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Abstract

With the introduction of the General Data Protection Regulation (GDPR) the
demand to protect personal identifiable information from unnecessary exposure
is growing. The objective of this thesis is to explore and construct a system that
will use natural language processing and machine learning to anonymize data.
This will provide further analysis opportunities and additional protection for
the individual person. We implemented and compared di�erent neural network
architectures and frameworks. Using a bidirectional Long Short-Term Mem-
ory network together with contextualized embeddings and conditional random
fields, state-of-the-art results were reached with the best F1 score at 95.58 %.
This shows the importance of contextual awareness as well as the impact of pre-
trained word embeddings. However, human supervision will still be needed for
it to completely guarantee the anonymization of the messages. Ultimately, the
resulting system fulfills its purpose of masking texts, removing the risk of unnec-
essary information exposure.

Keywords: Machine Learning, FLAIR, Named Entity Recognition, Natural Language
Processing, LSTM
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Chapter 1

Introduction

During recent years, digital privacy has been a growing concern for citizens all around the
world. With the increased availability of smart devices, i.e units with some sort of processing
capability, the amount of generated data has skyrocketed.

Access to enormous amounts of data has been said to be beneficial for customers, as it
can be used to create a better user experience. However, if the data ends up in the wrong
hands, it could potentially be dangerous, with possibilities of tracking an individual person’s
behavior. This scenario is dreadful to think about, and that is where de-identification would
be a way to limit the risk of such abuse. This would result in the individual being protected.

The application of natural language processing combined with machine learning would
one way to solve this automatic de-identification issue. This would make it possible to create
a model that could identify the sensitive parts of the data and mask them out – creating an
anonymous message, only containing data relevant when improving the user experience for
a potential customer.

In 2016, the European Union passed a regulation bill to make it possible for the cus-
tomer to control her/his data. Additionally, this bill unified the regulatory environment for
businesses acting internationally within the European Union.

During this thesis, the focus will be put on using machine learning to identify the sensitive
parts of a text-based message. This will make it possible to mask the identified information to
avoid personal identifiable information exposure, thus allow better protection for the user.

1.1 Background

1.1.1 General Data Protection Regulation
On May 25th 2018, the European Parliament and the Council of the European Union im-
plemented the General Data Protection Regulation. This is a regulation in EU law regarding
data protection and privacy, covering the European Union and the European Economic Area.
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1. Introduction

The general objective of the regulation is to provide people with further control over their
data. This was done by applying restrictions on organizations regarding the processing of
personal data. Personal data e�ectively means any information relating to any identifiable
natural person. Such information could for example be a name, ID-number, location, physi-
cal and mental health.

The regulation is applied to all organizations operating and providing services to Eu-
ropean citizens. Any infringement can be detrimental to the organization in question. In
January 2019, Google was issued a fine of €50 million due to failure to oblige to the regu-
lations, provide su�cient information about the data consent policies, and lack of control
of how the information was used (Rosemain, 2019). Evidently, the risks of abusing personal
data are immense. Given the importance of personal data analysis in terms of innovation and
revenue, there is a demand for an anonymization technique. This will prevent unnecessary
leakage of personally identifiable information (PII) while being safe and e�cient.

1.1.2 Data Anonymization
According to Vollmer (2019), the General Data Protection Regulation does not apply to
anonymous data. Like mentioned previously, the principles of data protection apply to any
information which can be linked to a natural person. However, data protection should not
be applied to anonymous information due to it no longer being related to an identifiable
natural person. This means that for this project to be successful, masking is needed to be
done to remove the sensitive parts of a message. Table 1.1 shows this masking process, where
the sensitive parts would be: location (LOC) and organization (ORG).

input = [’eu’, ’rejects’, ’german’, ’call’, ’to’, ’boycott’, ’british’, ’lamb’, ’.’]
output = [<ORG>, ’rejects’, <LOC>, ’call’, ’to’, ’boycott’, <LOC>, ’lamb’, ’.’]

Table 1.1: Example of anonymization

1.1.3 Motivation
The motivation for writing our thesis regarding data anonymization through NLP and ma-
chine learning has many reasons. Both the areas of natural language processing and machine
learning are evolving very quickly, with many actors pushing the boundaries a little bit fur-
ther every year.

Combining these technologies with the fact that personal data is valued more than ever
and containing more information than most of us would want to reveal. This makes up for
an interesting approach on how to use new data-driven technologies, meeting the needs of
data-hungry companies whilst protecting the individual who wants to keep its privacy.

With the help of machine learning and NLP, we believe that it is possible to construct a
solution that can identify sensitive data and filter this out. Ultimately making it completely
anonymous and harmless for the individual, yet powerful for the companies that want to
create a better user experience.
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1.1 Background

The work will be a valuable addition to the way of how companies prevent unnecessary
personally identifiable information exposure. Additionally, this will allow Sinch to conduct
a further study regarding the performance of anonymized versus un-anonymized data.

1.1.4 Aim
The goal of this thesis was to create an automation process for cleaning text messages. All
messages to be processed pass through Sinch’s APIs. The aim is thus to anonymize text data
with state-of-the-art results to provide further protection.

To solve the task, we followed a deep learning approach based on Tensorflow together
with Keras and FLAIR. Utilizing these frameworks, together with a variety of di�erent state-
of-the-art NLP techniques, we strove to reach state-of-the-art results in the identification of
sensitive data.

Firstly, we will explain the background of our project, mentioning the necessary infor-
mation to be able and follow the later parts of our report. Following this brief background,
we will explain the theoretical foundation of our thesis.

Having established the approach of the thesis and the theoretical background of how it
works, we will bring up a description of how we created the system. This will include how
annotation was done, structuring of the datasets, and lastly how we constructed the di�erent
architectures.

Following the theory, we will discuss the results of the di�erent model architectures. Fur-
thermore, we will mention the di�erences between systems and the reason for the variations
in the results.

Lastly, a discussion of what types of further research that could be carried out to improve
upon our results will be brought up.

1.1.5 Limitations
A limitation while writing this thesis was to focus on implementations using Keras with
Tensorflow as well as FLAIR. This was decided as both of us had prior experience with these
frameworks and their simple yet powerful tools that allowed us to build, optimize, and test
a large number of models e�ciently.

Furthermore, a limitation was the amount of data available. The data that was extracted
from Sinch was unstructured and raw, meaning that a lot of cleaning as well as manual an-
notation had to be done before being usable. These tasks were both very times consuming,
resulting in a data set smaller than desired.

Throughout our experimentation, we only had access to one shared GPU. This made our
data processing power limited resulting in training being time-consuming. Also during the
time of writing this report, the pandemic COVID-19 struck resulting in a lot of time being
spent away from the o�ce. This a�ected the computation time available for us, as the GPU
initially was not accessible from outside of the o�ce.
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Chapter 2

Theoretical background and related work

To fulfill the aim of this thesis, the task of data anonymization was divided into smaller sub-
tasks. One of the tasks was to create a numeric representation of the language, making the
computer able to understand and learn what was passed to it. Another aspect was to use
this representation to make it possible for the model to distinguish between sensitive and
non-sensitive parts. Furthermore, to benchmark the performance of the models, we used an
evaluation script to output four di�erent metrics for analysis.

The following theoretical section is structured for the reader to get the necessary back-
ground information to understand and follow the solution presented later in the report.

2.1 Previous Work
The starting point for this project was mainly the paper by Lange et al. (2019), where the
authors described how they tackled the Medical Document Anonymization (MEDDOCAN
2019), a topic similar to ours.

The MEDDOCAN challenge was to develop a system for automatically identifying pro-
tected health information (PHI) from Spanish clinical records and masking these due to
privacy concerns when being shared. Supplied with this task came a corpus of 1000 doc-
uments containing artificially constructed medical records. The task consisted of two sub-
tasks, where the objective of the first task is to identify and classify named entities of the
corpus. The other sub-task is described to only determine sensitive tokens of the text.

Lange et al. (2019) described how their team, Neither Language Nor Domain Experts (NL-
NDE), chose to tackle the anonymization task as a sequence-labeling problem. The team
used a combination of various state-of-the-art techniques within the field of NLP to create
a solution for the task. They developed a system including a BiLSTM in combination with
a conditional random field output layer. Furthermore NLNDE chose to make use of contex-
tualized string embeddings (a technique developed by Akbik et al. (2018)) for Spanish that
would act as input to their network, in addition to using domain-specific fastText embed-
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2. Theoretical background and related work

dings. Lastly the team utilized rule-based postprocessing to find and remove data not present
in the training set. This postprocessing further improved the performance of their system,
achieving impressive results.

NLNDE’s article showcases promising results achieved with interesting architectures that
apply to our topic. This sparked an interest in creating similar systems, constructed to fit
our domain, based on their report.

2.2 Artificial Neural Networks
During the 1940s the foundation of modern machine learning was created. McCulloch and
Pitts (1943) had an idea that was inspired by how the neurons of the human brain are con-
structed. Neural networks were born out of this idea.

When implementing these neural networks into software, they are called artificial neural
networks as they no longer are physical objects as those of the brain. This technology, repli-
cating the functionality of the brain, has not always been used for development in artificial
intelligence. However, since the 1990s it has steadily gained traction, with it now being in-
dustry standard. This is mainly due to computational power being more accessible, giving
way for larger amounts of data being processed by larger models according to Géron (2019).

During the late 1950s, Rosenblatt (1958) further developed upon McCulloch and Pitts
(1943) idea of mimicking the neurons of the human brain. Rosenblatt purposed the classical
perceptron, which simply put is a linear classifier. This idea was further developed and refined
upon in 1969 when Minsky and Papert created the perceptron model that is still used today.
Minsky and Papert suggested a more general computational model than that of McCulloch
and Pitts (1943). This new solution allowed for the use of weights which made it possible
to determine importance for various inputs, as well as learning from them. This made it
possible to create more generalized and useful models.

Using these discoveries with its roots in the 1940s, a neuron can be explained to be a
nonlinear, parameterized function of its input variables. Thus, a collection of neurons (or
perceptrons) connected in a network is what we call an artificial neural network.

There are two di�erent types of neural networks: feedforward and recurrent (also known
as feedback) networks (Dreyfus, 2005). Recurrent neural networks will be discussed further
later in this report.

2.3 Machine learning
Machine learning is a subset of the umbrella term artificial intelligence. Géron (2019) defines
it as the science of programming computers so that they can learn from data. This learning process
is done by feeding the system large amounts of data. The system is then able to discover con-
nections and patterns within the data itself. When the learning/training phase has finished,
the system should be able to carry out predictions on new data based on previous discoveries.

