
MASTER’S THESIS 2020

Federated Learning Used to
Detect Credit Card Fraud
Madeleine Jansson, Måns Axelsson

ISSN 1650-2884
LU-CS-EX: 2020-34

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-34

Federated Learning Used to Detect Credit
Card Fraud

Madeleine Jansson, Måns Axelsson

Federated Learning Used to Detect Credit
Card Fraud

Madeleine Jansson
madeleeine.jansson@gmail.com

Måns Axelsson
mans_axelsson@msn.com

June 29, 2020

Master’s thesis work carried out at IBM.

Supervisors: Rasmus Ros (LTH), rasmus.ros@cs.lth.se
Mehmood Alam Khan (IBM), mehmood.khan@ibm.com

Peter Forsberg (IBM), peter.forsberg@ibm.com

Examiner: Volker Krüger (LTH), volker.krueger@cs.lth.se

mailto:madeleeine.jansson@gmail.com
mailto:mans_axelsson@msn.com
mailto:rasmus.ros@cs.lth.se
mailto:mehmood.khan@ibm.com
mailto:peter.forsberg@ibm.com
mailto:volker.krueger@cs.lth.se

Abstract

Credit card fraud is a common problem for consumers and financial institu-
tions all over the world. They are loosing billions of dollars every year. Thus,
an e�ective Fraud Detection System (FDS) is important to minimise the loss
for financial institutions and cardholders. A common solution to detect fraud
is to use machine learning algorithms as they help to predict future outcomes
and recognise patterns by analysing massive quantities of data. In order to get a
well performing model a large dataset is required, but an issue with credit card
transaction datasets are that they are skewed, i.e. there are significantly fewer
samples of fraudulent than legitimate transactions. Moreover, due to the data
privacy and security associated with credit card transaction datasets, banks and
other finical institutions are usually not allowed to share their transaction data.
These problems together make it di�cult for the centralised FDS to learn the
patterns of fraud and, hence, to detect them. In this thesis, we propose a frame-
work for training of a fraud detection model with federated learning, i.e. a ma-
chine learning setting where multiple entities collaborate in solving a machine
learning problem under the coordination of a central server or service provider.
With this approach financial institutions can collectively reap the benefits of a
shared model, which has seen more fraud than each bank alone, without sharing
the dataset with each other. Hence, the sensitive information of the cardholders
is protected. Our result of this thesis indicates that the federated model (Feder-
ated Averaging) can perform and even outperform the centralised model (Multi
Layer Perceptron) when trying to detect credit card fraud.

Keywords: Credit card fraud · Skewed dataset · Federated learning

2

Acknowledgements

We would like to take the opportunity to thank the people that made this project possible.
Firstly, a big thanks to our supervisors Rasmus Ros from LTH and Mehmood Alam Khan
as well as Peter Forsberg from IBM. They have all supported us during the work by sharing
their expertise, helped us with necessary materials and not least helped to steer us in the right
direction when needed. Secondly, we would like to thank the people at IBM that were kind
enough to o�er their support this spring.

3

4

Contents

1 Introduction 7
1.1 Research Question . 9
1.2 Contribution . 9

2 Background 11
2.1 Fraud . 11

2.1.1 Machine Learning for Fraud Detection 13
2.1.2 Fraud Areas . 13
2.1.3 Issues and Challenges with Fraud Detection Systems 14
2.1.4 Skewed Data . 14
2.1.5 Principal Component Analysis . 16

2.2 Performance Measurement . 17
2.3 Centralised Learning . 19

2.3.1 Multi Layer Perceptron . 19
2.4 Federated Learning . 22

2.4.1 Non Identical Independent Distributed Data 24
2.4.2 Federated Averaging . 25
2.4.3 Secure Computations . 26
2.4.4 Privacy-Preserving Disclosures . 27

3 Related Work 31

4 Methodology 33
4.1 Dataset . 33
4.2 Data Pre-Processing . 36
4.3 Interview – Federated Averaging . 37
4.4 Assumptions and Limitations . 38

5 Implementation of Models 41
5.1 Multi Layer Perceptron . 41

5

CONTENTS

5.2 Federated Averaging . 42

6 Results 43
6.1 Interview – Federated Averaging . 43
6.2 Multi Layer Perceptron and Federated Averaging 44

6.2.1 Skewed Data . 44
6.2.2 Non Independent Identically Distributed Data 45
6.2.3 SMOTE Non Independent Identically Distributed Data 47

7 Discussion 49

8 Future Work 51

9 Conclusion 53

6

Chapter 1

Introduction

In the article Fraud: ’A Serious Problem’ written by Tracy Kitten [27] she captures how society
and especially the financial institutions su�er from fraud.

“Fraud continues to hamper financial institutions around the globe, and the
problems will only worsen, unless banks and credit unions put forth e�ort and
dollars to mitigate risk.”

Financial institutions have carried out and are carrying out extensive research in order to
prevent and detect fraud, regardless of type. Fraud is however a complex concept as it in-
volves di�erent behaviours and tactics which constantly changes. One area of fraud which is
very common nowadays and where a lot of research has been carried out is fraud within the
banking industry, and more precisely credit card fraud [2]. This thesis will focus on this type
of fraud.

Today, credit card fraud is a frequent problem for consumers and banks all over the world
and costs banks billions of dollars every year [46]. One of the driving factors to this is that
the electronic commerce has grown rapidly and has resulted in more purchases being made
over the internet. This in turn means that credit card details are available on the internet to a
further extent than before and makes it easier for fraudsters to access the details. To combat
fraud there are mainly two mechanisms used, where one mechanism is designed to prevent
fraud and the other to detect fraud [2]. When developing computer systems to detect fraud
it is common to use machine learning (ML) as a tool since it is an e�cient way of teaching a
system how to make accurate predictions when fed with data [16]. Di�erent machine learning
algorithm are used depending on the data and what kind of fraud the model should detect.

Credit card transaction datasets from banks do not only contain highly sensitive infor-
mation but the fraudulent transactions are also usually in minority compared to the non-
fraudulent transactions, i.e. the dataset i skewed [10]. Both of these issues introduces chal-
lenges when building a fraud detection system. The highly sensitive information raises ques-
tions such as who can see the information and what can be shared. The problem of skewed

7

1. Introduction

data introduces a challenge of how to train the model in the best way without over- or un-
derfitting it. When aiming to have a model that performs well in detecting credit card fraud
it is necessary to have a metric that describes the models ability of doing so. Working with
a skewed dataset there are a few measurements that are better suited than others to measure
such performance. [3]

Since the data from banks contains highly sensitive information it is traditionally stored
and used locally. In other words, banks access and use its own data to train various machine
learning models to be able to detect fraudulent behaviours. This is what is referred to as a
centralised machine learning approach since not only the data is stored locally but the models
are as well. Today, this machine learning approach is usually used in the financial industry due
to its e�ciency of handling massive quantity of data and extract patterns [2]. As mentioned,
there are plenty of di�erent machine learning algorithms and one model which has shown
good results in other research papers for the classification problem, in this case to classify
fraudulent or non-fraudulent transactions, is the Multi Layer Perceptron (MLP) [23].

A problem with the centralised approach is, however, that di�erent banks might have
seen di�erent types of fraudulent transactions which would limit their ability to detect new
types of fraudulent transactions. A possible solution to this would be for banks to collabo-
rate in order to share between them all types of fraudulent transactions that they have en-
countered. However, such collaboration is a sensitive area since the banks do not want its
competitors to know how much, or what type of fraud they are exposed to. The rather new
machine learning approach called federated learning could however be a feasible solution to
this problem [34]. The di�erence between the centralised and the federated machine learning
approach, for this problem, is that there would not only be one bank involved in the training
of the fraud detection model but several. The process of the federated learning approach is
that each bank trains a beforehand determined model and then passes up encrypted informa-
tion to a central model. The outcome will be one central model which have been collectively
trained by way of averaging the results from each bank’s encrypted information. Finally, this
central model is shared with each bank and hopefully the banks are now able to detect fraud-
ulent transactions to a wider extent. When performing this federated learning no sensitive
information is shared, just as in the centralised approach. The final federated model will have
seen more fraudulent transactions than then the centralised model trained by an individual
bank.

In this thesis the Multi Layer Perceptron is used as a baseline model. Then, the MLP is
modified to the federated setting which is referred to as Federated Averaging (FedAvg) [62].
The scope of this thesis is to investigate if the Federated Averaging model is suited for fraud
detection in a credit card transaction dataset by studying limitations, privacy and security
concerns for Federated Averaging and comparing the results to the centralised Multi Layer
Perceptron model.

The outline of this thesis is as follows. Section 2 contains a thorough background of what
fraud is, where it might happen, how to combat it by using machine learning techniques
as well as issues and challenges in connection therewith. Further, Section 3 will present an
overview of existing research in this field. In Section 4 the dataset used for training and eval-
uation of the models are presented. The proposed technique for FDS is detailed in Section 5.
The results of our experiments are presented in detail in Section 6 and then discussed in
Section 7. In Section 8 suggestions are made for future work in relation to the topic of this
thesis. Finally, a conclusion of our work is presented in Section 9.

8

1.1 Research Question

1.1 Research Question
The main aim of this thesis is to investigate the federated learning technique and to see where
it can be applied. The thesis question is: how well does the Federated Averaging model detects
credit card fraud transactions in contrast to the centralised Multi Layer Perceptron model?

1.2 Contribution
The main contribution of this master thesis project was to give IBM a better understanding
of how federated learning works and in what areas this learning technique can be applied.
In our thesis, Federated Averaging has been applied to the banking industry where the aim
was to detect credit card fraud. The federated model showed progress on the credit card
transaction dataset obtained from Kaggle [25].

9

1. Introduction

10

Chapter 2

Background

In order to understand the issues and challenges when trying to detect credit card fraud it is
important to know what fraud is, how it is used within the banking industry and also how it
can be detected. Sections 2.1–2.1.2 contain an explanation of fraud, machine learning as a tool
to detect fraud and di�erent areas of fraud. Then, in Sections 2.1.3–2.2 issues and challenges
when working with machine learning for credit card fraud detection are explained. Finally,
Sections 2.3–2.4 explains how to detect credit card fraud by applying the centralised and the
federated machine learning approaches.

2.1 Fraud
Fraud is a crime where the purpose is to appropriate money. According to The Association
of Certified Fraud Examiners [36] (ACFE), fraud is defined as:

“The use of one’s occupation for personal enrichment through the deliberate
misuse or misapplication of the employing organization’s resources or assets.”

ACFE [55] divides fraud into two categories, namely, internal, an employee commits fraud
against his/her organisation, or external fraud against a company, which involves a wide range
of di�erent schemes. Regardless of the nature of the fraud this crime has a huge impact on the
economy, laws and individuals in the society. Extensive e�ort has been put into preventing
fraud in the financial industry and today there are several fraud detection mechanisms to
prevent and detect fraudulent behaviour. As stated by Abdallah et al. [2] these mechanisms
are included in the Fraud Prevention Systems (FPS) and Fraud Detection Systems (FDS). Neither
FPS nor FDS seem to be defined terms but rather umbrella terms used by the market to
describe certain mechanisms for prevention and detection of fraudulent behaviour.

Starting with FPS, which is the first layer of protection, in place to secure the technolog-
ical systems against fraud. Abdallah et al. [2] states that the mechanisms in this layer restrict,
suppress, destruct, destroy, control, remove or prevent the occurrence of cyber-attacks in

11

2. Background

hardware and software systems. Such mechanisms are, for instance, firewalls, encryption
algorithms, electronic signature and many more.

Moving on to FDS, which is the next layer and which actually tries to detect fraudu-
lent activity as they enter the system. The two main approaches in FDS are, according to
Sorournejad et al. [50], anomaly based fraud detection and misuse based fraud detection.

Anomaly based fraud detection means that we study the behaviour of each client and
when abnormal behaviour occurs the system will raise an alarm for suspected fraud. This
approach builds on data mining, which involves statistical, mathematical, artificial intelli-
gence and machine learning techniques to extract possible valuable information from large
datasets. In contrast to anomaly based fraud detection, misuse based fraud detection is fixed
in its setting. That is, fraudulent behaviours are learnt beforehand by the system, thus, the be-
haviours will be the same for all clients. This means that if any client performs a pre-learned
behaviour or equivalent the system will alarm for suspected fraud. This is an approach which
utilises rule-based statistics to reveal suspicious events.

Figure 2.1 visualises the protection system mechanisms for combating cyber based fraud
and is inspired by Abdallah et al. [2].

Protection mechanism for combating cyber-crime (fraud)

Preventation Detection

Firewall

Encryption/
Decryption

Anomaly Detection Misuse Detection

Supervised

Semisupervised

Unsupervised

Classification Algorithms

Regression Algorithms

Clustering Algorithms

Dimensionality
Reduction
Algorithms

Figure 2.1: Protection system mechanisms for combating cyber-
crime.

