
MASTER’S THESIS 2020

Towards
Agile Data Engineering
for Small Scale Teams
Anton Engström

ISSN 1650-2884
LU-CS-EX: 2020-40

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-40

Towards
Agile Data Engineering

for Small Scale Teams

Anton Engström

Towards
Agile Data Engineering

for Small Scale Teams

Anton Engström
anton.engström95@gmail.com

July 8, 2020

Master’s thesis work carried out at Sentian Technologies AB.

Supervisors: Johan Ullén, johan.ullen@sentian.ai
Emma Söderberg, emma.soderberg@cs.lth.se

Examiner: Per Runeson, per.runeson@cs.lth.se

mailto:anton.engstr�m95@gmail.com
mailto:johan.ullen@sentian.ai
emma.soderberg@cs.lth.se
per.runeson@cs.lth.se

Abstract

Enabling production-level machine learning is di�cult. In producing machine
learning models for industry, a majority of the time is spent on working on the
data and the infrastructure that will support the model in its production envi-
ronment. In this thesis, we investigate the challenges related to data engineering
for machine learning purposes. The intention is not to tackle the challenges re-
lated to big data. Instead, it focuses on a small scale context with few data sources
and small datasets.

This context is studied through three iterations: a literature study, a case
study of a small scale machine learning company, and a mapping of agile princi-
ples from the software engineering domain to the data engineering domain. We
note that there is a gap between literature and the needs in a small context. We
note that the potential of a knowledge transfer from agile principles to the data
engineering domain is promising.

Keywords: data engineering, data platforms, data pipelines, machine learning, small
scale, data, value creation, agile

2

Acknowledgements

I would like to express a very great appreciation to my supervisors, Johan Ullén and Emma
Söderberg. The guidance and inexhaustible support from Johan can only be matched by the
prompt and astute feedback provided by Emma.

I would also like to extend my appreciation to Per Runeson for providing advice and
literature for this thesis. Thanks go to the data scientists at Sentian for participating in
interviews.

Lastly, I would like to thank my family, my brother Oscar Engström especially, for the
essential energy and encouragement they have supplied me with throughout my studies.

3

4

Contents

1 Introduction 7
1.1 Research Questions . 9
1.2 Approach . 10
1.3 Contributions . 12
1.4 Covering the Report Outline . 12

2 Background 13
2.1 Data Engineering . 13
2.2 Agile Principles . 13
2.3 Data Pipelines . 14
2.4 Data Understanding and Validation . 15
2.5 Data Cleaning . 15
2.6 Data Enrichment . 15
2.7 Containerization . 16

3 Literature Study 17
3.1 Method . 17
3.2 Data Platform Architectures . 18

3.2.1 Data Warehouse . 18
3.2.2 Data Lakes . 19
3.2.3 Data Mesh . 19

3.3 Data Versioning . 24
3.4 Data Provenance . 26
3.5 Data Pipeline Testing . 27
3.6 Analysis of the Literature . 28

4 Case Study of Sentian 31
4.1 About Sentian . 31
4.2 Interview Study . 31

4.2.1 Method . 31

5

CONTENTS

4.2.2 Results . 32
4.2.3 Analysis of the Interviews . 34

4.3 Data Pipeline Implementation . 35
4.3.1 Method . 36
4.3.2 Data Investigation, Validation and Cleaning 37
4.3.3 Feature Extraction of Year . 38
4.3.4 Feature Extraction of Geographical Location 39
4.3.5 Feature Encoding of Descriptions 39
4.3.6 Analysis of the Data Pipeline Implementation 39
4.3.7 Future Work . 40

5 Mapping to Agile practices 41
5.1 Method . 41

5.1.1 Choosing a Definition to Represent Agile 42
5.2 Mapping of Agile Principles . 42
5.3 Data Pipeline Implementation Revisited . 45

5.3.1 Data Validation Schemas and Data Monitoring 46
5.3.2 Persistence to Data Platform and Cataloguing 46

5.4 Analysis . 48

6 Discussion 49

7 Conclusions 53

References 55

Appendix A Interview Protocol A 63

Appendix B Interview Protocol B 65

Appendix C Code Used in Data Pipeline Implementation 67

6

Chapter 1

Introduction

Clive Humby, a UK mathematician, coined the term “data is the new oil” as far back as 2006.
In 2017 the Economist released a report [1] stating through its title that “The world’s most
valuable resource is no longer oil, but data.”. Setting the debate aside as to whether it is fair
to make the comparison as they have very di�erent properties, data not always having the
potential to be useful in an economic sense or that data is not a finite resource to name a few
of the criticisms [2], one can certainly say that data is an increasingly utilized and valuable
resource.

While machine learning has been used for a long time by data scientists to glean knowl-
edge from data [3], it is only recently that it has started being productionized to a larger
extent. Toolsets for building machine learning models have matured in a pace magnitudes
greater than the corresponding toolset related to data management [4]. However, both toolsets
are needed to e�ectively run production-level machine learning operations.

Much like the data management toolset is far behind the machine learning toolset, the
available literature on data engineering is far behind that of machine learning. In regards to
small scale e�orts, especially on data engineering, the lack of literature is even more exacer-
bated. This is unfortunate as industries move toward industry 4.0 and are implementing AI
and machine learning e�orts, since many of these e�orts would, at least initially, be depen-
dent on small scale data engineering.

As an example of the lack of literature, take the Google scholar search for “small scale
data science” and “small scale data engineering” in Figure 1.1. The first result of each search
is specifically targeted to the opposite needs of someone working in a small scale context.
“Rules of thumb in data engineering” does look promising at a first glance, but as you look
closer you will find that it is a very dated article on the subject of databases published in the
year 2000 [5]. Of course, these two searches are not proof that there is no academic literature
aimed at a small scale context, but rather that if there is, it is not easily found.

7

1. Introduction

Figure 1.1: search results from google scholar as of 10th May 2020.

This lack of literature is not surprising since machine learning related skills are currently
hard to acquire for companies, and as such even large companies with well funded IT depart-
ments are struggling to apply machine learning in production [4]. If large scale e�orts with
big funding are targeting and hog much of the talent in attempts to fill their own needs, it
would be natural that the conversation is run by their perspective and interests. Additionally,
it is the case that machine learning performs especially well on large and complex datasets.
However, this should not be confused with the notion of big data[6], as it refers to not only
large datasets but rather big ecosystems of large, often huge, datasets and the rapid growth
and proliferation of data sources. There are plenty of large and complex datasets where ma-
chine learning is a feasible approach where the term big data is not really appropriate.

