
MASTER’S THESIS 2020

Real-time rendering and
dynamics of sparse voxel octree
clouds
Johan Pettersson

ISSN 1650-2884
LU-CS-EX: 2020-35

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-35

Real-time rendering and dynamics of
sparse voxel octree clouds

Johan Pettersson

Real-time rendering and dynamics of
sparse voxel octree clouds

Johan Pettersson
dat14jpe@student.lu.se

June 16, 2020

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Pierre Moreau, pierre.moreau@cs.lth.se

Examiner: Michael Doggett, michael.doggett@cs.lth.se

mailto:dat14jpe@student.lu.se
mailto:pierre.moreau@cs.lth.se
mailto:michael.doggett@cs.lth.se

Abstract

State-of-the-art real-time cloud rendering in games has transitioned from 2D
skyboxes to ray marched 3D volumes more closely approximating the volumetric
nature of reality. However, most solutions repeat small volumes of details to save
memory and show only a few hardcoded cloud layers, which cannot capture the
breadth and depth of complexities in the real atmosphere.

This thesis develops and presents an atmosphere renderer capable of dis-
playing views from any altitude within or outside an Earth-scale atmosphere,
seamlessly transitioning between them, with adaptive level of detail changing
the allocation of memory and computational resources depending on the cur-
rent camera location. By separating cloud creation from cloud rendering, this
method in principle enables rendering of cloud data from any source.

Ultimately the presented implementation renders on average 30 frames per
second with adequate quality settings on a high end GPU; however, there may
be further optimisation potential.

Keywords: level of detail, voxels, rendering, computer graphics, image rendering, real-
time rendering

2

Acknowledgements

I would like to express deep gratitude to my parents Catarina and Nils, for letting me keep
my head aloft in the clouds. Furthermore, I thank my supervisor Pierre Moreau for putting
up with the vagaries of a voxel enthusiast, and for his stewardship of a plastic box devoid
of cookies during the trying times of pandemic. Likewise, I give kudos to Michael Doggett
for fair remarking and marking. Additionally, I profess my unwavering gratefulness to Si-
mon Bengtsson, Oscar Sigurdsson, and Christopher Tvede-Möller for proofreading a prov-
ably proofless thesis. Moreover, I recognise my indebtedness to Markus Åkesson, Filip An-
dersson, Sigrid Berglund, Kristo�er Bergman, Daniel Bjarnestig, Filip Fläderblom, Michael
Hansen, Dennis Jin, David Malmström, Alexander Olsson, Markus Oskarsson, Patrik Pers-
son, Eric Sporre, and Andy Tang for benchmarking the program on various GPUs. Finally,
I proclaim heartfelt thankfulness to Sångfågel the cat for unending impromptu jam sessions
in rainfall and sunshine alike.

Post-ultimately, thank you for reading this far.

3

4

Contents

1 Introduction 7
1.1 Goals . 8
1.2 Contributions . 8
1.3 Report structure . 9

2 Theory 11
2.1 Atmosphere physics . 11

2.1.1 Cloud formation . 13
2.1.2 Light interactions with the atmosphere 14

2.2 Computer graphics . 17
2.2.1 Colour . 17
2.2.2 Dynamic range and tone mapping 18
2.2.3 Voxels . 19
2.2.4 Octree . 20
2.2.5 Ray marching . 21
2.2.6 Graphics memory . 22
2.2.7 Procedural noise . 22

3 Related work 25
3.1 GigaVoxels (Crassin, 2011) . 25
3.2 Precomputed atmospheric scattering (Bruneton and Neyret, 2008) 25
3.3 Ray marched texture combinations . 26
3.4 Voxel-space lighting . 26

4 Algorithm 29
4.1 Core concept . 29

4.1.1 Octree descent . 30
4.1.2 Octree ray marching . 30

4.2 Precomputation . 30
4.2.1 Transmittance . 30

5

CONTENTS

4.2.2 First order light scattering . 31
4.3 Continuous operation . 31

4.3.1 Update . 31
4.3.2 Render . 33
4.3.3 Higher-order light scattering . 33

5 Implementation 35
5.1 OpenGL . 35
5.2 Libraries . 36
5.3 Architecture . 36

5.3.1 Updater . 37
5.3.2 Renderer . 37

5.4 Optimisation . 37

6 Results 39
6.1 Hardware and software . 39
6.2 Images . 39

6.2.1 Voxel Rayleigh distribution . 42
6.3 Videos . 43
6.4 Performance . 44

6.4.1 Benchmark 1: variable GPU . 44
6.4.2 Benchmark 2: variable memory budget 45

6.5 Image quality . 45

7 Discussion 51
7.1 Shortcomings . 51
7.2 Future work . 52

8 Conclusion 55

References 57

6

Chapter 1

Introduction

The sky comprises a significant portion of many outdoor scenes, literally setting the atmo-
sphere and playing a major part in guiding mood and tone. While a clear blue day has a
certain appeal, the dynamic conditions of weather will frequently give rise to a wide array
of conspicuous visible formations of aerosolised water, commonly known as clouds. There
are many types of clouds, from flu�y cumulus to blanketing stratus and wispy cirrus, and the
occasional towering cumulonimbus, as well as various subtypes thereof (see Section 2.1.1 on
page 13); their varied configurations interact with sunlight to enact complex displays of light
and shadow.

Rendering the atmosphere is thus a recurring sub-objective in computer graphics. Dif-
ferent solutions have been devised over the years, with the most recent techniques seemingly
converging on variants of ray marching a cloud density volume to compute approximate in-
scattering and transmittance from a given direction to the viewing camera. However, most
real-time methods limit views to positions near the ground, and few enable continuous move-
ment from vantage points overlooking an entire planet, through fully volumetric cloud layers,
and to arbitrary levels.

In this thesis I present a newly developed atmosphere renderer intended to allow views
over Earth-scale planetary distances and (see Figure 1.2 on page 9) from any perspective either
within (see Figure 1.1 on the following page) or outside (see Figure 1.2 on page 9) the atmo-
sphere. The first-order light scattering caused by smaller molecules is computed according
to a density distribution dependent only on height above sea level, as in earlier works; how-
ever, the presented solution also accounts for first-order light scattering due to the spatially-
variable density distribution of water droplets suspended in the air (i.e., clouds and fog) using
an adaptive spatial partitioning structure.

7

1. Introduction

1.1 Goals
The atmosphere renderer developed as part of this thesis work was named Mulen (Swedish
for “overcast” or “cloudy”, as in “en mulen dag” i.e. “a cloudy day”). These were the goals:

• Real-time performance, defined as no fewer than 30 frames per second (FPS) when
running on an NVIDIA GTX 1080 Ti graphics card and rendering to a resolution of
2560 × 1440 pixels.

• Capacity to handle a full realistically sized planetary atmosphere (planet radius 6371 km
and atmosphere shell approximately 100 km thick around that, like Earth), with few
or no abrupt transitions (i.e. seamless movement around the planet, and through the
clouds).

• Dynamic cloud movements and dynamic lighting, precluding precomputed (baked)
lighting solutions.

Figure 1.1: Parts of a cumulus cloud photographed in late afternoon.

1.2 Contributions
Mulen was intended to investigate the feasibility of creating and rendering planet-encompassing
cloudscapes in real-time using a variable-resolution voxel structure. If successful, such an ap-
proach could be used to display any cloud formation permissible in 3D space, including any
procedurally generated ones as well as ones scanned from reality, and in particular lead the
way to player-modifiable clouds of arbitrary complexity (insofar as is permitted by hardware
memory and computational resources).

A list of specific contributions:

8

1.3 Report structure

Figure 1.2: Thunderheads near Borneo, Indonesia featured in an
image photographed by an Expedition 40 crew member on the In-
ternational Space Station (NASA photo ID ISS040-E-88891). Im-
age courtesy of the Earth Science and Remote Sensing Unit, NASA
Johnson Space Center [5].

• Application of a sparse voxel octree to real-time atmosphere rendering, allowing for
separation of cloud generation from cloud rendering.

• Real-time construction and adaptation of the octree on another thread depending on
current and possibly changing camera location.

• A method of animating the sparse voxel octree by interpolating between two states.

• Render performance independent from computation of cloud distribution due to sep-
aration of cloud generation from cloud rendering.

1.3 Report structure
After this introductory chapter the theoretical foundations of this work are introduced, di-
vided into concepts from physics and concepts from computer graphics. These are followed
by a roughly chronological overview of related works that inspired and helped guide the ap-
proach and aims of this thesis. Subsequently the algorithmic structure of Mulen is explained.
Then some technical specifics of its implementation (such as crucial optimisations and design
tradeo�s) are detailed. The results are presented – both those which are directly visual, in
the form of images and linked videos, as well as performance measurements. This leads into
a discussion of the advantages and disadvantages found in the explored method, with sugges-
tions of future work and some improvements which might deserve looking into. Finally, a
brief conclusion.

9

1. Introduction

10

Chapter 2

Theory

This chapter summarises the high-level physical foundations of atmospheric lighting, as well
as some essential computer graphics concepts employed in this thesis. The two types of light
scattering (Rayleigh and Mie), as well as light absorption due to ozone, are introduced. An
overview of the process behind cloud formation is presented.

The modelling of colours is covered, as well as tone mapping from high dynamic range
to low dynamic range. The octree spatial partitioning structure is motivated in the context
of this thesis and described.

2.1 Atmosphere physics
An atmosphere is a shell of gaseous matter surrounding a celestial body such as a planet or
a natural satellite (i.e. a moon). In this work, three types of atmosphere constituents are
considered, as they are the most relevant for imitating the visual characteristics of planet
Earth’s atmosphere (see Figure 2.1 on the following page):

• Molecules whose sizes are significantly smaller than the wavelengths of visible light,
such as oxygen and nitrogen.

• Water droplets, whose sizes are similar to or exceed the wavelengths of visible light.

• Ozone (which is technically included among the molecules, but warrants separate han-
dling due to having a particular visual e�ect and a separate density distribution).

