code, and therefore automated.

• Continuous Testing - Raises quality by continuously testing at di�erent stages, and
provides information and assurance regarding the state of the development. Being
supported by automation as many tests can be automated, e.g. in a pipeline.

• QA - Is supported by characteristics which raises quality. Examples of such charac-
teristics are testing and change management. Another example is IaC, which raises
quality by describing infrastructure as code, which lets you version control, automate,
and test it.

34

Chapter 4

SCM in a DevOps context

In this chapter we explore on how SCM could be used in a DevOps context, which SCM
activities are needed and not needed in the DevOps context, and what new SCM concepts
and principles can be added to the SCM toolbox. Through our interviews on SCM we will
analyze how SCM could be used in practice, and investigate possible di�erences between the
interviews responses and the initial literature study (chapter 2.4). This will in turn strengthen
our classification of chapter 2.4. Furthermore, a graph will be drawn to clarify and visual-
ize the connections and dependencies between SCM activities, which will help understand
the internal sequences of the SCM activities. Moreover, to get an overview and visualize the
mapping between the SCM activities, the DevOps characteristics, and the eight DevOps ac-
tivities in the DevOps pipeline a graph will be drawn with these activities and characteristics
combined. This will in turn help us produce the compiled result on how SCM could be used
in a DevOps context, how it can be adapted in the DevOps context, which SCM activities is
needed and not needed in the DevOps context, and what new SCM concepts and principles
can be added to the SCM toolbox.

4.1 SCM in practice
Each SCM activity in this section is based on the responses from the SCM interviews. The
section includes how the companies use di�erent SCM activities, and possible di�erences
between how the SCM activities are used in practice with how literature defines it (chapter
2.4).

Configuration Identification
All interviewed companies, except one, had some form of configuration identification activ-
ity. The company that didn’t have a configuration identification activity already had an es-
tablished product with established components, and didn’t see a need for configuration iden-

35

4. SCM in a DevOps context

tification. However, this product and these components was version controlled and had doc-
umentation, which implies that configuration identification had been done, and the product
and components could be seen as configuration items. The other companies all continuously
performed configuration identification, basing the new CIs on e.g. new requirements, re-
design, and changes. Most of the companies also had an initial configuration identification,
based on e.g. an initial idea of what is to be done, and/or by following requirements.

Configuration Control
As mentioned in all interviews, change control is seen as an important SCM activity, where
both formal and informal change control processes took place. The processes could vary
from company to company, but all change control processes was carried out with the help
of CCB. However, the CCB decisions could be on di�erent levels, where some decisions was
taken on product owner level, and others on team level. In rare cases di�erent experts (e.g.
security expert) and configuration managers could take part of the CCB meeting. To decide
the risk with the changes there had to be a risk analysis. This was done with the help of
an e.g project managers/owners and development teams, where decisions were made about
what impact the change had on the product (e.g other components and modules), and what
value it added to the customer. The weight of the risk analysis could of course di�er, where
in some companies programmers or architects (team level) could decide if the change needed
further impact investigation, and where in other companies a more bureaucratic processes
took place.

Configuration Status Accounting
All companies had the ability to get information and status, e.g. metrics, about configuration
items, and activities related to these, which led to full transparency among employees (e.g
testers, QA and programmers). One could at any time during the lifecycle track information
about a product. However, the traceability could vary from company to company, where
some companies had so called epics, which was a big chunk of work that was broken down
into features, user stories, and tasks. These, in turn, were linked together which created
traceability. Other companies were somehow missing the traceability between documents,
but was working on it. Nonetheless, all companies wanted to produce as much visibility for
a system as possible, where, for instance, commits needed to be coupled with a tasks, changes
sets needed to be trackable, and bugs needed to be coupled with features, user stories, tasks,
and so on.

Configuration Audit
Not explicitlymentioned during the interviews, but the general meaningwas present inmost,
as in chapter 2.4. All companies did testing before baselining a product. These tests were
carried out to see that all modules/components in a product were working in relation to
each other, which could both be hardware and software. In most companies, documentation
based checks were also carried out to see that all features and stories had been met. To make
this process as smooth as possible, test case links to features and stories were created, which
in turn provided important traceability for tests. The audits could both be physical and

36

4.1 SCM in practice

functional. However, something that was notmentioned in any of the interviewed companies
was if there were a physical person who decided if the product should be released or not. In
most cases, if bugs or errors were detected in an audit they were either corrected in a roll
forward approach or disabled from the release by removing the corresponding feature.

Version Control/Collaboration tools
All interviewed companies used version control and collaboration tools. They all had some
kind of distributed version control tool, which automatically tracked changes in the source
code (e.g. git). Therefore, In the software part, most things if not all was version controlled.
Also, most of the documentation was version controlled. However, there were some com-
panies that had problems of version controlling the team documentation (the internal doc-
umentation), where the extent of the version control could vary from team to team. One
company was lacking version control on user data, monitoring, and testing. However, they
wanted to improve this and strived, just as the other companies, to accomplish as much ver-
sion control as possible.

Build Management
All interviewed companies had some way of specifying a system to be built, somementioning
build optimizations for production. Many used di�erent types of build management tools
to build, and specified the system in a bill-of-materials like document, especially in cases
where software and hardware were closely tied. In some cases this document also contained
information on how the system was to be built, and some companies mentioned the usage of
make-files. All companies could handle variants of systems through their process, but some
expressed that variants were not common for their products, and so the need was not there.

Teamwork/Parallel work
Most companies described agile ways of working. In addition they all used git for most of
their version control, which also helps enabling collaboration and parallel work. They all
described teams as having collective ownership and responsibility. Other aspects of team-
work mentioned was e.g. communication channels for asking and answering questions and
sharing information between teams. For enabling parallel work, all companies had adopted
certain branching strategies when working within a shared repository. The branching strate-
gies used were e.g. trunk-based development, integrating early and often, and variations of
git flow. Some companies only expected teams to deliver to a master branch, while leaving
the specifics of exactly how development was done to the teams, while others described dif-
ferences in team maturity, where a mature team might work with trunk-based development,
and a less mature team might adopt a more git flow like development strategy. In the latter
case, the company did supply recommendations on di�erent strategies discussing pros and
cons of each, and ultimately letting the teams decide.

Workspace Management
All the interviewed companies used version control tools with functionality to manage in-
dividual workspaces, e.g. git which also (under normal usage) enforces practices to counter

37

4. SCM in a DevOps context

problems listed in chapter 2.4, such as the shared data problem and simultaneous update
problem, for example by making sure the personal workspace is up to date with the reposi-
tory before anything new is added. Manymentioned using pull requests when adding changes
to a common repository, instead of e.g. pushing a change in git, and often in conjunction
with a code review process, which di�ered somewhat between companies. As an example,
one large company producing both hardware and software needed the approval of a config-
uration manager when adding changes to the master branch, and internal (within the team)
approval when adding to production, while other companies left it to the teams to decide
how they wanted this to be done.

Change Management
Change management was not explicitly mentioned during the interviews, but the general
meaning was covered (section 2.4), where all the interviewed companies tracked and had
traceability between the origin of a change and the implemented source code. Generally, the
change management process included a code commit, which was coupled with a task, and
where the task was coupled to user stories and features. Tools used for change management
were, among others, BitBucket, Jira, and Confluence.

Release Management
All interviewed companies had some form of auditing (see chapter 2.4) throughout the devel-
opment process, which led to a baseline of the system. They also documented CIs went into
a build, e.g. in a bill-of-materials like document, and also how it was built, which enables the
recreation of previous releases. Companies producing both hardware and software generally
documented this information with a higher granularity, or wished to do so, some citing e.g.
external CIs (dependencies, e.g. external libraries) as a potential vulnerability, and the need
to properly keeping track of them, or software closer to hardware being more sensitive to
changes.

SCM Plan
Few companies had an SCM plan describing their SCM activities, and how they should be
performed. One company in particular extensively employed the usage of SCM plans, with
the motivation that it is very important in order to maintain a product. Another company
planned and documented activities related to certain other activities, e.g. testing, for trace-
ability, and strategies for saving data. One company had processes which stated it should be
done, but currently lacked the tools and knowledge. Lastly, two companies did not employ
the usage of SCM plans at all, one stating that within the company there were established
processes, and generally the teams knew what to do, but added that for some activities there
were checklists, and the other that it would be good to have.

4.2 Dependency graph of SCM activities
Because the mapping of characteristics in the graph of DevOps characteristics in section
3.1.2 produced a very clear view of how the characteristics could be connected, we employed

38

4.3 SCM and DevOps combined

the same technique to clarify the connections or dependencies between the di�erent SCM
activities, in order to be consistent, and produced a graph showing these connections based
on our own analysis (Figure 4.1). In the sameway as in chapter 3.1.2 the edges shows an activity
supporting another, or is required for another. An example of this is change management
which requires some form of configuration control, which in turn requires the ability to
retrieve information about the system and its CIs through some form of configuration status
accounting.