There is also a lack of tooling and infrastructure services in regards to data engineering.
As machine learning becomes more available to small and medium-scale data science e�orts
through advancements in tooling, the field of data engineering needs to keep up [4]. Without
well managed and high-quality data, companies will struggle to reap the rewards of machine
learning since good data is the basis in which any successful data science endeavor is built.

This need for a solid foundation to build ones data science e�orts on is well described by
Figure 1.2. The move/store and the explore/transform levels of the pyramid in Figure 1.2 will
be the focal points of this thesis. We find that driving liveness, i.e high rate of contribution
to a system amongst its users, and value creation, i.e how well a system delivers value to its
stakeholders, to be essential challenges in these two areas.

In this report, we exemplify some of the challenges related to small scale data engineering
for machine learning and we attempt to inspire solutions to these. We illustrate that there is
a need for further research on this subject and this is the goal of this thesis.

8

1.1 Research Questions

Figure 1.2: The data science hierarchy of needs, which is depicted as
a pyramid, describes the dependecies of data science. Credit Monica
Rogati, Hackernoon.

1.1 Research Questions
This thesis started out with a very broad and general research question, formulated as RQ1
below.

RQ1: “What are the most discussed challenges currently in data engineering literature
and what are their state of the art solutions? “

As we started to understand the available literature, we found that some of the literature
on data platforms especially and data versioning could be of value to Sentian. This led to
RQ1 being reformulated as RQs 1.1 and 1.2 below.

RQ1.1: “What is the state of the art of data platform architecture and how do one drive
liveness and value creation of a data platform?”

RQ1.2: ”How well can a state of the art data platform architecture be applied to a small
scale machine learning context outside of big data?”

The research questions RQs 1.1 and 1.2 were expanded during this thesis with a second
broad research question, RQ2. This was done to further substantiate our answer to RQs 1.1
and 1.2 as the literature we found was deemed to be insu�cient to mitigate Sentians chal-
lenges.

9

1. Introduction

RQ2: “how can data engineering be made agile for small scale teams?”

RQ2 was then, just like RQ1, narrowed down into RQs 2.1 and 2.2.

RQ2.1: “Can the principles behind the agile manifesto be mapped to the processes of
state of the art data platforms to extract insights that may be applied to a small scale
context?”

RQ2.2: “Are there practices in small scale data engineering that map well to the princi-
ples of the agile manifesto?”

A guide for where the RQs will be answered throughout the report can be found in section
1.4, Covering the Report Outline, below.

1.2 Approach
The swimlane diagram in Figure 1.3 serves to outline the phases of this thesis on a high-level
view. Of course, the work was carried out iteratively throughout the thesis, going back and
forth between the di�erent lanes more often than described in this chapter. The purpose
of the swimlane diagram is to clarify the logic sequence of the execution of this thesis as its
results are mainly theoretical.

10

1.2 Approach

Figure 1.3: Swimlane diagram of thesis execution.

This thesis commenced with a literature study of current challenges, designs, and frame-
works related to data engineering for machine learning. The findings from the literature
study were applied in a case study of a small machine learning company that specializes in
solutions for industry. The case study was performed at the company Sentian AI in two
parts, both qualitatively and practically, that along with the literature study would allow for

11

1. Introduction

triangulation of the core challenges of small scale data engineering [7]. When applying the
literature study to the case study we were interested in exploring if the current literature on
data engineering for machine learning pipelines was su�cient in solving the set of challenges
that the company in the case study was facing.

In comparing the results of the literature study to the context of the company in the
case study, it became evident that the literature we found in the study was not su�cient
in solving the challenges found in the case study. However, similarities between the state
of the art solutions in data platforms and agile principles were noted during this analysis.
This led to an additional phase in the approach of this thesis: a mapping of the principles
behind the agile manifesto [8][9] to a current state of the art data platform and to small scale
data engineering. The purpose was to explore if agile could be helpful in extracting the core
concepts from the literature that was found so that they can be reapplied to a smaller context.

Throughout the thesis, it proved di�cult to cover the subjects entirely through published
academic literature. The field of data engineering is young and much of the conversation on
the state of the art and current challenges is had through what is known as grey literature,
which is common for software engineering-related fields [10]. Therefore, we have made the
decision to include findings from grey literature throughout this thesis as too much relevant
information would be lost without it.

1.3 Contributions
This thesis provides an exploratory look into what challenges and needs are found in the
context of small scale data engineering for machine learning. It employs (1) the state of the
art data platform architecture and data versioning, (2) a case study of a small specialized
machine learning company, and (3) agile principles to suggest practices for designing and
implementing data platforms and data pipelines in this context.

Our findings include (1) that a light version of a state of the art data platform can be
implemented for a small scale context if modified, (2) that there is a gap between the needs
of the small scale data engineering e�orts in the case study and the literature found in the
literature study, and (3) a potential for knowledge transfer from the software engineering
domain through agile principles to the emerging domain of data engineering.

1.4 Covering the Report Outline
The report is structured around the three main phases of the thesis project: a literature study
is presented in chapter 3, a case study of a small specialized machine learning company is
presented in chapter 4, and a mapping of agile principles from the software domain to the
data engineering domain is presented in chapter 5. Each chapter provides its own method,
results and an accompanying analysis of those results. The final discussion in chapter 6 ties
together the findings from the three project phases in order to answer RQs 1.2, 2.1 and 2.2.
RQ 1.1 is primarily answered through the analysis of the literature study, although how to
drive liveness and value creation of a data platform is a common theme throughout the report.
Finally, we conclude the report in chapter 7.

12

Chapter 2

Background

This chapter introduces the concepts of agile development and the basics of data engineering
as these are necessary for a reader to properly read and understand the findings and the
context of this report.

2.1 Data Engineering
Data engineer is a role that has emerged and separated from the role of data scientist as the
field of data science has matured and increasingly been applied in production level solutions.
It deals with the infrastructure that prepares, moves and hosts data so that it can be made
available for data science in production [11]. The field of data engineering is rather young but
has recently received much attention and is one of the fastest-growing occupations within
information technology [12].

2.2 Agile Principles
The purpose of agile software development, whether one adheres to XP, SCRUM a combina-
tion of these or some other framework, is to consider and understand the uncertainties one
is facing in a specific environment and how to adapt to these as you go along [9]. There are
many practices associated with agile such as pair programming, stand-ups and sprints. These
do not define agile but rather these have sprung from agile philosophy as solutions to some
of the problems often experienced in software development.

Although the Agile manifesto and the 12 principles behind the agile manifesto are often
consulted when defining what is considered agile, there have been continuous discussion and
criticisms of it being the ultimate document that defines agile. In a study made to map other
definitions of agile and their emphases compared to those of the agile manifesto the words:
flexible, people-centric, responsive and iterative are common [13].