Abdallah et al. [2] claims that the most common strategy to detect fraud is to apply pat-
tern recognition where the patterns contain information about the cardholders behaviour
such as transaction amount, time gap since last purchase, day of the week, item category,
customer address, etc. Any new spending behaviour is compared to the previous ones and if
the behaviour seems to be inconsistent with the cardholder’s profile it will be considered as
suspicious.

Further, it is stated by Abdallah et al. [2] that, misuse detection systems are rarely used
since neither legitimate nor fraudulent behaviour is static. Instead, they argue, that the
anomaly based fraud detection systems are more common due to three main advantages: (i)
fraud patterns are automatically obtained from data; (ii) by extracting patterns of fraudulent
behaviour the system can alarm when detecting similar behaviour and as a consequence these

12

2.1 Fraud

can be prioritised; (iii) not previously detected fraudulent behaviours might be detected.
It is clear that, fraud detection systems build on machine learning techniques, namely,

supervised learning, unsupervised learning and semi-supervised learning. These techniques
are discussed further in Section 2.1.1.

2.1.1 Machine Learning for Fraud Detection
By using machine learning, i.e. the science of getting computers to act without being explic-
itly programmed to do so, it is possible to get rather accurate results when predicting risk
and abnormal behaviour in a dataset, such as credit card fraud [16]. The reason for this is
that ML enables the prediction of future outcomes and recognition of patterns by analysing
massive quantities of data.

As mentioned there are di�erent machine learning techniques and the four main cate-
gories are as follows. First, supervised learning which means that the training data passed into
the algorithm is labeled. Second, unsupervised learning which means that the training data
passed into the algorithm is not labeled. Third, semi-supervised learning which is a technique
that is a mixture of supervised and unsupervised learning, i.e. some labeled and some unla-
beled training data is passed into the algorithm. Finally, there is also reinforcement learning
which is a learning method that interacts with its environment by producing actions and
discovering errors or rewards [16].

When implementing machine learning algorithms to detect credit card fraud the clas-
sification problem, in this case to classify fraudulent or non-fraudulent transactions, can be
categorised as either supervised, unsupervised or semi-supervised learning depending on how
the dataset has been prepared. It is claimed by Abdallah et al. [2] that the most common data
mining method to build credit card FDS is by applying a classification model, which is a type
of supervised learning technique.

2.1.2 Fraud Areas
According to Abdallah et al. [2] fraud is almost always present when money is involved in
any technological system. Further, they have mapped the most common areas of fraud to be
bank, insurance, telecommunication and internet marketing fraud, see Figure 2.2.

Fraud Areas

Bank Fraud

Credit
Card

Online
Fraud

O�ine
Fraud

Money
Laundering

Insurance Fraud

Healthcare
Insurance

Automobile
Insurance

Home
Insurance

Crop
Insurance

Telecommunication
Fraud

Internet Marketing
Fraud

Online
Auction

Web
Advertising

Figure 2.2: The most common areas of fraud according to [2].

13

2. Background

Out of the four main areas presented in Figure 2.2 bank fraud is the most researched
one [2] and credit card fraud is something that most people are aware of. Today credit cards
are widely used as they are convenient to bring, in contrast to cash, and as they make it is easy
to track spendings. Even though there exist several authorisation techniques, such as signa-
tures, credit card number, identification number, cardholder’s address etc., it is still possible
for fraudster to hack your card. According to Patidar et al. [42], credit card fraud can be
divided into two categories: o�ine credit card fraud which means that the credit card is stolen
by the fraudsters and then used; online credit card fraud which means that the cardholder’s
details are taken either by skimming, site cloning, credit card generators or phishing.

This thesis will focus on bank fraud and more precisely online credit card fraud.

2.1.3 Issues and Challenges with Fraud Detection Sys-
tems

There are lots of challenging issues when working with fraud detection systems but usually
four main topics are discussed: (i) concept drift; (ii) skewed class distribution; (iii) large amount
of data; (iv) support of real time detection.

Firstly, concept drift is, according to Dal Pozzolo et al. [10], a problem that occurs when
the model is trained and has learnt a certain pattern of the customer or imposter but then the
behaviour changes. That is, the model is not su�ciently dynamic and does not learn as fast as
the behaviour might change. Therefore, it is of great importance for the FDS to distinguish
and classify fraudulent behaviour as well as legitimate transactions e�ciently.

Secondly, skewed class distribution is, as described by Dal Pozzolo et al. [10], one of the
most critical issues faced by FDS and refers to the heavily imbalanced data. There are dif-
ferent approaches to solve this problem, such as data level approaches and algorithmic level
approaches that are presented in Section 2.1.4.

Thirdly, the large amount of data and its high dimensionality makes the process of data
mining and detection very complex [18]. Therefore, it is common to apply data reduction ap-
proaches, including dimensionality and numerosity reduction. Principal Component Anal-
ysis (PCA) is a common dimensionality reduction approach and is explained in Section 2.1.5.

Lastly, the problem of real time detection shows that it is important for the system to
detect fraud at an early stage to be able to stop it or to be able to take actions swiftly. Di�erent
techniques have been deployed to enhance the real time detection, amongst others, Very Fast
Decision Tree (VFDT) [35] and Self-Organization Map (SOM) [44].

This thesis will only deal with (ii) skewed class distribution and (iii) large amount of data.

2.1.4 Skewed Data
In a dataset with credit card transactions the amount of fraudulent transactions are signif-
icantly less then the amount of non-fraudulent transactions which leads to, as described by
Dal Pozzolo et al. [12] a skewed dataset, i.e. big di�erences in the number of data points for
each class. The dataset in this thesis is heavily skewed which can be seen in Section 4.1.

According to Sorournejad et al. [50], skewed datasets are problematic as they cause the
detection of fraudulent transactions to be very di�cult and imprecise. This is mainly be-
cause running the classification model, i.e. a classifier, on skewed data could either result

14

2.1 Fraud

in unbalanced performance on the di�erent classes [5] or a classifier could even completely
ignore the minority class [2]. Following the terminology of Krawczyk [28] there are two main
approaches to solve this problem, namely, data level approaches and algorithmic level approaches.

Starting with data level approaches, this is described as pre-processing of the dataset in
order to make it more balanced before feeding it into the classifier. This, in turn, makes it
easier for the classifier to classify the di�erent classes correctly. Furthermore, the data level
approaches can be divided into two subcategories; undersampling and oversampling.

The process of undersampling down-sizes the majority class by removing some of its
observations until the dataset is balanced [2]. Chawla et al. [8] describe two di�erent un-
dersampling techniques; Random Undersampling (RUS) and Direct Undersampling. RUS means
that data from the majority class is removed randomly. While in direct undersampling, the
observations that are removed from the majority class are not randomly removed, hence, they
are known.

The oversampling technique is based on oversampling the minority class in order to get
more observations of that particular class. However, balancing the dataset in this way might
result in overfitting the model on the minority class as this class is now up-sampled, i.e. has
more data points than before. Last et al. [29] states that, the most commonly used oversam-
pling technique is called Synthetic Minority Oversampling Technique (SMOTE). The main idea
of SMOTE is defined by Bowyer et al. [7] as oversampling in the feature space by producing
synthetic minority data points in the proximity of the observed ones. This is done by cre-
ating vectors between one sample and its K closest neighbors in the feature space with the
same class. Then, new samples are generated from the minority class on these K vectors, see
Figure 2.3 inspired by [56]. According to Brownlee [29], however, a problem with SMOTE
is that synthetic datapoints are created without taking into account the majority class. This
results in possible ambiguous examples if there exist an overlap of the classes.

Figure 2.3: The filled data points belongs to the majority class while
the big points with a cross belongs to the minority class. In both the
left and right hand side figure K = 2 since each data point in the
minority class creates vectors to its two closest neighbours within
the same class. Left: Before SMOTE has been applied to the dataset.
Right: After SMOTE has been applied to the dataset and new sam-
ples are generated from the minority class on these K vectors, visu-
alised as small data points with a cross.

In contrast to data level approaches, algorithmic level approaches do not pre-process the
data. Instead Krawczyk [28] outlines the algorithmic approach as a tool to modify the model,

15

2. Background

either by using cost sensitive learning, explained further in Section 2.2, or by adapting the
classification algorithms to be able to handle minority class detection, i.e. One-Class Learner.

Figure 2.4, which is a modified example of the one in [2], provides an overview of the
di�erent balance approaches that can be applied to handle skewed data.

Balance Approaches

Data Level Approaches

Oversampling Undersampling

Random Over-
sampling (ROS)

Synthetic
Minority

Oversampling
Technique
(SMOTE)

Random Under-
sampling (RUS)

Algorithmic Level Approaches

One-Class Learner
Cost Sensitive

Learning

Direct Under-
sampling (DUS)

Figure 2.4: Balance approaches to handle skewed data.

Today, Abdallah et al. [2] argue that, data level approaches are preferred to handle skewed
data problems as they are easy to implement and do not lead to an increase in computing
resources needed or training time. In accordance with [12], SMOTE has been chosen as a
suitable data level approach for this thesis.

2.1.5 Principal Component Analysis
As mentioned in Section 2.1.3, a dataset with a large amount of data and high dimensional-
ity, such as a dataset with credit card transactions, can lead to complications. One way to
handle the high dimensionality in a dataset is to reduce the number of dimensions, i.e. re-
duce the amount of features, and one such method is Principal Component Analysis (PCA) [18].
By reducing the number of dimensions when using PCA the result is, just like most of the
dimensionality reduction methods, that the calculations are faster and also the data mining
gets easier since there are less parameters and dimensions to take into account.

Principal Component Analysis is described in [48] as reducing the dimensions of the
features in the dataset with the goal to describe it with orthogonal vectors that are positioned
in the direction of the highest variance. These vectors are called principal components and the
first principal component is pointed in the direction with the highest variance, then the
variance decreases as the order of the components increases. The higher the order of the
vector is the less representative it is of the data. These components are found by computing
the covariance matrix of the features and calculating the eigenvectors and eigenvalues. Each
eigenvector is a principal component where the eigenvector corresponding to the highest
eigenvalue is the first one.

When the principal components have been computed, then, each observation is projected
on each vector. Now, instead of expressing the data in terms of its original features it can be
expressed in terms of principal components. This, as stated by Patel et al. [41], not only

16

2.2 Performance Measurement

reduces the data dimensionality but also makes it secure since the transformation of the
features masks the features nature, thus, the data gets anonymised which helps to preserve
the privacy.

2.2 Performance Measurement
To be able to decide how well a machine learning model is, it is of importance to have a good
performance measurement which can indicate the correctness and accuracy of the model.
When working with a binary classification model, i.e. a binary classifier, there are a few mea-
surements that are suitable and the most intuitive metric that can be used for this problem
is a confusion matrix. A confusion matrix shows four di�erent outcomes for the predictions,
namely: (i) True Positive, a fraudulent transaction which is the predicted as fraud; (ii) False Pos-
itive, not a fraudulent transaction but is predicted as fraud; (iii) False Negative, a fraudulent
transaction which is predicted as not fraud; (iv) True Negative, not a fraudulent transaction
and is also predicted as not fraud. In Figure 2.5 a confusion matrix is shown with each of
these outcomes.

True Positive (TP)

False Negative (FN)

False Positive (FP)

True Negative (TN)

Condition Positive Condition Negative

True Condition

Predicted
Positive

Predicted
Negative

Predicted
Con-
dition

Figure 2.5: Confusion matrix with outcomes for a binary classifier.

Using these outcomes the performance measurement called Accuracy is defined as

Accuracy =
TP + TN

TP + TN + FP + FN

and computes the fraction of correctly classified data points. According to Macaraeg [33],
however, accuracy is not suited for models trying to detect credit card fraud due to the skew-
ness of the data.

Instead, they recommend using other performance methods in cases with skewed data
and one such is cost sensitive learning. In a cost sensitive learning method, as stated by Dal
Pozzolo et al. [11], each class (or instance) is given a misclassification cost depending on how
important each outcome is with the goal to minimise the total misclassification cost. For
example, a misclassification of a fraudulent transaction could be more costly for the com-
pany than a misclassification of a non-fraudulent transaction. In order to create a good cost
sensitive learning method for credit card fraud detection the cost information from banks is
needed which is, as per Stolfo et al. [51], hard do obtain. This results in two other methods be-
ing more commonly used, namely, Area Under the Curve Receiver Operating Characteristic (AUC-
ROC) and Area Under the Precision-Recall Curve (AUPRC). For both of these measurements
the area is computed by using an average of a number of trapezoidal approximations [45].

17

2. Background

Firstly, as specified in the article by Brownlee [6], the Receiver Operating Characteristic
curve is a plot of True Positive Rate (TPR) versus False Positive Rate (FPR). True Positive Rate,
or Recall as it is also called, is defined as

TPR =
TP

TP + FN
(2.1)

which measures the fraction of actual fraudulent transactions that are correctly classified as
fraud. In order to define False Positive Rate we first define Specificity as

Speci f icity =
TN

TN + FP

and now, False Positive Rate is

FPR = 1 − Speci f icity =
FP

FP + TN

which measures the fraction of actual non-fraudulent transactions that are not classified as
fraud. Further, Brownlee describes in [6] that the area under the ROC curve, i.e. AUC score,
can be used to decide how well the model performs as it measures the discrimination, mean-
ing the models ability to distinguish between the classes. The higher value on the AUC score
the better the model is at predicting correctly. To conclude, the AUC-ROC measurement
indicates how well the probabilities from the positive classes are separated from the negative
classes.