The densities of both smaller molecules and water droplets in clear weather are modelled
as exponential distributions over height above ground level:

ρ(h) = e−h/H , (2.1)

where e is Euler’s number and H is the distribution-dependent constant scale height (8 km
for smaller molecules and 1.2 km for water droplets, which means the latter are relatively
scarcer in the upper atmosphere).

11

2. Theory

Figure 2.1: A cross section of Earth’s atmosphere, showing atmo-
spheric layers, their boundaries, and approximate locations of some
types of clouds. Kelvinsong, available under CC-BY-SA 3.0 [13].

12

2.1 Atmosphere physics

2.1.1 Cloud formation

Figure 2.2: Common cloud types in planet Earth’s atmosphere.
Valentin de Bruyn / Coton, available under CC-BY-SA 3.0 [23].

When air is heated by the sun it rises upwards into the thinner parts of the atmosphere,
potentially carrying water molecules along. In the lowest layer of the atmosphere – the tro-
posphere – temperature decreases as height increases, and the air is saturated with water, at
which point water droplets will start to condense and a visible cloud forms. Clouds, how-
ever, are not purely chaotically indistinct forms. See Figure 2.1 on the preceding page for an
overview of the layers of the atmosphere.

Cloud types were classified and given Latin names by Luke Howard in 1803 [11]. Seven
cloud types were listed in Howard’s Essay on the Modifications of Clouds and described as fol-
lows:

• Cirrus: Parallel, flexuous, or diverging fibres, extensible by increase in any or in all
directions.

• Cumulus: Convex or conical heaps, increasing upward from a horizontal base.

• Stratus: A widely extended, continuous, horizontal sheet, increasing from below up-
ward.

• Cirrocumulus: Small, well-defined roundish masses, in close horizontal arrangement
or contact.

• Cirrostratus: Horizontal or slightly inclined masses attenuated towards a part or the
whole of their circumference, bent downward, or undulated; separate, or in groups
consisting of small clouds having these characters.

• Cumulustratus: The Cirro-stratus blended with the Cumulus, and either appearing
intermixed with the heaps of the latter or superadding a wide-spread structure to its
base.

13

2. Theory

• Nimbus (Cumulo-cirro-stratus): The rain cloud. A cloud, or system of clouds from
which rain is falling. It is a horizontal sheet, above which the Cirrus spreads, while the
Cumulus enters it laterally and from beneath.

In addition to these types, the cumulonimbus, stratocumulus, altocumulus, and altostra-
tus types were added; see Figure 2.2 on the preceding page. The extremely low-density noc-
tilucent (“night shining” in Latin) clouds were only discovered late. Contrails are an artificial
cloud type formed by the condensation following the jet stream of modern passenger aero-
craft.

2.1.2 Light interactions with the atmosphere
As light enters the atmosphere, some of it is transmitted with its incident direction preserved
while another portion is absorbed by the air and the last portion is scattered in all directions.
This section introduces physical formulae for calculating the respective ratios of these quan-
tities of light; these are key to reproducing visuals reminiscent of the actual atmosphere.

While transmittance and absorption are assumed to be non-directional (isotropic) for
the purposes of this thesis, scattering is strongly dependent on the angle between the view
vector – the direction from the lit location and to the camera – and the light vector – the
direction from the lit location and to the light source. A pair of phase functions describe these
direction-dependent (anisotropic) relations as distributions of the probability of light being
scattered by a given angle away from its incident direction; see Figure 2.3 on page 16 for an
illustration of these distributions over angles.

Given an atmosphere-relative location p, the amount of light reaching p that will be scat-
tered in a direction θ radians away is proportional to both a phase function of θ and a scattering
coe�cient, which is a function of the density of the relevant type of atmospheric constituent
at p and the light wavelength λ. These functions di�er depending on the scattering type.
The two scattering types and their respective functions are given below (with the scattering
coe�cients of a cloudless sky, i.e. where the density at p is a function of the height above sea
level h = ‖p‖ − R, where R is the planet radius).

Rayleigh scattering
Most of the atmosphere consists of small molecules of oxygen and nitrogen, whose individual
sizes are far below the scale of the wavelengths of visible light (i.e. approximately 380 nm to
740 nm). Light scattering due to such particles is called Rayleigh scattering.

The Rayleigh scattering coe�cient βs
R and phase function PR as used by Bruneton and

Neyret [3]

PR(µ) =
3

16π
(1 + µ2) (2.2)

βS
R(h, λ) =

8π3(n2 − 1)2

3Nλ4 e−
h

HR (2.3)

where µ = cos θ, and θ is the angle between the incident direction and the outscattered
direction, h is the height above sea level, n is the index of refraction of air, N is the molecular
density at sea level, λ is the wavelength of the light, and HR is the scale height of the Rayleigh
density distribution.

14

2.1 Atmosphere physics

As can be seen in equation 2.3 on the facing page, Rayleigh scattering is inversely propor-
tional to the fourth power of the wavelength, which means di�erent colours aren’t scattered
to equal extents. In particular, short wavelengths – such as blue – are scattered much more
than long wavelengths – such as red – which explains both the daytime bluish tones of the at-
mosphere as well as the redder appearance of sunrises and sunsets; when light travels through
longer and denser portions of the atmosphere, significantly less blue and more red light re-
main in the sun direction.

Mie scattering
Light scattering due to particles of a size similar to the wavelengths of light is called Mie
scattering. The sizes of water droplets result in their aggregates (namely clouds, mist, and fog)
being visually characterised by Mie scattering.

Mie scattering theory formulates a highly complex phase function that is impractical to
evaluate directly. The Mie scattering coe�cient βS

M and phase function approximation PM
(the Cornette-Shanks phase function) as used by Bruneton and Neyret [3]:

PM(µ) =
3
8π

(1 − g2)(1 + µ2)
(2 + g2)(1 + g2 − 2gµ)3/2 (2.4)

βS
M(h, λ) = βS

M(0, λ)e−
h

HM (2.5)

where HM is the scale height of the Mie density distribution, the parameter g = 0.8, and
the other variables are the same as for the Rayleigh functions. Observe that Mie scattering’s
wavelength-dependency is independent of height, which means it can be evaluated once for
all heights and then used as a constant factor. Additionally, these constant factors are in fact
wavelength-independent; this gives the typically mostly white or grey appearance of clouds
in daytime.

The Mie phase function has a very strong forward lobe: it scatters most of the light in the
forward direction, and only small fractions in all other directions. Visually this emphasises
the edges of clouds that (nearly) occlude the sun with distinct rims of heightened brightness,
giving rise to the renowned silver lining visual characteristic; see Figure 2.4 on page 17 for an
example.

Ozone absorption
In addition to Rayleigh scattering by several smaller molecules and Mie scattering due to
larger droplets, ozone plays a noticeable role in atmospheric lighting by absorbing some light
(particularly a portion of the green light).

The ozone density distribution is modelled as linearly increasing from a height of 10 km
to 25 km and linearly decreasing from 25 km to 40 km. The ozone absorption is proportional
to the ozone density and a wavelength-dependent coe�cient βEx

O (λ) but independent of the
direction (i.e., it is isotropic).

The Beer-Lambert law
Some light is scattered away from the incident direction and more is absorbed by water
droplets and ozone molecules, but there is a remaining portion that will not be deterred.

15

2. Theory

Figure 2.3: Visualisation of Rayleigh (left) and Mie (right) scatter-
ing phase functions: light coming from above is scattered in all di-
rections; the arrow lengths are proportional to the probability of
scattering in the arrow angle. No light scattering at all would be
shown as a single straight arrow to the bottom, as incident light
would travel on without changing direction. While Rayleigh scat-
tering is almost evenly distributed in all directions, Mie scattering
doesn’t scatter as much away from the incident direction (though it
is still noticeably di�erent from no scattering at all).

Observe that these are cross sections: at first glance it may seem
like the Rayleigh distribution is “too small”, but this is only because
the full distributions are actually over all three-dimensional direc-
tions (which could be visualised as the surface of a three-dimensional
sphere).

16

2.2 Computer graphics

Figure 2.4: A photographed cumulus cloud formation close to the
sun in the image, showing the bright silver lining e�ect on its edges
due to the incident direction (towards the sun) and the view direc-
tion (from cloud to camera) being closely aligned and thus within
the forward Mie scattering lobe.

The ratio of light continuing on the incident direction to the light intensity first entering
the atmosphere (or, more generally, any participating medium) is called transmittance. Trans-
mittance can be formulated as a function of optical depth in the form of the Beer-Lambert
law (also called Beer’s law) [26]:

T (τ) = e−τ (2.6)

2.2 Computer graphics
Real computer hardware cannot store real numbers with infinite precision nor directly ma-
nipulate the states of so many particles as to match reality one-to-one (not to mention the
limitations of physical models and possibly unknown aspects of nature yet to be discovered
and understood); to recreate the visual properties of the atmosphere, both physical light and
the actual atmosphere have to be represented numerically in some capacity. To this end, a
colour model is introduced, and a spatial partitioning structure is motivated and described.

2.2.1 Colour
Actual light can be composed of any combination of wavelengths on a spectrum; representing
this accurately is considered prohibitive for most real-time rendering, due to the memory
and computational costs associated with handling a more comprehensive spectrum for every
pixel. Consequently, colours are typically reduced to only three wavelengths – red, green,
and blue – which correspond to the most common types of photoreceptor cells (cones) in the

17

2. Theory

human eye. In 1931, the International Commission on Illumination (CIE) defined the CIE
1931 colour spaces [16], which form a numeric basis for the wavelength-dependent responses
of these cones cells. Other colour spaces – such as sRGB and ACEScg – can be transformed
into the CIE 1931 colour spaces (see Figure 2.5). Many common monitors only support RGB
colour triplets representing values in the sRGB colour space.

Figure 2.5: The ACEScg and sRGB colour spaces shown in the
CIE 1931 chromaticity space (image created with the Python
colour-science package). The axes are the normalised X and Y
coordinates, spanning all chromaticities; the unshown third axis cor-
responds to brightness, which is orthogonal to chromaticity.