Ultimately, the goal is to allow computers to learn automatically and make adjustments
without human intervention.

The term machine learning has a lot of di�erent translations, however one a little more
general than the one mentioned above what coined by Mitchell (1997):

12



2.3 Machine learning

A computer program is said to learn from experience E with respect to some
task T and some performance measure P, if its performance on T , as measured
by P, improves with experience E.

To put this into context Géron mentions the following example. Consider a spam filter
program that is often used in email applications. This filter can learn how to identify and
flag emails that are considered to be spam as well as non-spam. For the filter to learn and
di�erentiate between the (in this case two di�erent) types, a training set has to be created and
used. This training set contains examples of emails of both categories (spam and non-spam)
and will make it possible for the machine learning algorithm to get an understanding of what
emails correspond to what category. Applying this to our previously mentioned definition,
the task T is to correctly identify spam emails that arrive in our inbox, the experience E
is the training data, and the performance measure P needs to be defined; which in this case
could be the ratio of correctly classified emails. This particular performance measure is called
accuracy and it is often used in classification tasks.

As big data is emerging, the range of fields where machine learning can be applied grows.
These fields range from computational finance to energy production and natural language
processing. It essentially depends on what type of problem it is and if it is solvable by using
machine learning.

Machine learning typically gets categorized into di�erent categories, namely supervised,
unsupervised, semi-supervised, and reinforcement machine learning algorithms. However,
in this thesis the focus will be on supervised learning and its applications.

2.3.1 Supervised Learning
Among the di�erent categories, supervised learning is the most common type, and the vast
majority of applications of deep learning fall under this category. Supervised learning algo-
rithms can be explained as a learning algorithm that associates an input with one output. The
output is often manually labeled. Initially, the learning algorithm analyzes a known training
data set and the mapping to a corresponding label. As we run the algorithm, the model gets
trained and model parameters get tuned to optimize the predictive capabilities of the model.
Supervised learning is generally split into two subcategories, classification and regression
problems. Both of these share the same goal of constructing a model able to predict output
values based on the input values.

A regression problem is when the output is a continuous or real quantity, e.g. weight. Re-
gression algorithms try to estimate a mapping function based on input variables to a contin-
uous output variable, hence the model tries to predict the output quantity. The performance
is then measured by the error in the prediction against the actual true quantity.

Classification problems are similar to regression problems, but with the di�erence in
that the mapping from the input variables is to a discrete output variable. A classification
problem typically consists of a model attempting to predict the category which an input
variable belongs to. A typical example of such a problem is if an email is spam or not. This
is a binary classification problem. Additionally, there are categorical classification problems
which are when there are more than two categories. This is also the problem we face in this
thesis (Chollet, 2017).

13



2. Theoretical background and related work

2.4 Natural language processing
Natural language processing (NLP), can (just as machine learning) be explained as a branch
of the umbrella term “Artificial Intelligence”. NLP is simply put the interaction between
humans and computers using our human natural language. The reason for NLP to exist is to
make computers read and understand the language humans use in a valuable way. One way
to interpret and understand the term was mentioned by Kapetanios et al. (2013). In his book
Natural Language Processing: Semantic Aspects, he discusses how a natural language is built up
from two major parts:

• Syntax is describing the grammar of a language, more specifically, how the words are
arranged to make sense. In the domain of natural language processing, syntactic analy-
sis is used to determine how the language is constructed in terms of grammatical rules.
When feeding a computer with text for analysis, algorithms are used to apply specific
grammar for di�erent words. When this has been done, the systems extract the mean-
ing from the text that it has been fed. One technique that is related to syntax would
be part-of-speech tagging (POS).

• Semantics is describing what meaning a text has. This type of analysis is one of the
harder aspects of NLP and has not reached its full potential yet. Semantic analysis is
done by using algorithms to derive how sentences and words are constructed so that
an interpretation and meaning can be determined. This is the technique that will be
utilized through our thesis, more specifically named-entity-recognition (NER).

Going back in time, natural language processing started by utilizing only grammar rules
together with other linguistic structures according to Kapetanios et al. (2013). This early
approach was successful. Jumping forward a couple of years, when the computing power is
cheaper and the amount of data is greater. The chosen approach for NLP practitioners has
developed to a primary focus on machine learning.

With this data-driven focus, NLP is being used in a wide range of common applications
areas such as language translation systems, word processors, as well as digital assistants with-
out many people knowing that natural language processing is the foundation for it all. Need-
less to say there are many areas where NLP can be used. However, due to the ambiguous and
imprecise nature of a language, it is di�cult for a computer to understand.

Natural language processing utilizes algorithms to discover and retrieve information.
This will make it possible for the system to transfer and understand the unstructured data of
the language.

2.4.1 Named Entity Recognition
The term Named entity (NE) was first coined in the mid-1990s during the Sixth Message
Understanding Conference. However, the first mention of a NER task was done when Rau
(1991) purposed a solution for extracting company names from text.

The purpose of the NER subtask was to develop techniques for deriving named entities
from sentences. The early focus was mainly set on information extraction tasks connected
to business and defense activities (Grishman and Sundheim, 1996). The entities that were to
be extracted came from a collection of unstructured texts – articles in newspapers. However,
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2.4 Natural language processing

people quickly realized that the important parts to be extracted were names (of both persons
and organizations), locations, and entities related to numbers (for example data and time).
This formulation of named entity recognition subtasks is still used today.

As mentioned by Kapetanios et al. (2013), there are two main approaches currently used
within the field. Firstly, hand-made rules that are linguistic and grammar-based methods of
solving issues within the task. Secondly, more modern methods based on machine learning
(and thus statistical models) When considering the two di�erent approaches, there are a few
main di�erences that are worth bringing up:

• Hand-made rule models allow for results with higher precision, however at the cost
of a lower recall. These rule-based models demand a lot of experience and time to
develop.

• Machine learning approach demands a lot of processed data, meaning that manual
labor has to be put in. Additionally, a lot of computational power for the model to be
trained properly.

Named entity recognition is the task of extracting parts of a text for categorization and
identification of a predetermined collection of categories. These categories could potentially
be anything but are, as mentioned earlier, often related to names, locations, and organiza-
tions. An example can be seen in Table 2.1

Table 2.1: Example of named entity recognition

x = [’eu’, ’rejects’, ’german’, ’call’, ’to’, ’boycott’, ’british’, ’lamb’, ’.’ ]
y = [’I-ORG’, ’O’, ’I-MISC’, ’O’, ’O’, ’O’, ’I-MISC’, ’O’, ’O’]

Here we can see that the sentence (which has been converted to all lowercase)

eu rejects german call to boycott british lamb.

has been labeled with labels following the IOB label scheme (Inside, Outside, Between). The
class labels for this sentence are ORG, MISC, O. These have been extended to use I- and B-
as prefixes to indicate if the entity is in direct connection to the previous chunk of the same
entity. As an example the word eu is labeled I-ORG which indicates it is one lonely entity.
Another example, following the same scheme, would be Alice Bob and Carl that would be
labeled I-PER B-PER O I-PER (Ramshaw and Marcus, 1995).

Another annotation scheme commonly used is called IOB2 (Inside-Outside-Begin) that
has a scheme with similar construction to IOB. The main di�erence is that it begins every
entity with the B-prefix, followed by I-prefix if the entity consists of more than one word.
An example would be the sentence EU is an abbreviation for the European Union, that would be
tagged as B-ORG O O O O O B-ORG I-ORG (Krishnan and Ganapathy, 2005).

For named entity recognition to be e�ective, an annotation scheme must be in place with
a fixed number of categories. When this scheme has been created, the annotation has to be
done for the training, validation, and test datasets. This means that the entities that the
system should recognize must be predefined and checked by the developer.

Furthermore, one important aspect to consider is the robustness of a named entity recog-
nition system. A system that has been constructed for one specific domain will not be able
to be utilized properly in other domain types. This is solved by fine-tuning the models for
the domain it is used, which in itself is a time-consuming task.
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2. Theoretical background and related work

2.5 Deep learning
Deep learning, also called deep neural networks, is a subfield of machine learning techniques
that strive to teach computers what comes naturally for a human. Deep learning is not limited
to supervised learning solely, meaning it can be applied to unsupervised as well when dealing
with e.g. a clustering problem.

Deep learning is, as mentioned, a part of machine learning. However, deep learning uses
these machine learning algorithms on more than one layer. Each of these layers interpret the
data conveyed di�erently. As the data is processed through each layer, the transformations of
the input become a more useful representation which is closer to the expected output for the
given task. The stack of algorithms essentially forms a network of which is called an artificial
neural network. The keyword deep is derived from the usage of several layers, creating the
depth of the model.

2.5.1 Deep learning for text and sequences
In general, a text consists of a sequence of words or characters. As computers cannot un-
derstand the actual semantics of text as a human can, they merely recognize patterns and
sequences. This can be done using tools such as deep learning. As deep learning models only
work with numeric tensors, the input needs to be vectorized.

Vectorization. There are several ways to vectorize text and all of them break down the
text into tokens. Tokens can be e.g. the words or the characters. For the vector space model a
simple and common method for vectorization is where every possible word is mapped to an
integer. Every word fits into a slot an array and the value of that index represents the number
of occurrences of the specific word.

The simplest vector model is the bag-of-words vector. It is essentially a list of words
and their word count, giving the frequency of each word in the set. The frequency obtained
can be used in more elaborate vectorization methods, such as TF-IDF. In addition, TF-IDF
takes into account the rarity of a word in the corpus, which indicates the importance of that
specific word in the context.

However, there are some drawbacks to this method since it cannot capture phrases and
multiword expressions. Other N-grams can be described as a contiguous sequence of n items
extracted from a given sequence of text. The n-gram method gives the vectorization process
insight into how frequently certain words occur together in the corpus (Chollet, 2017).

2.5.2 Backpropagation
Backpropagation is an algorithm used for training feedforward neural networks in supervised
learning. The algorithm fine-tunes the weights of the neural network based on the error rate
obtained from the most previously run epoch. Done properly, the tuning of the weights
ensures a lower error rate and thus is a crucial part of training a model. However, it can be
simply explained as a way to compute the gradient for the error function to the weights.

The backpropagation algorithms start with the final loss value and traverse backward
from the last to the first layer. For a single perceptron, we simply minimize the di�erentiable

16



2.5 Deep learning

error function (a function of the weights) by using the gradient descent method. When work-
ing with multilayered perceptrons, we have to exploit the chain rule (Goodfellow et al., 2016;
Chollet, 2017).