An interesting observation in the graph is that three subtrees emerge from the connec-
tions. One can view these as part of an iteration of a development cycle where you begin by
planning your SCM activities, followed by changes being made to an emerging system (left
subtree), followed by building and releasing (middle subtree). The left subtree is most likely
a process that loops throughout development, but we decided not to add in looping edges to
avoid clutter in the graph, but be aware that these exist. The right subtree contains activities
that enable and support other activities and development, and these activities also happen
continuously in parallel with the other activities in the graph.

Much like for the DevOps graph in chapter 3.1.2, this graph is not an exhaustive mapping
of connections and dependencies between the SCM activities, as many types of connections
and dependencies most likely exist, not limited to our definition above, and even with our
definition this is also the case. Because of time constraints we decided it was not feasible
to try to produce an exhaustive mapping of these activities, and instead focus on showing
that there indeed are connections between them, and that the activities produce a connected
graph, where no single activity is unconnected.

Figure 4.1: Connections and dependencies between SCM activities

4.3 SCM and DevOps combined
With the two previous graphs (graph of DevOps characteristics in chapter 3 and SCM activ-
ities), the internal connections of SCM and DevOps have been clarified, in isolation, within
their own contexts. To further build amodel that can help us explore SCM inDevOps, and ul-
timately answering our research questions by relating an SCM activity to a subset of DevOps

39

4. SCM in a DevOps context

characteristics (and by extension also their internal connections), we decided to use the same
approach for identifying connections between SCM activities, individual DevOps character-
istics, and DevOps activities, in much the same way as in the previous graphs, which resulted
in the graph in this section (Figure 4.2). From the DevOps characteristics, edges have been
connected to activities of the “DevOps-eight”, which is a common way of representing the
DevOps cycle, with some variations. This was done so that the DevOps characteristics can be
associated to a broader activity, and also because of the widespread use of this representation.
In order to make the graph as clear as possible, the internal edges within SCM and DevOps
have been omitted, but keep in mind that these still exist, and this graph only shows the edges
between SCM activities and DevOps characteristics. The edges from an SCM activity rep-
resent a subset of an SCM activity being present in a DevOps characteristic, or that it likely
is used there, or could be, in some capacity, based on e.g. its definition and interviews, and
because we focus on SCM, the edges have been evaluated from an SCM perspective. Just like
for the two other graphs, an edge can represent many types of relationships, but within the
scope of this thesis (and again because of time constraints), the definition of these edges have
been chosen to represent the relationships described above. The specifics of the mappings
present in the graph will be discussed in more detail in the next section.

40

4.3 SCM and DevOps combined

Figure 4.2: Connections between SCM acitvties, DevOps character-
istics and DevOps Activties

Example of relationships were formed
Here we present a few examples of how SCM activities were mapped to DevOps character-
istics in the graph above.

• ConfigurationAudit - In aCI/CD pipeline (continuous) testing is performed, which func-
tions as part of an audit, as the tests mirror expected behavior, requirements, etc.

41

4. SCM in a DevOps context

• ConfigurationControl - Configuration control describes the process by which changes
are to be handled. As such, planning is involved, both in deciding on the process, and
in its execution through change management.

• Build Management - Builds are performed in a pipeline (e.g. CI and CD), which also
contains testing the build.

4.4 Analysis
This section analyzes the various connections in figure 3.2, 4.1, and 4.2. In this case, each
SCM activity is seen as the starting point, but note that the starting point could also be the
DevOps activities or the DevOps characteristics. Along with the SCM activities each graph is
analyzed, where both internal and external connections are described. This in turn increases
the understanding for the graphs, and provides valuable information about why or why not
the SCM activities are needed in a DevOps context.

Configuration control
Following the graph in section 4.3 (Figure 4.2) from the SCM activity configuration control,
it connects to the DevOps characteristics change management and planning, which in turn
connects to all of the DevOps activities, with an overlap on plan.

The DevOps characteristics in this sequence have edges in both directions in the De-
vOps graph, with the reasoning that change management requires planning, and the usage
of change management supports planning throughout development. These two characteris-
tics both have an impact on the activities of DevOps, directly or indirectly, because change
management is continuously used in each step, as feedback is present in each step, which can
prompt a change anywhere. Planning also a�ects the whole cycle, as it is both a continuous
process, as well as more “formal” activities, e.g. a sprint planning.

Configuration control describes a process for handling a change, and this process can vary,
as seen in the interviews ranging from formal CCB meetings and thorough impact analysis,
to code reviews or discussions within a team, which can also be viewed as a form of CCB
meeting and analysis for deciding on a change, its impact, implementation and validation.
This process is a supporting activity in the SCM graph to change management, as it is the
process that produces changes to be managed. As such, it relates to the previous DevOps
characteristics through a common overarching activity, change management, which itself
requires planning, and in turn produces information that can be used in planning.

Change management
From the graph in section 4.3 (Figure 4.2) the SCM activity Change Management connects
to the DevOps characteristics change management, planning, monitor and sharing. These
characteristics in turn connects to all of the DevOps activities with an overlap on Plan and
Monitor. A reason for these connected characteristics is that change management requires
planning in order to cover all changes to a system, as discussed in chapter 2.4. In DevOps,
monitoring activities should be employed early in the process if shift left is followed, and the
contents of what is being monitored is up to each team. Several of the interviewed companies

42

4.4 Analysis

who used monitoring also tracked and monitored changes, with traceability built in, and in
some cases visualization of the data. Because this monitoring data is (or should be) available
to the whole team, and often parsed to a more human friendly state, the DevOps character-
istic of sharing can also be said to be employed. Although change management in DevOps
was quite vaguely described in chapter 2.3, as the total description needed to be collected
from many sources, there seems to be a large overlap between DevOps change management,
and SCM change management regarding what it wants to accomplish, as could probably
be expected. We have identified characteristics within DevOps which happens to be of great
help for collecting, tracking, managing, visualizing and spreading this information, and these
characteristics or processes together form a basis for change management within DevOps.

Configuration identification
From the graph in section 4.3 (Figure 4.2) configuration identification connects to the De-
vOps characteristics change management, planning, monitor, QA, feedback loops and con-
tinuous testing, which in turn connects to all the DevOps activities with an overlap on Plan,
Monitor and Test. Since configuration identification is a process for identifying configura-
tion items of a system, and their features, it is no surprise that changemanagement inDevOps
is a�ected, as change management handles changes on configuration items which are iden-
tified using a configuration identification process. Through continuous planning, aspects of
a system can be made visible, and new features or components can be identified, which is
the more continuous aspect of configuration identification, as described in interviews. The
configuration items one has a�ects what is being monitored, as the monitoring activity does
not have to be exclusively for deployed products. Both monitoring and testing produces re-
sults which can, through feedback, potentially be used to identify needs, both in the form of
changes and new components, and also removals, throughout development. Through these
characteristics there are many aspects that provide a basis for configuration identification
throughout the development cycle, and also leading up to it, through planning where con-
figuration identification might be present. Since DevOps wants to be open to change, the
continuous and iterative aspects of the a�ected characteristics would also support a contin-
uous and iterative configuration identification process, much like what has been discussed in
interviews.

Configuration status accounting
When following the graph in section 4.3 (Figure 4.2), we can see that the SCMactivity Config-
uration status accounting connects to the DevOps characteristics Monitor, QA, and Sharing,
which in turn connects to all of the DevOps activities, with a focus on Monitor.

In the DevOps graph there is an edge from monitor to QA, with the reasoning that QA
is supported by monitor. This because, when having monitor integrated early in the process
there is a high chance of finding service failures without delays, which in turn provides better
QA. Monitor also includes making data available for both Dev and Ops, and thus support
sharing (edge from monitor to sharing). All these three characteristics have an impact on the
activities of DevOps. Both sharing and QA are characteristics that are used in each step of
the seven activities. The characteristic monitor has an edge to the DevOps activity monitor,
where themonitor activity is something that is used continuously during theDevOps process,

43

4. SCM in a DevOps context

and therefore a�ects the whole cycle.
Configuration status accounting is described as the ability to get metrics about configu-

ration items, and activities related to these. In the SCM-graph, Configuration status account-
ing supports configuration control and configuration Audit. This because of configuration
control and configuration audits need of getting metrics about configuration items. In the
interviews, all companies used some sort of configuration status accounting to get full trans-
parency among employees, and provide the ability to get metrics at any time during the life
cycle. This in turn can be coupled with the DevOps characteristics sharing, QA, and mon-
itor, where all have the need of getting information about metrics, and where monitor and
sharing also provides the ability to share metrics.

Version control/Collaboration tools
The node version control in figure 4.2 connects to the DevOps characteristics monitor, shar-
ing, IaC, and collaboration, which in turn connects to all DevOps activities, with an overlap
on monitor, plan, and code.

