
MASTER’S THESIS 2020

Motion Detection Alarm
Verification Using Deep Learning in
Surveillance Systems
Erik Rosengren, Jonathan Strandberg

ISSN 1650-2884
LU-CS-EX: 2020-37

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-37

Motion Detection Alarm Verification
Using Deep Learning in Surveillance

Systems

Erik Rosengren, Jonathan Strandberg

Motion Detection Alarm Verification
Using Deep Learning in Surveillance

Systems

Erik Rosengren
dat15ero@student.lu.se

Jonathan Strandberg
dat15jst@student.lu.se

July 1, 2020

Master’s thesis work carried out at Axis Communications AB.

Supervisors: Jon Lindeheim, jon.lindeheim@axis.com
Jörn Janneck, jorn.janneck@cs.lth.se

Examiner: Mathias Haage, mathias.haage@cs.lth.se

mailto:dat15ero@student.lu.se
mailto:dat15jst@student.lu.se
mailto:jon.lindeheim@axis.com
mailto:jorn.janneck@cs.lth.se
mailto:mathias.haage@cs.lth.se

Abstract

AXIS Companion is a cloud video management software which features con-
figurable push notifications when something triggers a motion alarm. Motion
alarms are however prone to false alarms which can be annoying for the end
user. This thesis proposes using object detection based on deep convolutional
neural networks to filter the alarms in order to lower the number of false alarms
the end user receives. The object detection is run on a recording unit present in
Axis surveillance systems.

Several networks such as MobileNetV1 through MobileNetV3, YOLOv3 and
InceptionNetV2 were compared against each other on manually annotated video
with di�erent lighting conditions to see which network performed best. Di�er-
ent optimizations were also compared to find the most optimal combination of
networks and optimizations.

The results were that MobileNetV3 was the most e�ective network, it pro-
duced around 0.3% false alarms and around 60% true alarms and did the best on
night scenes.

Keywords: Object Detection, Deep Learning, Neural Networks, CCTV, Surveillance,
Axis Communications, AXIS Companion, Alarm Verification, Motion Detection

2

Acknowledgements

We would like to thank Jörn Janneck and Jon Lindeheim for their great supervision, feedback
and guidance during this thesis as well as their valuable help in acquiring the information that
we needed in order to complete our work. We would also like to thank Marcus Wiedner for
his help in setting up this thesis and acquiring the materials we needed to complete it. Lastly
we would like to thank Emma Friberg for her proof-reading of this thesis.

3

4

Contents

1 Introduction 9
1.1 Definitions and Terminology . 9
1.2 Axis Communications . 9

1.2.1 AXIS Companion . 10
1.3 Problem Statement . 10

1.3.1 Research Questions . 10
1.4 Related Work . 11

1.4.1 Neural Networks . 11
1.4.2 Convolutional Neural Networks 11
1.4.3 MobileNet . 11
1.4.4 Post Training Quantization . 12
1.4.5 False Alarm Filtering in the Cloud 12

1.5 Contributions . 13

2 Approach 15
2.1 Challenges . 15

2.1.1 The Parked Car Problem . 15
2.1.2 The Tree Problem . 16
2.1.3 The Wrong Class Alarm Problem 16
2.1.4 The stretching problem . 16
2.1.5 The Truck vs. Car Problem . 17
2.1.6 Night Scenes . 17

2.2 Method . 18
2.2.1 Annotated Data . 19
2.2.2 Benchmarking . 19

2.3 Motion Detection Metadata . 20
2.4 Pre-trained Neural Networks . 21

2.4.1 MobileNet . 22
2.4.2 YOLO . 22
2.4.3 InceptionNet . 22

5

CONTENTS

2.4.4 ResNet . 22
2.4.5 Faster R-CNN . 22
2.4.6 COCO Dataset . 23

2.5 Theory . 24
2.5.1 Definitions . 24

2.6 Implementation . 25
2.6.1 Preprocessing . 25
2.6.2 Object Detection . 26
2.6.3 Postprocessing . 27
2.6.4 CPU A�nity . 28

3 Evaluation 29
3.1 Experimental Setup . 29
3.2 Results . 30
3.3 Discussion . 36

3.3.1 Metrics . 36
3.3.2 Mean True Alarm Percentage . 37
3.3.3 Nonviable Networks . 37

3.4 The Remaining Networks . 38
3.4.1 MobileNetV1 vs. MobileNetV2 . 38
3.4.2 MobileNetV1 vs. MobileNetV1 Arm NN 39
3.4.3 MobiletNetV2 vs. MobileNetV3 . 39

3.5 Optimizations . 39
3.5.1 Stretch vs. Pad . 39
3.5.2 Changing the Input Size of the Image 40
3.5.3 Detector Pool . 40

4 Conclusion 43
4.1 The Best Network and Optimizations . 43
4.2 Limitations . 44

4.2.1 Night Video . 44
4.2.2 Truck vs. Car . 44

4.3 Future Work . 45
4.3.1 Testing More Networks . 45
4.3.2 Productify . 45
4.3.3 Tengine vs OpenCV vs Arm NN Comparison 46
4.3.4 Hardware Acceleration . 46
4.3.5 Concatenate Subframes . 47
4.3.6 Detect Objects Once . 47
4.3.7 Multi Object Classifiers vs Object Detectors 47
4.3.8 Creating a Custom Dataset . 48
4.3.9 TensorFlow Lite as Backend . 48
4.3.10 Adjust Input Size According to Scene 48

References 49

6

CONTENTS

Appendix A Results 53
A.1 All Networks and Videos . 55

Appendix B Prerequisites 63
B.1 Hardware . 63
B.2 Software . 63

B.2.1 OpenCV . 63
B.2.2 FFmpeg . 64
B.2.3 RTSP . 64
B.2.4 Tengine . 64
B.2.5 Arm NN . 64
B.2.6 AXIS Video Motion Detection (VMD) 65
B.2.7 AXIS Video Content Stream (VCS) 65

7

CONTENTS

8

Chapter 1

Introduction

As surveillance cameras become more advanced and gain better image quality than ever be-
fore, the question of how to improve the surveillance experience for the end user arises. With
the ability to have several cameras recording high definition video at all times it becomes
harder to continuously monitor all video feeds for suspicious activity. Not all small busi-
nesses can a�ord to have security guards monitor their surveillance cameras at all times, and
might instead opt to rely on motion detection alarms to be able to react to a possible break-
in. Motion detection alarms are highly e�ective in many scenarios but they are prone to false
alarms which can be annoying to the end user. After all, who wants to be woken up in the
middle of the night because a plastic bag blew past their camera?

1.1 Definitions and Terminology
Performance is the amount of compute power needed for the object detection.
Accuracy refers to the classification accuracy of the object detection.
False alarm refers to when an object triggers an alarm when it should not.
True alarm refers to when an object triggers an alarm when it should.
Missed alarm refers to when an object does not trigger an alarm when it should.

1.2 Axis Communications
Axis Communications is a video surveillance company based in Lund, Sweden that special-
izes in network cameras. In their product range are several di�erent types of cameras ranging
from simple and small indoor cameras to explosion-resistant thermal cameras for use in ex-
treme environments. Axis also provides several software products to manage and configure
surveillance systems, one of which is AXIS Companion.

9

1. Introduction

1.2.1 AXIS Companion
AXIS Companion is a cloud video management system with a focus on smaller surveillance
systems such as those one might find at a gas station, small store or in someone’s home and
supports up to 16 cameras. Most companion systems contain a so called AXIS Compan-
ion recorder which is a device with a large hard-drive that can handle recordings of several
cameras at once. A maximum of 8 cameras can be connected to a recorder at a time. AXIS
Companion supports cameras of very di�erent capabilities and hardware and o�ers features
such as remote live streaming and configuration which allows customers to view live streamed
video and configure their cameras from anywhere in the world. AXIS Companion also in-
cludes an app for iOS and Android where users can view live streamed video from their cam-
eras and receive push notifications when their cameras detect motion. Push notifications can
be enabled during specific times for each camera, so for example only after o�ce hours on
weekdays.

A new recorder is under development with significantly better hardware than the pre-
vious one and it is supposed to replace the old recorder when it is released. The specific
hardware components of the new recorder can be found in appendix B.1.

1.3 Problem Statement
The problem this thesis aims to solve is that of false alarms generated by motion detection.
As mentioned earlier, false alarms can be very annoying for the end user and the intent is
to lower the number of false alarms that the user experiences. This can be done in several
ways, some of which are already implemented in Axis software such as swaying, small and
short-lived objects being exempt from detection. This thesis will try to solve the problem by
applying modern object detection using deep convolutional neural networks.

Some competing surveillance systems have already implemented object detection for this
purpose, however, the main di�erence in existing solutions and the one proposed here is
where the detection computations take place. Some competitors to Axis o�er cloud solutions
where all detections are sent to the cloud for processing and then the result is sent back to
the software. Others do the computations directly on the camera, if the camera has hardware
good enough to do so. This thesis will focus on doing so on the new recorder mentioned
above since the solution then works with any type of camera.

1.3.1 Research Questions
With the problem defined it is possible to state which questions are to be answered in this
thesis. These are the following in no particular order:

• What is the best network for use in filtering of motion detection alarms both in terms
of performance and accuracy.

• Which optimizations increase either the performance or the accuracy (or both)?

• Which customizable parameters generate the best results according to the metrics
defined in Section 2.5?

10

1.4 Related Work

• How many false and true alarms does the best network and optimizations produce on
average?

• How are the networks a�ected by di�erent lighting conditions and weather?

1.4 Related Work
1.4.1 Neural Networks
Neural networks (sometimes called an Artificial Neural Networks) are a kind of computing
system that can "learn" from examples. The basic structure of a Neural Network is several
layers of nodes each with connections to every node in the next layer (except for the output
layer which has no forward connections). Each connection has a weight and it is this weight
that is updated during training to allow the neural network to "learn" what output to generate
[5]. Training is done by taking inputs to which the output is known (training data) and
feeding it through the network, at each step multiplying the value of the node with each
connection and its corresponding weight to calculate the value of the next node. When this
is done the resulting output nodes are compared to the known correct output in the training
data and if these are not equal then the weights are altered through a method called back-
propagation. This process is repeated until the network produces outputs that are near-
equal to the correct answers from the training data [5]. Problems relating to over-fitting and
regularization are not relevant to this thesis and will therefore not be introduced here.

