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Abstract

Detection of hate speech can be used for many applications. Most commonly,
it is used for creating a safe and just setting for online communication, but it
can also be an asset when working with prevention of violent extremism. In
this report, we train classifiers to detect hate in the Gab Hate Corpus, a corpus
collected from the social media platform Gab. Our results show that, by fine-
tuning pre-trained models and excluding a selection of data, we can outperform
the current state of the art on this task.

Keywords: Hate speech, Violent Extremism, Natural Language Processing, Machine
Learning, Neural Networks, Deep Learning, Transformers
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Chapter 1

Introduction

On the morning of October 27, 2018, Robert Gregory Bowers entered a synagogue in Pitts-
burgh, USA and took the life of eleven people and injured six. Bowers had an account on
a social media platform, Gab, where he had earlier posted anti-Semitic comments against
the Hebrew Immigrant Aid Society (HIAS). On the day of the mass shooting, he posted the
following:

“I can’t sit by and watch my people get slaughtered. Screw your optics, I’m going
in.” – Robert Gregory Bowers

1.1 Background
Today, there are a countless number of social medias available on the internet. The social
media platforms are available to anyone who has access to the internet and are used by all
age groups from children, students, and elders to even presidents and many others. As a
result, we have an immense collection of platforms used for expressing opinions, thoughts
and feelings. While this creates extraordinary opportunities for discussions and simplifies
communication, it also comes with the risk of setting the scene for bullying, abuse, o�ensive
speech, and hate speech.

It is not uncommon that actors of terrorism share opinions, feelings and, sometimes even,
action plans on social media. In some cases, we can see that terrorists have posted implications
of an action on the actual day of, or day before, an action. As mentioned in the beginning
of this chapter, in the Pittsburgh synagogue shooting, Robert Bowers posted an o�ensive
message on Gab on the same day that he performed the mass shooting. Similar traits can be
found in other acts of terror. On April 23, 2018 Alek Minassian killed 10 people and injured
16 while ramming a van through a street in Toronto, Canada. Shortly before the attack Alek
posted on Facebook:

Private (Recruit) Minassian Infantry 00010, wishing to speak to Sgt 4chan please.
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1. Introduction

C23249161. The Incel Rebellion has already begun! We will overthrow all the
Chads and Stacys! All hail the Supreme Gentleman Elliot Rodger!

To clarify, Incel, refers to Involuntary celibate, members of an online subculture who defines
themselves as unable to find romantic or sexual company despite desiring it. Chads and Sta-
cys are, by Incels definition, popular, attractive, sexually active men and women respectively.
Elliot Rodger was an Incel who performed an attack in 2014, killing 6 and injuring 14 others.
Because we can trace terrorists who share their opinions and thoughts online, an opportunity
arises to detect and prevent attacks at a planning stage by analyzing data from online forums
and social media.

The Swedish Security Service is interested in detecting hate speech in text in order to
use it as an asset in prevention of violent extremism. The goal is to create a model that can
identify hate speech in text and thus make screening of text much less time consuming. The
Cambridge dictionary defines hate speech as public speech that expresses hate or encourages
violence toward a person or group based on something such as race, religion, sex, or sexual
orientation. Detection of hate speech is a part of an ongoing e�ort to trace and limit ver-
bal abuse against targeted communities. The negative e�ects on these communities from
experiencing hate speech are often neglected but nevertheless very important (Gelber and
McNamara, 2016).

Hate speech is commonly found on the internet, particularly in social media. Many, but
not all, social media platforms attempt to prevent hate speech from appearing in order to
create a more just and safe environment. Twitter writes in their Hateful conduct policy that
they are:

committed to combating abuse motivated by hatred, prejudice or intolerance,
particularly abuse that seeks to silence the voices of those who have been histor-
ically marginalized.

In this work, we will investigate and explore methods of detecting hate speech in text in
order to create a software that can classify and select parts of text that most likely contain hate
speech. To do this, we will work with a corpus gathered from a social media platform known
for its far right user-base that has been annotated by multiple instructed annotators. As
methods, we will consider LSTM (Section 3.2.1) models at first and later turn to Transformer-
based models which have turned out to be very promising because of their superior increase in
performance on multiple natural language processing (NLP) tasks. Transformer-based mod-
els report (as of today) state-of-the-art performance on multiple text classification tasks (e.g.
The AG News corpus and The DBpedia ontology dataset, both from Zhang et al. (2015)) and
Sentiment analysis tasks (e.g. IMDB dataset (Maas et al., 2011) and The Stanford Sentiment
Treebank (Socher et al., 2013)).

1.2 Related Work

1.2.1 The Gab Hate Corpus
This work is very much based on the work by Kennedy et al. (2020a), who introduced the Gab
Hate Coprus (GHC). The article is a collaboration between the Departments of Computer
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1.2 Related Work

Science, Psychology, and Political Science at the University of Southern California. We will
dive into the Corpus and analyze it in detail in Section 2.2. For now it is su�cient to know
that GHC is a dataset consisting of posts from a social media site called Gab. Posts are
annotated as hate or non-hate according to the hate-based rhetoric described in the article.
The authors also introduce a baseline model for detecting hate speech. The GHC is the the
largest theoretically-justified, annotated corpus of hate speech.

Work done on this corpus include Kennedy et al. (2020b). In this paper, the authors
describe the di�culties of hate speech classifiers dealing with unbalanced data. Their results
show that classifiers have problems with group identifiers such as “gay” or “black”. Namely,
the issue is to distinguish if the words are used in a o�ensive/prejudice way or not. We will
call this group identifier bias.

To deal with this problem, they introduce a novel regularization technique, which im-
proves the performance of classifiers by limiting false negatives. The reported classifiers were
trained on GHC. Each classifier was run 10 times and the mean value and standard deviation
were reported in the paper. On the average, the best performing classifier achieves a mean
F1 score of 69.52 with a standard deviation of 1.3.

1.2.2 Offensive Language
One of the most noted o�ensive language task is O�ensEval, first introduced in 2019 in
(Zampieri et al., 2019). The task included three subtasks:

1. Subtask A was to identify o�ensive speech,

2. subtask B to classify the type of o�ense and

3. C to identify the target of the o�ense.

The data consisted of a set of 14,100 annotated English posts from the social media site Twit-
ter, of which 4,640 were annotated as o�ensive.

In O�ensEval 2020, a similar task was proposed, this time in multiple languages including
English, Danish, Arabic, Greek, and Turkish. Nearly 800 teams signed up in 2019 and 115 of
them submitted results. The most popular, subtask A had 104 participants and among the
top-10 teams, seven used a pre-trained model called BERT, which we will cover in more detail
in Section 3.2.5. The top performing team used a BERT model with max sentence length of
64 and 2 epochs. The F1 score was 82.9%.

Other works on o�ensive language include Wester et al. (2016) who introduced and
worked on the Youtube Threat Corpus. The corpus consists of 9,845 comments which corre-
spond to 28,643 sentences. Out of all comments, 1,285 of them included threat. This corre-
sponds to 1,384 sentences. The authors perform a more linguistic approach to classification,
working with features such as word form, part of speech tag, semantic cluster labels and more.
Their results show that a combination of lexical features outperform the use with more com-
plex syntactic and semantic features. The best performance was obtained by a support vector
machine model trained on a feature set with lexical n-grams, F1 score of 68.9%.
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1.2.3 State of the Art
In our work, we will study many classifiers, most of which are based on the structure of
BERT introduced in Devlin et al. (2018). The authors introduced a novel classifier utilizing
the Transformer architecture. We will go into this in more detail in Section 3.2.5 and 3.2.4.