13

2. Background

It should also be noted that the concept of agile does not originate from a software con-
text. The use of agile methodology is widespread throughout many industries [14]. Kanban
boards, an agile way of managing workflows, which was adapted in 2004 at Microsoft for
software development purposes has its origin in Japanese car manufacturing where it was
applied in a Toyota manufacturing plant in 1953 [15]. There are many practices like this,
especially from the domain of lean production in manufacturing, that have been adopted by
the movement of agile software development.

2.3 Data Pipelines
As insinuated by the name a data pipeline moves data, often from one system or subsystem
to another. It inputs data, may perform a series of data processing steps where the output of
one process serves as input to the next one, and it outputs data as a result. The term is used
both for data batch jobs as well as for streaming.

A pipeline can be represented abstractly as a directed acyclic graph (DAG). A DAG is a
finite graph of nodes in which there is no way, starting at any node in the DAG, to get back
to the starting point.

Figure 2.1: example of a DAG

In regards to moving and processing data, often in batch jobs, and storing them on a
data platform, there are two main concepts: ETL and ELT (notice the order of the “L“). In
short, both are a subset of the more generic term data pipelines [16]. As such they tend to be
used interchangeably with the term data pipeline. ETL is a process that uses a data pipeline to
Extract, Transform and Load (ETL) data into a database or a data warehouse that often stores
structured data. As mentioned, ETL pipelines are implied to be batch-oriented and run on
a time schedule unlike data pipelines which is the term that tends to be used in streaming
contexts.

While the ETL process transforms the data and casts it to a specified format before load-
ing it into persistent storage, Extract Load Transform (ELT) transforms the data after it has
been loaded into persistent storage. It can be said that ETL is read on schema and ELT is
schema on read. Meaning that using ELT, one does not apply schema, i.e. transformations,
on data until it is read from its persistent storage. ELT is compatible with data lakes as these
store raw data, both structured and unstructured, which is then transformed on consumption
[17].

14

2.4 Data Understanding and Validation

2.4 Data Understanding and Validation
Once a data engineer is assigned the task of setting up a data pipeline a significant portion
is spent manually analyzing the data that it will consume. It is important to understand the
properties and features of the data, but also to understand where it is heading and what its
intended use is. With this context in mind, the data engineer should validate data as it enters
the data pipeline which can be done in many di�erent ways [3]. To mention a few: data types,
value ranges, correlations, means and standard deviations.

For machine learning purposes where the data pipeline will feed a machine learning
model data, it is useful to analyze distributions and ranges for data. A clear understanding of
these will be important for monitoring the data pipeline in production and to discover when
training data deviates from the data that is served to the model to make inferences (predic-
tions). The phenomenon is known as training-serving skew and can occur for a multitude
of reasons. For example, it could be that the system or behavior that the data represents has
changed or it could simply be caused by a software error. This is a major source of problems
in production-level machine learning and is important to consider since it negatively a�ects
inference accuracy [3].

One way of implementing data validation is to produce a data validation schema that
dictates what valid data looks like and that checks any data that is passed through it. Ideally,
this should not only be done for the initial point of ingestion into the data pipeline but
anywhere new data enters the pipeline. There is always the risk of bugs or human error
resulting in data being improperly transformed along the way through the di�erent processes.

2.5 Data Cleaning
A major problem with data is that it is often dirty when it arrives from its source. Dirty data
can be summarized as data where parts of it are missing, i.e. missing values, wrong data and
data in non-standard representations [18]. Remedying or dealing with these flaws is known
as data cleaning. It might not always be possible to remedy the root cause of dirty data, which
might be a bug in the code of the source system. In these cases, the data cleaning can be linked
to a data validation schema as an integrated part of the data pipeline. However, consider-
ing that wrong data can be generated throughout a data pipeline from software errors, it is
prudent to include checks and cleaning not only where entering data is validated.

2.6 Data Enrichment
Training and serving data from a single source may not be enough, or results could be im-
proved, by introducing or joining new data from another source. This can provide the ma-
chine learning model with new features that help it make more precise inferences. One can
also enrich data through augmentation. This is often employed when there is a lack of train-
ing data, or in the case of class inference if there is an imbalance between the amount of
training data for each class. Data augmentation is often utilized in training models utilizing
deep convolutional neural networks as these require vast amounts of data which is expensive
to gather and label [19][20].

15

2. Background

2.7 Containerization
Containers are a lightweight virtualization concept that bundles a software application along
with its environment including configuration files, libraries and other dependecies that are
required to run the application [21]. Docker is one such container technology which runs
natively on Linux and Windows. Containers can be organized in clusters of host nodes where
each host node contains multiple containers. One such orchestration tool that automatically
handles scaling through addition and removal of Docker [22] containers according to the
workload of the cluster is Kubernetes [23].

16

Chapter 3

Literature Study

The literature study focuses on the state of the art of ELT type data platforms and data
versioning but it also covers data pipeline testing on a basic level as it is important to ensure
the quality of data. Challenges related to implementation in data engineering tend to be of
ad hoc nature, therefore the focus of the literature study is on the bigger perspective of how
to successfully drive value from data rather than on specific technical challenges.

3.1 Method
A semi-structured literature study was employed to find related research and proposed solu-
tions to RQ1.1 [24]. The reason for choosing to do the literature study in a semi-structured
way was because solutions related to data have served many di�erent domains. As such it is
written about for many di�erent purposes by di�erent groups with di�erent interests, mak-
ing it hard to cover all possible source domains on the subject. Sources that aimed at solving
the challenges in a context where exploratory insights from the data were sought after, such
as data science, were prioritized. Thus data platforms became one of the main focuses of the
literature study as this is a ubiquitous part in many solutions related to data science.

The importance of availability of all data in its raw format, to support exploratory in-
sights, had a large impact on what kind of data platform design was to be considered. It
essentially bounded the context to some sort of ELT type data platform.

A data platform solution is not complete without some sort of policy for how to manage
the data that it hosts. Data management is a vast field of research, it covers a large number
of topics and is an active area of research for many di�erent communities. Since this thesis
is scoped to a machine learning context there will be a focus on the topics of data versioning
and data provenance. These are especially hot topics within the machine learning community
[25][3][26].

Although the machine learning community has made an e�ort to focus on these issues
in a production context recently, the scientific community has long been working on data

17

3. Literature Study

versioning interdisciplinarily [27][28] for shareability of datasets and reproducibility of ex-
periments. The work made by the scientific community is more mature and comprehensive
than the more recent work of the machine learning community that focuses on their specific
context, therefore we cover both.

