
MASTER’S THESIS 2020

Wardrobe Design using
Generative Neural Networks
Oskar Holmberg, Erik Munkby

ISSN 1650-2884
LU-CS-EX: 2020-38

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-38

Wardrobe Design using Generative Neural
Networks

Oskar Holmberg, Erik Munkby

Wardrobe Design using Generative Neural
Networks

(A Machine Learning study)

Oskar Holmberg
dat12oho@student.lu.se

Erik Munkby
dat12emu@student.lu.se

May 21, 2020

Master’s thesis work carried out at Jayway.

Supervisors: Johnny Dang, johnny.dang@jayway.com
Elin Anna Topp, elin_anna.topp@cs.lth.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:dat12oho@student.lu.se
mailto:dat12emu@student.lu.se
mailto:johnny.dang@jayway.com
mailto:elin_anna.topp@cs.lth.se
mailto:jacek.malec@cs.lth.se

Abstract

Generative Neural Networks have for many years proven successful at produc-
ing continuous data, e.g. images or music. When it comes to discrete data such
as text or speech, comparable success has to our knowledge not yet been found.
In this study we tackle some of the di�culties of generating discrete data in an
attempt to assemble wardrobe configurations from a set of products. This study
combines the two Generative Adversarial Network archetypes Auxiliary Classi-
fier and Deep Convolutional to render wardrobe configurations presented in a
3D digital environment. The study shows that the approach can be considered a
viable option for automatic generation of modular wardrobes.

Keywords: MSc, machine learning, neural networks, generative neural networks, prod-
uct design, generative adversarial networks, auxiliary classifier, deep convolutional

2

Acknowledgements

We want to thank our supervisor Elin Anna Topp for advice and guidance throughout the
project, and assistance with the structuring of the paper.

This project would not have been possible without the help our hosting company Jayway,
providing us with equipment and an inspirational environment. Special thanks to our super-
visor Johnny Dang for guidance and valuable discussions. Petter Skerfving for giving us this
opportunity and assisting us in any way he could. We also want to thank the representatives
from Company X for showing such interest and supplying us with data and insights.

3

4

Contents

1 Introduction 7
1.1 Project Description . 7
1.2 Scope . 8
1.3 Method . 9
1.4 Contributions . 9

2 Background 11
2.1 Neural Networks . 11

2.1.1 Artificial Neural Network . 11
2.1.2 Convolutional Neural Networks 13

2.2 Generative Neural Networks . 14
2.2.1 Recurrent Neural Networks . 14
2.2.2 Auto-encoder . 15
2.2.3 Generative Adversarial Networks 15

2.3 Related Work . 16

3 Method 19
3.1 Approach . 19
3.2 Tools and Technologies . 20

3.2.1 3D Model Construction . 21
3.3 Data Processing . 21

3.3.1 Data structure . 21
3.3.2 Data Collection . 22
3.3.3 Data Analysis . 22

3.4 Model Design . 26
3.4.1 Network Design . 26
3.4.2 Constructing the Model . 27
3.4.3 Training . 29
3.4.4 Evaluating Training Results . 30

5

CONTENTS

4 Result 31
4.1 Training results . 31
4.2 Quantitative Results . 35
4.3 Qualitative Results . 38

5 Discussion 41
5.1 Training the Model . 41
5.2 Data processing . 42
5.3 Future Work . 43

6 Conclusion 45

Bibliography 47

Appendix A Tools and Technologies 53

Appendix B Code and Output Examples 55
B.1 Generator Output . 55
B.2 Wardrobe Evaluation Survey . 57

6

Chapter 1

Introduction

This chapter introduces the reader to the study, describing the basis of the study, its purpose
and goals. It will also define the scope of the study, what we hope to achieve, and present our
contributions.

1.1 Project Description
The project was based on a use case given by a furniture company that wishes to remain
anonymous and will henceforth be referred to as Company X. Company X is hosting a digital
builder on their website (and in-store machines) that allows customers to virtually construct
wardrobe solutions using 3D-models. The builder is meant to inspire customers and allow
them to explore possible solutions for wardrobe storage before a purchase is made. Company
X is interested in improving the builder and are therefore looking in to ways of dynamically
suggesting complete wardrobe configurations based on the individual customer’s needs.

Currently the existing suggestions displayed in the digital builder are configured manu-
ally by experts, and the same suggestions are given to all customers, furthermore the current
solution does not scale in a large international market where demands may di�er between
regions and seasonal trends. In the new solution Company X wishes to display a variety of
suggestions, preferably tailored to the needs of the individual customer, in addition, it is
preferable if the solution provides a degree of simulated innovation. By innovation we mean
that the solution should be able to present wardrobe configurations that might not have been
seen before but still display the same level of functionality and aesthetic appeal as if they were
manually configured by an expert in the field.

The IT consultant company Jayway is on behalf of Company X exploring possible solu-
tions to the problem, and the purpose of this study was to investigate whether it could be
solved with the help of machine learning. Should this succeed, future work might be directed
towards development of a similar solution for Company X’s other product lines.

The resources available consisted of large data sets of wardrobe configurations specify-

7

1. Introduction

ing the country where it was sold, which products were used in the configuration, and the
relative spacial positioning between the products. The data was provided in JavaScript Ob-
ject Notation (JSON) [12] and Extensible Markup Language format (XML) [30]. Each data
point represents a complete configuration within the digital builder, not including building
compatibility and rules. The data entries consist of wardrobe configurations built using the
digital builder, at a warehouse, by an expert together with a customer, and subsequently sold.

1.2 Scope
The specific problem of generating wardrobe configurations meeting Company X’s criteria
of variety and input-dependency mentioned in section 1.1 could possibly be solved using an
algorithm, which can output wardrobes based on a set of rules. However, the area Company
X wanted to explore whether Machine Learning (ML) was a viable possibility.

The data set available contains wardrobe configurations where several wardrobes have
been combined to form a complete unit. We considered the possible solutions for such a
space to be too large and time consuming for this study. We also believe that if the prob-
lem could be solved for single wardrobes, it would likely be possible to expand the model’s
capabilities to multi-wardrobe configurations. Therefore we will limit our focus to single
wardrobe configurations, and leave multi-wardrobe configurations to future work. In close
relation to this, the data set contains wardrobes that hold di�erent amounts of products, and
it is less complicated to build ML models for symmetric input and output shapes, since one
model will typically take input and produce output of a specific shape. There are methods to
solve dynamic shapes but we considered this to be out of our scope. Thus we will focus on
wardrobe configurations with a specific amount of products.

One of the other criteria for the wardrobe configurations was the functionality, in this
paper we define functionality as how usable the wardrobe is in regards to product distribution and
placement. This is considered by us to be vital when it comes to the design of the wardrobe,
the reason behind this is that we deem an aesthetically appealing wardrobe useless if it does
not provide the wanted functionality. Due to this, and the highly subjective nature of how
aesthetically appealing an object is, we chose to exclude an aesthetic evaluation from our
scope.

Finally, Company X wanted to o�er individualized suggestions. The suggestions could
be based on factors such as available space, what the wardrobe should store, and what type of
room it will be placed in. Company X did not provide us with data regarding the customers
intended use for each wardrobe, thus we will limit our individualization to factors retrievable
from the data set. We believe that this is enough to prove the concept.

To summarise, our scope is limited to using machine learning and the data provided by
Company X to generate single wardrobe configurations, with a specific amount of products.
In addition to this, one should be able to define characteristics beforehand, which the gen-
erated wardrobes should follow. Moreover, the wardrobes should display variance i.e. follow
a non-deterministic behavior while still upholding functionality.

8

1.3 Method

1.3 Method
In this study three di�erent approaches to generative neural networks were evaluated in
the context of solving Company X’s problem statement. The architecture that showed most
promise was the Generative Adversarial Network (GAN) model. The GAN model used in
this project was derived from an existing source intended for image generation, created by
Radford et. al. [21], and modified to handle our discrete data.

Initially the data provided by Company X was analysed to identify key factors of the
provided wardrobe configurations. These factors were considered when building the model
and during evaluation of the results. When shaping the model result evaluation was primar-
ily done through quantitative measures such as studying the networks training progression
and analysing product distributions in the output. This provided a theoretical measurement
of how similar the generated wardrobes were to the real ones. After achieving promising
quantitative results, a qualitative study was made in the form of a survey. The purpose of the
survey was to receive subjective feedback of our wardrobes, and how well they compared to
the real ones from a human perspective.

1.4 Contributions
Generative networks are often used for generating continuous data, such as images or music,
in particular Generative Adversarial Networks (GANs) have to our knowledge not proven
e�ective when generating discrete sequential data such as text or speech. Our study presents
an example of how this could be approached, in addition to this, we translate the low-level
generated output back into 3D models, paving way for a new use of GANs on the consumers
market.

The majority of the source code was written together in a pair programming fashion
though minor distributions of work was done. Erik Munkby spent more time refining the
model, and Oskar Holmberg spent more time gathering and analysing data, but both parties
have been involved at all times. The paper was written jointly with some individual focus on
the same areas as mentioned above.