BERT is trained on a large dataset with a pre-defined task. The goal is to create a gen-
eral model base that can be fine tuned for many NLP tasks. Their results show that a rich,
unsupervised pretraining is an integral part of many language understanding systems.

Models evolved from BERT include XLNet (Yang et al., 2019). XLNet has a similar ar-
chitecture with the major deviation being that it uses a di�erent task during pre-training.
XLNet is the best performing model on all of the NLP tasks mentioned in Section 1.1. We
will cover this model and more along with the theory behind them in Section 3.2.

10



Chapter 2

Datasets

2.1 What is Gab?
Gab (https://gab.com/) is a social media platform created by Andrew Torba and publicly
launched on May 8, 2017. It calls itself:

A social network that champions free speech, individual liberty and the free flow
of information online. All are welcome.

Gab is similar to many other social media platforms, where each user has a personal account
with a username, profile picture, and personal description also known as bio. The latter two
are optional while a username is mandatory. Users have the possibility to upload posts, called
gabs, containing text, media (e.g. image or video), polls or links that consist of at most 3000
characters. To clarify, we will distinguish the web page (Gab) from posts (gabs) with a capital
letter. As a user on Gab, you have access to two feeds, All and Home. A feed is a collection of
gabs. The All-feed consists of all gabs posted on the platform, while on the Home-feed, you
find gabs posted by users that you have chosen to follow. Both users that you have chosen to
follow and users that have chosen to follow you are visible by all.

All new users on Gab will automatically follow three accounts, Gab, Gab support, and
Andrew Torba. Gab uses a hashtag system, where typing a hashtag in front of a word in a gab
will make it visible for searches on that specific hashtag. Gab first di�erentiates from other
platforms when it comes to content restriction. In Gabs first point in Content Standards
(https://gab.com/about/tos), one can read that, User Contributions must NOT:

Be unlawful or be made in furtherance of any unlawful purpose. User Contri-
butions must not aid, abet, assist, counsel, procure or solicit the commission of,
nor constitute an attempt or part of a conspiracy to commit, any unlawful act.
For avoidance of doubt, speech which is merely o�ensive or the expression of an
o�ensive or controversial idea or opinion, as a general rule, will be in poor taste
but will not be illegal in the United States.

11
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2. Datasets

Many other social media platforms such as Twitter, Instagram, and Facebook prohibit the use
of e.g. hate speech by removing content and, in severe cases, suspending users. Gab allows
this type of content as long as it is not unlawful.

Possibly, as a result of its liberal policies on speech censoring, Gab has attracted a large
amount of far-right users. This hypothesis is based on claims by The New York Times (Hess,
2016) and National Public Radio (Selyukh, 2017) among others. Recent studies have shown that
there exists a high frequency of hate speech on the social media platform. Zannettou et al.
(2018) used the hatebase vocabulary (https://hatebase.org/) in their work to analyze
the amount of posts containing hate words in Gab. Results showed that 5.4% of all posts on
Gab included hate words, 2.4 times the rate when compared to Twitter.

2.2 The Gab Hate Corpus
The dataset that we have worked on is the Gab Hate Corpus (GHC) (Kennedy et al., 2020a).
GHC consists of 27,655 gabs collected from Gab in 2018. The posts were sampled at random,
the only restriction was a textual threshold. Each gab is then labeled with 14 binary labels
by trained annotators. However, in this report, we will only consider two, calls for violence,
(CV) and assault on human dignity (HD).

All annotators were instructed to label a gab as either CV, HD, both or neither. Ad-
ditionally, we have a class called Hate (hate speech). This class is not to be labeled by the
annotator but is generated based on CV and HD. If a post has been labeled with CV and/or
HD it will be classified with the label Hate. On the case where it is neither HD or CV it will
be classified as Non-Hate (not hateful). The authors of GHC define CV and HD as follows:

CV: Calls for violence include any verbalization or promotion of messages, which advocate
or endorse aggression towards a given person or group on account of their status as
member of a given sub-population. This aggression can take the form of violence,
genocide, exclusion, and segregation. Threats, which do not name the target’s group
membership as cause for the threat are not hate speech under our definition.

HD: A document should be labeled as HD if it assaults the dignity of group by: asserting or
implying the inferiority of a given group by virtue of intelligence, genetics, or other
human capacity or quality; degrading a group, by comparison to subhuman entity or
the use of hateful slurs in a manner intended to cause harm; the incitement of ha-
tred through the use of a harmful group stereotype, historical or political reference, or
by some other contextual means, where the intent of the speaker can be confidently
assessed.

A good take-away from these definitions is that both imply that a post must be targeted at a
group or person from a specific sub-population. This implies that general o�ensive language
is not hate speech per se. As an example of how the annotations are made, Table 2.1 shows how
annotator number 10 (A10) labeled gab number 4,900. In total, there are 18 annotators and
27,655 gabs. Every gab is labeled by, at least, two annotators with no upper limit. Figure 2.1
shows both the number of annotators per post and the number of labeled posts per annotator.

To determine if the annotators are in agreement, we turn to measure the inter annotator
agreement (IAA). Both Fleiss Kappa and PABAK have been considered in the GHC paper.

12
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2.2 The Gab Hate Corpus

Text Hate CV HD
Irish people are scum 1 1 0

Table 2.1: A10’s labels of gab 4900.

Figure 2.1: Left: A histogram over the number of annotators per
post. Right: Number of posts labeled by each annotator. On top
of each bar the annotators coverage in percentage of the dataset is
shown.

Fleiss Kappa is a way to measure the agreement between annotators, where if we have perfect
agreement the kappa value is equal to 1 and where we have total disagreement kappa would be
0. The major issue with a kappa value is that it is a�ected by both the bias between observers
and the distribution of data over the di�erent categories, called prevalence. Thus, if we were
to have very unbalanced data, the kappa value would not be very representative of the IAA.

To estimate the true distribution of hate speech in our corpus, we looked at the ratio of
total number of Hate (and Non-Hate) annotations against the total number of annotations.
In Figure 2.2, we can see that 13% of the annotations are labeled as Hate and the remaining
87% Non-Hate. Thus, we estimate that about 13% of the posts to include hate speech, this
would be considered fairly unbalanced data. Therefore, we cannot rely on Fleiss Kappa and
instead the authors have considered the Prevalence-Adjusted and Bias-Adjusted Kappa (PABAK)
(Byrt et al., 1993). As seen in Table 2.2, the Fleiss kappa score is very low for both HD and
CV but the PABAK is reasonably high. Therefore we can expect that the annotators are in
enough agreement for the data to have two distinct classes.

Table 2.2: Fleiss kappa and PABAK of original dataset.

Kappa Hate HD CV
Fleiss 0.248 0.231 0.241
PABAK 0.662 0.670 0.969

13



2. Datasets

Figure 2.2: Distribution of hate annotations and non hate annota-
tions. In total, there are 86,529 annotations on 27,655 posts.

2.3 The Majority Dataset
To overcome the issue of multiple labels per post, the authors created a dataset which we
will refer to as the Majority dataset. This dataset aggregates each annotator’s labels into one
label set per post by a majority vote (ties broken towards positive). In this work, we will only
consider the hate speech label and disregard the subcategories CV and HD.

Take gab number 4900 as an example. In Table 2.3, we can see that A14 and A10 labeled
the post Irish people are scum as CV, not HD (i.e. Hate) while A18 labeled it as neither (Non-
Hate). The resulting annotation in the majority dataset is therefor Hate.

Annotator Text Hate CV HD
14 Irish people are scum 1 1 0
10 Irish people are scum 1 1 0
18 Irish people are scum 0 0 0

Majority: Irish people are scum 1 – –

Table 2.3: All annotations on gab number 4900 along with the re-
sulting datum in the majority dataset.