In the literature study chapter we present material from 27 sources altogether on the
subjects of (1) data platforms [25, 29-36] (2) data versioning [27, 28, 37-41] (3) data provenance
[42-45] and (4) data pipeline testing [46-50]. Five of these sources are grey literature, four of
these are on the topics of data platforms and one on data versioning.

3.2 Data Platform Architectures
To help a reader understand the three data platform architectures that are described in this
chapter we provide a top-level overview of how they relate to one and another and the origin
of raw data.

The data warehouse is an older architecture that solved the problem of consolidating
business data that was spread out in operational databases and that could be used for business
intelligence purposes. The data lake is an architecture which arrived later during the rise of
NoSQL databases [29]. It is a solution that deals with challenges posed by big data and the
movement of data-driven organizations. The data lake and the data warehouse architectures
are not exclusive though, as noted by the creator of the data lake architecture: a data lake
contains raw data that could be used to populate a downstream data warehouse [30].

The data mesh is a recent state of the art architecture, based on the original idea of the
data lake, and it tries to solve some of the problems related to the scalability of data lakes. It
specifically focuses on how to promote discoverability and utilization of the data in the data
lake.

With regard to the raw data source, the data lake and data mesh architectures lies the
closest and the data warehouse architecture lies further downstream. The further away data
is from its source, the more processed it becomes and limited in its possibilities since any
transformation of data narrows its use case.

3.2.1 Data Warehouse
The data warehouse is coupled with the field of business intelligence, within which it is a core
component that serves the purpose of a centralized data storage [31]. It extracts, transforms
and loads data from one or more source systems and makes it available for analysis. A data
warehouse is made up of subsets referred to as data marts which serve specific parts of the
business. The data, and its format, that is stored in a data warehouse is predefined and
optimized for retrieval for specific business purposes. The data warehouse preserves historical
data for large data systems over long periods of time. Unlike transactional systems for storing
historical data it manages slowly changing dimensions. The purpose of a data warehouse is
to answer specific questions about a business to support decision making.

18

3.2 Data Platform Architectures

3.2.2 Data Lakes
The term data lake was first coined by James Dixon, then CTO of Pentaho, in a blog post [32]
2010 in the following way: “If you think of a datamart as a store of bottled water – cleansed
and packaged and structured for easy consumption – the data lake is a large body of water
in a more natural state. The contents of the data lake stream in from a source to fill the lake,
and various users of the lake can come to examine, dive in, or take samples.”

One of the big distinctions between a data warehouse and a data lake is the order of in-
gestion into its repository. While a data warehouse will only ingest structured and carefully
selected ETL-ed data, the data lake will ingest any data in its raw, pre transformed format.
The ETL process is switched to ELT (Extract-Load-Transform) where the data will be ex-
tracted from its sources and be loaded into the data lake in its raw format.

The data in a data lake is instead transformed at the read stage where it is consumed. This
allows for all data, whether structured or not, to be stored in the same place. It enables data
scientists to ask ad hoc questions that were not conceived or planned for when constructing
the data platform from whence the data is drawn to answer them. This allows data scientists
to use their domain knowledge to pose questions that may require out of the box solutions
that would otherwise have been hindered by the limited and summarized nature of data
provided through data warehouses.

It is estimated that a majority of the data available through an enterprise is of semi or
unstructured format, this data would not be easily available for a data scientist with a data
warehouse solution [33].

Although data lakes theoretically o�er a larger potential than data warehouses through
a wider scope of data collection, they also run an increased risk of becoming unmanageable
and hard to extract value from, they are then referred to as data swamps [34][35][25].

3.2.3 Data Mesh
The data mesh, defined by Zhamak Dehghani in [36], is an adaptation of the data lake ar-
chitecture that seeks to remedy what she identifies as three architectural failure modes that
lead to under-realized value of a data lake as it scales. The claim is that these failures lead to
an under-realized value creation due to data inaccessibility because of poor data governance
practices.

She identifies a lack of bounded context and domain driven design [37] in favor of cen-
tralized domain agnostic data ownership, which results in monolithic data platforms, as one
of the key concerns with the current state of data lake architectures. This is where the data
mesh significantly deviates from the data lake. It embraces the concepts of domain driven
design and considers the domains a first class concern over the technical implementation of
the data pipelines and the data platform itself.

This somewhat ties back to the initial philosophy of James Dixon; that a data lake should
contain data from a single data source (or system) while many data lakes within an enterprise
may be considered a “water garden” [30] . However, in a data mesh design the domains are the
primary focus and not their source systems and as such domains can be drawn to encompass
datasets from multiple data sources. These domains are then what constitute the nodes in
the metaphorical data mesh similar to the data lakes of a water garden.

Dehghani describes three architectural failure modes present in current data lake designs:

19

3. Literature Study

1. Monolithic and centralized:

(a) Ubiquitous data and source proliferation. It becomes hard to serve and harmo-
nize ever-growing amounts and sources of data when you’re working from a siloed
engineering team.

(b) Innovation agenda and consumer proliferation. The organizations’ need for rapid
experimentation leads to an increasingly tall order of data-jobs and use cases from
data consumers that are hard to satisfy in a timely manner. In her experience, this
leads to friction within the organization.

2. High coupling of data pipeline decomposition:

(a) As a legacy of the ETL bound data platforms, it is common to decompose the data
platform into a pipeline of processing stages as viewed in Figure 3.1. It o�ers some
scalability in being able to work in functionally organized teams designated to
di�erent stages of the pipeline provided through the data platform. However,
there is high coupling within the pipeline architecture which slows down the de-
livery of features. It is decomposed orthogonally to the axis of change since any
change, for example of functionality or the addition of a data source, easily can
a�ect pipeline implementation in all stages of its architecture. This lies in the
sequential nature of pipeline architecture where every node, except for the out-
put layer, feeds input for another node. The implementations of the changes to
the pipeline have to be managed and their releases synchronized across multiple
teams.

Figure 3.1: Common decomposition of a data platform into its
pipeline processes, credit Zhamak Dehghani.

3. Siloed and hyper-specialized teams:

(a) With the monolithic data lake approach, data engineers are siloed together with
other data engineers who possess the same knowledge about tooling and data

20

3.2 Data Platform Architectures

engineering skills. They become separated from the operational teams where the
data they consume originates. The operational teams also hold no incentive to
provide meaningful, truthful and correct data. To add to this data engineering
teams often lack domain knowledge that they need, to understand the data but
also the needs of the data consumer. This makes it increasingly hard to deliver
useful data and to service the requests of data lake users.

