
MASTER’S THESIS 2020

Forecasting Financial Indices
from Financial News
Gustaf Backman

ISSN 1650-2884
LU-CS-EX: 2020-33

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY





EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-33

Forecasting Financial Indices from
Financial News

Gustaf Backman





Forecasting Financial Indices from
Financial News

Gustaf Backman
ine14gba@student.lu.se

June 29, 2020

Master’s thesis work carried out at Kidbrooke Advisory AB.

Supervisors: Pierre Nugues, pierre.nugues@cs.lth.se
Edvard Sjögren, edvard.sjogren@kidbrooke.com

Examiner: Marcus Klang, marcus.klang@cs.lth.se

mailto:ine14gba@student.lu.se
mailto:pierre.nugues@cs.lth.se
mailto:edvard.sjogren@kidbrooke.com
mailto:marcus.klang@cs.lth.se




Abstract

In the last few years the capability of natural language processing has increased
greatly. The implications this methodical leap has for di�erent areas is yet to
be explored. In this thesis, I have evaluated the predictive power of financial
news headlines on the movement of financial indices. More specifically, I tried
to determine if I could improve a traditional time series model by adding news
data. In my experiments, I used text representations of di�erent complexities,
from TF-IDF to recent transformer models, such as BERT and Sentence-BERT
and, as targets, the S&P 500 and US treasury rates with one and three years
maturity.

My findings suggest that no model can predict the movement of treasury
rates based on news data, but the classification performance for the S&P 500 is
well over a random baseline. The best model using the TF-IDF word represen-
tation and a random forest classifier could reach an accuracy of 59.1%.

Furthermore, adding news data can predict better than a random baseline
whether a time series forecast is too high or too low. This applies to all indices.
I could reach an accuracy of 64.1 % with SBERT feature extraction and logistic
regression.

Keywords: NLP, fintech, deep learning, time series analysis, transformers.



2



Acknowledgements

The writing of this thesis has been a challenging and entertaining process, where I enjoyed
the many aspects of the task.

I would like to extend my gratitude to my academic supervisor Pierre Nugues for his
continuous support during the project and his advice on academic writing.

The same goes for my external supervisor Edvard Sjögren at Kidbrooke Advisory who
has been a valuable asset for discussing problem formulations and methodological questions
throughout this spring.

Finally, thanks to Johan Rosén for clear insights and motivational company for the dura-
tion of this thesis.

3



4



Contents

1 Problem Description 7
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theoretical Background 9
2.1 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Autoregressive (AR) Model . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Moving Average (MA) Model . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Autoregressive Moving Average (ARMA) Model . . . . . . . . . . 11

2.2 Representation of Language . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 One-hot Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Bag-of-words & TF-IDF . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Classification Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Tree-based & Feed Forward Models . . . . . . . . . . . . . . . . . . 16
2.3.2 Recurrent Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Overfitting & Hyperparameter Optimization . . . . . . . . . . . . . . . . . 28
2.4.1 Train, Validation, and Test Set . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.4 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.5 Grid Search & Random Search . . . . . . . . . . . . . . . . . . . . 30

2.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Method 33
3.1 Data Collection and Pre-Processing . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 IMDd Dataset – Benchmarking . . . . . . . . . . . . . . . . . . . . 33

5



CONTENTS

3.1.2 Reuters Financial News Dataset . . . . . . . . . . . . . . . . . . . . 34
3.2 Time Series Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Text Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 TF-IDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 GloVe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Sentence-BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Tree-based & Feed Forward Models . . . . . . . . . . . . . . . . . . 39
3.4.2 Recurrent Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Transformer Models . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Results 43
4.1 Benchmark Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Index Direction Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 ARMA Direction Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Discussion 51
5.1 Evaluation of IMDb performance . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Index Direction Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Task Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 ARMA Direction Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.1 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.2 Task Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Data Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.1 News Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.2 Financial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

References 57

Appendix A Useful Links 61

Appendix B Hyperparameter Optimization 63
B.1 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.2 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6



Chapter 1

Problem Description

Predicting the movement of a financial time series is generally done using traditional statis-
tical methods based on the available historical data. There might, however, be information
available not included in the historical data which has some predictive quality of the future
development of an asset value.

Consider significant political or environmental events which have an e�ect on an asset
in the long run. For instance news regarding trade relations between USA and China, the
progress of Brexit, or an emerging war. This a�ect the value of an asset.

In order to deal with such uncertainties, analysts today have to alter the prediction from
a traditional time series model with a more manual analysis of the state of the world through
news data. This is a time consuming and subjective task that perhaps could be ameliorated
by natural language processing of news.

1.1 Background
The last decade has seen a significant growth in the amount of published papers in the field of
natural language processing related to finance (Xing et al., 2018). The use of text processing
has repeatedly proven successful in tasks related to financial forecasting, for instance in Li
et al. (2014), Heston and Sinha (2017), and Othan et al. (2019). The previous work in the
field uses a diverse set of approaches, from crude methods of counting positive and negative
words in articles to training deep neural networks on large corpora to produce meaningful
vector representations of words (Arora et al., 2019).

1.2 Motivation
The field of natural language processing seems to be in an interesting phase with rather recent
developments such as word2vec (Mikolov et al., 2013), Bidirectional Encoder Representations

7



1. Problem Description

from Transformers (BERT) (Devlin et al., 2018) and A lite BERT – ALBERT (Lan et al., 2019).
As NLP is applicable to a wide variety of tasks, the performance and impact of these new
models have yet to be explored in several areas.

Another positive aspect is that the source code with examples of usage of these novel
methods are more often than not publicly available through GitHub. Such the models might
be complex and require large computational power for training. Nonetheless, there are often
pre-trained parameters available which can then be used either as-is or with further tuning
for the task it will be used for.

An additional financial motivation for the thesis is the exploration of how news a�ects
the value of an asset and how this complies with the e�cient market hypothesis (EMH) as pro-
posed by Malkiel and Fama (1970). The idea that the market adapts to new publicly available
information instantly does not comply with the suggestion that publicly available news has
any predictive power on the future value of an asset. Previous works by Xing et al. (2018)
and Arora et al. (2019) have suggested that the case is indeed that public text data has some
predictive power, so a motivation for this thesis is to explore the reproducibility of this e�ect.

1.3 Objective
The thesis is mainly concerned with evaluating whether a traditional model for time series
prediction can be improved by adding additional input in the form of financial news titles.
I framed this problem as two classification tasks. The first task is to predict whether an
index has increased or decreased given a set of news titles. The second task is to predict if a
traditional time series model forecasts higher or lower than the real value.

First, I will explore a few di�erent approaches on word representations as well as the
basic elements of traditional time series modelling. I also describe the theory concerning
deep learning and machine learning in general, as well as some basic performance metrics.
Finally, I will implement suitable models and evaluate the results.

The main research question is if financial news can be used to predict the movement of
financial indices. More specifically, if adding financial news to a traditional time series model
improves the performance.

1.4 Scope
The scope of the project is limited in a few ways. I analyzed price data from three financial
indices, two US treasury rates and one US stock market index.

Text data is gathered from Reuters as financial headlines between October 2006 and
November 2013. The content of the articles are available as well, but as suggested by Ding
et al. (2014), using only news titles gives a higher performance.

Finally, limited access regarding powerful computing resources and time implies the mod-
els are unlikely to compete with similar state-of-the-art models trained on GPU/TPU’s for
several days.

8



Chapter 2

Theoretical Background

In this section, I will cover the underlying theory of the models and concepts I will use to con-
struct and evaluate models. Fields with more recent advances are covered more thoroughly –
such as transformers – whereas for instance traditional time series analysis is explained with
less depth.

2.1 Time Series Analysis
Traditional time series analysis is concerned with finding statistical information of observa-
tions distributed in time. The purpose can be to get a better understanding of the under-
lying process, or to make predictions on future realisations of the process. Such processes
are typically present in the fields of finance, signal processing, weather forecasting, control
engineering etc. Several methods for modelling processes have been developed, where some
of the oldest and most useful methods are the autoregressive model (AR) and the moving aver-
age model (MA). These two concepts can be combined to benefit from both models into an
ARMA-model.

2.1.1 Autoregressive (AR) Model
An auto-regressive model of order p is a linear combination of the p previous terms plus some
noise. An AR(p)-process is commonly characterized by its generating polynomial A(z) =
a0 + a1z+ · · ·+ apzp, where ai ∈ R ∀ i and a0 = 1. Furthermore, let et be uncorrelated white
noise with variance σ2 in discrete time defined as,

E[et] = 0 (2.1)

C[es, et] =
σ2 if s = t
0 else

(2.2)

9



2. Theoretical Background

Supposing A(z) is a stable polynomial of degree p and et is as defined above, the stationary
sequence Xt is called an AR(p)-process with generating polynomial A(z).

Xt + a1Xt−1 + · · · + apXt−p = et (2.3)

The process is stable if the roots of the characteristic equation zpA(z−1) = 0 are all inside
the unit circle. The values et are the called the innovations to the process and the coe�cients
of the A(z)-polynomial are tuneable parameters (Lindgren, 2014).

There are several techniques for estimating the coe�cients of the A(z)-polynomial. One
technique is to transform the problem onto regression form and view the A(z)-coe�cients
as regression coe�cients. The most recent value Xt is set as the response variable yt and the
previous samples (−Xt−1, . . . ,−Xt−p) are the explanatory variables xt . Letting the coe�cients
(a0, a1, ..., ap)T = A, Eq. 2.3 can be rewritten on a vector form, recognized from regression.

yt = xtA + et (2.4)

The elements of A can then be estimated as the least squares estimate over n samples, i.e.
the values of A that minimize 2.5.

L(A) =
n∑

t=p+1

(yt − xtA)2 (2.5)

Or more conveniently, in matrix format.

Y =


yp+1
yp+2

...
yn

 , E =


ep+1
ep+2

...
et

 , X =


xp+1
xp+2

...
xt

 (2.6)

L(A) = (Y − XA)T (Y − XA) (2.7)

Di�erentiating 2.7 with respect to A and setting equal to zero yields the least squares
estimate.

∂L
∂A
= −2XTY + 2XTXA (2.8)

∂L
∂A
= 0 =⇒ Â = (XTX)−1XTY (2.9)

The estimated innovation variance σ̂2 is simply the sample variance of the innovations.

σ̂2 =
1

n − p

n∑
t=p+1

e2
t =

L(Â)
n − p

(2.10)

The method above yields an estimate for the parameters of an AR(p)-process. The order
p of the process still has to be determined using appropriate goodness-of-fit criteria such as
Akaike information criterion (Lindgren, 2014).

10



2.2 Representation of Language

2.1.2 Moving Average (MA) Model
Another popular time series model is the moving average (MA) model. This model is defined
similarly to the AR-model by its generating polynomial, here called C(z).

C(z) = c0 + c1z + · · · + cqzq (2.11)

A MA(q)-process is a linear combination of the q previous white noise terms as defined
in Eqs. 2.1 and 2.2, plus one new innovation term:

Xt = et + c1et−1 + · · · + cqet−q (2.12)

A common adjustment to the model is to set c0 = 1 and adjust the other coe�cients and
the innovation variance accordingly.

An important distinction between the AR(p)-process and the MA(q)-process is that the
covariance function for the MA(q)-process is zero for time lags τ larger than the order q of the
process. In other words, the value Xt+q+1 is independent of the value Xt in an MA(q)-process
(Lindgren, 2014).

2.1.3 Autoregressive Moving Average (ARMA) Model
The AR-process and MA-process are commonly combined into an ARMA-process. Let-
ting the noise on the right hand side of Eq. 2.3 be an MA(q)-process, the expression of an
ARMA(p,q)-process is achieved.

Xt + a1Xt−1 + · · · + apXt−p = et + c1et−1 + · · · + cqet−q (2.13)

There are various methods for estimating the coe�cients of the polynomials A(z) and
C(z). One is a regression approach similar to the method described in Sect. 2.1.1, where re-
gression samples are constructed from the time series and the coe�cients are estimated in
a least squares sense. Another common estimation procedure is to use maximum likelihood
estimation of the parameters. Assuming the noise follows some distribution – most com-
monly Gaussian – a distribution can be calculated for the model coe�cients. The likelihood
of obtaining a given set of a parameters can then be calculated and optimized (Hamilton,
1994).

2.2 Representation of Language
Language has enabled people to exchange information in an e�cient manner for thousands
of years, both through speech and text. The complexity and nuances that makes a language
so fitting for transferring information between humans is also what makes it so di�cult to
represent in numbers. A few of the di�culties when interpreting text language are listed
below.

11



2. Theoretical Background

Homonyms. Words that have the same spelling but di�erent meaning. Consider for instance
the word bull, which might refer to the animal or an investor who believes in a rising
market. The same letters, but with vastly di�erent interpretations depending on the
context.

Negations. The sentences God will help you and No God will help you contain almost the same
words, but have completely opposite meanings.

Sarcasm/irony. This can be hard enough to detect for humans. The phrase That’s just what I
needed today! might actually mean what it literally says, or just the opposite.