The task presented in this thesis is a multi-class classification problem. This requires
the use of a softmax output layer to determine the di�erent class predictions. A categorical
cross-entropy error function is then used to find the error distance between the correct and
the predicted class during training. Succinctly, with calculations provided from Ohlsson and
Edén (2019), we want our neural network to model:

ŷi(xn) = P(Ci |xn) (2.1)

or in words the probability to anticipate a specific class for an output given a feature vector
x. Furthermore the softmax activation function is:

yi(xn) =
eani∑
i′ eani′

(2.2)

This is essentially a generalization of the sigmoid/logistic function, which in other words is
an activation function that determines the output of a layer. Here the ith unit, ani , is the
input vector to output node i for a pattern n. Each value is then normalized by the sum of all
the exponentials. The notion d in the following calculations is the one-hot encoding of the
target classes, giving the true probability. A one-hot encoding is a sparse vector containing
the same number of columns as classes present within the model. This vector is then used to
describe what class best represents a word. The index of the corresponding class column is
set to 1 and the rest is set to 0. More details about this will be discussed later in the report.

For multi-class output, the cross-entropy loss function is:

E(ω) = −
N∑

n=1

nbrClass∑
i=1

dnilog(ŷi(xn)) (2.3)

Then computing the gradient yields:

∂En

∂ani
=
∑

i′

∂yni′

∂ani

∂En

∂yni′
= −
∑

i′

∂yni′

∂ani

dni′

yni′
(2.4)

As we can see in the last term of Eq. 2.4:

∂En

∂yi
= −

di

yi
(2.5)

Then calculating the gradient for the output y with respect to the input a, we get the expres-
sions

∂yi

∂ani
=

 eani∑
i′ eani′ − ( eani∑

i′ eani′ )2 = i = i′,
eani eani′

(
∑

i′ eani′ )2 = i 6= i′
=

yi(1 − yi) = i = i′

−yiyi′ = i 6= i′
(2.6)

Given from the design of one-hot encoded vectors, we also know:∑
i

dni = 1 (2.7)
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This eventually renders:

∂E
∂ani
=

nbrClass∑
i′

∂E
∂yi′

∂yi′

∂ani
(2.8)

=
∂E
∂yi

∂yi

∂ani
−
∑
i′ 6=i

∂E
∂yi′

∂yi′

∂ani
(2.9)

Then using the division in Eq. 2.5, the expressions in Eq. 2.6 and the sum in Eq. 2.7, we can
simplify the expression in Eq. 2.9 to

= −di(1 − yi) +
∑

di′yi (2.10)

= yi − di (2.11)

Subsequently, we can use this to retrieve an expression for the weights between the last hidden
layer and output layer:

∂E
∂ωi j

= −
1
N

∑
n

δnihn j (2.12)

δni = dni − yi(xn)) (2.13)

From this we get the gradient of the error with respect to the weights in the last layer. To get
the gradients for the layers prior to the last, we need to apply the chain rule once more, and
so on. However this turns out to be problematic.

2.5.3 Vanishing Gradient Problem
The use of backpropagation and other gradient-based learning methods can cause certain
problems. When using recurrent neural networks or deep networks, the feedback signal used
for training the neural networks needs to be propagated through several layers, which can
cause the signal to disappear completely. Concretely, the backpropagation algorithm com-
putes gradients while applying the chain rule e�ectively causing a series of multiplications
of many Jacobians.

Essentially, if either the weights or the gradients are small then it will cause the vanishing
gradient problem. The overall consequence of this is a very slow training process, particularly
for sequence data with long term dependencies (Goodfellow et al., 2016; Goldberg and Hirst,
2017). This will be discussed later in the report.

2.6 Recurrent Neural Networks
The classic and simple implementation of artificial neural networks that process inputs chrono-
logically does not have any memory. Each input is processed independently and does not
contain any states which are being updated between inputs. What such a network essentially
does is to process the input in one go, which is why these are called feed-forward networks
(Dreyfus, 2005).
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However, there exist networks that are not exclusively feed-forward. In addition, there is
a type of network called recurrent neural networks (RNN). These networks are constructed
to process sequential elements while still maintaining an internal state that contains informa-
tion about the input that was previously processed. The network obtains the information by
utilizing a feedback connection, e�ectively creating an internal loop of itself. In short, RNN
work by reusing information that was computed during previous iterations, see Figure 2.1.

Figure 2.1: Visualization of Recurrent neural network unfolding

As an example, imagine reading a report. The reader can understand and interpret the
content of the sentence better by having knowledge gained from the sentence before the one
being read. This means that to understand the content of a sequence, one needs information
from prior segments of the same sequence. This way of processing information applies to
how we, as humans. interpret many di�erent types of sequential data (such as text or audio).

2.6.1 Long Term Dependencies
One reason to use a recurrent neural network is to take the information learned from previous
time steps into account in a later scenario.

This functionality is the foundation and core of the recurrent neural networks and is
what di�ers them from feed-forward solutions. However, RNNs su�er from a major flaw
in the ability to learn from previous time steps. The issue arises when the distance between
previous information relevant to the present task is too large, due to the vanishing gradient.

An example of di�erent distances would be if a system were to predict the next word in
a text sequence based on information acquired earlier. Considering the sentence in Table 2.2.

Table 2.2: Example of short term dependencies.

The fish lives underwater.

The system will be able to determine that the last word should be underwater without
any issue. In scenarios like these, the distance is deemed short and thus makes it possible
for the network to use previously acquired relevant knowledge. However when the distance
increases between relevant information and the system’s current task, the system struggles.
This can be seen by challenging our system to this time predict the last word of the longer
sequence seen in Table 2.3. Worth mentioning is that the first entry is in an earlier time step
of the sequence, the second entry is the entry to predict upon.

Information gathered from the proximity of the word to be predicted suggests that the
word is a brand of car, however, there is still ambiguity about what car as this is related to
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Table 2.3: Example of issue with long term dependencies.

All cars in Sweden are Volvos.. .
When I lived in Sweden I of course drove a Volvo.

information acquired many time steps earlier from the sentence All cars in Sweden are Volvos.,
resulting in the system not being able to conclude what brand is going to be.

This issue was discussed in depth by Bengio et al. (1994).

2.6.2 Long Short-Term Memory – LSTM
One extension of recurrent neural networks is long short-term memory networks (LSTM
networks). This solution was created in the late 1990s to tackle the long term dependency
issue within simple RNNs (Hochreiter and Schmidhuber, 1997).

The foundation of today’s LSTM was to introduce gating mechanisms for both input and
output within the cells themselves. This construction would be extended further in 2000
by utilizing additional gates such as the forget gate. These refinements would improve the
LSTM’s ability to learn long-term dependencies (Gers et al., 2000).

In its essence, the LSTM network is a RNN, that instead of having a simple and shallow
construction, has several di�erent gates. These gates are introduced to make it possible for
the cell to regulate how much information that is supposed to be carried down to the next
state.

The unit itself consists of a hidden layer that has one memory block with at least one
memory cell and as well as the gating units. These gating units are responsible for regulating
the input and output of all of the cells within the memory block.

Furthermore, each cell contains, at its core, one recurrent self-connected linear unit
which is named constant error carousel. These units are one of the features that makes LSTM
networks powerful, as they solve the vanishing gradient issue.

Figure 2.2 shows a visual representation of a memory cell, where the arrows at the bottom,
bottom-right, and top-right of the picture show the input flow of data to the memory block.
This input is passed to all of the di�erent gates (seen as the black circles), responsible for
regulating the information presented to them. The gates are constructed by neural net layers
based on non-linear sigmoid activation functions. The gating units can be either open or
closed, regulated by either a zero or a one, which is evaluated through every time step. The
variable Gyin is the input passed into the current state of the memory cell, denoted as Sc.

Essentially the addition that is seen in the figure: Sc = Scyρ + gyin is what makes the
di�erence of the LSTM. The computation enables a constant error that will be kept through
backpropagation. This will make it possible to determine future cell states by adding the
two data sources, (recurrent data and new input data) instead of through multiplication that
would enable the problem of vanishing gradient. One thing worth remembering is that the
forget gate itself is still dependent on multiplication to forget.

A step-by-step of the process of how the LSTM works:

1. Determine how much information is going to be kept from the previous cell state and
how much is going to be discarded. This action is done by the forget gate which uses a
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Figure 2.2: LSTM Memory cell, taken from Gers (2001)

logistic activation function (Gers et al., 2000) defined as:

yϕ j(t) = fϕ j(
∑

m

wϕ jmym(t − 1)), (2.14)

where j indicated the memory block, and wϕlm is the weight on the unit connected
from m to l.

2. Determine how much/which of the new information from the sequence that is going
to be saved by determining which values to update. The input gate handles this, and is
split into two separate steps which start with the input being computed using a logistic
function to choose what values to be updated:

yin j (t) = fin j (
∑

m

win jmym(t − 1)). (2.15)

The second part runs the input through a tanh layer that will help choose new candi-
date values to be added to the state, the same principle that is used for simple RNNs.

3. Determine what the output is going to be. This output will be based on our state,
however, it will be determined to only contain certain information. This action is
carried out by the output gate, which also uses a logistic function to determine what
values to be outputted.

yout j (t) = fout j (
∑

m

wout jmym(t − 1)). (2.16)

The output will be based on what information is included in the current state of the
cell, however, it will be a cleaned version of the state. The process starts by letting the
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current state pass through both the logistic function as well as a tanh layer (squishing
the values to be between -1 and 1). The two results are then multiplied so that the
logistic function can determine and produce the correct output.

This use of di�erent gating units will allow the network to retain information in later
time steps, decreasing the risk of vanishing gradient.

2.6.3 Gated Recurrent Unit – GRU
The gated recurrent unit network (GRU) is a fairly young network that was created by Cho
et al. (2014). It can be seen as a simplified version of the LSTM network, designed to be an
alternative that requires less computing power. The main di�erence is the number of gates
the networks have, making GRU significantly faster. The GRU node only has two gates,
namely a reset gate denoted r, and an update gate denoted z. These gates determine di�erent
values for the node. The reset gate determines how to combine previous values with new
input, while the update gate determines how much of the current value will remain.