9

1. Introduction

10

Chapter 2

Background

This chapter presents the basis of our project and what previous research we have considered.
The chapter also explains how we processed our data and provides some basics in neural
networks required to understand the project’s technical architecture.

2.1 Neural Networks
This section will provide the reader with a description of some fundamental aspects of neural
networks needed to understand our process. We recommend reading this section to readers
who are new to Machine Learning (ML) or Artificial Neural Networks (ANNs), or just in
need of a brush up on the areas used in this project.

2.1.1 Artificial Neural Network
The terminology “neural network” stems from the main source of inspiration to the field,
the brain. Similarly to the brain, neural networks contain neurons and the strength of their
collective connections to each other represent memory [4]. Much like the brain an Artificial
Neural Network (ANN) makes a decision based on the collective input from all of its neurons,
thus making it a useful tool in order to solve non-linear problems.

ANNs are commonly built in the shape of layers, where each neuron is connected to
neurons in the previous layer. The connections between neurons are weighted with a value
between -1 and 1, meaning that the connection will output the input multiplied by the weight.
In an untrained network the weights are assigned randomly, and changed during training to
optimize the final result. In addition to the weights, each neuron passes its input through a
mathematical function and outputs the transformed value, this function is referred to as an
activation function, the specific functions used in this project are further described in 3.4.1.

Figure 2.1 illustrates a simple fully connected neural network with two hidden layers.
Each neuron in the network, represented as circles, will receive an input consisting of the

11

2. Background

Figure 2.1: A simple neural network with input layer, two hidden
layer and an output layer. Each circular node represents a neuron.

sum of the weighted outputs from neurons in the previous layer. The neuron passes the input
through its activation function and passes the result forward to all neurons in the next layer,
the output of the whole network is given by the values in the output layer.

After the initial setup of an ANN, the network is trained to learn how to produce the
wanted output. Training from a neural network’s perspective is an iterative process of updat-
ing connection weights between neurons until they reach a state where the network outputs
desired results. Each time data is run through the network, one can calculate the error in the
network by comparing the given output to the expected output, and the goal is to minimize
the error. The measurement of the error is also referred to as loss and how the loss is calcu-
lated depends on the selected loss function. The most commonly used method, is through
back-propagation [10]. The back-propagation algorithm will compare the loss of the output
layer (denoted in figure 2.1) and calculate which weight modification in the previous layer
(hidden layer 2 in figure 2.1) will cause the most rapid decrease to the overall loss. Further
the algorithm will recursively, going backwards, perform this calculation through every layer
until it reaches the input layer. Back-propagation is a very computationally heavy operation
and is often optimized by optimization functions, such as stochastic gradient descent (SGD)
or as predominately used in our model, the Adam optimizer, the details of this will not be
explained in this paper but Diederik P. et. al. explain this well in Method for Stochastic
Optimization [13].

12

2.1 Neural Networks

2.1.2 Convolutional Neural Networks
Convolutional Neural Networks (CNN) have proven to be a successful machine learning
approach within image recognition ([15], [1], [2], [17]). The mathematical theories behind
CNNs are quite complicated and will not be described here, instead we will try to explain
the general concepts of how they work. For further reading we recommend taking a look at
Krizhevsky et al. [15], the authors received impressive results in ImageNet LCVRC 2010 and
2012 competition [23].

Convolution
In order to better understand what a CNN does we must first understand the operation
that has given name to the network, namely convolution. In mathematics a convolution is
an operation on two functions that produce a third function which in our case is the sum
of the point-wise products of two matrices. Figure 2.2 illustrates a 3x3 data matrix being
convoluted using a 2x2 filter. To produce the result the filter is slid across the input left to
right, top to bottom. In the same order, the result matrix is populated with the sum of the
point-wise multiplication in each step. For simplicity’s sake the values in the example are
either one or zero, but in reality they could be any values. Another aspect of convolutions
yet not mentioned is the filter’s step size, known as stride. The example demonstrates a
convolution with a stride of (1, 1). This means that horizontal steps and vertical steps will
both result in a one cell shift of the filter.

Figure 2.2: Illustration of a convolution of a 3x3 data matrix using a
2x2 filter.

Training
A CNN trains through supervised learning, meaning each data input has been labeled with
the correct class beforehand. Figure 2.3 illustrates the feed-forward process of a simple CNN

13

2. Background

used for image classification. This CNN uses two convolutional layers, two sub-sampling
layers, and one fully connected layer, the squares depicted in the figure represent the output
of each layer. The input data is run through the network and the error between the output
and the correct class is calculated. The network then tries to minimize the error by adjusting
the filter values through back propagation.

The filters in each convolutional layer start out with random weight values taken from
a specified distribution. The filters will during training specialize in recognizing di�erent
patterns, and will together get better at recognizing the whole image. After this another
convolution is done, producing a second set of feature maps, at this point the simple patterns
learned previously may be combined to form more advanced patterns. Finally there is another
sub-sampling before the fully connected layer which reduces the amount of parameters to a
probability distribution array over all possible categories. For instance, if the network in
the figure has been trained to classify images of dogs, cats and penguins, and an image of
a penguin is processed, the position in the output corresponding to a penguin should be as
high as possible, and the other two as low as possible.

Figure 2.3: Simple CNN for image classification.

2.2 Generative Neural Networks
GNNs have seen a significant upswing in popularity during the last five years, as a demon-
stration: a keyword search for “Generative Neural Network” on Cornell University journal
archive [29] results in 6,154 abstract matches for articles published in the field of Computer
science from 2014 to 2019, compared to only 218 matches in the period 2000 to 2013.

Though machine learning has proven to be successful at solving non-linear problems,
generating something new, or creating computational creativity is an important mile stone
within ML research [3]. In our specific case this is not required, a simpler simulation of cre-
ativity based on observations and random input will su�ce. Presented below are three dif-
ferent generative approaches we have explored along with some of their potential advantages
and drawbacks.

2.2.1 Recurrent Neural Networks
A Recurrent Neural Network (RNN) is a form of neural network that during new predictions
considers previous predictions made [9]. In other words the output of the network yt depends

14

2.2 Generative Neural Networks

on the previous output yt−1. RNNs have shown to have incredible potential when generat-
ing text [28]. If we consider the wardrobe as a sequence of products it could be possible to
design a model generating complete wardrobes in a similar way as text. This does however
pose one immediate problem. RNNs build sentences by looking at previous characters and
selecting the most likely character to follow. The RNN is confined to select characters from
a determined vocabulary, in the case of text, this would be the alphabet and some special
signs. If we were to build a vocabulary based on products it would become too large to work
with. Consider each of our one thousand product ids being be placed at hundreds of di�erent
positions, this results in a vocabulary of size close to

(
1000
500

)
≈ 2.7 · 10299 which is out of the

question for obvious reasons.

2.2.2 Auto-encoder
Auto-encoders were first mentioned in an article analyzing back-propagation within neural
networks by Rumelhart et. al. [22]. Auto-encoders are ANNs aimed at learning how data is
represented, traditionally with the goal of data compression. Auto-encoding networks oper-
ate similarly to GANs as described in section 2.2.3 but with the two networks individually
reversed. The first network receives an image as input and is trained to construct a smaller
representation similar to the latent z-vector of a GAN. The second network takes the latent
variables as input and is trained to reconstruct the image as close as possible to the original.
Recently in the machine learning field, auto-encoders have been used for generative and ma-
nipulative purposes such as Auto-Encoding Variational Bayes (VAE) proposed by Kingma et
al. [14]. The introduction of VAE made it possible to sample the generation from a Gaussian
distribution as well as a latent vector and thus allowing generation of new data.

Auto-encoders train using a loss function directly comparing the output against the origi-
nal image, this makes the training more straight forward compared to a GAN. This e�ectively
means that the output of the trained network is more comparable to a reconstruction rather
than a generation. In our situation this could be suitable for suggesting additional products
to an existing wardrobe, but it does not adequately fit our project description of generating
complete wardrobe configurations.

2.2.3 Generative Adversarial Networks
Generative Adversarial Networks or GANs were first proposed by Ian Goodfellow et al. in
2014 [8] and have since become popular in the field of image generation. A GAN is built by
letting two neural networks learn by competing against each other. One network will act as
a generator, trying to create solutions to the problem at hand. The generator will be pitted
against a discriminative network, which purpose is to debunk the generator’s output. The
only feedback the generative network receives is whether or not the discriminator thought it
was real or fake, and thus, is never directly connected to the training data. The discriminator
on the other hand trains by looking at both training data and the generator’s output, and
tries to master telling the two apart. In other words, the generator’s job is to fool the dis-
criminator and the discriminator’s job is to not let itself get fooled. The discriminator is in
practice a convolutional neural network, trained to classify input in two categories; real and
fake. The opposing generator is a transpose convolutional network (sometimes referred to as
deconvolutional). A transposed convolutional network receives a small input, and through

15

2. Background

the use of filters, transforms it to an output of larger dimension. In the case of the genera-
tor within GANs this means that the generator would receive a vector of random numbers
generated from an arbitrary distribution, which is referred to as a latent z-vector. The gen-
erator’s process, from latent z-vector to output dimension matching the data is illustrated
in figure 2.4. When the network has finished training, the generator is separated from the
network and used independently. The generator will be able to create output mimicking the
patterns of the training data, without being fed the training data as a baseline. This setup
would arguably allow for the generator to find new patterns acceptable to the discriminator
but not found in the training data. This property of generation based on randomness aligns
with our scope of simulated innovation. Something noteworthy about GANs is that in order
to get good results, neither part should overpower the other, a generator that gets too good
will always trick the discriminator and thus will not learn the actual patterns of the data. In
contrary, an overpowering discriminator will never approve the generator’s suggestions, and
the generator might struggle to identify which features are sought after.