Methods used for representing words deal with these di�culties in di�erent ways or
not at all. For some shallow, more simple NLP tasks, a model might perform well without
understanding homonyms or that two words are closely related. For more complex tasks such
as sequence-to-sequence translation of language, a deeper understanding is naturally needed.

2.2.1 One-hot Encoding
The most intuitive way to turn words into numerical vectors is probably one-hot encoding.
Thi is simply done by giving all unique words in a text an index and then letting the index
represent the word. Consider a training example xi as the sentence below:

A gorilla visited Manilla.

The first processing needed is to divide the sentence into smaller units – tokens. A tok-
enized version of the sentence above would be:

[’A’, ’gorilla’, ’visited’, ’Manilla’, ’.’]

Some of these tokens carry information about the beginning or end of the sentence, which
is obviously important. However, not all capital letters imply the start of a sequence and not
all punctuation indicates the end of a sequence, e.g. Hello Mr. Gorilla!. There are quite a
few special cases of this sort, and there are convenient functions in Python that deal with
the problems of tokenization, such as Tokenizer from Keras (Chollet et al., 2020). The tok-
enizer from Keras splits the text into sequences, removes the punctuation and transforms all
characters to lower case by default.

When the sentence is tokenized, it is also common to remove the most frequent words,
since these probably don’t give a lot of information about the di�erence between sentences.
These are called stop words and typically include common words such as a, the, but, etc.

After the tokenization, each unique word is given an index.

gorilla : 1
visited : 2

manilla : 3

Each word of the sentence is then transformed to a one-hot vector where all elements
are zero except for element i. A sequence of words can then be represented as a sequence of
vectors.

12



2.2 Representation of Language

gorilla :
[
1 0 0

]
visited :

[
0 1 0

]
manilla :

[
0 0 1

]

2.2.2 Bag-of-words & TF-IDF
An initial bag-of-words (BOW) approach to represent a sentence as a vector is to simply keep
track of whether a word is included in the sentence or not. If the word is included, the element
on the corresponding index has value 1, otherwise 0. Using the same indices as previously and
removing stop words, A gorilla visited Manilla would then be represented by xi as,

xi =
[
1 1 1

]
Note that even though the order of words is the same in the vector as in the original

sentence, this is not necessarily the case. The less interpretable sentence Manilla visited a
gorilla would have the same vector representation as xi . Hence, BOW does not take order of
words in a sentence into account.

There are variations of BOW that have larger representing power, such as including the
count of words in the sentence rather than if it exists or not. A problem with this approach is
that words that are more frequent in sentences get a higher value than words that are not as
frequent, even if less frequent words might be more interesting for the context. A variation
that deals with this limitation is the TF-IDF representation.

Term Frequency-Inverse Document Frequency (TF-IDF) is a widely used technique for
normalizing text data. It uses the same underlying principles as BOW but with a weight nor-
malization. As the name suggests, the value for a certain word is increased for its frequency
in a sequence but decreased for the frequency in the full corpus. So, a word which has a low
frequency in a full corpus is considered more important than a word with high frequency. A
sequence can be a sentence, a document or some other subset of the full corpus. The entry
for a word with index j in a sample vector xi is then calculated as the product of the term
frequency weight and the inverse document frequency weight.

xi j = fs(t, f ) · fd(t, F)

For a term t with frequency f in sequence i and frequency F in the whole corpus. The
function fs is some function increasing with the number of words j in the sequence and fd
is decreasing with the number of words in the full corpus. Examples of these functions can
be as below.

fs =
| { j ∈ (1, . . . , Li) : si j = t} |

Li

fd = log
N
nt

13



2. Theoretical Background

Where Li is the length of the sequence i, N is the number of sequences in the corpus and
nt is the number of sequences in which the term t occurs at least once (Manning et al., 2008).

While this remedies some of the shortcomings of BOW, there are still some aspects where
it falls short:

Firstly, the size of the vectors grows with the number of unique words in the corpus,
which becomes computationally infeasible for larger texts.

Secondly, the order of the words is not accounted for in BOW. When used in an applica-
tion for interpreting financial news, the representation must be able to distinguish between
Google placed a bid on Amazon and Amazon placed a bid on Google. BOW and TF-IDF however
simply register if a word has occured.

Finally, neither BOW nor TF-IDF does really capture any essence of the language. There
is no way for the mode to capture the similarity between words such as awesome and amaz-
ing. This is related to the large dimensionality of the vectors representing the words, since
each word has a unique dimension in the vector. This implies all dimensions are orthogonal,
therefore there is no usable algebraic measure of similarity.

Most of the problems above are addressed by the concept of word embeddings in the next
section.

2.2.3 Word Embeddings
As opposed to the sparse representation of one-hot encoding, word embeddings are dense, con-
tinuous vector representations of words. The dimension of a one-hot encoded vector corre-
sponds to the size of the vocabulary (generally 20,000 or greater), whereas word embedding
vectors typically have 100 to 1000 dimensions (Chollet, 2017).

Mikolov et al. created a major breakthrough on the topic of word embeddings in 2013. In
their paper, they introduced e�cient methods for training embedding vectors, popularized
as the word2vec model. Continuous bag-of-words and continuous skip-gram are two model archi-
tectures for training the d-dimensional vector representations of words. Both methods share
the notion that the meaning of a word is determined by the words it is commonly used to-
gether with. The representations are learned by constructing a language modeling task which
is solved by a neural network. The task is generally to predict neighboring words of a given
word. The weights into the hidden layer of the trained neural network are the embeddings
for a word.

Continuous bag-of-words are trained by predicting the missing word in a sequence of words
of a given window size. The order of the words is not taken into consideration other than
for deciding which words to include in one sequence. For instance, the phrase A gorilla visited
Manilla with window size one gives the following training samples.

A gorilla visited =⇒ x = (a, visited) , y = gorilla

gorilla visited Manilla =⇒ x = (gorilla, Manilla) , y = visited

Continuous skip-grams also use the fact that words that often occur together have some
sense of similarity, but is in a way the inverse of continuous bag-of-words. Rather than pre-
dicting the missing word, the objective of the model is to predict the surrounding words. To
construct training examples from the same phrase as above with a 1-skip-gram, the following
samples are generated.

14



2.3 Classification Models

A gorilla visited =⇒ x, y1, y2 = gorilla, a, visited

gorilla visited Manilla =⇒ x, y1, y2 = visited, gorilla, Manilla

The known words above are gorilla and visited respectively.
According to the authors1, the continuous bag-of-words model is faster for training but

the continuous skip-gram model is better for infrequent words.
The word embeddings generated by these methods do carry some information about the

semantic relationship of words. As mentioned in the previous section, a desirable function
of word representation is to determine whether a word is close to another word in a se-
mantic meaning. This is elegantly represented in word embeddings as the cosine similarity
between word vectors. Consider for instance the word Sweden. The closest word vectors in
the word2vec-vocabulary with respect to cosine similarity are displayed in Table 2.1.

Word Cosine similarity
Finland 0.8085
Norway 0.7706
Denmark 0.7674
Swedish 0.7404
Swedes 0.7133

Table 2.1: Word vectors with the highest cosine similarity to Sweden.
Pre-trained embeddings from the word2vec module of the python
gensim library were used.

There is also a straight forward interpretation of elementwise addition and subtraction
of these word embeddings. In some sense, the d-dimensions of the embeddings can be in-
terpreted to be metrics of di�erent properties. For instance, the sum of the embeddings
for the words doctor and animal is most similar to the embedding for the word veterinarian.
There is also reasonable syntactic results when performing simple mathematical operations.
It would for instance be expected that the di�erence between running and run is similar to
the di�erence between swimming and swim. This can roughly be expressed as below.

running - run ≈ swimming - swim (2.14)

Indeed, taking the embeddings for the words and calculating running - run + swim results
in a vector which is most similar to the embedding for the word swimming using the 44,000
most common words in the python gensim implementation of word2vec.

2.3 Classification Models
The text vectorization methods presented in the previous section extracts features from raw
text to a vector. This is then used as input to more general classification models which are
not exclusive for natural language processing. These models are briefly covered in Section
2.3.1.

1See for instance: https://code.google.com/archive/p/word2vec/

15

https://code.google.com/archive/p/word2vec/


2. Theoretical Background

In other models, the text is entered as a sequence. One way to handle this is using re-
current models, which take the order of words into account. These models are covered in
Section 2.3.2.

A recent addition to the family of NLP-models are transformer based models, where
the concept of attention between words are central. Transformer models are the subject of
Section 2.3.3.

2.3.1 Tree-based & Feed Forward Models
Random Forests. A random forest classifier is an ensembling technique, consisting
of several decision trees. Predictions are made by taking the mode (for classification) or the
average (for regression) of the predictions from all of the decision trees. Each decision tree in
a random forest classifier is fitted to a bootstrap sample of the training set. Every tree is likely
to overfit to the data it is presented with, but the full forest of trees has better generalizability
as a consequence. The random forest model is a widely popular model which tends to work
well without much tuning out of the box for shallow machine learning tasks (Chollet, 2017).

Logistic Regression. Logistic regression is a commonly used baseline for machine
learning classification tasks. Even though it is an old model, it can still provide good results
for a wide range of classification tasks (Chollet, 2017).

Support Vector Machines. Support vector machines are a group of models which
can be used for both classification and regression. The core idea of a classification sup-
port vector machine is to find a suitable decision boundary between data points of di�erent
classes. This decision boundary is a hyper plane in some dimension depending on the number
of features in the input data. The input data is mapped to a higher dimensional represen-
tation where the samples are easier to separate. This is however only e�cient if a kernel
function can be constructed, i.e. a mapping k which satisfies k(x, y) = ϕ(x) · ϕ(y) for some
function ϕ. The best decision boundary is then found by maximizing the distance between
the closest samples and the hyper plane in the high dimensional representation. Support
vector machines can quickly make predictions on unseen data since the new sample only
has to be evaluated against the decision boundary consisting of the hyper plane in the high
dimensional representation (Chollet, 2017).

Multi Layer Perceptron. A multi layer perceptron, or feed forward network, is
a neural network that seeks to approximate some function f . For a classifier, this function
would map features x to some prediction ŷ of the true value y. The prediction depends on
the weights and biases w, b of the network.

The core part of the multilayer perceptron is the single perceptron unit displayed in
Figure 2.1. It is easy to see that the prediction ŷ is a function of the inputs, weights and biases
as ŷ = σ(x1w1 + x2w2 + b), where σ is the activation function denoted by a sigmoid in the
figure.

The training of the model will select the weight and biases such that the predictions are
as accurate as possible. The bias term b is usually included in the term weights as w0. This is
made possible by adding an extra feature x0 = 1, implying b = w0x0 = w0. This simplifies
notation, especially for matrices.

16



2.3 Classification Models

x1

x2

ŷ

w1

w2

b

Figure 2.1: A single perceptron unit with two inputs x1, x2, two
weights w1,w2 and one bias b. The sigmoid in the prediction node
is an activation function usually denoted σ(x).

Figure 2.2: Overview of a densely connected feed forward network
with six inputs, two hidden layers and one output node.

The performance of classification is measured by some loss function J , which depends on
the training samples (x, y) and the weights w. A common loss function for binary classifica-
tion is binary crossentropy, defined in Eq. 2.15. The notation is such that y is the true label,
ŷ is the predicted label and p(ŷ) is the predicted probability of the sample being of label 1.
Conversely, 1 − p(ŷ) is the probability of the sample being of label 0.

L(y, ŷ) = −
1
N

N∑
i=1

yi log (p(ŷi)) + (1 − yi) log (1 − p(ŷi)) (2.15)

A single perceptron unit is not too exciting, but when combined into a network, it is
more powerful. Leshno et al. (1993) proved that a neural network with a locally bounded
piecewise continuous activation function can approximate any continuous function to any
degree of accuracy if and only if the activation function is not a polynomial. This is known as
the universal approximation theorem. While this implies that a su�ciently large multi layer
perceptron is able to represent any continuous function, it does not guarantee that a network
is able to learn this representation. Furthermore, the size of the network is unrestricted and
can in practice be infeasible computationally (Goodfellow et al., 2016).

Combining the basic functionality in Figure 2.1 with the network in Figure 2.2, a neural
network is achieved. This can function as both a regression and classification model. For

17



2. Theoretical Background

xt-1 xt

ht-1

ŷt-1

ht

ŷt

x

h

ŷ

W

U

V V

U U

V

W W

Figure 2.3: General graph of a sequence-to-sequence RNN unfolded
through time, where a sequence of inputs x predicts a sequence of
outputs y. U, V and W are weights that are shared throughout the
sequence, independent of the position.

regression, the activation function in the final node is typically a linear function as ϕ(x) = cx,
for some real constant c. For classification, it is usually some sigmoid function bounded

between 0 and 1, such as ϕ(x) =
1

1 + e−x . The most popular activation function in the nodes
which are inside the network is the rectified linear unit function (ReLU), defined as ϕ(x) =
max(0, x) (Goodfellow et al., 2016). These functions are all conveniently implemented in
Keras, as well as a structure using di�erent layers to build a model (Chollet et al., 2020).