1.4.2 Convolutional Neural Networks
Convolutional Neural Networks are a kind of neural network that instead of using fully con-
nected layers use two dimensional kernel convolutions to connect layers. Instead of training
weights for the entire layer the network only trains the kernels for the convolution layers
which are also represented in two dimensions [5]. The kernel convolutions can be seen as a
sliding filter across the image (a matrix) with the output being the sum of the products be-
tween each filter element and each image element. This way the kernel weights can be reused,
less calculations need to be done compared to fully connected layers and spatial information
is propagated to the next layer meaning the CNN can do its own feature extraction for use
when classifying [5]. Repeating several convolutional layers results in down-sampling of the
image (unless padding is used) while leading to the network extracting larger features. The
output of several convolutional layers then represents the existence of a certain feature in
the image. At the end of several convolution layers it is then possible to flatten the two di-
mensional layers into a one dimensional layer and then use fully connected layers to make a
classifier for the features [5].

1.4.3 MobileNet
MobileNet developed by Google is an object detection network for use in lower power de-
vices such as embedded systems or in smart phones while still providing almost real time
object detection. MobileNet uses a scalable approach with a width multiplier α = (0, 1] that

11

1. Introduction

controls the total width of the network, where a value α = 1 denotes a standard width Mo-
bileNet. Decreasing the width of MobileNet scales down the number of hyper-parameters
to be trained significantly while not losing too much of the original accuracy of the network
[9]. This flexibility allows users of the network to scale the balance between performance
accuracy depending on their particular needs.

1.4.4 Post Training Quantization
A big hurdle for neural networks is the memory and computational requirements. A recent
approach to solve this has been to apply post training quantization [2]. Quantization in this
context is a method of reducing the number of bits used to represent a number thereby reduc-
ing the space required but also reducing the possible set of values the number can represent.
The act of applying post training quantization to a pre-trained network is applying quantiza-
tion to the network weights and activation functions of a trained network. A typical way to
represent a weight in a neural network is with a 32bit floating point value, with quantization
this can be reduced to a 16bit floating point, or even an 8bit number. This can, in the most
extreme cases, reduce the amount of space needed by a trained network 4 times and increase
the speed of inference by a large amount. Reducing the number of bits of the weights al-
lows for higher packing of data in SIMD registers. SIMD (Single Instruction Multiple Data)
instructions are a common way of accelerating multimedia content on modern processors.
Normal CPU registers typically only contain one value which instructions can operate on in
sequence. SIMD registers in contrast can contain multiple data values which can be operated
on in parallel and are therefore essential if neural networks should be run on a CPU. For
example in the ARMv8 architecture where the SIMD extensions are referred to as NEON
and the SIMD registers are 128bit wide, it is possible to pack 128/16 = 8 16bit numbers in
contrast with only 128/32 = 4 32bit numbers [4]. Mathematical operations on values with
fewer bits are in general faster and more energy e�cient to perform on processors [6].

The compromise of quantization is accuracy, however measurements have shown that
when comparing 32bit with 8bit neural networks, the extra precision gained by using 32bit
floating point numbers does not significantly alter the total accuracy of the network and
quantization can therefore be suited for lower powered devices [12].

1.4.5 False Alarm Filtering in the Cloud
In 2017 another thesis, with the same goal as this one, with the title False Alarm Filtering within
Camera Surveillance using an External Object Classification Service was published. Lundholm et
al. investigated the possibility of using the cloud to do alarm filtering of motion detection
[11]. The filtering was done using AWS (Amazon Web Services) and the motion detection
frames were sent to the cloud after being preprocessed. They found that their solution showed
great promise in filtering out false alarms (filtering out 90% of the false alarms) while having
a minimum impact on the amount of true alarms that passed the filtering. They also inves-
tigated which preprocessing techniques that could be used to minimize the amount to data
that needed to be transferred to the cloud by trying such things as JPEG-compression and
gray-scale images. The main di�erence between this thesis and the work done by Lundholm
et al. is that this thesis focuses on running the object detection on premise instead of in the
cloud and that this thesis compares several networks and backends.

12

1.5 Contributions

1.5 Contributions
This thesis has had no particular division of labor and most design decisions have been made
by both authors together but naturally some parts of the implementations were done by only
one author. The following is the high level division of labor in no particular order. JS refers
to Jonathan Strandberg and ER refers to Erik Rosengren.

Area Contributor
Annotation application JS

Annotate video JS & ER
Recording

(benchmark video) JS & ER

Preprocessing JS & ER
Detectors and networks

(Open CV) ER

Detectors and networks
(Arm NN) JS

Detectors and networks
(Tengine) JS

Benchmark application JS
Metadata parsing ER
RTSP Functions ER
Postprocessing ER
Error handling JS

Graphs and results JS & ER

Table 1.1: Contributions

13

1. Introduction

14

Chapter 2

Approach

A common technique of doing object detection in live video is to take the entire video frame
and feeding it through a deep neural network such as MobileNet. The output will then con-
tain bounding boxes with labels for all detections. For most applications where simple classi-
fications of images is needed this is su�cient but there are several problems to this approach
which will be discussed in section 2.1. The approach in this thesis will be to send the frames
through a pipeline of several steps in order to improve the accuracy and the performance
over the naive approach mentioned above.

2.1 Challenges
There are several di�cult sub-problems that will have to be overcome in this thesis in order
to solve the problem statement mentioned in the introduction. Most of these problems are
performance or accuracy related.

2.1.1 The Parked Car Problem
The parked car problem is a problem that occurs when sending an entire video frame into an
object detector. Using the example of a parked car somewhere in the frame the object detector
will detect the car even though it is not what triggered the alarm. This would obviously lead
to unwanted notifications for the end user. A way to solve the "parked car"-problem would
be using motion detection to classify only relevant parts of the current video frame. Using
motion data to extract sub-frames from the original image has an additional benefit: the
feed forward in the network would only be performed when something is moving in the
frame. Feeding an image through a network is traditionally very computationally expensive
and since a state-of-the-art graphics card to perform e�cient convolutions is not available
in the Axis recorder, this would save a significant amount of computing power.

15

2. Approach

Axis cameras already use motion detection to give bounding boxes for moving objects, the
approach used in this thesis will be to use both in conjunction to eliminate false alarms given
by using only motion detection and to e�ectively filter out stationary objects that would
otherwise be classified as relevant by a deep convolution neural network. An example of the
parked car problem can be seen in figure 2.1

Figure 2.1: An illustration of the parked car problem.

2.1.2 The Tree Problem
Another problem that occurs in some surveillance scenes occurs when objects are partially
obstructed by other objects. For example: imagine a scene where cars drive on a road with
adjacent trees. When the car is partially obstructed by the tree trunk most CNN based object
detectors will either detect two cars or no car. This can have a large impact on the results
and will have to be considered when evaluating object detection in these kinds of scenarios.

2.1.3 The Wrong Class Alarm Problem
When evaluating how well the solution performs there are several key things to measure, such
things are described in more detailed in section 2.5, but one example is the number of false
alarms that the solution produced. The problem with false alarms occurs with the definition
of what a false alarm is. Imagine a scenario where classes that should trigger an alarm are cars
and people and that a car triggers motion in the scene. The car is then sent to the detector
which instead of correctly classifying it as a car it detects a person. Since both these classes
are classes that should trigger an alarm a seemingly correct alarm is sent but for the wrong
class. The question is whether this should be considered as a false alarm or as a true alarm
specifically when evaluating the solution.

2.1.4 The stretching problem
Most CNN based object detection networks require the input image to have the same width
and height. Since the sub-frames acquired from motion detection do not have this constraint

16

2.1 Challenges

they will have to be transformed in some way. One naive way to do this is to simply stretch
the image by repeating pixels causing the proportions of the image to change. This results
in humans in the transformed sub-frames (which are usually taller than they are wide) to
be almost unrecognizable which can a�ect the motion detection result. Another approach
might instead be to pad the sides of the image with black pixels until the image height and
width are the same. This will still require introducing new pixels or removing them when the
image is resized to fit the input layer of the network but will keep the original proportions.
An example of the stretching problem can be seen in figure 2.2.

Figure 2.2: An example of before and after stretching a person

2.1.5 The Truck vs. Car Problem
Some objects are easy to identify but hard to classify even for humans. For example: is the
object in figure 2.3 a car or a truck? What about the object in figure 2.4, is that a truck or is it
a van? Lastly in figure, 2.5 is that another truck? All three of these images are taken directly
from the COCO-dataset and they are all classified as trucks. The car vs. truck problem is a
result of both incorrect classification in the COCO-dataset (see section 2.4.6) and of a very
broad class definition. The latter is most likely the cause of the former due to the COCO-
dataset being annotated by a lot of di�erent people, all with slightly di�erent opinions on
exactly what a truck is. The problem this causes in this thesis is that when something like a
pickup-truck or mini-van triggers motion detection it is just as likely that it gets classified as
a car as it is that it gets classified as a truck. This will of course a�ect the results, leading to
the network looking worse than it actually is for classifying a pickup-truck as a car, especially
if cars are chosen as an alarm class.

2.1.6 Night Scenes
As many crimes such as breaking and entering or vandalism are easier for criminals to per-
form at night it is vital that surveillance systems are as operational at night as they are in the

17

2. Approach

Figure 2.3: A truck?

Figure 2.4: Also a truck?

Figure 2.5: Another truck?

day. The same goes for the alarm push-notifications described in the introduction and the
filtering of these alarms should work as well at night as it does in the day. However as soon as
the sun sets lighting conditions change drastically and the objects that would have been easy
to detect in daylight can become almost impossible for even humans to detect at night. To
handle this problem Axis cameras can use IR filter and in some cases even use IR illumina-
tion to see in completely dark scenes, albeit in grey-scale and not in color. The problem lies
in how well the object detectors perform in darker and IR illuminated scenes and whether
networks trained on separate datasets need to be used in order to obtain good results in night
scenes. Figure 2.8 is an example of a frame from a night scene.

2.2 Method
In order to solve the problem described in the problem statement some way to evaluate the
solution is needed. The evaluation data also needs to be the same in order for comparisons to
have any meaning. In the following section the method used for evaluation will be described.