2.2.2 Dynamic range and tone mapping
In reality, there is in principle no limit to the power of a light source and thus no absolute
upper bound on the amount of energy in the emitted light. However, computer monitors
can only display a subset of this vast dynamic range (and the human eye can only adapt so far
to darkness or brightness). Thus software renderers often compute images initially in a high
dynamic range (HDR) corresponding more closely to physical values and the possibly huge
or minuscule magnitudes allowed by physics, and then convert the images to a low dynamic
range (LDR) for display only after all physically-based e�ects have been accounted for. This
can be seen as a virtual equivalent of the physical exposure taking place in physical cameras.

18

2.2 Computer graphics

Figure 2.6: The di�erence between just clamping colour intensities
to the low dynamic range (left) and applying the ACES tone map-
ping operator (right).

The process of converting from HDR to LDR is called tone mapping, and functions map-
ping from HDR values to LDR values are called tone mapping operators. There are many
tone mapping operators, among them one that is part of the Academy Color Encoding Sys-
tem (ACES), a colour management standard widely used in computer graphics. The ACES
tone mapping operator is based on a spline fitted by experts reviewing the behaviour of the
operator; it is intended to emulate real film, and often avoids too abrupt oversaturation in
the brighter areas of images while making for dramatic colour hues (see Figure 2.6).

2.2.3 Voxels
Pixels (picture elements) are values sampled in a uniform grid on a 2D plane; analogously,
voxels (volume elements) are values sampled in a uniform grid on a 3D plane. Depending
on usage, voxels can be sampled in the centres of grid cells – and perhaps rendered as cubes
occupying the grid cells – or rather sampled at the corners of intersecting grid lines and
interpolated in-between to give a continuous value distribution over the entire volume; see
Figure 2.7 for an illustration of the di�erent sampling patterns, and Figure 2.8 on the next
page for the di�erence due to linear interpolation as opposed to no interpolation.

Figure 2.7: A 2D cross section of a 3D voxel volume. Voxels can be
either sampled at grid cell centres (left) or at grid cell corners (right).

19

2. Theory

Figure 2.8: A voxel volume rendered with no interpolation between
voxel values (left) and linear interpolation between voxel values
(right).

2.2.4 Octree
In theory, a single giant voxel matrix of densities can represent any density distribution in
space. Yet, in practice this requires far too much memory for all but the simplest and smallest
of scenes.

A quick foray into mental arithmetic to show the infeasibility of representing an atmo-
sphere density distribution with a straightforward 3D matrix: the Earth has a radius of about
6371 km, and its atmosphere extends roughly 100 km farther out. For simplicity, let’s say
the atmosphere diameter is roughly 104 km (and note that rounding down errs on the side of
caution in the following reasoning; it means the actual requirement would be even higher).
From this follows that more than (104)3 = 1012 values are required to have one value per
cubic kilometre in a 3D matrix encompassing the entire atmosphere. Since this is still quite
coarse, we may multiply the estimate by perhaps another 103 (if e.g. features down to 100 m
should be representable). With at least one byte per voxel, this is on the order of a million
gigabytes of data, far outstripping today’s GPU memory capacities of just a few tens of giga-
bytes on the highest end (and even storage space of several terabytes).

Of course, a large fraction of this volume is the interior of the planet, and much of the
rest is so far from the planet as to be in outer space, wherein the atmosphere doesn’t exist at
all; a solution with density values bounded more closely to the surface of the planet would be
less wasteful. The Earth’s surface area is roughly 500 × 106 km2; if we want to represent up
to 10 km tall clouds, and once again multiply by 1000 to account for cloud detail sizes down
to 100 m, this would require somewhere above 1012 bytes, i.e. 1000 GiB (not accounting for
the higher “layers” having an even greater area than the surface area at ground level, as the
outer shells have larger radii). Even this is well beyond current hardware.

But for many scenes, even a uniform grid conforming closely to the surface is highly
wasteful: there would be pockets of emptiness, perhaps others of constant density, and only

20

2.2 Computer graphics

Figure 2.9: A cubical volume split recursively in octants, as by an
octree, which is also represented with the per-octant nodes of vari-
ous sizes and their child nodes. WhiteTimberwolf, available under
CC-BY-SA 3.0 [25].

some regions occupied by actually varied values of interest. Additionally, and more signif-
icantly, regions that are more distant from the current camera location can make do with
relatively coarser details than those regions that are nearer the camera. It would thus be best
if the emptier and more distant regions could occupy less memory, and this can be achieved
with the use of a space partitioning structure, such as an octree.

An octree is a tree data structure representing a division of a 3D space in 8 equally-sized
octants, each represented with a node in the octree. Each octant may be split into 8 smaller
octants (corresponding to 8 smaller nodes added to the tree), and so on recursively [27] (see
Figure 2.9). If only those nodes which contain information of interest are split to high depths
and high detail, resources may be conserved for where they are needed most, since the less
interesting regions are only represented at lower resolutions. When used in the manner de-
scribed, such an octree is known as a sparse voxel octree [28].

2.2.5 Ray marching

Volumetric data can be straightforwardly rendered by starting from a chosen ray origin lo-
cation and then stepping along the ray direction and sampling values at these discrete step
locations (see Figure 2.10 on the next page). The number of steps (which is inversely pro-
portional to the step size) controls a tradeo� between quality and performance: the fewer
the steps, the faster the computation; but fewer steps may result in missing the thinner of
details, and can also give rise to visually unpleasant banding (apparent quantisation of colour
and lighting).

21

2. Theory

Figure 2.10: Ray marching: steps – whose sample locations are
shown as circles – are taken along a ray, in this case intersecting
a simple cloud shape. The step size does not have to be constant; the
steps are unevenly distributed in this instance, with shorter steps
being taken within the cloud, which is perhaps indicative of the in-
terior of the cloud needing more consideration than the air outside
it.

2.2.6 Graphics memory
Memory resources used for rendering on GPUs (Graphics Processing Units, also known as
graphics cards) are allocated in one of two forms: as textures and as bu�ers. The former
have special properties, while the latter are essentially ordinary arrays of arbitrary memory
structures.

In computer graphics parlance, the word texture often has a specific meaning: a low-
dimensional (typically 1 to 3 dimensions) matrix of elements. The individual texture ele-
ments – texels – can and often do represent colours; however, in general the texel data may
represent arbitrary values, the exact meaning being up to the intended use and the program-
mer interpretations encoded in programs. A texture spans a unit coordinate space, and values
sampled on this space will be interpolated from the texels on the grid corners around the sam-
ple location (if the appropriate texture filtering mode is set), which can be used to greatly
accelerate many graphical algorithms while avoiding the visually blocky look that comes from
not interpolating and rather snapping to the nearest texel.

2.2.7 Procedural noise
A short chain of mathematical functions applied to input coordinates can result in many
shapes, ranging from simple and abrupt step functions to smooth gradients and periodic
sinusoids, among a vast space of potential combinations. However, most of these are clearly
unnatural-looking in many contexts where one would want a result that only on average
resembles such a pure function, while smaller perturbations and fluctuations are desired.
In these cases, which include various forms of procedurally generated clouds in computer
graphics, a well-tuned amount of seeming randomness can make a critical di�erence.

Perlin noise is a pseudo-random continuous scalar function in one or more dimensions,
invented by Ken Perlin in 1985, based on interpolating values from the closest grid points in
an N-dimensional cube analogue [15]. Given input coordinates, it returns values that appear

22

2.2 Computer graphics

(a) 1 octave of Perlin noise. (b) 6 octaves of Perlin noise.

Figure 2.11: A single octave of two-dimensional Perlin noise (left)
besides a sum of 6 octaves of two-dimensional Perlin noise with per-
sistence = 0.5 and lacunarity = 2 (right). These images were created
with code samples from The Book of Shaders [24].

to be random over larger scales yet are continuous.
The original Perlin noise algorithm su�ered from directional artefacts (aligned with the

cardinal axes) and poor computational scaling to higher dimensions (proportional to N2,
where N is the number of dimensions). In 2001, Ken Perlin created simplex noise, a similar
but improved noise algorithm based on simplexes – the N-dimensional generalisation of tri-
angles and tetrahedrons – rather than the hypercube grid in Perlin noise [8]. The number of
values interpolated in a simplex noise evaluation scales linearly with N .

By itself, a single evaluation of a noise function gives an uninterestingly simple (smooth)
continuum. By summing multiple evaluations – octaves – at exponentially higher multiples of
the input coordinates and with exponentially decreasing coe�cients, a more natural-looking
texture can be achieved. See Figure 2.11 for examples.

Such a sum of noise evaluations approximates fractal Brownian motion (fBm):

fBm(p) =
o∑

n=1

an noise(lnp) (2.7)

where p is a coordinate vector, o is the number of octaves, a is the persistence, and l is the
lacunarity. The number of octaves controls how high the noise resolution gets and thus how
fine details can be produced, while persistence characterises the amplitude fallo� with higher
frequencies, and lacunarity determines how quickly the frequency increases.

There are other common types of procedural noise functions (among them cellular noise,
which features in multiple cloud renderers’ 3D textures (e.g. [2] and [14])), but this thesis relies
mostly on a combination of fBms based on Perlin noise. One fBm value can for example be
used to modulate or mask (threshold) another fBm evaluation at a di�erent coordinate o�set,
to generate areas whose boundaries are of lower frequencies but where the interior details are
of higher frequencies.

23

2. Theory

24

Chapter 3

Related work

Cloud rendering – real-time and otherwise – is a well-researched area. In this section the
prior works which this thesis is directly inspired by and based on will be revisited, and the
aspects most relevant to this work will be noted and commented on.

3.1 GigaVoxels (Crassin, 2011)
In 2011, Cyril Crassin presented GigaVoxels [4], a system for representing objects using voxels
in multiple levels of detail in real-time. In GigaVoxels, objects are represented with octrees
where the leaf nodes correspond to voxel bricks, cubical matrices of low resolution. By not
splitting the octree nodes all the way down to individual voxels, and rather choosing a suit-
able brick size, memory coherence (and a slightly fewer number of octree levels to traverse)
contribute to better render performance and adaptive level of detail management as bricks
can be loaded or unloaded e�ciently.