2.3.1 Exploratory Data Analysis
We will now explore the Majority dataset by examining di�erent lexical properties. In Figure
2.3, we can see the class distribution of the majority dataset. As suspected, our data is slightly
unbalanced.

Character and Word Properties
In Figures 2.4 and 2.5, we can see the number of words and characters in each post. In both
classes, we see a similar result. It is most common to include about 100 characters or 20-

14



2.3 The Majority Dataset

Figure 2.3: Distribution of hate and non-hate posts in the majority
dataset.

Figure 2.4: Number of character in each post per class.

25 words. The upper limit of 3,000 characters does not imply a restriction on any of the
classes since posts with more then 500 characters are very rare. We can observe that Hate
posts have a lower frequency of short posts (less then 8 words or less then 35 characters).
One explanation of this could be that it is di�cult to formulate what is considered as hate
speech in such a short text sequence. Observing now the distributions, it appears that the
character distribution is the same for the two classes while there is a possibility of the two
word distributions being di�erent. In Non-Hate, there is a more distinct spike at 25 words
and drastically dropping whilst in Hate, there is a much smoother transition.

Words and Bigrams of Importance
As seen in Figures 2.6 and 2.7, the most common words and bigrams are not so surprising.
This gives us little to no information about the di�erent classes. As an attempt to gain more
awarding information, we will define a new type of top-list called the unique top-list. Let

15



2. Datasets

Figure 2.5: Number of words in each post per class.

top_words be the function returning the n most frequent words of a given class. The unique
top list for two classes C1 and C2 is given by:

while true do
common← top_words(C1) ∩ top_words(C2)
if common is empty then

return: top words for C1 and C2
else

for all w ∈ common do
remove w from C1 and C2

end for
end if

end while

In Figure 2.8, we can see the most common unique words for each class. There is a clear
distinction of the two classes. Hate posts include words of sub-population groups often ex-
posed to hate speech e.g. Jews and Muslims. It also more common to address gender and
(most likely) ethnicity e.g. white, black, women, men and so on.

Since creating a unique list gave insights for single words, we did the same for bigrams.
In Figure 2.9, we can see the most common unique bigrams for each class. Looking at hate
posts, we see less words tied to gender, ethnicity or religions. What we can see instead is
a clear distinction of the object of sentences. In Hate posts, we can see a frequent use of
plural pronouns e.g. They are, of them and that they. For Non-Hate posts we see a much higher
frequency of first person singular pronouns e.g. if you, I would and I can.

We recall the definition in Sect. 2.2, which implies that o�ensive speech against a person
does not su�ce as hate speech unless it is directed at a sub-population. This would explain
the scarcity of I and you in Hate posts. As a last exploration of important words we looked
at words ranked with TF×IDF. In Figure 2.10, we can see the top ranked word w.r.t. TF×IDF.
For us, these results did not contribute to understanding the data.

16
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Figure 2.6: Most common words in each class.

Figure 2.7: Most common bigrams in each class.

Lexical Diversity
Lexical diversity (LD) is to measure of how diverse the language is in a text. There are multiple
measures available and all capture di�erent aspects of diversity. McCarthy (2010) suggests
to use three di�erent measures to get an appropriate expectation of LD, they are: MTLD,
HD-D (or vocd-D), and Maas. An explination of the di�erent measures will follow below.
A recurring instrument is the Type-Token Ratio (TTR), which is the ratio between unique
words (V ) and the total number of words (N), i.e. 100 · V /N .

MTLD: MTLD is the mean length of sequential word strings in a text that maintain a pre set
TTR limit. Take the word string, of the people by the people for the people, and a TTR limit
of 0.72 as an example. The rolling TTR is, of (1.00) the (1.00) people (1.00) by (1.00)
the (.800) people (.667) for (.714) the (.625) people (.556). After each violation of
the TTR limit the rolling TTR is reset and one increment is added to our sequential
counter. Thus, given the previous example, MTLD would execute, of (1.00) the (1.00)

17
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Figure 2.8: Most common unique words in each class.

Figure 2.9: Most common unique bigrams in each class.

people (1.00) by (1.00) the (.800) people (.667) ||COUNTER = COUNTER + 1|| for
(1.00) the (1.00) people (1.00), and so forth. MLTD is then given by COUNTER / N .

HD-D: For each token vi , calculate the probability of encountering the token in a random
sample (A) of 42 tokens drawn from the text. HD-D is then given by taking the sum of
these probability for all token types, i.e.

∑V
i=1 Pr(vi in A).

Maas: This measure is also denoted a2 and is given by:

a2 =
log N − log V

log N2

.

In Figure 2.11, we show the lexical diversity of 430 individual posts containing more than 45
words from each class. We also calculated a common lexical diversity for each of the classes.
To do this, we created two corpora: the hate corpus consisting of all hate posts and a non

18
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Figure 2.10: Top rated words in each class with respect to TF×IDF.

hate corpus consisting of posts randomly sampled from the non hate class. Sampling was done
such that the corpora have similar lengths. The lexical diversity of the two corpora are shown
in Figure 2.12. All three of the above mentioned measures (HD-D instead of vocd-D) are used
in both cases to achieve a good representation. Neither one of the methods showed results
that implied that the lexical diversity of one class is di�erent from the other. In Figure 2.12,
Non hate scored best on MTLD but the worst on Maas, the HD-D score was a tie. Further,
in Figure 2.11, the distributions are not separated at all.

Figure 2.11: Histogram of lexical diversity per post for 430 posts with
45 from each class.

Word Cloud
Lastly, we give a word cloud representation of the two classes in Figure 2.13 to give a intuition
of the two classes. In the images, we see similar words as shown in Figure 2.8 and this implies
that a reasonable annotation has been made. Consequently, we consider the dataset su�cient
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Figure 2.12: Lexical diversity of Hate corpus and Non hate corpus.
The corpuses contain 375,980 and 376,060 characters respectively.

for the usage in this work.

Figure 2.13: Word cloud representation of both classes.

Uniqueness of the Dataset
After analysis, it has become clear that there are 99 posts which appear with more than one
ID in the Gab Hate Corpus, and thus appears more than once in the majority dataset. This
creates some ambiguity, especially since 3 posts get di�erent labels in the majority dataset.
However, in order to have comparable results with the authors, we ignored this issue.

2.4 More Alternatives of GHC
Throughout this work, we will work with a few other variants of GHC as well. Each one is
listed below:

Consensus The consensus dataset is a subset of the Majority dataset. It includes only the
posts, where all annotators are in complete agreement, i.e. all Hate or all Non-Hate.
There is a total of 20,436 posts in this dataset and 2.85% are Hate posts.
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Extended Consensus The extended consensus dataset is also a subset of the Majority dataset.
It contains all Hate posts from Majority but only the Non-Hate where all annotators
are in complete agreement. This dataset could also be interpreted as the Majority
dataset without uncertain Non-Hate posts. There are a total of 22,415 posts in this
dataset and 11.43% are Hate posts.

Table 2.4 shows the distribution of classes and Table 2.5 shows the IAA for posts qualifying for
Consensus and Consensus Extended. The Majority datasets contains all posts and is therefore
ignored.

Table 2.4: Distribution over classes in sub-corpora.

Dataset Size Hate
majority 27,655 8.45%
consensus 20,436 2.86%
consensus extended 22,415 11.43%

Table 2.5: Fleiss kappa and PABAK of Consensus and Consensus
Extended.