Figure 2.4: Illustration of a Generative Adversarial Network (GAN)

2.3 Related Work
Given the three approaches to Generative Neural Networks (GNN) the GAN architecture
with its generative properties and simulated innovation most adequately fits our project de-
scription.

One of the most cited articles within the field of GNNs is the introduction of Generative
Adversarial Networks (GANs) in 2014 by Goodfellow et al. [8]. Since then many other con-
tributions to the field have been made, two of which have been especially influential to this
study. The first of these is Deep Convolutional Generative Adversarial Networks (DCGAN),
proposed by Radford et. al. which proved to be a strong candidate for unsupervised learn-
ing [21]. Radford et. al. used Ian Goodfellow’s GAN design, and successfully applied a deep
convolutional approach to both generator and discriminator. Their study showed that the
inclusion of deep convolutional neural networks provided more stable learning. The second

16

2.3 Related Work

is the Auxiliary Classifier Generative Adversarial Networks (ACGAN) where Odena et. al.
introduced a way to train deep neural networks to recognize classes in the input, and pro-
duce output within the same class [19]. This is closely related to what we want to achieve in
regards to the product characteristics mentioned in the scope.

Both Radford et. al. and Odena et. al. train their networks using classified images, and
on the surface, our matrix represented wardrobes share many structural similarities with an
image. One of the largest di�erences however, is that images are represented by linear values
as opposed to the discrete nature of our data.

17

2. Background

18

Chapter 3

Method

This chapter starts with a description of how we processed and prepared our data before
training. We then explain the design process of the network with motivations of the design
choices made. Finally we present our network model and training setup, with an in-depth
explanation.

3.1 Approach
First o� we studied the data set and data structure to get a better grasp of the available
resources. When we had settled on a representation of the data (this is further described
in Section 3.3), we researched neural network solutions constructed for generative purposes.
When a set of generative networks fitting the scope of our thesis were found, we evaluated an
out-of-the box version of the networks in order to get a grasp of their possibilities. Compar-
ing the networks and our scope we decided on the Generative Adversarial Network (GAN)
model. Once the GAN architecture had been selected we derived an initial model fitting our
data representation, based on an existing model of an DCGAN made by Radford et. al. [21].

When the initial model had been established we applied an iterative process of improving
the model through the steps illustrated by the flowchart in figure 3.1. The first step after a
modification had been made was to re-train the network. When the training was completed
the results were evaluated through multiple criteria such as loss, training balance, visual ap-
pearance, and whether or not the results conformed to our scope (this is explained further
in 3.4.4). If the modification was rejected, i.e. no improvement, the modification was not
included in the core model and added to a backlog describing why and how it a�ected the re-
sults of the model. If the modification was deemed an improvement the changes were applied
to the core model together with a description on how they improved the model. Whether the
modifications were accepted or not meant either revisiting the previous problems or identi-
fying new problems. These problems were compared with relevant research solving similar

19

3. Method

problems and investigated whether they could potentially be applied to our model. If such
a solution was found the modification was included in the next iteration following the same
procedure until we had reached a satisfactory state.

Figure 3.1: A flowchart describing the iterative process of improving
the network model. Each loop from the “Modify model” cell, to the
“Research possible solutions” cell represents one iteration.

3.2 Tools and Technologies
For a detailed list of versions and specifications see appendix A. The entire project was coded
in python using two environments, IntelliJ’s PyCharm IDE and Jupyter Notebook [6]. The
model design was developed in PyCharm while the data visualizations and analyses were
performed in Jupyter Notebook. Additionally for data analysis we used the Tableau data
analysis tool. The network model was built using the open source neural network high-level

20

3.3 Data Processing

API Keras backed by Google’s TensorFlow backend [5], combined with specific functions
written in TensorFlow. We used the following three python libraries during the project:
Scikit-learn [20] which supplies pre-process functions such as value scaling. NumPy which is
a massive high-level mathematical library allowing and improving operations such as matrix
manipulation, interpolation, and much more. Pandas which supports manipulation of large
quantities of data quickly and e�ciently.

The training of the network was performed on a Macbook Pro in macOS, using an Intel
Core i5 2.3GHz processor.

3.2.1 3D Model Construction
In order to be able to visually validate the generated wardrobes a 3D model program was
provided by Company X.

The generator’s raw output consists of numerical float numbers as seen in Appendix B.1.
In order to visually analyze these results we rescaled them and remapped them from their
encoded values back into their corresponding numerical and string values (not presented to
avoid revealing internal data structures). This representation gave us insight into the validity
of a generated product, but in order to get the most significant results we reconstructed them
into 3D-objects. The 3D tool did not have any constraints on the input except valid product
ids, which meant that all generated wardrobes could be analyzed provided a suitable product
id was found. Using a product sheet provided by Company X, a decision tree for finding a
product id based on a given set of attributes was created. The product id was then combined
with the positions and o�sets given by the generator and fed to the web server tool which
constructed a 3D image based on the input. Since there was no guarantee that the generator
would only output existing attribute combinations, a priority order was introduced, and
product ids were found through a search using the following priority order: product type,
width, depth, and color. However 3D-objects produced in this manner would not necessarily
represent the generator’s output, and whenever a mismatch occurred the wardrobe would be
flagged as inaccurate. This proved useful during early stages of testing, but no such wardrobes
were encountered when using the final model.

3.3 Data Processing
This section will explain what type of data we had access to, how the data was collected and
how it was prepared for usage by our neural network model.

3.3.1 Data structure
The data received from Company X consisted of XML files representing purchase orders.
The part of these files interesting to us is the product composition of the orders. Product
relationships are represented following the JSON structure, each with an id and a position
relative to its parent.

Based on the format of the data, three di�erent ways to interpret a wardrobe came to
mind. Option one is a list of products, where each product entry contains all the informa-
tion about the product. The second option is a matrix where each row represents a product

21

3. Method

and each column a product feature. The result of this is that one matrix will represent a
wardrobe in its entirety, much like the way a digital image is represented. The last option
is a sequence of entries from a determined vocabulary. Each unique product, regarding all
features will be given a specific identifier, and a wardrobe is represented by a sequence of
these identifiers. This would be similar to how a word or sentence is built up by using the
alphabet as vocabulary.

3.3.2 Data Collection
Company X was able to provide us with a data set of just above half a million sold wardrobe
configurations. The data was scattered, unstructured and not very easily accessible. This re-
sulted in spending a significant amount of time collecting and gathering data in a reasonable
format. Since we were not completely sure of what type of data might prove useful we aimed
to collect as many features as possible. The data received directly from our contact at Com-
pany X was a collection of purchase orders. The specific data about each order had to be
individually collected by a direct request to one of Company X’s servers. The response given
contained a base64 encoded JSON file of the specific product ids and how the products were
placed in relation to each other. At this point some important data about the products was
still missing. In order to fill the gaps, each product was entered in a large lookup table based
on a XML-file provided by Company X mapping product ids to product details. Finally all
data was gathered in a single .csv file which served as basis for our training.

3.3.3 Data Analysis
Initially our plan was to create a solution that would generate wardrobe configurations of
arbitrary size and number of products. Rather early on we realized the amount of extra
work this would entail and we decided to limit our scope to generating configurations using
exactly one frame and seven products. This specific setup was chosen since it was the most
common occurrence in the source data 3.2. The limitation also facilitates the use of neural
network models, since the input and output dimensions of these networks often are static.
We also made a decision to view the data representing a wardrobe as a matrix with products
as rows and features as columns. As previously stated in section 2.2.3, GANs have proven to
be very successful at generating images. Thus our main reason for the matrix approach was
the property similarities it has to such an image.

After settling on a matrix representation of the wardrobes we structured all the data into
a table, each wardrobe bound to its products with a unique identifier. With the data struc-
ture in place we started with an exploratory data analysis using Tableau. During this initial
analysis we found that, even using a limited amount of allowed products, each wardrobe is
essentially unique. This is due to the continuous placement possibility of the products within
a wardrobe, along with a large number of di�erent products each with its own set of possible
colors. This meant that simply representing a wardrobe as a collection of product identifica-
tion numbers along with their placement, was both hard to represent structurally, but more
importantly very hard to cognitively interpret. Instead we opted towards a more descriptive
structure using the labels describing a specific product: type name, color, and width. This
helped us understand the data, and products could still be uniquely reconstructed based on
these parameters.