18

2.2 Method

2.2.1 Annotated Data

To evaluate the accuracy and speed of the networks, a common dataset for di�erent scenar-
ios that is applicable for an alarm system is used. To create the dataset video and bounding
boxes were recorded with no annotation. To minimize manual labour, an initial run with the
network ResNet50 was performed which annotated the metadata. This step produces a file
where each line corresponds to a single metadata-event with a list of sets of detection classes
for each bounding box. In total more than 8000 bounding boxes were annotated with this
approach. Following is an example of how the annotated data is structured.

[{car}] . Each row corresponds to a video frame
[{person, bicycle}] . Each set contains the detected classes for a bounding box
[{car, bicycle}, {car}] . The sets are in order as they were recorded

After the data was recorded, it was manually corrected to ensure consistency and to cor-
rect any misclassifications that were found. This process was repeated for di�erent light-
ing conditions and times of day. The manually corrected data establishes a ground truth
that can be used to compare the output from di�erent networks. The use of sets contain-
ing detected classes enables the comparison of inclusion, intersection and superfluous detec-
tions and therefore provide relevant measurements between networks and using plain motion
events.

2.2.2 Benchmarking

The subjects for the benchmark videos were chosen to be intentionally complex and di�cult
in order to avoid situations were networks perform with perfect or near perfect scores. The
videos, their subject and relevant conditions and attributes are the ones used for benchmark-
ing and evaluating. Table 2.1 contains all the relevant video information and figures 2.6, 2.7
and 2.8 are frames from some of the videos. Do note that there are two videos for every one
mentioned in table 2.1, one for VMD motion data (see section B.2.6) and one for VCS motion
data (see section B.2.7).

19

2. Approach

Video name Weather Time of day Subject In/Outdoor Attributes

sun-road Sunny Noon Road Outdoor
sharp moving shadows,
good lighting,
strong reflections

overcast-road Overcast Noon Road Outdoor
very soft shadows,
moderate lighting,
weak reflections

cloudy-road Cloudy Noon Road Outdoor
varying lighting & shadows,
varying reflections

sun-afternoon-road Sunny Afternoon Road Outdoor
darker and lighter areas,
sharp moving shadows,
reflections

night-road Clear Night Road Outdoor
street light shadows,
backlight,
dirty window

night-road2 Clear Night Road Outdoor
street light shadows,
backlight,
dirty window

Table 2.1: Benchmark video names and attributes.

Figure 2.6: A frame from the cloudy-road scene

2.3 Motion Detection Metadata
Metadata in this thesis is defined as the data received from the cameras that does not in-
clude the actual frames from the video. The only source of metadata used of this type are the
motion-detection bounding boxes received via VMD or VCS (see sections B.2.6 and B.2.7).
Both of these send information at around 5 FPS. The metadata received from these two
sources provide the largest optimization in the entire thesis. This is because without bound-
ing boxes the entire frame at the time of a motion detection would have to be sent through
the detector even if only a small object in the frame actually moved. This not only saves a

20

2.4 Pre-trained Neural Networks

Figure 2.7: A frame from the sun-afternoon-road scene

Figure 2.8: A frame from the night-road2 scene

huge amount of time since feeding an image through a CNN scales with the size of the image
but it also helps with handling the parked car problem mentioned in section 2.1.1.

2.4 Pre-trained Neural Networks
There are several variations of networks out there that are capable of doing accurate object
detection. Some networks focus on raw accuracy at the cost of performance while others
try to balance the two. Since this thesis revolves around doing accurate object detection on
limited hardware the networks that will be benchmarked against each other will mostly be
of the latter kind. The networks that have been selected for comparison in this thesis were
chosen because of their popularity and their advertised e�ectiveness in conditions similar to
the conditions of the problem statement in this thesis.

21

2. Approach

2.4.1 MobileNet
MobileNet exists in multiple versions and with each new version greater performance and
accuracy is advertised. Some changes between MobileNet versions include switching activa-
tion functions from ReLU to swish and hard-swish for example [8]. This thesis will use all
versions available which at the time of writing which are MobileNetV1, MobileNetV2 and
large MobileNetV3. Full size versions of MobileNet was chosen since it was developed for
mobile embedded systems which is a very similar use case to the one described in this thesis
[9].

2.4.2 YOLO
You Only Look Once or YOLO for short, is another network architecture like MobileNet
that similarly also exists in several versions of incremental improvements. This thesis will
only look at the two latest versions of YOLO which are YOLOv3 and YOLOv3-tiny. The
former being developed with a focus on accuracy while the latter is a much smaller version
with much faster feed forward time but at a very large loss in accuracy [13].

2.4.3 InceptionNet
InceptionNet is a slightly older network architecture than both YOLO and MobileNet. When
InceptionNet was released in 2014 it broke records in the ImageNet Large-Scale Visual Recog-
nition Challenge because of its new design allowing for deeper and wider networks while
keeping the computational requirements constant [15]. Several versions of InceptionNet ex-
ists but in this thesis InceptionNetV2 will be used which is a slightly improved version of the
original. It is worth noting that this is another network focused more on accuracy than on
speed.

2.4.4 ResNet
ResNet which is short for Residual Network is another network architecture which relies on
residuals, also called skip-layers, to train deeper networks in a more e�cient and accurate
manner [7]. There are many networks that use residual layers but this thesis will use ResNet-
50 which is a residual network with 50 convolutional layers. ResNet-50 is not a network built
for performance but rather it focuses on accuracy and was chosen in order to compare a very
accurate network with much faster slightly less accurate networks.

2.4.5 Faster R-CNN
Faster R-CNN is the third iteration of the R-CNN region proposal network preceded by R-
CNN and Fast R-CNN and is, not surprisingly, faster than the two previous iterations. Faster
R-CNN and its predecessors aims to solve the di�cult problem of region proposal in object
detection [14]. Region proposal is the initial step in object detection when the detector
finds the interesting regions of the input image where objects may be. It is a hard problem
for CNNs to solve since there are no predetermined number of objects that can occur within

22

2.4 Pre-trained Neural Networks

a given image meaning that the region proposing network must have outputs that can vary
in length. The networks that use Faster R-CNN in this thesis will be InceptionNetV2 and
ResNet50.

2.4.6 COCO Dataset
The Common Objects in Context dataset is a dataset created by Microsoft containing images
scraped from the image service Flickr. These images are taken with many di�erent types of
cameras which means their quality is very varied. The images also have very varying subject
matter and lighting conditions which makes for a very good diverse dataset for use in training
object detection networks [10]. The dataset contains 80 classes varying from exotic animals
such as elephants to utensils such as forks. The COCO dataset has been annotated by many
di�erent people and at the time of writing this contains over 200 000 labeled images. All of
the networks compared in this thesis will be trained on the COCO dataset simply because it
is a widely used dataset with relatively few classes compared to the likes of ImageNet which
contains 1000 classes. Figures 2.9, 2.10 and 2.11 are some examples of images in the COCO
dataset.

Figure 2.9: COCO example 1

Figure 2.10: COCO example 2

23

2. Approach

Figure 2.11: COCO example 3

2.5 Theory
2.5.1 Definitions
In order to compare di�erent networks, preprocessing methods and lighting conditions rel-
evant measurements has to be defined. These metrics have to show comparable values of
performance and accuracy in such a way that it is easy to show which network works best in
certain conditions.

Definition 1. True alarms are defined as

|Ground Truth ∩ Network Output ∩ Alarm Classes|

It is the number of correctly classified classes that are in a given set of Alarm Classes for
a bounding box.

Definition 2. False alarms are defined as

|(Alarm Classes ∩ Network Output) \Ground Truth|

It is the number of detections by the network that were incorrectly classified and is in a
given set of alarm classes.

Definition 3. Skipped frames are defined as the number of frames skipped because the
network did not have enough time to start detecting the objects in the frame.

With these we can continue to define the measurements we will use to compare networks.

24

2.6 Implementation

Definition 4. Mean true alarms is defined as

I∑
i=1
θ(True alarmi)

I

where I is the total number of bounding boxes which were annotated as an alarm class.
θ is the Heaviside step function.

This definition gives us that mean true alarms ∈ [0, 1], where 0 represents no true
alarms and 1 is that all alarms were correctly classified.

Definition 5. Mean false alarms is defined as

N∑
n=1

θ(False alarmn)

N

where N is the total number of bounding boxes. θ is the Heaviside step function.

This definition gives us that mean f alse alarms ∈ [0, 1], where 0 represents no false
alarms were sent and 1 is that all bounding boxes produced a false alarm.

Definition 6. Mean skipped frames is defined as

Skipped f rames
F

where F is the total number of frames.

This definition gives us that mean skipped f rames ∈ [0, 1], where 0 represents no
skipped frames were sent and 1 is that no frames were processed.

2.6 Implementation
Since the executable is to be run on the recorder C++ was chosen as the programming language
for its object-oriented design and ability for low level memory and resource management. All
development is done on x86 but is then cross compiled to aarch64 using GCC. Aarch64 is
the 64bit instruction set used on the recorder. The overall design that is used is a pipeline
where the frames received are processed in multiple steps. Each significant step is processed
on a separate thread of execution to minimize latency for steps that can be done in parallel.
The following sections will illustrate each step and figure 2.12 illustrates the entire pipeline.

2.6.1 Preprocessing
When any motion event is sent by a camera the corresponding frame is grabbed by the pre-
processor. Each bounding box that is received in the motion event is first re-scaled by a

25

2. Approach

configurable factor to ensure the object is captured in the re-scaled box and is then cut out
from the the original frame and put on a worklist for detection to be performed. These are
called subframes and, depending on the size of the object setting o� the motion detection,
are significantly smaller than an entire frame. An uncompressed 1920x1080 video image with
three 8bit channels requires a minimum of 1920 ∗ 1080 ∗ 8 ∗ 8 ∗ 8 ≈ 6Mb of data which
for an embedded system is a considerable amount and can therefore introduce latency and
thus this work is put on a separate thread on a separate core. The subframes can be either
scaled or padded into a square with padding being the hypothetically best since they pre-
serve the dimensions of the detected object. Figure 2.13 illustrates the input and output of
the preprocessor with an example.