We can see that in the DevOps graph (Figure 3.1) the characteristics monitor, collabora-
tion, and sharing have a circular dependency, wheremonitor support sharing, sharing support
collaboration, and collaboration support monitor. As mentioned in the subsection configu-
ration status accounting, monitoring supports sharing because of the ability for Dev and Ops
to take part of data through, for instance, dashboards. In turn, sharing support collaboration
due to that sharing information between employees, which leads to more awareness, which
in turn creates better collaboration. When extending the collaboration between develop-
ment and operation personnel, there will be a higher degree of sharing, which means that
collaboration also supports sharing (Figure 4.2). Furthermore, to integrate monitoring early
in the DevOps process there needs to be some sort of collaboration between dev and ops,
thus collaboration supports monitoring. All these DevOps characteristics have an impact
on the DevOps activities (Figure 4.2). For instance, there needs to be a plan that describes
which version control tools to be used in the DevOps process. The plan is something that is
done continuously during the DevOps process. Also, version control helps the ability to do
rollbacks (although the general mentality in the interviews was to “roll forward”), and pre-
vent concurrent work from conflicting, which can be included in, for instance, the DevOps
activity code. Moreover, all companies that were interviewed strived to version control as
much as possible, which probably means that version control should be included in every
DevOps activity. Also, version control is a valuable asset that manages and keeps track of the
history of configuration items. Configuration items are created and managed throughout the
devops process (including infrastructure, as is evident by the edge to IaC, e.g. configurations
for server environments, test environments and other parts of one’s pipeline, e.g. jenkins
configurations), and should therefore be version controlled during each step of the DevOps
activities.

Configuration audit
The SCM activity configuration audit connects to the DevOps characteristics continuous
testing and CD, which in turn connects to DevOps activities test, release, monitor, build
(Figure 4.2). The reasoning behind the connection between configuration audit and CD is

44

4.4 Analysis

simple, to ensure that the product is in delivered condition, there is a need to see that the
product works in accordance with changes, specifications and requirements. Although con-
figuration audit was not explicitly mentioned during the interviews, the general meaning was
present, with all companies having some form of configuration audit on products or services
that had reached a su�cient level. Since, CD includes building and deliver a product or
service it will in turn connect to the DevOps activities build and release. Furthermore, Con-
figuration audit can be seen as a subset of continuous testing, in which configuration audit
tests are performed in conjunction with release and baselining, and where continuous testing
in the CI/CD pipeline contribute to release and baselining. Also, by going from continuous
testing to configuration audit, we can see continuous testing as a support for configuration
audit, where testing must be performed regularly to ensure the deliverable condition of the
product or service. Continuous testing then connected to the DevOps activities test and
monitor, where testing and monitoring must be done throughout the DevOps process to
detect, for instance, bugs and errors.

Build management
From figure 4.2, build management connects to the characteristics continuous testing, CI,
and CD, and then to Test, Monitor, Build, and Release in the DevOps activities. The reason-
ing for the connections to the characteristics is that in DevOps the building is done in the
CI/CD pipeline, and within that pipeline the build is tested, and this naturally extends to the
listed DevOps activities for the same reason. Since build management is not only the process
that handles building a system, but also defines the system to build, including all components
and dependencies, there needs to be such an aspect present. Throughout the interviews it was
common to specify a system in some way, most used tools where each build was recorded in
varying degrees of specificity, e.g. a tool mentioned for this was docker. Since the building
is in many cases automated, or should be if a CI/CD pipeline is used, it can be argued that
build management in essence is very compatible with these DevOps characteristics, as the
automated build process still needs to know what to build, and that information needs to be
recorded somewhere, either through the build tool itself, or before (and act as input to the
build process). Some companies mainly recorded built systems or releases, and maintained
that it would be possible to recreate these releases (with varying degrees of di�culty, e.g. re-
garding how good traceability there is present) although the exact input was not necessarily
recorded, while other companies maintained very specific BoM-like specifications for each
version/build making this process very simple.

SCM Plan
In figure 4.2, SCM Plan is connected to all DevOps characteristics, and is because of this
also connected to all DevOps activities. The reasoning behind this is simple, as there are
potentially SCM activities present in all DevOps activities, and an SCM plan describes what
activities are used where, and how they are to be used. This is also further strengthened by the
fact that through the rest of the SCM activities, there is practically full coverage of DevOps
characteristics, and all DevOps activities. Although far from everyone in interviews explic-
itly used an SCM plan, there were often documents or other information sources available
which provided information on how certain things should, or could, be done, including SCM

45

4. SCM in a DevOps context

activities or tasks related to an SCM activity, showing that although it might not be called an
SCM plan or contain only SCM related material, or even be a single document, something
similar is often used.

Release management
In figure 4.2, Releasemanagement connects to theDevOps characteristics CI, CD, continuous
deployment and automation, which in turn connects to all the DevOps activities, with an
overlap on build, release, and deploy. Release management handle both formal and informal
releases to customers, and the reasoning behind release management connections to CI, CD
and continuous deployment is that all these steps are included (handling everything from
code integration to deployment) when products or services are released to customers. The
reason behind the automation is that this chain of parts should be built as an automated
pipeline, at least for companies with few restrictions. In addition, automation should take
place where possible in the DevOps cycle to produce reliable and repeatable processes, which
in turn includes all DevOps activities. Although releasemanagement a�ect thewhole process,
the focus (overlap) is on the DevOps activities build, release, and deploy, which are the three
critical steps for a release to take place.

Teamwork/Parallel work
The SCM activity Teamwork connects to the DevOps characteristics sharing, collaboration,
culture, and agile & Lean. These DevOps characteristics in turn connects to all DevOps
activities, with an overlap on Plan and Code. The reasoning for connecting teamwork to
these characteristics is because they all touch on things that involves teamwork, and their
activities as well as principles and practices (e.g. in agile & lean). The overlap on Plan and
Code is likely because planning in an agile context such as DevOps is a team e�ort, and the
same is true for writing code as a team, as you need to collaborate, and be able to collaborate
and be able to work in parallel through a common set of tools and coordinate tasks, decide on
branching strategies, communication channels etc. The reason all of the DevOps activities
are covered is because teamwork and parallel work can a�ect every step of the cycle, because
the team as a whole is responsible for their work, and that includes everything that enables
their teamwork, collaboration, and parallel work.

Workspace management
In figure 4.2, workspace management connects to the DevOps characteristic Agile & Lean,
which in turn connects to all the DevOps activities. Workspace management is a key com-
ponent of Agile & Lean, where it both creates flexibility for developers to experiment freely
(locally), and creates the ability to publish code when ready for it. Also, workspace man-
agement support a range of di�erent workflows and, as mentioned in the interviews, these
workflows is often up to the teams to decide, and once the workflow has been merged with
the master branch the agile workflow is done, which contribute to e�ciency. Furthermore,
workspace management creates the ability for changes to be pushed down the deployment
pipeline faster than working with monolithic releases and centralized version control sys-
tems, which helps agile teams to move faster. All interviewed companies had code reviews,

46

4.5 Result

which could bemanaged by individual teammembers or configurationmanagers. These code
reviews, in turn, increases confidence that the code being published works as it should and is
ready to be released, which is likely to increase confidence to releasing more often, and there-
fore being more agile. As mentioned, Agile & Lean then connects to all DevOps activities.
The reason behind this is Agile & Leans strong support in culture, where culture in turn has
important aspects of DevOps as a whole.

4.5 Result
This section provides a detailed description of the results in relation to each research question
using previous analysis and data collections.

4.5.1 RQ1a: What SCM concepts and principles are
needed and not needed in a DevOps context?

This section goes through each SCM activity and determines whether it is needed or not in
the DevOps context. The results are based on literature, interviews and own analysis, where
table 4.1 gives an overview of what SCM activities are needed and not needed.

SCM activity Audit Build Release CM Plan CC CM CSA VC Teamwork Workspace CI
Needed x x x x x x x x x x

Not needed x

Table 4.1: Shows which SCM concepts are needed and not needed
in the DevOps context

Configuration audit
All interviewed companies used some form of audit. The audit could be in line with the
definition in section 2.4, where it was carried out when a product or service had reached a
su�cient level to ensure quality (Bendix and Ekman, 2007). However, as not explicitly men-
tioned during the DevOps interviews, but the general meaning was present, audit could also
be carried out in a DevOps fashion, where it was used in combination with a CI/CD pipeline.
Each test in theCI/CDpipeline could be seen as an evaluation of the product or service, which
in turn reflects the configuration documentation and change request that must be fulfilled
for a release or baseline. Although, this DevOps approach may di�er from the configuration
audit definition in terms of time and automation, all indicates that configuration audit is a
needed SCM activity in the DevOps context.

Build management
Since build management is the process which defines a system model and how to build it
(Bendix and Ekman, 2007), it was clear throughout the SCM focused interviews that each
company met these requirements by the build management tools they used. In the DevOps
focused interviews, all had an automated pipeline which included continuous integration and

47

4. SCM in a DevOps context

continuous delivery steps, and if these are present, the system is also built in the pipeline,
which implies that a system model, and instructions for its build, is also present on some
level. Therefore, build management is evaluated to be both present in DevOps and needed,
especially because the build stage of the pipeline is automated.