2.3.2 Recurrent Models
A drawback which a�ects all of the models presented in the previous section is that the
order of words is not taken into account. Of course, the order can be considered in the
pre-processing if some more complex transformation is used (e.g. Sentence-BERT), but these
transformations usually utilize some recurrent or attention-based method. A recurrent model
takes the sequence order into account.

Recurrent Neural Networks. A recurrent neural network (RNN) is rather simi-
lar to a multilayer perceptron, but it takes previous inputs into account. The input to an RNN
is a sequence of samples. In natural language processing, a sequence is typically a sentence.
An RNN can however be used for other tasks where the order of samples are important, e.g.
time series forecasting.

Obviously, a sentence can not be defined just by the word it contains, one must also take
the order of the words in the sentence into account. We keep a general idea of the meaning of
what we have previously read and adjust the idea depending on the new words in the sentence.
Recurrent neural networks work in a rather similar way, storing hidden representations of
inputs and conveying that information to the next input in the sequence (Goodfellow et al.,
2016).

As seen in Figure 2.3, an RNN can be seen as a feed-forward neural network where pre-
vious time steps are used as input. Assuming a hidden layer activation function σh and an

18



2.3 Classification Models

x1 x2

h1 h2

U U

W W

xl

hl

ŷ

U

V

xl-1

hl-1

U

W

Figure 2.4: Schematic graph of a sequence-to-one RNN unfolded
through time, where a sequence of inputs (x(1), ..., x(l)) predicts one
output y.

output activation function σo, the recurrent nature of the model can be further explained.
Let the other notation be as in Figure 2.3.

ŷt = σo(V · h(t)) = σo(V · σh(Ux(t) +Wh(t−1))) (2.16)

h(t−1) = σh(Ux(t−1) +Wh(t−2)) (2.17)

Clearly, the prediction ŷ(t) is dependent on the previous inputs x(i) and hidden states h(i).
The model structure is similar for sequence-to-one classifications, i.e. a sequence

(x(1)
i , x(2)

i , ..., x(l)
i )

predicts one label ŷi . Given a sequence length l, only the final step x(l)
i provides an output yi .

This output is however influenced by the previous inputs x(t)
i through the hidden layers h(t)

and the weights W , see Figure 2.4.

Long Short-Term Memory (LSTM). Even though the general idea of the
previously described method is widely used, the model is not used precisely as described.
The simple RNN-structure su�ers from the vanishing gradient problem. To understand this
problem, one must understand how the network is trained, which is outside the scope of this
report. In short, long term dependencies are too many time-steps away to have an impact
when the network is trained.

In practice, either Long-Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU)
are used instead. The main di�erence is that information that is deemed important is allowed
to pass on to later time-steps without too much interference from hidden several dot products
and activation functions. This alleviates the vanishing gradient problem, even though the
core idea is the same as the previously described simple RNN (Chollet, 2017).

Bidirectional LSTM. As a final note for the recurrent neural network approach, it
should be mentioned that when RNNs are used in natural language processing, they are often

19



2. Theoretical Background

wrapped with a bidirectional layer. This reverts the input sequence and enters the sequence
in both the original and the reverse direction to two separate RNNs, usually LSTM or GRU.

The usefulness of this is particularly intuitive when looking at the network in Figure 2.3.
When processing the entry x( j), only the entries t < j are known. However, tokens later
in the sequence might have an impact on the previous outputs of the model. Bidirectional
LSTMs can catch patterns that are overlooked by regular LSTMs.

Bidirectional LSTMs have been widely popular in the field of natural language process-
ing. In 2017, the model behind Google Translate was powered by seven stacked LSTM layers
(Chollet, 2017).

2.3.3 Transformers
In 2017, Vaswani et al. wrote a paper, Attention is all you need, which had a considerable influ-
ence on language modelling and machine translation. The authors presented a new model –
the Transformer – which does away with the recurrence and instead only uses the concept of
attention. One of the problems with recurrent networks is the lack of parallelizability when
training the network. The Transformer allows for more parallelization than previous models
and consequently trains quicker than models based on recurrence. This is proved by a new
state of the art score of 28.4 BLEU on the WMT 2014 English-to-German translation task
which was trained at a fraction of the training cost compared to the previous state of the art
models.

In the rest of the section, I will follow Vaswani et al. (2017), as well as a more detailed
description by Alammar (2018) to describe the principles behind the Transformer. The ex-
plained model is used for sequence-to-sequence modelling such as translation, but is also the
foundation for BERT which can be used for classification, and is presented later. This is the
motivation for this rather detailed section on transformers, even though the model itself is
not used in this project.

Output

The	Transformer

Encoder Decoder
Input

Figure 2.5: Schematic graph of a transformer.

The core idea is to encode the input into a manageable, general representation and then
decode this representation into the sought output. Both the encoder and decoder parts con-
sist of 6 identical layers of encoders and decoders.

Transformer Tokenization
Firstly, the input to the model is tokenized in a di�erent way than what has been described for
previous models. It is similar in the sense that each token is transformed into an embedding.
Vaswani et al. (2017) uses a WordPiece embeddings of dimension dmodel = 512. The way the
model handles positional information of words is however quite di�erent.

20



2.3 Classification Models

Multi-Head Attention

Add & Normalize

Feed forward

Add & Normalize

Positional
Encoding

Input Embeddings

N x

Masked Multi-Head
Attention

Add & Normalize

Multi-Head Attention

Add & Normalize

Feed forward

Add & Normalize

Positional
Encoding

Outputs, shifted right

N x

Linear

Softmax

Output Probabilities

Figure 2.6: Model architecture of the transformer with the encoder
to the left and the decoder to the right. The paper uses N = 6 layers
for both the encoder and the decoder. After Vaswani et al. (2017).

Rather than letting a sequential input to the model represent the position of tokens sim-
ilar to an RNN, the positional information is included in sine and cosine functions with
di�erent frequencies.

PE(pos, i) =


sin

( pos
100002i/dmodel

)
, i = 2k

cos
( pos
100002i/dmodel

)
, i = 2k + 1

k ∈ N (2.18)

In Eq. 2.18, pos is the position of the token in the sentence and i the dimension of the
embedding. One word has one position pos and dmodel = 512 dimensions.

This way of representing the positions of a word might seem cumbersome at first, but it
has some nice features:

Dimensional consistency. These positional embeddings can be chosen to have the same di-

21



2. Theoretical Background

mension as the vectors used for the word embedding. In the original papers, the posi-
tional encodings are added to each element i of the dmodel = 512 dimensions.

Generalizable. This method can extrapolate to sentence lengths not seen in the training data.

Simple relative positioning. The fact that PE(pos, i) can be written as a linear function of
PE(pos, i + k) for any k, should according to Vaswani et al. (2017) make it easier for
the model to acknowledge relative positions.

No recurrence. This is not unique for this sinusoidal version of positional encoding, but
is however one of the main features of the transformer, allowing for more parallel
computations.

Encoder & Self-Attention
After the input embedding and positional encoding, a sample is passed through to the stack
of encoder layers, shown to the left in Figure 2.6. This is where the concept of self-attention
comes in.

At a conceptual level, self-attention for words could be described as how much other
words in the sentence represent the current word, i.e. what other words in the sentence the
word pays attention to. As an example, consider the following two sentences.

The gorilla didn’t like Manilla, it was too crowded.
The gorilla didn’t like Manilla, it was too tired.

In order to interpret the sentence correctly, a model must understand that it refers to
Manilla in the first sentence and to the gorilla in the second. This is the purpose of the self-
attention, to detect which words in the neighborhood that are important for the meaning
of the current word. I explain the mathematics behind it below. As seen in Figure 2.6, there
are 6 layers of multi-head attention with following feed forward layers. One multi-head
attention is made up of 8 identical parallel self-attention layers. Each attention layer has
unique weights. In the first layer, the inputs are simply word embeddings and positional
encodings. Consider the sentence The gorilla visited Manilla with some word embeddings x
and positional encodings PE:

A gorilla visited Manilla
x1 x2 x3 x4

PE1 PE2 PE3 PE4

The vector which is given to the self-attention layer is then ho as in Eq. 2.21. Note that
the dimension for x,PE and ho is l × dmodel, where l = 4 in this example and dmodel = 512
in the original paper.

x =
[
x1 x2 x3 x4

]ᵀ
(2.19)

PE =
[
PE1 PE2 PE3 PE4

]ᵀ
(2.20)

ho =
[
x1 + PE1 x2 + PE2 x3 + PE3 x4 + PE4

]ᵀ
(2.21)

22



2.3 Classification Models

The first calculations in the attention layer are three linear transformations to construct
three vectors: a query vector, a key vector and a value vector. The vectors WQ,WK and WV are
weights which are tuned during the training and determine the query, key and value vectors.

qi = ho
i W

Q (2.22)

ki = ho
i W

K (2.23)

vi = ho
i W

V (2.24)

These vectors are used to calculate an attention score for a given word i versus all other
words j in the sentence. The score is calculated as the dot product of qi and k j and scaled

by
1
√

dk
where the original paper uses a dimension of dk = 64 for the query, key and value

vectors.

scorei, j =
qi · k j
√

dk
(2.25)

The scaling by
√

dk is made to keep the gradients of the attention layer at a more man-
ageable level. The scores for the word i against all other words j are then normalized with
a softmax function, ensuring the sum over all words j sums up to one and that larger scores
are boosted. The softmaxed score for word i against word j is then calculated as in Eq. 2.26.

softscorei, j =
escorei, j∑
∀ j

escorei, j
(2.26)

Finally, the contribution to the attention for each word is calculated by adding up all the
value vectors v j weighted by the softmaxed score of i and j . This concludes the calculation
of the new hidden state ho+1

i for word i.

ho+1
i =

∑
∀ j

v j · softscorei, j (2.27)

Figure 2.7 shows a flow graph over how this is calculated.
The details of the calculation until now have concerned one word at the time in the

sentence. It can however be neatly compressed into matrix form.
Letting ho be as defined in Eq. 2.21, we can write the query, key, and value vectors as

matrices where every row corresponds to the vector for a word in the sentence.

Q = hoWQ (2.28)

K = hoWK (2.29)

V = hoWV (2.30)

The attention of the layer can then be calculated as in Eq. 2.31, by the steps shown for
one word in the previous segments.

23



2. Theoretical Background

KQ V

mul

softmax

ho+1

ho

WK WVWQ

mul mul mul

mul

i

i

Figure 2.7: Calculation of self-attention from hidden layer o to o+1
for word i. mul denotes a matrix multiplication or a dot product.

Attention(Q,K,V ) = softmax
(QKᵀ

√
dk

)
V (2.31)

What has been demonstrated until now is the flow for a sample through one attention
layer. However, the transformer model uses a multi-head attention layer. This is simply
8 attention layers that run in parallel. The weights across the layers are not shared, but
the idea is that having eight attention layers with random initialization enables focusing on
di�erent aspects of language. The output of the eight layers are concatenated and multiplied
by another matrix of weights WO in order to reduce the dimensions to l × dmodel, which are
the same dimensions as was fed to the model in Eq. 2.21.

Note that the first inputs to the model are word embeddings and positional encodings,
but the rest of the encoder layers has the output from the previous layer as input, which is of
the same dimension as the input embeddings.

The final step in the encoder layer is a position-wise feed forward network, roughly as
in Figure 2.2. The network has one hidden layer of size d f f = 2048. The input and output
are both of size dmodel = 512. The di�erence with a regular multi layer perceptron is that
the weights are applied identically to each position, greatly reducing the number of tuneable
weights. The hidden layer has ReLU activation functions, so the output for any input can be
conveniently written as in Eq. 2.32

F(x) = max(0, xW1 + b1)W2 + b2 (2.32)

24



2.3 Classification Models

Another important property of the Transformer is the residual connections seen in Fig-
ure 2.6. These allow information to be transferred to a new layer without being distorted in
the attention calculations. Vaswani et al. (2017) claim this is particularly important for the
positional encodings to stay intact deeper into the network.

i am a student är

Encoder-decoder attention

i am a student

Encoder self-attention

jag en studentär

Decoder self-attention

Figure 2.8: Di�erent types of attention in a transformer. Imaged by
a translation task from the English sentence "i am a student" to the
Swedish sentence "jag är en student".

Decoder & Output
There are many similarities between the encoder and decoder, but some things di�er. The
output from the encoder is used to calculate the attention vectors K and V which are used
to predict a sequential output from the decoder. The first input to the decoder are these
attention vectors and a start-of-sequence token. These then progress through the decoder
layers and produce an output. The output is made by a linear transformation to a logits
vector, where each entry is an index in a vocabulary. A softmax function is applied, and the
entry in the vector with the highest values is chosen as the prediction. The predicted word is
then transformed with word embedding and positional encoding as in the input, and the next
word in the sequence is predicted using the previous word as input. The calculated attention
vectors K and V are the same for all of the positions in the decoder.

One large di�erence to the encoding part is that the self-attention layers are only allowed
to attend to previous inputs, i.e. words to the left. This is done by setting the entries for words
to the right of the currently processed word to −∞ in the dot product of Q and K before
the softmax as seen in Figure 2.7. This ensures no attention is given to latter words in the
sentence in the decoding part. The decoder does however have access to the key and value
vectors from all of the words in the input. A general flow chart of how words influence each
other in a translation task is shown in Figure 2.8.