Figure 2.12: The complete pipeline

Figure 2.13: Preprocessor input and output

2.6.2 Object Detection
The result from the preprocessor is taken o� the worklist and then sent through a common
detection interface which accepts a list of subframes and returns the detection labels with
their corresponding confidences. This step is always the bottleneck for the application since
feeding the image through a neural network is very computationally expensive.

If a new frame with bounding boxes arrive to the detector before the previous frame has
completed processing, the previous frame will be skipped. This choice was made to ensure

26

2.6 Implementation

that the detector always has the latest frame possible and gives a more fair comparison be-
tween videos with di�erent amount of bounding boxes in each frame. This does of course
mean that the object detector can miss alarms that should take place in the skipped frames
but it also stops the object detector from building up a large delay that would occur if each
frame is placed in a bu�er. If on the other hand the object detection were to run on recorded
video instead of live then the dropping of frames would not be acceptable since it is no longer
necessary to send the alarms in real time.

The DNN module in OpenCV divides the work between all cores available for infer-
ence, however if Tengine (see section B.2.4) is used as the back-end the computation will be
performed on one core. This opens up the ability to have a pool of detectors which hence-
forth will be referred to as the detector pool, allowing multiple detections to take place at
the same time and therefore reducing the total detection time for a frame with multiple
bounding boxes. ComputeLibrary used by Arm NN will automatically detect the number
of highest performing cores with the same type, meaning that for the hardware used in this
thesis it will use one thread since there is one ARM Cortex-A72. Unfortunately even though
Arm NN only runs on one thread, the library itself does not allow for multiple networks to
run in parallel. Figure 2.14 illustrates the interfacing with the detector pool.

Figure 2.14: Detector interfacing

2.6.3 Postprocessing
After the subframes has been sent through the detector they are sent to the postprocessor.
The postprocessor checks all the subframes with their detections and looks for classes that
should send an alarm. Any class can be set as an alarm class and if an alarm class is detected
above a configurable threshold. The postprocessor will also draw debug data into the frame if
the GUI is enabled. The debug data in this case is the bounding box for the motion detection,
the re-scaled bounding box, the names of the classes that were detected in the box as well as
the detection confidences.

27

2. Approach

2.6.4 CPU Affinity
CPU a�nity is a property of processes or kernel threads that allows it to be scheduled on a
specific set of CPU cores. Specifically on Linux this can be programmatically controlled with
the pthread library. This can allow programmers to heavily optimize a multithreaded ap-
plication for a multicore system, for example reducing expensive core migrations performed
by the operating system. Using the CPU a�nity mask usually adds unnecessary complexity
to applications since the number and type of cores is di�erent between between computers
which makes it hard to predict how it should be scheduled for optimal performance. However
in this project, the hardware is known beforehand and can therefore be exploited.

The CPU cores in the hardware has as mentioned in appendix B.1, not all the same core
type. This has the implication that scheduling of all threads is important depending on the
type of workload. It becomes especially important on the thread that is responsible for object
detection since it is the most computationally expensive. Therefore the backing thread pool
of the detector pool will internally always schedule work on the Cortex A72 if it is not busy,
otherwise it will use the other cores configured to be available for the pool. The other threads
used for the applications will have their a�nity mask set to share the remaining cores in the
system.

28

Chapter 3

Evaluation

In order to be able to determine which networks work best and what other parameters to
use some evaluation process is needed. The goal of the evaluation process will be to create a
scenario as close to the reality of the problem statement as possible while being reproducible
every run. That means not testing on live video but rather using the recorded data annotated
by the authors as a ground truth for use in all comparisons. Details about this data can be
found in section 2.2.

3.1 Experimental Setup
To evaluate each network, all networks are run on the pre-recorded benchmark videos. If
the object detection for all bounding boxes in a frame would take longer than the time for
a new frame to arrive in the queue, it will skip all new incoming frames until the current
frame is processed. All skipped frames are marked as such to facilitate measurements of
performance in relation to other networks. The output format is structured exactly the same
as the pre-annotated data to allow for comparison. In total more than 8000 bounding boxes
are annotated and used during benchmarking.

For each network and video, two separate runs are performed to test the di�erent meth-
ods for resizing the image contained in a bounding box. The first method is to stretch the
image to the correct height and width accepted by the network, thereby changing the pro-
portions of everything contained. The second method is to put zero valued pixels to fill out
the image to fit in the network input. This keeps the proportions of the image but introduces
pixels that were not there before. Testing both of these methods is to determine which results
better detection results and to answer the stretching problem defined in Section 2.1.4.

Scaling down input image to a network will decrease the amount of information available
for a neural network, however, by the quadratic time complexity of performing convolutions
on an image it will significantly change the amount of time required to perform object detec-
tion. By varying the input size for each network, a good balance between performance and

29

3. Evaluation

accuracy can be found.

3.2 Results
The following are the results from the benchmarking and the configuration that was used
to generate them. The figures in this section are the most relevant figures and tables but
only displays the mean performance, results for all the individual videos can be found in
appendix A. The discussion of the results can be found in section 3.3. It is important to note
that all networks except mobilenetv1cocoarmnn are running on Tengine as the backend unless
mentioned otherwise.

30

3.2 Results

mobilenetv3

mobilenetv2

mobilenetv1cocoarmnn

mobilenetv1

yolov3tiny

inceptionv2

faster_rcnn_inceptionv2

faster_rcnn_resnet50

0

20

40

60

80

100

Networks

M
ea

n
tr

ue
al

ar
m

s(
%)

mobilenetv3

mobilenetv2

mobilenetv1cocoarmnn

mobilenetv1

yolov3tiny

inceptionv2

faster_rcnn_inceptionv2

faster_rcnn_resnet50

0

0.5

1

1.5

2

Networks

M
ea

n
fa

lse
al

ar
m

s(
%)

mobilenetv3

mobilenetv2

mobilenetv1cocoarmnn

mobilenetv1

yolov3tiny

inceptionv2

faster_rcnn_inceptionv2

faster_rcnn_resnet50

0

20

40

60

80

100

Networks

M
ea

n
sk

ip
pe

d
fr

am
es

(%
)

Figure 3.1: Mean performance and accuracy for all networks over all
videos with frame stretching.

31

3. Evaluation

mobilenetv3

mobilenetv2

mobilenetv1cocoarmnn

mobilenetv1

yolov3tiny

inceptionv2

faster_rcnn_inceptionv2

faster_rcnn_resnet50

0

20

40

60

80

100

Networks

M
ea

n
tr

ue
al

ar
m

s(
%)

mobilenetv3

mobilenetv2

mobilenetv1cocoarmnn

mobilenetv1

yolov3tiny

inceptionv2

faster_rcnn_inceptionv2

faster_rcnn_resnet50

0

0.5

1

1.5

2

Networks

M
ea

n
fa

lse
al

ar
m

s(
%)

mobilenetv3

mobilenetv2

mobilenetv1cocoarmnn

mobilenetv1

yolov3tiny

inceptionv2

faster_rcnn_inceptionv2

faster_rcnn_resnet50

0

20

40

60

80

100

Networks

M
ea

n
sk

ip
pe

d
fr

am
es

(%
)

Figure 3.2: Mean performance and accuracy for all networks over all
videos with frame padding.

32

3.2 Results

mobilenetv3 mobilenetv2 mobilenetv10

20

40

60

80

100

Networks

M
ea

n
sk

ip
pe

d
fr

am
es

(%
)

Figure 3.3: Mean skipped frames with detector pool

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

10

20

30

40

50
With detector pool
Without detector pool

VIDEO COMPARISON: MOBILENETV3

Video title

M
ea

n
sk

ip
pe

d
fr

am
es

(%
)

Figure 3.4: Mean skipped frames for MobileNetV3 with detector
pool.

33

3. Evaluation

100 150 200 250 3000

10

20

30

40

50

60

Input image size

M
ea

n
tr

ue
al

ar
m

s(
%)

Figure 3.5: Mean true alarms vs the size of the input image. The
x-axis represents the side of the square subframe.

100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

Input image size

M
ea

n
fa

lse
al

ar
m

s(
%)

Figure 3.6: Mean false alarms vs the size of the input image for Mo-
bileNetV3. The x-axis represents the side of the square subframe.

34

3.2 Results

100 150 200 250 300
0

10

20

30

40

Input image size

M
ea

n
sk

ip
pe

d
fr

am
es

(%
)

Figure 3.7: Mean skipped frames vs the size of the input image for
MobileNetV3. The x-axis represents the side of the square subframe.

mobilenetv30

20

40

60

80

100
Mean binary true alarms
Mean false alarms
Mean skipped frames

M
ea

n
tr

ue
al

ar
m

s(
%)

Figure 3.8: Mean performance for MobileNetV3 with 250x250 im-
age size and frame padding with the OpenCV DNN module.

35

3. Evaluation

mobilenetv30

20

40

60

80

100
Mean binary true alarms
Mean false alarms
Mean skipped frames

M
ea

n
tr

ue
al

ar
m

s(
%)

Figure 3.9: Mean performance for MobileNetV3 with 250x250 im-
age size and frame padding using tengine

3.3 Discussion
With the results in hand it is time to do an analysis of which networks perform best. To
achieve this the networks that are found to be nonviable for whatever reason will be removed
from the comparison and subsequent analysis will focus on the still viable networks. Com-
parisons of the e�ciency of the di�erent optimizations will be done with the viable networks
only since having too many networks to compare will become overwhelming, especially when
there are several di�erent optimizations.

3.3.1 Metrics
In section 2.5 the di�erent metrics measured were introduced, these were: true alarms, false
alarms and skipped frames. Because the purpose of this thesis as described in the introduction
it is very important that a network does not generate many false alarms. However a problem
arises when using only false alarms as a metric: the best way to not generate any false alarms is
to not generate any alarms at all, hence the need for the true alarms metric. It is therefore nec-
essary to take into account both the false alarms and the true alarms when comparing networks
by their accuracy. The skipped frames metric is the measurement of how fast the network is,
the fewer skipped frames, the faster the network is. These three will be the primary metrics
used when evaluating the viability of a network.