Release management
Releasemanagement needs physical and functional audits before a release to verify the correct
system has been built. Also, a bill of material should be used to record how the release was
built, and what it consist of (Bendix and Ekman, 2007). In the SCM interviews all companies
except one followed these requirements for release management. The company that didn’t
follow the definition in section 2.4 did a rebuild every time the application was deployed,
whichwas not version controlled. According to them, this was done for optimization reasons,
and nothing had gone wrong, which made it hard to argue against. However, there was
an overlap between DevOps and the companies that followed the requirements for release
management. In the DevOps interviews, all except one company version controlled the bill
of materials and had audits before a release. In the CI/CD pipeline each check-in produces a
releasable state, and so the state of a repository after each check-in could be seen as a bill of
material that was version controlled, and where the test in the CI/CD pipeline could be seen
as an audit. Therefore, we believe that release management is needed in the DevOps context.

SCM Plan
An SCM plan describes SCM activities, and is used as a reference for the planned SCM
activities, spreading awareness and information about SCM, and the planned activities in
particular (Leon, 2014). Although we do think this has high value in DevOps, where its
existence and goals even overlap with DevOps characteristics, e.g. sharing, and its presence
in the SCM focused interviews, we feel the specificity of an SCM plan might be too high in a
DevOps context, and could possibly be at risk of being regarded as a disconnected component
of the development cycle. An alternative to this is discussed in section 4.5.2, where a DevOps
process plan is introduced as an alternative, where the contents of an SCM plan is a subset
of this overarching plan.

Configuration identification
Since, configuration identification refers to identifying distinct components of a given sys-
tem (Bendix and Ekman, 2007), it felt as a necessity that all companies used configuration
identification, which they did (both DevOps and SCM interviews). Without configuration
identification there would most likely be no identified components of a system, which would
lead to di�culties in knowing which components to use, when to use them, and how to use
them, which in turn would create questions such as, how do we build, what does the product
consists of, and so on.

Configuration control
Even if the configuration control process could vary from company to company, all inter-
viewed companies with the focus on SCM met the requirements for it, where they both had

48

4.5 Result

informal and formal change processes, which was carried out with the help of a CCB. Since,
the CCB control performs the evaluation of a change, where an impact analysis take place
to understand the impact the change has (Bendix and Ekman, 2007; C&A, nd), it felt as an
important aspect in DevOps. In the DevOps interviews, we could see an overlap between
the DevOps change process and configuration control. As in the SCM interviews the change
process in DevOps could vary, but there was a CCB, which might be argued to be more agile,
and in many cases on team level. However, the general meaning was present, and one can
argue that without a configuration control, there will be no impact analysis, no traceability,
no validation of implementation/testing, which is not very good, and can lead to unpleasant
surprises.

Change management

If changemanagement should be able to track changes fromorigin to implementation through
tools and processes (Bendix and Ekman, 2007), other SCM activities needs to be present to
provide this information, such as configuration control, which formalizes a change process
(Bendix and Ekman, 2007; C&A, nd) and tools to manage tasks, collaboration, and version
control. Throughout most interviews it was clear that most companies had tools and pro-
cesses overlapping with these activities, and expressed a need for, e.g., the traceability it pro-
vides. As such, it is both present as a consequence of the combination of tools and processes
being used, as well as needed through the information it provides and maintains.

Configuration status accounting

The ability to getmetrics regarding configuration items, and activities related to them (Bendix
and Ekman, 2007; Daniels, 1985), is described as possible for all interviewed companies. Some
companies directly tracked such information through theirmonitoring activities, which helps
create visibility to an even higher degree, as parts of the status accounting can be said to have
been automated. Without some form of status accounting (and in extension other support-
ing activities, such as change management, configuration control, version control, etc.), it
would probably range between impossible and tedious to extract and organize project infor-
mation as described above, and since the output from status accounting can be used in other
activities such as auditing, planning, etc. we have rated the need to be high.

Version control

Version control was mentioned as a valuable asset by all the interviewed companies, where
version control tools provided support for storage, versioning, and traceability for configu-
ration items (Bendix and Ekman, 2007; Asklund et al., 2004). Therefore, the need for version
control could be seen throughout the DevOps process, where many activities depended on it.
For instance, version control provides automatic support for configuration status accounting
(Bendix and Ekman, 2007; Asklund et al., 2004), which need was rated high in the DevOps
context.

49

4. SCM in a DevOps context

Teamwork/parallell work
As teamwork and parallel work touches on interaction/communication, coordination, col-
laboration, both as a team and for working in parallel, it puts emphasis on planning these
aspects (Appleton et al., 1998), and agree as a team. In the interviews all companies described
processes and tools that supported and helped activities like these, in addition to describing
themselves as varying degrees of agile, as well as methods of communication within teams and
between teams, and internally had guidelines or suggestions for di�erent branching strate-
gies, with the teams often having a high degree of freedom and responsibility. Ultimately,
teamwork and parallel work needs to be planned out to be able to provide a stable basis and
flow throughout a project, and is therefore needed.

Workspace management
Workspace management could be seen as a side e�ect of the version control tools, where
version control tools (e.g git) provide the ability to make a copy of the chosen documents
or modules, make the changes, and then add the change to the repository. It should not be
allowed to work directly from the repository, because of Wayne Babich shared data problem.
However, this can be avoided with Workspace management, where workspace management
let developers work within a controlled environment (Bendix and Ekman, 2007), which is a
necessity in the DevOps context.

4.5.2 RQ1b: What new SCM concepts and principles
can be added to the SCM toolbox?

As mentioned in section 4.5.1, we believe the scope of a "traditional" SCM plan (Leon, 2014)
might be too narrow and specific for DevOps, and might separate SCM activities from De-
vOps activities instead of seamlessly integrating them and letting them be part of the work
flow.

Most companies we have interviewed had resources or documents describing parts of
their development process, or practices, how to do various things as a team, etc. And this
is collectively a plan for, e.g., teamwork and collaboration, version control, change manage-
ment, and many other aspects of both DevOps and SCM.

We propose a combination of what we have encountered throughout our interviews with
focus on both DevOps and SCM, by collecting these resources and/or documents and check
lists, into a "Process Plan". This plan could initially contain a description of each step in one’s
development cycle, how these activities are to be performed, what tools to use and how to
use them, and also the SCM aspects of them, and additional SCM activities outside one’s
development activities if one would choose to separate activities for some reason. Essentially
the plan is an SCM plan, where the SCM activities are put into relation to the specific devel-
opment process a given team or organization chooses to work with, and gives information
about who, what, when, and possibly the most important, why, a given activity is performed.
Because the overall development process will also be described in this plan, it will function
as a guide or instruction for the team or organization to follow. Because this is in the context
of DevOps, the plan itself is treated as a living document, which is open to change, and its
existence supports the DevOps characteristic sharing, and empowers the team and promotes

50

4.5 Result

responsibility and continuous learning. Also, because it will be a collectively used document,
the information within will be a part of the DevOps culture, and helps promoting it through-
out the team or organization.

4.5.3 RQ1c: How to adapt relevant SCM concepts
and principles in a DevOps context?

In this section guidelines will be presented based on the analysis in section 4.4. The guide-
lines will discuss how each SCM activity can be adapted and used in a DevOps context, in a
structured way. In section 4.4 it was shown that each SCM activity covered more than one
DevOps activity, which implies the SCM activity is continuous throughout several Devops
activities, or parallel to others, which makes sense since many DevOps activities are parallel
and continuous in nature. This will be reflected in this section, but when discussed only the
activities we have determined to be most critical will be mentioned. The guidelines will be
based on our previous literature study, the interviews, and the analysis in chapter 3 and the
sections earlier in this chapter. The guidelines will also feature examples of how each SCM
activity can be achieved in a DevOps context with the same basis as the guidelines themselves.

Configuration control
Planning is an important part for configuration control. The goal of planning the configu-
ration control is to develop a process to be used. In the context of DevOps the focus should
be to keep the process agile and flexible, and this means e.g. that one would favor informal
meetings rather than formal. When planning one should also agree on, and specify, who is in-
volved in the steps of the process, and when. For example, to focus on a lightweight and agile
process, the team should be responsible, which means the team itself could act as an informal
CCB, where the collective knowledge of the team is the basis for impact analysis, decisions,
and validation of changes. To increase the stability of the process, there should be as little
reliance on any singular person as possible, to reduce internal handovers and leaving decision
making to a specific person. Though these more agile adaptations, the steps of configuration
control, as described in e.g. (Bendix and Ekman, 2007; C&A, nd), are still maintained.

Change management
It was evident that several DevOps activities together laid a foundation for change manage-
ment. A large part of that is because of monitoring, which in interviews was used to track
(amongst other things) changes, and show their connections to a certain change request, and
CI, with the help of tools supporting this. An example of this within the context of DevOps
could be to track issues and tasks in relation to a CI or a collection of CIs, where a relation is
always enforced, and any change request is always in relation to a CI, or one/some of its issues
or tasks, or requirement. In interviews we have seen this in varying degrees, and a common
factor for failure was any step that needed to be handled manually or if the issue tracker did
not strictly require a relation for it to be added. From this, the needed functionality is to
be able to preserve traceability from a change request, and its associated task/issue/CI, to its
implementation (Bendix and Ekman, 2007), e.g. by connecting a check-in/push to an existing
task or issue, and through monitoring making this information available to the whole team.