Secondly, Brownlee [6] specifies the Precision-Recall Curve as a plot of Precision versus
Recall, i.e. TPR. Precision is defined as

Precision =
TP

TP + FP

and measures the fraction of classified fraud that is actual fraud, meanwhile, Recall is found
in Equation 2.1. Similar to the AUC-ROC measurement, the area under the precision curve
is studied to determine how well the model performs where a larger area indicates a better
model. According to Brownlee, the maximum area under the precision curve is one and this
would mean that the model can classify all positive samples (fraud) right, i.e. not classifying
any negative as positive.

When dealing with skewed data there are usually a lot of true negatives, i.e. non-fraudulent
transactions correctly classified, which might skew the result for the AUC-ROC measure-
ment [14]. As a matter of fact, according to Bronwlee [6], the AUC-ROC measurement is
only appropriate to use when the observations are balanced between each class, otherwise,
he claims that the AUPRC measurement should be used. Therefore, together with the con-
fusion matrix, the AUPRC measurement will be used in this work as it does not include true
negatives and is a better suited measurement for imbalanced datasets.

18

2.3 Centralised Learning

2.3 Centralised Learning

Until now, fraudulent pattern recognition systems, i.e. Fraud Detection Systems, have been
applied in a centralised way to detect credit card fraud. In the centralised approach the ma-
chine learning algorithms are fed with locally stored data from one server, producing a model
to find patterns based on the information from the given data. This method is used by banks,
independently of each other, since they are usually not allowed to share their transaction data,
which is due to the data privacy and security associated with credit card transaction datasets.

When working with a centralised approach there are plenty of di�erent algorithms that
can do the job of detecting fraudulent transactions, though, some are better suited than oth-
ers. In order to chose the best suited centralised algorithm for the task of detecting fraudulent
transactions di�erent articles has been studied and in particular [23]. In this article di�er-
ent algorithms trying to detect credit card fraud are compared and the model with the best
performance was the Multi Layer Perceptron (MLP). We have, in accordance with this article,
chosen the Multi Layer Perceptron as baseline algorithm for this thesis. The MLP is intro-
duced below in Section 2.3.1.

2.3.1 Multi Layer Perceptron

Artificial neural networks (ANNs) is a collection name for many algorithms that almost all
have in common that they are inspired by the construction and functioning of the human
brain. Generally, according to Goodfellow et al. [20], ANNs can be described as a class of
parameterised functions f (x,w) constructed by composing linear and non-linear functions
as

f = ϕn ◦ fn ◦ · · · ◦ ϕk ◦ fk ◦ ϕ1 ◦ f1.

Here, fn is a linear function parameterised by its weights wn while ϕn is a non-linear function.
Usually, the function fn is referred to as a layer and ϕn is known as the activation function.

Each layer in an ANN is composed by a set of nodes where the first set of nodes is referred
to as the input layer, the last set of nodes is the output layer and if there are any set of nodes
between these layers than they are referred to as hidden layers, see the right hand side of
Figure 2.7. Each weight is usually visualised as branches between the layers and depending on
how they are connected to the nodes in the model the layers have di�erent properties. For
instance, a simple layer is referred to as a fully connected layer which means that the edges
between every input node is connected to every output node, hence, the output layer is a
linear combination of the input layer.

Furthermore, the simplest ANN model is the single perceptron which only has an input
and output layer, see Figure 2.6. This model takes a weighted sum of the input x and passes
it through a beforehand determined activation function ϕn which then computes the output
to be a probability between zero and one [38], i.e. a forward pass have been made.

19

2. Background

Figure 2.6: A simple perceptron with an input layer composed by
the nodes x1–xp and an output layer with only one output y [38].

According to Imane et al. [23], a simple perceptron with p inputs and di�erent weights
performs well when the task is to detect linear separable patterns, though, this is rarely the
case when aiming to detect credit card fraud. Instead, a more complex ANN model is used,
namely, the Multi Layer Perceptron, which has shown to perform well on credit card fraud
detection in their article.

In contrast to the simple perceptron, the MLP does not only have p input nodes and m
nodes in its output layer, but the network also has hidden layers with an arbitrary number
of nodes h [23]. Goodfellow et al. [20, p.5] describes the MLP as a feed-forward network,
i.e. there are no recurrent connections in the network, composed of fully connected layers.
Now, for each layer an activation function ϕ is applied and for a larger network the Rectifier
Activation Function (ReLU) is popular [20, p.189]. Also, when working with a binary classifi-
cation problem the Logistic, also called Sigmoid, activation function is applied to the last layer
of nodes which then results in the output being between zero and one [20, p.191]. Below are
the two activation functions ReLu and Logistic respectively,

ϕ(x) =

0 if x < 0
x if x ≥ 0

and

ϕ(x) =
1

1 + e−x

where ϕ(x) is the activation function which also appears on the left hand side in Figure 2.7,
where it can be seen that the function is applied to every node in each layer.

Σ ϕ

+1
x1

x2

x3

xp

w
0

w1

w2

w3

w p

ϕ

(
w0 +

p∑
i=1

wixi

)

...

I1

I2

I3

Input
layer

Hidden
layer

Output
layer

O1

O2

20

2.3 Centralised Learning

Figure 2.7: Left: A simple perceptron where the input is summed up
and set as the argument of the activation function ϕ(x). Right: A
Multi Layer Perceptron with one input layer (three nodes), one hid-
den layer (five nodes) and one output layer (two nodes). The arrows
between the nodes and neighbouring layer represents the weights,
wk , which are pointed in a forward direction, i.e. it is a feed-forward
network.

After a forward pass in the network the weights need to be optimised and this is referred to as
training the model. The goal of the optimisation procedure is to minimise the error function,
also referred to as the loss function [23]. The main idea is that the network will eventually
reduce its error as the network learns from the training dataset. A common error function
for binary classification is the Cross-Entropy Error [20, p.177] which is defined as

E(w) = −

N∑
n=1

(
dn log y(xn) + (1 − dn) log(1 − y(xn))

)
where w are all weights, dn is the target value for pattern n and y the prediction. The function
can be minimised with respect to the weights by applying Gradient Descent [20, p.215],

∆wi = −η
∂E
∂wi

,

where the learning rate η controls the size of the update. This way of updating the weights
is called back propagation because, once a forward pass has been done to compare the actual
output with the target then a backward pass is done to update the weights. The Gradient
Descent algorithm is the most popular when training an MLP [23].

Further, Goodfellow et al. [20, p.290] states that Gradient Descent is not the most e�-
cient optimiser algorithm to use since it only follows the gradient of an entire training set
downhill and therefore can su�er from getting stuck in local minimum and regions of small
gradients. Instead, they argue that one improvement might be to add a dynamical learning
rate, in contrast to the previously fixed one which is set by default, to speed up the minimi-
sation of the error function. The learning rate may be chosen by trial and error, but it is
usually best to choose it by monitoring learning curves that plot the objective function as a
function of time or training epochs [20, p.291]. In this thesis an optimiser without dynamic
learning rate will be used in order to give a fair comparison with the federated model which
does not support dynamic learning rate, see Section 4.4. The optimiser we have chosen is
Mini-Batch Gradient Descent (MBGD) [43], which probably is one of the most used optimi-
sation algorithms for machine learning in general and, in particular, for deep learning [20,
p.290].

Mini-Batch Gradient Descent refers to calculating the derivative from each training data
instance and compute an immediate update. According to [43], the MBGD optimiser up-
dates the weights by using a small number of patterns, i.e. mini-batches. Formally, MBGD is
written as

∆wk =
1
P

P∑
p=1

∆wpk

21

2. Background

where ∆wk is the k:th weight to be updated and P is the size of the mini-batch. Every time one
mini-batch has been used to update the weights one iteration has been performed [37]. When
all mini-batches have been iterated it is said that one epoch has been performed. MBGD has
the important property that computation time per update does not grow with the number
of training examples, which allows convergence even when the training dataset becomes very
large [20, p.292].

Finally, it is important to keep in mind that, when building a large network it might
get too specific, i.e. the network gets overfitted, as a consequence of having too many layers
and nodes to find features in the training dataset. Therefore, when building the MLP the
architecture needs to be carefully chosen and thoroughly tested to avoid both over- as well
as underfitting.

An implementation of our baseline model, the Multi Layer Perceptron, is explained in
Section 5.1.

2.4 Federated Learning
As mentioned in Section 2.3, centralised learning is a commonly used approach to detect
credit card fraud. According to Yang et al. [62], however, FDS that are using this learning
technique are prone to be ine�cient with a low accuracy rate or raising many false alarms.
This being a result of dataset insu�ciency, skewed data distribution and limitation of de-
tection time. FDS could probably be greatly improved by collecting more data. One way for
banks to do this would be for them to share their data, anonymised, with a central server,
so that a machine learning model would be able to see transactions from di�erent banks.
Sweeney [52], however, argues that the user privacy still can be at risk even if an “anonymised”
dataset is held locally. The article does not explicitly state how the user privacy still would be
at risk but one can imagine that the “anonymised” dataset can be reversed engineered. One
solution to these problems might be to, instead of using the centralised approach, build an
FDS by applying federated learning (FL).

The term federated learning was introduced in 2016 by McMahan et al. [34] and they
define it as a machine learning setting where many clients, e.g. mobile phones and other
edge devices, collaboratively trains a model under the orchestration of a central server. This
training is done without sharing any data. Instead, only the updates in the form of model
parameters are communicated to the central server.

Additionally, according to Kairouz et. al [26], federated learning is not only of interest
for application on edge devices but there is also a growing interest for this method when
multiple organisations are seeking to collaborate in order to train a central model. In their
paper they name the federated settings defined by McMahan et al. [34] as cross-device while
they refer to federated learning for multiple organisations as cross-silo. According to Kairouz
et. al [26], these definitions open up for a broader common definition of federated learning,
namely:

“Federated learning is a machine learning setting where multiple entities (clients)
collaborate in solving a machine learning problem, under the coordination of a
central server or service provider. Each client’s raw data is stored locally and
not exchanged or transferred; instead, focused updates intended for immediate
aggregation are used to achieve the learning objective.”

22

2.4 Federated Learning

A typical federated training process usually follows the same concept as described by Kairouz
et al. [26]. A server orchestrates the training process by repeating the following steps until
the training is stopped and convergence has been achieved: (i) client selection – the server
samples from a set of clients meeting eligibility requirements; (ii) broadcast – the selected
clients download the current model and training program from the central server; (iii) client
computation – each selected device locally computes an update of the model by executing the
training program; (iv) aggregation – the server collects an aggregate of the device update; (v)
model update – the central model locally updates the shared model based on the aggregated
update computed from the clients that participated in the current model.

The applications of FL are many and it can be used to detect credit card fraud and at
the same time enable di�erent banks to collaboratively learn a shared model while keeping
all their data locally in their own private database. With this approach the central model
will see more fraudulent transactions and will as a consequence hopefully be able to classify
fraudulent transactions more accurately than the models trained on only one local dataset.
The way it works is that a beforehand determined model will be trained locally on each
bank’s dataset independently of each other and then the learning parameters will be sent to
the central server. Now, a central model based on all participants input will be built. Finally,
this central model is sent to all participating banks which they can use to detect fraudulent
transactions. See Figure 2.8 for the training procedure in a federated learning framework
with banks.

Figure 2.8: Di�erent banks participating to build a central model
by first training a model locally based on their own data and then
sharing the encrypted information, weights for the MLP, with the
central server in order to build a better central model for all partic-
ipants [61].

Even though the aforesaid might be a good solution for the banks, other issues may still

23

2. Background

remain such as that the banks’ datsets might di�er due to di�erent features and labels or that
the datasets are skewed. When a dataset has these properties it is referred to as Non Identical
Independent Distributed data, which is explained further in Section 2.4.1.

Moreover, as stated by Kairouz et al. [26], privacy and communication are always first-
order concerns in federated learning and it is important to have a clear understanding of
where the computation happens as well as what is being communicated. To solve the first
question regarding the information flow in the system there are techniques for secure compu-
tation. Such techniques will be discussed in more detail in Section 2.4.3. In order to deal with
the second issue, concerning how much information about a participating client that should
be revealed, there are techniques for privacy-preserving disclosure and such techniques will
be discussed in further detail in Section 2.4.4.

There exists di�erent kinds of machine learning algorithms that can be used in a feder-
ated environment just as it does for the centralised approach. McMahan et al. [34] has im-
plemented a federated algorithm called Federated Averaging which is a type of neural network
algorithm. This algorithm will be used in this thesis because it is a federated development of
the chosen baseline model, the MLP, which makes it easier to compare their performance to
each other and also since the model e�ectively can be modified to our purpose, i.e. building
a federated FDS.