22

3.3 Data Processing

Figure 3.2: Histogram over number of wardrobes (y-axis) per num-
ber of products within them (x-axis).

As defined in the project scope we need a classifiable individualization metric, extractable
from the data. After studying the data this left us with few options without requiring some
manual classification and/or clustering of the wardrobes. Therefore the individualization
metric chosen was the width of the wardrobe. The width is clearly stated and easily classi-
fiable within the data set. Additionally it is distinguishable both from a visual standpoint,
and speculatively from a "user need" point of view. There are three di�erent widths possible
for each wardrobe: 1000mm, 750mm, and 500mm.

Using these initial criteria as a basis, we began to analyze what products a wardrobe con-
tains and their placement within the wardrobe. Illustrated in the heat map of figure 3.3, there
is an uneven distribution of products, to combat this uneven distribution two approaches
were used: Wardrobes containing sparsely represented products were either removed com-
pletely from the data set, or artificially inflated by adding copies of such wardrobes. As
seen in the figure the product called Divider is missing completely from wardrobes of width
500mm, this is expected as there is little use in dividing such a small space. Additionally,
frame dividers create their own subgroups of nestled products using the product Section Shelf
with their own positional boundaries. Regarding the above stated arguments wardrobes con-
taining frame dividers were removed completely from the data set. A similar treatment fell
to the product Valet Hanger as the occurrence within the data set was deemed too low.

An attempt was made to up-sample the two most infrequent product types (Multi Hanger
and Trouser Hanger), without further boosting the most frequent product types (Cloth Rail,
Drawer, and Shelf). However such attempts were deemed unsuccessful as such a subset was
far too small. The final result is a slightly less imbalanced distribution with no missing values
as seen in the heat map of figure 3.4.

23

3. Method

Figure 3.3: A heat map describing the representation of each product
by name, within each width group. A high percentage is shown as
deep green, and as the value approaches zero the respective square
turns white.

Figure 3.4: A heat map describing the representation of each prod-
uct by name, within each width group. A high percentage is shown
as deep green, and as the value approaches zero the respective square
turns white.

24

3.3 Data Processing

Another defining characteristic of the end result is the positioning of each product within
a wardrobe. Taking a look at the di�erent height positioning of products, there are two
products that stand out: the drawer and the cloth rail. The cloth rail has the highest density
around the higher end of the spectrum together with a high density spike around the middle,
as seen in figure 3.5. At the same time we see almost no drawers above the one meter mark
in figure 3.6, as these would be out of reach for most people.

The 3D Tool used for rendering visual models of the wardrobes added an additional limit-
ing factor for wardrobes with doors. Wardrobes rendered with doors, hid all products within.
Due to this all doors were removed, which in turn lead to removal of all hinges, handles and
knobs.

Figure 3.5: A horizontal bar graph describing the height (y-axis) dis-
tribution of cloth rails. Each height placement grouped within 5cm.

Figure 3.6: A horizontal bar graph describing the height (y-axis) dis-
tribution of drawers. Each height placement grouped within 5cm.

25

3. Method

3.4 Model Design
This section describes how the model was developed. The model design conditions can be
summarized as:

• Representing the wardrobe as a matrix.

• Using GAN as the architectural basis.

• Categorizing wardrobes based on width.

3.4.1 Network Design
One criteria for the solution was that the generated results should show innovation. This
prevented our solution from being purely algorithmic or constraint based, since one input
would either produce the same output every time, or be too random to consistently produce
configurations of value. As mentioned in section 3.3.3, by structuring the wardrobe data as a
matrix it gains properties similar to those of an image. Because of this we can adapt ANNs
originally designed for images and apply them to our data set.

Using the design of Radford et al.[21] as a foundation we adapted their solution to fit our
wardrobe matrices, and continued by adding other techniques to improve results. In order to
fit our data the convolutional ratios of the model needed to be changed. We wanted to keep
the ratios between the convolutions evenly distributed, i.e. based on the size of the network
input each convolution would compress the 2D-space by the same factor. Both the generator
and discriminator follow this design.

Following the approach of Radford et. al. we opted to implement our discriminator as
an all convolutional model proposed by Springenberg et al. [26]. An all convolutional model
does not have pooling layers, as opposed to the regular CNN for tasks such as image classifi-
cation, described in section 2.1.2. To get the desired dimensions throughout the convolutions,
a combination of kernel size (filter size) and strides is applied instead of pooling. However
we did not see the same success using an all convolutional approach in the generator. Instead
we used the more traditional combination of up-sampling and convolutional layer.

As defined in our scope the generated solutions should have the possibility of being tai-
lored based on user input. In other words manual modification should change the properties
of the wardrobe, e.g. from wide to narrow. Through labeling the data and combining regular
classification with the GAN discriminator classification, Odena et al. propose an Auxiliary
Classifier GAN (ACGAN) [19]. The ACGAN network changes the properties of a regular
GAN network by introducing a discriminator optimized for both classifying the data as real
or fake and assigning the correct category. Similarly the generator receives a categorical input
in addition to the latent z-vector on which it should base the generated result. In e�ect this
means that the input to the generator is distinguishable between categories, and can gener-
ate di�erent solutions based on di�erent categories. This was implemented as a weighted
shift of the randomized z-vector distribution using an embedding layer. With this modifica-
tions our model can be described as an Auxiliary Classifier Deep Convolutional Generative
Adversarial Network (ACDCGAN).

At this stage of the model the generator continuously overpowered the discriminator in
an instance of over-fitting often referred to as mode collapse within GANs. Mode collapse

26

3.4 Model Design

occurs when the generator repeatedly tricks the discriminator by generating data within dis-
tributions where the discriminator is weaker. When the discriminator adapts the generator
switches to another distribution. The result is that in any given state, the generator will most
likely excel at generating output from one of the possible clusters, and fail at the others. To
solve the problem of mode collapse the batch normalization technique developed by Io�e
et al. [11] was added to the generator model. Batch normalization normalizes the input to
each layer in the network after each training batch. Additionally, with a lower risk of mode
collapse the network should be able to handle a higher learning rate which as a result reduces
the number of training epochs required significantly [11].

Another solution used to prevent over-fitting is the use of dropout in neural networks
[27]. Dropout is a regularization technique used to force the network out of interdependent
neuron connections, i.e. make individual neurons less reliant on specific outputs of previous
neurons. Dropout was first implemented in both discriminator and generator, but our ex-
periments showed that dropout in the generator had varied e�ect trending towards worse
results. Since the generator already had the regularization technique batch normalization,
we chose to only include dropout in the discriminator.

In an attempt to improve the convergence rate of the model using a technique referred
to as instance noise by Sønderby et al. [25] was added. Instance noise should make it harder
for the discriminator to separate between the real and fake wardrobes, i.e. making it easier
for the generator. However this made the generator’s convergence rate too fast, ending up
overpowering the discriminator, and did not end up in the final design.

The activation functions used in all layers (excluding output layers) is the Leaky ReLU
activation [18]. Leaky ReLU was chosen as it is empirically proven to be the better activation
in convolutional networks [31].

f (x) =
x x ≥ 0
αx otherwise

(3.1)

Leaky rectified linear unit (Leaky ReLU) applies linear function (i.e. multiplies by 1) on
values greater than or equal to 0, and otherwise applies a multiplier alpha as seen in equation
3.1. The regular ReLU function works in the same way with the exception of α = 0 thus
every value below 0 is equal to 0.

Finally, since we want some features of the generated output to appear discrete a softmax
function is applied. A softmax function is a squashing function which limits a set of values to
be between 0 and 1, and the sum of all values to be exactly 1. The output from a softmax layer
can therefore be interpreted as a probability distribution between the di�erent features.

3.4.2 Constructing the Model
The final network model can be viewed in table 3.1 for the generator, and table 3.2 for the
discriminator. The two networks follow a sequential design with each layer output being
the input to the next, with the exception of generator input layers and discriminator output
layers. The Dense layers are what Keras call fully connected layers. Note that many of these
layers are activation or regularization layers and as such do not have weights manipulated
during training.

The generator has five layers with trainable weights: Embedding, Dense, and three Con-
volutional 2D layers as seen in table 3.1. The first two convolutional layers are prefaced by

27

3. Method

UpSampling 2D layers in order to up-sample the matrix dimensions. Most trainable layers are
also followed by the Batch Normalization regularization layer, and the LeakyReLU activation
layer. In order to achieve the classifier portion of the network the input to the generator is
a combination of five layers, the first five in the table. First the category integer which is
fed to the embedding layer. The embedding layer constructs a weighted representations of
categories out of a maximum sized vocabulary. The output from the embedding layer is then
flattened in the Flatten layer in order to remove redundant dimensions before multiplied
cell wise with the latent z-vector input layer. The final Convolutional 2D layer is followed by
a customized activation layer combining a tanh activation function and three softmax func-
tions. The tanh activation scales data between [−1, 1] and is applied to the y-position. The
softmax functions are applied to the three feature attributes: type, color and width.