The update and reset gates are computed using a function that is dependent on the input
symbol and the previous memory state. Initially these gates were defined to be binary. Mean-
ing that whatever function used to compute the value for those gates would have a derivative
of 0. This would be true for practically every case except the moment of transition between
0 and 1 occurs. As mentioned earlier in backpropagation and gradient computation, the
gates need to be considered as real-valued coe�cient vectors. Redefining the gates in this
way allows for e�cient computations, however, it also allows unwanted information to pass
through (Cho, 2015).

The actual computations of the gates of the GRU nodes, as provided by Chung et al.
(2014), are done with an activation h j

t which at time t is a linear interpolation between the
candidate activation h̃ j

t and previous activation h j
t−1. The equation is as follows:

h j
t = (1 − z j

t )h
j
t−1 + z j

t h̃
j
t (2.17)

Then the update is computed with a sigmoid function and the parameter matrices U and W :

z j
t = σ(WzXt + Uzht−1) j (2.18)

The reset gate is computed in a similar fashion as the update gate:

r j
t = σ(WrXt + Urht−1) j (2.19)

Finally, the candidate activation h̃ j
t is computed in a similar way of traditional recurrent

networks:
h̃ j

t = tanh(WXt + U(rt � ht−1)) j (2.20)

2.6.4 Bidirectional Recurrent Neural Networks
Simple RNNs are by design dependent on the order of how they traverse the sequence that is
being processed. This because they compute their input in the ascending order of time steps.
If this order were to be changed, it would a�ect how the system interprets the sequence passed

22



2.6 Recurrent Neural Networks

Figure 2.3: Image taken from Chung et al. (2014) Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence Modeling. (Left) LSTM
node with three gates and extra memory c. (Right) GRU node with
only two gates and not the separate memory cell.

to it. This construction of traversing the input in order is why the RNNs are well equipped
to tackle challenges where the order is important.

During the mid-2000s, Graves and Schmidhuber (2005) developed a new technique for
extracting the contextual dependencies between words in text sequences. This solution would
o�er a boost in performance compared to regular RNN’s on specific tasks. Graves and
Schmidhuber’s idea was to exploit how the RNNs traversed sequences by introducing a sec-
ondary RNN layer. This additional layer would process the input data in reversed order
compared to the first layer resulting in traversal from both left and right. When this had
been done, the output from both networks would be concatenated into the state of the cell.
This can be seen in Figure 2.4.

Figure 2.4: Example of bidirectionality.

An example of how the bidirectional traversal would operate on a text:

• I went to the store.

• store the to went I.
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By allowing the system to process the data in the two opposite directions, it will dis-
cover di�erent representations that would be missed by the traditional one-way chronologi-
cal traversal. According to Chollet (2017), the word-order does have a big impact on machines
to understand a language, however which order is not important. The importance lies in the
di�erent interpretations of data that are usable, are always worth exploiting.

2.6.5 Word Embeddings
As mentioned earlier, when dealing with natural language, the di�erent units of language
needs to be broken down into tokens. These tokens can represent characters, words, or
n-grams. The simplest way of turning a token into a vector is by one-hot encoding. This
essentially means that we are associating a specific index to each word.

Each word has a vector with a length equivalent to the number of tokens in the vocabulary.
This vector is a sparse vector where every index has the value 0 except for one index, which
is the index that represents that token. For example, we have a vocabulary of 30,000 tokens,
each token will have a 30,000-dimensional vector. Further, if the token which corresponds
to the word tree has the dimensional number of 15,347, then the vector for the word tree is set
to all zeros except for index 15,347 which is set to 1 (Goldberg and Hirst, 2017).

Consider the sentence

Be careful with that butter knife.

First the sentence needs to be tokenized, hence we get:

V = [Be, careful, with, that, butter, knife, ., ...]

And using one-hot encoding on these tokens will result in

Be = [1, 0, 0, 0, 0, 0, 0, ...]
careful = [0, 1, 0, 0, 0, 0, 0, ...]

with = [0, 0, 1, 0, 0, 0, 0, ...]

However, one-hot encoding is not convenient in certain cases. It is often preferable to
use dense encoding instead which are low-dimensional floating-point vectors, also known as
word embeddings. These were first explored by Bengio and his team in the early 2000s.

These vectors are based on the data where the core features are embedded in a d-dimensional
space. The dimension d of these vectors are normally smaller than the total number of fea-
tures. To build these vectors, a set of core linguistic features needs to be extracted. Each of
these needs to be relevant to predicting the output. Then each feature retrieves its corre-
sponding vector. These vectors are combined by e.g. concatenation which results in an input
vector that is to be used as input in the neural network (Bengio et al., 2003).

As an example of a word embedding its feature vectors, we will use the popular example
of man, woman, king, and queen.

gender royalty verb human ...
man 0.9 -0.1 -0.8 0.8 ...

woman -0.8 -0.2 -0.6 0.9 ...
king 0.8 0.9 -0.7 0.6 ...

queen -0.9 0.8 -0.4 0.7 ...
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Here we can see that words that appear in a similar context and have similar features do
share large similarities between the vectors.

One of the main components of working with natural language processing and neural
networks is the proper usage of embeddings. With enough data, it is possible to initialize an
embedding layer with a vector containing random values. Then training the model to adjust
these into usable vectors. It is also possible to use pre-trained embeddings, which essentially
means that we load a pre-computed word embedding into our model. A pre-trained em-
bedding is produced using machine-learning algorithms designed for a di�erent task than
ours. These are usually computed using word co-occurrence statistics, which essentially are
the observations of how and what words are used in conjunction with each other. This also
goes by the name statistical language modeling (Goldberg and Hirst, 2017).

Language Modeling
Language modeling is used as a measurement to estimate the relative probability in di�erent
sentences in a language. In other words, the probability of forming a sentence based on a
sequence of words. This can then be used in calculating the probability of the next word in
the sequence.

From the conditional probability we can calculate the probability of a word, given the
preceding sequence of words. Using the chain rule of probability, the initial equation can be
written as:

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2)P(w4|w1:3)...P(wn|w1:n−1) (2.21)

However this equation is problematic due to the condition on the last term which makes
it unmanageable. To solve this we can use the Markov property. The Markov property states
that the calculated probability of a word occurring only depends on a limited history of the
preceding sequence. For example, the kth order Markov property assumes the next word in
the sequence only depends on the k previous words. However, there are some issues with
this technique, such as the 0 probability assignment. This occurs when a sequence of words
has not been observed previously in the training corpus. Also, when producing k-grams for
large k, the process becomes be computationally expensive. However, these problems can be
solved using neural networks (Bengio et al., 2003).

Language modeling and models like Bengio presented inspired di�erent word embedding
algorithms such as word2vec.

2.6.6 Word2vec and GloVe
The Word2vec algorithm was first developed by Mikolov et al. (2013) at Google. In short,
the algorithm constructs word embeddings with the overall objective to retrieve word repre-
sentation in the corpus. The algorithm then has to distinguish which of these are useful and
which are not. The model is based on neural networks that utilize either two di�erent types
to produce distributed representations. Distributed representation here means that each to-
ken is associated with a d-dimensional vector. The actual semantics of the token is then seen
in the di�erent dimensions of this vector (Goldberg and Hirst, 2017). These types are the
Skip-gram and CBOW.
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Continuous Bag-of-words, CBOW, essentially tries to predict a word based on the con-
text, ergo the surrounding words as shown in Figure 2.5. This model is a bag-of-word model
because the order of the surrounding words does not influence the prediction. This is even
though the models use both words from the past and the future. Skip-gram is the complete
opposite of CBOW. Instead of predicting the word based on the surrounding words, the
models predict the surrounding words based on a specific word.

Training the word2vec model produces two embedding matrices, one representing the
words and one the contexts. The latter is simply discarded once the training is finished while
the word embedding is kept.

Figure 2.5: Image taken from Mikolov et al. (2013) E�cient Estimation
of Word Representations in Vector Space. (Left) CBOW architecture
which predicts the current word based on the surrounding words.
(Right) Skip-gram architecture where the current word predicts the
surrounding words.

Another word embedding algorithm is the GloVe model introduced by Pennington et al.
(2014) at Stanford University. The model is an unsupervised learning model designed to
obtain distributed representations for words. The general technique is based on factorizing
a matrix of word co-occurrence statistics, where the words are mapped into a vector space
where the distance between words and semantic similarity is related.

A more formal description is provided by Pennington et al. (2014). Firstly, the matrix
representing the word-word co-occurrence counts will be called X and the entries are labeled
as Xi j . The label i here represents the context and the j the specific word. The actual entry is
the number of times the word j occurs in context i. From this, the equivalence Xi =

∑
k Xik

signifies the number of times a word appears in the context of the word i. Subsequently, the
probability Pi j = P( j |i) = Xi j

Xi
represents the probability of word j appearing in the context

of word i. Next, the co-occurrence probabilities are needed. These are defined as:

F(wi,w j , uk) =
Pik

P jk
. (2.22)
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where wi and w j are word vectors which we want to check the co-relation to uk , which is the
probe word.

Figure 2.6 shows an example. Here we have two words, ice and steam. We want to see how
these are related to the di�erent probe words, solid, gas, water, and fashion. As seen, a large
ratio implies that the probe word is related to wi , while a low ratio means it is related to w j .
From the example we can see that solid and ice are more closely related than solid and steam.
The opposite is true for the probe word gas which is closer to steam. Furthermore, both words
are about equally related to the probe word water and unrelated to fashion

Figure 2.6: Image taken from Pennington et al. (2014) GloVe: Global
Vectors for Word Representation.

Next, as we need a model that encodes the information given by the division in equation
2.22 in the word vector space. Therefore restrictions are put on the function F to only depend
on the di�erence of the target words is imposed. This reformulates the equation to:

F((wi − w j)Tuk) =
Pik

P jk
(2.23)

Next we make an assumption of homomorphism regarding F . This gives:

F((wi − w j)Tuk)) =
F(wT

i uk)
F(wT

j uk)
=

Pik

P jk
(2.24)

What this does is to ensure that the subtraction we did in the previous Equation 2.23 can
instead be represented as a division. From this we can see that equation for the probability
Pik is:

F(wT
i uk) = Pik =

Xik

Xi
(2.25)

Following this, another assumption is made. As we want to preserve the linear relationship
between the embedding vectors, we assume that the function F is an exponential function,
which in turn fulfills the property of homomorphism. Since F(x) = exp(x) we get the
equations:

Exp(wT
i uk) = Pik =

Xik

Xi
(2.26)

wT
i uk = log(Pik) = log(Xik) − log(Xi). (2.27)
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Finally, introducing bias terms to restore the symmetry and knowing that the term Xi is
independent of k, Xi can be absorbed into the constant bias term bi . This yields the equation:

wT
i uk + bwi + b̃uk = log(Xik) (2.28)

Lastly, the cost function needs to be defined. Pennington et al. cast the equation as a
least-squares problem along with the introduction of a weight function to alleviate issues
arisen with equation 2.23, as it is ill-defined. This is due to if its arguments are zero and as
well as all co-occurrences being valued equally. This is why we need to readjust the cost of
each pair with the weight function f . This finally renders the model:

J =
V∑

i, j=1

f (Xi j)(wT
i u j + bwi + b̃uk − log(Xi j))2 (2.29)

where:

f (Xi j) =
(x/xmax)α if x < xmax,

1 otherwise
(2.30)

Here Pennington et al. (2014) used xmax = 100 and α = 3
4 since it empirically proved to

give the best performance.