BERT
The transformer presented by Vaswani et al. was influential for several other models. De-
vlin et al. presented the language representation model BERT in 2018. BERT is short for

25



2. Theoretical Background

Bidirectional Encoder Representations from Transformers. This model achieved new state-
of-the-art results on eleven NLP tasks. The success of BERT is largey due to the fact that it
can be used for a wide variety of NLP tasks with only small changes to model architecture
and further training.

A lot of the mechanics of BERT is included in the encoder part of the transformer seen
to the left in Figure 2.6. The bidirectionality in the model is represented in the same way
as the self-attention in the encoder of the transformer. As mentioned in the explanation
of the transformer, any given word in a sentence is allowed to give a high attention score
to all other words in the sentence. Even to words to the right of the word. This is not the
case for the decoder. As seen in Figure 2.8, the decoder self-attention only has access to the
previously decoded values. The attention structure from the input sequence generated in the
decoder is however the same throughout the decoding. The bidirectionality in BERT is thus
not quite the same as the bidirectionality in an LSTM or GRU, since the latter reverses the
input sequence to achieve bidirectionality. In BERT, the sequences are handled in a more
parallel sense, as the positions are considered only as the positional embeddings – not by the
position in the sequence.

Devlin et al. implemented two versions of BERT with the same structure but di�erent
sizes – BERTLARGE and BERTBASE. The base model has 110M parameters, including 12 stacked
transformer encoder blocks, 768 dimensions in the input/hidden states/output vectors and
12 self-attention heads in every multi-head attention block. The large model has 340M pa-
rameters, 24 transformer blocks, 1024 dimensions and 16 self-attention heads.

The input and output representations of BERT share some properties with the Trans-
former, but with some extensions. Each input in a sequence is the sum of three embeddings
– position, segment and token, see Figure 2.9.

The position embeddings are represented in the same sinusoidal way as described for the
Transformer. The segment embedding is an indicator for which segment a sentence belongs
to, used where pairs of sentences are given as input. These are separated by a special [SEP]-
token, but also by the segment embeddings which specify if a word belongs to segment A or
B. If the task does not contain sentence pairs, all words belong to segment A. The tokens are
created by the same method as for the Transformer, i.e. WordPiece embeddings.

There is also an initial token with several purposes seen in Figure 2.9 – the [CLS]-token.
This indicates that a new sequence is starting, but also serves as an aggregate sequence rep-
resentation. Since this token aims to capture the summary of a sentence, it is suitable as
feature extraction for classification tasks after fine tuning. Each output token is of the same
dimension as the inputs and hidden layers, either 768 or 1024 depending on if it is the base
or large model.

While a lot of the BERT model structure is similar to the encoder part of the transformer,
the training is di�erent. BERT is pre-trained on two unsupervised tasks : masked language
model and next sentence prediction. The model can then be fine tuned to the specific task it will
be used for.

Masked Language Model. Some words in the input are randomly replaced with another to-
ken with a probability of 15 %. The token is replaced with a special [MASK]-token 80
% of the time, a random token 10 % of the time and not replaced at all 10 % of the time.
The reason for not using the [MASK]-token all the time is that this token is only seen
in the pre-training, not in the fine-tuning or the prediction. Replacing with random
words or the actual word improves the models performance on un-masked sentences.

26



2.3 Classification Models

Next Sentence Prediction. This trains the model to learn relationships between sentences.
Two consecutive sentences are randomly picked from the training corpus, as well as two
random sentences. 50 % are given the label IsNextSentence and 50% NotNextSen-
tence. Consider for instance these pairs.

The man went to the store. He bought a gallon of milk.
The man went to the store. Penguins are flightless.

Where obviously the first pair is reasonable and the second is not.

Devlin et al. pre-trained the model on two large corpora, the BooksCorpus (800M words)
and the English Wikipedia (2,500M words).

After the pre-training, the model is fine-tuned for the task at hand. This implies updating
the weights in one or several of the upper transformer layers. One of the major benefits of
BERT is that it can be used for most NLP tasks with great performance even compared to
more task specific models. The inputs and outputs just have to be changed accordingly.

Figure 2.9: BERT input visualization for a sentence pair, A & B.
After Devlin et al. (2018).

Sentence-BERT
A further development of BERT for representing sentences is Sentence-BERT. Reimers and
Gurevych presented SBERT in 2019, where the main motivation was to be able to derive
semantically meaningful sentence representations. The authors define semantic similarity
as proximity in vector space, for instance measured by cosine similarity. SBERT uses a pre-
trained BERT model and computes some pooling operation on the last layer. As seen in
Figure 2.9, the length of the output sequence is equal to the input sequence. In order to get a
fixed size representation of a sentence, the dimension is reduced to the same as the dimension
of the words.

SBERT allows for three di�erent pooling operations – using the [CLS]-token, mean pool-
ing or max-over-time pooling. The model is fine tuned using siamese and triplet networks.
These are BERT networks with shared weights. Two sentences are fed into one network
each and the similarity is compared between them. The authors explore di�erent objective
functions, one being mean squared error loss of the cosine similarity between two sentences.

27



2. Theoretical Background

2.4 Overfitting & Hyperparameter Optimiza-
tion

This section concerns the problem of overfitting in a machine learning context. The contents
in Sections 2.4.1 through 2.4.4 mainly follow Goodfellow et al. but is covered thoroughly and
in a similar fashion in most basic machine learning summaries.

2.4.1 Train, Validation, and Test Set
A popular definition of machine learning is quoted from Mitchell:

“A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E.”

The main goal of machine learning is to be able to have some predictive power on pre-
viously unseen data. This is a di�erence between machine learning optimization and opti-
mization in general. A model is said to generalize well if it shows good performance on data
it has not seen before. This is also how a model is typically used for some application – we
want to use the model to predict things of uncertainty, not things we already know.

Suppose we have gathered a dataset D to train a model. In order to approximate how
the model performs on unseen data, we can hide a partition of the dataset during training.
Letting our initial dataset D be the set {Dtrain,Dtest}, we optimize the model on the data
Dtrain by minimizing some loss function L over the samples in Dtrain. The generalization
error of the trained model is then approximated by L(Dtest).

The training of a machine learning model can be simply expressed as minimizing these
two objectives:

1. Minimize the training error.

2. Minimize the di�erence between the training error and the test error.

If the training error is small while the di�erence between the training error and the test
error is large, we say that the model has overfitted to the training data. This usually means that
the model has too high capacity and tries to represent too complex patterns. If the training
error is large, but the di�erence between training error and test error is small, it indicates
that the model is underfitted. This implies that the model is not complex enough.

A fundamental rule of machine learning is that the results on the test set can not influence
the model structure in any way. The purpose of the test set is to estimate how well the model
performs on new data. It is not a metric that is to be used for model optimization. Still,
the objective is to optimize the model on unseen data. This is addressed by introducing a
validation set.

Let the full datasetD be partitioned into three sets, {Dtrain,Dvalidation,Dtest}. The train
set is then used to optimize the parameters of the model, while the validation set is not in-
cluded in the training. The generalization error is approximated by the validation error. The
validation error is by contrast to the test error however allowed to influence the model struc-
ture. This is typically done by adjusting the hyperparameters of the model and introducing
some regularization, covered further in the following sections.

28



2.4 Overfitting & Hyperparameter Optimization

2.4.2 Hyperparameters
A machine learning model is defined by its tuneable parameters and its hyperparameters.
The tuneable parameters are normally just called parameters and are the trainable weights
in a model. The hyperparameters are properties of the model that must be set before the
training is started. Hyperparameters for a neural networks are typically the number of nodes
in each layer, which activation function to use in the nodes, the depth of the network, what
sort of optimization routine is used, the learning rate, etc.

Many of these parameters can adjust the capacity of the network, i.e. how complex struc-
tures the network can model. If the model is too complex, it might be too sensitive to the
training data and adapt to patterns in the training data which are not transferable to unseen
data. If the model is not complex enough, it might fail to retrieve important patterns from
the training data.

Other parameters rather adjust the speed and precision of training. The learning rate
is such a parameter, deciding the size of the steps in the gradient descent-like optimization
algorithm. A too big learning rate can imply that the optimization fails to reach the sought
minimum, a too small learning rate can imply that the optimization converges too slowly
(Goodfellow et al., 2016).

2.4.3 Regularization
Regularization is a way to prioritize more likely parameters over less likely parameters. It as-
sumes we have some prior belief of which parameters that are more likely. The basic principle
is the same as for Occam’s razor – if two solutions to a problem give equal results, choose the
simplest one.

This concept is used to combat overfitting and to make the model focus on the most
important patterns in the data. A model with high regularization is penalised for making
complex decision rules, generally giving a higher training error. A simple way to introduce
regularization is to add a weight decay to the loss function. Given the weights w in a neu-
ral network and some cost function L, a new cost function LR with weight decay can be
constructed as in Eq. 2.33.

LR(w) = L(w) + λwTw (2.33)

The parameter λ is here a hyperparameter used to control the regularization strength. A
higher λ implies more regularization.

Hinton et al. presented another regularization method used in the context of neural net-
works in 2012 – dropout regularization. This removes a node in the network with probability
p during every step in the optimization. It is arguably quite similar to training several dif-
ferent networks, since the network is constantly changing and removing nodes, altering its
structure. Dropout can be seen as a cheap way of training and evaluating an ensemble of
exponentially many neural networks.

The nodes are only removed with probability p during training. When the model is used
for prediction, the weights of the nodes where dropout has been used is multiplied by 1 − p.
The argument for why this is reasonable is that seems to capture the correct expected value

29



2. Theoretical Background

of the output from that node. Not a very theoretical argument, but it seems to work well
(Hinton et al., 2012).

2.4.4 Cross-Validation
If the available dataset is small, it might be unrealistic to have the same statistical properties
in the training, validation and test data. A small size also gives a large variance on both
the validation and test set, making it di�cult to select hyperparameters and estimate the
performance on unseen data. A way to improve the accuracy of the estimate is to use k-fold
cross validation.

Val

Train

Test

Figure 2.10: Overview of how a dataset is used for k-fold cross vali-
dation with k = 4.

Firstly, an independent test set is extracted from the dataset. The test set should have the
same distribution of labels as the dataset. This is seen as the orange square in Figure 2.10. The
test set is typically 10-20 % of the dataset, it does however depend on how large the dataset
is.

The remaining samples in the dataset are then divided randomly into k parts of equal size.
A validation error with lower variance can then be calculated by taking the mean over all k
validation errors after fitting the model to the k di�erent training sets. This validation error
can then be used to determine which set of hyperparameters gives the best performance.

Finally, the performance of the model on unseen data is estimated on the test set with the
hyperparameters found in the k-fold cross validation. If a more accurate test error is desired,
an additional loop over k test sets can be performed in a similar fashion as for the validation
set. This is however not used for hyperparameter selection, only to get a better estimate of
the generalization performance (Goodfellow et al., 2016).

2.4.5 Grid Search & Random Search
Using the k-fold cross validation technique previously presented can be computationally ex-
pensive if a large set of hyperparameters are to be tested. Suppose we want to try the number

30



2.5 Performance Metrics

Hyperparameter #
Dropout rate 3
Learning rate 5
Hidden layers 3
Nodes 10
Optimizer 5
Activation function 3
Batch size 5
Total # combinations 6750

Table 2.2

of hyperparameters in Table 2.2. This gives 6750 combinations of parameters. Furthermore,
using k-fold cross validation with k = 10 would imply 67,500 fitted models in order to find
the best set of hyperparameters. This might obviously be reasonable for smaller sets, but it
rather quickly grows infeasible to do an exhaustive search over all possible combinations.

A common and e�ective alternative is to use a random search. Only the possible distri-
butions of the hyperparameters are defined, and a fixed number of combinations of these
are evaluated. Random search finds good solutions quicker than grid search, as it reduces
the validation error more for a given number of tested hyperparameters (Goodfellow et al.,
2016).

2.5 Performance Metrics
The metrics used to evaluate the models are accuracy and F1-score. The F1-score is defined
by the precision and recall, so these metrics are explained as well. For convenience a binary
confusion matrix is displayed in Table 2.3. Visualizations for accuarcy, precision and recall
are shown in Figure 2.11

Predictions
0 1

Actual values
0 True Negatives (TN) False Positives (FP)
1 False Negatives (FN) True Positives (TP)

Table 2.3: Confusion matrix for binary classification.

Accuracy: The most intuitive measure of performance, the ratio of correct classifications to
the total number of classifications. If the labels of a data set are symmetric, this is a
good measure of performance. However, if 90 % of the samples are of label a and 10%
of label b, a model which constantly predicts label a gets an accuracy of 90%. It doesn’t
reveal any information about which data is classified incorrectly.

Precision: The number of correctly classified samples in one class divided by the total num-
ber of predictions of that class. The precision P for class 0 in Table 2.3 is calculated as

P =
TN

TN + FN
.