36

3.3 Discussion

3.3.2 Mean True Alarm Percentage
It is very important to note that even though the mean true alarms percentage might look
low (with the best network scoring slightly above 60%) that these results are actually very
good. The percentage of mean true and false alarms can be interpreted as the probability
that the network will correctly or incorrectly classify an object. Since objects normally stay
in the frame for several seconds and they only need to be detected as an alarm class once
for the application to send an alarm this probability does not need to be especially high in
order for the filtering to be e�cient. For example: a detector with 30% mean true alarm
percentage and an alarm object that stays in frame for 10 motion detection events (a very
short time at around 2 seconds) the probability that this object doesn’t get detected as an
alarm is (1 − 0.3)10 = 0.02825 or 3%. For a detector with 50% mean true alarm percentage
this becomes (1 − 0.5)10 = 0.001 or 0.1%. Of course objects that say longer in frame than
2 seconds, which they generally do, have even lower probabilities to not get detected. The
inverse is of course true for false alarms, the longer an object stays in frame the larger the
probability that it gets labeled as an alarm class even though it is not and thus generates a
false alarm.

3.3.3 Nonviable Networks
As can be seen from the results some networks are simply nonviable to use in a scenario such
as the one described in in the problem statement. Networks can be nonviable for several
reasons: Having a large feed forward time and thus resulting in too many skipped frames or
being too inaccurate thus missing too many alarms or generating too many false alarms. It is
also possible that some networks are nonviable because of a combination of all the above. By
first examining the result and removing the networks that fail on the criteria above it will be
easier to do an in-depth comparison of the viable networks that remain.

As the slowest network it is comes as no surprise that the first network to be labeled as
nonviable is ResNet50. Even though ResNet50 has great accuracy for almost every detection
that it had time to make it skips way too many frames, almost every frame in every video in
fact, to be used in any real-time capacity. The network is however far from unusable, with
its great accuracy of 50% mean true alarms, as can be seen in figure 3.1, it is very good for
annotating recorded video as described in section 2.2.1. ResNet50 is one of the networks that
have 0% mean false alarms, but this does not change the fact that it gets labeled as nonviable
due to its poor performance.

With mean skipped frames reaching above 0.95 (see figure 3.1) for both the InceptionV2
networks (with and without FasterRCNN) it is obvious that these networks are nonviable
for real time detection. Both networks do however have extremely few false alarms (around
0%) in the benchmark set of videos which speaks for their accuracy. They both also perform
at pretty average accuracy in the true alarms metric at 45 and 50% respectively meaning that
they are not terrible networks, just not fast enough. This does not come as a surprise since
InceptionV2 is one of the older architectures in this thesis and focuses more on accuracy than
on performance as mentioned in section 2.4.3. An interesting observation that can be made
from the data is that the FasterRCNN version of the network is slightly faster and almost
15% better in terms of accuracy than the one without FasterRCNN indicating FasterRCNN
actually does improve performance and accuracy as described in section 2.4.5.

37

3. Evaluation

The next network to be eliminated is YOLOv3 and it is eliminated for the same reason
that it does not appear in the data, because it is by far the largest network in terms of memory
and is sadly not usable on the recorder since it takes up almost all available memory. This
makes the recorder unable to perform its other tasks such as recording video and streaming
it to AXIS Companion. If the recorder had more memory than the current 1 GB, YOLOv3
would not have been usable in any case since it is too slow to be run in real time but its
performance is rather good for the motion detections that it actually gets to detect. This
makes it useful in similar o�ine scenarios as ResNet50.

The tiny version of YOLOv3tiny is the last network to be eliminated due to its low accu-
racy. The network has average speed but unfortunately it under-performs when it comes to
the true alarms metric where it misses a majority of the alarms scoring below 15% mean true
alarms (see figure 3.1). If the network had much better performance this lack in accuracy
might be forgiven since it would be able to run more detections but since it skips half of the
motion events due to its speed it too gets labeled as nonviable and is removed from further
comparison.

3.4 The Remaining Networks
The remaining networks are all MobileNet versions and this is no coincidence. As mentioned
in both sections 1.4.3 and 2.4.1 MobileNet was developed to be run in just the kind of scenar-
ios as the one in this thesis. Networks developed to be used on mobile devices will obviously
outperform networks made to push the limit of accuracy in dataset competitions while being
run on the most expensive GPU:s available. By looking at the results however there are some
seemingly odd ordering of the remaining MobileNet networks that don’t fit the "newer ver-
sions are incremental improvements of the previous versions" narrative. For example MobileNetV1
outperforms MobileNetV2 in performance but not accuracy while it would be expected that
v2 would outperform v1 by a noticeable margin in both categories. Moving forward all com-
parisons will be made between the remaining networks as the nonviable networks are no
longer interesting to compare.

3.4.1 MobileNetV1 vs. MobileNetV2
By looking at figure 3.1 and comparing MobileNetV1 and V2 it is immediately apparent
that the MobileNetV1 outperforms MobileNetV2 in terms of performance. MobileNetV1
skips less frames while generating close to the same amount of false alarms but also generates
less true alarms. This is odd because MobileNetV2 claims to have both better accuracy and
performance than its predecessor which was described in section 2.4.1. It is possible that the
reason for this is due to the backend. Backends have varying quality implementations when it
comes to di�erent layers and activation functions. There are multiple types of layers possible
in a convolutional network and obviously di�erent networks use di�erent kinds of layers.
The type of network a backend has been tested with can impact which layers have had more
time to mature in regards to performance. This can pose a problem when comparing di�erent
neural networks on a single backend, for the simple reason that near optimal performance of
layers and activation functions may exist for one network but not others. So the statement
"network x is faster than y" may hold in theory when describing operations like the amount

38

3.5 Optimizations

of multiplications performed but can quickly collapse when testing out on a specific backend
where the performance of layers can vary greatly.

3.4.2 MobileNetV1 vs. MobileNetV1 Arm NN
Looking closer at MobileNetV1 using OpenCV and MobileNetV1 using Arm NN reveals,
unsurprisingly, that Arm NN yields much greater performance at the cost of accuracy. This
is because the Arm NN version of MobileNetV1 is quantized while the OpenCV version is
not. Arm NN also has hand-written NEON instructions which the OpenCV backend does
not. In theory quantization should reduce the accuracy and it does but not by much as can
be seen in figure 3.1. This is true for all videos and night scenes, as seen in figure A.4 and
figure A.5, seem to a�ect both networks the same amount, the quantized version is slightly
less accurate in all videos but it makes up for it in speed.

While both versions of MobileNetV1 are trained on the COCO dataset, the subframes
used when doing detection are di�erent than the images trained on, in the sense that they
are all in the range of 100x100 pixels in size. This requires most subframes to be upscaled,
therefore introducing information that was not there from the start. Non-quantized net-
works may be less sensitive to this added noise and this may therefore help to explain why
there was a drop in quality when using Arm NN.

3.4.3 MobiletNetV2 vs. MobileNetV3
As expected MobileNetV3 outperforms MobileNetV2 by a wide margin both when it comes
to performance and accuracy. Examining figure 3.1 reveals that MobileNetV3 has almost dou-
ble the performance of V2 while having more than 25% higher accuracy. MobileNetV3 does
however produce more false alarms (about 5 times more in fact) than its predecessor but this
is because of the lower confidence threshold needed with MobileNetV3. While MobileNetV2
uses 0.8 as confidence threshold MobileNetV3 uses 0.7 because MobileNetV3 rarely produces
confidences above 0.8 and thus needs a lower confidence. The results are therefore not di-
rectly comparable but using 0.7 as confidence threshold for MobileNetV2 results in way too
many false alarms therefore the decision was made to compare the networks at their best per-
formance, not identical parameters. In the end, despite the higher amount of false alarms,
MobileNetV3 is the better network and will henceforth be used as the primary network to
compare the e�ectiveness of the di�erent optimizations.

3.5 Optimizations
As can be seen in the results there are also data that can be used to determine the improve-
ments of di�erent optimizations. Some optimizations are meant to increase the performance
while others are meant to increase the accuracy.

3.5.1 Stretch vs. Pad
The padding optimization focuses on increasing the accuracy of the networks by preserving
the scale of the objects. This is done by adding black bars to the image to make it square

39

3. Evaluation

instead of stretching it which is done when resizing. Intuitively stretching should result in
worse accuracy since, for example, a person looks nothing like a person when they are as
wide as they are tall. However it isn’t quite that easy to determine which should yield the
best accuracy. Looking at the figures 3.1 and 3.2 it is apparent that there is a general increase in
mean true alarms across all networks. The increase in accuracy varies from network to network
with MobileNetV1, MobileNetV1 Arm NN and MobileNetV2 improving the most of the
viable networks while MobileNetV3 the least. It is worth noting that the nonviable networks
InceptionV2, FasterRCNN InceptionV2 and FasterRCNN ResNet50 had a major increases
in accuracy but are still too slow to be used. This does however speak for the validity of
this optimization. As expected the performance is mostly una�ected since this optimization
does nothing to reduce the image size and this has no e�ect on the feed forward time of the
network.

Since MobileNetV3 is the best network it is interesting to take a closer look at its result
with and without padding. The increase in true alarms is not very large as mentioned above
but the decrease in false alarms on the other hand was quite dramatic. The false alarms were
reduced by about 50% which is a great improvement since MobileNetV3 was the network
generating the most false alarms due to its lower confidence threshold. There is also a decrease
in the skipped frames but this is most likely unrelated to the padding optimization.

3.5.2 Changing the Input Size of the Image
As mentioned in Section 3.1, varying the input size of a subframe should have an impact on
the speed of the detection, this result is clearly visible in Figure 3.7. Decreasing the size from
300 to 250 decreases the number of skipped frames by more than half, while also slightly
improving the accuracy for the alarm classes as can be seen in Figure 3.5. Decreasing the
input size further decreases the number of frames that are skipped but at the cost of accuracy.
Another thing to take notice of is the decrease in false alarms seen in Figure 3.6.

This relationship that is shown in Figures 3.6, 3.5 is very interesting and counter intuitive
since the model is trained on image sizes of 300x300 which seems it should yield the best
results. Although it should be noted the the way the networks are used here is quite di�erent
from their normal use case where a large image gets downscaled which looses information,
while the method used here normally upscales the images from the bounding boxes to fit
the network and therefore adds information. This di�erence between the training and data
may help to explain why there is a slight increase in accuracy when going from 300x300 to
250x250 in input image size.