2.4.1 Non Identical Independent Distributed Data
When working with machine learning, the assumption of Independent and Identical Distributed
(IID) data is often made for the training dataset to imply that the samples are independent
and originates from the same generative process, i.e. they are identically distributed [4]. How-
ever, when working with federated learning the datasets are typically non-IID [26]. For in-
stance, in the FL setting, the datasets are typically generated locally in di�erent contexts and
by di�erent clients.

According to Kairouz et al. [26], the most common source of dependence and non-identicalness
in a dataset is due to each client corresponding to a particular user, geographic location
and/or time window which leads to significant di�erences in the data distribution across
participants. Further, they argue, that client data can deviate from being IID in di�erent
ways and some of them are: (i) feature distribution skew; (ii) label distribution skew; (iii) same la-
bel, di�erent features; (iv) same features, di�erent label; (v) quantity skew or unbalancedness. Most
likely, the training dataset in a FL setting contains a mixture of these deviations.

Formally, (i)–(v) can be expressed in terms of probability theory. Consider a supervised
leaning task with features x and labels y in addition to the dataset P and di�erent clients i and
j . By drawing a sample (x, y) ∼ Pi(x, y) from client i’s local data distribution, Pi(x, y) can
be re-written as Pi(y|x)Pi(x) and Pi(x|y)Pi(y) by using the conditional probability formula.
Now, according to Kairouz et al. [26], the di�erences between (i)–(v) mentioned above can
be explained as follows, and a more thorough explanation can be found in [26].

Starting with feature distribution skew, this means that the marginal distribution Pi(x)
might vary across clients even though Pi(y|x) = P j(y|x) for all clients i and j . In other
words, there might be di�erences in personal/organisational characteristics. For instance,
in a handwriting recognition domain, persons who write the same words might still have
di�erent stroke width, slant, etc. to the words written [26].

Label distribution skew means that the marginal distribution Pi(y) might vary across

24

2.4 Federated Learning

clients even though Pi(y|x) = P j(y|x) for all clients i and j . An example of this is clients that
are tied to particular geographical regions, then the distribution of labels might vary across
di�erent clients — for mobile device keyboards, certain emojis are used by one demographic
but not others etc. [26].

Same label di�erent features means that the conditional distributions Pi(x|y) might vary
across clients even though Pi(y) is the same. Meaning that, the same label y can have di�er-
ent features x for di�erent clients due to, for instance, cultural di�erences, weather e�ects,
standards of living, time or seasonal e�ects. A more describing example of this deviation
would be that, images of homes can vary widely around the world, not only their design but
also depending on the time of the day etc. [26].

Same features di�erent label means that the conditional distributions Pi(y|x) might vary
across clients even though Pi(x) is the same. An example of this could be that the same
features might have di�erent labels due to personal preferences. For instance, labels that
reflect sentiment or next word predictors have personal and regional variation, etc. [26].

Finally, quantity skew or unbalancedness refers to the vastly di�erent amount of data
that the di�erent clients can hold [26].

One problem that is associated with non-IID data, according to Zhao et al. [63], is that
the majority of the FL settings rely on the Gradient Descent optimiser (explained in Sec-
tion 2.3.1), where the assumption of IID training dataset is important to ensure that the
gradient is an unbiased estimate of the full gradient. However, as mentioned in this sec-
tion, this is rarely the case when working with federated learning. Though, they argue, that
some federated learning algorithms, such as Federated Averaging, which is further explained
in Section 2.4.2, still works with certain non-IID data, which is also shown by McMahan et
al. [34].

2.4.2 Federated Averaging
The neural network algorithm referred to as Federated Averaging is similar to the centralised
MLP. According to McMahan et al. [34], the main idea for the Federated Averaging algorithm
is that for each global epoch of the training a central server chooses a fraction of the partic-
ipating clients. The central server then sends its model parameters to each of the selected
clients. When the training is done locally the clients make one (or more) local weight up-
date, i.e. a local epoch, by applying Mini-Batch Gradient Descent (explained in Section 2.3.1)
and eventually their updated weights are sent back to the central server. Now, the central
server updates the federated model by averaging all the weight updates from the participating
clients and then the process is repeated until convergence or satisfying results are achieved.

Usually, when working with machine learning algorithms the aim is to have as few epochs
as possible but still obtain a model that performs well. This is because the amount of epochs
are directly correlated to computer power and memory needed. Also, more epochs e�ect
the privacy issue by adding to the privacy budget, see Section 2.4.4. McMahan et al. [34]
proposes two approaches to limit the global epochs needed for convergence, i.e. limit the
rounds of communications between the central server and the clients, namely, increase par-
allelism, i.e. increase the fraction of clients used, and increase local computation, i.e. increase
the number of local epochs. When McMahan et al. [34] tested these two approaches in their
experiments increase local computation showed the best e�ect of limiting communication
while still keeping the same performance.

25

2. Background

Moreover, the averaging of the weight updates in the central server could, according to
McMahan et al. [34], be a problem when solving non-convex problems. They argue that in
general, averaging models in parameter space can create an arbitrarily bad neural network
model. This is because training several models on a non-convex problem can create signif-
icantly di�erent models as they find di�erent settings for the optimal weight parameters.
Taking the average of models that have big disparity creates a poor central model. However,
one method to minimise this problem is, according to the article, to use shared initialisation
for the local models. In other words, each client is initialised with the same weights for every
global epoch. This is how Federated Averaging is implemented in our thesis since, at the the
start of each global epoch the central server initialises the clients with the same weights as
its own. In Algorithm 1 the pseudo code for Federated Averaging is shown [34].

Algorithm 1 Federated Averaging. Here, C is the fraction of clients used, K are the clients
indexed by k, n is the total number of data points, nk is the number of data points in client
k, Pk is the local dataset, B is the local mini-batch size, E is the number of local epochs and
lastly η is the learning rate.

Server executes:
Initialise w0
for each round t = 1,2... do

m← max(C · K, 1)
St ← (random set of m clients)
for each client k ∈ St in parallel do

wk
t+1 ← ClientUpdate(k,wt)

end for
wt+1 ←

∑K
k=1

nk
n wk

t+1
end for

ClientUpdate(k,w): // Run on client k
B← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η∇l(w; b)

end for
end for
return w to server

2.4.3 Secure Computations
Traditionally, cryptography was about concealing content in communication and storage,
but today there is more to it, for instance how the information flow in a system should be
set up in order to to be secure and preserve privacy. One such technique, that addresses this
privacy-preserving issue in machine learning, is Secure Multi-Party Computation (MPC) and
is a sub-field of cryptography. According to Kairouz et al. [26], the goal for this encryption
technique is to create methods for parties to jointly compute an agreed-upon function over
their inputs without revealing any additional information. More precisely, Cramer et al. [9,
p.32] describes MPC as each client Pi holding a secret input xi and all clients agreeing to a

26

2.4 Federated Learning

function f , here a machine learning model, that take n inputs where the goal is to compute
the output y = f (x1, . . . , xn), while making sure that the the correct value of y is computed
and also that y is the only new information that is released.

An in-practice used MPC tool is Secret Sharing which, as argued by Cramer et al. [9],
provides a way for each client to spread the secret information, e.g. weights from an MLP
model, by splitting a secret key into shares. These shares are then sent across all the partici-
pating clients, which means that the clients together hold the complete information, yet no
client, except the one who split the key can reassemble it and thus collect the information
in full [9, p.36]. There are two commonly used sharing schemes to build a protocol, i.e. a set
of instructions that the participating clients are supposed to follow in order to obtain the
desired result [9, p.34], namely, Shamir Secret Sharing and Additive Secret Sharing [9, p.112]. In
both of these schemes the shares are random elements of a finite field which adds up to the
secret and eventually these shares are sent to the central server to compute an output. Now,
the security is obvious as the shares look randomly distributed for all non-qualifying sets of
shares.

In addition there is also Homomorphic Encryption (HE) schemes which have the potential to
be a powerful tool for MPC as they have the ability of computing over encrypted data with-
out prior decryption [26]. Thus, the results of the computation remains encrypted which
means that the clients would be able to encrypt their data and send it to a central server
for computation without ever revealing their information. There are di�erent types of HE
ranging from general fully Homomorphic Encryption to more specific ones. Today, data en-
crypted by secret sharing has homomorphic properties, but HE is not yet fully implemented
since the technique has a rather high computational cost compared to other techniques [26].
A lot of research within the area of HE has however been made since researchers have seen
great potential in HE for privacy-preserving machine learning [24].

2.4.4 Privacy-Preserving Disclosures
In federated learning the datasets are, as described in Section 2.4, never shared still, according
to Geyer et al. [19], sensitive information about the datasets can be accessed through the
weights and the model updates sent from the clients as well as from the central server. To
minimise this risk the clients used in the training process can be disguised. There are di�erent
methods that can be used for this but a common method, according to [26], is di�erential
privacy, and in particular user-level di�erential privacy.

The concept of di�erential privacy is to protect individuals’ and clients’ privacy by in-
troducing a level of uncertainty into the model. The definition for di�erential privacy is,
according to Cynthia Dwork [15]:

“Di�erential Privacy describes a promise, made by a data holder, or curator, to
a data subject, and the promise is like this:

You will not be a�ected, adversely or otherwise, by allowing your data to be used
in any study or analysis, no matter what other studies, datasets, or information
sources, are available.”

In other words, if an outside person gets access to the output but such person cannot tell who
or which individual or client was used in the computation than the algorithm is said to be

27

2. Background

di�erential private. The user-level di�erential privacy, in contrast to the regular di�erential
privacy, looks at all data points from a user and not just a single data point [26].

A model can have di�erent levels of di�erential privacy, which is, as written in [26],
quantified by the parameters (ε , δ) according to the following mathematical definition.

Definition. A randomised algorithm A is (ε , δ)-di�erential private if for all S ⊆ Range(A) and for
all adjacent datasets D and D′ di�ering one user’s data,

P(A(D) ∈ S) ≥ eεP(A(D′) ∈ S) + δ,

where ε , as stated in [30], is the measurement of what the privacy risk is to release sensitive
data, also referred to as the privacy loss [1]. In other words, this parameter describes how
much a person with the output would be able to see of the dataset. The δ parameter is the
probability that an unwanted event happens that leaks more data the normally. Small values
of ε and δ are desired since the smaller the values are the more secure the model is.

As a matter of fact, for every query or weight update sent to the central server leakage of
information is possible. Meaning that for each query the privacy loss ε accumulates. When a
query happens two times the total privacy loss is twice as large as for one. A limit of how much
privacy loss that is allowed is, as stated by Abadi et al. [1], called privacy budget. Privacy budget
is the maximum total privacy loss that can be a�orded in the model. When the privacy budget
is reached the clients stop sending and receiving updates. The user of the model determines
how big a privacy budget is allowed to be through the δ and ε parameters.

Approaches to make a federated model subject to di�erential privacy involves, according
to [26], to hide what weight updates were used in the central model as well as making the
central model less prone to overfit one client. This is, as described in the article, done by
clipping the individual weight updates and adding Gaussian noise to the aggregation in the
central server. How much distortion of the weight updates that are needed depends on the
level of di�erential privacy as well as the sensitivity of the model, where sensitivity is the
maximum di�erence in the output from a model from two adjacent datasets. Formally,

Sensitivity = ∆ f = max|| f (D) − f (D′)||2

where D and D′ are adjacent datasets di�ering by a single user’s data points [19].
Geyer et al. [19] describes a way to implement di�erential privacy using a modified Fed-

erated Averaging model. The di�erence here is that, the clients do not send their full weights
to the central server, instead, they return the di�erence between its old and the newly trained
weights. This way, the central server adds the average of the di�erences for each client to its
own weights. Also, it does not use a weighted average as is the case for the regular Federated
Averaging model. Worth mentioning is that, the result in the article from Geyer et al. [19]
shows that in order to preserve privacy a large number of clients are needed in the training
process.

In the approach described by Geyer et al. [19], the amount of weight clipping and Gaus-
sian noise is controlled by the number of clients used in each global epoch, the hyper param-
eter σ as well as the sensitivity which is calculated by taking the median of the di�erence
between the old weights and the new weights for the clients after a global epoch [1]. The
limit of how much privacy loss that is allowed is termed by Geyer et al. [19] as δ and when
this privacy budget is breached the training stops.

28

2.4 Federated Learning

In Algorithm 2 the pseudo code for a modified Federated Averaging model with di�er-
ential privacy is shown, which has been built on the principles of Geyer et al. [19].

Algorithm 2 Client-side di�erential private federated optimisation. The Accountant keeps
track of the privacy budget (δ) in order to protect privacy. C is the fraction of clients used,
K are the clients indexed by k, Pk is the local dataset, B is the local mini-batch size, E is the
number of local epochs, η is the learning rate, {σ}Tt=0 the variance for the Gaussian Noise, S
the sensitivity and Q the threshold for δ.