31



2. Theoretical Background

Recall: The number of correctly classified samples in one class divided by the total number
of samples in that class. In other words, a measure of how many percent of a class that

was found. In relation to Table 2.3 it is calculated as R =
TN

TN + FP
. Recall is also

referred to as sensitivity in statistical literature.

F1-score: A measure which combines precision and recall as the harmonic mean of the two.

Calculated as F1 = 2
R · P
R + P

. An F1-score of 1 implies perfect recall and precision.

(a) Accuracy =
8
14

(b) Precision, green =
5
9

(c) Recall, green =
5
7

Figure 2.11: Visualizations of di�erent performance metrics for a
binary classifier. The dots are samples and the classifier predicts red
in the red area and green in the green area.

The precision, recall and F1-score are metrics which are calculated for every class in a
classification problem. In order to get a single metric for a set of samples, these can be
weighted by the number of true labels of each class. Hence for a binary classification prob-
lem, F1w = F10 · w0 + F11 · w1, where wi is the ratio of labels in class i in the training set
(Ting, 2017). A more interesting metric for a skewed data set is the macro F1-score, which
averages the F1-score for each label regardless of the ratio of labels. Consider a dataset with
99% of label A and 1% label B. If a classifier predicts A for all targets, the weighted F1-score

would be F1w = 1 ·
99
100
+ 0 ·

1
100
=

99
100

. The macro F1-score would take the average over
both F1-scores, i.e. F1m = 0.5. This is arguably a more reasonable measure for a skewed set
of labels.

32



Chapter 3

Method

This chapter presents the data used for training and evaluating models, the models I will test
and how the text is processed to be of appropriate format for the models.

The financial indices I considered in this project are the S&P 500 and the US treasury rate
with 1 and 3 years to maturity. These are collected from Refinitiv, but are publicly available
through free channels as well.

• S&P 500 (Standard & Poor’s) is a stock market index reflecting the performance of the
500 largest companies listed on the stock exchanges in the United States.

• The US Treasury rate with maturity n is the yield on a government zero coupon bond
with the same maturity.

Two text datasets are used. The first one is a dataset of movie reviews from IMDb, com-
monly used for benchmarking models. The purpose of this dataset is to ensure the models
perform well on text classification tasks. This makes the interpretation of the performance
on the financial tasks easier.

The other text dataset is a collection of financial news from 2006 to 2013. This is com-
bined in various ways with the time series data of financial indices, described in Section 3.2.

3.1 Data Collection and Pre-Processing
All models are trained on two datasets – a labeled movie review dataset from IMDb for
benchmarking and an unlabeled financial news dataset from Reuters combined with time
series data for the financial interpretation.

3.1.1 IMDd Dataset – Benchmarking
The IMDb dataset is a commonly used benchmarking dataset for binary classification of
text data. The dataset was compiled by Maas et al. (2011) and contains 50,000 polarized

33



3. Method

movie reviews with 25,000 positive and negative reviews respectively. Evaluating models on
this dataset can validate that the models can capture some meaningful information from text
data and thus give better insight about the performance on the financial task. It also generally
confirms that the model is implemented appropriately. For comparison, Xie et al. achieved
95.8% accuracy using BERT large and unsupervised data augmentation on the IMDb dataset.
This is in the state of the art-region, even though there are models that have scored slightly
higher.

Two reviews are presented below, first a positive one and then a negative one.

“This program was quite interesting. The way the program was displayed made
it all the more interesting. String Theory is also very interesting to listen too.
The whole three hours in my opinion were well worth it. I enjoyed listening to
the ideas given by the physicists. Extra dimensions really boggle the mind. If
you have the chance, watch this amazing documentary”

“There wasn’t a 0 in the voting option so i was compelled to use the next avail-
able figure. It is a sad day for bollywood when such type of movies which have
star-cast actors is nothing more are than a bunch of juvenile acting, and an aw-
ful script. This movie is nowhere near to be called a clone of Hitch. Salman
khan with his usual take-o�-you-shirt theme and Govinda with his in-humorous
laughs. If somebody had told 2 decades ago that I would be writing a com-
ment on Salman (after his success with Maine Pyar Kiya), I would have written
him/her o�. ”

3.1.2 Reuters Financial News Dataset
The corpus used for this project consists of 109,110 financial news articles from Reuters. It
was first compiled and used by Ding et al. (2014) for predicting stock price direction. Only
the titles of the news data is used to train the model, as suggested by Ding et al. (2014).
The reasoning behind this is that including the contents of the articles do not significantly
improve the model.

The data contains financial news regarding the US market from the 10th of October 2006
to the 11th of November 2013, with approximately 5-50 news articles per day and is publicly
available1. A few examples of headlines follows.

2006-12-18 – “Shares fall on tech worries, oil stocks”
2008-09-12 – “S&P analyst says does not expect Lehman to fail”
2008-09-15 – “Lehman files for bankruptcy, plans to sell units”
2010-06-22 – “Market ends down on housing data and technicals ”
2012-04-11 – “U.S. weighs higher threshold for swap dealers: report”

Pre-Processing
The first part of the pre-processing of text data is similar for all models. The intersection of
dates available with news data and financial data is assessed and headlines for these days are

1Available at https://github.com/duynht/financial-news-dataset.

34

https://github.com/duynht/financial-news-dataset


3.2 Time Series Processing

extracted. The text is quite clean since it is the headlines of published news articles. It does
not require as much cleaning as for instance a corpus of tweets.

The next step of the pre-processing is to tokenize the data. This is done di�erently de-
pending on what model to use, but a parameter that is set for all models is the vocabulary size.
The vocabulary size is simply the amount of words to keep track of. Keras has a tokenization
functionality which includes words based on frequency – the most common words are in-
cluded. How the tokenization is performed for each model is explained more carefully under
each section.

For some of the used models the natural language processing part can be seen as pre-
processing, for instance when pre-trained word embeddings are used. This is explained fur-
ther under each model.

3.2 Time Series Processing
I used three time series for this project – 1 year treasury rate, 3 year treasury rate, and S&P
500. All of these indices are middle rates, calculated as the median average of the bid and ask
rate over each day. These are shown in Figure 3.1

2007 2008 2009 2010 2011 2012 2013 2014
0

1

2

3

4

5 1 YEAR RATE

2007 2008 2009 2010 2011 2012 2013 2014

1

2

3

4

5 3 YEAR RATE

2007 2008 2009 2010 2011 2012 2013 2014
1000

1500

2000

2500

3000
S&P 500

Figure 3.1: Development of time series over time. 1 year rate (left),
3 year rate (middle) and S&P 500 (right).

The daily percentage change is calculated to get stationary time series with mean zero.

2007 2008 2009 2010 2011 2012 2013 2014

0.2

0.1

0.0

0.1

0.2

0.3
1 YEAR RATE

2007 2008 2009 2010 2011 2012 2013 2014

0.1

0.0

0.1

0.2
3 YEAR RATE

2007 2008 2009 2010 2011 2012 2013 2014
0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100 S&P 500

Figure 3.2: Daily percentage change. 1 year rate (left), 3 year rate
(middle) and S&P 500 (right).

To calculate ARMA predictions, I fitted a model to the available information at time t.
A prediction is then made for time t + 1. Since the financial news headlines are the limiting
dataset in terms of dates, earlier data can be used for the time series forecasting. The time
series are included from 2006-09-01 in order to make a proper prediction for the first sample
in the news dataset at 2006-10-20.

35



3. Method

After constructing models and forecasting the time series, I compared the forecasts to
the actual percentage changes. This is used to create labels for the classification task. If the
ARMA prediction is higher than the actual outcome, the label is 0. Otherwise, it is 1. The
binary accuracy – the accuracy of the index going up or down – of the ARMA predictions
can also be used as a baseline for comparison with other models.

I used the Python package statsmodels to fit ARMA models and make predictions. Tradi-
tional time series analysis is not the main concern of this project. Therefore, the parameter
estimation is rather crude. The AIC is calculated for a few di�erent values of p and q, which
suggests an ARMA(1,1) process is adequate.

3.3 Text Vectorization
Some text vectorization techniques are jointly trained with the classification model, and thus
not possible to isolate from the model. Others can be trained both jointly and used as a pre-
processing layer for another model. This project uses three vectorization techniques. In all
of the techniques except for Sentence-BERT, the news titles for one day are concatenated in
one document representing the news of this day.

The news dataset contains 27,617 unique words when converted to lower case.

3.3.1 TF-IDF
Term Frequency–Inverse Document Frequency (TF-IDF) is purely a pre-processing technique
which outputs large dimensional vectors of the same length as the vocabulary size. This can
then be fed into any model. As stated in the previous chapter, this technique does not preserve
the order of words, which does not make it suitable to use as input to a recurrent network.
We used a tokenizer from the scikit-learn library to transform the texts into TF-IDF vectors.

Even though TF-IDF deals with frequency of words, there is still a computational benefit
of having a restricted vocabulary, since this is equal to the input dimension. An appropriate
vocabulary size is found by evaluating the validation accuracy for di�erent sizes using logistic
regression. This is because logistic regression is optimized quickly and can give an indication
of when important information for classifying is lost. For the IMDb dataset, this was found
to be 10,000 words.

3.3.2 GloVe
For the word embeddings, I used the GloVe pre-trained word vectors. The vectors have been
trained on a dump of Wikipedia from 2014 containing 1.6 billion tokens and the English Gi-
gaword fifth edition dataset, containing 4.3 billion tokens (Pennington et al., 2014). 400,000
uncased words with an embedding size of 300 dimensions are represented in the GloVe dic-
tionary I used. Of the 22,415 words in the news data, 22,107 were available as pre-trained
GloVe embeddings.

The tokenization for the GloVe models first converted all words to lower case and re-
formed some words such as won’t and can’t to will not and can not. This allows for more words
to be initialized with pre-trained embeddings since contracted words are handled di�erently
by di�erent tokenizers. The tokenization is done using the tokenizer from Keras.

36



3.3 Text Vectorization

0 500 1000 1500 2000 2500
Number of words

0

2000

4000

6000

8000

10000

12000
Fr

eq
ue

nc
y

Figure 3.3: Histogram of the number of words in the 50,000 IMDb
movie reviews.

For the non-sequential models, the data is converted from w × d dimensions to 1 × d,
where w is the number of words in the concatenated news titles for one day and d is the
embedding dimensions, here 300. This is done by taking the element-wise average over all
d dimensions. In the models using the embeddings as non-trainable pre-processing, this is
simply done before the data is fed into the model. In the models where the training of the
embeddings are continued, a custom layer in Keras computes the element-wise average after
the embedding layer, where the data has been inputted as token indices and the pre-trained
embeddings are set in the embedding layer.

For sequential models, the order of words in the titles is kept intact. The number of
words in the news titles for one day is shown in Figure 3.4, and the number of words in the
reviews of the IMDb dataset in Figure 3.3. In order for each text sample to have the same size,
a maximum sentence length is set. Longer sequences are cut of, shorter sequences are padded
with zeros. The maximum sequence length is set to 800 for the news data, which well covers
the majority of the samples. For the IMDb data, it is set to 500.

3.3.3 Sentence-BERT

Reimers and Gurevych, the authors of Sentence-BERT, have made models publicly available
on Github, see Appendix A. The package is called sentence-transformers. A pre-trained model
is used to embed sentences into vectors of length 768. In order to represent a full document or
several news headlines, each sentence is embedded independently. The elementwise average
is taken to represent the collection of sentences. These features can then be used as input to
classification models.

37



3. Method

Figure 3.4: Histogram of the number of words in the concatenated
news titles for one day.

3.3.4 BERT
The tokenization for the BERT model is more complex than previously described models. As
described in Section 2.3.3, each input to BERT is made up of three vectors for every token
– token id, segment id and mask. The main part of this is implemented in a tokenizer sup-
plied by Devlin et al. (2018) on Github, see Appendix A. Some processing is done after the
tokenization, such as adding [CLS] and [SEP] tokens for the start and end of sequences.

The maximum sequence length for BERT is 512, which implies 65 % of the daily news
headlines can not be fully represented. The first 512 tokens of these daily headlines are used
in these cases. Shorter sequences are padded with zeros.

3.4 Models
This section explains the models used in the experiments and how they are implemented.
Firstly, general feed forward-style models are described, followed by recurrent models, and
lastly the transformer model BERT.

Random Classifier. For an imbalanced rather small dataset, a random classifier can
provide a basic understanding of what performance to beat to ensure some predictive power
in a model. The random classifier can be trained on the training set, or just randomly predict
on the test set. I have used two random classifiers which make some use of the training set.

Two approaches were used – stratified and most frequent. The stratified method respects
the distribution of labels in the training data and randomly predicts on the test data with
the same distribution. The most frequent-method predicts the most frequent label in the
training data on all the test samples.

38



3.4 Models

The random classifiers used in this project only relies on the target variables, so it is not
interesting to classify it as sequential or not.

3.4.1 Tree-based & Feed Forward Models
These models are only used with non-sequential data as input, i.e. TF-IDF, average GloVe em-
beddings and Sentence-BERT. These vectorizations typically have dimensions 5,000–20,000
(TF-IDF), 300 (GloVe) and 768 (Sentence-BERT).