Dataset Kappa Hate HD CV
Fleiss 1.000 0.949 0.578

Consensus PABAK 1.000 0.995 0.993
Fleiss 0.251 0.232 0.250

Consensus Ext. PABAK 0.663 0.670 0.968

2.5 Alt-Right Forum
In order to have an completely unbiased dataset for evaluation of our model, we have anno-
tated 1594 posts extracted from an Alt-Right forum. We will call this data set the Alt-Right
dataset. Just like with GHC, posts from this forum have been labeled as either Hate or Non-
Hate. Annotations on this data have not been done following the exact procedure used in
GHC, but with the same goal: to label posts which were overly aggressive towards a group
or an individual. To get an understanding of the data, we have looked at the distribution of
classes (Figure 2.14), the number of words per post (Figure 2.15) and wordcloud for each of
the two classes (Figure 2.16).
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Figure 2.14: Distribution of classes of alt-right dataset.

Figure 2.15: Word count of posts from alt-right dataset.

Figure 2.16: Word cloud representation of both classes from alt-
right.
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Chapter 3

Approach

3.1 Method
In this work, we have followed the Cross-industry standard process for data mining, also known
as CRISP-DM, introduced by IBM. CRISP-DM consists of six major phases of which there
are multiple ways of navigating through. Figure 3.1 shows the possible directions one can
navigate. How the di�erent phases were implemented in this work is described below.

Business Understanding: In this phase, we explored what The Swedish Security Service had
to gain from the work. At first, we aimed at detecting threats in a more general sense,
which got narrowed down to hate speech detection after conclusions drawn in the Data
Understanding phase.

Data Understanding: During this phase, we explored the data to evaluate if the data was
separable into two classes or not. This was done by looking at the distribution of
classes and IAA.

Data Preparation: In this phase, we prepared all the sub datasets explained in Sections 2.3
and 2.4.

Modeling: Here we explored and tuned a hand full of classifiers, a LSTM as a baseline and
thereafter Transformer based classifiers.

Evaluation: Evaluating models created in the previous phase on the Majority dataset. Also,
final evaluation of best performing model on the Alt-Right dataset.

Deployment: Selecting model and creating a application.
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Figure 3.1: Visualization of CRISP-DM. Source: https:
//en.wikipedia.org/wiki/Cross-industry_standard_
process_for_data_mining

3.2 Theory

3.2.1 Long Short-Term Memory
Long Short-Term Memory (LSTM) is a type of gated recurrent neural network commonly
used in NLP. A recurrent neural network (RNN) is a type of network structure that uses
recent output from the model as input.

Let X be a set of inputs to the network, h be a set of outputs from hidden nodes and y
be the set of outputs. Then the most simple RNN has as output yi = θ(hi(X) + w · hi−i(X)),
where w is the the weight on the recurrent node and θ is the activation function.

A big problem with RNN’s is keeping track of long term dependencies. When training a
model with back-propagation, gradients tend to vanish and sometimes explode. This creates
an issue for optimization as demonstrated in Goodfellow et al. (2016, sect. 10.7).

The clever idea of LSTM is to also pass gradients through the network, sometimes without
weighting them at all, i.e. unchanged. LSTMs consist of LSTM cells which have internal
recurrent units. These cells contain three gates regulating the flow of information. An input
gate, output gate, and a forget gate. The input gate regulates the input, the output gate regulates
the output and the forget gate regulates the memory – stored information from previous
states.

3.2.2 WordPiece
The WordPiece embeddings were first introduced by Wu et al. (2016). The tokenizer starts
with splitting each word into parts until all parts are part of a vocabulary. The vocabulary
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consist of the N of most common word pieces, N is usually around 8 and 32 thousands. Since
the most common word pieces always include all Latin characters, a word can, in the worst
case, be broken down into a sequence of characters.

Take as an example gab number 4,900 from Sect. 2.2. When passing it through a word
piece tokenization from a BERT model with a vocabulary size of 30,000, the result would
be [Irish, people, are, s, ##cum]. Implying that all words except scum are a part of the dic-
tionary. Scum will therefore be broken down until all word pieces are a part of the vocab-
ulary, in this case with s and ##cum. The ## implies that it is the ending of a word. The
actual split is chosen by a word piece model that maximizes the language-model likelihood.
Next, each word piece is mapped to the corresponding index, in our example this would be
[2600, 1234, 1132, 188, 19172].

3.2.3 Embedding Matrix
An embedding matrix of size K × E, where K is the size of the vocabulary and E a chosen
dimension is a set of vectors (usually word or token vectors) collected in a matrix. Each token
has a given index and each index i corresponds to row i in the embedding matrix.

Thus, for the example in Sect. 3.2.2, the token Irish would have its word vector on row
2600 in the embedding matrix. A word vector is meant to give a representation of that word
or token. In a well orchestrated embedding matrix, words with similar meaning are similar
in the embedding space. Usually similarity is measured with the cosine similarity,

similarity(u, v) = cos(θ) =
u · v
‖u‖‖v‖

=

∑n
i=1 uivi√∑n

i=1 u2
i

√∑n
i=1 v2

i

,

where θ is the angle between u and v. In all transformer-based models the embedding matrix
is trained along with the model. However, there exists pre-trained embedding matrices which
can be used as well. We will give an example of embeddings from Mikolov et al. (2013) to get
an understanding for the concept. Not only did similar words have a similar representation,
the embeddings have also captured the relations between word-vectors. For instance, one
o�set direction in the vector space corresponded to plural/singular and one corresponded
to gender, demonstrated in Figure 3.2. Unexpectedly allowing for arithmetic operations on
word vectors, for instance King−Man + Woman resulted in a vector very similar to Queen.

Although an embedding matrix usually consists of token (or word) vectors, it could also
consist of other things. For example, in many transformer models, there are two other types
of embeddings, positional, and segmental embeddings. In positional embedding, the first
row in the embedding matrix consists of the embedding vector for the first position in a
sentence. While in the segmental case, the first row corresponds to the first input sequence
(some models can take multiple sequences as input).

3.2.4 Transformers
Vaswani et al. first introduced the transformers in 2017 in their paper Attention is all you need.
I will give a brief explanation to what transformers are but for a more profound description
see the article. Figure 3.3 shows the overall architecture of a transformer model. We will first
go through some relevant theory in order to later understand the architecture.
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Figure 3.2: Left: Vector o�sets for three word pairs representing the
gender relation. Right: Demonstrating the singular/plural relation
for two words. After Mikolov et al. (2013).

Encoder – Decoder
The encoder–decoder architecture consists of an encoder, which object is to map a sequence
of tokens x to a continuous representation z, and a decoder, which objective is to map the
representation z to an output sequence of tokens y, one element at a time. This is usually
done in a auto-regressive manner, taking the previously predicted tokens (y0, . . . , yi−1) as
input when predicting yi .

Attention
Attention is a mapping from three input vectors (a key-value pair and a query) to an output.
The output can be interpreted as weighted values, where the weights depend on the key and
query. In this particular case, the authors use the scaled dot product attention which takes,
as weights for the value, the dot product of the key and query and scales it with

√
dk , where

dk is the dimension of the key (and query). In the transformer architecture, they have used
attention in three ways:

Self-attention: Keys, values, and queries come from the same source. This let each token of
the sentence attend to every other token in the sentence. Thus a way of weighting the
importance of tokens in a sentence.

Masked self-attention: This is used in the decoder. This is identical to self-attention apart
from the fact that tokens that have yet to be decoded are masked. This to ensure that
illegal connections are not used.

Attention: Used in the encoder-decoder. Here the keys and queries come from the output of
the encoder and the values come from the output of the masked self-attention in the
decoder. Hence, a way of weighting previously predicted tokens against the output
from the encoder. This is then used for predicting the next token.