Server execution
Initialise: w0, Accountant(ε ,K)
for each round t = 1,2... do

m← max(C · K, 1)
δ ← Accountant(m, σt)
if δ > Q then

then return wt
end if
St ← (random set of m clients)
for each client k ∈ St in parallel do

∆wk
t+1, ξ

k ← ClientUpdate(k,wt)
end for
S = median{ξk}k∈St

wt+1 ← wt + 1
m (

∑K
k=1

∆wk
t+1

max(1, ξ
k
S)

+ N(0, S2σ2))

end for

ClientUpdate(k,wt): // Run on client k
w ← wt
B← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η∇l(w; b)

end for
∆wt+1 = w − wt
ξ = ||∆wt+1||2

end for
return ∆wt+1, ξ to server

29

2. Background

30

Chapter 3

Related Work

Today, a lot of di�erent machine learning methods have been proposed to tackle fraud de-
tection. Nearly all credit card FDS are built by using centralised techniques, a few examples
are [53, 60, 47, 58, 49] in which both supervised, unsupervised and semi-supervised learning
techniques are being used. There is, however, little research and therefore also few articles
relating to FDS which has been built by applying federate learning.

The topic of federated learning to detect credit card fraud in the banking industry has,
however, been addressed by Wensi et al. [62]. They are proposing a federated Convolutional
Neural Network as a suitable ML algorithm for detecting credit card fraud. Though, they are
not looking into the privacy concern.

Federated learning is also applied in other business areas, and where this learning tech-
nique has shown to be an e�cient machine learning technique. For instance, in the health-
care business [59] and when working with keyboard predictions from an edge device such as
a mobile phone [21].

31

3. Related Work

32

Chapter 4

Methodology

The dataset used in this thesis is introduced in Section 4.1. We have carried out an analysis
of the dataset by studying the number of transactions over time, the number of transactions
against withdrawal amount and finally the distribution of fraudulent and non-fraudulent
transactions. This analysis is also presented in Section 4.1. Further, Section 4.2 contains an
explanation of how the dataset has been pre-processed for this thesis and Figure 4.4 sets out
the workflow for pre-processing the data. Moreover, to give a possible practical business
perspective an interview has been carried out with an employee from IBM. The interview
is described in Section 4.3. Finally, in Section 4.4 we present certain assumptions that have
been made as well as certain limitations to the scope of this thesis.

4.1 Dataset
The dataset used in this thesis has been obtained from Kaggle [25] and contains real but
anonymised credit card transactions made by European cardholders. The dataset contains
284 807 credit card transactions spread out over two days in September 2013. There is no
missing data and out of the 284 807 transactions, only 492 transactions are fraudulent trans-
actions, making the dataset heavily skewed. Further, it contains 30 features and where only
two of them are known, namely, amount and time of the transactions. For the rest of the
28 features PCA has been applied due to anonymity reason. Before the data was released to
the public each transaction had already been labeled as fraud or not fraud. Thus, there is no
known noise in the dataset. See Table 4.1 for a summary of the dataset.

Total dataset # fraud # not fraud Label not fraud Label fraud

284 807 492 284 315 0 1

Table 4.1: Summary of the dataset obtained from Kaggle.

33

4. Methodology

In Figure 4.1 it can be seen that the time for non-fraudulent transactions have a rather
clear periodical pattern that follows day and night cycles, while fraudulent transactions do
not.

Figure 4.1: Number of transactions against time for the di�erent
classes.

Further, in Figure 4.2 it can be seen that the fraudulent transactions are usually small
while the non-fraudulent transactions occur within a larger span of money.

Figure 4.2: Number of transactions against amount for the di�erent
classes.

As a final data analysis the distributions for fraudulent and non-fraudulent transactions
in time and amount have been carried out for all features, see Figure 4.3. It can be seen in
the figures that for some features the curves for fraud and not fraud overlaps to a greater
extent than for others. The interpretation of this is that, the more overlap of the curves the
more di�cult it is to extract di�erences between fraudulent and non-fraudulent transactions.
When the distributions do not overlap at all or very little it is easier to find these di�erences.
This means that, for a model to be able to detect the di�erences between a fraudulent and
non-fraudulent transaction the distributions should have as little overlap as possible.

34

4.1 Dataset

Figure 4.3: Distributions of fraudulent and non-fraudulent transac-
tions for the di�erent features.

35

4. Methodology

4.2 Data Pre-Processing

Analyse
data

Organise
the dataset
into three
di�erent
settings

Non-IID

Skewed

SMOTE Non-IID

Split into
training,

validation
and test set
[60:20:20]

Multi Layer
Perceptron

Federated
Averaging

Train

Validate

Analyse
results

Test

Figure 4.4: The workflow for pre-processing the data to be able to
train the models.

The data is used in three di�erent settings to be able to make three di�erent experiments. The
settings used are as follows: (i) no pre-processing of the data, i.e. skewed data; (ii) the data has
been split into non-IID data and (iii) oversampling of the non-IID data by applying SMOTE.
In all experiments the values of the features have been normalised to be in an interval of [-1,1].
Also, the time feature has been excluded as it is arbitrary from a certain starting point and
therefore does not add any value.

In the first experiment, the data is simply split into a training, validation and test set, see
Table 4.2.

Split of dataset % of dataset # fraud # not fraud

Training 60 316 170567
Validation 20 78 56884

Test 20 98 56864

Table 4.2: Summary of the dataset for the skewed data setting (284
807 transactions).

In the second experiment the dataset is split in a way that makes it non-IID. The non-IID
split is made by partitioning the data according to time since the fraudulent transactions do
not have any periodic behaviour over time while non-fraudulent transactions do, see Sec-

36

4.3 Interview – Federated Averaging

tion 4.1. Practically this is done by ordering the dataset after its timeline. Then, the training,
validation and test sets are obtained by splitting the ordered dataset, see Table 4.3.

Split of dataset % of dataset # fraud # not fraud

Training 60 360 170523
Validation 20 57 56905

Test 20 75 56887

Table 4.3: Summary of the dataset for the non-IID data setting (284
807 transactions).

Finally, in the third experiment the same setting as used in the second experiment has
been used and in addition the minority class has been upsampled by applying SMOTE. Here,
the fraudulent transactions have been upsampled to 1% of the non-fraudulent transactions.
Thus, in this third setting the training dataset has more data points than in the two previous
experiments, see Table 4.4.

Split of dataset % of dataset # fraud # not fraud

Training 60 1705 170523
Validation 20 57 56905

Test 20 75 56887

Table 4.4: Summary of the dataset for the SMOTE non-IID data
setting (286 150 transactions).

For the federated model, the training data was distributed to each client but in di�erent
ways depending on the dataset. In the first experiment, the split was distributed equally,
meaning that each client had the same amount of transactions. In the other two experiments,
each client received a time frame of transactions resulting in each client having di�erent
amount of transactions, hence, di�erent distribution.

4.3 Interview – Federated Averaging
IBM’s primary interest in this thesis lies towards federated learning as a concept rather than
its application within a specific commercial field. We nonetheless wanted to understand
and discuss whether there is commercial interest in our research relating to federated FDS
within the financial sector, and particularly in the banking industry. For this purpose we
conducted an interview with a person at IBM tied to this sector. The interviewer is working
with Financial Services Risk and Compliance at IBM and has a solid background within
business and finance. One person can obviously not represent the entire financial sector
and the banking industry, but the person who we interviewed was the person that we had
immediate access to within this field. A natural continuance to this thesis and for further
research would of course be to conduct more interviews in order to obtain further insight in
the application of federated FDS within the financial sector and the banking industry.

37

4. Methodology

We conducted a semi-structured interview in order to obtain further information about
the banking industry as well as the interviewee’s perception and thoughts around the appli-
cation of federated FDS within the said industry. The setting of the interview was a recorded
video call which was saved as an audio file. The answers were compiled and reviewed af-
ter the interview. Answers which we felt contained unclear aspects were researched further.
The outcome of our analysis of the answers obtained during the interview are presented in
Section 6.1.

4.4 Assumptions and Limitations
When preparing and working with this thesis we have made certain assumptions. We also
had to limit the scope of the thesis due to certain restrictions encountered during our work.

The Fraud Detection System explained in this thesis is built for IBM and not for any
particular customer. Hence, we do not know if banks are willing to apply our model in the
real world. However, in this thesis we assume that there is an interest for this kind of FDS and
that banks would be willing to adapt this system. Furthermore, we assume that the dataset
obtained from Kaggle is representative for one or several banks and also that it is correctly
prepared, i.e. it is correctly labeled and there is no missing data.

Moreover, when building the model we have assumed that all clients participate on the
same terms and contribute with equally important information. Therefore, we computed
the updates for the model by using just a simple average instead of a weighted average, as
described in Algorithm 1. The simple average has been chosen because the other approach
with weighted average generally tends to overfit the model as it puts di�erent weights on dif-
ferent clients which should not be the case when assuming that their contribution is equally
important. Also, we have assumed that there are no faulty nodes, for instance, that the com-
munication between the nodes/clients work properly.

In addition to these assumptions there are, as previously mentioned, certain limitations
to this work which we are not able to influence. For instance, as this thesis is not made
together with a bank we do not have any information about the cost for the banks when
a fraudulent transaction is made or detected, hence, we cannot implement a cost sensitive
learning as discussed in Section 2.2.

Also, the size of the dataset is a limitation as it is considered to be rather small with only
two days of credit card transactions. As a consequence of its small size it does not contain
many fraudulent transactions; only approximately 0.0017%. According to an employee, who
is building (centralised) fraud detection systems at IBM, the minimum period to collect a
credit card transactions dataset in reality is usually three months and, actually, big card pro-
cessors can have up to as much as 13 months. Though, the employee claims that, for Proof of
Concept (PoC) purposes, a dataset of six to ten weeks is usually enough. This insight shows
that the dataset obtained from Kaggle is small.

Furthermore, since PCA has been applied to the dataset from Kaggle before it was re-
leased to the public it is di�cult to understand why the fraudulent transactions have been
classified as fraud, i.e. what is classified as a fraudulent behaviour. As we do not know what
is classified as fraud we cannot know if the fraudulent transactions might di�er depending
on, for instance, geographic location and since this dataset comes from European cardholders
only we assume that it limits our model to European banks.

38

4.4 Assumptions and Limitations

Another limitation is the frameworks that are used for coding the federated FDS. GPU
is not yet supported when using the function VirtualWorker from PySyft, further explained
in Section 5.2, which makes it di�cult to run heavy machine learning algorithms without it
taking too much time. In addition there is also a risk that the algorithms crash due to in-
su�cient RAM-memory. Moreover, the only optimiser, which is yet supported for federated
learning, in the frameworks used is Mini-Batch Gradient Descent, even though Adam would
probably be a better optimiser for model as it is better suited for a binary classification prob-
lem. Finally, di�erential privacy as well as secure computation have not been implemented
nor do the clients have di�erent IP-addresses which would have made the training scenario
more realistic.

39

4. Methodology

40

Chapter 5

Implementation of Models

In Section 5.1 the implementation of the centralised MLP is explained and in Section 5.2 the
implementation of Federated Averaging is presented. Both implementations have in common
that they are coded by using PyTorch [17] and PySyft [39] frameworks. These frameworks are
an extension of the Torch [31] library. They are both open source machine learning libraries
which aim to enable distributed learning and where PySyft in particular is a framework for
encrypted and privacy-preserving machine learning.

5.1 Multi Layer Perceptron

The MLP was built by using the PyTorch class nn.Module [40], with three layers. An input
layer with 29 nodes, a hidden layer with 15 nodes and an output layer with one node. The
activation function was ReLU except for the output layer where Sigmoid was applied. Binary
Cross Entropy was the loss function to be minimised by the optimiser Mini-Batch Gradient
Descent. The learning rate was set to 0.002 with a batch size of 32 for the skewed data, 128
for the non-IID data and 256 for the SMOTE non-IID data and training was made until the
AUPRC value on the validation set converged. See Table 5.1 for the setting of the MLP.

Layer Nodes Activation function Loss function Learning rate

Input 29 ReLU Binary Cross Entropy 0.002
Hidden 15 ReLU Binary Cross Entropy 0.002
Output 1 Sigmoid Binary Cross Entropy 0.002

Table 5.1: Summary of the Multi Layer Perceptron setting.

41

5. Implementation of Models

5.2 Federated Averaging
For the Federated Averaging algorithm in this thesis four clients were created as well as one
central server. The choice of just having four clients is due to the size of the dataset used. Also,
the number of local iterations was chosen to be two and three since this generated the smallest
cross entropy loss on the validation set when compared to one and four local iterations. The
pseudo code for Federated Averaging is found in Algorithm 1 in Section 2.4.2.

The four clients were created as virtual machines by using VirtualWorkers in PySyft. This
function works in such way that each virtual worker can have a dataset and a model without
revealing them to the other workers nor to the central server [54]. Moreover, in the cen-
tral server a simple MLP was created with the same architecture as the centralised MLP, see
Table 5.1.