2.6.7 FastText
FastText was developed by Facebook in 2015 and is an open-source library for making text
representations usable in NLP tasks. Instead of creating a vector representation of a word as
mentioned with word2vec, the computation of the embeddings is done for each character n-
gram. This results in a word embedding that is a sum of all the n-grams present within a word.
All the n-grams ranging between size 3 and 6 are used when training the representation.

An example of the process would be if we choose to extract tri-grams of words from a
text. A vector created from the word bicycle would be the sum of representation based on
the tri-grams: <bi, bic, icy, cyc, ycl, cle, le> (Bojanowski et al., 2017). Worth noting is that
special boundary symbols, “<” and “>” are added to determine the start and end of a word.
This construction allows for the generation of improved embeddings for words that are rare
or have never been seen before in a corpus.

2.6.8 Conditional Random Field
As mentioned earlier, the most popular technique of tackling named entity recognition tasks
is through supervised learning. The technique consists mainly of five di�erent sub-categories;
decision trees, maximum entropy models, support vector machines, hidden Markov models,
and lastly conditional random fields (which in some sense is an extension to the Markov
models).

Conditional random fields (CRF) can be explained further to be a discriminative proba-
bilistic model (La�erty et al., 2001). Simply put, this means that modeling of the probability
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distribution is done based on the outputs. Comparing this to a generative model that models
based on both the input and output (Sutton and McCallum, 2011). Discriminative models
are frequently used for tasks where predictions have to be made based on the surrounding
context, such as named entity recognition.

In its essence, conditional random fields are very similar to Markov networks. Both of
these supervised learning methods are using the Markov property (as mentioned previously)
that can be described as:

If a sequence of states Y = y1, y2, y3...yn, together with the outputs from said states as
X = x1, x2, x3...xn, is to be considered. The states themselves can only be a�ected by a
previous state that is immediately connected to it. Meaning that y2 could only be a�ected by
the state of y1.

A more mathematical approach to formulate it according to Sutton and McCallum (2011)
would be to see it as:

P(yt |yt−1, yt−2, ...) = P(yt |yt−1) (2.31)

In the case of hidden Markov models, two assumptions are made to model the joint dis-
tribution mentioned previously. Namely the assumption that each state can only be a�ected
by a previous immediate neighbor and that each observation xt is directly dependent on the
current state yt . Together with these assumptions, the joint probability can be described as a
combination of three distributions. Initial states- p(y1), transitions- p(yt |yt−1) and lastly the
observation distribution p(xt |yt).

p(y, x) =
T∏

t=1

p(yt |p(yt−1)p(xt |yt)) (2.32)

In Equation 2.32, a initial state y0 set to 0 begins every state sequence. This will make it
possible to express p(y0) as p(y1|y0). The training of a hidden Markov model bases on the
total number of times the transitions between sequences occur within the training data.

When using conditional random fields, the approach of determining the joint probability
P(x, y) is instead changed into computing P(y|x) which is the conditional probability (Sutton
and McCallum, 2011).

Thus, the distribution of the conditional random field model can be seen in Equation 2.33

p(y|x) =
1

Z(x)

T∏
t=1

exp

 K∑
k=1

θk fk(yt, yt−1, xt)
 (2.33)

Where X and Y can be seen as random vectors, θ as a parameter vector (containing
weights) and fk(yt, yt−1, xt) as a feature function. Furthermore, Equation 2.34 describes a
normalization function Z(x) that is input-dependent.

Z(x) =
∑

y

T∏
t=1

exp

∑
k

= 1Kθk fk(yt, yt − 1, xt)
 (2.34)

Conditional random fields are in other words very similar to hidden Markov models.
However the main reason for using them is that the maximization is done di�erently. In the
case of CRF, the conditional distribution is subject to maximization whereas the approach
for HMMs is to optimize the joint distribution. This di�erence in strategy makes CRF more
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fitted for tasks where sequence prediction is desired. However, this improved performance
comes at a price of lesser flexibility, requiring annotated data and longer training time (Sut-
ton and McCallum, 2011).

2.6.9 Contextualized String Embeddings
During the late 2010s Akbik et al. (2018) constructed a new way of extracting word em-
beddings based on contextual information. The idea behind the design was to pass whole
sentences as split into sequences of characters into a pre-trained bidirectional character lan-
guage model. The output of this CLM would then be passed into a sequence labeling model
consisting of a biLSTM-CRF generating impressive results for named entity tasks. Figure 2.7
shows the architecture.

Figure 2.7: Use of contextualized string embeddings (image taken
from (Akbik et al., 2018)).

Akbik et al. (2019b) purposed solution made it possible to create a combination of dif-
ferent popular embedding strategies. This construction gave the approach the ability to:

• Utilize pre-trained corpora, giving the model a lot of general knowledge.

• Extract the semantics of the words, based on their context. This allows for multiple
embeddings for the same word to di�erentiate.

• Separate the word modeling into character level, improving the interpretation of for
example misspelled words.

The language modeling architecture used for extracting the embeddings was an imple-
mentation of long short term memory networks that would maintain the long-term depen-
dencies present in the sentence character sequences. The network was constructed to take
in character sequences of sentences that would train the model to predict the next expected
character. This results in the model having one hidden-state for each character presented
to it. According to Akbik et al. (2018), the construction of a character language model is
made in order to achieve the distribution P(x0 : T ) for all the character within the passed
sequence x0, x1, x2...xT . The model will then use the estimated predictive distribution of
characters P(xt |x0, ..., xt−1). This will allow the model to predict what the next character
should be based on what the previous characters have been.
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Furthermore, Akbik et al. (2018) explain that the joint distribution based on entire sen-
tences can be seen as the product of the previously mentioned predictive distribution.

P(x0:T ) =
T∏

t=0

P(xt |x0:t−1)) (2.35)

By using the properties of the bidirectionality, as described earlier, the hidden states
of the model are updated from both directions. The character computations themselves are
handled separately and concatenated into a final word embedding when both directions have
been processed. The forward language model is trained up until the last character of the word,
and the backward language model until the first character. This will allow the embedding to
understand and learn the word’s meaning in a specific context.

Figure 2.8: Embedding extraction from the word washington (image
taken from (Akbik et al., 2018)).

An example of how the process of extracting the contextual embedding from the word
Washington, can be seen in Figure 2.8. As mentioned earlier the language model is split into
two parts, one forward model (red) and one backward model (blue). The forward model gath-
ers information from the beginning of the sentence towards the last character of the word.
The backward model’s responsibility is the opposite of this, gathering information from the
end of the sentence until the first letter of the word. These two sources are then concatenated,
creating the final embedding that contains information that has been propagated from both
the beginning and end of the sentence. This results in the creation of powerful embeddings
that are trained to di�erentiate between the semantics of a variety of words in di�erent sen-
tences.

2.6.10 Pooled Contextualized Embeddings
The approach of contextualized string embeddings being completely character-based has one
major flaw. The issue consists of creating usable embeddings from sequences that rarely occur
within contexts that are not obvious. One example of this issue can be seen in the CoNLL-03
dataset, showed in Table 2.4.

Table 2.4: Example issue with contextualized string embeddings
from Akbik et al. (2019b) using BIOES annotation scheme.

Fung Permadi ( Taiwan ) v Indra
B-PER E-PER S-LOC S-ORG
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The example in Table 2.4 showcases a text sequence that lacks an obvious context, in
combination with the word “Indra” assumed to not have been seen before. This results in
the model wrongly classifying the word Indra into an organization (ORG) as opposed to the
correct person (PER).

The solution, presented in Akbik et al. (2019b), introduce dynamic aggregation of the
contextualized embeddings extracted from unique text sequences passed to the model. The
aggregation works by using a pooling function allowing for previously known contexts to
help and create a refined global word embedding. Using this approach enables what Akbik
et al. (2019b) calls evolving word representations. This means that every time a known word is
processed, the embeddings changes based on the context.

A pooling function is used to group values from the input matrix of the function, out-
putting only the min/max/mean values. A large number signals the possibility of a pattern,
while a small value indicates the opposite. The reason behind using a pooling layer is to filter
out unnecessary data. For example in the case of a max-pooling layer, all the data that does
not indicate patterns are removed, making it possible for the model to focus more on features
discovered (Chollet, 2017).

Figure 2.9: Process of creating pooled contextualized embeddings
(image taken from (Akbik et al., 2019b))

The process of generating a pooled contextualized embedding can be seen in Figure 2.9. In
this example the word Indra, mentioned previously from the sentence Fung Permadi (Taiwan)
v Indra is processed following Akbik et al. (2019b) solution. The procedure starts by having
the contextual embeddings for the word extracted. The complete collection of previously
known embeddings for the specific word is then fetched from memory. These embeddings
are then pooled and merged, creating the final refined embedding.

By refining embeddings through this process, the meaning of the same words will develop
over time even though they are used within the same context as before. Furthermore, the
embedding model will continue to learn even after the training process has finished, while
the model is in prediction mode.

2.6.11 Comparing performance
To compare and properly evaluate the di�erent models that were created, precision, recall,
and F1 are computed for each of the final models. The score was determined by allowing for
the created models to predict two di�erent test sets. One test set that corresponded to the
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CoNLL-2003 task, which allowed for comparison towards the state-of-the-art results avail-
able on the web. The other test set was based on Sinch’s data and allowed for performance
evaluation towards a real production scenario.

The performance computation was done by using the evaluation script that was supplied
to the CoNLL-2003 shared task, constructed specifically to measure the performance of NER
tagging.

The accuracy is a measurement of how many named entities the model was able to classify
correctly when considering the total number of named entities that were predicted. This
measurement was computed by dividing the number of correctly predicted entities by the
total number of predictions (both true/false positives/negatives) as seen below:

Accuracy =
TP

TP + FP + TN + FN
The precision of the model is a measurement of how many correctly tagged entities con-

cerning the total number of positive predictions made.