The discriminator has six layers with trainable weights: four Convolutional 2D layers, and
two Dense output layers. All convolutional layers are followed by dropout regularization
and LeakyReLU activation layers. The output of the discriminator is extracted by two dif-
ferent dense layers. Both dense layers receive their input from the Flatten layer above them,
but compute it di�erently. The dense layer with output shape 1 is the layer responsible for
classifying between real and fake data, and has a sigmoid activation as the output should
be between [0, 1]. The dense layer with output shape 3 is responsible for the categorical
classification and is followed by a softmax activation as the output should be a normalized
categorical decision distribution.

Layer Type Output Shape

Category (Input) 1
Embedding 1, 100
Latent (Input) 100
Flatten 100
Multiply (Latent x Flatten) 100
Dense 800
Reshape 2, 4, 100
UpSampling 2D 4, 8, 100
Convolutional 2D 4, 8, 50
Batch Normalization 4, 8, 50
LeakyReLU 4, 8, 50
UpSampling 2D 8, 16, 50
Convolutional 2D 8, 16, 25
Batch Normalization 8, 16, 25
LeakyReLU 8, 16, 25
Convolutional 2D 8, 16, 1
Custom Activation (Output) 8, 16, 1

Table 3.1: Layers used by the generator model.

28

3.4 Model Design

Layer Type Output Shape
Input 8, 16, 1
Convolutional 2D 8, 8, 25
LeakyReLU 8, 8, 25
Dropout 8, 8, 25
Convolutional 2D 4, 4, 50
LeakyReLU 4, 4, 50
Dropout 4, 4, 50
Convolutional 2D 2, 2, 100
LeakyReLU 2, 2, 100
Dropout 2, 2, 100
Flatten 400
Sigmoid Activation (Classifier output) 1
Softmax Activation (Category output) 3

Table 3.2: Layers used by the discriminator model

3.4.3 Training
As described in section 3.4.1 there is no clear cut way to design GANs, this includes the
training setup. The training setup configuration was much like the model design an exten-
sively iterative process through a mixture of grid search and manual search. Every training
setup the model was saved with regular intervals to be able to analyze and compare the re-
sults retroactively between both di�erent setups and di�erent lengths of training (amount
of epochs).

The final training setup uses the Adaptive Moment Estimation (Adam) optimizer [13].
The Adam optimizer is a type of Stochastic Gradient Descent (SGD) optimizer with a step
size that decreases as the network approaches a minimum loss. The Adam optimizer has
both been proven by research (e.g. Radford et al. [21]), as well as throughout our tests, as the
suitable optimizer for our model.

The two networks are trained sequentially per batch, but simultaneously considering the
entire training process. In every batch the discriminator was trained on generated results as
well as real data, after which the generator was trained. During the training of the generator
the two networks are linked together, as the generator itself has no concept of the real data.
As such the back propagation runs through the entire network whenever the generator was
trained, training both generator and discriminator.

The latent z-vector input of the generator consists of randomized values based on a nor-
mal distribution with expected value and variance as z ∈ N(0, 1). The categorical input to
the generator during training was determined by a uniform randomization. The categorical
labeling of the data was based on di�erent aspects of the wardrobes throughout training it-
erations. The final training consisted of three labels describing the width: small, medium,
and large.

Instead of optimizing the discriminator towards a strict binary value when classifying real
wardrobes we used the one-sided label smoothing as proposed by Saliman et al. [24]. One-
sided label smoothing means reducing the optimization value for the real data into something
slightly lower (e.g. 0.9 instead of 1). The reduction of label intensity reduces the possibility

29

3. Method

of the discriminator extrapolating too confident classifications [7]. In e�ect when the dis-
criminator classifies the real result too confidently it will be penalized which in turn gives the
generator more leeway. This label smoothing was only performed on real versus fake classifi-
cation and not the categorical labels. Additionally the label smoothing was not made while
training the generator, as the generator’s success is determined by the discriminator’s output.

Instead of improving the convergence of the model via network design as mentioned
in section 3.4.2, we attempted to improve the convergence rate by introducing a training
centered technique we call one-sided label flipping. Label flipping means that in every batch
the real versus fake label input to the discriminator was flipped with a low probability. One-
sided meaning that it was only the generator’s output, the fake data labels, that were flipped to
real. The intention of this was to reduce the di�erences and divergence of the two data sources
within the discriminator’s interpretation. However this solution reached similar results as in
the instance noise attempt: increasing the convergence rate by too much. As such one-sided
label flipping was not included in the final training setup.

3.4.4 Evaluating Training Results
As mentioned at the start of this chapter, an iterative process was used to develop the train-
ing model by attempting to isolate the most prominent issues and counter them. This was
done through continuous evaluation and analysis of the model output. In most ANNs the
main factor of model convergence can be seen in the training progression values loss and ac-
curacy. However GANs are two competing networks without a loss function of closed form,
as such the loss values of the network does not follow the same principle as regular networks.
I.e. even though the loss does not converge to zero, the two networks might still be learn-
ing from each other. By continuously saving the state of the model and taking samples of
generated wardrobes at these points, we gained insight into how the model was evolving and
could evaluate whether or not it was still improving. The generated wardrobes were primar-
ily analyzed as raw data, but also by translating them to XML and examining the resulting
wardrobes using the 3D tool. Through these methods it was possible to identify issues in an
early stage of training, and determine whether the training cycle could be aborted due to
patterns of instability.

Wardrobe attributes that were studied during evaluation were product relevance and po-
sitioning with a common sense approach as to how wardrobes usually look. A few examples
of this are products that do not fit within the wardrobe frame, placement of cloth rails right
above a shelf or pull out drawers placed too high to reach by an average person. While exam-
ining the wardrobes we also noted the variance, as in how di�erent the generated wardrobes
are to one another. Variance is an important metric since the model has to be able to produce
wardrobes of di�erent product configurations to fulfil the requirements of this project.

Finally we looked at confusion matrices of the discriminator’s acceptance rate of both real
and fake data. These results are arguably inconsistent with the networks performance, i.e. a
low acceptance rate of fake data is not equivalent to the generator not progressing. However
we considered the confusion matrix a relevant tool when analyzing the balance of strength
between discriminator and generator.

30

Chapter 4

Result

This chapter will present the results of the study along with some of the authors’ interpreta-
tions of them.

4.1 Training results
In our final solution we trained the network for 100 epochs using a batch size of 256 and
saved the model weights every fifth epoch. We used three labels: small, medium and large
referring to the width of the wardrobe frame. The loss for both discriminator and generator
were saved after each epoch, and after the 100 epochs our model ended with a discriminator
loss of 0.57 and a generator loss of 2.54, visualized in figure 4.1. After epoch 68 the loss
of the generator started climbing rapidly while the loss of the discriminator declined. This
behaviour occurs when the discriminator discovers a pattern that the generator has di�-
culties capturing. Further exemplified in figure 4.2, we see the di�erences in discriminator
classifications generated and real wardrobes between epoch 65 and 100. During epoch 65 the
discriminator has a harder time distinguishing between the two, as well as the peaks of both
residing closer to 0.5. If the discriminator can easily distinguish between generated and real it
could mean one of two things: either the discriminator progressed faster than the generator,
or the generator’s performance declined. The best possible end result would be the generator
reaching a state of producing data of the same quality as the real data, giving us a complete
overlap in the discriminator classifications. However if the discriminator reaches this point
of classifying both data inputs equally would mean di�culties to progress further. In the end
we would like a state where these graphs would have close, but not complete, overlap. As of
epoch 65 the respective loss sits at 1.32 for the generator and 0.68 for the generator.

31

4. Result

Figure 4.1: Graphs of discriminator and generator loss over epochs.

Figure 4.3 shows six examples of generated wardrobes using the model saved at epoch
65. These wardrobes follow the aforementioned characteristics of both variance and some
degree of common sense product positioning. With this as basis the model from epoch 65
was selected as the final one.

32

4.1 Training results

Figure 4.2: Histograms showing the discriminator classifications of
wardrobes. The upper graph shows the output at epoch 65 having
a higher overlapping density compared to the bottom one showing
output at epoch 100.

33

4. Result

(1) Label: small. (2) Label: medium. (3) Label: large.

(4) Label: small. (5) Label: medium. (6) Label: large.

Figure 4.3: Examples of generated wardrobes, rendered using 3D vi-
sual tool. The label shows the categorical input given to the genera-
tor.

34

4.2 Quantitative Results

4.2 Quantitative Results
As described in section 4.1, the final model used is the model trained over 65 epochs. For
the quantitative results we generated a sample size of 10000 wardrobes evenly distributed
between the three categorical sizes: small (500mm.), medium (750mm.), and large (1000mm.).
The size of each generated wardrobe was compared with the expected wardrobe size based
on the generator’s input. Results show that 100% of the wardrobes generated based on input
category small, produces wardrobes of size small. The other two sizes show a slight bias
towards smaller sizes (figure 4.4).