Principles from and based on the GigaVoxels system are central to the atmosphere rep-
resentation and level of detail management implemented in this thesis.

3.2 Precomputed atmospheric scattering
(Bruneton and Neyret, 2008)

In 2008, Eric Bruneton and Fabrice Neyret introduced methods of precomputing atmo-
spheric transmittance and light scattering into lookup tables and then interpolating the table
values to render an atmosphere e�ciently, accounting for Rayleigh and Mie scattering due to
density functions dependent only on height [3]. In 2017, Bruneton reimplemented the code
to be more readable and consistent in variable and function names. Absorption due to the

25

3. Related work

ozone layer was also added in this version, further improving the visual believability of the
results [6].

Parts of Bruneton’s and Neyret’s method – specifically the precomputation of clear-sky
transmittance and single scattering – are used for significantly optimising the algorithm in
this thesis.

3.3 Ray marched texture combinations
Predominantly ground-based views of cloudscapes can be rendered by ray marching some
weighted combination of tiled and scaled noise textures. Multiple implementations and tech-
niques build on this principle.

In 2016, Rikard Olajos included Gaussian towers (multivariate normal distributions cen-
tered on pickable coordinates) to control the locations and dimensions of the biggest cloud
features when computing a low resolution cloud density 3D texture for use in combination
with a tiled 3D texture [14]. This method enables some control of cloud feature placement,
but restricted to the confines of the tiled 3D texture. This type of constraint – and the need
for tiling cloud textures – was avoided in my work.

The Nubis cloud system in the Decima video game engine developed by Guerrilla Games [2]
(displayed prominently in the 2017 video game Horizon Zero Dawn) is another example of
tiling a low resolution 3D texture modulated by a 2D texture to control the cloud cover.
Hand-adjusted gradients are used to achieve specific cloud types, such as cumulus or cumu-
lonimbus. Notably, Nubis makes use of a simple yet visually e�ective heuristic for quickly
estimating the indirect light scattering in the clouds, which was also used in this work.

In 2018, Fredrik Häggström conducted a thorough investigation of many aspects of the
now typical ground-view cloud rendering based on combining a few coverage textures, height
gradients dependent on desired cloud type, and a tiled low resolution detail volume texture.
This solution did not implement higher cloud layers, but noted that they could be added
at an additional performance cost [9]. In contrast, the algorithm presented in this thesis
avoids increasing render algorithm complexity (to account for more cloud layers and types)
by separating cloud generation and cloud rendering.

The atmosphere implementation in the video game Red Dead Redemption 2 by Rockstar
Games also renders clouds by ray marching a combination of low resolution noise textures
and masks. In addition, it integrates light contributions from fog and mist (close to the
camera) in a low resolution frustum-aligned 3D texture [7].

The conventional ray marched approaches work well for camera locations relatively close
to the ground, but cannot be easily extended to elevations significantly above the clouds or in
outer space. Avoiding this limitation was a major motivation for this thesis, and a significant
feature of the atmosphere renderer Mulen developed as part of it.

3.4 Voxel-space lighting
In 2019, Carlos Jiménez de Parga Bernal Quirós published a PhD thesis including an extensive
survey of previous cloud rendering techniques, an algorithm for real-time physically-based
fluid dynamics modelling of clouds, and a method of computing cloud lighting in cloud-space

26

3.4 Voxel-space lighting

voxel grids [12]. This method was used for scales around individual clouds, but not extended
to representing planetary-scale cloud formations.

This particular instance of optimising voxel-space lighting by not fully recomputing it
per-frame and per-pixel helped directly inspire the approach to cloud lighting in this thesis.

27

3. Related work

28

Chapter 4

Algorithm

This chapter provides an outline of how the atmosphere renderer Mulen functions, beginning
with the core concept, continuing onto the parts which are precomputed once, and moving
onto the continuous operations repeated until the program is shut down.

4.1 Core concept
Mulen represents an atmosphere as a sparse voxel octree. The octree nodes are created in
groups of eight, beginning with a root node group enclosing the entire octree volume; when
a node is split, a new node group become its child nodes. Each node contains not individual
voxels but rather bricks of 83 voxels, as in GigaVoxels [4] but in this case focused only on
representing cloud formations. Voxels are corner-sampled rather than centre-sampled to
facilitate linear interpolation between voxels without having to access neighbouring nodes
and bricks (which helps avoid obvious visual blockiness).

Voxel data Each voxel has both a Mie density value and a shadow value. The density
is computed first, according to an algorithm henceforth referred to as a generator. Lighting
is then partially precomputed by ray marching once per voxel through the atmosphere oc-
tree, accumulating shadow contributions from interpolated density values between the origin
voxel and either the end of the atmosphere or the intersection point with the planet sphere
(whichever comes first), and storing the resulting per-voxel shadow value.

Parameters Two parameters control the quality level: the memory budget, and the max-
imum allowed octree depth. At program initialisation, voxel bricks and octree node storage
and other auxiliary structures are dimensioned to occupy memory up to the desired memory
budget; thus, the amount of memory used corresponds directly to the value of this parame-
ter. The maximum depth determines to how finely-grained levels the nodes can be split and
thus how small individual voxels may become. Together, the parameters bound the amount

29

4. Algorithm

of computational time used for rendering; by adjusting them, quality and performance can
be traded freely for one another.

Stages Mulen’s computations are divided in two stages: initial precomputations – of
both transmittance and first order light scattering due to the base height-dependent Rayleigh
and Mie density distributions – followed by continuous operation; the latter is composed of
updates to the atmosphere structure and spatially varying Mie density distribution stored as
voxel data, as well as the rendering of these from a camera’s view into the atmosphere.

4.1.1 Octree descent
A given location p within the octree volume lies within the space enclosed by one of the
eight root nodes and potentially several of its child nodes and their child nodes in turn,
recursively, the number of nodes equal to the depth of the octree at p. To find the smallest
(i.e, deepest-level and most finely detailed) node enclosing p, the octant within which p lies
is determined by subtracting the node centre location from p and examining the signs of
each resulting coordinate value, and the child node corresponding to the octant becomes the
current node; this process is repeated until a leaf node is reached and there are no more child
nodes to iterate down to.

4.1.2 Octree ray marching
Octree ray marching is conducted with a double-nested loop: in the outer loop, an octree
descent at the current step sample location (which is initially the ray origin) gives an octree
node; in the inner loop, the ray is marched until the next step sample location is outside the
node, at which point the inner loop breaks to a new iteration of the outer loop. If the current
step sample location is outside the octree, the ray marching is terminated.

4.2 Precomputation
Precomputation of transmittance and first order light scattering are accomplished as in Brune-
ton’s precomputed atmospheric scattering re-implementation [6].

4.2.1 Transmittance
The transmittance of a ray through the atmosphere considering only the Mie and Rayleigh
density distributions as functions of height – i.e, without considering the voxel Mie density
– is precomputed as in Bruneton’s 2017 implementation [6], parameterised by height above
sea level and the cosine of the angle between the ray direction and the ray origin to planet
centre vector.

To also account for the regionally-variable decrease in transmittance due to the cloud Mie
density when computing shadowing per-voxel and when rendering per-pixel, the precom-
puted transmittance is multiplied with the per-frame numerically iterated regional trans-

30

4.3 Continuous operation

mittance (as cloud cover can only decrease – and not increase – the ratio of light blocked by
a distance through the atmosphere).

4.2.2 First order light scattering
First order light scattering in a clear part of the atmosphere (i.e., where the voxel Mie density
is not considered) is also precomputed as in Bruneton’s 2017 implementation [6], integrat-
ing Mie scattering, Rayleigh scattering, and ozone absorption (see Equation 2.2 on page 14,
Equation 2.3 on page 14, Equation 2.4 on page 15, and Equation 2.5 on page 15). The precom-
putation is parameterised by height above sea level, the cosine of the angle between the ray
direction and the ray origin to planet centre vector, the cosine of the angle between the sun
direction and ray origin to planet centre vector, and the cosine of the angle between the ray
direction and the sun direction.

4.3 Continuous operation
Update and render loops iterate continuously until the program is exited, executing distinct
sequences of passes (see Figure 4.1 on the next page). While one render iteration is executed
once per frame, the update loop executes at a lower frequency to conserve computational
resources. This means the render iterations do not have fully up-to-date voxel data, but
since the clouds are naturally slow-moving the renderer interpolates linearly between the
last two completed update iterations’ voxel data to approximate ideal per-frame Mie density
distributions. Since the renderer thus needs access to two full sets of voxel data while the
updater is constructing a new set in parallel, three sets of voxel data need to be kept in
memory simultaneously.

4.3.1 Update
Before anything more than a clear sky can be rendered, the Mie density distribution and the
resulting shadows have to be computed. Mulen accomplishes this in a series of passes inter-
leaved with rendering over multiple frames so that the slow generation work can be redone
less frequently than the per-frame rendering. All voxel data is re-generated once per second
while rendering interpolates between the last two completed sets of voxel data, meaning a
total of 3 sets of octree and voxel data are in memory simultaneously: two previously finished
complete sets current for times up to two and three seconds before the present time, and a
new state being computed over the current update iteration until it’s finished, at which point
the memory used for the oldest state becomes the destination for the next upcoming update
iteration results.

Initialisation At the start of an update iteration, a split priority number is computed
for each octree node, proportional to the node’s physical size and inversely proportional to
its distance to the camera. The split priority numbers of all leaf nodes (along with the node
indices) are inserted into a split priority list in descending order, and the split priority num-
bers of all leaf nodes’ parents are inserted into a merge priority list in ascending order. The
split priority list is iterated from highest to lowest priority; if the lowest-priority node in

31

4. Algorithm

Ray march

Reproject

Tone map

Initialise

Generate

Flags

Map

Shadow

Filter

Render Update

Figure 4.1: The constituent passes in single iterations of the contin-
uous stages – update and render – with arrows showing the flow of
time. While passes within a stage proceed sequentially, a complete
render iteration may conceptually execute in parallel with just parts
of one or more update stages. Optimisation passes (see Section 5.4
on page 37) are shown with a green background and dashed borders.

the merge list has a greater priority than the current split priority node, the loop terminates.
Otherwise, the current merge priority node’s child node group is merged – freeing a node
group index and the associated memory slot and voxel brick – and the current node priority
list node is split.