Per the data mesh approach, every domain that provides data as a product has owner-
ship over the data through a cross-functional domain team consisting of at least one data
engineer and a data product owner. The domains themselves can be based on both source
and consumption of data. Source oriented domains align with the origin of the data while
consumer-oriented domains align with shared usage of specific data. The consumer-oriented
domains are managed by a domain team that seeks to satisfy a specific set of use cases and
often manage transformed and aggregated data from other source domains.

Figure 3.2: The data platform for a music streaming company,
monolithic approach, credit Zhamak Dehghani.

Fig 3.2 depicts the monolithic data platform of a hypothetical music streaming company
as the big blue box. It manages raw data that can be tied to domains. The boxes to the left of
the monolith are domains that source raw data to the data platform. The shapes to the right
are consumer domains that aggregate and transform data into enriched data sets.

With a data mesh approach the conventional monolith data platform would more closely
resemble Figure 3.3 where the data belongs to its domain, managed by domain teams, rather
than the centrally managed monolith that previously claimed ownership of the data.

The data engineer works with ensuring that the stipulated service level objectives (SLO)
are met. As an example, a source domain may express these as timeliness and error rates of
data and manage them through data cleaning performed by the domain data engineer. They
work to uphold the quality of the raw data their domain provides or, if they are part of a
consumer domain team, with consuming, aggregating and processing data provided by other
domains. The technical implementation is done through a common data infrastructure plat-
form that is developed and maintained by a designated team of data infrastructure engineers.
As in Figure 3.4, the data pipeline implementations are now moved to and maintained by the
data engineers of the domain where they are used.

21

3. Literature Study

Figure 3.3: The data platform following a data mesh approach, credit
Zhamak Dehghani.

Figure 3.4: The data pipeline is considered a second class concern
and its implementation is moved to its respective source or con-
sumption domain, credit Zhamak Dehghani.

The data product owner takes responsibility for the consumption of the data sourced
from their domain through tracking of key performance indicators (KPI). They consider what
changes need to be made to their node in the data mesh, whether it be improvements of the
data quality, the discoverability of data or something else, to drive the value their domain
o�ers their consumers. The domains that source data, providing it for the rest of the orga-
nization, should treat the data consumers as customers and seek to delight them. The data
product owner is responsible for striking the balance between the present-day competing
needs of their consumers while adhering to long term perspective strategies for their data
products.

Even though every domain team claims ownership of their data there are policies on an
organizational level for how to handle and serve data. This field is known as data governance

22

3.2 Data Platform Architectures

and parts of the field is described in the next section on data versioning. In short, every do-
main team should follow common formatting practices for how to store data, what to include
in its description and how to trace any potential lineage if the data has been transformed.
Traceability of data that has been transformed is essential to ensuring its quality for any data
scientist who wishes to consume it.

The idea is that if cataloguing of the data, and its metadata, that is hosted in the data
mesh is done well enough, no hand holding will be needed for consumption of the data. All of
the data may be stored in a shared cloud storage location. However, a centrally located data
engineering team is no longer responsible for gathering all the data and storing it in a central
data warehouse or data lake. Instead the domain team cleans and formats the data according
to standards issued on an organization wide level. This domain-focus approach allows for
gathering and refining domain specific data along with metadata that is only contained and
understood within specific domains that may now be made available for outside consumers.
It moves domain specific knowledge closer to the data engineer.

The data infrastructure platform should be built avoiding domain specific concepts, it
should be domain agnostic, and it should seek to hide any underlying complexity. The end
goal is that it should be used as a self-serve platform by the data engineers to deliver their data
products. The infrastructure team should aim to automate as much as possible of the pro-
cesses performed by the data engineers. A focus for the data infrastructure team on lowering
the lead time to create a new data product is suggested as a success criteria which may drive
this automation. A concrete lists of some of the data infrastructure platforms capabilities is
presented in the original blog post [36].

To conclude a data mesh design is a distributed design that organizes its nodes according
to their domain context of data consumption or data sourcing. It moves the technical im-
plementation and the data engineer competence to these domains which reduces siloing of
data engineers. This in turn promotes cross functional teams that are better suited to take
a holistic view of the data they work with, these teams are better suited to ensure that value
from the data is realized. Clear ownership of data is defined which provides accountability
and incentive that value is realized in practise. In the end one ends up with something like
Figure 3.5 depicting a data mesh below, where the data domains are supported by the infras-
tructure as a platform to maximise the organizational value of the datasets in their domains
under the guidance of global governance and policy standards.

23

3. Literature Study

Figure 3.5: High level view of what a data mesh ecosystem looks like,
credit Chamak Dehghani.

3.3 Data Versioning
The scientific community has long recognized the need for sharing data interdisciplinarily
and that this requires cataloging [28]. In 2009 an entity-relation cataloging system from the
library domain, FRBR [38], was applied to the context of scientific data [39]. In 2016 the
FAIR principles were released for how to make data Findable, Accessible, Interoperable and
Reusable in response to the requirement of data management plans [40]. These were still con-
sidered to not be su�cient in providing reproducibility of experiments and promoting reuse
of data, a request for further research in systematic data versioning practices was voiced by
[41]. The W3C Dataset Exchange Working Group further highlighted the lack of definitions
of data versioning concepts and recommended practices in 2017.

In response to this The Research Data Alliance (RDA) in 2020 produced a report that
delivers principles and best practices for data versioning of research datasets through docu-
mentation of use cases. The use cases were gathered from 33 di�erent organisations within
di�erent research fields to capture a comprehensive set of scenarios with di�erent needs and
challenges [27].

RDA [27] build on the work of Hourclé [39] and his application of the FRBR framework
to a scientific context. FRBR defines four levels for an entity that can be used for identifi-
cation. RDA [27] kept the four levels of the FRBR framework but modified them to suit a
scientific context, their adaptation is presented verbatim below.

1. A Work is the observation that results in the estimation of the value of a
feature property, and it involves application of a specified procedure, such
as a sensor instrument, algorithm or process chain;

24

3.3 Data Versioning

2. An Expression of a work is the realisation of a work in the form of a log-
ical data product. Any change in the data model or content constitutes a
change in expression;

3. A Manifestation is the embodiment of an expression of a work, e.g as a
file in a specific structure and encoding. Any changes in its form (e.g. file
structure, encoding) is considered a new manifestation; and

4. An Item is a concrete entity, representing a single exemplar of a manifes-
tation, e.g. a specific data file in an individual, named data repository. An
item can be one or more than one object (e.g. a collection of files bundled
in a container object).