3.5.3 Detector Pool
The detector pool optimization was described in section 2.6.2 and should in theory improve
performance for the faster networks when there are several objects triggering motion detec-
tion at the same time. It is worth noting that this optimization will have little e�ect on the
benchmark videos recorded at night since they mostly contain single objects moving.

For hardware where all the CPU cores share the same type, this optimization should in
theory have a significant improvement. A problem arises when using the hardware used in
this thesis since this does not hold. For example, disregarding the overhead of synchroniza-
tion and assuming only two bounding boxes, the time it takes for the Cortex-A53 to complete

40

3.5 Optimizations

has to be faster than TimeForDetectionOnA72 ∗ 2. This fact arises for the simple reason
that total detection time = max(detection time A72, detection time A53) if running in
parallel. As such, if the time to run two detections on the A72 in sequence is faster than
dividing the work on the A72 and A53 to work in parallel, this optimization will slow down
the system and will therefore not be worth it. In general the constraint relaxes as the num-
ber of bounding boxes increases in a frame, assuming no synchronization overhead and N
bounding boxes where 1 thread runs on the A72 and N − 1 threads are divided on the other
cores, the time requirement for detections an A53 to make the detector pool optimization
profitable in terms of performance becomes TimeForDetectionOnA72 ∗ N .

From the results shown in Figure 3.3 and 3.2 there is no significant di�erence in the
number of skipped frames, suggesting that the speed of the A53 cores is not worth it. While
the measured time for detection on A53 fits with the theoretical limit defined, other hardware
e�ects can a�ect multicore performance. The most obvious is the size of the weights which
on disk is 13Mb. Having multiple instances of the network and simultaneously having images
sharing the same CPU cache will inevitably result in a large amount of expensive cache misses.
The results in Figure 3.3 does not show an improvement using a detector pool, comparing the
bars between Figure 3.4 shows that for videos with a lot skipped frames, i.e. a lot of bounding
boxes, there is a small improvement in regards to skipped frames. Although a slight decrease
for videos with fewer bounding boxes.

Scaling is of course still bounded by the number of physical cores on the hardware and
allowing all of the cores to be consumed for this single application is not an option if other
real-time applications are supposed to share the system resources.

41

3. Evaluation

42

Chapter 4

Conclusion

With the results analyzed it is now possible to determine which network was the best and
which optimizations to use with that network in order to make it even more accurate and
give it better performance. Although this thesis and the thesis by Lundholm et al. [11] do
not use the same kind of metrics which makes it hard to compare the results directly, it is
still interesting to compare the conclusions. The thesis from Lundholm et al. [11] found that
using neural network powered object detection to filter out false alarms looked promising.
The same conclusion can be drawn from the results of this thesis where a few networks did
a very good job filtering out false alarms while still managing to send a good amount of true
alarms. Some limitations still exists which will be mentioned in section 4.2.

4.1 The Best Network and Optimizations
MobileNetV3 is by far the best network when weighing performance and accuracy. Running
the best optimizations MobileNetV3 scores an average true alarm percentage of 60%, an av-
erage false alarm percentage of almost 0% and 20% skipped frames (figure 3.9) it performs
well enough in all categories that is has no real competitor. Its only weak side is its perfor-
mance as it has a feed forward time double that of MobileNetV1 Arm NN but it makes up for
it by doubling the accuracy of MobileNetV1 Arm NN. However it is important to note that,
like other networks, it has a much harder time detecting objects during night. This does of
course mean that the network’s day performance is even better than the average for all videos
making it the ideal candidate for the network to use for day scenes. However, MobileNetV3
is still the best network for the night videos as well, although it probably is not good enough
that it could be used reliably in the same capacity that it can be used for daylight scenes.
Comparing figure 3.9 with 3.8, using tengine significantly reduces the amount of skipped
frames.

The first optimization that can be used with MobileNetV3 that increased the accuracy
was padding of subframes. Padding the subframes increased the accuracy of all networks,

43

4. Conclusion

even the nonviable ones, and also halved the number of false alarms for MobileNetV3. This
points to it being a very good optimization for accuracy, at least in the conditions tested in
this thesis.

Another optimization that increased both accuracy and performance was using 250x250
as the network/subframe size. This is of course dependent on just the specific scene for the
benchmark videos but every scene will have an optimal network size that when found will
get the best possible balance between accuracy and performance. Future work on dynamic
network size is discussed later in section 4.3.10.

The detector pool did not improve the mean average skipped frames, except for videos
with a high number of bounding boxes. The conclusion from this is that it in practice the
optimization will not be worth it since it puts a high load on the system. An exception
from this is if multiple cameras were to be used, then reducing congestion will be of utmost
importance and therefore using the detector pool might be a viable option.

4.2 Limitations
There are a few limitations with the solution in this thesis as it stands right now, some of
their possible solutions will be discussed in section 4.3. These limitations both a�ect the
performance and the accuracy of the solution and are of varying di�culty to address.

4.2.1 Night Video
The first limitation has been described in part already in section 2.1.6 and it concerns night
scenes. The problem that arises with night scenes is one of accuracy as all networks perform
worse at night (as expected). Some networks handle night scenes better than others, for
example the quantized Arm NN MobileNetV1 is almost completely unable to detect anything
at night whilst the other MobileNet version only lower their accuracy by about 50%. Looking
at the nonviable networks we can see that the InceptionNet variants also lose about 50% of
their accuracy and the same goes for ResNet50 which indicates that even the more accurate
networks have trouble with night scenes.

It is worth noting that the graphs can be somewhat misleading when it comes with per-
formance on the night videos as for the most part the night videos only contain one motion
detection bounding box per event, something that results in lesser skipped frames than if
there are several motion detection bounding boxes.

4.2.2 Truck vs. Car
As described in section 2.1.5, the truck vs. car problem is something that is pretty hard to
address. A problem that will occur if networks classify something like a pickup-truck in
di�erent ways (meaning one network classifies it as a car and another as a truck) is an unfair
di�erence in accuracy. In order to solve this problem the two classes truck and car are treated
as equals when evaluating the results from the benchmark, meaning that a car is a truck and
a truck is a car. The reason why this is possible is because in the benchmark videos there
are no proper trucks (meaning long-haul or tow type trucks), there are only classes within
the intersection of the two classes (ie. pickup-trucks and vans). Without this change, every

44

4.3 Future Work

network that leans toward detecting pickup-trucks as trucks will get many missed alarms and
networks that lean the opposite way get many false alarms. With this change the networks
are more equal and no network should be adversely a�ected by detecting vans as cars instead
of trucks.

4.3 Future Work
Due to time or resource constraints there were several things not included in this thesis that
we (the authors) would have liked to try or implement. The following sections will describe
the future work in no particular order as well as what the theoretical benefits of such work
would be.

4.3.1 Testing More Networks
One obvious expansion to this thesis would be to compare more neural networks against the
ones already done. The main reason why this was left out of the thesis is because, at the time
of writing, running one benchmark with all the networks and all the videos takes around 3
hours and that does not include comparing any custom parameters such as padding or scale
factor. With more time and access to more pre-trained networks (or networks trained just for
this application) it might be possible to increase both the accuracy and the speed of the object
detection on the hardware ultimately lowering the number false alarms. Specifically training
custom versions of MobileNetV3 or MobileNetV2 might increase accuracy and speed by a
significant margin by using fewer classes than the 90 that the COCO-dataset has (after all
the probability of an oven triggering motion detection is rather low).

4.3.2 Productify
In order for the work done in this thesis to actually decrease the number of false alarms AXIS
Companion, the code written for this thesis would need to be turned into a final product that
can be run on the new recorder. For this to happen several things need to be done. Firstly
memory and CPU usage constraints need to be investigated so that the recorder can perform
its main purpose (to record video) without any interruptions because the object detector used
too much memory or CPU.

Decoding video has been a substantial performance issue because FFmpeg has done it
all in software without any hardware acceleration which takes a substantial amount of CPU
power, although somewhat mitigated by NEON accelerated decoding functions. As men-
tioned in Section B.1, the board has a VPU (Video Processing Unit) targeted specifically for
solving this issue. However interfacing against it requires special firmware that was not avail-
able at the time of implementation. To allow the solution proposed in this thesis all video
decoding should be done on the VPU to reduce the overall CPU load. FFmpeg includes
bindings for OpenCL to accelerate video on a GPU, which also could be a solution for this
problem, especially if more video streams would have to be decoded simultaneously.

The context for this work is security, therefore a decision regarding what should happen
if the amount of bounding boxes suddenly goes up dramatically. This is a problem because a
lot of frames will start to get skipped by the system and therefore potential alarms will get

45

4. Conclusion

lost. A potential easy solution is to fallback to the naive motion detection if too many frames
get skipped and notify the user directly.

As the results indicate, in darker settings all networks perform significantly worse. This
is intuitively true but poses a problem where productfication of this work is concerned. Con-
sider a small store owner that would use this product, the time of day where accurate detec-
tion notifications would be most important is probably during the night. Mitigations for this
could include using the IR sensor of Axis cameras to get better images and running networks
of higher quality with slower detections during night, assuming that there is less motion
activity during the night than during the day.

The last thing that needs to be done is to integrate the application with the Axis ecosys-
tem to make it run like existing applications that run on the devices (ACAPs). This includes
things such as having the application start when camera boots and restart in case of crashes
etc. Some way to signaling the output (ie. alarm or not alarm) is also needed and might
be done using an RTSP stream that can be subscribed to from wherever the information is
needed.

4.3.3 Tengine vs OpenCV vs Arm NN Comparison
Speed is an important factor when deciding which machine learning library to use for an
application. However, as with all software it is important to verify if the product performs as
advertised. At the time of writing the latest version of Tengine, OpenCV and Arm NN was
used because of recent performance improvements of executing Neural Networks on aarch64
hardware. Since they are all open source libraries, caution should be used as a consequence
of that no accuracy guarantees or warranty is provided. Therefore more thorough testing of
these libraries should be performed, including comparing the output of these libraries against
each other and verifying that each layer of the network actually produces the correct result.
Verifying the accuracy of an implementation of a neural network is a time consuming task
and is therefore not in the scope of this work but should be performed in the future.