When a new update iteration is just finished and the next one is begun, rendering will
start interpolating between the two sets of voxel data produced by the two most recently
completed update iterations. To avoid render artefacts from interpolating between relative
brick memory locations used for nodes which were newly split in the last completed iteration,
the oldest brick data used for these node indices are initialised with interpolated brick data
from the old parents of the newly split nodes. Since this update pass cannot be split over
multiple render passes without risking artefacts caused by interpolating between di�erent
locations, it is computed over a single frame, and to decrease the time taken the maximum

32

4.3 Continuous operation

number of node splits allowed per-frame is capped to one tenth of the full node capacity
allowed by the memory budget.

Density generation In the initial generation pass, per-voxel Mie densities are com-
puted by per-voxel compute shader invocations. A procedural generation algorithm involving
multiple octaves of Perlin noise and thresholding functions takes only the node position and
size in octree space as input and creates a density distribution that exhibits three di�erently-
masked fBm terms which were meant to loosely resemble stratus, cumulus, and cirrus layers.

Shadow pass In the shadow pass, a shadow ray is sent out from each voxel towards the
light direction, accumulating density until zero is reached or the ray exits the atmosphere.
This pass is responsible for the distinctive crepuscular rays (also known as god rays) and
varying degrees of shadows in the clouds.

Shadow filtering Because the shadow pass outputs sharply aliased data, the shadow
values are low-pass filtered by averaging over adjacent voxels before being stored in the second
channel of the per-voxel brick data together with the already saved density values.

4.3.2 Render
Per-pixel computations through the octree give per-pixel light and transmittance values. The
transmittance modulates potential light sources located behind the atmosphere (such as di-
rect sunlight), and the sum of this light and the lighting scattered by the atmosphere is finally
tone mapped.

Ray march Per-pixel octree ray marching integrate transmittance and inscattering as
contributed to by both the per-voxel Mie densities and the base Rayleigh and Mie and ozone
densities at step sample locations from the camera and through the atmosphere. The step
size is proportional to the node size, so that smaller steps are taken where the voxel data is
more detailed.

The precomputed per-voxel shadow values let this pass avoid branching ray marches, as
the shadow data is already available and the transmittance factor due to a clear sky along
shadow rays is retrieved from the precomputed transmittance table. The ray marching may
stop early at per-pixel depth values from opaque objects rendered before the atmosphere, if
there are any and if they occur before the ray leaves the atmosphere.

Tone mapping Finally, the per-pixel light values can be tone mapped so that they may
be displayed on a typical low dynamic range display.

4.3.3 Higher-order light scattering
Mulen doesn’t take into account general light scattering of orders higher than one (i.e. no
light which would “bounce” more than once) from Rayleigh or Mie scattering in the air.
However, higher-order light scattering inside the clouds is roughly approximated by adding

33

4. Algorithm

an amount of light proportional to a function of per-sample density formulated by Andrew
Schneider in the context of the Nubis cloud renderer in the Decima game engine [2]:

1 − e1−density (4.1)

34

Chapter 5

Implementation

This chapter delves into practical considerations and expounds upon technical choices in
the implementation of the program. It lists the software libraries upon which Mulen relies,
provides a brief introduction to the OpenGL graphics API as well as how it was used for the
purposes of this thesis, and describes crucial optimisations for decreasing the computational
cost of both updating (generating voxel densities and computing shadows) and rendering the
voxel atmosphere.

5.1 OpenGL
OpenGL is a graphics API (Application Programming Interface) standard specifying a means
to access functionality for issuing rendering and compute operations, typically accelerated
with graphics hardware, i.e. GPUs. It is cross-platform, unlike the graphics API Direct3D,
and not as low-level or recent as the cross-platform Vulkan API.

I chose to implement this thesis program in OpenGL partly because of my pre-existing
experience with the API, and also because there seemed to be no need for locking Mulen
to one platform. Vulkan was a conceivable alternative, but ultimately my personal famil-
iarity with OpenGL took precedence. Mulen does not use any OpenGL extensions without
equivalents in Vulkan, so a change of graphics API shouldn’t be a very arduous task.

The graphics pipeline A shader is a program running on the GPU, typically in
many – often millions – of conceptually parallel (i.e. simultaneous) invocations. Similarly
to other graphics APIs, OpenGL defines a pipeline consisting of several stages which process
some form of input by launching shader invocations for each input item. The traditional way
of rendering begins its programmable part with the vertex shader (run once per vertex, e.g.
three times for a triangle unless either of the triangle vertices is cached from an earlier invo-
cation in the same draw call) whose output is rasterised onto pixels, each of which a fragment
shader invocation is launched for. In-between these there are several optional shader stages

35

5. Implementation

(geometry shaders and tessellation shaders) and after the fragment shader there are several
optional tests (the depth test, scissor test, and colour masking) [1].

For non-triangle-based passes, traditionally a fullscreen quad (two triangles covering all
of the viewport) is launched. However, there is also the option of opting out of the vertex-
based pipeline and instead using a compute shader, which is launched in a discrete number
of workgroups, each the same per-shader 3D size of invocations [1].

Mulen mostly operates through compute shaders; vertex and fragment shaders are con-
fined only to the placeholder rendering of a perfect sphere as planet backdrop and the final
writing of colour values to the back bu�er. Since a compute shader’s workgroup size is three-
dimensional, it is a good fit for voxel operations over three-dimensional bricks. For shaders
operating on 2D images the third workgroup size component is 1.

5.2 Libraries
The following open-source software libraries were used in Mulen:

• GLFW [19] to create a window and handle input (from keyboard and mouse).

• glad [17] to load OpenGL functions.

• GLM (OpenGL Mathematics) [18] for vector, matrix, and quaternion structures and
functions.

• Dear ImGui [22] for user interface (controls and information display of assorted con-
tinuous atmosphere and profiling data).

• LodePNG [20] to encode and save PNG image files (including embedded key-value
string pairs to store and retrieve Mulen camera parameters in screenshot files).

• JSON for Modern C++ [21] to record and benchmark setups, and save benchmark mea-
surements.

All libraries are cross-platform with support for operating systems such as Windows, Linux,
and macOS.

5.3 Architecture
The atmosphere object is initialised with a set of parameters, including a GPU memory bud-
get. The atmosphere object allocates textures and bu�ers su�ciently large to hold as many
node groups and voxel bricks as possible within the memory budget constraint. On each
render frame, the atmosphere is first updated and then rendered.

Modifications to the CPU octree are carried out by a separate updater thread, to ensure
the once-per-second updates do not impact the framerate due to CPU load. In the initiali-
sation stage, the updater communicates with the render thread to exchange a newly finished
update iteration and transfer the parameters defining the next update iteration to be com-
puted. The new CPU octree is copied to GPU memory in the update initialisation pass,
before brick generation.

36

5.4 Optimisation

The brick data (i.e, per-voxel density and shadow value) are stored in a 3D texture with
two 8-bit channels.

5.3.1 Updater
Atmosphere updates are split in three parts which are handled in di�erent places: once-per-
second updates to the octree are computed by a worker thread; the render thread receives
once-per-second updates and consequently issues the OpenGL calls for uploading new octree
data and recomputing densities and lighting over the course of one second; and compute
shaders running on the GPU actually compute and store the new per-voxel densities and
shadow values.

To avoid rendering an incomplete state (which could have shown as jagged artefacts where
adjacent nodes in di�erent density and/or lighting states would not match each other’s border
values), there are three sets of voxel data and octree in GPU memory simultaneously: one
which is being generated during the current update iteration, and the most recent two prior
states. Two old states are required so that smooth animation can be achieved by interpolating
between these states over time, until a new state is completed and the oldest state is discarded
so its memory can be reused for the next upcoming state.

5.3.2 Renderer
Mulen uses Stephen Hill’s fit of the ACES tone mapping operator curve [10] for tone mapping
light values before gamma correction and finally display.

5.4 Optimisation
Actual computer hardware is limited in both computational capacity and amount of memory;
to leverage the GPU and attain su�cient speed, Mulen has to employ several optimisations
(see Figure 4.1 on page 32). The most significant of these are elaborated in this section.

Brick flag computation After densities have been determined, the minimum and
maximum densities per brick are computed and used to determine which bricks are empty
(meaning all density values in the brick are equal to zero); a per-node bit flag in the GPU
octree bu�er is set to indicate empty bricks. These flags can later be used for optimising the
shadow pass, as empty bricks can be skipped in one step instead of being traversed voxel by
voxel.

Octree map To decrease the number of octree traversal iterations required per-node
(in both the update shadow pass and the render ray march pass), an additional pass computes
a low-resolution 3D integer texture containing the deepest octree nodes not bigger than the
texture voxels throughout the entire octree volume. In this implementation, the texture size
was set to 643, which means up to log2 64 = 6 iterations per traversal are saved by using the
octree map.

37

5. Implementation

Precomputed light scattering above cloud level Precomputed light scat-
tering in Mulen is used above an arbitrarily defined cloud level (by default 25 km above sea
level for the atmosphere parameters used in this thesis) to avoid long ray computations in
volumes where there are no clouds. This introduces an error, as clouds below the cloud level
would be able to shadow the upper layers of the atmosphere in regions close to the terminator
(locations currently close to sunrise or sunset). This is ignored for simplicity.

Reprojection Per-pixel ray tracing of the atmosphere octree is highly computationally
expensive. To increase speed manifold, only a lower resolution sparse portion of the full view
is computed per frame, and these results are combined with a historic 2D texture of past
results (and so on until the number of past frames as seen from the current one exceeds the
downscale factor).

By default, 1 in 16 pixels in each 4×4 block of pixels is rendered per frame (see Figure 5.1).
The view directions of the non-current pixels are reprojected by the previous frame’s view
and projection matrices in order to find the pixel in the most closely corresponding pixel in
the historic 2D texture.