RDA applies this framework to 39 use cases from 33 di�erent organisations within dif-
ferent scientific fields to identify a number of issues related to data versioning. They identify
that the recommendation made in previous literature [41], that states of datasets should be
unambiguously identifiable, poses further questions. If one were to implement this, for ex-
ample through checksum of the bitstream of each respective dataset, any tiny change would
constitute a new version. It is not clear that simply noting a change through checksum is
enough information for a user to evaluate di�erent versions. Therefore they pose another set
of six questions related to the issues they uncovered in applying their framework to the use
cases. As the sixth question relates to scientific citation it will be excluded.

1. Revision (Version control) - What constitutes a change in a dataset?
The previous recommendation of unambiguous identification of datasets in [41] stands
and should be performed on a fine-granular level. One should make the distinction be-
tween changing the dataset and changing its metadata, an update to the metadata shall
not be considered a change to the dataset itself and does not warrant a new revision.

2. Release (Data production) - What are the magnitude and significance of the change?
A dataset may be modified through several iterations before it is considered ready for
release, each modification sparking a new revision. A user of a previous release of the
dataset needs to understand the significance of the change and if the new release is
compatible with their dependencies. They recommend the work of [42] on Semantic
Versioning that provides best practices on communicating the significance of a change
and its compatibility with previous releases.

3. Manifestation (Formats) - Are the di�erences in the bitstream due to di�erent repre-
sentation forms?
Data may be manifested di�erently, for example through di�erent file formats, de-
pending on what workflow it is intended to be used for. The di�erent manifestations
may be identified separately but they should identify to the same work (the first and
most high level of an entity described in the four proposed levels of the framework
above.).

4. Granularity (Objects and collections) - If the data are part of a collection and which
elements of the collection have changed?
Datasets may be generated successively and constitute parts of a collection, which is

25

3. Literature Study

often the case for time series. There may be multiple levels of subcollections to a col-
lection. The level of granularity should be determined and adapted to the use case in
question.

5. Provenance (Derived products) - How do two versions relate to each other?
In the case that a dataset has been derived from other datasets it is important for the
user to be able to trace its predecessors and understand how they relate to each other.
(More on this below in a dedicated chapter called “Data provenance”)

To conclude its recommendations, the report emphasizes the di�erence between version-
ing datasets based on changes of content (dataset revisions) and communicating the signif-
icance of the change in question. They identify two key concepts of data versioning as (1)
being clear about which dataset is to be identified and (2) what one wants to communicate
about the dataset in question to its consumer or end user.

3.4 Data Provenance
Data provenance provides a historical record of data with the purpose of reproducibility.
It explains how data flowed from its origin through intermediate steps and processing to
its current state [43]. It has been described briefly in the data versioning chapter above,
this chapter will expand on the subject and present additional sources from literature which
describe how it may be implemented.

In 2006 the first International Provenance and Annotation Workshop (IPAW’06) was
held. Through a series of provenance challenges (PC1,2,3,4) posed by IPAW, the research
community reached an agreement on the core representation of provenance. This led to the
Open Provenance Model (OPM) [44], which is technology agnostic and defines a set of rules
for what inferences are valid to make o� of a provenance graph. The provenance group at
World Wide Web Consortium (W3C) later took over the research of the IPAW provenance
challenge workshop and released PROV-DM which is based on OPM. PROV-DM models
provenance through graphing with three types of nodes and seven types of edges [43]. These
can be seen in Figure 3.6.

Wang et al. [45] cover the state of the art in big data provenance, as of 2015, and propose
a reference architecture. Even though they explicitly focus on challenges related to big data,
their overall design of how to implement data provenance is general and applicable to a small
scale context as well. The provenance subsystem they propose can be broken down into
three dimensions: data, lineage and environment. In their design, data provenance captures
the state of the dataset throughout execution, lineage provenance stores the computational
activity and environment provenance saves the exact state (both hardware and software) of
the system configuration.

In the context of production-level machine learning, provenance can look something like
this [46] (Example from Microsoft): “Each [machine learning] model is tagged with a prove-
nance tag that explains with which data it has been trained on and which version of the
model. Each dataset is tagged with information about where it originated from and which
version of the code was used to extract it (and any related features).”.

There are other recent applications of provenance being applied to machine learning
contexts such as [25] which describes how provenance data can be used in practise through

26

3.5 Data Pipeline Testing

Figure 3.6: entities and edges of PROV-DM model.

their adaptation of PROV-DM, PROV-ML, in a use case in the oil industry.

3.5 Data Pipeline Testing
Testing in software development is important to the quality software [47]. Testing data
pipelines is di�cult because it poses the challenge of not only testing code but of testing
code concurrently to data. In a recent survey of techniques used for testing machine learning
systems Zhang et al. identify data as one of the components that needs testing [48].

Discovering bugs early is important, as previous inferences made by a model are often
used further on as training data in updating the model, which imposes the risk that small
errors in data can amplify over time through feedback loops. When testing a data pipeline,
which is often a part of a machine learning pipeline, the lack of data generation logic and
semantics makes testing it and tracing the origin of data bugs even harder [49].

Data validation schemas are needed throughout the data pipeline since data formats may
be changed during the data pipeline lifecycle. The process of data validation can be fully
automated [50]. However, the schema describing the data is in some cases a property of the
data pipeline and not the data source which introduces the risk that the schema may diverge
from the data source as they both evolve [3].

Hynes et al. [51] propose that although data validation and data cleaning may improve
the quality of the data fed to the model during training and subsequently inference, one can

27

3. Literature Study

still end up with a suboptimal representation of the data for a given model which will a�ect
its performance. Their solution is to apply a new category of tools that they refer to as data
linters, inspired by software linters. A data linter would take both the features present in
the data and the model type into consideration to propose corrections to the representation
of the data in question. An example would be that, if numeric values are being fed into a
linear model, these should be normalized as it is likely to improve the quality of the models
inferences.

3.6 Analysis of the Literature
In this analysis we discuss how well the literature that was found in the literature study an-
swers RQ1.1. We also analyse the role of data versioning and data pipeline testing in driving
liveness and value creation of a data platform.

Overall the literature that was found on data engineering for machine learning is often
aimed at contexts of big data and the solutions it discusses assumes availability to resources
and advantages tied to large scale operations [46][36]. We found little research on data plat-
forms and data pipelines with regards to a small scale data engineering context in this litera-
ture study. Most of the academic literature that was found on data platforms focused on big
data and issues related to scale, and their solutions often include tools based on distributed
computing. The grey literature tends to follow the same pattern. It was di�cult to find
sources that specifically discuss data engineering or data science from the perspective of a
small scale context. Much of literature that focuses on big data and scale does have parts that
can be extracted to inspire solutions for small scale practices. However, this approach entails
a lot of time spent reading and practically renders oneself doing the research and analysis
that we request be done by research professionals to fill the noted gap in literature. It would
be interesting to see this done in a similar fashion to how the RDA performed their 2020
best practices study on data versioning [27].