Logistic Regression. We used logistic regression both as a traditional benchmark
and a more novel model in combination with GloVe and BERT embeddings. We used the
logistic regression model from the python library scikit-learn for the implementation.

Support Vector Machine. We used a support vector machine (SVM) with similar
motivation as for the logistic regression – it serves as a well known benchmark model and
is rather simple to implement and optimize. We used a support vector machine for binary
classification from the scikit-learn library.

Feed-forward Network. A densely connected feed-forward network is evaluated
with varying number of hidden layers, nodes and dropout rate. The loss function is binary
cross entropy.

The input to the model is either sequential data into an embedding layer (see Figure 3.5)
– if the embeddings are continuously trained – or as pre-processed data with static embed-
dings. For the latter case, this is just a regular multilayer perceptron with rectified linear
unit activation function and dropout regularization. The output layer is a single node with
a sigmoid activation function.

The model taking sequential inputs has an embedded layer as the first layer. The weights
in this layers are set to the pre-trained GloVe embeddings, and are then jointly trained with
the other parameters in the model. A maximum sequence length is specified and an average
is taken element-wise over all the 300 embedding dimensions. The average is taken where
the sum of the absolute value of the embedding vector is non-zero, i.e. the positions in the
sequence vector that actually contain a word.

This tensor is then passed into a regular multi layer perceptron as described previously.
The feed-forward network is implemented using the Keras library.

3.4.2 Recurrent Models
The sequential models all allow further training of embedding parameters, since the first
input layer is a regular embedding layer. The input dimensions are w × d, where w is the
maximum sequence length and d is the dimension of the embedding.

Bidirectional LSTM. The bidirectional LSTM has the same input structure as the
feed-forward network, but rather than an averaging layer over all dimensions, an LSTM layer
is applied. This preserves the sequential structure of the inputs and enables the model to take
the order of words into account.

39



3. Method

Embedding	Layer

Dense	Layer

Input	Layer

(b,	m)

(b,	m,	d)

(b,	d)

(b)

Averaging	Layer

Output	Layer

(b,	dn)

Figure 3.5: Schematic overview of the used feed-forward network
with embedded inputs. b is the batch size, m is the maximum se-
quence length, d is the embedding dimension and dn is the number
of nodes in the dense layer.

The LSTM layer is wrapped in a bidirectional layer, which implies the input sequences
are processed both from left-to-right and from right-to-left. Since this configuration takes a
lot of time to train, hyper parameters optimization is performed by manually testing a few
parameters.

3.4.3 Transformer Models
One transformer model has been implemented, tuned with two di�erent final layers. A pre-
trained BERT-base model from TensorFlow hub is used and implemented as a Keras layer.
The two final layers of the BERT base model are fine tuned. One model adds a sigmoid output
node to the BERT-base model. The other model appends a hidden layer with 256 nodes and
dropout regularization. The training is done with hyperparameters recommended by Devlin
et al., a batch size of 16 and an Adam optimizer with learning rate 2e-5. The benchmarking on
the IMDb dataset is trained for 4 epochs. The financial dataset is significantly smaller (1,846
samples vs 20,000 samples) and is thus trained using an early stopping callback conditioned
on validation accuracy.

3.5 Hyperparameter Optimization
The selection of hyperparameters was carried out using either a grid search or a random
search over a selected range of parameters. Grid search was used for random forest and ran-
dom search was used for other models where hyperparameter optimization was made. The

40



3.6 Implementation Notes

Embedding	Layer

Bidirectional	LSTM	Layer

Input	Layer

(b,	m)

(b,	m,	d)

(b)

Output	Layer

(b,	ln)

Figure 3.6: Schematic overview of a bidirectional LSTM network
with sequential input data. b is the batch size, m is the maximum
sequence length, d is the embedding dimension and ln is the number
of nodes in the LSTM-layer.

search was done with either 10 or 3 fold cross-validation depending on the computational
feasability. More demanding models like bidirectional LSTM and BERT were fitted by man-
ual tuning of hyperparameters, i.e. using values that seem reasonable.

The neural network-style models were trained using an early-stopping callback. This
implies that the model is trained until the validation accuracy has not improved for a number
of epochs. The final model is then chosen as the model with the highest validation accuracy.

The parameters for the random forest model were tested exhaustively for the ranges listed
in Appendix B. The set of parameters which gave the highest F1-score on the validation set
was chosen.

Once the best set of hyperparameters have been found, the models are evaluated on an
unseen test set. The recorded metrics are accuracy and F1-score.

The tested ranges and concluded sets of parameters for a selection of models are listed in
Appendix B.

3.6 Implementation Notes
All optimizations are carried out on in a Jupyter notebook environment using python 3.7.4
and TensorFlow 1.15. Python is run on a local computer with 16 GB RAM and an Intel i7-
10510U CPU, 1.80 GHz.

41



3. Method

BERT	Layer

Dense	Layer

ID

(b,	m)

(b,	db)

(b)

Output	Layer

(b,	dn)

SEG MASK

Figure 3.7: Schematic overview over the architecture of the BERT
model. b is the batch size, m is the maximum sequence length, db is
the BERT embedding dimension and dn is the number of nodes in
the dense layer.

42



Chapter 4

Results

In this section, the results on the benchmark dataset are briefly presented followed by the
results on the financial data. The results from the movement of indices are displayed in
Section 4.2. Finally, the results from the prediction of the ARMA-forecasts are presented in
Section 4.3.

The performance is presented as accuracy and macro average F1-score on the test set for
all models.

4.1 Benchmark Evaluation
The results on the IMDb dataset for benchmarking are presented in Table 4.1. While most
of the models trained rather quickly, it is worth mentioning that BERT and the bidirectional
LSTM both needed > 24 hours to be optimized on the validation set. BERT with a sigmoid
output performed the best on this dataset with an accuracy of 91.6%, followed closely by
BERT with a feed forward layer. There is however only a small gap to SVM, logistic regression
and multi-layer perceptron with features generated by SBERT, trained at a fraction of the
time needed for BERT. Another note is that the GloVe embeddings performed quite poorly in
the pretrained setting, but had a large improvement when the embeddings were continuously
trained.

4.2 Index Direction Predictions
This section presents the results from predicting the direction of an index on a daily basis.
Two experiments have been made. The first one uses the news from day k to predict the
movement from day k−1 to k. The second uses the news from day k to predict the movement
from day k to k + 1. Naturally, the first task should be easier since more information is
available. It is however not trivial, since the targets are whether the median average of the

43



4. Results

Model Acc

TF-IDF

Random forest 85.6
SVM 89.5
Logistic regression 89.1
MLP 89.2

GloVe (pretrained)

Random forest 80.7
SVM 84.1
Logistic regression 85.2
MLP 84.1

GloVe (jointly trained)
MLP 88.2
Bidirectional LSTM 90.1

Sentence-BERT

Random forest 87.1
SVM 90.0
Logistic regression 90.7
MLP 90.1

BERT
Sigmoid 91.6
MLP 91.0

Table 4.1: Performance of used methods on the IMDb dataset.

bid and ask rate over the full day has increased or decreased. It is dependent on the market
movement of the whole day, while the news titles are published continuously throughout the
day. Confusion matrices are displayed for a selection of models in Figures 4.1 and 4.2.

The dataset contains 1,846 days, partitioned into 960 samples for training, 240 sampled
for validation and 646 samples for testing. The label distribution is presented in Table 4.2.
The distribution was selected to be the same in the training and test set.

0 1
1 year rate 0.61 0.39
3 year rate 0.54 0.46
S&P 500 0.55 0.45

Table 4.2: Label distribution for the three series in the index predic-
tion task.

As seen in Table 4.3, a lot of the results for the one year rate are similar. This is due to
the models simply predicting the most frequent class for every sample in the test set. Such a
behavior was seen repeatedly, especially for the two treasury rates. The highest performing
model on the test set for the three year treasury rate seen in Table 4.3 is SBERT with random
forest, logistic regression and MLP. The predictions are however heavily skewed towards la-
bel 0 and can not be assumed to be significantly better than a random classifier. The best
performance over the random baseline is achieved on the S&P index. Both the F1-score and
the accuracy on the test set is improved compared to the baseline for some models.

The results in Table 4.4 generally show a little lower performance on the test set across all
time series, compared to Table 4.3. A random classifier using the ‘stratified’ method achieves
the best F1-score on the two treasury rates. The S&P series does however show an absolute

44



4.3 ARMA Direction Predictions

Model 1 year 3 year S&P
F1 Acc F1 Acc F1 Acc

Random classifier
Most frequent 0.56 68.9 0.44 59.4 0.37 53.6
Stratified 0.56 57.4 0.50 53.3 0.50 50.8

TF-IDF

Random forest 0.41 68.7 0.42 58.4 0.55 59.6
SVM 0.41 68.9 0.40 59.4 0.51 57.3
Logistic regression 0.41 68.9 0.43 58.4 0.55 58.0
MLP 0.41 68.4 0.37 59.4 0.56 57.7

GloVe (pretrain)

Random forest 0.42 67.6 0.40 58.5 0.55 58.2
SVM 0.41 68.9 0.37 59.4 0.35 53.6
Logistic regression 0.41 68.6 0.40 59.0 0.53 57.3
MLP 0.56 68.9 0.45 59.3 0.48 56.5

GloVe (jointly trained)
MLP 0.41 68.9 0.37 59.4 0.47 55.7
Bidirectional LSTM 0.42 67.5 0.37 59.1 0.49 49.2

Sentence-BERT

Random forest 0.41 66.6 0.51 60.4 0.56 56.8
SVM 0.41 68.9 0.37 59.4 0.54 57.0
Logistic regression 0.53 67.2 0.55 59.4 0.56 57.1
MLP 0.41 68.9 0.55 58.4 0.56 56.8

BERT
Sigmoid 0.41 68.9 0.38 59.4 0.48 50.2
MLP 0.41 68.9 0.37 59.4 0.38 54.3

Table 4.3: Performance of used methods on classifying whether the
price of an index has increased from day k − 1 to k given the news
titles from day k.

Predictions
0 1

Labels
0 14% 32%
1 8% 45%

TF-IDF + random forest
S&P 500

Predictions
0 1

Labels
0 68% 0.4%
1 31% 0%

TF-IDF + MLP
S&P 500

Predictions
0 1

Labels
0 22% 24%
1 19% 35%

SBERT + logreg
S&P 500

Figure 4.1: Confusion matrices for some models for the current day
prediction task presented in Table 4.3. The metrics are from 646 test
samples.

improvement over the random baseline. TF-IDF and random forest give the highest accuracy
on the test set. The highest F1-score is achieved by TF-IDF + logistic regression together with
pretrained Glove embeddings combined with logistic regression or a multilayer perceptron.

4.3 ARMA Direction Predictions
This section presents the results from the ARMA direction prediction task. The label is 0 if
the ARMA prediction is higher than the actual outcome. Otherwise it is 1.

45



4. Results

Model 1 year 3 year S&P
F1 Acc F1 Acc F1 Acc

Random classifier
Most frequent 0.41 68.9 0.37 59.4 0.35 53.6
Stratified 0.50 55.3 0.49 52.2 0.49 51.5

TF-IDF

Random forest 0.41 68.9 0.40 58.4 0.54 59.1
SVM 0.41 68.9 0.38 58.4 0.49 56.3
Logistic regression 0.41 68.9 0.40 55.9 0.55 58.2
MLP 0.41 68.4 0.47 55.9 0.47 55.9

GloVe (pretrain)

Random forest 0.41 67.6 0.43 58.4 0.52 53.1
SVM 0.41 68.9 0.37 59.4 0.35 53.6
Logistic regression 0.41 68.9 0.44 59.6 0.55 58.2
MLP 0.41 68.9 0.37 59.4 0.55 55.4

GloVe (jointly trained)
MLP 0.41 68.9 0.37 59.4 0.35 53.6
Bidirectional LSTM 0.41 68.9 0.38 58.5 0.48 48.6

Sentence-BERT

Random forest 0.43 69.2 0.44 59.9 0.50 52.9
SVM 0.41 68.9 0.37 59.4 0.36 54.0
Logistic regression 0.47 66.6 0.51 56.3 0.53 54.3
MLP 0.41 68.9 0.38 59.8 0.37 53.1

BERT
Sigmoid 0.41 68.9 0.40 58.7 0.47 53.3
MLP 0.41 68.9 0.37 59.1 0.39 45.5

Table 4.4: Performance of used methods on classifying whether the
price of an index has increased from day k − 1 to k given the news
titles from day k − 1.

Predictions
0 1

Labels
0 13% 34%
1 7% 46%

TF-IDF + random forest
S&P 500

Predictions
0 1

Labels
0 16% 31%
1 11% 43%

TF-IDF + logreg
S&P 500

Predictions
0 1

Labels
0 16% 31%
1 11% 42%

GloVe + logreg
S&P 500

Figure 4.2: Confusion matrices for some models for the next day
prediction task presented in Table 4.4. The metrics are from 646
test samples.