Figure 4.4: Confusion matrix showing input wardrobe size versus
actual generated wardrobe size. Input consisted of 10000 gener-
ated wardrobes, evenly divided between the size categories: small,
medium, large.

During the analysis of the training data Section 3.3.3 a concern arose regarding the low
occurrence of a handful of products. Such cases can cause machine learning models to bias
towards the more frequently occurring cases and potentially completely disregard some of the
training data. However the heat map in figure 4.5 shows us that nothing is entirely omitted.
In fact, for wardrobes of the smallest size the rarely occurring products have increased in
frequency (figure 4.6). This means that there is an area reserved in the latent space for even
the most rarely occurring combinations. If we were to instead bind the categorical input to
e.g. specific products the generator could be told to generate such combinations on demand.

Described in section 3.3.3, drawers and cloth rails have specific positional rules. In figure
4.7 we see the comparison between training data and generated data positional distributions
for cloth rails. The most frequent position for cloth rails in generated wardrobes is the same
as in the training data (195 cm.). Although the distribution follows a similar shape, it has been
smoothed out. Now the top peak represents 16% of the generated cloth rails compared to
the previous 40%. Additionally the secondary peak at 110 cm. is now lost in the downwards
trend of less frequent cloth rails closer to the ground. The positional distribution of drawers
(figure 4.8) follows a similar pattern with spikes smoothed out into a more even distribution.

35

4. Result

Figure 4.5: A heat map describing the distribution of each product,
in the generated wardrobes, by name and width group.

Figure 4.6: Shows the di�erence in distribution between the train-
ing data in 3.4 and generated data in 4.5. Numbers represent the
percent unit di�erence calculated as generated − training

36

4.2 Quantitative Results

The two peaks of the training data are at 30 cm and 50 cm, which is also where the peak of
the generated distribution lies. Worth noting is that, while hard to see in the visualizations,
both cloth rails and drawers cover the entire positional y-axis (i.e. no position on the y-axis
has 0% occurrences), though occurrences of drawers in high positions and cloth rails in low
positions are very rare. Based on this we can conclude that the generator has noticed, and is
generalizing towards, the positional rules of cloth rails and drawers, although not capturing
the discrete peaks of prioritized positions.

Figure 4.7: A horizontal bar graph describing the height (y-axis) dis-
tribution of cloth rails in training data (blue) and generated data
(red). Each height placement is grouped in 5cm intervals.

Figure 4.8: A horizontal bar graph describing the height (y-axis) dis-
tribution of drawers in training data (blue) and generated data (red).
Each height placement is grouped in 5cm intervals.

37

4. Result

4.3 Qualitative Results
Using the same generator as mentioned in section 4.1 we generated some wardrobe samples
of di�erent specifications, the specifications di�er depending on what label was used during
generation i.e (small, medium, large). The output was converted to XML and loaded to a tool
provided by company X which allowed us to produce 3D images of each wardrobe (see figure
4.3 for an example collection of such images). Using 20 generated images together with 20
wardrobes taken from the training set we constructed a survey where 9 subjects answered the
following two questions about every wardrobe:

• Do you think the wardrobe is generated or real?

• How usable do you deem this wardrobe on a scale 1 to 7?

Figure 4.3 represents six of the generated wardrobes used in the survey and an example
of the survey questions can be seen in Appendix B.2. It is also worth noting that the survey
participants were not aware of the 50/50 split between generated and real wardrobes.

Comparing the two figures of usability scores between true labels and guessed labels (fig-
ure 4.9), we recognise a bias; wardrobes seeming usable were more likely to be considered
real. Due to the survey structure of combining both usability score grading and guessing if a
wardrobe is real or generated, this behaviour was expected. However according to the survey
results from the true label graph relatively many of the real wardrobes (training data) exist
on the lower end of the scale, emphasising the need for more rigorous data processing. Close
to the end of the project we found erroneous data in our training set where the faults range
from minor illegal product positioning to whole wardrobe configurations being invalid. One
could argue that a few of these errors should not have an impact on the overall results, but
when they become frequent it becomes a serious issue. In order to mitigate this a lot of e�ort
was directed towards finding such faulty entries while cleaning the data, but without manu-
ally checking every wardrobe there is no way to prove that the data set only contains suitable
entries. Our suspicion that the data set still contained faulty wardrobes was further enforced
after analysing the results from the survey presented in 4.10, where almost 42% of the real
wardrobes were marked as generated by the survey participants. Due to this we believe that
our results would look better if the whole training set was manually verified, regrettably we
did not have the time to do this. Regardless of these problems with the training data, the
survey results exceeded our expectations in terms of positive results for several of the gener-
ated wardrobes. Out of the 20 generated samples, 5 of them were given a score of 7 in at least
one of the responses. In addition to this the survey participants categorized almost 32% of
the generated wardrobes as real, we consider this a success as only 58% of the real wardrobes
were attributed as such.

Figure 4.11 shows three examples of some of the worst performing wardrobes from an
average usability score perspective. In the first two images we see a similar trend that occurs
in wardrobes from both the training data and generated collections, an impossible stacking
of products. In the training data wardrobe (1) it is less noticeable as an image, but upon
close inspection we see that multiple products are placed on the same height. If such oc-
currences are frequent enough it will have an impact on the generator, which we believe the
worst performing generated wardrobe (2) is an example of. Comparatively there are exam-
ples only found among the generated wardrobes in the style of the rightmost wardrobe (3).

38

4.3 Qualitative Results

Figure 4.9: Two bar graphs visualizing the distribution usability
scores derived from the survey responses. In the survey a score of
1 was referenced as "Not usability at all in current state", and a 7 as
"Realistically usable in current state". The upper graph is built mea-
suring the usability against the true label (generated/real) and the
bottom one is measured against the guessed label.

39

4. Result

Figure 4.10: Confusion matrix visualizing the distribution of survey
answers. E.g. the number in the bottom right corner represents that
58.33% of the real wardrobes were also flagged as real.

More specifically at the top of the wardrobe there is a shelf beneath the cloth rail rendering
traditional use of the cloth rail impossible. This flaw can be viewed in two ways: the result is
almost correct having only missing a few points in the y-axis or this mistake is grave because
there is a shelf beneath the cloth rail. Our guess as to why this wardrobe received such a low
score is due to the latter reasoning, that the survey participants focused on the impossibility
of using the cloth rail. Our ambition with the convolutional design of the model was that
such conditions would be captured but evidently the precision is not quite there.

(1) Wardrobe from training data. (2) Generated wardrobe. (3) Generated wardrobe.

Average score: 2.9 Average score: 1.3 Average score 2.7

Figure 4.11: Examples of generated wardrobes, rendered using 3D
visual tool. The wardrobes presented are ones that received some of
the lowest average scores from the survey.

40

Chapter 5

Discussion

This chapter will discuss our results, our methods, and possible alternative solutions. It will
also present future work recommendations for further exploration of the area.

5.1 Training the Model
One of the biggest concerns we have had during the project has been the di�culty that gener-
ative networks have with producing discrete data. The most prominent one is the structural
di�erences between continuous and discrete data, and how the networks adjust themselves
to minimize their loss. In our model’s case this is performed by assisting the parameters a
little bit at a time, to close in on the correct value. In the case of discrete data there is no
space between two points in which to move, and the parameters have to jump all the way to
the next available option. Available options for categorical features are unlikely to be opti-
mally ordered. Consider the colour feature, an intuitive ordering could be to order colours
from darkest to brightest, but the data shows that white shelves sometimes occur in black
wardrobes. This means that in order for the network to decrease its loss, it has to make a jump
to a point likely unreachable by the stochastic gradient decent, thus trapping the network
in a local minimum. In an e�ort to mitigate this problem we tried several methods such as
modifying learning rate, adding batch normalization and introducing dropout. These meth-
ods improved results and in the final model we have not encountered patterns of this issue.
Additionally there is no sure way of verifying when the global minimum has been reached,
which leads us to the next problem. GANs, opposed to many other neural networks, lack a
loss function of closed form making it harder to know what changes might have a positive
impact on the results. This drives development towards a trial and error tactic which requires
many iterations with small alterations for each cycle.

The width categorisation using the auxiliary classifier component was introduced as a
proof of concept to show that one can provide input to the generator and specify the scope
of its distribution. ACGANs have shown promising results even though they have primarily

41

5. Discussion

been used to specify the output scope of image generation. The di�erence between an image
of a house and of a lake are structurally a lot larger than the change of width in a wardrobe,
but this study shows that they can perform well in other applications as well. Although the
width was partially selected due to the ease of labeling, one could add labels for other traits
and thus customise the generation based on specific demands.

The first metric we are studying to make sure the model is progressing correctly is the
loss of the model. To reiterate in short, we want to progress towards a lower loss score as
this means the model is getting closer in the predictions and learning. During training the
generator had a sudden increase in its loss score (seen in figure 4.1). The explanation of such
behaviour ties back to the competing nature of GANs, and that the calculation of the loss is
tied to their adversary’s performance. This builds on the same principles as the “Zero-Sum
Game” theory. These behaviours are how the GAN models improve, and a sudden spike in
loss for one party is not necessarily a bad thing, as long as it recovers. However, although
the loss scores seem static throughout much of the training we still saw a clear improvement
in the generated output. This indicates that smaller improvement spikes might still exist,
though hidden in the plot due to aggregations of the loss scores.