It is a lot more e�cient to calculate attention in batches so the key, values and queries
become matrices, K, V, Q. The attention is then calculated with the following function.

Attention(Q,V,K) = so f tmax
(
QKT
√

dk

)
(3.1)
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Figure 3.3: Transformer – the model architecture. Left half: Encoder,
right half: Decoder. After Vaswani et al. (2017).

In order to capture more properties about the input, we can perform attention multiple
times (i.e. with multiple Heads), with a di�erent linear transformation of K, V, Q for each
attention mapping. In Figure 3.3, this is called Multi-Head Attention.

The Architecture

Observing Figure 3.3, the transformer consists of two parts, one encoder stack with N = 6
identical layers and one decoder stack also consisting of N identical layers.

The input of the encoders is always the input sequence, while the input of the decoder
are the previously predicted outputs. Let us, as an example, consider the task of machine
translation. We want to translate the Swedish sentence Jag bor i Sverige. to English, I live in
Sweden.. The input to the encoder at all steps is Jag bor i Sverige. while the first input of the
decoder is a start of sentence tag. The first output is I. The input of the decoder will then be
I in the second step, I live in the third step and so on.

The encoder consists of a self attention, adding a residual connection followed by nor-
malizing. Next the output goes into a feed-forward neural network and is then added with
another residual connection to lastly be normalized again.

In the decoder, we see that the input is first passed through a self attention called Masked
Multi-Head Attention. This is the action of masking tokens to prevent attention on subse-
quent tokens. For instance in the last step we have as input in the decoder layer I live in
Sweden. When calculating the attention of in, it cannot depend on Sweden. It must only de-
pend on I and live. The remaining part of the decoder, after adding a residual connection and
normalizing, has the same structure as the encoder. The only di�erence is in the Multi-Head
Attention, which this time is not self-attention but actual attention.

This is the architecture of what is called one Transformer block.
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Figure 3.4: Visualization of input to the BERT model. After Devlin
et al. (2018).

3.2.5 Pre-Trained Models
Before we go into pre-trained models, we will briefly introduce transfer learning. Transfer
learning is a research problem within machine learning that aims to store knowledge from
one task for later use on a di�erent, possibly related, task. For instance, if a model trained on
cat images with the task of identify cats, the model is probably well suited to identify dogs
as well. Even more so if the cat model is trained on additional dog data, called fine-tuning.

Transfer learning could also be used in NLP. Any model that can capture the sentiment of
a text sequence would serve as a good candidate as a pre-trained model for many NLP tasks.
In this work, we have studied four di�erent pre-trained models, BERT, RoBERTa, ALBERT
and XLNet. We will first go through BERT in detail and later give a brief description of the
remaining models to get an understanding of how they di�erentiates from each other.

BERT
BERT stands for: Bidirectional Encoder Representations from Transformers. Bidirectional
implies that the model is a combination of a forward and backward language model. Given
a sequence of N tokens, a forward language model predicts token tk based on the previous
tokens (t0, . . . , tk−1) i.e. the history. A backward language model, on the other hand, predicts
token tk based on (tk+1, . . . , tN ). Encoder representation implies that the model uses encoders
as explained in 3.2.4 and transformers implies that the model uses transformers blocks in its
architecture. BERT takes up to two sequences of text as input, known as segments, and
embeds the input with three type of embeddings, token, position and segment. In Figure 3.4,
we can see an input example.

There are a few hyper-parameters that are good to have knowledge about, the number of
layers (i.e. Transformer blocks) is denoted as L, the size of all hidden states H , the embedding
dimensions E and the number of self-attention heads A. There is also a cap on the number
of tokens set to 512.

In this work, we have worked with two BERT models sizes, BERTBASE (L=12, H=E=768,
A=12, Total Parameters=110M) and BERTLARGE (L=24, H=E=1024, A=16, Total Parameters=340M).
Both models were pre-trained on a 3.3 billion word corpus with a batch size of 128,000 on
approximately 40 epochs, taking roughly four days per model to train on 16 cloud TPU’s.

Training was done with two unsupervised tasks. The first task is called Masked Language
Modelling which simply means masking a word in a sequence and letting the model predict
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Model Parameters L H E A Parameter sharing
base 110M 12 768 768 12 False

BERT large 340M 24 1024 1024 16 False
base-v2 11M 12 768 128 12 True
large-v2 17M 24 1024 128 16 True
xlarge-v2 58M 24 2048 128 16 True

ALBERT xxlarge-v2 223M 12 4096 128 64 True
base 125M 12 768 768 12 False

RoBERTa large 355M 24 1024 1024 16 False
base 110M 12 768 768 12 False

XLNet large 340M 24 1024 1024 16 False

Table 3.1: The configurations of all models considered in this work

the masked word. The second task is Next Sentence Prediction: given two sentences the
model will predict if the second sentence follows the first.

Let us see two examples for clarification. We will consider three segments of text, “the
man went to the store”, “he bought a gallon of milk” and “penguin’s are flightless birds”. Note
that [CLS] is a classification token used in BERT and is always the first token in the input.
[SEP] is the separator between segments and [MASK] is the masking token and indicates the
word that is to be predicted.

Input: [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP]
Label = IsNext

Input: [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds
[SEP]
Label = NotNext

As we can see in example 3.2.5 the word flightless has been split into two parts. This is because
BERT uses a WordPiece tokenization with a 30,000 token vocabulary.

Other Models
The additional models used in this work are listed below. We will give a brief description
of them and explain how they di�er from the rest. For more information about the models,
please see the corresponding papers.

ALBERT: Lan et al. (2019) introduced ALBERT, which uses the same architecture as BERT
with slightly di�erent hyper-parameters. The distinguishing attribute of ALBERT
is parameter-sharing. All ALBERT models will share parameters (e.g. feed-forward
weights and attention weights) across all layers (i.e. transformer blocks). In this work,
we used a second version of ALBERT (v2) which has been trained for a longer period
of time on additional data.

RoBerta: Liu et al. (2019) analyzed the pre-training of BERT and concluded that BERT
was significantly undertrained. They carefully measured the impact of many key pre-
training hyperparameters and training data size in order to Robustly Optimize the
BERT Pretraining Approach.
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XLNet: A model which is architecturally similar to BERT with alternations in pre-training
task. Yang et al. (2019) discovered that during BERT’s task of predicting masked words
BERT neglects dependency between the masked positions, which XLNet does not. For
instance, take the sentence I live in Stockholm. and mask in and Stockholm. BERT would
predict P(in | I live)+P(Stockholm | I live) while XLNet would predict P(in | I live)+

P(Stockholm | I live in).

In Table 3.1, we can see the di�erences in hyperparameters and total number of parameters
for all models.

3.2.6 Techniques to Enlarge Dataset
In this work, we have considered two techniques of enlarging data: sampling and augmenting.

Oversampling
Oversampling is the act of sampling the minority class until the dataset is balanced. Sam-
pling is done with replacement, thus there will be multiple duplicates in the minority class.
The over-represented class will remain unchanged. Oversampling data eliminates the bias
towards the over-represented class but raises the risk of over-training. This is one out of
many sampling techniques used on unbalanced data.

Text Augmentation
Augmenting data is the art of slightly altering data in order to enlarge a dataset. In image
analysis, it is common to rotate, zoom, flip and skew images in order to augment the data
but in NLP we use some di�erent techniques. In this work, we have used two techniques
TF×IDF and Back-translation.