Precision =
TP

TP + FP
The recall is determined similarly. The computation that is made consists of dividing

all of the true positives (correctly predicted entities) by all of the true positives and false
negatives (falsely predicted entities). By dividing the positive predictions by the total number
of true positives and false negatives combined.

Recall =
TP

TP + FN
For evaluation of the e�ectiveness of a model, normally accuracy together with precision

and recall is calculated. However, for a named entity recognition task accuracy can be mis-
leading due to the majority of the tagging will not belong to any predefined category. This
will lead to an accuracy higher than what actually represents the performance of the model.
Looking at the relationship between precision and recall, they are somewhat opposites. This
means that if the recall increases in one scenario, the precision is reduced and vice versa.

Furthermore, the F1 was computed by combination of both the precision together with
recall mentioned by Tjong Kim Sang and De Meulder (2003) as can be seen below, where
β = 1 since we want precision and recall to be equally important.

Fβ =
(β2 + 1) ∗ (Precision ∗ Recall)

(β2 ∗ Precision + Recall)

This final measurement, the F1, is telling us how e�ective our models are and is a good
way to quickly compare di�erent models against each other.
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Chapter 3

Method

As mentioned previously, the task of our thesis was to develop a solution and evaluate this for
the anonymization of sensitive data. To accomplish this task, we took inspiration from the
work of Lange et al. (2019). This system was created as a submission to the MEDDOCAN
competition where the task was de-identification of sensitive data present within medical
documents. Lange et al. achieved impressive results that were the foundation for the con-
struction of our system.

The following section will present how data anonymization was achieved in four parts.
Firstly, the collection and type of data will be described. Secondly, the pre-processing of
that data is presented. Thirdly, which models and a description of their architecture will be
shown. Finally, it will be shown how the visualization tool for the results was created.

3.1 Datasets
A common methodology for benchmarking new model architectures is done by training the
model on the same dataset as previously documented models have been trained on. This will
allow for a direct and fair comparison of di�ering architectural decisions.

Applying the same mindset to our thesis leads to the use of two di�erent sets of data. The
first set that was used came from the CoNLL-2003 shared task described by Tjong Kim Sang
and De Meulder (2003). The dataset contains 1393 news articles with a total of 301,418 tokens
from the Reuters Corpus written in English. The annotation process for named entities was
done manually at the University of Antwerp resulting in a corpus of excellent quality.

Annotation has been done by following the IOB-scheme mentioned earlier, containing
the four di�erent categories: Person (PER), Organization (ORG), Location (LOC), Miscella-
neous (MISC) as well as Other (O). The original CoNLL-2003 dataset contains four di�erent
columns of information: the word, the part-of-speech tag, the chunk tag, and the named en-
tity tag. As neither the part-of-speech tag or chuck tag was of importance to us, these columns
were stripped, resulting in the structure seen in Table 3.1.
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Table 3.1: Example structure of CoNLL-2003 dataset

EU I-ORG
rejects O
German I-MISC
call O
to O
boycott O
British I-MISC
lamb O
. O

The second dataset was created by ourselves, containing 4500 di�erent text messages
resulting in a total of 93,447 tokens. These messages were cleaned and formatted to match
the structure of the first dataset. However, the annotation scheme was extended to match
the di�erent types of information that were decided to be of importance by Sinch, seen in
Table 3.2.

Table 3.2: Example of Sinch’s annotation scheme

O Other
A_S Alphanumeric sequence
C_NBR Card number
COM_N Company name
CON_N Country/Location
DATE Date
E_M Email Address
P_N Person name
SCRT Secret code
TEL Telephone number
TIME Time
URL URL
USR_NM Username

The process of annotation was done by hand through multiple iterations making sure that
the corpus was of excellent quality. Having a well-labeled dataset is essential as our solution
is based on supervised learning techniques. This means that having mislabeled data could
result in bad performance from our model.

3.1.1 Annotation tool
To make it possible and create our own usable dataset, we carried out a manual annotation.
We achieved it with the open-source software Doccano created by Nakayama et al. (2018)
which allowed us all the annotation features that could be desired. The sequence labeling
tool made it possible to create the structure that was wanted, as well as define our own set of
tag categories. Furthermore, having the possibility of hosting the service on the network with
di�erent users made the annotation process a lot easier. Allowing us to annotate di�erent
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parts of the dataset at the same time through a web browser made us save a lot of valuable
time.

3.1.2 Preprocessing
When working with named entity recognition and any other classification task, data quality
is very important as described earlier. To improve the quality, pre-processing of our corpus
was carried out through several di�erent steps. The process started by sanitizing the data,
meaning for example the removal of unwanted text tokens and formatting anomalies. When
these issues were fixed, the process continued with defining a numerical representation of
the text existing within our data.

Data sanitation
To be able and achieve the best possible results for our models, sanitizing of our data had
to be carried out. This was done through several iterations to guarantee a usable and high-
quality dataset. The process started with separating the messages into exactly one message
per row, simplifying the handling of the messages. When the separation was done, the focus
shifted into filtering out all unwanted characters of each row (message). These characters
were for example, those who could not be represented through our ASCII encoding and spe-
cial signs in the beginning and end of a row. Furthermore, word contractions such as "you’re"
were extended into "you are" for consistency and clarification. Lastly, the whole dataset was
converted into lowercase. One example to showcase how our preprocessing was conducted
can be seen in Table 3.3.

Table 3.3: Example of how data was sanitised.

Before the messages were cleaned:
1. 43;This is a sample message.43;Don’t move to close to the water.;

Result after the messages were cleaned:
1. this is a sample message.
2. do not move to close to the water.

The cleaning was done to remove irregularities of our datasets, further improving the
number of known words within the vocabulary of our embeddings. Increasing this num-
ber allows our model to interpret and understand more messages, which could give better
performance.

Creating textual representation
When the sanitation was concluded the preprocessing continued with the making of a nu-
merical representation of the text usable to the model. The process started by separating
the messages further, creating a list of separated tokens for each entry. This list was then
accompanied by another list containing the corresponding NER tags, as seen in Table 3.4.

This allowed us to create a vocabulary containing all the unique words in the training set
as well as the words within the pre-trained embeddings. Furthermore, a vocabulary for all
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Table 3.4: Example of tokenized data together with NER tags.

x = [ this, is, a, sample, message, containing, my, name, . ]
y = [ O, O, O, O, O, O, O, B-NAME, O ]

the unique entity tags was also created. Even though our vocabulary covers a lot of words,
there will always exist words that were not covered in the embeddings. In the case of our
baseline models, that use only GloVe embeddings, an out of vocabulary (OoV) word vector
with randomized values will be created. This word vector will then be trained based on its
context to the correct position of the embeddings matrix. Additionally, the more complex
models that made use of character-level embeddings do not su�er from the same issue of
OoV word thanks to sub-word representations.

Having finished the vocabulary and association between indices and words an embedding
matrix of shape (M,N) was created. The construction consisted of the unique words in the
vocabulary (M) and the dimension of the embeddings (N). This matrix was then filled with
the pre-trained embeddings through our previously created mapping between vocabulary
and indices.

The input and labels were then converted by using the indices, encoding every word of
the messages into a number interpretable by the model. To make sure our model was able to
compute the input properly (with the messages being of di�erent length), every sequence was
padded. In our case, the maximum length was chosen to be 150, resulting in input having the
shape of (number of sentences, 150). The last part of our preprocessing was to connect the
messages passed into our model with labels. To achieve this, every label was one-hot encoded.
This preprocessing prepared the dataset to be sent into the di�erent models for development
and training.

3.1.3 Creating a baseline model
A first step while creating a network for solving our task was to develop a baseline model.
Having a baseline with simple architecture was important as it allowed us a foundation to
compare and build from. Furthermore, developing a baseline ensured a complete understand-
ing of our problem, su�cient data quality, and that additional development was needed. The
baseline architecture together with the variations of GRU and LSTM was implemented us-
ing Keras. All these models utilize early stopping and were therefore trained for roughly 20
epochs. Keras is a high-level API written in Python with a Tensorflow backend developed by
François Chollet. The models based on contextualized embeddings were implemented using
the FLAIR framework created by Akbik et al. (2019a). FLAIR is a NLP framework based
on Pytorch written in Python (Paszke et al., 2019). These models require significantly longer
training. These also use early stopping and were trained for roughly 160 epochs.

Baseline: A simple RNN model
The architecture of our baseline was a simple recurrent neural network layer with output
dimension 256, connected to a dense (prediction) layer. This dense layer outputs the pre-
dictions using a softmax activation function for the number of categories in a vector for
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each word. Additionally the network used GloVe word embeddings of 100 dimensions, pre-
trained on Wikipedia articles. The construction can be seen in Figure 3.1.

Figure 3.1: Simple RNN baseline architecture

3.1.4 Extending the baseline model
Having the baseline model allowed us to have a foundation to extend and make more accurate
through several iterations. Working through an iterative process made it possible to deter-
mine what altering made the biggest impact on the performance of our models. However,
through development a lot of di�erent architectures were tested resulting in many di�er-
ent network types, with small di�erences. These networks built upon the baseline all have a
similar construction, however varying results.

GRU model. The first model extended from the baseline architecture was designed
to utilize a GRU network instead of the RNN. The network included a standard GRU layer
with an output dimension of 256, a dropout of 0.5, and then connected to a dense (prediction)
layer. This network, just as the baseline, used GloVe embeddings.

LSTM model. Moving further, a LSTM architecture was created allowing for com-
parison with the GRU network. This LSTM network had an output dimension of 256, a
dropout of 0.5, and lastly was connected in the same manner to a prediction layer. The same
GloVe embeddings were used in this construction.

Adding Bidirectionality and improving the baseline further. Having
created the baseline model, as well as two additional extensions to it, we continued to extend
all of the models with bidirectionality. This made the models discover more representations
of the text, essentially extending the amount of data. To prevent overfitting and further
improve the performance of the initial model, experimentation was carried out to create a
more complex model.

This resulted in a model based on three layers as seen in Figure 3.2. Looking at the ar-
chitecture, it consists of one simpleRNN layer in combination with two LSTM/GRU layers.
These layers were constructed of the bidirectional, output dimension of 256, dropout, and a
recurrent dropout of 0.2.
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Figure 3.2: Architecture for bidirectional models

3.1.5 Contextualized String Embeddings, GloVe, BiL-
STM, CRF

Taking inspiration from the architecture from Lange et al. (2019) and Akbik et al. (2018), we
created a few di�erent models. We constructed these models using the FLAIR open-source
framework Akbik et al. (2019a), enabling us to create state-of-the-art results for our named
entity recognition task.