4.3.4 Hardware Acceleration
One key area and reason for modern development of hardware acceleration is machine learn-
ing, in particular neural networks. GPUs are particularly good at performing this task since
they are massively parallel computational devices, specialized at performing floating point
operations. All object detection in this work has been performed on a CPU since proper
drivers for the GPU in the i.MX 8 QuadPlus board did not exist at the time of implementa-
tion. Utilizing all the compute power, in particular in an embedded system, is very important
and therefore using the GPU should be examined in the future. OpenCV and Arm NN both
have built-in support for OpenCL, which means that in theory if OpenCL drivers would
be implemented for the GPU, then extra compute resources would instantly be available.
OpenCV can dynamically be configured to run on both CPU and GPU which means that
the existing detector pool implementation could remain intact running parallel detections
on the CPU and GPU simultaneously.

46

4.3 Future Work

4.3.5 Concatenate Subframes
One possible optimization that did not get done was to concatenate all subframes into a larger
frame and then doing only one feed forward instead of several. It is hard to say whether this
would have lead to better accuracy but in theory it should lead to better performance. This is
because most of the subframes obtained from the benchmark videos have around 100 pixels
as their longest side meaning that after padding they end up being 100x100 pixels. They are
then resized to whatever network size is used for the particular network. So for example say
that the network takes 200x200 images as inputs, then it would be possible to feed forward
4 subframes concatenated into one 200x200 image instead of doing 4 separate feed forwards.
This would yield a theoretical 4x performance increase. More subframes could be fit into
the 200x200 image if no padding was done but at the cost of a more complex algorithm to
create the concatenated image. There is however the problem of determining which image
contained which object but using the location output from the network solves this albeit
with some extra work.

4.3.6 Detect Objects Once
When using AXIS VCS (described in section B.2.7) as the metadata source for motion de-
tection there is one vital piece of information that is not available in VMD metadata: object
id’s. Object id’s can be used to keep track of objects that have already been detected and
thus allowing for possibly the largest optimization of the ones described in this thesis. If an
object is detected successfully as an object that should not send an alarm it can be ignored
for the rest of its lifetime and if it merges with another uninteresting object that new object
can also be ignored. In theory this could mean that objects that spend 10 metadata events
in the frame only need to be fed through the network once, leading to 10 times performance
increase. It might also increase the accuracy in cases such as the tree problem described in sec-
tion 2.1.2 since once an object is detected it will keep its detected class even if it gets partially
obstructed by something else. Of course there are potential problems with this approach in
regards to incorrect initial classifications leading to the incorrect class being applied to an
object for the duration of its lifespan but this might be solved with having a separate higher
threshold limit when detecting objects for the duration of their lifespan.

4.3.7 Multi Object Classifiers vs Object Detectors
Object detectors was the logical choice for this thesis because of their widespread use and
easily available pre-trained networks but there are other kinds of networks that might be
applicable for the use case of this thesis. Instead of using an object detector like MobileNet
which produces both detections and the location of the detections it might be possible to
use networks that only classify the image. The main reason this is possible is because of
the use of motion detection which generates subframes. Sending these subframes through a
classifier and getting only the objects within the image might be su�cient for alarm filtering
but a problem arises with several objects in one subframe. It might also be possible to train
a binary classifier which classifies a subframe into alarm or not alarm but that would mean
losing the ability to configure which alarm classes to use after training.

47

4. Conclusion

4.3.8 Creating a Custom Dataset
Another time consuming but presumably worthwhile expansion to this thesis would be to
train an existing or new network on a custom dataset created from images taken on Axis
cameras or surveillance video in general. Since the COCO-dataset described in section 2.4.6
has images mostly taken with cellphones or more expensive cameras one would expect the
networks trained on the COCO-dataset to perform worse on images taken with surveillance
cameras which do not have the same quality. Training on a dataset which contains images
with more grainy images from angles that are more usual in surveillance situations might
increase the accuracy of the networks and pairing that with using fewer classes might also
increase the performance.

4.3.9 TensorFlow Lite as Backend
This thesis has only used OpenCV, Tengine and Arm NN as backends but there is another
alternative that has not been explored and that is TensorFlow Lite. TensorFlow Lite is de-
veloped for use on devices such as cellphones and might be a good candidate for use on the
recorder. It is hard to say whether this would lead to an increase in performance but it is not
unreasonable that it would since the recorder uses the same architecture (aarch64) as modern
day cellphones which can run object detection in real time. Many of networks used in this
thesis were trained with TensorFlow and their models converted to OpenCVs format and
would therefore already be compatible with TensorFlow Lite as well.

4.3.10 Adjust Input Size According to Scene
There are many possible scenes where object detection might be useful and all of these di�er-
ent scenes will have their own perfect parameters for use in filtering alarms. One parameter
which would be interesting to vary depending on the scene is the network size. For exam-
ple: imagine a camera positioned far from the subject which it records. Anything that would
trigger motion detection would likely take up a small part of the frame and it is therefore
unnecessary to take the subframe from the bounding box and upscale it every time. Upscaling
the image adds no new information and makes it take longer to feed through the network.
A better approach would be for the application to "learn" what the typical size of a subframe
is and adapt its detectors network input size to be around that size. This might be a huge
improvement in both accuracy and performance in some scenes while much smaller in others
but in general should in theory lead to a better solution. The largest hurdle to overcome to
implement this is to figure out when to change the parameters since it will require creating a
new detector which can be time and memory consuming. Extracting one detector from the
pool, deleting it and inserting a new detector might be the best way to achieve this.

48

References

[1] Opencv change logs. https://github.com/opencv/opencv/wiki/ChangeLog#
version430.

[2] Post-training quantization. https://www.tensorflow.org/lite/performance/
post_training_quantization.

[3] Yocto project website. https://www.yoctoproject.org.

[4] ARM. Neon programmer’s guide. https://static.docs.arm.com/den0018/a/
DEN0018A_neon_programmers_guide_en.pdf.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[6] Yunhui Guo. A survey on methods and theories of quantized neural networks, 2018.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition, 2015.

[8] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing
Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and
Hartwig Adam. Searching for mobilenetv3, 2019.

[9] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: E�cient convolu-
tional neural networks for mobile vision applications, 2017.

[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James
Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
coco: Common objects in context, 2014.

[11] Jonathan Lundholm and Paul Maxwell Steneram Bibby. False alarm filtering within
camera surveillance using an external object classification service, 2017. Student Paper.

49

https://github.com/opencv/opencv/wiki/ChangeLog#version430
https://github.com/opencv/opencv/wiki/ChangeLog#version430
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.yoctoproject.org
https://static.docs.arm.com/den0018/a/DEN0018A_neon_programmers_guide_en.pdf
https://static.docs.arm.com/den0018/a/DEN0018A_neon_programmers_guide_en.pdf
http://www.deeplearningbook.org

REFERENCES

[12] Prateeth Nayak, David Zhang, and Sek Chai. Bit e�cient quantization for deep neural
networks, 2019.

[13] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement, 2018.

[14] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks, 2015.

[15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions, 2014.

50

Appendices

51

Appendix A

Results

53

A. Results

54

A.1 All Networks and Videos

A.1 All Networks and Videos

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: FASTER_RCNN_INCEPTIONV2

Video title

M
ea

n
tr

ue
al

ar
m

s%

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

1

2

3

4

5

6

VIDEO COMPARISON: FASTER_RCNN_INCEPTIONV2

Video title

M
ea

n
fa

lse
al

ar
m

s(
%)

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: FASTER_RCNN_INCEPTIONV2

Video title

M
ea

n
sk

ip
pe

d
fr

am
es

(%
)

Figure A.1: Individual results for all videos for
faster_rcnn_inceptionv2

55

A. Results

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: FASTER_RCNN_RESNET50

Video title

M
ea

n
tr

ue
al

ar
m

s%

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

1

0.5

0

0.5

1

VIDEO COMPARISON: FASTER_RCNN_RESNET50

Video title

M
ea

n
fa

lse
al

ar
m

s(
%)

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: FASTER_RCNN_RESNET50

Video title

M
ea

n
sk

ip
pe

d
fr

am
es

(%
)

Figure A.2: Individual results for all videos for faster_rcnn_resnet50

56

A.1 All Networks and Videos

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: INCEPTIONV2

Video title

M
ea

n
tr

ue
al

ar
m

s%

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

1

2

3

4

5

VIDEO COMPARISON: INCEPTIONV2

Video title

M
ea

n
fa

lse
al

ar
m

s(
%)

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: INCEPTIONV2

Video title

M
ea

n
sk

ip
pe

d
fr

am
es

(%
)

Figure A.3: Individual results for all videos for
faster_rcnn_inceptionv2

57

A. Results

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: MOBILENETV1

Video title

M
ea

n
tr

ue
al

ar
m

s%

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

0.1

0.2

0.3

0.4

0.5

0.6

VIDEO COMPARISON: MOBILENETV1

Video title

M
ea

n
fa

lse
al

ar
m

s(
%)

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: MOBILENETV1

Video title

M
ea

n
sk

ip
pe

d
fr

am
es

(%
)

Figure A.4: Individual results for all videos for mobilenetv1

58

A.1 All Networks and Videos

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: MOBILENETV1COCOARMNN

Video title

M
ea

n
tr

ue
al

ar
m

s%

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

0.1

0.2

0.3

0.4

VIDEO COMPARISON: MOBILENETV1COCOARMNN

Video title

M
ea

n
fa

lse
al

ar
m

s(
%)

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: MOBILENETV1COCOARMNN

Video title

M
ea

n
sk

ip
pe

d
fr

am
es

(%
)

Figure A.5: Individual results for all videos for mo-
bilenetv1cocoarmnn

59

A. Results

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: MOBILENETV2

Video title

M
ea

n
tr

ue
al

ar
m

s%

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

0.2

0.4

0.6

0.8

1

1.2

VIDEO COMPARISON: MOBILENETV2

Video title

M
ea

n
fa

lse
al

ar
m

s(
%)

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: MOBILENETV2

Video title

M
ea

n
sk

ip
pe

d
fr

am
es

(%
)