TF×IDF stands for Term Frequency × Inverse Document Frequency. Term Frequency
counts the total number of occurrences of the word in all of the documents while Document
Frequency counts the number of documents the word appears in. By taking term frequency
times the inverse document frequency we give each word a measure of importance. E.g. if a
word appears a lot in a single document this will raise the score of the word, the word seems
to be important. However, if the word is very common and appears in most of the documents
this will lower the score, the word might not be so important after all.

The most common augmentation techniques used on text sequences are the following:

Synonym Replacement: Selecting a random word and replacing it with a synonym.

Random Insertion: Inserting a random word at a random position.

Random Swap: Selecting to words at random and swapping the place of the words.

Random Deletion: Selects a word at random and deletes this word from the sequence.

Data augmentation with TF×IDF uses a TF×IDF model (trained on GHC) to get a score for
each word. Next it will perform the common augmentation techniques. However, instead of
randomly selecting words it will select words w.r.t. the TF×IDF score. Thus, augmenting less
important words with higher probability than more important words.
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The other type of augmentation, Backtranslation, is simply the act of translating a se-
quence to a foreign language and then translating it back to the original language. In this
work, we have used the program from Xie et al. (2019) in order to backtranslate the data.
The foreign language that have been used in this case is French.

3.2.7 Statistics
In this section, we will mainly focus on comparison of two sets of samples that are assumed
to have been drawn from two normal distributions. Namely, we want to determine if one
population is significantly larger than the other. To do this, we turn to Welch’s t-test, a
Student’s t-test with di�erent variances.

We will assume to have two identically large sets of samples (n samples) with potentially
varying sample variances. The sample mean of population 1 is denoted X̄1 and the sample
mean of population 2 is X̄2, are both assumed to be normally distributed with potentially
di�erent estimated values and variances. The sample variances are denoted s2

1, s2
2, respec-

tively. Both follow χ2 distribution with n − 1 degrees of freedom. In our test statistics, our
null hypothesis, H0 is X̄1 ≤ X̄2, thus we have a one tailed test. To summarize:

X̄1 ∼ N(µ1, σ1), X̄2 ∼ N(µ2, σ2), s2
1 ∼ χ

2
n−1, s2

2 ∼ χ
2
n−1.

The test statistics are given by,

H0 : X̄1 ≤ X̄2, H1 : X̄1 > X̄2,

t =
X̄1 − X̄2

s∆̄

, s∆̄ =

√
s2

1 + s2
2

n
, ν =

(n − 1)(s2
1 + s2

2)
s4

1 + s4
2

, p = 1 − Fν(t),

where t is the test statistics ν is the degree of freedom, p is the p-value and Fν(t) is the cu-
mulative distribution function for Student’s t-distribution with ν degrees of freedom. Thus,
we reject H0 on significant level α if p < α. In other words, if p < α we conclude that we
have statistical evidence that the mean value of the first population is larger then the second.
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Chapter 4

Evaluation

4.1 Experimental setup

4.1.1 Pre-Processing
In GHC, each post had multiple annotators. This is an ambiguity issue for any classifier for
all cases where annotators are not in complete agreement. To solve this, we created three
datasets with one unique label per post, Majority, Consensus and Consensus Extended. The
di�erent datasets are described in detail in Sections 2.3 and 2.4. Apart from the creation of
datasets no pre-processing was done. This was mainly to create results comparable with the
authors of GHC.

4.1.2 Classifiers
We considered five di�erent classifiers, LSTM, BERT, RoBERTa, ALBERT, and XLNet. All
transformer-based models use a base model and for ALBERT, we use the second version, see
base models in Table 3.1 for details. LSTM was implemented with Keras while the transformer-
based classifiers were implemented with pytorch.

Hyperparameters of Transformer Based Classifiers

All classifiers with the transformer architecture used hyperparameters suggested by the au-
thors of BERT for all except max sequence length which was set to 64. Limiting the sequence
length to 64 makes training easier on the GPU while only e�ecting 17% of the data. The hy-
perparameters used are number of epochs (2), the learning rate of the optimizer (510−5) and
batch size (32).

33



4. Evaluation

4.1.3 Text Augmentation
We experimented with two types of augmentation, Backtranslation and and TF×IDF. back-
translation creates one extra post for each post, thus doubling the size of the dataset. How-
ever, for TF×IDF, we have the possibility of creating an optional number of posts from each
post. In an attempt to kill two birds with one stone, we created an additional 9 posts for all
Hate posts and one additional post for all Non-Hate posts, thus making the data less imbal-
anced. In Figure 4.1, we can see how the size of the dataset and distribution of hate speech is
changed after augmentation.

Table 4.1: The size and distribution of Hate for each of the datasets
after augmentation.

Dataset Augmentation Size Hate
Backtranslation 55 310 8.45%

TF×IFD 74 006 31.6%
Majority Both 129 316 21.7%

Backtranslation 40 872 2.86%
TF×IFD 45 544 12.8%

Consensus Both 86 416 8.11%
Backtranslation 44 830 11.4%

TF×IFD 65 326 39.2%
Consensus Ext. Both 110 156 27.9%

4.1.4 Imbalanced Data
In order to deal with the issue of imbalanced data, we will apply two strategies. The first
strategy is oversampling with replacement on the minority class. This means that we will
end up with multiple duplicates of Hate posts in the training file. The reason for doing this
is to eliminate the bias towards Non-Hate class. The second strategy is to add a weight to
each data point. In order to do this with transformer-based models, one must alter the source
code slightly.

4.1.5 Evaluation
Before training, we have held out 10% of the majority dataset for evaluation. This test set will
be used for evaluation on all experiments. The reason for this is because the authors of GHC
reported results of a classifier trained and evaluated on the Majority dataset. Because our
data is imbalanced, we will evaluate our data with F1 score with macro average. This simply
means that all classes will be weighted the same. Also, this is the score used by the authors of
GHC.

Due to random initialization in the latent space, each time one trains a classifier, the
results will be slightly di�erent. In order to evaluate, we will therefore train each classifier
10 times and report the mean value F1 score along with the standard deviation. As a final
evaluation, we will test the performance of the model on the self-annotated Alt-Right dataset.
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4.1.6 Greedy Assumption
To summarize, we have 3 datasets, 5 classifiers, 4 options of augmentation (including none)
and 4 combinations of balancing data strategies (also including none), resulting in 240 com-
binations. Training each combination 10 times gives us a total of 2400 training sessions.
Each session takes about 15 minutes, resulting in a total training time of 25 days. Clearly, we
need to change our strategy in order to have a reasonable training time. Instead of explor-
ing all possible combinations, we will consider classifiers with or without weighting of data
on all datasets. From this test, we will continue with the best model/models and optimize
with augmentation of data and balancing of data with sampling. Thus, applying the greedy
assumption to save time. To clarify we will:

1. Determine the optimal dataset and classifier with or without weights.

2. Optimize model with augmentation and balancing of data.

This results in 24 + 8 combinations resulting in a training time of about 80h, much more
reasonable time frame.

4.2 Results
In our results, we will compare results with the results achieved by the authors of GHC. This
model will be referred to as the baseline. Further we will also compare our results to the lazy
classifier, classifying all as the majority class (i.e. Non-Hate). In order to compare results, we
will investigate the sample mean value and the sample standard deviation. Comparison will
be done by t-test on a significance level of α = 0.1.