An ARMA(1,1) model is fitted to the time series for every date with available news. The
accuracy of the prediction for the entire dataset is shown in Table 4.5. These are mainly shown
to give an idea of the accuracy of the ARMA-model, but also gives a baseline for comparison
with the task in Section 4.2.

The same structure as in the previous section is applied for this task. One evaluation uses
the news from day k to predict the validity of the forecast for day k, see Table 4.7. The other
evaluation concerns using news from k − 1 to predict the validity of the ARMA-forecast for
day k, see Table 4.8. Confusion matrices for the best performing model for every time series
are displayed in Tables 4.3 and 4.4. The labels used in this task are slightly less skewed than

46



4.3 ARMA Direction Predictions

Index Acc
1 year rate 65.9
3 year rate 56.0
S&P 500 47.6

Table 4.5: Accuracy of the ARMA-predictions.

the labels in Section 4.2, as seen in Table 4.6.

Index 0 1
1 year rate 0.61 0.39
3 year rate 0.54 0.46
S&P 500 0.55 0.45

Table 4.6: Label distribution for the three series in the ARMA pre-
diction task.

Model 1 year 3 year S&P
F1 Acc F1 Acc F1 Acc

Random Classifier
Most Frequent 0.38 61.1 0.35 53.8 0.35 55.0
Stratified 0.47 54.4 0.51 50.4 0.48 52.9

TF-IDF

Random forest 0.46 62.0 0.50 53.3 0.46 55.7
SVM 0.46 62.3 0.49 56.6 0.45 56.6
Logistic regression 0.49 62.3 0.51 55.0 0.48 54.7
MLP 0.38 61.1 0.54 54.9 0.45 56.4

GloVe (pretrain)

Random forest 0.52 63.1 0.53 55.8 0.49 53.6
SVM 0.38 61.1 0.35 53.8 0.35 55.0
Logistic regression 0.48 61.7 0.54 55.8 0.52 57.8
MLP 0.52 62.2 0.35 53.8 0.50 55.0

GloVe (jointly trained)
MLP 0.38 61.1 0.35 53.8 0.36 54.6
Bidirectional LSTM 0.39 60.9 0.50 51.5 0.48 56.4

Sentence-BERT

Random forest 0.55 62.3 0.53 54.6 0.59 60.9
SVM 0.38 61.1 0.50 55.2 0.52 58.8
Logistic regression 0.57 61.6 0.57 57.4 0.62 62.6
MLP 0.51 62.5 0.57 56.9 0.55 59.4

BERT
Sigmoid 0.48 60.2 0.37 52.9 0.36 54.6
MLP 0.44 61.2 0.48 52.4 0.43 53.6

Table 4.7: Performance of used methods on classifying whether the
ARMA-prediction of an index on day k−1 was higher or lower than
the outcome on day k, given the news titles from day k.

The results in this section are a bit more aligned than in the previous task. SBERT is the
feature extraction technique that generally provides the best performance for this task. The
performance over the random baseline is highest for the S&P data. SBERT combined with

47



4. Results

Predictions
0 1

Labels
0 55% 6%
1 31% 8%

GloVe + random forest
1 year rate

Predictions
0 1

Labels
0 35% 19%
1 24% 22%

SBERT + logreg
3 year rate

Predictions
0 1

Labels
0 30% 16%
1 21% 24%

SBERT + logreg
S&P 500

Figure 4.3: Confusion matrices for some models related to the results
presented in Table 4.7. The metrics are from 646 test samples.

Model 1 year 3 year S&P
F1 Acc F1 Acc F1 Acc

Random classifier
Most frequent 0.38 61.1 0.35 53.9 0.36 55.1
Stratified 0.48 52.8 0.53 53.1 0.48 50.3

TF-IDF

Random forest 0.45 61.3 0.50 54.5 0.55 60.7
SVM 0.42 61.5 0.43 53.7 0.50 58.0
Logistic regression 0.47 61.0 0.52 56.7 0.55 60.2
MLP 0.57 61.8 0.36 53.6 0.46 56.3

GloVe (pretrain)

Random forest 0.50 60.2 0.51 52.3 0.50 57.7
SVM 0.38 61.1 0.35 53.9 0.36 55.1
Logistic regression 0.52 62.2 0.54 55.7 0.48 55.6
MLP 0.58 60.7 0.44 55.0 0.51 56.3

GloVe (jointly trained)
MLP 0.60 61.3 0.42 55.0 0.37 55.4
Bidirectional LSTM 0.43 61.1 0.45 52.8 0.40 54.2

Sentence-BERT

Random forest 0.56 63.6 0.55 56.5 0.59 61.5
SVM 0.38 61.1 0.53 57.4 0.51 59.3
Logistic regression 0.58 63.2 0.54 55.0 0.63 64.1
MLP 0.53 63.8 0.46 55.4 0.46 57.4

BERT
Sigmoid 0.48 60.9 0.35 53.5 0.50 54.3
MLP 0.53 58.6 0.35 53.8 0.41 54.4

Table 4.8: Performance of used methods on classifying whether the
ARMA-prediction of an index on day k−1 was higher or lower than
the outcome on day k, given the news titles from day k − 1.

Predictions
0 1

Labels
0 40% 21%
1 18% 22%

GloVe (joint) + MLP
1 year rate

Predictions
0 1

Labels
0 38% 17%
1 28% 18%

SBERT + random forest
3 year rate

Predictions
0 1

Labels
0 40% 15%
1 21% 24%

SBERT + logreg
S&P 500

Figure 4.4: Confusion matrices for some models related to the re-
sults presented in Table 4.8. The metrics are from 646 test samples.

48



4.3 ARMA Direction Predictions

logistic regression provides the best results for S&P for both the current day predictions in
Table 4.7 and the next day predictions in Table 4.8.

49



4. Results

50



Chapter 5

Discussion

In this chapter, I discuss the findings in Chapter 4 and explore potential implications of the
results.

Firstly, I evaluate the models in the IMDb task briefly. This is followed by evaluations
of the models in relation to the financial tasks in Sections 5.2 and 5.3. A section on the
used data follows. In the end of the chapter, I draw some general conclusions and formulate
recommendations for further research.

5.1 Evaluation of IMDb performance
The results on the IMDb dataset showed that BERT with a sigmoid output was the most
fitting model for the task with 91.6% accuracy. The BERT model with an MLP output per-
formed lower, perhaps due to overfitting on the training data. SBERT with logistic regression
was also quite close at a fraction of the training cost for BERT.

Another interesting note is that continued training of GloVe embeddings gave a signifi-
cant improvement over static embeddings – from 84.1% to 88.2%.

The best model of the traditional, non-transformer based models was the Bidirectional
LSTM at 90.1%. This model was also computationally demanding, needing more than 24
hours to converge.

It is safe to say that the collection of models are capable of capturing meaningful infor-
mation from text data, at least for this type of text and task.

5.2 Index Direction Evaluation
This section discusses the results presented in Tables 4.3 and 4.4.

51



5. Discussion

5.2.1 Model Evaluation
No model applied to the one year and three year rates gave any significant performance im-
provement over the random baselines. Reflections about the di�erence between time series
is further elaborated in Section 5.4.

Several models did however show a predictive ability on the S&P 500 index, both for
current day prediction and next day prediction. The simplest of the feature extraction tech-
niques – TF-IDF – provided several results in the top segment for both tasks. Random forest
and logistic regression performed well for both tasks, while SVM was less successful.

A few thoughts on why TF-IDF gave good results on the tasks follows.

Concatenated titles. The fact that the headlines are added up into a long string might be
a benefit for TF-IDF compared to sequential models such as bidirectional LSTM and
BERT. While the order of words in each sentence matters, the order of sentences should
not matter too much. TF-IDF does not take order into account, and is therefore in-
sensitive to whether the sentences are concatenated in a certain order.

Not very semantically demanding. The purpose of news titles are generally to distill the
information in an article into a few words. It seems likely that titles are clear and
succinct, which gives unambiguous formulations. Words like “outperform” and “excel”
seem likely to be features that imply an upward trajectory, as opposed to “bankcruptcy”
or “illicit”.

It is also noteworthy that the BERT model was at least 100 times more computationally
demanding than the models using TF-IDF or Sentence-BERT as features. Nevertheless, it did
not give any impressive results.

Comparing the two tasks – predicting today’s vs. tomorrows index movement – suggests
that predicting the movement of today can be done with a slightly higher accuracy. There is
however not a significant di�erence given the small test set. However, it is a reassuring result
that the accuracy for current day prediction is slightly higher than for next day prediction.

This task can be compared with the foundings of Ding et al. (2014) who compiled the
Reuters dataset I used. They scored 58.93% accuracy on predicting the direction of the S&P
500 index. This is to be compared with the best model I found on next day prediction – TF-
IDF and random forest scoring an accuracy of 59.1%. Ding et al. (2014) only used 174 samples
for testing, so it is not apparent that my results are an improvement.

5.2.2 Task Evaluation
The task of predicting the movement of financial indices in general is obviously highly pop-
ular, since there is an apparent possibility of profit. The e�ective market hypothesis intro-
duced by Malkiel and Fama claims that the price of an asset reflects all available information
regarding that asset. This would imply that analyzing historical news is pointless, since this
information is already reflected in the price. An argument for why natural language pro-
cessing is useful in the context of the e�ective market hypothesis is the sheer speed of the
information retrieval. Even though the models’ understanding of language is not as good as a
humans, it is capable of processing a lot of new information quickly. By assessing if and how
the new information has any implications for the price of an asset, the model can play a role

52



5.3 ARMA Direction Evaluation

in finding a suitable price of an asset. It can also be useful for reducing costs, compared to
an employee.

5.3 ARMA Direction Evaluation
This section discusses the results presented in Tables 4.7 and 4.8.

5.3.1 Model Evaluation
Similarly to the index direction task, the models reached the highest performance over the
random baseline for the S&P 500 index. The model results are however less ambiguous for
the ARMA direction task than for the index direction task. SBERT is the feature extraction
method that gives the best performance. When paired with logistic regression, it seems to
give decent results for all tasks and series. The confusion matrices in Figures 4.3 and 4.4 also
show that the model seems to make reasonable predictions, compared to TF-IDF + MLP for
S&P 500 shown in Table 4.1 which just predicts the most frequent label.

The accuracy of 64.1 % seen in Table 4.8 for SBERT + logistic regression is quite uncertain
due to the small data set. This does however suggest that the news titles have some predictive
power on the validity of the ARMA-prediction. A use case for this could be as a warning sys-
tem for when a more sophisticated time series model seems to make a suspicious prediction.
The NLP model can issue a warning when some probability threshold α is exceeded. For
instance, using SBERT as feature extractor and logistic regression with a threshold value of
α = 0.8, an accuracy of 74 % is achieved. This implies the model only makes predictions if
its more than 80 % certain. Given more data, this could possibly be a usable tool.

5.3.2 Task Evaluation
The purpose of this task was to evaluate if there is information in financial news headlines
which improves the performance of a traditional time series model. While the short response
is yes, a few clarifications should be made about the limitations of conclusions that can be
drawn.

Small data set. The data set is small – 1,846 samples in total. This implies high variance in
how well the test error approximates the actual error rate on unseen data. Furthermore,
it increases the risk of overfitting to the training data. This is elaborated further in
Section 5.4.

Limited time series model. The fitted ARMA(1,1)-model is rather simple and seldom used
in practice for financial forecasting. Evaluating financial news in conjunction with a
more sophisticated model with dependency structure between assets would be more
realistic.

However, several models did perform above the random baseline both in terms of F1-
score and accuracy.

53



5. Discussion

5.4 Data Evaluation
This section discusses the used data sets and implications for how the results can be inter-
preted.

5.4.1 News Data
The news data was the limiting factor in terms of size. Even though the number of articles
was rather large (∼114,000), it was restricted by the fact that it only covered roughly 1,800
days.

Another uncertainty about the news data set is the way the headlines were collected.
Some days have more news than others and it is unclear which criteria were used to gather
the collection. Also, predictions on a daily basis are problematic in terms of size since one
year only has 365 days. In order to get a substantial data set, one has to collect data quite a
lot of years back. Chances are that the way news are written and the frequency with which
they arrive are di�erent now compared to 20 years ago. This implies the data samples are
not identically distributed, which is problematic for generalization. Still, it is possible that
general patterns occur, which is consistent over time.

Finally, the time which the news are gathered, from 2006-10-20 to 2013-11-19, was a quite
turbulent time for the global economy. The global financial crisis took place 2007-2008 and
is likely not representable for the relation between news and financial indices in general.

5.4.2 Financial Data
Collecting financial data was a lot easier than collecting news data. The quality of the data
is generally better and it is easily available for long time spans.

The results on the S&P 500 index were more convincing than for the two treasury rates.
This does make sense with regards to the used news data which mainly concerns financial
news regarding large companies. The relation between news and treasury rates does not seem
as apparent, which is in line with my findings.

It would be interesting to include a more specific time series for an asset or a stock. Using
the price of oil or gold, as well as the stocks of large companies such as Google, Exxon or Apple
could make for interesting results and discussion.