All of this raises the question of: when do you stop the training of the model? Due to time
and hardware limits we were unable to continue the training longer than the 100 trained
epochs. That brought us to a decision between the most trained model and the "best per-
forming" model loss-wise. Optimally the generated wardrobes reach a state where they are
indistinguishable from the real wardrobes. During training, this is established by the dis-
criminator which poses a problem, since if such a state is reached before the generator has
reached a hypothetical best state the adversarial model is unable to further improve. As men-
tioned in 4.1 what we are searching for is a state where the wardrobes are close to, but not
completely indistinguishable from the training wardrobes from the discriminators perspec-
tive. This does however not mean that a human will be able to tell them apart, which is the
actual end goal.

5.2 Data processing
As mentioned in the introduction the data provided by Company X was derived from digital
wardrobe configurations assembled by an expert and sold. We had therefore assumed that
the provided wardrobes would follow the business rules of product placement and usage. As
proven by the survey, and mentioned in section 4.3 this was not the case. Even though the re-
ceived data was analysed in its raw state, and several steps were taken to prune wardrobes not
following business rules, a substantial amount of invalid wardrobes remained in the training
data set. One of the most noticeable issues is the stacking of products, where all products in a
wardrobe are placed on the same height. We encountered wardrobes with this problem while
studying the generated wardrobes, but attributed it to mistakes made by the model, rather
than underlying issues with the data. We did not discover the occurrences within the training
data before the random sample was extracted and rendered to be used in the survey. Since
we had used the building tool ourselves, we knew that the current version of it prevented
this type of pattern from being made, and therefore we did not think of searching for them.
Had we done that, these wardrobes could easily have been removed from the data set before
training. In retrospect we should have identified the complete set of business rules posed on

42

5.3 Future Work

a wardrobe, and removed all wardrobes violating these rules. This would have guaranteed a
data set void of rule breaking entries, which likely would have improved results.

5.3 Future Work
Considering the overarching goal of scalability and reliably being able to personalize solu-
tions, we have not reached that point in the project’s current state. We judge that a certain
generalization has been reached (presented in the quantitative and qualitative results). Even
so, the model does not produce functional wardrobes with high enough frequency and pre-
cision to be viable for the consumers market. At this point we have considered two options:
supporting the model via a set of business rules to secure precision, or improving the model
and sacrificing some precision for generalization. The choice between these two options is
primarily a business decision, whether the precision is worth sacrificing for a higher level of
personalization. We believe that the results are promising enough to be able to reach a level
where a purely model driven generation can out-benefit the time consuming task of manually
built example solutions.
As mentioned in the report our choice of using a GAN was primarily based on the problem
description specifying a requirement of simulated innovation. This decision was made de-
spite the di�culties GANs have to work with distrete data. Kusner and Hernández-Lobato
[16] claim to have successfully mitigated the discrete data problem by exchanging the soft-
max output layer with a Gumbel-softmax distribution. The Gumbel distribution creates a
continuous approximation of the discrete softmax distribution, which could facilitate the
stochastic gradient decent. We believe that this would work quite well for our model as well,
but we did not have the time to study this.

Another way of tackling the di�culty of generating discrete results the network could
be modified into a semi-generative network. This could be achieved through letting an algo-
rithm partially construct the wardrobe, while letting a neural network generate the innova-
tive/creative aspects. Generative networks designed for the “in-painting” problem [32] could
fit this description.

One of the main factors to the improvements between early and later iterations lay within
the data modelling and not neural network modelling. One idea to take this even further is
with a completely new data model, one that is less dependant on the generator building
discrete positions from continuous numbers. Instead of a row in the matrix representing a
product, the row position within the matrix could represent the position itself. I.e. each
wardrobe matrix would have an y-axis with a representative number of rows corresponding
to the max height of the wardrobes. The x-axis, similarly to the current data model, would
correspond to a one-hot encoded product. The end result as such is a very sparse one-hot
encoded matrix where most rows would just be flagged with the encoding for nothing, i.e.
empty. This would result in the entire data model to be more image-like, which we have seen
in previous work is the most successful field of GANs. Additionally such a model also allows
for a variable number of products.

43

5. Discussion

44

Chapter 6

Conclusion

In this thesis we have constructed a neural network designed for generating wardrobe con-
figurations based on a collection of products. The results show that it is possible, but the
quality does not meet the market requirements. We believe that the use of generative neural
networks can prove useful for the task, but more time and research is needed in order to reach
acceptable results. The results from the survey strongly suggest that the training data used
was not of the expected quality, and given better data the model could have proven more suc-
cessful. Thus we reached the conclusion that even though it is possible to generate adequate
wardrobes using generative adversarial networks (GANs), it is unlikely that it is the optimal
way to go. GANs have a lot to o�er in the field of generative networks, but their inability
to generate qualitative discrete data at this time cripples their performance for tasks such as
the one in this study.

45

6. Conclusion

46

Bibliography

[1] Dan C Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and Jürgen
Schmidhuber. Flexible, high performance convolutional neural networks for image clas-
sification. In IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol-
ume 22, page 1237. Barcelona, Spain, 2011.

[2] Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jurgen Schmidhuber.
Convolutional neural network committees for handwritten character classification. In
Document Analysis and Recognition (ICDAR), 2011 International Conference on, pages 1135–
1139. IEEE, 2011.

[3] Simon Colton, Geraint A Wiggins, et al. Computational creativity: The final frontier?
In Ecai, volume 12, pages 21–26. Montpelier, 2012.

[4] Richard D De Veaux and Lyle H Ungar. A brief introduction to neural networks. Un-
published: http://www. cis. upenn. edu/˜ ungar/papers/nnet-intro. ps, 1997.

[5] Martín Abadi et. al. TensorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[6] Thomas Kluyver et. al. Jupyter notebooks – a publishing format for reproducible com-
putational workflows. In F. Loizides and B. Schmidt, editors, Positioning and Power in
Academic Publishing: Players, Agents and Agendas, pages 87 – 90. IOS Press, 2016.

[7] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 2672–2680. Curran Associates,
Inc., 2014.

[9] Alex Graves. Generating sequences with recurrent neural networks. 2013.

47

BIBLIOGRAPHY

[10] R. Hecht-Nielsen. Theory of the backpropagation neural network. In International 1989
Joint Conference on Neural Networks, pages 593–605 vol.1, 1989.

[11] Sergey Io�e and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Francis Bach and David Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceed-
ings of Machine Learning Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

[12] JSON. Introducing json. Last checked March 16, 2018. http://json.org/.

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[14] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[15] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84, 2017.

[16] Matt J. Kusner and José Miguel Hernández-Lobato. GANS for Sequences of Discrete
Elements with the Gumbel-softmax Distribution. arXiv e-prints, page arXiv:1611.04051,
Nov 2016.

[17] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. June 2015.

[18] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve
neural network acoustic models. In Proc. icml, volume 30, page 3, 2013.

[19] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis
with auxiliary classifier gans. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2642–2651. JMLR. org, 2017.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[21] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. 2015.

[22] David E Rumelhart, Geo�rey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533, 1986.

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal
of Computer Vision (IJCV), 115(3):211–252, 2015.

48

http://json.org/

BIBLIOGRAPHY

[24] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
Xi Chen, and Xi Chen. Improved techniques for training gans. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems 29, pages 2234–2242. Curran Associates, Inc., 2016.

[25] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár.
Amortised MAP inference for image super-resolution. CoRR, abs/1610.04490, 2016.

[26] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
Striving for simplicity: The all convolutional net. 2014.

[27] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[28] Ilya Sutskever, James Martens, and Geo�rey E Hinton. Generating text with recurrent
neural networks. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 1017–1024, 2011.

[29] Cornell University. arxiv.org. https://www.arxiv.org/.

[30] W3. Extensible markup language (xml) 1.0 (fifth edition). https://www.w3.org/TR/
REC-xml/.

[31] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

[32] Raymond A. Yeh, Chen Chen, Teck-Yian Lim, Mark Hasegawa-Johnson, and Minh N.
Do. Semantic image inpainting with perceptual and contextual losses. CoRR,
abs/1607.07539, 2016.

49

https://www.arxiv.org/
https://www.w3.org/TR/REC-xml/
https://www.w3.org/TR/REC-xml/

BIBLIOGRAPHY

50

Appendices

51

Appendix A

Tools and Technologies

The following software, environments, tools and technologies were used during the project.