Figure 5.1: A cropped scene rendered fully (left) and the 1/16th of
pixels rendered per frame when using reprojection (right).

When the camera is translated or rotated, reprojection may give coordinates outside of
the texture; in these cases the closest pixel (in the 2D plane of the rendered image) which
was rendered in the current frame will be used instead, to avoid clamping to the edge of the
image.

Mini shadow map per node group Ray marching from every voxel towards
the light source to compute shadows is extremely expensive. To mitigate the computational
cost, rays are first traced from texels on small shadow maps (one map per node group); the
per voxel rays then need only ray march to the plane of the group shadow map and sample
the group shadow map there.

The gain from this optimisation was around 4-8 times for the shadow computation, vary-
ing depending primarily on the highest level of detail in use as well as how low in the sky the
light source is. The longer the shadows, the heavier the shadow pass.

38

Chapter 6

Results

This chapter will present GPU time durations for each compute shader operation, and results
of rendering in the form of screenshots and links to videos. All source code created for Mulen
is available online at https://github.com/dat14jpe/mulen under the MIT licence.

6.1 Hardware and software
Except where otherwise noted, performance results and images were captured on a desktop
computer with these defining characteristics:

• Operating system: Windows 10 Pro N, 64-bit

• System memory: 32 GiB

• CPU: AMD Ryzen 7 2700X

• GPU: NVIDIA GeForce GTX 1080 Ti (driver version 445.87)

6.2 Images
Many di�erent cloud views can be produced by the atmosphere renderer, and herein a few
sample images are shown and briefly commented.

Mulen has a built-in screenshot feature which encodes the camera parameters into key-
value string pairs and encodes them within the output PNG files. Such files can later be
dragged-and-dropped onto the program to return to the encoded camera parameters (after
waiting a few seconds for the generator to load the target location). This means every screen-
shot taken within the program also serves as a save point which can be revisited and, for
example, re-profiled on di�erent hardware.

39

https://github.com/dat14jpe/mulen

6. Results

Figure 6.1: An example of silver lining in Mulen.

Figure 6.2: Another example of silver lining in Mulen.

Figure 6.3: Clouds seen from below.

40

6.2 Images

Figure 6.4: A space view including sheet-like altostratus clouds.

Figure 6.5: Even more clouds (quite seriously).

Figure 6.6: A sunset – or sunrise – view showing redder hues.

41

6. Results

Mulen does show the silver lining e�ect due to the strong forward Mie scattering (see Fig-
ure 6.1 on page 40 and Figure 6.2 on page 40), can display space views while keeping multiple
cloud layers distinct (see Figure 6.4 on the preceding page), and gives the characteristically
stronger reddish tones of sunsets and sunrises (see Figure 6.6 on the previous page).

With view frustum culled updates enabled, the entire memory budget is spent on only
the part of the atmosphere which is currently directly visible to the camera. This enables
extreme levels of zoom while retaining a decent amount of detail (see Figure 6.7), at the cost
of needing to wait up to 10 seconds for the updates and generation to adapt fully to any
change in camera location, orientation, or field of view.

Figure 6.7: Close to 600 times zoom. Field of view (FOV) going from
0.1 degrees (upper left) to 1 degree (upper right), then 10 degrees
(bottom left), and finally 58 degrees (bottom right).

The mini shadow map per node group optimisation can introduce undesirable visible
boundaries in cloud shadows (see Figure 6.8 on the next page).

6.2.1 Voxel Rayleigh distribution

Early in the course of the thesis work, a separate voxel channel to enable arbitrary Rayleigh
density distributions was explored. Low-resolution Rayleigh values and the interpolation
across the spherical surface resulted in strong aliasing artefacts (see Figure 6.9 on the facing
page). Due to the perceived intractability of solving the problem without increasing required
memory amounts dramatically and insignificant visual improvement, the Rayleigh channel
was scrapped.

42

6.3 Videos

Figure 6.8: Shadow maps per node groups show node group bound-
aries as lines in the upper clouds.

Figure 6.9: A debug view showing a cross section of transmittance
due to the voxel Rayleigh distribution, overlaid with grid cell lines.
The unevenness in transmittance colour near grid cell corners – i..e,
voxel sample locations – shows how interpolated values give rise to
highly visible aliasing when sampling the low-resolution voxel grid
on a spherical surface.

6.3 Videos
• Animation sample 2020-05-04:

https://www.youtube.com/watch?v=pNQPsHTSVX4

• Animation sample 2020-05-05:
https://www.youtube.com/watch?v=prRuflJrqGM

• Animation sample 2020-05-15:

43

https://www.youtube.com/watch?v=pNQPsHTSVX4
https://www.youtube.com/watch?v=prRuflJrqGM

6. Results

https://www.youtube.com/watch?v=OLlwh7T4pGY

6.4 Performance
All performance values are given as time costs in milliseconds of GPU time. To achieve the
desired minimum performance of 30 frames per second, the maximum time cost allowed per
frame is 1000 ms/30 ≈ 33 ms.

The program imposes a high load on the GPU, but only a light one on the CPU (which
is not shown here) since most of the update computations are carried out on the GPU. The
update thread took around 40 ms per 1 s update iteration while running with a GPU memory
budget of 2 GiB, varying slightly depending on scene and near-proportional to the memory
budget.

The times taken for computing various GPU passes were recorded with the use of OpenGL
timestamp queries (retrieved asynchronously one or a few frames after having been recorded,
so as not to force a synchronisation point with the CPU which would stall the GPU pipeline)
over the course of a few benchmark paths recorded frame-by-frame. All benchmarks were
run with vertical synchronisation (V-sync) turned o� to avoid more powerful GPUs auto-
matically downclocking and skewing the results by underperforming. Reprojection was set
to render only one sixteenth of the full number of pixels per frame.

The CPU time costs observed on the development machine were low: with around 40 ms
for one asynchronous update iteration on the updater thread, run once per second, even a
CPU less than a twentieth as fast – on a single core – would still be able to keep up at 60 frames
per second. Therefore only GPU times were considered when profiling and benchmarking
the program more extensively.

6.4.1 Benchmark 1: variable GPU
Starting above the atmosphere, descending into it, and finally moving at high speed near
ground level. Animation interpolation was on. The results displayed here are for 4K reso-
lution (3840 × 2160 pixels); this is a fairly high resolution, but monitors supporting it are
becoming more widespread and thus the performance results at this resolution might remain
comparable for near-future comparisons at acceptable quality levels.

The benchmark was run on di�erent computers with various GPUs to give some quan-
titative sense of how more recent hardware series compare to older ones. Other computer
specifics (such as CPUs) were not recorded, since the CPU load is negligible in comparison
with the GPU load.

The GPU memory budget was only 1.5 GiB in order to not exceed the memory amounts
in older GPUs (which might have lead to the benchmark not running at all or GPU mem-
ory being extended with swapping to and from main system memory, causing a slowdown
distorting durations intended to measure computational capacity).

As seen in Figure 6.10 on page 47, the render performance is highly dependent on the view:
the camera starts outside the atmosphere, which means rays marched through the atmosphere
are short (due to the great distances involved leading to all loaded bricks and voxels being
physically big). As the camera moves into the atmosphere, the rays take longer to exit the
atmosphere and more computational capacity must be devoted to integrating high numbers

44

https://www.youtube.com/watch?v=OLlwh7T4pGY

6.5 Image quality

of voxels. When the camera speed is increased close to the end, the updates cannot keep up
(at the desired level of detail) and thus fewer voxels have to be integrated.

The sawtooth shape in render performance is caused by the low-frequency update itera-
tions (once-per-second) and the camera movement. As an update iteration is just finished, a
relatively high amount of detail is loaded close to the camera, giving the rise in render time; as
the camera moves away from the position it was in when the last update was begun, the detail
seen decreases. Then a new update iteration is completed, and thus emerges the reocurring
pattern.

6.4.2 Benchmark 2: variable memory budget
Starting above the atmosphere and descending into it. Run in the resolution 2560 × 1440,
with animation interpolation on, and over memory budgets 2 GiB, 4 GiB, and 8 GiB. This
benchmark was only run on the GTX 1080 Ti and RTX 2080 Ti graphics cards since most
lower-end GPUs have too low total memory capacity to run the heavier benchmark passes.

As seen by comparing Figure 6.11 on page 48 with Figure 6.12 on page 49, animation in-
terpolation is very heavy: turning it on slows down the rendering by upwards of a factor of
2.5. Compared with octree-less ray marched clouds taking around roughly 2 ms on somewhat
older hardware (e.g. in Häggström 2018 [9], Horizon Zero Dawn [2], and Red Dead Redemp-
tion 2 [7]), Mulen is often 8 times slower if given a 4 GiB memory budget (with its total time
cost being close to proportional to the memory budget).

6.5 Image quality
To give a quantitative comparison of image quality, a single view was rendered with 9 di�er-
ent memory budget and step size factor combinations. The highest-quality image (namely
the one with the highest memory budget and the lowest step size factor) was used as the
reference image, and root mean square error (RMSE) values were computed for each image
as compared with the reference image. The maximum octree depth was 13 and the image
resolution was 2560 × 1440.

Memory budget/GiB Step size Render cost/ms RMSE
8 0.1 19.4 0.0 (reference)
8 0.2 12.5 0.5224
8 0.4 9.9 1.393
4 0.1 15.2 0.7189
4 0.2 8.9 0.9706
4 0.4 6.2 1.755
2 0.1 12.8 1.105
2 0.2 7.4 1.374
2 0.4 4.9 2.182

Table 6.1: Render times and RMSE (of pixel RGB triplets on the
range [0, 255]) for varying memory budgets and step size factors.

45

6. Results

46

6.5 Image quality

Figure 6.10: Performance results for benchmark 1 (see Section 6.4.1
on page 44). The GPU memory budget was 1536 MiB and the max-
imum allowed octree depth was 12. The red dashed line shows the
total frametime at 30 FPS.