5.5 Conclusions
While it is di�cult to make general and certain conclusions given the small size of the data
set, the results are certainly intriguing. My findings confirm that news titles do have some
predictive power on the S&P 500 index, as well as on the validity of ARMA-models fitted to
both treasury rates and S&P 500. The performance is however most noticeable for S&P 500.

Another main takeaway is that the method for feature extraction seems highly problem-
dependent. The BERT model performed the best on the IMDb data, whereas it performed
poorly on all other tasks. However, SBERT produced good results for the all of the tasks.
BERT and SBERT are largely similar, but obviously had big di�erences in performance. My

54



5.6 Future Work

conclusion from this is that for an unknown problem, it is not always best with a large,
computationally heavy model. In fact, TF-IDF with logistic regression performed better than
BERT with a sigmoid output node in almost all tasks, except for the benchmarking task.

5.6 Future Work
A few notes on what aspects of this project that would be interesting to look into further.
A lot of the uncertainty in this work comes down to the small data set, and the quality of
the data. This is a natural starting point for further investigation. Some aspects which have
repeatedly come to mind during the work with this report are listed below.

More data. This is one of the largest obstacles I experienced in this project – the lack of data.
Using more data would allow for better understanding of how the model generalizes.
The models might also overfit less and thus capture more true complex patterns in the
training data.

Better data. As stated in Section 5.4.1, there are some uncertainties about the data and how
it was collected. A more structured gathering of data with a higher quality assurance
would make conclusions more robust.

Visualizing models. A deeper understanding of which parts in the text data that are impor-
tant would be beneficial. This would give more intuition to how the model works, and
could be used to validate the functionality of the model.

Better time series model. The ARMA(1,1) model used in this project is rather simple. A nat-
ural extension would be to introduce a more advanced model for time series modelling
and see if including news data still improves the predictions.

Specific application. The task evaluated in this project was mainly chosen as indicators for
if the data holds any predictive power on time series. The practical applications for
the tasks are limited. It would be interesting to further investigate how this could be
used in practice, and assess the validity of such an application.

55



5. Discussion

56



References

Alammar, J. (2018). The illustrated transformer. http://jalammar.github.io/
illustrated-transformer/.

Arora, A., Datta, A., and Ding, V. (2019). Using news titles and financial features to predict
intraday movements of the DJIA. Project report.

Chollet, F. (2017). Deep Learning with Python. Manning Publications Company.

Chollet, F. et al. (2020). Keras. https://keras.io.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Ding, X., Zhang, Y., Liu, T., and Duan, J. (2014). Using structured events to predict stock price
movement: An empirical investigation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1415–1425.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Hamilton, J. (1994). Time series analysis. Princeton University Press, Princeton, N.J.

Heston, S. L. and Sinha, N. R. (2017). News vs. sentiment: Predicting stock returns from
news stories. Financial Analysts Journal, 73(3):67–83.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012).
Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2019). Al-
bert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942.

57

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
https://keras.io
http://www.deeplearningbook.org
http://www.deeplearningbook.org


REFERENCES

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural networks,
6(6):861–867.

Li, X., Xie, H., Chen, L., Wang, J., and Deng, X. (2014). News impact on stock price return
via sentiment analysis. Knowledge-Based Systems, 69:14–23.

Lindgren, G. (2014). Stationary stochastic processes for scientists and engineers. CRC Press, Taylor
& Francis Group, Boca Raton.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C. (2011). Learning word
vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon,
USA. Association for Computational Linguistics.

Malkiel, B. G. and Fama, E. F. (1970). E�cient capital markets: A review of theory and
empirical work. The journal of Finance, 25(2):383–417.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval.
Cambridge University Press, Cambridge, UK.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). E�cient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Education.

Othan, D., Kilimci, Z. H., and Uysal, M. (2019). Financial sentiment analysis for predicting
direction of stocks using bidirectional encoder representations from transformers (BERT)
and deep learning models. In International Conference on Innovative and Intelligent Technolo-
gies.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.

Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084.

Ting, K. M. (2017). Precision and Recall, pages 990–991. Springer US, Boston, MA.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u.,
and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc.

Xie, Q., Dai, Z., Hovy, E. H., Luong, M., and Le, Q. V. (2019). Unsupervised data augmenta-
tion. CoRR, abs/1904.12848.

Xing, F. Z., Cambria, E., and Welsch, R. E. (2018). Natural language based financial forecast-
ing: a survey. Artificial Intelligence Review, 50(1):49–73.

58



Appendices

59





Appendix A

Useful Links

• Link to my GitHub repository. https://github.com/backmag/NLP-finance

• The used BERT-model from TensorFlow Hub – https://tfhub.dev/tensorflow/
bert_en_uncased_L-12_H-768_A-12/2

• Link to GitHub repository where the used Reuters dataset is hosted – https://
github.com/duynht/financial-news-dataset

• Link to the GitHub repository sentence-transformers, where the SBERT-model I used is
available – https://github.com/UKPLab/sentence-transformers

• Pre-trained GloVe word vectors provided by Pennington et al. –
https://nlp.stanford.edu/projects/glove/

61

https://github.com/backmag/NLP-finance
https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2
https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2
https://github.com/duynht/financial-news-dataset
https://github.com/duynht/financial-news-dataset
https://github.com/UKPLab/sentence-transformers
https://nlp.stanford.edu/projects/glove/


A. Useful Links

62



Appendix B

Hyperparameter Optimization

The tested range of hyperparameters and the optimal set found are listed in this appendix
for a few models. The tuning was done for random forests and multilayer perceptrons. The
purpose of this appendix is to give a detailed explanation of the methodology, rather than
present all tested sets of hyperparameters.

B.1 Random Forest
Two hyperparameters were optimized for the random forest model, in the following ranges.

max_depth : None, 50, 100

n_estimators : 250, 500, 750, 1000

The best hyperparameters found through a grid search are displayed in Table B.1.

max_depth n_estimators

1 year rate
TF-IDF None 250
GloVe 50 1000
SBERT 100 250

3 year rate
TF-IDF 100 250
GloVe None 1000
SBERT 100 250

S&P 500
TF-IDF 50 500
GloVe 100 500
SBERT None 500

Table B.1: Used hyperparameters for random forest model on cur-
rent day predictions as presented in Table 4.3.

63



B. Hyperparameter Optimization

max_depth n_estimators

1 year rate
TF-IDF None 500
GloVe 50 250
SBERT 50 250

3 year rate
TF-IDF None 250
GloVe 50 750
SBERT None 750

S&P 500
TF-IDF 50 500
GloVe None 250
SBERT 50 750

Table B.2: Used hyperparameters for random forest model on next
day predictions as presented in Table 4.4.

B.2 Multilayer Perceptron
For the regular feed-forward network, the hyperparameters in the following ranges were
tested.

batch size : 8, 16, 32

nodes1 : 50, 100, 250, 500

nodes2 : 01, 50, 100, 250, 500

dropout rate (dr) : 0.1, 0.3, 0.5

learning rate (lr) : 1e-3, 1e-4, 1e-5

optimizer : RMSprop, Adam

Out of the combinations of parameters above, 50 sets are randomly selected without
replacement. These are then trained using an early-stopping callback with patience 2. A val-
idation split of 0.2 is used, and the set of hyperparameters which yields the highest validation
accuracy is chosen.

10 implies only one hidden layer.

64



B.2 Multilayer Perceptron

batch size nodes1 nodes2 dr lr optimizer

1 year rate
TF-IDF 32 50 0 0.3 1e-5 Adam
GloVe 8 50 0 0.5 1e-5 Adam
SBERT 32 500 100 0.3 1e-3 RMSprop

3 year rate
TF-IDF 32 100 100 0.1 1e-5 RMSprop
GloVe 16 50 0 0.3 1e-5 RMSprop
SBERT 32 50 0 0.1 1e-3 Adam

S&P 500
TF-IDF 16 250 50 0.5 1e-3 RMSprop
GloVe 32 500 500 0.1 1e-3 Adam
SBERT 32 250 250 0.5 1e-4 Adam

Table B.3: Used hyperparameters for multilayer perceptron on cur-
rent day predictions as presented in Table 4.3.

batch size nodes1 nodes2 dr lr optimizer

1 year rate
TF-IDF 32 50 250 0.1 1e-5 Adam
GloVe 8 50 0 0.5 1e-5 RMSprop
SBERT 8 100 0 0.1 1e-5 RMSprop

3 year rate
TF-IDF 16 50 0 0.1 1e-3 RMSprop
GloVe 8 500 100 0.1 1e-3 Adam
SBERT 32 50 50 0.1 1e-4 RMSprop

S&P 500
TF-IDF 16 250 100 0.1 1e-4 RMSprop
GloVe 8 500 0 0.3 1e-4 RMSprop
SBERT 8 50 500 0.3 1e-5 RMSprop

Table B.4: Used hyperparameters for multilayer perceptron on next
day predictions as presented in Table 4.4.

65





INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-11

EXAMENSARBETE Forecasting Financial Indices from Financial News
STUDENT Gustaf Backman
HANDLEDARE Pierre Nugues (LTH), Edvard Sjögren (Kidbrooke Advisory)
EXAMINATOR Marcus Klang (LTH)

Slå börsen med morgontidningen?

POPULÄRVETENSKAPLIG SAMMANFATTNING Gustaf Backman

Snabb och träffsäker hantering av data är av stort intresse inom många områden
idag. De senaste åren har särskilt metoder inom automatisk språkhantering sett stora
framsteg. I detta arbete visar jag hur deep learning och nyhetstitlar kan användas för
att förutspå rörelsen på börsen med en träffsäkerhet på 59 %.

För att förstå hur en finansiell tillgång utveck-
lar sig över tid använder idag företag ofta
tidsseriemodeller som bara tar hänsyn till tidi-
gare värden av exempelvis en aktie eller ränta.
Dessutom sitter någon och läser vad som händer i
världen och tolkar hur det påverkar finansiella in-
dex. Detta tar tid och känns en aning ineffektivt,
kanske kan det automatiseras och förbättras?
Mitt examensarbete provar olika sätt att tolka

rubriker från finansiella nyheter i USA och un-
dersöker hur de påverkar det amerikanska börsin-
dexet S&P 500 samt två obligationsräntor. Jag
har använt olika modeller för att göra om text till
siffror. Både äldre varianter som i princip bara
räknar vilka ord som finns i rubriker från en dag,
samt modernare modeller såsom BERT, utvecklad
av Google 2018. Dessa modeller för texttolkning
kombineras sedan med någon typ av matematisk
modell för att avgöra om ett index går upp eller
ner, exempelvis logistisk regression.
Mina resultat visar att det går att förutspå om

börsindexet S&P 500 går upp eller ner följande
dag, åtminstone jämfört med att låta en bläck-
fisk gissa som i fotbolls-VM 2010. Vad gäller de
två obligationsräntorna kan man dock lika gärna
singla slant enligt mina resultat.

1 year rate 3 year rate S&P 500
0

10

20

30

40

50

60

70

Ac
cu

ra
cy

Random
Best Model

Träffsäkerhet på om ett index går upp eller ner
kommande dag. Min modell är inte bättre än

slumpen för de två räntorna, men bättre för S&P.

Den bästa modellen för S&P 500 var TF-
IDF, en sorts normaliserad variant av ordräkning,
tillsammans med en random forest-klassifierare.
Båda dessa modeller har ganska många år på
nacken, men verkar fungera bra till just denna ap-
plikation.

Dessa metoder kan exempelvis användas för att
i realtid signalera när en nyhet verkar särskilt vik-
tig och hur det påverkar köp/sälj-läget för en aktie
eller annat index.


	Problem Description
	Background
	Motivation
	Objective
	Scope

	Theoretical Background
	Time Series Analysis
	Autoregressive (AR) Model
	Moving Average (MA) Model
	Autoregressive Moving Average (ARMA) Model

	Representation of Language
	One-hot Encoding
	Bag-of-words & TF-IDF
	Word Embeddings

	Classification Models
	Tree-based & Feed Forward Models
	Recurrent Models
	Transformers

	Overfitting & Hyperparameter Optimization
	Train, Validation, and Test Set
	Hyperparameters
	Regularization
	Cross-Validation
	Grid Search & Random Search

	Performance Metrics

	Method
	Data Collection and Pre-Processing
	IMDd Dataset – Benchmarking
	Reuters Financial News Dataset

	Time Series Processing
	Text Vectorization
	TF-IDF
	GloVe
	Sentence-BERT
	BERT

	Models
	Tree-based & Feed Forward Models
	Recurrent Models
	Transformer Models

	Hyperparameter Optimization
	Implementation Notes

	Results
	Benchmark Evaluation
	Index Direction Predictions
	ARMA Direction Predictions

	Discussion
	Evaluation of IMDb performance
	Index Direction Evaluation
	Model Evaluation
	Task Evaluation

	ARMA Direction Evaluation
	Model Evaluation
	Task Evaluation

	Data Evaluation
	News Data
	Financial Data

	Conclusions
	Future Work

	References
	Appendix Useful Links
	Appendix Hyperparameter Optimization
	Random Forest
	Multilayer Perceptron