Figure A.6: Individual results for all videos for mobilenetv2

60

A.1 All Networks and Videos

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: MOBILENETV3

Video title

M
ea

n
tr

ue
al

ar
m

s%

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0
0.2
0.4
0.6
0.8

1
1.2
1.4

VIDEO COMPARISON: MOBILENETV3

Video title

M
ea

n
fa

lse
al

ar
m

s(
%)

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: MOBILENETV3

Video title

M
ea

n
sk

ip
pe

d
fr

am
es

(%
)

Figure A.7: Individual results for all videos for mobilenetv3

61

A. Results

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: YOLOV3TINY

Video title

M
ea

n
tr

ue
al

ar
m

s%

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0
0.05

0.1
0.15
0.2

0.25
0.3

0.35

VIDEO COMPARISON: YOLOV3TINY

Video title

M
ea

n
fa

lse
al

ar
m

s(
%)

cloudy-road-vcs

cloudy-road-vmd

night-road-vcs

night-road-vmd

night-road2-vcs

night-road2-vmd

overcast-road-vcs

overcast-road-vmd

sun-afternoon-road-vcs

sun-afternoon-road-vmd

sun-road-vcs

sun-road-vmd

0

20

40

60

80

100

VIDEO COMPARISON: YOLOV3TINY

Video title

M
ea

n
sk

ip
pe

d
fr

am
es

(%
)

Figure A.8: Individual results for all videos for yolov3tiny

62

Appendix B

Prerequisites

B.1 Hardware
The new recorder mentioned previously uses a chip from the company NXP Semiconductors
based in the Netherlands. The chip’s name is i.MX 8 QuadPlus and it features the following
relevant hardware components:

• 4x ARM Cortex-A53 CPUs at 1.2 GHz each

• 1x ARM Cortex-A72 CPU at 1.6 GHz

• 2x Vivante GC7000Lite GPUs

• 1x VPU

The Cortex-A72 is designed to be a more powerful core used for more demanding com-
putations but uses more energy than Cortex-A53. It allows for scheduling more demanding
work that benefits of a lower latency.

B.2 Software
On the recorder axOS is run as the operating system, it is an Axis specific Linux platform
built on the Yocto Project [3]and contains the bare necessities for debugging the applications
that the recorder runs during everyday use. The following are the higher level libraries that
we used in order during this thesis.

B.2.1 OpenCV
OpenCV is large and popular open source and is used in this thesis to handle image process-
ing, video streaming and running some of the neural networks. OpenCV was chosen for its

63

B. Prerequisites

ease of use and its many image processing, GUI and neural network features but mostly the
Deep Neural Network (DNN) module and base module (containing such data structures as
matrices for video frames for example) is what is used in this thesis.

B.2.2 FFmpeg
FFmpeg is a popular cross-platform open source video decoding and encoding library. It was
used as the back end for OpenCV to retrieve and record the RTSP stream of video sent by
the camera.

B.2.3 RTSP
The Real Time Streaming Protocol (RTSP) is a protocol for use when streaming real time
data. It was created to stream video and audio from either live data feeds or from stored files
and can be used over both TCP and UDP. Axis cameras feature the ability to get live streamed
video directly from the camera through an RTSP stream as well as have the capability to send
metadata over RTSP.

B.2.4 Tengine
Tengine is an open source library developed by OPEN AI LAB targeted for AIoT (Artificial
Intelligence in IoT). It contains parsers for popular machine learning libraries as Tensor Flow
and Ca�e with hand vectorized convolution layers for x86 and aarch64. In version 4.3 of
OpenCV, Tengine was integrated as an optional backend for the DNN module, mainly to
increase the performance of applications targeting aarch64 [1].

B.2.5 Arm NN
Arm NN is a high performance open-source inference engine specially developed for Arm
processors by Arm. It relies on the Arm Compute Library to provide high performance con-
volutions and network layers that are hand tuned for and implemented with Arm NEON
instructions. When performing convolutions on a CPU in embedded systems it is important
to utilize all of the power available and this can therefore improve performance significantly.
It exposes the ability to use both fully quantized 8bit and 32bit floating point convolutions
with the trade-o� being a balance of speed, accuracy and size of the trained models. Also pro-
vided by the library is the ability to translate and run models trained from popular machine
learning libraries such as Ca�e and TensorFlow.

This library has the advantage that it is significantly faster than OpenCV but has the
disadvantage that it is not as mature and more complex to use. At the point of writing there
is no option to use Arm NN as a back-end for OpenCV and it must therefore be integrated
separately.

64

B.2 Software

B.2.6 AXIS Video Motion Detection (VMD)
Axis Video Motion Detection, or VMD for short, is what AXIS Companion uses for motion
detection. VMD can be configured to filter out small, swaying and short lived objects. The
data from VMD used in this thesis is called visual confirmation and is accessed via an RTSP
stream where the camera will send a list of bounding boxes, one for each moving object,
and a timestamp when the motion occurred. To enable VMD to send bounding boxes the
application has to send a HTTP POST request to the camera which will tell the camera to
send visual confirmation data for 15 minutes. In order to keep visual confirmation data on
indefinitely the application needs to send these HTTP requests around once every 10 minutes
to ensure there is no downtime in the RTSP stream.

B.2.7 AXIS Video Content Stream (VCS)
Axis Video Content Stream or VCS is similar to VMD in that it also sends motion detection
information over an RTSP stream from the camera but it di�ers in some aspects. Primarily
it sends more detailed data. VCS sends everything VMD does but adds object id’s, object
splitting/merging information (when bounding boxes cross over each other for example) and
polygons for each detected object. VCS also does not need to be enabled every 15 minutes
and will simply always be running.

65

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-11

EXAMENSARBETE Motion detection alarm verification using deep learning in surveillance systems
STUDENTER Jonathan Strandberg, Erik Rosengren
HANDLEDARE Jörn Janneck (LTH)
EXAMINATOR Mathias Haage (LTH)

Smartare videoövervakning för det
moderna samhället

POPULÄRVETENSKAPLIG SAMMANFATTNING Jonathan Strandberg, Erik Rosengren

Videoövervakning är traditionellt ett jobb reserverat för människor eller den mest
kraftfulla hårdvaran som pengar kan köpa, det här arbetet undersöker om det finns en
robust och mer kostnadse�ektiv lösning som kan vara tillgänglig för alla.

I Axis övervakningsystem idag finns det lösningar
som existerar för att ge användare möjligheten att
få notifikationer till sina telefoner om det är något
som rör sig i kamerans vy. Det uppenbara prob-
lemet som uppstår är att om en plastpåse skulle
blåsa förbi mitt i natten, då kommer användaren
att få en notifikation helt i onödan. Eller så är
kameran riktad mot en väg där många bilar åker
förbi men de kanske inte är så intressanta. Kanske
skulle man kunna kombinera den existerande lös-
ningen med modern maskininlärning för att en-
dast få den information som användaren faktiskt
bryr sig om? Det lade grunden för arbetet som vi
har gjort. I systemen så finns det en sk. recorder
som har ansvar att spela in video, men har resurser
som tidigare har varit till stor del outnyttjade.

Med hjälp av moderna neurala nätverk så
sänkte vi mängden falska alarm ner till 0,3%. Det
här samtidigt som systemet kunde korrekt klassi-
ficera korrekta alarm till 60%. Att detektera 60%
kan intuitivt kännas som lite, men på grund av att
objekt rör sig i flera sekunder på en video så när-
mar sig sannolikheten 100% desto längre objektet
finns i vyn.

Neurala nätverk är kraftfulla verktyg för
maskinlärning då de drar inspiration från hur
hjärnan till synes kan lära sig väldigt komplicer-
ade uppgifter. Med den styrkan följer tyvärr

motsvarande krav på hårdvaran och de bästa
nätverken körs på otroligt dyra datorer. Det här
självklart inte accepterbart för ett enkelt över-
vakningsystem! Speciellt när det ska köras på
recordern som har begränsad prestanda.

För att uppnå så bra resultat som möjligt så
jämförde vi många olika typer av moderna neurala
nätverk mot varandra. Alla nätverk testades på 12
olika videoinspelningar med olika ljusförhållanden
för att se vilka omständigheter som hade störst in-
verkan på hur bra de presterade. Den överlägsna
vinnaren som hittade den bästa balansen var Mo-
bileNetV3 som kan optimeras väldigt mycket för
hårdvaran.

	Introduction
	Definitions and Terminology
	Axis Communications
	AXIS Companion

	Problem Statement
	Research Questions

	Related Work
	Neural Networks
	Convolutional Neural Networks
	MobileNet
	Post Training Quantization
	False Alarm Filtering in the Cloud

	Contributions

	Approach
	Challenges
	The Parked Car Problem
	The Tree Problem
	The Wrong Class Alarm Problem
	The stretching problem
	The Truck vs. Car Problem
	Night Scenes

	Method
	Annotated Data
	Benchmarking

	Motion Detection Metadata
	Pre-trained Neural Networks
	MobileNet
	YOLO
	InceptionNet
	ResNet
	Faster R-CNN
	COCO Dataset

	Theory
	Definitions

	Implementation
	Preprocessing
	Object Detection
	Postprocessing
	CPU Affinity

	Evaluation
	Experimental Setup
	Results
	Discussion
	Metrics
	Mean True Alarm Percentage
	Nonviable Networks

	The Remaining Networks
	MobileNetV1 vs. MobileNetV2
	MobileNetV1 vs. MobileNetV1 Arm NN
	MobiletNetV2 vs. MobileNetV3

	Optimizations
	Stretch vs. Pad
	Changing the Input Size of the Image
	Detector Pool

	Conclusion
	The Best Network and Optimizations
	Limitations
	Night Video
	Truck vs. Car

	Future Work
	Testing More Networks
	Productify
	Tengine vs OpenCV vs Arm NN Comparison
	Hardware Acceleration
	Concatenate Subframes
	Detect Objects Once
	Multi Object Classifiers vs Object Detectors
	Creating a Custom Dataset
	TensorFlow Lite as Backend
	Adjust Input Size According to Scene

	References
	Appendix Results
	All Networks and Videos

	Appendix Prerequisites
	Hardware
	Software
	OpenCV
	FFmpeg
	RTSP
	Tengine
	Arm NN
	AXIS Video Motion Detection (VMD)
	AXIS Video Content Stream (VCS)