4.2.1 Classifier and Data
In Table 4.2, we see the performance of all classifiers on all datasets. Pairwise comparisons
shows that all transformer classifiers perform best on the Consensus Extended dataset. Fur-
thermore, roberta-base trained on Consensus Extended performs significantly better then all
other classifiers. Weighting data has been implemented as an attribute of the classifier, thus
we will next determine if weighting data has a significant e�ect on the model. In Table 4.3,
we see the performance of the classifiers with weighting on the datasets. bert-base-cased on
Majority seems to be the best model at first glance. However, it is not significantly better
than roberta-base (also on Majority), this is due too the high variance of roberta-base. Despite
this, bert-base-cased achieves the largest F1 score. It is also clear that most models trained on
Consensus Extended have a smaller standard deviation and are therefor more stable. T-tests
shows that all classifiers perform significantly better without weighting. Comparing models
in Table 4.2 and 4.3, we can conclude that the non-weighted roberta-base trained on Con-
sensus Extended is significantly better than all other models. We will therefore continue in
the next section with optimization of this model.
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Dataset Classifier Mean F1 Std F1 Max F1
lazy classifier 47.5 0 0

– baseline 58.0 2.00 -
LSTM 48.0 - -
roberta-base 66.6 8.60 73.1
bert-base-cased 70.7 0.97 72.1
xlnet-base-cased 70.7 1.45 72.0

Majority albert-base-v2 68.1 1.64 70.8
roberta-base 64.3 6.00 69.9
bert-base-cased 64.7 6.00 68.8
xlnet-base-cased 67.9 2.30 70.3

Consensus albert-base-v2 57.4 7.70 67.4
roberta-base 73.1 0.50 74.1
bert-base-cased 72.4 0.60 73.5
xlnet-base-cased 72.0 0.47 72.7

Consensus Ext. albert-base-v2 71.6 1.80 73.3

Table 4.2: Mean value, standard deviation and max value of macro
weighted F1 score (%) for multiple classifiers.

Dataset Classifier Mean F1 Std F1 Max F1
lazy classifier 47.5 0 0

– baseline 58.0 2.0 -
roberta-base 64.0 18.47 72.1
bert-base-cased 70.7 1.03 72.1
xlnet-base-cased 69.0 1.21 70.1

Majority albert-base-v2 68.0 1.43 70.3
roberta-base 55.4 10.01 69.9
bert-base-cased 63.5 9.07 71.0
xlnet-base-cased 58.1 10.67 70.1

Consensus albert-base-v2 57.6 8.07 67.4
roberta-base 69.4 0.57 70.0
bert-base-cased 69.7 0.64 70.9
xlnet-base-cased 68.4 0.96 70.4

Conensus Ext. albert-base-v2 68.1 1.80 70.1

Table 4.3: Mean value, standard deviation and max value of macro
weighted F1 score (%) for multiple weighted classifiers. Note that lazy
classifier and baseline does not weight data.

4.2.2 Optimization
Results in Table 4.4 show that no augmentation technique had an e�ect on this model. This
was also confirmed by t-tests. One might argue that the model with only backtranslation
achieves a similar result with lower standard deviation and thus a more stable model. How-
ever, we would have to execute more experiments to prove a significant di�erence. For now,
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we conclude that we cannot say that backtranslation has a positive e�ect on the models per-
formance.

TF × IDF Backtranslation Oversample Mean F1 Std F1 Max F1
True True True 68.9 0.82 69.9
True True False 71.9 0.64 72.7
True False True 71.6 0.68 72.8
True False False 71.6 0.63 72.5
False True True 71.0 0.74 72.1
False True False 73.2 0.30 73.7
False False True 72.3 0.27 72.7
False False False 73.1 0.50 74.1

Table 4.4: Mean value, standard deviation and max value of macro
weighted F1 score (%) of non weighted roberta-base, trained on Con-
sensus Extended with di�erent optimization techniques.

4.3 Evaluation on Alt-Right Data
To get an unbiased evaluation of our model, we turned to the Alt-Right data. We selected a
roberta-base classifier trained on the Consensus Extended dataset with no additives. As we
can see in Table 4.5, we achieve a F1 score of 0.67, almost matching the performance on the
GHC dataset.

Precision Recall F1
Non-Hate 0.98 0.93 0.96

Hate 0.27 0.62 0.38
macro average 0.63 0.78 0.67

Table 4.5: Caption

Inspection of the result was done on post level for each of the false positives, i.e. those
posts wrongly classified as hate. This evaluation was done by the same person that had an-
notated the sentences. For roughly half of these sentences, classifying them as hate seems
reasonable. They contain spiteful language and derogatory terms pointing out groups of
people in a generalising and negative way. However, in the opinion of the annotator, this had
not been on such a level as to be categorised as hate.

It seems very plausible that another annotator could just as well have marked these posts
as hateful. Inspecting the false negatives (i.e. posts wrongly classified as Non-Hate) was also
done. It is hard to say something definitive about why these particular Hate posts were
missed, but a majority of them are to be considered racist. While racism is abundant in the
forum posts, racist thoughts or references to antisemitism alone have not been enough to
qualify a sentence as hate when annotating the data (though some people would argue that
it should).
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To better understand the performance, we analyzed results with Lime(Ribeiro et al.,
2016). Lime provides a heatmap and a table over words which contribute to the classifi-
cation. Thus, we can see on what basis the classifier made its choice. In Figure 4.1, we can
see a post, correctly classified as Hate (true positive). In Figure 4.2, we see a post incorrectly
classified as Hate (false positive).

Prediction probabilities

0.07Non-Hate

0.93Hate

Non-Hate Hate
African

0.72
shit

0.26
skin

0.15
forum

0.15
then
0.06

you
0.05

join
0.04

No
0.03

You
0.03

block
0.02

Text with highlighted words

You should just block me then. No one likes you shit skin, go join an African forum.

Figure 4.1: Lime representation of a correctly classified Hate post.
Top Left: Class probabilities. Top Right: Table over most influential
words. Bottom: Heatmap over analyzed text.
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Prediction probabilities

0.31Non-Hate

0.69Hate

Non-Hate Hate
Jews

0.55
Nazis

0.13
they

0.08
did

0.06
are

0.05
forum

0.05
supposedly

0.05
seems

0.04
about

0.04
pointless
0.03

Text with highlighted words

Nazis did not become popular because they hated Jews. And it seems pointless to give a 
history about this on a forum of people who are supposedly Nazis.

Figure 4.2: Lime representation of a incorrectly classified Hate post.
Top Left: Class probabilities. Top Right: Table over most influential
words. Bottom: Heatmap over analyzed text.
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Chapter 5

Discussion

In this section, we will first discuss results and then continue with addressing positive and
negative experience throughout the work. Last we will conclude the overall work.

5.1 Interpretations of Results
The variable with the greatest impact on performance was choice of training data. Models
trained on Consensus Extended which excludes about 5000 posts, perform significantly bet-
ter than those trained on the Majority datasets which includes all posts. This result is most
likely due to the fact that Consensus Extended has a cleaner dataset than the Majority dataset.
All excluded posts are posts where: majority vote would result in Non-Hate but annotators
are not in complete agreement. Thus, the excluded posts contain uncertainty.

One could take this further and only include posts with complete agreement, i.e. Con-
sensus. While this seems like a good idea in theory, our results show that models trained on
Consensus perform worse than those trained on Consensus Extended, most probably due to
the small size of the Hate-class in this dataset.

Optimizing the best performing model had no impact at all. This was surprising. Authors
of the backtranslation method used in this work showed that models trained on data with
backtranslated data outperformed the state-of-the-art models on multiple NLP tasks, one
of the models being a fine-tuned BERT. Despite this, the models did not improve their per-
formance. Implying that pre-trained classifier with transformer architecture that has been
trained on Consensus Extended is well adapted for the task and does not improve perfor-
mance with common optimization techniques.