The training set was distributed through the clients in batches of size 32 for the skewed
data, 128 for the non-IID data and 256 for the SMOTE non-IID data by using FederatedDat-
aLoader from PySyft and training was made until the AUPRC value on the validation set
converged. See Table 5.2 for the di�erent configurations of the Federated Averaging model.

Model Total # of clients C E
Model 1 4 0.5 2
Model 2 4 0.5 3
Model 3 4 0.75 2
Model 4 4 0.75 3
Model 5 4 1.0 2
Model 6 4 1.0 3

Table 5.2: The di�erent configurations of the Federated Averaging
model made for each dataset. In each model, the number of clients
and local iterations, E, used in every global epoch are fixed but the
clients that are used, C, were randomly chosen.

42

Chapter 6

Results

In this section the results from the interview will be presented. In addition to this the re-
sults from the Multi Layer Perceptron and Federated Averaging are presented for the three
di�erent dataset settings, namely, skewed data, non-IID data and SMOTE non-IID data re-
spectively.

6.1 Interview – Federated Averaging
Assuming that IBM owns the federated FDS, maintains and distributes it there is, according
to our interviewee, a great interest for such product amongst di�erent banks since they all
want to prevent and detect credit card fraud. Though, as the banks’ data is highly sensitive it
is rarely shared between di�erent financial institutions, if not forced by law, but only within
the same company group. Therefore, it is important for the banks to have a clear plan of how
the collaboration will work, i.e. what information will be shared between the clients and the
central server, in order for them to determine if federated learning is a desired approach for
them to try to detect credit card fraud.

Actually, the interviewee explained that there is an initiative called the Nordic Know-
Your-Customer (KYC) Utility which is a collaboration between six Nordic banks where the
aim is to combat financial crime and cut compliance costs by creating a platform with stan-
dardised processes for handling KYC data [57]. This initiative indicates that there is an in-
terest from banks to collaborate in order to detect fraud if it can be guaranteed that their
data will be kept confidential.

Furthermore, when discussing the application of this federated machine learning ap-
proach our interviewee believes that our FDS might be best suitable for banks, or other com-
panies, that are already in a collaboration somehow. This is because, if they are already in a
collaboration it might be easier to expand the collaboration since there is already a mutual
trust. For instance, our interviewee suggests Sparbankerna as a possible customer since they
all are part of the group Svenska Sparbanksföreningen.

43

6. Results

6.2 Multi Layer Perceptron and Federated
Averaging

In the following sections the results from the Multi Layer Perceptron and the Federated Av-
eraging will be presented. All sections have the same layout, namely, they contain a table
with di�erent settings for the model and AUPRC score as well as confusion matrices with
the results from the Multi Layer Perceptron and Federated Averaging.

6.2.1 Skewed Data

Model Batch size Epochs Total # of clients C E AUPRC

Centralised 32 120 1 1.0 1 0.82282
Federated 32 100 4 0.5 2 0.84192
Federated 32 100 4 0.5 3 0.85772
Federated 32 100 4 0.75 2 0.85473
Federated 32 100 4 0.75 3 0.86824
Federated 32 100 4 1.0 2 0.82824
Federated 32 100 4 1.0 3 0.84768

Table 6.1: Configuration and Area Under the Precision-Recall
Curve (AUPRC) score for the federated as well as the centralised
model.

761

1

9

0

220 56855

Predicted
Condition

True Condition

Figure 6.1: Confusion matrix for the centralised Multi Layer Percep-
tron applied on the test set.

44

6.2 Multi Layer Perceptron and Federated Averaging

741

1

12

0

240 56852

741

1

7

0

240 56857

751

1

10

0

230 56854

Figure 6.2: Confusion matrices for Federated Averaging applied on
the test set. Left: 2 local iterations and 2 random clients. Centre: 2
local iterations and 3 random clients. Right: 2 local iterations and 4
random clients.

761

1

5

0

220 56859

771

1

6

0

210 56858

781

1

11

0

200 56853

Figure 6.3: Confusion matrices for Federated Averaging applied on
the test set. Left: 3 local iterations and 2 random clients. Centre: 3
local iterations and 3 random clients. Right: 3 local iterations and 4
random clients.

6.2.2 Non Independent Identically Distributed Data

Model Batch size Epochs Total # of clients C E AUPRC

Centralised 128 40 1 1.0 1 0.80593
Federated 128 60 4 0.5 2 0.80264
Federated 128 60 4 0.5 3 0.80723
Federated 128 60 4 0.75 2 0.81348
Federated 128 60 4 0.75 3 0.81566
Federated 128 60 4 1.0 2 0.80732
Federated 128 60 4 1.0 3 0.80926

Table 6.2: Configuration and Area Under the Precision-Recall
Curve (AUPRC) score for the federated as well as the centralised
model.

45

6. Results

431

1

0

0

320 56887

Predicted
Condition

True Condition

Figure 6.4: Confusion matrix for the centralised Multi Layer Per-
ceptron applied on the test set.

461

1

0

0

290 56887

481

1

0

0

270 56887

521

1

1

0

230 56886

Figure 6.5: Confusion matrices for Federated Averaging applied on
the test set. Left: 2 local iterations and 2 random clients. Centre: 2
local iterations and 3 random clients. Right: 2 local iterations and 4
random clients.

511

1

1

0

240 56886

521

1

0

0

230 56887

511

1

2

0

240 56885

Figure 6.6: Confusion matrices for Federated Averaging applied on
the test set. Left: 3 local iterations and 2 random clients. Centre: 3
local iterations and 3 random clients. Right: 3 local iterations and 4
random clients.

46

6.2 Multi Layer Perceptron and Federated Averaging

6.2.3 SMOTE Non Independent Identically Distributed
Data

Model Batch size Epochs Total # of clients C E AUPRC

Centralised 256 30 1 1.0 1 0.80593
Federated 256 35 4 0.5 2 0.81228
Federated 256 35 4 0.5 3 0.79888
Federated 256 35 4 0.75 2 0.81538
Federated 256 35 4 0.75 3 0.80772
Federated 256 35 4 1.0 2 0.79251
Federated 256 35 4 1.0 3 0.80675

Table 6.3: Configuration and Area Under the Precision-Recall
Curve (AUPRC) score for the federated as well as the centralised
model.

591

1

45

0

160 56842

Predicted
Condition

True Condition

Figure 6.7: Confusion matrix for the centralised Multi Layer Per-
ceptron applied on the test set.

541

1

9

0

210 56878

571

1

4

0

180 56883

541

1

8

0

210 56879

Figure 6.8: Confusion matrices for Federated Averaging applied on
the test set. Left: 2 local iterations and 2 random clients. Centre: 2
local iterations and 3 random clients. Right: 2 local iterations and 4
random clients.

47

6. Results

561

1

16

0

190 56871

571

1

17

0

180 56870

571

1

11

0

180 56876

Figure 6.9: Confusion matrices for Federated Averaging applied on
the test set. Left: 3 local iterations and 2 random clients. Centre: 3
local iterations and 3 random clients. Right: 3 local iterations and 4
random clients.

48

Chapter 7

Discussion

One of the goal of the experiments was to see how much performance was sacrificed by having
a federated model with individual and secure data instead of having everything centralised.
The experiments have been performed several times and also on di�erent computers and yet
we have had similar results for each run, in other words, our results are consistent. Looking
at the results, true positives in the confusion matrices as well as AUPRC score, for the Multi
Layer Perceptron as well as for Federated Averaging, in Section 6.2.1–6.2.3 separately, it shows
that the federated model is at pair and sometimes even better than the centralised model,
contradictory to our expectations. We based our expectations on the training process of
federated learning. The data is spread out between the clients and also in some configurations
the federated model might have seen less data than the baseline model if only a fraction of the
clients were used during training. Based on this we expected that the baseline model trained
on the whole dataset would perform better than the federated model trained on a fraction
of the clients, since the central model was updated by taking an average of the participating
models.

Moving on to study the result for the di�erent configurations of the federated model,
namely, di�erent fractions of random clients used as well as di�erent values on local itera-
tions. In Table 6.1, 6.2 and 6.3 it can be seen that there is only a small di�erence in the AUPRC
score when changing random clients and/or local iterations. Similarly, studying the confu-
sion matrices in Section 6.2.1–6.2.3 the results do not di�er much from each other. These
small di�erences in the results make it di�cult to draw any definitive conclusions, however,
some patterns can be distinguished. One such pattern is that, surprisingly, using all clients
in the training does not always give a better result but sometimes using less random clients
per epochs is better, which is the case for the non-IID and non-IID SMOTE data. This could
be explained by the split of the dataset since one client might have a dataset that is not help-
ing or even impairing the overall model. Moreover, concerning the number of local epochs,
the result di�ers a lot depending on the number of clients and the data split. To be able to
achieve the optimal number of local iterations more data and experiments are needed.

Applying SMOTE to the credit card transaction dataset the best performance was achieved

49

7. Discussion

by upsampling the fraudulent transactions by 1% of the non-fraudulent transactions. In order
to determine this percentage we started by trying to upsample the fraudulent transactions
to 50%, then 10% and then gradually decreasing by 1% at the time. For all tests the exper-
iment with 1% upsampling gave the best result in form of correctly classified transactions.
Intuitively, this might feel strange as it would mean that more fraudulent transactions in the
dataset do not give better performance for the model, instead, the model performs worse. For
the higher percentage of upsampling the models classified thousands of the non-fraudulent
transaction as fraud, i.e. there were significantly more FP than when upsampling the fraud-
ulent transactions with only 1%. This is due to the nature of SMOTE, as the synthetic fraud-
ulent datapoints are too similar to the non-fraudulent transactions which already present in
the dataset. This in turn makes it di�cult for the models to predict correctly.

Furthermore, to investigate if SMOTE improved the performance for Federated Averag-
ing the two di�erent data settings, non-IID and SMOTE non-IID data, are compared. The
results from these experiments were as expected. Meaning that Federated Averaging trained
on the SMOTE non-IID data got better in detecting fraud but worse at distinguishing the
classes when compared to when it was trained on non-IID data. By computing the percentage
share of true positive from the confusion matrices in Figure 6.5, 6.6 for the non-IID data and
Figure 6.8, 6.9 for the SMOTE non-IID data it can be seen that the percentage of TP is higher
for the model trained on SMOTE non-IID data than for the one trained on non-IID data.
In other words, the model trained on the SMOTE non-IID data is better at detecting fraud
than the one trained on the non-IID data. On the other hand, looking at the AUPRC score in
Table 6.2 and 6.3 it can be seen that the model trained on non-IID data became better at sep-
arating the classes than the one trained on SMOTE non-IID data, since the average AUPRC
for the federated model is higher for Table 6.2 than for Table 6.3. It is logical that these are
the results since there in the SMOTE non-IID data exists more data points from the fraud-
ulent class than it does in the non-IID data. This in turn results in that the model trained
on the SMOTE non-IID data is overfitted to the upsampled class, hence, it has di�culties to
distinguish what is fraud and what is not.

To summarise, the results indicate that Federated Averaging can perform and even out-
perform the Multi Layer Perceptron on our dataset. The techniques for applying federated
learning algorithms are available and could, as seen be applied to combat online credit card
fraud detection. However, the configurations for Federated Averaging have only small e�ects
on the outcome, therefore, more data is needed to determine what the optimal settings are.

50

Chapter 8

Future Work

Today, a lot of di�erent machine learning methods have been proposed to tackle fraud de-
tection. Nearly all credit card FDS are built by using centralised techniques, a few examples
are [53, 60, 47, 58, 49] in which both supervised, unsupervised and semi-supervised learning
techniques are being used. There is, however, little research and therefore also few articles
relating to FDS which has been built by applying federate learning but some possible future
works are presented below.

A major improvement in evaluation of the Federated Averaging would be to work with a
bank and obtaining more data without anonymised features as well as cost-based information
to enable cost sensitive learning. All of which would make the model more realistic. Further,
the model could also be more businesslike by implementing it in a more realistic real-life sys-
tem like Docker [13] as well as to use di�erent computers, i.e. di�erent IP-addresses, instead
of VirtualWorkers.

In addition to these improvements, there are other ways to develop and improve the
model’s performance. For instance, two issues and challenges that are not addressed in this
thesis are concept drift and online learning. It would also be an improvement to implement
secret sharing and di�erential privacy, as has been explained in Section 2.4.3 and Section 2.4.4
respectively.

Moreover, as stated in Section 4.4 we assume that there are no faulty nodes and that
all nodes are equally important, but, looking at the result it seems to be better not to use
all clients since some client’s dataset might not be as important as others for the training
process. Therefore, implementing a weighting system for nodes would be a suggestion for
future work. Further suggestions might also be to look into other sampling techniques as
discussed in Section 2.1.4.