51

4. SCM in a DevOps context

Configuration identification
Configuration identification has a focus on theDevOps activities plan, monitor, and test. The
purpose with planning the configuration identification is to identify distinct components of
a given system (Bendix and Ekman, 2007). In the DevOps manner, this plan should be agile
and flexible, where one should have a continuous planning process for identified CI:s during
and at the beginning of the DevOps process, which can be done with the help of early and
continuous monitoring and testing. However, it is always a risk to over do the CIs, which
adds complexity for no value. This means that there is a need for limiting CIs, where the
granularity of a CI should be determined by the value it adds (Kelly, 1996).

Configuration status accounting
Configuration status accounting is an important part of the DevOps activity monitor. Con-
figuration status accounting provides the ability to collect metrics about configuration items
(Bendix and Ekman, 2007; Daniels, 1985) that can then be used for monitoring. Monitor
in turn contributes to increased transparency and visibility among employees, which were,
according to the interviewed companies, two important aspects of configuration status man-
agement. Configuration status accounting should be implemented with the help of CMDB,
so that one could at any time during the life cycle get and track information about a product.
Monitor can then be incorporated early in the process, and be provided with valuable met-
rics, which in turn increase the transparency and visibility among employees. Also, by doing
this, the DevOps process can be continuously provided with valuable feedback.

Version control/Collaboration tools
The SCM activity version control(/collaboration tools) touches upon all DevOps activities,
as all code (and documentation and other related objects) are potential candidates for be-
ing version controlled. Planning version control would likely be a positive initial step (but
also something that can change over time, if new requirements or needs arise within a team),
where a team decides which tools are to be used for this purpose, and how they should func-
tion together. Part of this planning activity could be to focus on understanding how to use
the tools in order to achieve the goals of the team (andmaking sure that they can), and how to
avoid issues that might arise when collaborating on a shared resource (see e.g. (Babich, 1986)).
This information could be collected and documented, and made available to the team to pro-
mote sharing within the team, and encourage more e�cient collaboration by maintaining a
collectively available source of information intended to empower the team members.

Configuration Audit
Audit is an important part of build and release, where all companies had some form of testing
prior to a release/baseline to ensure that the product or service complies with the validation
and compliance regulations (Daniels, 1985; Bendix and Ekman, 2007). In a DevOps context,
audit can be viewed as something that takes place from day one, where every task is attached
to a CI, requirement, or issue, which in turn is tested through unit testing and testing within
the pipeline. Parts of these tests should reflect the configuration documentation, require-
ments, specifications, and change requests that should be met in order to establish a new

52

4.5 Result

baseline for a release. Exactly which requirements, change requests or tasks should be in-
cluded could likely be decided in, e.g. sprint planning, and by the end of the sprint a new
baseline is established. Because a CI/CD pipeline is an integral part of DevOps, and CD im-
plies the system is always in a releasable state, each point in time can be viewed as a potential
baseline, and every commit triggering a new baseline, and with continuous deployment, this
becomes reality as every commit is deployed to production.

Build management
As mentioned in all the interviews, build management was an essential part of the CI/CD
pipeline, where build management handled the building and defining of a given system
(Bendix and Ekman, 2007). As the build step is a part of the CI/CD pipeline, it must be
automated in the DevOps context, which can be done using build management tools (e.g
Jenkins). In addition, these tools should be used to specify a system(/dependencies) in a bill-
of-material like document, where the BOM-documents could, among other things, include
how the system was built, and what the build consist of. Also, by using build management
tools, we provide the ability to derive di�erent variants of a system.

SCM Plan
We refer the reader to section 4.5.2 for a description of our proposed usage of an SCM plan
within the context of DevOps.

Release management
Release management is an important part of the DevOps activities build, deploy, and release,
where it handles formal and informal releases to customers (Bendix and Ekman, 2007). Since
release management includes everything from code integration to deployment, it should be
automated with the help of tools. This produces reliable and repeatable processes in the
DevOps context, where records of how the release was built, and what it consists of take
place to ensure that the release can be recreated. However, to accomplish well produced and
reliable records in DevOps there needs to be good traceability among components, modules,
and dependencies. One needs to use version control to know which version of the di�erent
components, modules, and dependencies uses to create the system model, which in turn,
becomes our Bill of material, which help us record things such as how the release was built,
and what it consists of. Furthermore, when doing a release there needs to be some form of an
audit, to verify that the correct system has been built. In DevOps, this audit can be seen as a
part of the CI/CD pipeline, where every task is attached to a CI, requirement, or issue, which
in turn is tested through unit testing and testing within the pipeline, e�ectively a continuous
audit process.

Teamwork/Parallel work
From many of the characteristics of DevOps, such as culture and sharing, and what they en-
tail, teamwork seems to be an important aspect to focus on. The SCM activity teamwork
touches on, e.g. coordination, roles, and responsibilities (Appleton et al., 1998), which align
with parts of the previously mentioned DevOps characteristics, in addition to collaboration

53

4. SCM in a DevOps context

and trust, which is also important in DevOps (França et al., 2016). From the SCM inter-
views it was clear that teams should have collective ownership and responsibility for their
work, which aligns well with DevOps characteristics. From the interviews most companies
employed some variation of git flow or trunk-based development when coordinating paral-
lel work within their version control tools. Most companies also left much of the decisions
regarding exactly how they wanted to work to the teams themselves, which shows the team
trust, and could be argued to both encourage teams to take responsibility, and to promote
collaboration within the team in order to collectively agree on, e.g., a certain work flow.

Workspace management
From the interviews it was clear that git was the most used version control tool. Even so, in
case other tools are used, there are potential workspace related problems which needs to be
addressed, such as the three basic problems of shared data, simultaneous update, and double
maintenance (Babich, 1986). Some version control tools enforces behavior which counters
these problems, but we argue that being aware of them helps prevent them. A combination
of informing about potential issues, as well as educating the users on the tools they use, e.g.
how development in git works, local workspace and repository, what happens when certain
commands are used etc.

54

Chapter 5

Discussion and Related Work

In this chapter we will discuss and reflect over challenges and limitations that we have en-
countered during the thesis work to critically review the results, and to discuss what we could
have done better with the resource we had and did not have. To put the thesis into context,
we will discuss and review related papers to our research. Furthermore, to strengthen and
validate our results and guidelines, we will discuss the feedback that was received from the
validators. Also, as we had limited resources, some of the potential work had to be contin-
uously delimited, and in the section on future work we will provide a list with interesting
discussions regarding these future work topics.

5.1 Reflections and limitations
In this section we will discuss and reflect over challenges encountered during the thesis work.

As the thesis work did not have unlimited resources, and had to be conducted under
20 weeks, limitations had to be set. For instance, if we did not have a deadline, we could
spend resources on doing more interviews and literature studies, which might have added
additional data. However, when the last interviews (both SCM and DevOps) and literature
research were executed, we noticed that it did not provide a whole lot of new data, but rather
information that could be used to confirm the already collected data and preliminary results.
We could therefore conclude that we had collected enough data to see a conjunction be-
tween the di�erent literature and interviews. Since we decided to interview a wide variety
of companies, this provided a good width of information. There were clear di�erences be-
tween types of companies, and the largest di�erences could be identified, but to get a better
understanding of these di�erences more research needs to be done.

Also, more time could have been spent on making the DevOps graph more “complete”,
but since this was not our main focus, we had to postpone it for future work (see future work
section).

Another thing that we might have wanted to improve was the interview questions that

55

5. Discussion and Related Work

were asked. In retrospect, the questions that were asked were in some cases too di�use, which
made the analysis part and the interpretation part of the answers much harder than neces-
sary, which meant that we had to spend more resources on it than planned. Our idea with
this approach was to ask more general questions to let the respondent answer more freely,
instead of explicitly ask for the thing we were after. Even if this approach might have made
it more complex than necessary, we gave the respondent more freedom, which led to inter-
esting discussions and answers that we probably would not have received with more closed
questions. However, since we had limited resources, this approach turned out to be both
good and bad.

Furthermore, we had set a maximum time limit of one hour for each interview, but as
all interviews became very interesting, time was easily forgotten. This lead to some of the
interviews being longer than planned, which resulted in more resources than first expected
had to be spent, especially in the analysis of the interviews, where one hour compared to one
and a half could play a major di�erence in the time it took to analyze.

During the thesis work the partition on howmany interviews we had under certain inter-
vals could vary. This was something we could not control, because as the companies kindly
wanted to participate, we tried to adapt to the their time schedules, which lead to about
half of the DevOps interviews were done in a short time interval. Since we wanted to do the
analysis part of the interviews while it was still fresh, we had to divide it between us. Even if
this was a minor problem, where we still produced valuable analysis of the collected data, it
probably would have been more optimal to divide the interviews under a longer range. This
in turn would make the interviews less frequent, and let both of us analyse each interview, as
we did on all the others.