The study made by the RDA on best practices of data versioning was quite comprehensive
and the literature on the subject, including data provenance as a subfield, is rather promising.
However, finding literature on the subject of data pipeline testing, at any scale, was especially
di�cult. Zhang et al. [48], chapter 7.1, is the most extensive source on the subject that was
found which gather findings from multiple studies on the subject. It primarily focus on
machine learning aspects but in doing so it addresses data pipelines when discussing bug
detection in data.

On the subject of data platforms, data mesh stood out in this literature study as one of
the more promising works. Given that it has not been published in any academic journal,
it is published on a reputable grey source via Martin Fowlers blog who has received much
recognition for his work within computer science and agile software engineering. The author
of data mesh, Zhamak Dehghani, is also recognized and a prevalent speaker at large tech
conferences [52] .

Data mesh is especially interesting in that it takes a very holistic approach to what a
data platform should be and how it should go about solving the problems it is intended to.
This perspective is useful as it discusses problems not only tied to technical implementation
details that often wind up being on the subject of distributed computing, which is a problem
with much of the literature on the subject. But it discusses many things that are applicable to

28

3.6 Analysis of the Literature

contexts of any size as it re-aims the primary focus away from technical implementation to
structuring domains, ownership and collaboration. Put shortly, it specifically focuses on how
to drive liveness and value creation of a data platform (RQ 1.1) by addressing people-centric
issues.

29

3. Literature Study

30

Chapter 4

Case Study of Sentian

To shed light on challenges related to the application of data engineering for machine learn-
ing pipelines in a small scale context, an interview study and a practical implementation
was conducted at Sentian. The interview study was performed through interviews of data
scientists and a data engineer at Sentian. The implementation consisted of designing and
developing a data pipeline, to gain some first hand experience of the challenges related to
working with data engineering. By investigating the challenges from more than one angle,
i.e. both practical and theoretical, the aim was to gain a more accurate understanding of the
core of the challenges.

4.1 About Sentian
Sentian is a small, less than 20 employees, specialized machine learning company which fo-
cuses on machine learning solutions for industry. The majority of their organization is made
up of data scientists with two data engineers that support these both through data pipeline
implementations but also by evaluating tools or building them if there are none that suits
Sentians needs.

4.2 Interview Study
The purpose of the interview study was mainly to understand the data engineering challenges
that Sentian is facing and how far along they are in implementing solutions to these.

4.2.1 Method
A qualitative investigation of Sentian’s current data engineering practices related to their
machine learning projects was performed via semi-structured interviews [53] with one data

31

4. Case Study of Sentian

engineer and three data scientists. The data engineer was chosen as he has a lot of knowledge
about data engineering in general and because he works on developing data pipelines, tooling
and infrastructure. He could probably have answered most of the data engineering related
questions about Sentian, as he is the focal point for data engineering issues at the company.
However, including multiple perspectives allowed for a richer understanding and aids in
triangulating the core of data engineering challenges [7]. The three data scientists provide
a user perspective of the tooling and infrastructure while the data engineer has more of a
developer perspective. Data scientist number one is a senior full-stack data scientist, i.e.
has experience of constructing whole machine learning pipelines himself. The second data
scientist is a junior full-stack data scientist in this regard. The third data scientist could best
be described as a deep learning specialist who focuses solely on implementing and trying out
architectures in a research and development context.

The four interviewees were interviewed with interview protocol A regarding the type
and size of data that they were involved in working with in customer projects and what
challenges they experienced working on those datasets. The third data scientist however was
not involved in customer projects and could not answer these questions and as such that
interview was carried on as an open discussion on other data science related subjects. The
interview with the third data scientist should be viewed as a learning opportunity about the
data science domain for us and not as a result of the report which focuses on data engineering.
The interviews with the data engineer and the junior data scientist followed the protocol
very closely and gave good information on those subjects. Therefore we spent less time on
the prepared questions, although they were asked, and dedicated more time to having the
senior data scientist speak more freely about challenges related to his experiences.

The data engineer was additionally interviewed, using the semi-structured method on
the subject of their ongoing development of a data platform and challenges related to it in
protocol B. Unstructured interviews were held with the data engineer throughout the course
of the thesis to further enrich the context and challenges through open discussions [53].

4.2.2 Results
The results of the interviews are structured in two parts, the results from protocol A and
then the results from protocol B. As the interview with the third data scientist was more or
less aborted and continued as an open discussion on other data science related subjects it is
excluded from the results.

Results based on the semi-structured interviews conducted with interview protocol A.
Sentian has rather few projects overall at any one time and have not had more than one
concurrent project within any one domain so far. The datasets that they work with vary from
very small, less than 100MB, to quite large but not huge, less than one TB. Furthermore, the
velocity of data in production has not been demanding enough that it has posed problems
that could not be solved by parallelization of computations on a single computer. In other
words they do not work with what one would define as big data [54].

They often work in small teams of less than four people, where one is a data engineer
or even without a data engineer at all. When no data engineer is available, one of the more
senior data scientists will take on the data engineering tasks as well. It happens that entire
projects are ru by a single senior data scientist.

The three interview subjects who work on customer projects all mentioned that data se-

32

4.2 Interview Study

mantics and documentation often were lacking in the beginning of projects. They often start
out in the position of having to figure out what the data represents and what certain values
are measuring by themselves. It can be di�cult to get access to the right person within the
customer’s company that can explain the data. Throughout the project, multiple deliveries
of data may be delivered from the customer where the data was extracted by di�erent people
and as such delivered to Sentian in di�erent file formats and even di�erent data structures.

The data engineer pointed out that there may be many reasons for why it is di�cult to
obtain good and well documented data. The main one being that machine learning is not
well understood by most people, this is also the case with Sentians customers and the man-
agement of the customers who sign o� on the project. It is often understood as a blackbox
solution where they provide data and Sentian will build the machine learning model which
will consume the data and generate inferences for the customer. In this context the customer
expects an overall solution with minimum engagement from their side. Specifying data re-
quirements would require involvement of expensive technical expertise from the customers
side which may not be available or in very short supply. Stipulating that this must be pro-
vided by the customer would make selling a machine learning solution to the customer much
more di�cult. At the same time, allowing a Sentian data engineer direct access would bring
with it a host of problems regarding security and could risk putting a potential customer o�.

One of the data scientists further points out that even well functioning organizations suf-
fer from loss of information, due to human nature. The situations where machine learning
tends to be applied are also often very complex and there is no single person who can under-
stand them and all of the data that is generated in its processes. It should be expected that
there will be investigative work and that one will have to work iteratively with the customer
to find the right people who can answer specific questions. Therefore it is essential to build a
good relation and to build trust with the customer, as their cooperation is essential for being
able to gather the data and metadata that is needed to design a machine learning pipeline.