Figure 3.3: Architecture of the final system using Contextualized
Embeddings, GloVe, BiLSTM and CRF.

Figure 3.3 shows our final architecture. It consisted of a character language model, fol-
lowed by a stacked layer of character and word embeddings. A stacked-layer can be explained
to be a concatenation of di�erent embeddings, allowing for increased interpretability of the
model.
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Furthermore, these stacked embeddings were fed into our sequence labeling model that
consists of a bidirectional LSTM-layer of size 256 together with a linear-chain CRF-layer.
The network is trained using a learning rate of 0.1 and a batch size of 32. To determine how
long our training should be carried out and avoid overfitting, early stopping was used based
on the validation set. The early stopping was set to terminate training as the validation loss
stagnated. The conditional random field was finally responsible for outputting the highest
probability of the tag categories, based on what the neighboring tags were.

Comparing this architecture to the simpler baseline model, a lot of di�erences can be
seen. Firstly the embeddings are created di�erently, where the simpler model utilized pre-
computed GloVe embeddings. The FLAIR based model instead uses a character language
model to create contextualized embeddings based on the input words and their context.
These contextualized embeddings are then pooled and updated continuously throughout the
lifetime of the model.

Furthermore, the simpler model only contains one RNN/GRU/LSTM layer that is con-
nected to one last output layer, responsible for giving us the probabilities for each tag cat-
egory. The more complex model on the other hand consists of a stacked embeddings layer,
one bidirectional LSTM layer as well as a CRF layer outputting predictions based on the
neighboring tags.

3.1.6 Visualization tool
To be able and showcase that the solution worked as intended a simple tool for visualization
was developed. This software allowed the user to choose a model and compare the predic-
tions made, with the correctly labeled ones. The idea was to see the performance without
interpreting generated accuracy scores. An example of the tool can be seen in Figure 3.4.

Figure 3.4: Visualization tool built to show the (left) correct labeling
compared to (right) predicted labeling.

The visualization tool was developed using Python together with the standard GUI toolkit
Tkinter.
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In addition to the visualization software, a masking program was developed that utilized
the model to output a masked version of the input. Table 3.5 shows an example of this.

Input that has not been masked:
input = [’eu’, ’rejects’, ’german’, ’call’, ’to’, ’boycott’, ’british’, ’lamb’, ’.’]
Output that has been masked:
output = [<ORG>, ’rejects’, <LOC>, ’call’, ’to’, ’boycott’, <LOC>, ’lamb’, ’.’]

Table 3.5: Example of masking tool.

This masking software was created to show how the model would be used in practice,
removing the sensitive information of the input.
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Evaluation of our work

4.1 Results
Tables 4.1 and 4.2 show a complete comparison of the result for the respective datasets. We
carried out the evaluation using the o�cial evaluation script supplied with the CoNLL-2003
shared task. The script presents us with the percentage of tokens that were correctly tagged
(in regards to precision, recall, and F1). Additionally, only tag types that were present within
the corpus data or in the pre-defined key sheet were included in the final overview. This eval-
uation script was used for controlling the performance of both datasets used in this report.

Sinch Dataset
System Precision Recall F1

SimpleRNN GloVe 0.7286 0.7213 0.7250
GRU GloVe 0.7198 0.7562 0.7376
LSTM GloVe 0.8381 0.7436 0.7849

Bidirectional SimpleRNN GloVe 0.7783 0.7765 0.7774
Bidirectional SimpleRNN + GRU + GRU + GloVe 0.9017 0.8049 0.8505

Bidirectional SimpleRNN + LSTM + LSTM + GloVe 0.8760 0.8582 0.8670
BiLSTM+(GloVe+PooledFlair) 0.9290 0.9434 0.9361

BiLSTM+CRF+(GloVe+PooledFlair) 0.9395 0.9461 0.9428
BiLSTM+CRF+(Fasttext+Flair(Domain)) 0.9540 0.9548 0.9544
BiLSTM+CRF+(GloVe+Flair(Domain)) 0.9552 0.9563 0.9558

Table 4.1: Results using the Sinch dataset

Starting with our baseline model, SimpleRNN, we can see that it performed better on the
Sinch dataset as compared to the CoNLL-2003 dataset, which also seems to be the recurring
case overall. Furthermore, looking at the simple models, namely the first three in Table 4.1,
the best model consists of an LSTM layer with a F1 of 78.49%, ahead of the GRU with 73.76%.
As excepted, the performance of simpleRNN is the worst with 72.50%.
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CoNLL-2003
System Precision Recall F1

SimpleRNN GloVe 0.6235 0.7309 0.6729
GRU GloVe 0.7352 0.7502 0.7426
LSTM GloVe 0.7267 0.7519 0.7391

Bidirectional SimpleRNN GloVe 0.7216 0.7360 0.7302
Bidirectional SimpleRNN + GRU + GRU + GloVe 0.8113 0.8284 0.8198

Bidirectional SimpleRNN + LSTM + LSTM + GloVe 0.8496 0.8322 0.8404
BiLSTM+(GloVe+PooledFlair) 0.9034 0.9257 0.9095

BiLSTM+CRF+(GloVe+PooledFlair) 0.9206 0.9276 0.9241
BiLSTM+CRF+(FastText+Flair(Domain)) 0.9054 0.9164 0.9109
BiLSTM+CRF+(GloVe+Flair(Domain)) 0.9110 0.9201 0.9155

Table 4.2: Results using the CoNLL-2003 dataset.

As the capacity and complexity increases, the gap between the simpleRNN and the gate
dependent layers grows. The bidirectional models give a substantial increase in performance
where using bidirectional LSTM does give the best result with a F1 score of 86.70%. Worth
noting here, is the spread between the recall and the precision of the system using bidirec-
tional GRU. This indicates that false negatives are a lot more common than false positives.
However, there is a discrepancy compared to the result of the CoNLL-2003 dataset. Overall,
comparing the performance of our models on the more general dataset, CoNLL-2003, the
results follow a similar pattern.

Moving to the models that used biLSTM together with contextualized embeddings, the
results improved markedly. The simplest model using these embeddings produced a result
remarkably higher than the most complex model that did not. As we can see in Table 4.1,
the best result produced using a model without contextualized embeddings has a F1 score of
86.70%. This is to be compared to the worst result of a model using pooled contextualized
embeddings with a F1 of 93.61%, an increase close to 7 percentage units. After adding CRF to
our BiLSTM system based on contextualized embeddings, the result improved even further,
with the most notable improvement in precision with less false positives occurring.

The last two systems are both domain-specific, in an attempt to see the impact of training
the character language model on the specific domain. As we can see the result improved
once again. For both these systems the precision and recall are more similar, indicating that
the false negatives and the false positives occur at a similar rate, relatively. These systems
also produced a similar F1 score of 95.44% and 95.58% respectively, with only a di�erence of
0.14 percentage units. This shows the marginal di�erence in using FastText embedding as
compared to the GloVe embedding, with the latter performing slightly better.

Comparing this to the performance of the systems run on CoNLL-2003, we can see a
similar pattern, showing the benefits of CRF. However, as shown having domain-specific
embedding does not improve the result for CoNLL-2003.

Furthermore, the confusion matrix in Table 4.3 shows how the di�erent words get classi-
fied and reveal which are the most common confusions. As noted, a fair amount of company
names get predicted as O, producing false negatives. The other way around is also common,
making false positives for company names the most common. Also, we can see that usernames
and locations/country names are common misclassifications. It can be seen that our test set
is underrepresented in regards to email addresses. However to those present, our model man-
ages to identify them fairly well. It can be seen that a well defined diagonal is present within
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O 14109 5 2 25 7 1 0 3 1 2 3 0 8
a_s 0 88 1 6 0 0 0 0 3 0 0 0 0

c_nbr 0 2 192 0 0 0 0 0 0 1 0 0 0
com_n 46 1 0 1355 9 0 0 2 0 0 0 1 5
con_n 10 1 0 6 307 0 0 1 0 1 0 0 1
date 0 0 0 0 0 191 0 0 0 0 0 1 0
e_m 0 0 0 0 0 0 7 0 0 0 0 0 0
p_n 2 0 0 0 2 0 0 313 0 0 0 0 0
scrt 0 1 1 0 0 0 0 3 226 2 0 0 0
tel 0 1 0 0 1 0 0 0 0 173 1 0 0

time 9 0 0 0 0 0 1 0 0 0 325 0 0
url 0 0 1 0 0 1 0 0 0 0 0 245 0

usr_nm 7 0 0 4 0 1 0 5 0 0 0 1 108

Table 4.3: Confusion matrix of the result from the best performing
model using BiLSTM, CRF with GloVe, Flair(Domain) for the sinch
dataset. This achieved an F1 score of 0.9558.

our matrix, meaning that our system identifies the vast majority of the entities correctly.

4.2 Discussion
During this section, we will try to discuss and draw conclusions regarding the results obtained
from our system. The developed solution presented in this report was constructed to identify
sensitive entities present within messages. There will be a comparison between how the
di�erent architectures performed in addition to what the variations changed the models.
We will start by discussing the output from the simpler systems and finally, look at the more
complex systems. Lastly, we will mention a few extensions that could be done to the program,
improving it further as well as a few closing thoughts.

4.2.1 Practical use case performance comparison
First, let us look at a fairly simple example as the sentence c-123456 is your CompanyA verifica-
tion code. This sentence is an example of how a text message passed through the system would
look like. We can identify that the words c-123456 and CompanyA can be sensitive data, and
thus needs to be masked.

Looking at Table 4.4, we can see that all systems manage to identify and mask the com-
pany name. However, the LSTM system is the only one that manages to successfully find both
the company name as well as the secret code. One reason for this is that the LSTM model
manages to retain the relevant information. This is done by using previously mentioned gat-
ing units for determining what information to keep and what to throw away. Through this
the model can understand the relation between the word verification code and the actual code.

45



4. Evaluation of our work

System Original Sentence Masked Sentence
SimpleRNN c-123456 is your CompanyA verification code. c-123456 is your <com_n>verification code.
GRU c-123456 is your CompanyA verification code. <con_n>is your <com_n>verification code.
LSTM c-123456 is your CompanyA verification code. <scrt>is your <com_n>verification code.