Something that we realized when sending out the validation to the participation compa-
nies was that it might have been better to keep the companies interview answers separated
in the report. This would make it easier for them to identify themselves in the report, and in
turn analyse if they felt represented in our analysis on the interviews. Also, by separating the
participating companies the readers would have been provided with more background and
specifics of each company, and their answers. But this would also have cost, and in retrospect
we would not want to reallocate time spent on the analysis regarding our research questions
on this, as we believe our representation serves its purpose as is.

5.2 Related work
Since there was a lack of literature describing specifics on SCM implementation or usage in
DevOps, we chose the paper Software Configuration Management Practices for eXtreme Program-
ming Teams (Asklund et al., 2004), which roughly explains the same problem domain as ours,
but instead of SCM in a DevOps context the authors evaluate SCM in the XP context. Even
if it is di�erent development methods, it is still very much relevant, as it relates to what this
thesis explores. We then chose the papers What is DevOps? A Systematic Mapping Study on
Definitions and Practices (Jabbari et al., 2016) and Vad karaktäriserar DevOps? (Mossberg et al.,
2016), which tries to define and provide characteristics of DevOps, which is related to the
first part of our thesis work. In this section we put our thesis work in relation to these three
papers by providing a short summary and critique for each.

56

5.2 Related work

5.2.1 Software Configuration Management Practices
for eXtreme Programming Teams

There exists a lot of literature describing the practices and philosophies of the programming
method extreme programming (XP). However, the authors claim that there is very little liter-
ature and information about Software configuration management (SCM) in the XP context,
if any, which creates the impression that SCM might not be needed in XP. This contradicts
the authors view on SCM and XP, where they believe that no project can succeed without
SCM. Therefore, they seek to clarify the implicit SCMprocess in XP, where they want to state
SCM in XP explicitly, which will in turn help their students who work with XP projects with
additional support, and also let other XP projects and SCM people benefit from their find-
ings.

One of themain contributions from the authorswere the design of SCM-related sub-practices,
which covered the SCM requirements that were not satisfied by the standard XP-practices.

In addition, to accomplish the design of the SCM sub-practices the authors had to cover
the general SCM activities needed in any project, and in turn identify to what extent these
SCM activities cover XP practices, by both producing list of XP practices that implements
SCM requirements, and list of SCM activities that is covered by XP practices.

The authors performed two study methods. The first study was done through literature,
where they collected data about important SCM activities and XP practices (relevant to
SCM). The second studywas donewith studentsworkingwith the SCM-related sub-practices.
This to further observe and investigate SCM sub-practices a�ection on students groups, both
when the student groups were adapting after them and when they were not. However, as the
authors has previous knowledge in XP and SCM, some facts and analysis could be based on
own experience.

The studies were conducted step by step, where the authors started to use the literature
studies to give the reader a brief introduction to the chosen SCM activities and XP practices.
Based on the previous step and own experience, following analysis was done; XP seen from
an SCM perspective, and SCM activities coverage on XP practices, which in turn was used
to draw conclusions about SCM requirements that were met and not met.

Furthermore, based on the previous step, SCM-related sub-practices could be produced,
which then was tested and validated on the students.

The paper presents that SCM is indeed present in XP. However, the authors express that
there are SCM requirements that are not implemented by the XP practices. Nonetheless,
they provide a solution for this by producing a list of given SCM sub-practices. This guaran-
tees a complete development method in accordance with SCM requirements, which testing
and validation of student XP projects confirms.

Discussion
In the paper the authors state that they only go in depth with XP practices that they con-
sider relevant from an SCM perspective. However, there are no motivation behind why these
XP practices is the most relevant. For instance, how did they chose these practices?, which

57

5. Discussion and Related Work

practices did they chose from?, and what was the deciding deciscions that contribute to the
current five XP practices mentioned in the paper? If the author had mentioned all XP prac-
tices, and provided the reader with informative motivations behind the most relevant XP
practices chosen, it would probably have increased the understanding of XP as a develop-
ment method, and added more value in the form of why SCM is already present in XP.

This paper was important for the initial ideas of how to structure our thesis. It handles a
similar situation of exploring SCM in a development method, and much of the methodology
regarding how evaluation could be performed was inspired from its content.

5.2.2 What is DevOps? A Systematic Mapping Study
on Definitions and Practices

The authors claim that software engineering often reuse existing terms for things that are
not necessarily the same, which then results in misunderstandings regarding topics by using
di�erent definitions. The paper also claims that since the term "DevOps" (and its concepts)
is relatively new, there is currently no common definition of what it means, and that the
existing definitions only define parts of DevOps.

This lays the foundation for the author’s task of conceptualizing DevOps by contributing
three specific things (which are also their research questions). These are presented as com-
paring di�erent definitions of DevOps found in literature, trying to identify practices and
principles that appear to be related to DevOps, and lastly to perform a comparison between
DevOps and other development methods.

The authors describe their overall methodology as being a systematic mapping study
using a number of databases, based on their presented contributions, which mirrors the re-
search questions presented. It is shown how literature was found, and where, and with the
search strings they used providing general motivation for their choices, as well as how liter-
ature was filtered out to match their needs. Their filtering criteria shows that they focus on
literature which is academic in nature, e.g. by excluding non-peer-reviewed literature.

Data is extracted from the compiled literature using a pilot-tested generalized form or
checklist based on the data they wish to obtain in relation to their research questions.

Analysis of the selected literature is described as being a frequency analysis of the defini-
tions of DevOps contained in the literature, through which the most common elements were
extracted as part of a definition of DevOps. These common elements are then presented in
a word cloud. The authors also describe how literature was analysed with regard to prac-
tices within DevOps, which is done by extracting practices which are explicitly mentioned
in relation to DevOps. These are then categorized into di�erent areas, and presented.

The authors conclude by proposing a definition of DevOps, based on their analysis, which
contains a number key words identified as being representative of DevOps. With regard to
the practices associated with DevOps, the steps mentioned in the analysis where practices
were categorized, is presented as the answer to their second research question, as well as being
used in the comparisons in the third research question. For the third research question, the
authors show that there are (several kind of) relations between DevOps and agile software
development, and also with cloud computing, ITIL, and quality assurance. The authors also
mention that their results need to be validated, and that the value of di�erent practices and
combinations of them needs to be understood, and leaves this as future work.

58

5.2 Related work

Discussion
Although part of the stated goal was to only use peer-reviewed literature, probably to increase
validity in their findings, it might limit the information and its current validity. The authors
state that at least some of the literature they selected was based around the real life usage of
DevOps, which is positive as it is not only speculation, but they also state in their section
on validity threats that the definition of DevOps may evolve over time as new practices or
components are added, which could imply that there could be value in also using non-peer-
reviewed sources from people that actively work in DevOps or work with DevOps, to see if
and/or how it is changing, connecting the academic point of view with the current industrial
side of it more clearly.

As part of our initial characterization of DevOps, this paper was helpful to reference in
order to get an overview of di�erent subjects that might be interesting to explore. It proved
to be a valuable resource, but severely lacking in depth and discussion, reducing it to mostly
being used as a collection of topics to keep in mind throughout our characterization.

5.2.3 Vad karaktäriserar DevOps?
The authors claim, to deliver fast reliable software and to keeping up with the market speed,
companies are increasingly trying to adapt to DevOps. However, despite the popularity,
there exists a lack of unified definition of DevOps, where scientific literature about DevOps
is inadequate, and scientific studies of it is absent. According to the authors, this implies
that there is a need for empirical studies on DevOps in an organization, which in turn will
contribute to an increased understanding of the developmentmethod, and be a valuable asset
for further research on the phenomenon.

The main contribution from the authors was to identify what characterizes an organi-
zation working with DevOps, and what methods and characteristics are common between
these organizations.

The overall methodology used by the authors is what the authors describe as a qualitative
approach, seeking to explore the topic openly, consisting of interviews, followed by analysis.

The choice of interviews is motivated by the fact that they regard their research as more
exploratory, as well as a way to achieve more width and some depth, as opposed to other
methods which would achieve the opposite, citing the need for a descriptive result in their
context (but also recognizing the need for both).

The authors describe their interviews as open, with a semi-structured approach, with
questions ranging from open to guided. The interview data was analyzed iteratively and
provided categorization of the interview data, which would then impact the following inter-
views, as a form of adaptation based on previous answers. The analysis of the interview data
was performed by transcribing interviews and extracting key points by defining such points
and mapping comments to them.

The paper describes the process of selecting interview candidates, and lists several char-
acteristics, such as someone working in or with a group which identify as DevOps.

In terms of judging the validity of their results, the authors use the fact that if many
people have the same view or understanding regarding something, it likely is close to "truth",
and cite this as intersubjectivity. To achieve reliability, the authors also tried to stay neutral
in interviews, only performing planned interviews, and recording the interviews.

59

5. Discussion and Related Work

In relation to the research question of "what are the characteristics of DevOps organiza-
tions?", the authors presents that CAMS had little support, with the motivation that Culture
was far too wide and abstract, and Measuring was not a focus, and presents a new model for
characterizing DevOps. This new model is described as focusing on insight and transparency
throughout the lifecycle.