Besides the Federated Averaging model, Liu et al. [32] proposes a privacy-preserving ma-
chine learning model called Federated Forest which is a lossless learning model of the tradi-
tional random forest method. Their main goal is not to implement this model in the banking
industry but it certainly has the properties for it and would therefore be an interesting future
work.

51

8. Future Work

There is another rather new machine learning setting named gossip learning [22], which
is a setting that could be interesting to study as part of any future work. Gossip learning
is similar to federate learning and is described in [22] as a federated learning method with-
out the central server. This learning technique would enable the training to be even more
decentralised since no outside party would be needed to set up and own the central server.

52

Chapter 9

Conclusion

To conclude, federated FDS enables banks to collaboratively reap the benefits of a shared
model, which has seen more fraud than each bank alone, without sharing the dataset with
each other. Hence, the sensitive information of the cardholders is protected. The techniques
for applying federated learning algorithms are available and could, as seen in this thesis, be
applied to combat online credit card fraud detection. This project was, however, not made
in collaboration with a bank nor was the credit card transaction dataset in a representative
size for building a federated FDS. Therefore, the results should be construed and viewed in
the afore said. One important result though was that federated learning and in particular
Federated Averaging seems to be a suitable algorithm to use for credit card fraud detection
since the results indicate that Federated Averaging can perform and even outperform the
Multi Layer Perceptron on our dataset. Moreover, it can also be concluded that there is an
interest from banks to apply this type of FDS to combat fraud. Though, there are a few
aspects that are crucial to them in order for them to join a collaboration with other banks.
These aspects mainly relate to data security and privacy. There is extensive research within
this area and today there is secure computations as well as privacy-preserving methods that
can be implemented in federated algorithms in order to keep the security and privacy for
participating banks.

53

9. Conclusion

54

References

[1] Abadi Martin, Chu Andy, Goodfellow Ian, McMahan Brendan H., Mironov Ilya, Talwar
Kunal and Zhang Li. Deep Learning with Di�erential Privacy. Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security - CCS’16, October 2016.
Doi: 10.1145/2976749.2978318.

[2] Abdallah Aisha, Maarof Mohd A. and Zainal Anazida. Fraud detection system: A survey.
Journal of Network and Computer Applications, 68(2):90–113, June 2016. Doi: 10.1016/
j.jnca.2016.04.007.

[3] Ahemad Faizan. Selecting the Right Metric for Skewed Classification
Problems, March 2019. Url: https://towardsdatascience.com/
selecting-the-right-metric-for-skewed-classification-problems-\
6e0a4a6167a7. Accessed: 2020-04-28.

[4] Analytics University. IID Assumption & Machine Learning Models, 2018. Url: https:
//www.youtube.com/watch?v=MlqsXYuvClw. Accessed: 2020-04-23.

[5] Batista Gustavo E., Carvalho Andre C. P. L. F. and Monard Maria-Carolina. Applying
One-Sided Selection to Unbalanced Datasets. Proceedings of the Mexican International
Conference on Artificial Intelligence - MICAI, pages 315–325, December 2006. Doi: 10.
1007/10720076_29.

[6] Brownlee Jason. How to Use ROC Curves and Precision-Recall Curves for Classifi-
cation in Python, August 2018. Url: https://machinelearningmastery.com/
roc-curves-and-precision-recall-curves-for-classification-in-\
python. Accessed: 2020-02-20.

[7] Chawla Nitesh V., Bowyer Kevin, Hall Lawrence and Kegelmeyer Philip W. SMOTE:
Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. (JAIR), 16:321–357,
January 2002. Doi: 10.1613/jair.953.

[8] Chawla Nitesh V., Japkowicz Nathalie and Kotcz Aleksander. Editorial: Special Issue
on Learning from Imbalanced Data Sets. ACM SIGKDD Explorations Newsletter, 6, June
2004.

55

10.1145/2976749.2978318
10.1016/j.jnca.2016.04.007
10.1016/j.jnca.2016.04.007
https://towardsdatascience.com/selecting-the-right-metric-for-skewed-classification-problems-\6e0a4a6167a7
https://towardsdatascience.com/selecting-the-right-metric-for-skewed-classification-problems-\6e0a4a6167a7
https://towardsdatascience.com/selecting-the-right-metric-for-skewed-classification-problems-\6e0a4a6167a7
https://www.youtube.com/watch?v=MlqsXYuvClw
https://www.youtube.com/watch?v=MlqsXYuvClw
10.1007/10720076_29
10.1007/10720076_29
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-\python
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-\python
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-\python
10.1613/jair.953

REFERENCES

[9] Damgård Ivan B. Cramer Ronald and Nielsen Jesper B. Secure Multiparty Computa-
tion and Secret Sharing. Cambridge University Press, August 2015. Doi: 10.1017/
CBO9781107337756.

[10] Dal Pozzolo Andrea, Boracchi Giacomo, Caelen Oliver, Alippi Cesare and Bontempi
Gianluca. Credit card fraud detection and concept-drift adaptation with delayed su-
pervised information. In 2015 International Joint Conference on Neural Networks (IJCNN),
2015.

[11] Dal Pozzolo Andrea, Boracchi Giacomo, Caelen Olivier, Alippi Cesare and Bontempi
Gianluca. Credit card fraud detection: A realistic modeling and a novel learning strat-
egy. IEEE Transactions on Neural Networks and Learning Systems, PP:1–14, September 2017.
Doi: 10.1109/TNNLS.2017.2736643.

[12] Dal Pozzolo Andrea, Caelen Olivier, Le Borgne Yann-Aël, Waterschoot Serge and
Bontempi Gianluca. Learned lessons in credit card fraud detection from a practi-
tioner perspective. Expert Systems with Applications, 41:4915–4928, August 2014. Doi:
10.1016/j.eswa.2014.02.026.

[13] Docker. Docker. Url: https://www.docker.com/. Accessed: 2020-04-23.

[14] Draelos Rachel, March 2019. Url: https://glassboxmedicine.com/2019/03/02/
measuring-performance-auprc/. Accessed: 2020-02-21.

[15] Dwork Cynthia and Roth Aaron. The Algorithmic Foundations of Di�erential Privacy.
Found. Trends Theor. Comput. Sci., 9(5):3–4, August 2014. Doi: 10.1561/0400000042.

[16] Expert System Team. What is Machine Learning? A definition, March 2017.
Url: https://expertsystem.com/machine-learning-definition/. Accessed:
2020-03-06.

[17] Facebook AI Research Lab. PyTorch. Url: https://pytorch.org/. Accessed: 2020-
04-28.

[18] Geeks for Geeks. Introduction to Dimensionality Reduction, July 2019. Url: https://
www.geeksforgeeks.org/dimensionality-reduction/. Accessed: 2020-05-08.

[19] Geyer Robin C., Klein Tassilo and Nabi Moin . Di�erentially Private Federated Learn-
ing: A Client Level Perspective. December 2017. Doi: 1712.07557.

[20] Goodfellow Ian, Bengio Yoshua and Aaron Courville. Deep Learning. MIT Press, 2016.
Url: http://www.deeplearningbook.org.

[21] Hard Andrew, Kiddon Chloé, Ramage Daniel, Beaufays Francoise, Eichner Hubert, Ra-
maswamy Swaroop, Kanishka Rao, Rajiv Mathews and Augenstein Sean. Federated
Learning for Mobile Keyboard Prediction, 2018. Doi: 1811.03604.

[22] Hegedűs István, Danner Gábor and Jelasity Márk. Gossip Learning as a Decentralized
Alternative to Federated Learning. In Distributed Applications and Interoperable Systems,
pages 74–90, June 2019. Doi: 10.1007/978-3-030-22496-7_5.

56

10.1017/CBO9781107337756
10.1017/CBO9781107337756
10.1109/TNNLS.2017.2736643
10.1016/j.eswa.2014.02.026
https://www.docker.com/
https://glassboxmedicine.com/2019/03/02/measuring-performance-auprc/
https://glassboxmedicine.com/2019/03/02/measuring-performance-auprc/
10.1561/0400000042
https://expertsystem.com/machine-learning-definition/
https://pytorch.org/
https://www.geeksforgeeks.org/dimensionality-reduction/
https://www.geeksforgeeks.org/dimensionality-reduction/
1712.07557
http://www.deeplearningbook.org
1811.03604
10.1007/978-3-030-22496-7_5

REFERENCES

[23] Imane Sadgali, Nawal Sael and Faouzia Benabbou. Lecture Notes on Intelligent Transporta-
tion and Infrastructure – Comparative Study Using Neural Networks Techniques for Credit Card
Fraud Detection [p.287–296]. Springer, 2019.

[24] Kamakin Ivan. Current state of MPC in privacy-preserving ML,
September 2019. Url: https://medium.com/going-byzantine/
current-state-of-mpc-in-privacy-preserving-ml-575486684f4c. Ac-
cessed: 2020-03-27.

[25] Kaggle. Credit Card Fraud Detection - Anonymized credit card transactions labeled as
fraudulent or genuine, September 2013. Url: https://www.kaggle.com/mlg-ulb/
creditcardfraud. Accessed: 2020-02-20.

[26] Kairouz Peter, McMahan Brendan, Avent Brendan, Bellet Aurélien, Bennis Mehdi,
Bhagoji Arjun, Bonawitz Keith, Charles Zachary, Cormode Graham, Cummings Rachel,
D’Oliveira Rafael G. L., Rouayheb Salim E., Evans David, Gardner Josh, Garrett Zachary,
Gascón Adrià, Ghazi Badih, Gibbons Phillip B., Gruteser Marco, Harchaoui Zaid, He
Chaoyang, He Lie, Huo Zhouyuan, Hutchinson Ben, Hsu Justin, Jaggi Martin, Javidi
Tara, Joshi Gauri, Khodak Mikhail, Konečný Jakub, Korolova Aleksandra, Koushanfar
Farinaz, Koyejo Sanmi, Lepoint Tancrède, Liu Yang, Mittal Prateek, Mohri Mehryar,
Nock Richard, Özgür Ayfer, Pagh Rasmus, Raykova Mariana, Qi Hang, Ramage Daniel,
Raskar Ramesh, Song Dawn, Song Weikang, Stich Sebastian U., Sun Ziteng, Suresh
Ananda T., Tramèr Florian, Vepakomma Praneeth, Wang Jianyu, Xiong Li, Xu Zheng,
Yang Qiang, Yu Felix X., Yu Han and Zhao Sen. Advances and Open Problems in Fed-
erated Learning, December 2019. Doi: 1912.04977.

[27] Kitten Tracy. Fraud: ’A Serious Problem’. Bank Info Security, Au-
gust 2011. Url: https://www.bankinfosecurity.com/interviews/
fraud-a-serious-problem-i-1228.

[28] Krawczyk Bartosz. Learning from imbalanced data: Open challenges and future direc-
tions. Progress in Artificial Intelligence, 5, April 2016. Doi: s13748-016-0094-0.

[29] Last Felix, Douzas Georgios and Fernando Bacao. Oversampling for Imbalanced
Learning Based on K-Means and SMOTE. Information Science, October 2018. Doi:
10.1016/j.ins.2018.06.056.

[30] Lee Jaewoo and Clifton Chris. How Much Is Enough? Choosing ε for Di�erential
Privacy. In Information Security, pages 325–340, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg. Doi: 10.1007/978-3-642-24861-0_22.

[31] Leonard Nicholas, Tompson Jonathan, Zagoruyko Sergey, Dundar Aysegul, Jin
Jonghoon, Massa Francisco, Canziani Alfredo, Desmaison Alban, Deltheil Cedric and
Perkins Hugh. Torch. Url: http://torch.ch/. Accessed: 2020-04-28.

[32] Liu Yang, Liu Yingting, Liu Zhijie, Zhang Junbo, Meng Chuishi and Yu Zheng. Federated
forest. CoRR, 2019. Doi: 1905.10053.

57

https://medium.com/going-byzantine/current-state-of-mpc-in-privacy-preserving-ml-575486684f4c
https://medium.com/going-byzantine/current-state-of-mpc-in-privacy-preserving-ml-575486684f4c
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud
1912.04977
https://www.bankinfosecurity.com/interviews/fraud-a-serious-problem-i-1228
https://www.bankinfosecurity.com/interviews/fraud-a-serious-problem-i-1228
s13748-016-0094-0
10.1016/j.ins.2018.06.056
10.1007/978-3-642-24861-0_22
http://torch.ch/
1905.10053

REFERENCES

[33] Macaraeg Randy. Credit Card Fraud Detection, September 2019. Url: https://
towardsdatascience.com/credit-card-fraud-detection-a1c7e1b75f59.
Accessed: 2020-02-20.

[34] McMahan Brendan, Moore Eider, Ramage Daniel, Hampson Seth and Agüera y Arcas
Blaise. Communication-E�cient Learning of Deep Networks from Decentralized Data,
February 2016. Doi: 1602.05629.

[35] Minegishi Tatsuya and Niimi Ayahiko. Proposal of Credit Card Fraudulent Use Detec-
tion by Online-type Decision Tree Construction and Verification of Generality. Inter-
national Journal for Information Security Research, 1, March 2013. Doi: 10.20533/ijisr.
2042.4639.2013.0028.