Lastly, looking at the results in Section 4.3, we can see from the false positive in Figure 4.2
that the classifier had issues with targeted group labels, in this case “Jews”. As mentioned in
the introduction, we can see in Kennedy et al. (2020b) that these results are not unexpected.
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5.2 Experience
Our initial objective was to detect text strings which are related to and/or contain threats.
Due to security reasons, the Swedish Security Service could not provide a dataset for the
task. Therefore, we had to find an open sourced dataset well suited for the task. We ended
up working with GHC.

While this dataset seemed to have all we needed, it became clear that the class of CV
– the one most representative of the initial task, was to small for a classifier to learn the
task. Hence, we turned to Hate speech recognition, a much larger class and a reasonable
compromise. We have therefore come to focus more on violent extremism, instead of general
threats.

After settling on task and dataset, we soon ran into our next problem, the baseline model.
Our LSTM classifier was barley able to separate the data into two classes, performing only
slightly better than the lazy classifier. We suspect this is due to the complexity of the task. We
tried many di�erent architectures, one of them used by a finalist of O�ensEval 2019. After
poor performance from LSTM, we turned to transformer-based classifiers which succeeded
in separating the data after only a bit of fine tuning.

Exploring the data and creating di�erent sub dataset was a large part of this work. It
turned out, using a well constructed dataset with multiple annotators, was not as trivial as
first thought. At first, we were satisfied with the majority dataset.

Only after examining the inter annotator agreement, we realized that we might be better
of by excluding some data. Hence, there was a trade o� between exclusion of bad data versus
the size of the dataset. With limitless data one could exclude all data with disagreement and
this would likely result in a great classifier. On the other hand, with very limited data, we
might not want to exclude any data at all. Results show that a compromise between exclusion
of bad data and class size was the best alternative, i.e. Consensus Extended.

We attempted to optimize the model with no success. The used augmenting techniques
serve the purpose of teaching the model to perform better in a general setting. However, this
had little to no e�ect on classifiers trained on the Consensus Extended dataset.

Lastly, large models were also implemented for all transformer-based models with some
modifications to hyperparameters (max sequence length = 64, batch size = 8, epochs = 2). Due
too the time consumption, we only trained these models for five sessions. All models had
identical results on every single session, macro F1 score of 0.475. We have yet to understand
this unexpected behaviour.

5.3 Future Work
Our first recommendation of future work is to explore all proposed combinations of hyper-
parameters such as model-architecture, type of augmentation and so on explained in Section
4.1. As well as, exploring the model-level-hyperparameters such as learning rate, batch size
and number of epochs, not only the ones recommended in the paper introducing BERT.
Doing this is very time consuming, however, the greedy assumption is a naive approach. A
much more suitable apporach is to assume that everything is possible, therefore one must
explore all possible options.

Moreover, we suggest an investigate why all large transformer-based classifiers perform
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as they do. It is most unlikely that all models are performing in this manner. We suspect
that this might be consequence of the smaller batch sizes. However, it is most likely due
to an error in the code. Solving this would presumably result in a model with a slightly
better performance. Likewise, an improvement of performance is plausible if one where to
implement the techniques proposed by Kennedy et al. (2020b), reducing the group identifier
bias.

5.4 Conclusion
This work consists of two main parts. Part one is an Exploratory Data Analysis of the rela-
tively new dataset GHC. In this part we get an insight on this new dataset. Noting the clear
di�erence in language between the classes, we can conclude that an annotation has been done
in a reasonable way. Additionally we have deduced that the data is indeed separable into two
distinct classes. Lastly, we have observed that there exist a lot o� inter annotator disagreement.
An issue, but also an opportunity if one where to utilize this observation.

In part two we have seen that when using a corpus with multiple annotators, models can
benefit from excluding data with inter annotator disagreement from the over-represented
class. We have also seen that a transformer-based model with the RoBERTa architecture,
trained on a cleaned dataset (i.e. Consensus Extended), surpassed the state-of-the-art for the
task of identifying Hate speech on the Gab Hate Corpus. Furthermore, our results showed
that a pre-trained transformer-based model that has been fine tuned on a the Consensus Ex-
tended dataset is not e�ected by either adding augmented data, weighting data nor sampling
data.

The task of identifying hate speech is a global issue. This work serves as a complement
to the many other works done on the subject. Further, we believe that there is a lot more
knowledge to gain from the Gab Hate Corpus. E.g. by additional exploration of the dataset,
implementation of suggested future work, and by the creation of brand new models. We
have especially high hopes of exploring methods on selection of data with respect to inter
annotator agreement since this was the key component of our results.
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Utforskande av metoder för igenkänning
av hets mot folkgrupp i text

POPULÄRVETENSKAPLIG SAMMANFATTNING Lucas Molsby

I detta arbete har vi tränat modeller att identifiera hets mot folkgrupp i en mängd
text hämtat från Gab, en social mediaplattform känd för sin stora andel högerextrema
användare. Genom noga utvald träningsdata och för-tränade modeller lyckades vi
åstadkomma den bäst presterande modellen som finns att tillgå idag.

Identifiering av hets mot folkgrupp har många an-
vändningsområden. Den mest uppenbara använd-
ningen är hur sociala medier utnyttjar den för att
sortera bort olämpliga inlägg. I Sverige är hets
mot folkgrupp olagligt, därmed bryter det inte
mot yttrandefriheten att exkludera sådana inlägg.
Däremot är hets mot folkgrupp inte är ett lag-
brott i alla länder. Trots det har de flesta sociala
medier (inte alla) valt att förbjuda sådant inne-
håll. Ett annat användningsområde för identifie-
ringen är som ett verktyg i arbetet mot våldsbe-
jakande extremism. Syftet är då att identifiera en
delmängd text som högst sannolikt innehåller hets
mot folkgrupp. På så sett kan en granskare spara
mängder med timmar av läsande. Det är av denna
anledning som vi har gjort detta arbete på upp-
drag av Säkerhetspolisen.

I detta arbete har vi jobbat med data från Gab,
en social mediaplattform som inte sorterar bort
hets mot folkgrupp. Datan vid namnet “Gab Hate
Corpus” (GHC), innehåller ca 30,000 inlägg. Varje
inlägg har blivit granskat av minst 3 av totalt 18
granskare på uppdrag av forskare vid University
of Southern California. Granskarens uppgift är att
markera ett inlägg som hets mot folkgrupp (HF)
eller ej (EJ). Detta arbete är uppbyggt av två de-
lar. Första delen är en analys av GHC, ett relativt

nytt dataset. Den senare delen går ut på att trä-
na modeller på uppgiften att identifiera hets mot
folkgrupp med GHC som träningsdata. I del ett
konstaterar vi att det är möjlig för en modell att
lära sig att identifiera hets mot folkgrupp utifrån
den givna datan. Vi visar sedan i den andra delen
att en för-tränad modell som dessutom är finjuste-
rad presterar bäst på uppgiften. Att en modell
är för-tränad innebär att den under en längre tid
har tränat på en stor mängd text. På så sett har
modellerna en viss förståelse för betydelsen av en
text, redan innan vi tränar den ytterligare på vår
data. Finjusterad innebär att modellen har fått
träna ytterligare på data från GHC. Analysen av
GHC avslöjade att granskare sällan var helt över-
ens. Vi valde därför att exkludera viss data där de
fanns en osäkerhet.

Den slutgiltiga produkten består av ett program
som har förmågan att träna och utvärdera model-
ler. Vidare är programmet skapat så att det finns
möjlighet att integrera det i en applikation ämnad
för granskning av text. Dessutom är arbetet en del
i en gemensam globalt ambition att minska hets
mot folkgrupp. Detta i syftet att dämpa verbala
förtryck och attacker på utsatta folkgrupper på in-
ternetbaserade plattformar så som sociala medier
och forum.
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