The authors also conclude that certain tasks are historically expected within a formal
role, which, within DevOps, blurred the lines between roles as tasks and responsibility cov-
ered the whole development cycle. Their research also showed agile methodology was largely
supportive, and that feedback usually was not a product of their own measuring, but rather
information from other departments.

Discussion
The paper initially wants to answer the research question "what are the characteristics of
DevOps organizations?", by performing interviews, and analyzing the interview data. They
claim to not want to provide a definitive definition of DevOps through the paper but rather
to present what they observe in DevOps organizations, but go on to provide a definition of
DevOps through the framework CAMS (Culture, Automation, Measure, Sharing), and base
their initial interview questions around it. Although the interview questions are continu-
ously updated, their starting point is CAMS, and the author’s analysis and categorization is
(initially) in relation to CAMS, and later on their own framework, spawned from the initial
categorization and subsequent analysis.

It seems counterproductive to base everything on a single framework, especially since it
is apparent that some kind of literature study was performed, and a wide range of definitions,
and therefore potential characteristics are presented and discussed, only to be discarded, at
least initially. Even though the paper states that a new framework was developed over time,
it is largely evaluated in relation to CAMS (and discussions surrounding literature), instead
of perhaps the initial literature study, which might have provided a better evaluation and
perhaps a better model, as the width of the discussed sources are likely more robust than a
single point, as with CAMS.

Comparing the work done in this paper, and our characterization, it overall appears to
be somewhat restrictive, and tightly tied to the specified framework CAMS. As such, we
feel that this is a limiting factor, and its usefulness in our context (where we started with no
assumptions regarding a characterization of DevOps) is therefore also limited.

5.3 Validation
In order to strengthen our results and confirm whether our guidelines could be applied in re-
ality or not, a validation was sent out to eight companies. This section presents and discusses
the main points from the received feedback from these companies.

In the validation we focused on the chapters Characteristics of DevOps and SCM in a DevOps
context, although the validators were free to read and comment on the entire report if they
chose to. The following two question were asked:

• Based on your participation in the interviews, do you feel represented in section 3.0
(DevOps) and/or 4.1 (SCM)?

60

5.4 Future work

• Do you think these results are applicable in reality (in your company)?

– If not, please provide a short motivation why

Because of the way the questions are formulated, the absence of critique or comments
in the received feedback is interpreted as agreement. That being said, of the responses we
have received, everyone has felt represented in section 3.0 and 4.1. Currently, no one has
commented onwhether the results are applicable in reality, nor have they provided comments
on them.

A validator who participated in interviews on DevOps noted our usage of the term "De-
vOps team", asking how "DevOps team" compares to the DevOps paradigm. This is a valid
point, and a reiteration of parts of the introduction to this thesis, where we discuss the fact
that there is no agreement on whether DevOps is something you are, or something you do, as
well as the lack of operational definition of DevOps, making it di�cult to discuss a DevOps
paradigm. Within the context of our thesis, a "DevOps team" is a team who’s development
methodology, principles, and practices, overlaps with our characterization of DevOps. This
validator also commented on SCM plans, and it not being needed in DevOps, with the mo-
tivation that a team should work the way that fits them best, and that an SCM plan likely
is not up to date, or relevant to all teams. This agrees with our own analysis and alternative
approach to SCM plans in chapter 4.

Overall the respondents expressed agreement in being represented in the interview dis-
cussions. They were also positive towards the application of the results, or had the opinion
that it helped confirm important items.

5.4 Future work
The path to our results for this thesis work has been far from straight, which has led us to
encountering many interesting things. However, due to time constraints, we have not been
able to examine all parts, and have been forced to postpone it for future work. This section
provides prospective points for future work of this thesis.

1. For the future work, there could be more work spent on making the graphs more “com-
plete”, where one could e.g. look more into other connections between the characteris-
tics/activities, i.e. other types of dependencies (edges) between the characteristics/activities
and possibly categorize them, and what type of abstraction levels the characteristics could be
divided into, as it is clear that there are di�erent levels.

2. As time was limited, it did not allow for us to test our guidelines in practice, and so it had
to be left for future work. The tests of the guidelines could (e.g.) be done with case studies,
where di�erences in usage based on type of company could be looked into, and where/how to
begin a DevOps transformation for a given company type, or where/how a startup company
would/could apply these based on their needs. Also, another interesting thing to investigate
could be what kind of di�culties there are for established (e.g. waterfall) companies with
strict SCM processes moving towards more agile variations, when moving towards DevOps,
and conversely for newer companies or startups wanting to use SCM.

61

5. Discussion and Related Work

3. More future work could be done in the form of exploring more DevOps characteristics,
since the characterization of DevOps was not the main focus of this thesis. This means that
more time could have been spent on, for instance, trying to identify more characteristics, do
more research about the current characteristics, and maybe change the current ones, and/or
explore the validity of the ones we have identified.

4. During some of the interviews we encountered the word "cost", which referred to the cost
of doing/going DevOps, where there is a need for future investigation if the cost is worth it,
and what the costs are, both in relation to the profitability of doing so, and also where costs
might be, i.e. what "things" in DevOps that are possibly going to be a cost.

5. Lastly, another topic that could be interesting to look into is if the graph strategy we
used could be abstracted and generalized, perhaps suited in combination with point 1 in
this section, and then be used on other software development methods. This could poten-
tially be used to compare di�erent development methods, and see similarities and di�erences
between them, which might be useful when switching between methods or analysing what
might be suitable based on one’s needs, as well as providing a plan for implementation, as the
dependencies are immediately available.

62

Chapter 6

Conclusion

In conclusion it can be seen that all SCM activities were deemed as needed within DevOps
(which answers research question RQ1a), either because they were already present, or because
of the value they bring, with the exception of SCM plans in their current form, which were
regarded as too specific and rigid in an agile environment.

Based on our previous analysis, we introduced an alternative to SCM plans (research ques-
tion RQ1b), which instead includes the overall DevOps process one has adopted, as well as
SCM activities in a common resource, in order to counteract a separation of the two, and
to promote understanding of them both, why they are important, how to do them, and to
present them as being part of the same overall process.

Lastly to answer the research question RQ1c, we provide generalizable guidelines for how
SCM activities can be done in DevOps, based on how SCM activities mapped to DevOps
characteristics. These guidelines provide valuable ideas regarding both where a given SCM
activity fits in within DevOps, and where a subset of DevOps fits into SCM. The guidelines
also show how the definitions of SCM activities can be interpreted to allow for a more agile
usage within DevOps, based on one’s needs, which could help both newer startups as well as
larger "waterfall" companies to either include SCM, move towards DevOps, or both.

We would also like to highlight parts of the section on future work discussing our graph
of DevOps characteristics and the combined graph including the SCM activities, as these
were instrumental in understanding the interconnectedness of the identified DevOps char-
acteristics, and being able to map these to SCM in a structured way, making them, in our
opinion, a valid result on their own.

63

6. Conclusion

64

Bibliography

Appleton, B., Berczuk, S. P., Cabrera, R., and Orenstein, R. (1998). Branching patterns for
parallel software development. [internet]. In Streamed Lines. [cited 2019 Oct 17]. Available
from: http://www.bradapp.com/acme/branching/branch-forces.html.

Asklund, U., Bendix, L., and Ekman, T. (2004). Software configurationmanagement practices
for extreme programming teams. In Proceedings of the 11th Nordic Workshop on Programming
and Software Development Tools and Techniques NWPER’2004, Turku, Finland.

Auerbach, A. (2017). Why devops still needs release management [internet].
CM Crossroads. [updated 2017 Nov 15; cited 2019 Oct 17]. Available from:
https://www.cmcrossroads.com/article/why-devops-still-needs-release-management.

Babich, W. A. (1986). Software Configuration Management – Coordination for Team Productivity.
Addison-Wesley.

Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Gren-
ning, J., Highsmith, J., Hunt, A., Je�ries, R., Kern, J., Marick, B., Martin, R., Mellor,
S., Schwaber, K., Sutherland, J., and Thomas, D. (2001). The agile manifesto. [internet].
Available from: http://agilemanifesto.org/.

Bendix, L. (2019). A short introduction to software configura-
tion management [internet]. [cited 2019 Oct 24]. Available from:
http://fileadmin.cs.lth.se/cs/Personal/Lars_Bendix/Teaching/1-ECTS-SCM/90min/Oslo-
19/LNSCM.pdf.

Bendix, L. and Ekman, T. (2007). Software configuration management in agile development.
In Agile Software Development Quality Assurance. Information Science Reference.

Bendix, L. and Pendleton, C. (2019). Scm in a devops con-
text [powerpoint presentation]. Copenhagen. Available from:
http://fileadmin.cs.lth.se/cs//Personal/Lars_Bendix/Research/SCMnDevOps/Meetup-
ITU-v4-4pp.pdf.

65

BIBLIOGRAPHY

C&A (n.d.). Configuration control [internet]. Chambers &
Associates Pty Ltd. [cited 2019 Oct 17]. Available from:
http://www.chambers.com.au/glossary/configuration_control.php.