47

6. Results

Figure 6.11: Performance results for benchmark 2 (see Section 6.4.2
on page 45) with animation turned o�, comparing GTX 1080 Ti
with RTX 2080 Ti. The red dashed line shows the total frametime
at 30 FPS.

48

6.5 Image quality

Figure 6.12: Performance results for benchmark 2 (see Section 6.4.2
on page 45) with animation turned on, comparing GTX 1080 Ti
with RTX 2080 Ti. The red dashed line shows the total frametime
at 30 FPS.

49

6. Results

As can be seen in Table 6.1 on page 45, a high step size or low memory budget resulted in
lower quality but better performance (i.e., lower render cost). Render time cost increased as
the step size was lowered. The step size factor used elsewhere in this work was 0.2, as it was
deemed a reasonable compromise between performance and image quality.

The reference image and the lowest-quality image as well as their per-pixel di�erence are
shown in Figure 6.13, in full and in close-ups of central portions of the full images. Higher
step sizes tend to lead to brighter clouds, while a low memory budget causes undesirably
di�use cloud shapes (especially towards the horizon in the shown image).

(a) Reference image (8 GiB, step size 0.1) (b) Close-up of reference image

(c) Lowest-quality image (2 GiB, step size 0.4)) (d) Close-up of lowest-quality image

(e) Per-pixel di�erence (f) Close-up of per-pixel di�erence

Figure 6.13: Reference and lowest-quality images as well as their per-
pixel di�erence, in full (left column) and zoomed in (right column).
The red rectangle outlines in the full images show the areas which
have been zoomed-in to in the images to the right.

50

Chapter 7

Discussion

The chapter discusses the shortcomings of the work and how they might be adressed, as well
as potential future directions of research which might be built on top of the method.

7.1 Shortcomings
Generation aliasing A simple generation shader can easily induce obvious incor-
rectly darkened lines due to aliasing for example relatively sharp thresholding functions. Care
should be taken to avoid features close to or below the voxel size at whichever level of de-
tail is being generated. One way to avoid the problem might be use of distance functions: a
scaled and clamped distance field could produce less generation aliasing than a smooth step
function defined over distance.

Voxel precision The wide range of cloud densities possible in reality are not easily
represented with just 8 bits per voxel density value. 16-bit values might su�ce for most com-
mon cloud types, but the cost of higher memory bandwidth could be steep for this volumetric
rendering. Especially low-density clouds would become possible with a higher bit depth –
in particular, noctilucent clouds, which are so thin as to only be visible a period after sunset
and were only classified late.

Animation Emulating animation by interpolating between voxel states is both very
computationally costly (decreasing render performance by up to approximately a factor of
2.5 in some views, as stated in Section 6.4.2 on page 45) and visually not quite the same as
actual movement. Furthermore, the interpolation necessitates keeping an additional set of
octree and brick data; if this need could be eliminated – possibly by updating subsets of each
brick in smaller update iterations, rather than updating all voxel data in one update iteration
– the memory footprint for a given quality level could be reduced significantly.

51

7. Discussion

Movement and update frequency Updating the octree only once per sec-
ond means the camera cannot move extremely fast without low-detail areas of the octree
coming into view. At speeds lower than approximately the escape velocity of Earth (i.e.
40 000 km h−1), low-detail areas were mostly avoided. Visual “popping” from nodes being
split to higher detail could be seen occasionally, though the blurring side e�ect of reprojec-
tion smoothed some transitions.

7.2 Future work
Hardware ray tracing for octree traversal At the time of writing (May
2020) some of the most recent GPUs feature hardware acceleration for ray tracing. Use of this
hardware feature was considered for Mulen, but the idea was discarded early since Mulen ben-
efits greatly from early exits from shader invocations as the ray transmittance reaches zero in
denser clouds, and because atmosphere lighting is non-associative; the samples along viewing
rays need to be evaluated in order, which means using the hardware ray tracing would require
some sort of per-pixel sorting step as well. I believed the potential performance increases in
octree traversal would not o�set the performance decrease from needing to temporarily store
and then depth-sort often hundreds of sample locations or node indices per pixel.

Higher-order light scattering Only zeroth and first order light scattering were
fully accounted for in this thesis. As seen in for example the left half of Figure 6.6 on page 41,
locations within the atmosphere that are shadowed from the light source will be overly dark,
in contrast with reality where not just one but multiple scattering events may scatter incom-
ing light and soften the distribution of light.

Higher-order light scattering within the clouds was crudely approximated with a func-
tion of cloud density, but this only applies to Mie scattering and not to Rayleigh scattering.
For a more realistic rendering, higher orders of light scattering need to be approximated more
comprehensively.

The cost of integrating second order light scattering could be reduced by only computing
it for the corners of the octree nodes and interpolating between them, which would require
1/64th the number of computations compared to carrying them out for every voxel individ-
ually. Even so, such an approach would have to integrate over all directions, which would
likely require many samples and thus be computationally costly even if carried out only for
node corners.

Cone tracing sun with non-zero angular diameter Perfectly thin rays
are only accurate if the light source is a point light source, which is not normally the case in
realistic outdoor scenes. The sun has an apparent angular diameter, which would need to be
considered to create appropriately softer shadows farther from the shadowcasters. Sampling
not on a straight ray towards the sun but rather within the cone defined by the ray origin, sun
direction, and sun angular diameter could achieve this, though at the cost of needing a full
octree descension on every step since reusing the traversal state for samples jittered within
the cone would require too branching logic to seem worth the expense in this case.

52

7.2 Future work

Multiple light sources If more than one primary light source are required simul-
taneously, the lighting prepass and lighting textures would need to be duplicated per-light,
which would also increase the number of texture samples required for each render ray march
step; this is a major weakness of this technique.

So long as a single light source is enough at a single point in time (such as for moonlight
and sunlight, as moonlight is only dominant when direct sunlight is not present, i.e. during
the night) the lighting prepass could switch light source once per update. This would incur
no performance cost.

Advanced generation A generation pass separate from the rendering is both a dis-
tinguishing feature and significant disadvantage for Mulen. In principle, this allows for maxi-
mum flexibility in cloud shapes; but in practice, it also requires very large amounts of memory
and computational resources. When running on current real hardware, this poses challenges.

Alternative data sources Since generation and rendering are separated in Mulen,
and rendering only makes use of values computed by generation, it is possible to change the
generation method without necessitating any di�erence in the render code. A more sophis-
ticated procedural generator could be substituted, perhaps cloud values scanned from reality
could be streamed, or the results of some sort of fluid simulation could be displayed. The
architecture of the program makes this possible without delving into the render parts.

Extraterrestrial atmospheres The Rayleigh, Mie, and ozone constants could be
changed to approximate another atmosphere than Earth’s, as could the radius of the atmo-
sphere and the light intensity value. It is also possible to create another cloud generator
routine specialised for di�erent cloud formations.

53

7. Discussion

54

Chapter 8

Conclusion

In conclusion, the sparse voxel octree atmosphere implementation developed as part of this
thesis did succeed in being able to display views ranging from outer space and all the way
down to the clouds and ground level below them. However, it was found to be highly com-
putationally demanding and just slightly less highly demanding in memory use, even while
missing a way to integrate higher-order light scattering. I consider it an interesting idea,
but ultimately not nearly as e�cient as would be needed for most applications where the
atmosphere isn’t the sole load on the graphics card (and only possibly su�ciently e�cient
for those applications where it is). Only with significant performance improvements could
it be made practically useful.

55

8. Conclusion

56

References

[1] Tomas Akenine-Möller, Eric Haines, Naty Ho�man, Angelo Pesce, Michał Iwanicki,
and Sébastien Hillaire. Real-Time Rendering 4th Edition, page 1200. A K Peters/CRC
Press, Boca Raton, FL, USA, 2018. pp. 11-27, 29-30, 54.

[2] Andrew Schneider. SIGGRAPH 2017: Advances in Real-Time Rendering, Nu-
bis: Authoring Real-Time Volumetric Cloudscapes with the Decima Engine,
2017. https://www.guerrilla-games.com/read/nubis-authoring-
real-time-volumetric-cloudscapes-with-the-decima-engine, slides
at https://d1z4o56rleaq4j.cloudfront.net/downloads/large/Nubis%20-
%20Authoring%20Realtime%20Volumetric%20Cloudscapes%20with%20the%
20Decima%20Engine%20-%20Final.pptx.

[3] Eric Bruneton and Fabrice Neyret. Precomputed Atmospheric Scattering. Computer
Graphics Forum, 27(4):1079–1086, June 2008.

[4] Cyril Crassin. GigaVoxels: A Voxel-Based Rendering Pipeline For E�cient Exploration Of Large
And Detailed Scenes. PhD thesis, UNIVERSITE DE GRENOBLE, July 2011. English and
web-optimized version.

[5] Earth Science and Remote Sensing Unit, NASA Johnson Space Center. Thun-
derstorms over Borneo, astronaut photograph ISS040-E-88891, August 2014.
https://earthobservatory.nasa.gov/images/84308/thunderstorms-
over-borneo. [Accessed: 2020-05-27].

[6] Eric Bruneton. Precomputed atmospheric scattering: a new implementation, 2017.
https://ebruneton.github.io/precomputed_atmospheric_scattering/.

[7] Fabian Bauer. SIGGRAPH 2019: Advances in Real-Time Rendering, Cre-
ating the Atmospheric World of Red Dead Redemption 2, 2019. https:
//advances.realtimerendering.com/s2019/index.htm, slides at https://
advances.realtimerendering.com/s2019/slides_public_release.pptx.

[8] Stefan Gustavson. Simplex noise demystified, 2005. http://webstaff.itn.liu.
se/~stegu/simplexnoise/simplexnoise.pdf.