Table 4.4: Table displaying the masking process of the systems im-
plemented in Keras.

Additionally the GRU based model manages to determine that c-123456 is an entity, however
not the correct one.

Comparing the models with bidirectionality with the original baseline models shows us
that the previous issue is not persistent. Both of the simpler models (simpleRNN and GRU)
are now able to detect the entity missed earlier.

As recurrent neural networks generally pass the data in a positive direction, meaning that
the system is trained to predict based on information from the past. Then, as bidirectionality
is added, the networks also pass the data in a negative direction, hence it is trained to perform
predictions based on future information. Using these simultaneously will allow past and
future input data to be used in calculating the same output. Therefore, this could be a result
of the model finding the relation between verification code and the code as we process the
sentence from both directions.

Moving further, comparing our extended baseline model, consisting of three bidirectional
layers to the simpler single bidirectional LSTM model showed even more improvements. The
idea behind this construction was to use the simpleRNN to extract broader features allowing
for the two later LSTM layers to extract more detailed information of the input. This yielded
even better results than through utilizing only bidirectionality, which can be seen in Table 4.5.

System Original Sentence Masked Sentence
SimpleRNN + BiGRU + BiGRU CompanyA : please complete this <com_n>: please complete this

brief survey to help improve ur brief survey to help improve <com_n>
service https://www.companya.com/ service https://www.companya.com/
reply stop to end msgs reply stop to end msgs

SimpleRNN + BiLSTM + BiLSTM CompanyA : please complete this <com_n>: please complete this
brief survey to help improve ur brief survey to help improve ur
service https://www.companya.com/ service <url>
reply stop to end msgs reply stop to end msgs

Table 4.5: Table showing di�erences between using stacked bidirec-
tional GRU compared to stacked bidirectional LSTM.

Here we can note that the architecture based on LSTM managed to classify both of the
tokens correctly. In contrary, the model based on GRU is only able to determine the company
entity in the sentence. This could be a result of GRU having a simpler construction, struggling
with retaining long term dependencies. However, this is di�cult to conclude due to the
complexity of our system.

Changing the focus from the solutions developed without the use of contextualized em-
beddings and looking into the architectures suggested by Lange et al. (2019) we can note a
clear improvement.

When comparing the extended baseline model with the overall best performing model,
we can observe improvements in contextual understanding. Looking at the sentence pre-
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4.2 Discussion

System Original Sentence Masked Sentence
SimpleRNN + BiLSTM + BiLSTM your feedback is important to us. your feedback is important to us.

please take a survey about your visit please take a survey about your visit
to Some Random Company to <url>Random <com_n>
https://randcomp.co/g3g224ty436y3 <url>

BiLSTM+CRF+GloVe+Flair(Domain) your feedback is important to us. your feedback is important to us.
please take a survey about your visit please take a survey about your visit
to Some Random Company to <com_n><com_n><com_n>
https://randcomp.co/g3g224ty436y3 <url>

Table 4.6: Table showing di�erences between best system created in
Keras and FLAIR.

sented in Table 4.6, the simpler model manages to identify the URL entity, however, it fails
to fully recognize the company name to its entirety. Since the company name is split into
three sub-words, resulting in the need for contextual awareness. The first part of the com-
pany names is incorrectly identified to be related to the URL, and not the other parts of
the company name. Introducing our best model, that is constructed with contextual string
embeddings, together with the conditional random fields sequence modeling algorithm for
improved awareness of context. This architecture makes it possible for the model to under-
stand the relation between the company name as well as the URL, masking all of the entities.

Furthermore, we can see that the models that utilized FastText embeddings did not out-
perform those constructed with GloVe. The use of GloVe embeddings seems to coincide with
the results mentioned by Akbik et al. (2018), in his solution that produced state-of-the-art
results. Worth noting is that both embeddings used were domain-independently trained on
Wikipedia articles, which could explain the marginal di�erence.

Looking at the two models that produced the best results for the respective dataset we
can see a clear di�erence. The best results for Sinch’s dataset was produced by the model in
Table 4.1 with a F1 = 95.58%. Comparing with the best results for the CoNLL-2003 dataset,
created by the model seen in Table 4.2 resulting a F1 = 92.41%.

The variation of results between the architectures can be explained as di�erences in the
datasets. Sinch’s dataset consists of short texts with pattern based structure, resulting in the
training data being a good foundation for the test data. This pattern-based structure allows
our model to create a vocabulary corresponding to most of the words available in the test set.
Having a good vocabulary together with a clear context makes the model less prone to the
issues of character-level embeddings mentioned earlier.

Moving on to the CoNLL-2003 dataset, it is made up of news articles from Reuters corpus
with varying lengths. The dataset contains a lot more variation between training- and test
data and does not follow any general patterns. This results in a vocabulary that has not seen all
of the words present in the test set. In addition to having a higher rate of unknown words, the
contextual information of news articles is by nature not always obvious. These shortcomings
causes the architecture to su�er from creating usable character level embeddings for rare
words within unspecific contexts. This results in the use of pooled contextualized string
embeddings in favor of regular contextualized embeddings.

Lastly, considering the results presented, it can be seen that the models implemented
using LSTM as well as biLSTM performed significantly better than the models of simpler
construction. Furthermore, the models that were created using contextualized embeddings
together with CRF outperformed those that only made use of the simpler GloVe embeddings.
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4. Evaluation of our work

Looking in Table 4.1 it can be seen that the last three models have a comparable performance
of roughly 95% F1. This indicates that the architecture is in fact well suited for our dataset
and task.

4.2.2 Further improvements
Although our models perform well on the dataset and the task overall, certain improvements
of the system can be put in place.

Controlling the data, it is noticeable that the human factor is present, with mistakes re-
garding annotation and interpretation of messages. Furthermore, we can see that the dataset
is rather small. Extending the collection of messages could improve the model’s generalization
capabilities.

Additionally, it contains an uneven distribution of entity categories (e.g email addresses),
improving the diversity of these could help the model improve finding edge-case entities.
Subsequently, the introduction of data augmentation could be useful for filling the number
of samples in the dataset in a simple manner. For example, the current dataset could be
translated from English into another language, then translated back to generate di�erent
sentences with the same meaning.

Moreover, the use of a domain-specific word embedding trained on similar text messages
could help improve performance as our solutions only utilize domain-independent embed-
dings. This would, for example, make our model better suited for understanding abbrevia-
tions that are present within our dataset.

One more interesting addition to our system, mentioned by Lange et al. (2019) is post-
processing in the form of language rules. These rules could potentially make it possible for
filtering out most of the pattern-based text entities such as emails, URLs, and telephone
numbers.

Lastly, to make the most out of our model a measurement for evaluating the uncertainty
of our predictions would be a suitable solution. This evaluation tool would simplify human
supervision of problematic data that requires additional attention.
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Chapter 5

Conclusion

Throughout this thesis we have studied the possibility of creating a system for automatic re-
moval of sensitive entities in text messages. We aimed to develop an anonymization system by
using two frameworks, Tensorflow with Keras and FLAIR. In combination with these frame-
works, we utilized di�erent NLP techniques to achieve state-of-the-art results for identifying
sensitive data.

This study concluded in the creation of two systems with di�erent architectures. The
first solution developed was constructed of three layers, one bidirectional simple recurrent
network, connected to two bidirectional LSTM layers together with GloVe embeddings. This
model produced a F1 of 86.70% on Sinch’s dataset, leaving headroom for improvements to
reach state-of-the-art results. Inspired by Lange et al. (2019), we choose to create a system of
similar fashion. The new system was developed to introduce more contextual awareness to the
model using state-of-the-art NLP techniques. Creating a new model based on a bidirectional
LSTM network in combination with contextualized input representations and CRF allowed
for a F1 of 95.58%. Achieving this, our initial objective of developing a system for automatic
anonymization with state-of-the-art results was fulfilled. Even though our solution reaches
impressive results, the model is not flawless, meaning that there still is a need for human
supervision to reach perfection.
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5. Conclusion
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Att världen har blivit mer digitaliserad råder det inga tvivel om. Sett till om-
ständigheterna vi just nu befinner oss i världen över behövs de digitala verktyg mer
än någonsin. Men vilka konsekvenser för den enskilda användaren kan de digitala
verktygen föra med sig?

I takt med att användandet av digitala verktyg
ökar, ökar även mängden data som företag kom-
mer över. Denna data kan sedan användas av
företaget för att förbättra sina produkter och på
så sätt skapa en bättre användarupplevelse. Men
trots fördelarna med tillgången till mer data för
företagen måste man ta personliga integriteten i
beaktning. Hur får datan behandlas och vad får
den innehålla?
I samband med dataskyddsförordningens utfär-

dande förtydligades detta. Företag runt om i Eu-
ropa och övriga världen följer nu förordningen,
vilket förser den europeiska befolkningen med ett
skydd i hur företag sköter behandlingen av per-
sonuppgifter. Trots detta finns det ett behov av
ytterligare skydd.
I vårt examensarbete undersökte vi möjligheten

att anonymisera SMS. Just SMS mellan företag
och kund innehåller ofta delar som kan kopplas till
kundens personuppgifter. För att dölja kopplin-
gen måste dessa ord maskeras. Väl när maskerin-
gen är på plats blir SMS:et helt anonymt.
Först måste vi identifiera vad för problem det är

vi jobbar med. Problemet som vi har framför oss
kan beskrivas som ett Named Entity Recognition
problem. Det innebär att vi vill kunna klassifi-
cera olika ord till fördefinerade klasser i en text

automatiskt. Detta kan bland annat lösas med
artificiella neuronnätverk.
Vad ett artificiellt neuronnätverk gör är att den

kartlägger hur indata kan anknytas till utdata. I
vårt fall är indatan ett ord och utdatan är om
ordet ska maskeras eller inte. Ska ordet maskeras
kommer det ersättas med en tagg. Denna tagg
kan vara t.ex. "name", vilket då indikerar att det
var ett namn som maskerades.

Figure 1: Exempel på hur maskeringen ser ut

Efter att ha skapat flera olika system kunde
vi göra en jämförelse och se vilken av dessa som
presterade bäst. De mer komplexa systemen visar
att ordets sammanhang och att användandet av
välanpassade representationer för orden är bety-
delsefulla. Med dessa teknikerna lyckades vi skapa
ett system som med 95.58 % träffsäkerhet kunde
maskera känsliga personuppgifter. Detta skulle in-
nebära att stora mängder personuppgifter skulle
slippa exponeras i onödan och varje människa
skulle få ett ännu bättre skydd.
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