Casey, K. (2019). Agile vs. devops: What’s the di�erence? [internet]. The
Enterprise Project. [updated 2019 Jan 3; cited 2019 Oct 17]. Available from:
https://enterprisersproject.com/article/2019/1/agile-vs-devops-whats-di�erence.

Daniels, M. A. (1985). Principles of Configuration Management. Advanced Applications Con-
sultants, Inc.

Daskalopoulos, A. (2019). Test everywhere: A journey into devops and continuous test-
ing [internet]. CM Crossroads. [updated 2019 Jul 15; cited 2019 Oct 17]. Avail-
able from: https://www.cmcrossroads.com/article/test-everywhere-journey-devops-and-
continuous-testing.

Ebert, C., Gallardo, G., Hernantes, J., and Serrano, N. (2016). Devops. pages 94–100. IEEE
Software, 33 edition.

Erich, F., Amrit, C., and Daneva, M. (2014). Report: Devops literature review.

Feiler, P. H. (1991). Configuration Management Models in Commercial Environments. Software
Engineering Institute.

Forsgren, N., Smith, D., Humble, J., and Frazelle, J. (2019). Accelerate
state of devops 2019 [internet]. [2019; cited 2019 Nov 13]. Available from:
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf.

Fournier, C. (2019). Engineer’s guide to identifying and coping with path dependence
[youtube]. [2019; cited 2019 Nov 14]. CoDe-Conf 2019, Copenhagen. Available from:
https://youtu.be/6O75onO1BIQ?list=PLuvRKxeqrv4It4SWS84qW66wIfobtpSDu.

França, B. B., Jeronimo, H., and Travassos, G. H. (2016). Characterizing DevOps by Hearing
Multiple Voices. SBES.

Guckenheimer, S. (2017). What is infrastructure as code? [internet]. Microsoft. [up-
dated 2018 Oct 24; cited 2019 Oct 17]. Available from: https://docs.microsoft.com/en-
us/azure/devops/learn/what-is-infrastructure-as-code.

Jabbari, R., Ali, N., Petersen, K., and Tanveer, B. (2016).What is DevOps? A Systematic Mapping
Study on Denitions and Practices. Association for Computing Machinery, New York, NY,
USA.

Kelly, M. V. (1996). What does and does not need controlling. In Configuration Management -
The Changing Image, pages 55–66. McGraw-Hill Book Company.

Kornilova, I. (2017). Devops is a culture, not a role! [internet]. Medium. [updated 2017
Apr 28; cited 2019 Oct 17]. Available from: https://medium.com/@neonrocket/devops-is-
a-culture-not-a-role-be1bed149b0.

Leon, A. (2014). A Guide to Software Configuration Management, chapter 11. Artech House Inc.

66

BIBLIOGRAPHY

Lwakatare, L. E., Kuvaja, P., and Oivo, M. (2015). Dimensions of DevOps. Springer Interna-
tional Publishing, Switzerland, 2015.

Mann, A. (2019). Devops: Shift left to reduce failure [internet]. [2019;
cited 2019 Nov 14]. CoDe-Conf 2019, Copenhagen, 28 Oct 2019. Available from:
https://www.youtube.com/watch?v=WYU2XZ1nCpk&t=4s.

Mossberg, S., Friberg, G., and Joelson-Tui, J. (2016). Vad karaktäriserar devops? Student
Paper. Available from: http://lup.lub.lu.se/student-papers/record/8881167.

Poppendieck, M. and Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit.
Addison-Wesley. Seventeenth printing, May 2013. ISBN: 0-321-15078-3.

Roche, J. (2013). Adopting devops practices in quality assurance. InCommun. ACM. 56 edition.

Rushgrove, G. (2016). Devops: A culture of sharing [internet]. [2019; cited 2019 Nov 18].
Puppet. Available from: https://puppet.com/resources/video/devops-culture-sharing/.

Schrag, D. (2016). Devops: Shift left to reduce failure [internet]. [2016; cited 2019 Nov 14]
Available from: https://devops.com/devops-shift-left-avoid-failure/.

Sharma, S. (2014). DevOps For Dummies, IBM Limited Edition. John Wiley & Sons, Inc., Hobo-
ken, New Jersey.

Smeds, J., Nybom, K., and Porres, I. (2015). DevOps: A Definition and Perceived Adoption
Impediments. Abo Akademi University, Finland, 2015.

Ståhl, D., Mårtensson, T., and Bosch, J. (2017). Continuous practices and devops: beyond the
buzz, what does it all mean? In 2017 43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), Vienna, Austria. IEEE, IEEE.

TechInsights (2013). Techinsights report: What smart businesses know about de-
vops [internet]. TechInsigths. [cited 2019 Oct 24]. TechInsights Report.
Available from: https://www.logicworks.com/wp-content/uploads/2016/01/techinsights-
report-what-smart-businesses-know-about-devops.pdf.

Vega, C. (2019). Ikea’s journey into digitalisation. [youtube]. [2019; cited
2019 Nov 19]. CoDe-Conf 2019, Copenhagen, 28 Oct 2019. Available from:
https://www.youtube.com/watch?v=Zukki9fI2yw&t=828s.

Yigal, A. (2016). How devops is killing qa [internet]. [2016 Jun 7; cited 2019 Nov 6]. Available
from: https://devops.com/devops-killed-qa/.

67

BIBLIOGRAPHY

68

Appendices

69

Appendix A

DevOps interview template

1. Tell me a bit about yourself

(a) Background

(b) Role

(c) Team

2. What type of company do you work for?

(a) Type of company (traditional, agile, startup etc.)

3. Why do you think you are DevOps and not something else?

(a) How have you achieved DevOps in your team/organization?

(b) Which problems do you want to solve using DevOps?

i. How do you try to achieve that?

(c) There are many development methodologies, how come DevOps was chosen?

(d) How has your team developed after adapting to DevOps?

i. Did something in your existing process stop working?
ii. Did something in DevOps not work?

4. How did DevOps a�ect the release cycle?

(a) For example, how has your time to deployment increased/deployment frequency
changed?

i. How did you improve this with DevOps? (if improvement)
ii. How did your process change?
iii. Did you remove something that didn’t work with DevOps?

71

A. DevOps interview template

A. How did it a�ect you process(es)?

5. If something goes wrong along the way, how do you solve it? (Maybe give example on
scenarios)

(a) Can you, wherever you are in the process, know if something goes wrong?

i. How is this achieved?
ii. How do you handle these changes?

6. How do your change process work?

(a) How do you handle change requests?

7. How do you collaborate within the team/How is teamwork performed?

(a) Do you have fixed roles in the team?

i. How is information shared within the team?

8. How do you communicate within the team?

(a) Is this something that has been improved because of DevOps?

(b) How is information shared within the team?

9. What was the hardest part to change when becoming a DevOps company/team?

72

Appendix B

SCM interview template

1. Tell me a bit about yourself (if it is a first time interview)

(a) Background

(b) Main role

(c) Team

2. What type of company do you work for? (if it is a first time interview)

(a) Type of company (traditional, agile, startup etc.)

3. How/Where do you use Configuration Identification in your development process?

(a) What do you see as a CI?

(b) How do you handle these CIs?

4. How do your process for controlling changes work?

(a) CCB?

(b) Where/when?

5. Can we get information about CI:s wherever we are in the process?

(a) CMDB?

6. How is the process for baselining structured?

(a) Physical/functional requirements?

7. Do you have a process for specifying a system and how to build it?

(a) Is the configuration version controlled?

73

B. SCM interview template

(b) Variants?

8. How do you collaborate within the team/How is teamwork performed? (if it is a first
time interview)

9. How do you manage your workspaces?

(a) Branching strategies (?)

10. What is covered by your version control?

(a) Code, monitor data, configurations, etc. (?)

(b) What is not covered?

11. Can one track changes from the origin of the change to the implemented source code?

(a) Traceability throughout project/product

12. Do you plan your SCM activities, and document them?

(a) SCM Plan

13. How do you release?

14. How is a change triggered?

(a) Change request via forms, or something similar?

74

	Introduction
	Background
	Problem statement
	Methodology
	Information collection
	Analysis
	Alternate methods
	Validation

	Characterizing DevOps
	Introduction to SCM

	Characteristics of DevOps
	Ranking and visualizing characteristics and their dependencies
	Ranking of DevOps characteristics
	Dependency graph of DevOps characteristics

	SCM in a DevOps context
	SCM in practice
	Dependency graph of SCM activities
	SCM and DevOps combined
	Analysis
	Result
	RQ1a: What SCM concepts and principles are needed and not needed in a DevOps context?
	RQ1b: What new SCM concepts and principles can be added to the SCM toolbox?
	RQ1c: How to adapt relevant SCM concepts and principles in a DevOps context?

	Discussion and Related Work
	Reflections and limitations
	Related work
	Software Configuration Management Practices for eXtreme Programming Teams
	What is DevOps? A Systematic Mapping Study on Definitions and Practices
	Vad karaktäriserar DevOps?

	Validation
	Future work

	Conclusion
	Bibliography
	Appendix DevOps interview template
	Appendix SCM interview template