57

https://www.guerrilla-games.com/read/nubis-authoring-real-time-volumetric-cloudscapes-with-the-decima-engine
https://www.guerrilla-games.com/read/nubis-authoring-real-time-volumetric-cloudscapes-with-the-decima-engine
https://d1z4o56rleaq4j.cloudfront.net/downloads/large/Nubis%20-%20Authoring%20Realtime%20Volumetric%20Cloudscapes%20with%20the%20Decima%20Engine%20-%20Final.pptx
https://d1z4o56rleaq4j.cloudfront.net/downloads/large/Nubis%20-%20Authoring%20Realtime%20Volumetric%20Cloudscapes%20with%20the%20Decima%20Engine%20-%20Final.pptx
https://d1z4o56rleaq4j.cloudfront.net/downloads/large/Nubis%20-%20Authoring%20Realtime%20Volumetric%20Cloudscapes%20with%20the%20Decima%20Engine%20-%20Final.pptx
https://earthobservatory.nasa.gov/images/84308/thunderstorms-over-borneo
https://earthobservatory.nasa.gov/images/84308/thunderstorms-over-borneo
https://ebruneton.github.io/precomputed_atmospheric_scattering/
https://advances.realtimerendering.com/s2019/index.htm
https://advances.realtimerendering.com/s2019/index.htm
https://advances.realtimerendering.com/s2019/slides_public_release.pptx
https://advances.realtimerendering.com/s2019/slides_public_release.pptx
http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf

REFERENCES

[9] Fredrik Häggström. Real-time rendering of volumetric clouds, 2018. https://umu.
diva-portal.org/smash/record.jsf?pid=diva2%3A1223894&dswid=2065.

[10] Stephen Hill. https://github.com/therealmjp/bakinglab/blob/master/bakinglab/aces.hlsl,
2016. https://github.com/TheRealMJP/BakingLab/blob/master/
BakingLab/ACES.hlsl.

[11] Luke Howard. Essay on the Modifications of Clouds. The Askesian Society, London (1796-
1807), 1803.

[12] Carlos Jiménez de Parga Bernal Quirós. High-Perfomance Algorithms for Real-Time GPGPU
Volumetric Cloud Rendering from an Enhanced Physical-Math Abstraction Approach. PhD
thesis, UNED. Universidad Nacional de Educación a Distancia (España), 2019.

[13] Kelvinsong. Earth’s atmosphere, January 2013. https://commons.wikimedia.org/
wiki/File:Earth%27s_atmosphere.svg. [Accessed: 2020-05-29] Licenced under
the Creative Commons Attribution-Share Alike 3.0 Unported licence, available at
https://creativecommons.org/licenses/by-sa/3.0/deed.en.

[14] Rikard Olajos. Real-time rendering of volumetric clouds, 2016. Student Paper.

[15] Ken Perlin. An image synthesizer. In Proceedings of the 12th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’85, page 287–296, New York, NY, USA,
1985. Association for Computing Machinery.

[16] T Smith and J Guild. The C.I.E. colorimetric standards and their use. Transactions of the
Optical Society, 33(3):73–134, jan 1931.

[17] https://github.com/Dav1dde. glad: Multi-Language
Vulkan/GL/GLES/EGL/GLX/WGL Loader-Generator based on the o�cial specs.,
2020. https://glad.dav1d.de/.

[18] https://github.com/g-truc. OpenGL Mathematics (GLM), 2020. https://
glm.g-truc.net/.

[19] https://github.com/glfw. GLFW: A multi-platform library for OpenGL, OpenGL
ES, Vulkan, window and input, 2020. https://www.glfw.org/.

[20] https://github.com/lvandeve. LodePNG: PNG encoder and decoder in C and
C++., 2020. https://github.com/lvandeve/lodepng.

[21] https://github.com/nlohmann. JSON for Modern C++, 2020. https://
nlohmann.github.io/json/.

[22] https://github.com/ocornut. Dear ImGui: Bloat-free Immediate Mode Graphi-
cal User interface for C++ with minimal dependencies, 2020. https://github.com/
ocornut/imgui.

[23] Valentin de Bruyn / Coton. Cloud types en, January 2012. https://en.wikipedia.
org/wiki/File:Cloud_types_en.svg. [Accessed: 2020-05-29] Licenced under the
Creative Commons Attribution-Share Alike 3.0 Unported licence, available at https:
//creativecommons.org/licenses/by-sa/3.0/deed.en.

58

https://umu.diva-portal.org/smash/record.jsf?pid=diva2%3A1223894&dswid=2065
https://umu.diva-portal.org/smash/record.jsf?pid=diva2%3A1223894&dswid=2065
https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl
https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl
https://commons.wikimedia.org/wiki/File:Earth%27s_atmosphere.svg
https://commons.wikimedia.org/wiki/File:Earth%27s_atmosphere.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://github.com/Dav1dde
https://glad.dav1d.de/
https://github.com/g-truc
https://glm.g-truc.net/
https://glm.g-truc.net/
https://github.com/glfw
https://www.glfw.org/
https://github.com/lvandeve
https://github.com/lvandeve/lodepng
https://github.com/nlohmann
https://nlohmann.github.io/json/
https://nlohmann.github.io/json/
https://github.com/ocornut
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
https://en.wikipedia.org/wiki/File:Cloud_types_en.svg
https://en.wikipedia.org/wiki/File:Cloud_types_en.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

REFERENCES

[24] Patricio Gonzalez Vivo and Jen Lowe. The Book of Shaders: Fractal Brownian Motion,
2015. https://thebookofshaders.com/13/.

[25] WhiteTimberwolf. Octree2, March 2010. https://commons.wikimedia.org/
wiki/File:Earth%27s_atmosphere.svg. [Accessed: 2020-05-29] Licenced under
the Creative Commons Attribution-Share Alike 3.0 Unported licence, available at
https://creativecommons.org/licenses/by-sa/3.0/deed.en.

[26] Wikipedia. Beer-Lambert law. https://en.wikipedia.org/wiki/Beer%E2%80%
93Lambert_law.

[27] Wikipedia. Octree. https://en.wikipedia.org/wiki/Octree.

[28] Wikipedia. Sparse voxel octree. https://en.wikipedia.org/wiki/Sparse_
voxel_octree.

59

https://thebookofshaders.com/13/
https://commons.wikimedia.org/wiki/File:Earth%27s_atmosphere.svg
https://commons.wikimedia.org/wiki/File:Earth%27s_atmosphere.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law
https://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law
https://en.wikipedia.org/wiki/Octree
https://en.wikipedia.org/wiki/Sparse_voxel_octree
https://en.wikipedia.org/wiki/Sparse_voxel_octree

REFERENCES

60

Appendices

61

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-12

EXAMENSARBETE Real-time rendering and dynamics of sparse voxel octree clouds
STUDENT Johan Pettersson
HANDLEDARE Pierre Moreau (LTH)
EXAMINATOR Michael Doggett (LTH)

Atmosfärrendering med volymetriska
moln och skuggor

POPULÄRVETENSKAPLIG SAMMANFATTNING Johan Pettersson

Volymetriska moln är idag vanliga i spelgrafik. Men molnen byggs ofta med upprepade
detaljer, vilket kan bli uppenbart bristfälligt när kameran rör sig upp i och över moln-
skiktet. Detta gör det svårt att hantera perspektiv från både marknivå och höjder ute
i rymden och övergångar mellan dessa.

När ljus når atmosfären så fortsätter en andel av
ljuset i den riktning det var på väg i, en annan
andel absorberas av luften, och den sista andelen
sprids i alla riktningar. Spridningen är inte lika
fördelad över alla riktningar eller våglängder, vil-
ket ger det starka skenet i dimma och mot solen
samt atmosfärens färger. Atmosfärrendering byg-
ger på att numeriskt integrera dessa effekter över
de geometriskt beräknade sträckor i atmosfären
som ljuset färdas innan det når kameran. Sådana
beräkningar kan förberäknas för en klar atmosfär
utan moln och sedan effektivt renderas.
I det här arbetet skrevs ett program som an-

vänder en spatiell partitioneringsstruktur för att
kunna representera molntätheter i en atmosfär.
Täthetsvärdena lagras i 3D-block av volymetris-
ka element – så kallade voxlar – som kan sträcka
sig över olika fysiska storlekar beroende på hur
djupt fördelad strukturen är. En gång varje se-
kund uppdateras strukturen så att stora voxlar
som är långt bort från kamerans nuvarande läge
kan förkastas för att ge minnesplats åt mindre och
närmare voxlar. Tack vare detta kan programmet
exekvera inom en förbestämd total minnesmängd
och ändå visa förhållandevis små molnformationer
när kameran befinner sig nära ytan.

I bilden ovan visas en renderad vy över en jord-
stor planet. Molnformationer sträcker sig till den
synliga horisonten och molnens skuggning av at-
mosfären visar tydligt ljuskällans riktning.

Avslutningsvis uppnåddes realtidsprestanda
(det vill säga över 30 bildrutor per sekund) med
vissa lägre kvalitéinställningar, fast detta utan
hänsyn tagen till högre ordningars ljusspridning.
Tidigare realtidsmetoder är betydligt snabbare
men programmet skrivet under detta arbetes gång
kan hantera unika molnformationer över avsevärt
större skalor, vilket är en ovanlig egenskap för
molnrendering i realtid.

	Introduction
	Goals
	Contributions
	Report structure

	Theory
	Atmosphere physics
	Cloud formation
	Light interactions with the atmosphere

	Computer graphics
	Colour
	Dynamic range and tone mapping
	Voxels
	Octree
	Ray marching
	Graphics memory
	Procedural noise

	Related work
	GigaVoxels (Crassin, 2011)
	Precomputed atmospheric scattering (Bruneton and Neyret, 2008)
	Ray marched texture combinations
	Voxel-space lighting

	Algorithm
	Core concept
	Octree descent
	Octree ray marching

	Precomputation
	Transmittance
	First order light scattering

	Continuous operation
	Update
	Render
	Higher-order light scattering

	Implementation
	OpenGL
	Libraries
	Architecture
	Updater
	Renderer

	Optimisation

	Results
	Hardware and software
	Images
	Voxel Rayleigh distribution

	Videos
	Performance
	Benchmark 1: variable GPU
	Benchmark 2: variable memory budget

	Image quality

	Discussion
	Shortcomings
	Future work

	Conclusion
	References