• Mac OS X 10.12.6

• Python 3.6.3

• Tableau 10.4

• PyCharm Community Edition 2017.2.4, Build #PC-172.4343.24

• Java Runtime Environment (JRE): 1.8.0_152-release-915-b12 x86_64

• Java Virtual Machine (JVM): OpenJDK 64-Bit Server VM by JetBrains s.r.o

• Jupyter Notebook 4.3.0

• Scikit Learn 0.19.1

• NumPy 1.13.3

• Keras 2.1.2

• Tensorflow 1.4.0

• Google Form

53

A. Tools and Technologies

54

Appendix B

Code and Output Examples

B.1 Generator Output
Following is an example of how the direct output from the generator looks like, before it is
scaled and converted to XML. Note that the 8 center columns are not displayed. Below is an
image of the same wardrobe.
−3 . 7 1 8 0 9 6 0 2 e −02 , 4 . 8 7 5 5 3 3 0 3 e − 1 3 , 7 . 8 7 1 7 7 0 7 9 e −09 , 1 . 2 9 9 7 2 8 8 9 e −07 , . . . , 2 . 4 2 0 8 2 4 6 2 e −01 , 3 . 0 2 9 2 2 6 2 1 e −04 , 5 . 6 4 7 1 0 0 3 5 e −06 , 9 . 9 9 6 9 1 4 8 6 e −01
8 . 4 8 4 7 8 6 1 5 e −01 , 3 . 9 7 1 7 9 7 2 1 e − 1 5 , 1 . 4 6 2 4 3 2 2 9 e −09 , 2 . 5 0 1 6 8 0 9 4 e −12 , . . . , 9 . 9 9 9 9 9 5 2 3 e −01 , 1 . 6 1 3 3 0 6 9 3 e −03 , 6 . 1 0 4 2 3 8 5 4 e −08 , 9 . 9 8 3 8 6 6 2 1 e −01
8 . 0 4 1 3 8 3 6 2 e −01 , 2 . 8 7 5 5 8 1 3 0 e −16 , 1 . 0 0 0 0 0 0 0 0 e + 0 0 , 1 . 7 6 4 4 7 9 2 7 e −23 , . . . , 9 . 4 2 1 7 1 3 9 5 e −01 , 2 . 6 5 8 1 8 5 4 9 e −08 , 1 . 2 6 1 8 7 4 0 8 e −10 , 1 . 0 0 0 0 0 0 0 0 e +00
−2 . 9 9 1 9 6 3 6 2 e −01 , 7 . 7 9 3 4 6 7 6 4 e −01 , 2 . 2 0 6 5 3 2 3 6 e −01 , 3 . 9 5 2 6 2 6 8 4 e −16 , . . . , 9 . 9 0 3 0 4 5 3 0 e −01 , 3 . 1 0 9 7 0 3 4 7 e − 1 1 , 2 . 8 2 5 6 1 0 8 4 e −12 , 1 . 0 0 0 0 0 0 0 0 e +00
−8 . 7 9 2 4 0 7 5 1 e −01 , 2 . 1 9 5 6 1 9 7 5 e −04 , 3 . 7 5 3 2 5 3 4 0 e − 1 3 , 9 . 9 9 7 8 0 4 7 6 e −01 , . . . , 9 . 7 7 2 5 8 0 2 7 e −01 , 1 . 3 6 9 2 1 2 4 5 e − 1 5 , 4 . 5 7 4 2 5 1 0 8 e − 1 5 , 1 . 0 0 0 0 0 0 0 0 e +00
−7 . 7 3 6 3 8 0 1 0 e −01 , 3 . 2 7 3 4 1 8 1 2 e −19 , 1 . 0 4 5 1 1 2 0 4 e −3 1 , 1 . 0 0 0 0 0 0 0 0 e + 0 0 , . . . , 1 . 2 2 9 4 8 8 2 9 e −03 , 6 . 6 3 9 0 7 9 4 0 e −18 , 1 . 3 1 6 8 5 5 4 2 e − 1 3 , 1 . 0 0 0 0 0 0 0 0 e +00
−5 . 7 0 6 1 7 0 8 0 e −01 , 2 . 7 4 0 2 5 2 4 2 e − 1 3 , 1 . 0 9 5 9 6 4 0 1 e −27 , 1 . 0 0 0 0 0 0 0 0 e + 0 0 , . . . , 8 . 0 9 8 2 2 4 5 0 e −06 , 7 . 0 0 2 6 9 9 3 1 e − 1 7 , 8 . 8 8 1 9 9 1 8 2 e − 1 3 , 1 . 0 0 0 0 0 0 0 0 e +00
−4 . 7 2 1 7 0 3 8 3 e −01 , 6 . 9 9 8 8 3 0 4 8 e −16 , 6 . 6 6 2 0 5 9 7 7 e −27 , 3 . 1 1 5 8 6 8 8 4 e − 1 3 , . . . , 8 . 9 2 7 0 0 6 2 7 e −03 , 7 . 4 3 5 8 2 5 3 9 e −12 , 1 . 4 7 1 2 9 2 1 9 e −06 , 9 . 9 9 9 9 8 5 6 9 e −01

55

B. Code and Output Examples

56

B.2 Wardrobe Evaluation Survey

B.2 Wardrobe Evaluation Survey
Wardrobe evaluation
This survey was created by Oskar Holmberg and Erik Munkby as a part of a Masters Thesis in Computer Science at Lund University. The results from the survey will be used to evaluate
the results of a Neural Network generating wardrobe configurations.

You will be presented to 40 images of wardrobes, some of which are generated by a computer, and some have been taken from a dataset containing wardrobes that have been sold in a
store. For each of these wardrobes we ask you to:

• Answer whether or not you think it is a generated wardrobe, or one from the dataset (real)

• Rate the "usability" of each wardrobe from 1 to 7.

Figure B.1: Example of one of the entries from the form.

57

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-01

EXAMENSARBETE Wardrobe Design using Generative Neural Networks

STUDENTER Oskar Holmberg, Erik Munkby
HANDLEDARE Elin Anna Topp (LTH)
EXAMINATOR Jacek Malec (LTH)

Skapa innovativa garderober anpassat
till kundens behov med hjälp av Neurala
Nätverk

POPULÄRVETENSKAPLIG SAMMANFATTNING Oskar Holmberg, Erik Munkby

En stor fördel med garderober i mindre delar är att de kan anpassas till att täcka
ett särskilt behov. Att pussla ihop en anpassad möbel kräver dock en viss nivå av
kunskap och erfarenhet som alla inte har. Genom maskininlärning kan vi träna ett
neuralt nätverk till att ge förslag på installationer anpassade till uttryckta behov.

Företag världen över har aldrig suttit på så mycket
information om sina kunder som de gör idag och
alla letar efter möjligheter att använda informa-
tionen för att skapa mer nytta. Ett sådant exem-
pel är ett möbelföretag som vill förbättra kunders
upplevelse när de utforskar garderobslösningar på
företagets hemsida. Utifrån data bestående av
sålda garderobsinstallationer som skapats tillsam-
mans med en expert har vi med hjälp av maskinin-
lärning tränat ett neuralt nätverk till att kunna
skapa förslag på innovativa installationer. Kun-
den kan också ange kriterier som input vilket
garderoberna måste uppfylla och nätverket kom-
mer att begränsa sitt skapande för att passa in-
nanför dessa ramar. Detta ger kunder en inspira-
tionsväckande upplevelse när de ska välja ut deras
nya förvaringsutrymmen.

Ett intressant fynd under projektets gång var
att nätverksarkitekturen som valdes, Generative
Adversarial Network (GAN), fungerade så bra som
den gjorde. GANs har huvudsakligen använts till
kreativt skapande av bilder och musik, alltså kon-
tinuerliga format. Det har däremot inte varit
lika lyckat inom skapande av diskreta format så
som text eller garderober. Generering baserad

på diskret data resulterar ofta i instabil träning,
vilket inte ger särskilt bra resultat. Vi lyckades
överkomma många av de problem som kan upp-
stå, och i en enkätundersökning tilldelades gener-
erade garderober väldigt liknande betyg som fak-
tiska exempel. Resultaten från enkäten antyder
att att kreativ generering av diskret data med
hjälp av GANs kan fungera väldigt bra. Detta
betyder också att möjligheterna för att expandera
från att generera garderober till andra liknande
områden är stora. Att använda ett automatiserat
system, istället för att manuellt bygga installa-
tionerna minskar arbetsbördan och kan samtidigt
förbättra kundupplevelsen.

	Introduction
	Project Description
	Scope
	Method
	Contributions

	Background
	Neural Networks
	Artificial Neural Network
	Convolutional Neural Networks

	Generative Neural Networks
	Recurrent Neural Networks
	Auto-encoder
	Generative Adversarial Networks

	Related Work

	Method
	Approach
	Tools and Technologies
	3D Model Construction

	Data Processing
	Data structure
	Data Collection
	Data Analysis

	Model Design
	Network Design
	Constructing the Model
	Training
	Evaluating Training Results

	Result
	Training results
	Quantitative Results
	Qualitative Results

	Discussion
	Training the Model
	Data processing
	Future Work

	Conclusion
	Bibliography
	Appendix Tools and Technologies
	Appendix Code and Output Examples
	Generator Output
	Wardrobe Evaluation Survey