[36] The Association of Certified Fraud Examiners. Report to the nations on occupational
fraud and abuse, 2014. Url: https://www.acfe.com/rttn-introduction.aspx.
Accessed: 2020-02-04.

[37] Olsson Mattias and Edén Patrik. Lecture notes – Feed-forward Neural Networks,
2019. Url: https://liveatlund.lu.se/departments/theoreticalPhysics/
FYTN14/FYTN14_2019HT_50_1_NML__1281/CourseDocuments/Chapt_3.pdf.
Accessed: 2020-02-12.

[38] Olsson Mattias and Edén Patrik. Lecture notes – Introduction to Artificial Neu-
ral Networks and Deep Learning, 2019. Url: https://liveatlund.lu.se/
departments/theoreticalPhysics/FYTN14/FYTN14_2019HT_50_1_NML_
_1281/CourseDocuments/Chapt_Intro.pdf. Accessed: 2020-02-11.

[39] Openmined. PySyft. Url: https://github.com/OpenMined/PySyft. Accessed:
2020-04-03.

[40] Paszke Adam, Gross Sam, Massa Francisco, Lerer Adam, Bradbury James, Chanan Gre-
gory, Killeen Trevor, Lin Zeming, Gimelshein Natalia, Antiga Luca, Desmaison Alban,
Kopf Andreas, Yang Edward, DeVito Zachary, Raison Martin, Tejani Alykhan, Chil-
amkurthy Sasank, Steiner Benoit, Fang Lu, Bai Junjie and Chintala Soumith. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[41] Patel Samir and Amin Kiran R. Preservation of privacy in data mining by using pca
based perturbation technique. In 2015 International Conference on Smart Technologies and
Management for Computing, Communication, Controls, Energy and Materials (ICSTM), pages
202–206, May 2015. Doi: 10.1109/ICSTM.2015.7225414.

[42] Patidar Raghavendra and Sharma Lokesh. Credit card fraud detection using neural
network. International Journal of Soft Computing and Engineering (IJSCE), 1:32–38, January
2011.

[43] Patrikar Sushant. Batch, MiniBatch & Stochastic Gradient De-
scent, October 2019. Url: https://towardsdatascience.com/
batch-mini-batch-stochastic-gradient-descent-7a62ecba642a. Ac-
cessed: 2020-05-08.

58

https://towardsdatascience.com/credit-card-fraud-detection-a1c7e1b75f59
https://towardsdatascience.com/credit-card-fraud-detection-a1c7e1b75f59
1602.05629
10.20533/ijisr.2042.4639.2013.0028
10.20533/ijisr.2042.4639.2013.0028
https://www.acfe.com/rttn-introduction.aspx
https://liveatlund.lu.se/departments/theoreticalPhysics/FYTN14/FYTN14_2019HT_50_1_NML__1281/CourseDocuments/Chapt_3.pdf
https://liveatlund.lu.se/departments/theoreticalPhysics/FYTN14/FYTN14_2019HT_50_1_NML__1281/CourseDocuments/Chapt_3.pdf
https://liveatlund.lu.se/departments/theoreticalPhysics/FYTN14/FYTN14_2019HT_50_1_NML__1281/CourseDocuments/Chapt_Intro.pdf
https://liveatlund.lu.se/departments/theoreticalPhysics/FYTN14/FYTN14_2019HT_50_1_NML__1281/CourseDocuments/Chapt_Intro.pdf
https://liveatlund.lu.se/departments/theoreticalPhysics/FYTN14/FYTN14_2019HT_50_1_NML__1281/CourseDocuments/Chapt_Intro.pdf
https://github.com/OpenMined/PySyft
10.1109/ICSTM.2015.7225414
https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a
https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a

REFERENCES

[44] Quah Jon and Sriganesh Srihari. Real Time Credit Card Fraud Detection using Com-
putational Intelligence. pages 863–868, August 2007. Doi: 10.1109/IJCNN.2007.
4371071.

[45] Scikit Learn. sklearn.metrics.average_precision_score. Url: https://scikit-learn.
org/stable/modules/generated/sklearn.metric.average_precision_
score.html. Accessed: 2020-06-16.

[46] SHIFT. Credit Card Fraud Statistics, February 2020. Url: https://
shiftprocessing.com/credit-card-fraud-statistics/. Accessed: 2020-04-
28.

[47] Singh Gajendra, Gupta Ravindra, Rastogi Ashish, Chandel Mahiraj and Ahemad Riyaz.
A Machine Learning Approach for Detection of Fraud based on SVM. International
Journal of Scientific Engineering and Technology, 1:194, July 2012.

[48] Smith Lindsay I. A tutorial on Principal Components Analysis, February
2002. Url: http://www.cs.otago.ac.nz/cosc453/student_tutorials/
principal_components.pdf. Accessed: 2020-02-06.

[49] Sonawane Yogesh B., Gadgil Akshay S., More Aniket E. and Jathar Niranjan K. Credit
Card Fraud Detection Using Clustering Based Approach. In International Journal Of
Advance Research And Innovative Ideas In Education, volume 2, 2016.

[50] Sorournejad Samaneh, Zojaji Zahra, Atani Reza Ebrahimi and Monadjemi Amir. A
Survey of Credit Card Fraud Detection Techniques: Data and Technique Oriented Per-
spective. November 2016. Doi: 1611.06439.

[51] Stolfo Salvatore J., Fan David W., Lee Wenke and Prodromidis Andreas L. Credit card
fraud detection using meta-learning: Issues and initial results. In of AAAI Workshop on
AI Approaches to Fraud Detection and Risk Management, pages 83–90, 1997.

[52] Sweeney Latanya. Simple Demographics Often Identify People Uniquely. January 2000.
Doi: 10.1184/R1/6625769.v1.

[53] Sweers Tom . Autoencoding Credit Card Fraud. Bachelor thesis, Radboud University,
July 2018.

[54] Task Andrew. Secure and Private AI. Chapter: Federated Learning. Accessed: 2020-04-
03.

[55] The Association of Certified Fraud Examiners. What Is Fraud? Url: https://www.
acfe.com/fraud-101.aspx. Accessed: 2020-05-08.

[56] The Learning Machine. Handling Imbalanced Data SMOTE. Url: https://www.
thelearningmachine.ai/smote. Accessed: 2020-05-19.

[57] Wragg Eleanor. Nordic KYC utility takes shape, July 2019. Url: https:
//www.gtreview.com/news/europe/nordic-kyc-utility-takes-shape/.
Accessed: 2020-05-04.

59

10.1109/IJCNN.2007.4371071
10.1109/IJCNN.2007.4371071
https://scikit-learn.org/stable/modules/generated/sklearn.metric.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metric.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metric.average_precision_score.html
https://shiftprocessing.com/credit-card-fraud-statistics/
https://shiftprocessing.com/credit-card-fraud-statistics/
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
1611.06439
10.1184/R1/6625769.v1
https://www.acfe.com/fraud-101.aspx
https://www.acfe.com/fraud-101.aspx
https://www.thelearningmachine.ai/smote
https://www.thelearningmachine.ai/smote
https://www.gtreview.com/news/europe/nordic-kyc-utility-takes-shape/
https://www.gtreview.com/news/europe/nordic-kyc-utility-takes-shape/

REFERENCES

[58] Xie Xiaobo, Xiong Jian, Lu Liguo, Gui Guan, Yang Jie, Fan Shangan and Li Haibo. Gen-
erative Adversarial Network-Based Credit Card Fraud Detection, pages 1007–1014. January
2020. Doi: 10.1007/978-981-13-6508-9_122.

[59] Xu Jie and Wang Fei. Federated Learning for Healthcare Informatics, November 2019.

[60] Xuan Shiyang, Liu Guanjun, Li Zhenchuan, Zheng Lutao, Wang Shuo and Jiang
Changjun. Random forest for credit card fraud detection. In 2018 IEEE 15th Interna-
tional Conference on Networking, Sensing and Control (ICNSC), 2018.

[61] Yang Mengwei, Song Linqi, Xu Jie, Li Congduana and Tan Guozhen. The Tradeo�
Between Privacy and Accuracy in Anomaly Detection Using Federated XGBoost, 2019.
Doi: 1907.07157.

[62] Yang Wensi, Zhang Yuhang, Ye Kejiang, Li Li and Xu Cheng-Zhong. FFD: A Fed-
erated Learning Based Method for Credit Card Fraud Detection. In Big Data – Big-
Data 2019, pages 18–32. Springer International Publishing, 2019. Doi: 10.1007/
978-3-030-23551-2_2.

[63] Zhao Yue, Li Meng, Lai Liangzhen, Suda Naveen, Civin Damon and Chandra Vikas.
Federated Learning with Non-IID Data, August 2018. Doi: 1806.00582.

60

10.1007/978-981-13-6508-9_122
1907.07157
10.1007/978-3-030-23551-2_2
10.1007/978-3-030-23551-2_2
1806.00582

Department of Computer Science | Lund Technical University | Date of presentation June 11 2020
Master Thesis: Federated Learning Used to Detect Credit Card Fraud
Students: Madeleine Jansson and Måns Axelsson
Supervisors: Rasmus Ros (LTH), Mehmood Alam Khan (IBM) and Peter Forsberg (IBM)
Examiner: Volker Krüger

Federated Learning Used to Detect Credit
Card Fraud
POPULAR SCIENCE SUMMARY BY Madeleine Jansson and Måns Axelsson

BUILDING A FRAUD DETECTION SYSTEM WITH FEDERATED AVERAGING THE RESULTS SHOWS THAT THE FEDE-
RATED MODEL CAN PERFORM AND EVEN OUTPERFORM THE EQUIVALENT CENTRALISED MODEL, MULTI LAYER
PERCEPTRON, WHEN TRAINED ON THE SAME DATASET.

Machine learning has only been around for approxima-
tely 70 years, still, this learning technique is used in many
different industries including for example finance, medici-
ne, music and games. This learning technique enables to
predict future outcomes and recognise patterns by analy-
sing massive quantities of data, which was done by hand
before the era of machine learning. In our thesis, we took
advantage of the power of machine learning when trying
to solve a problem that costs society billions of dollars
every year, namely, credit card fraud. In particular, we in-
vestigated and implemented, in collaboration with IBM,
a rather new machine learning model called Federated
Averaging.

Since the emerge of online shopping the number of cre-
dit card fraud have risen greatly and with more money
spent online there are more opportunity’s available for
the fraudsters to commit a crime. Today, banks train
centralised models, i.e. all training is done locally and
there is no collaboration between different parties. These
centralised fraud detection systems would increase great-
ly in performance if its models had access to more trai-
ning data — a problem that could be solved if banks
could collaborate when trying to combat fraud. Today,
using the centralised approach, the collaboration between
banks is nearly impossible due to safety and privacy re-
asons attached to the banks data. This is where federa-
ted learning comes into the picture. With this technique
banks can collectively reap the benefits of a shared mo-
del, which has seen more fraud than each bank alone,
without sharing the dataset with each other. Hence, the
sensitive information of the cardholders is protected.

In our thesis, we have investigate the federated learning
technique and in particular, how well the Federated Ave-
raging model detects credit card fraud transactions in
contrast to the centralised Multi Layer Perceptron mo-
del. To do this we have organised the dataset into three
different settings and then the Multi Layer Perceptron
and Federated Averaging was trained on all of these set-
tings. Usually, when training a fraud detection system
a dataset of at least six weeks is required for proof of
concept, but we only had access to two days. Due to the
small size of the dataset it was difficult to draw any de-
finitive conclusions. To our surprise, however, the results
from our thesis showed that Federated Averaging could
perform and even outperform the Multi Layer Perceptron
on our dataset. This shows that the federated approach is
an interesting learning technique for future work since it
allows parties to collaborate without revealing sensitive
information and still get a model with better performan-
ce than for the centralised approach. Moreover, not only
can federated learning be applied in the banking industry
but researchers have also seen good results when apply-
ing this learning technique to, for instance, the healthcare
and keyboard predictions from an edge device.

	Introduction
	Research Question
	Contribution

	Background
	Fraud
	Machine Learning for Fraud Detection
	Fraud Areas
	Issues and Challenges with Fraud Detection Systems
	Skewed Data
	Principal Component Analysis

	Performance Measurement
	Centralised Learning
	Multi Layer Perceptron

	Federated Learning
	Non Identical Independent Distributed Data
	Federated Averaging
	Secure Computations
	Privacy-Preserving Disclosures

	Related Work
	Methodology
	Dataset
	Data Pre-Processing
	Interview – Federated Averaging
	Assumptions and Limitations

	Implementation of Models
	Multi Layer Perceptron
	Federated Averaging

	Results
	Interview – Federated Averaging
	Multi Layer Perceptron and Federated Averaging
	Skewed Data
	Non Independent Identically Distributed Data
	SMOTE Non Independent Identically Distributed Data

	Discussion
	Future Work
	Conclusion
	Tom sida