Sentian does not currently use a system for data versioning and sharing metadata that
they gather throughout a project. They do have a tool that identifies and reuses data generated
from specific transformations instead of duplicating the computations on the same data,
which guarantees that a user receives exactly the same end result. It was expressed by all three
of the interviewees that work on customer projects that a system for data versioning and
metadata sharing would further facilitate cooperation and would make revisiting projects
easier.

Results based on the semi-structured interview conducted with protocol B, and the un-
structured interviews, with the data engineer.
When it comes to the technical implementation of machine learning pipelines, of which a
data pipeline is an integral part, much of it is reliant on the availability of tools. The data
engineer expressed that many of the tool-stacks available for data pipelines, are specifically
built to solve problems of scale. They are aimed towards data engineers that work with big
data and although they greatly simplify the processes, they require skills that data scientists
often do not possess and that takes time to learn. This is a problem as data scientists at
Sentian often construct their own data pipelines, it is a part of understanding the data and
cleaning it, at least in the experimental phase. Outsourcing this process every time to the data
engineer would create double work as he, too, would have to spend time understanding the
data to be able to clean and process it properly. In their small scale context where resources
are scarce this solution is considered too expensive.

33

4. Case Study of Sentian

To avoid vendor lockdown, Sentian made a business decision to use a cloud-agnostic
approach to implement and deploy their machine learning pipelines. They decided to go
with containerization and decided on using Docker and Kubernetes for this.

To simplify data pipeline development, Sentian intended to implement a tool similar
to the data infrastructure as a platform, presented in the data mesh design (although they
were not aware of data mesh at the time), where the underlying complexity is hidden from
the user, in this case a data scientist. The implementation turned out to be more challenging
than expected and the available literature that they found tended to focus on the challenges of
implementing tools that solve problems related to scale using distributed computing prac-
tices. Distributed computing did not suit Sentians small scale context as it would impose
an unnecessary distribution related computational overhead. They have been investigating
how improvements could be made concerning data storage, specifically through a data plat-
form as a potential way of structuring and sharing data internally. The data engineer noted
that implementing ownership and delegating responsibility of data could be useful in adding
structure as Sentians organisation grows.

A custom data pipeline tool proved to be di�cult to integrate with the available machine
learning workflow orchestration tools. There were two tools that Sentian were primarily
interested in, ML-flow[55] and Kubeflow[56]. It was the belief of the data engineer that ML-
flow focused too much on being an easy to use databricks platform, which in turn is built on
Spark, and that it was over-engineered and inflexible. It did not allow for easy integration
with custom in-house tools, on which Sentian is dependent, and had limited support for
docker containerized solutions. ML-flow is no longer in beta but the data engineer still deems
it an unfit solution for use in production at Sentian for the previously mentioned reasons.
The second tool, Kubeflow, does aim to provide flexibility and is intended specifically for
kubernetes. It matched many of Sentians criteria, however, it too, su�ered from immaturity
problems when it was evaluated at Sentian, then in v.0.3. Even though Kubeflow have made
advancements in the last year, progressing their master branch to its current state, v.1.0.2,
their pipeline application in this version is still in beta [56].

Sentian ended up going with a third alternative, ARGO[57], which is built for orchestrat-
ing parallel jobs on kubernetes infrastructures. It o�ers less of the functionality that Sentian
is interested in than what ML-flow and Kubeflow does. However, ARGO is more mature
and it is the experience of the data engineer so far that as it tries to do less, it does it better.

4.2.3 Analysis of the Interviews
Comparing the results of the interview study to what we initially found when searching the
academic literature, Sentian is indeed in a situation where there is a gap between their needs
and what kind of challenges and solutions are discussed in the data engineering domain.

Sentian’s experience of problems related to receiving data from customers is not triv-
ial to solve. The problem, which stems from the people who collect the data not being the
same ones who have to clean and process it, is not unique to Sentian [58] [17]. It introduces
significant obstacles such as understanding the semantics, what features are present in the
data, and what the data’s inherent properties are. Receiving dirty data from the customer is
ubiquitous since they are not focused on remediating data related issues themselves as they
expect an overall solution from Sentian which includes this. Thus it becomes the responsi-
bility of the machine learning pipeline to make sure that incoming data is correct through

34

4.3 Data Pipeline Implementation

data pipeline testing. This could be implemented throughout the machine learning pipeline
by incorporating data validation schemas. Hopefully, as machine learning moves through
the Gartner hype cycle [59] some of the problems related to customers not understanding
the limitations of machine learning and its dependence on good data might be mitigated.
A more widespread understanding of machine learning in industry would make it easier to
motivate the customers to get more involved in the process of gathering and delivering well
structured, documented and consistently formatted data.

As a small scale enterprise, it is expensive for Sentian to develop comprehensive custom
implementations of machine learning frameworks in-house. The cloud-agnostic machine
learning frameworks that are available, and their cloud-agnostic data pipeline framework
counterparts that do not rely on distributed computing, are still immature. However, things
are moving fast in this area, and tools could conceivably become more reliable in a very
near future. On the subject of data platforms and improving reproducibility and reducing
duplicate work, one could come a long way in a small context with simple techniques by
implementing one’s own light version of a data mesh. Furthermore, the design concepts
of the data mesh could inspire Sentian in how to provide more structure employing clear
ownership of data viewing it as a product, and how to support collaboration through cross-
functional team composition. Sentian could also look into adapting or building upon one of
the existing data management platforms that have been open sourced by big tech companies
[4]. Even though these are not built with Sentians small context in mind they might still work
as a solution to share data and metadata between data scientists.

4.3 Data Pipeline Implementation
A data pipeline was implemented to gain an understanding of challenges related to data
pipeline development. It was the opinion of the supervisor at Sentian that implementation
experience is essential to one’s understanding of the ad hoc nature of data engineering solu-
tions and that this understanding is needed to be able to analyze the field and its challenges
e�ectively.

In Figure 4.1, one can see a visual outline of the data pipeline that was implemented. The
wine reviews dataset [54], which is described below in section 4.3.1, was downloaded and
stored locally on the machine where the data pipeline was run. Receiving a dataset to work
on locally for modeling and training before setting up the production pipeline is usually how
projects are started at Sentian. The data pipeline that was implemented would be classified
as a so-called ELT pipeline, as the data is Extracted (downloaded from Kaggle), Loaded (per-
sistently stored on disc) and Transformed (through data processing and enrichment) for a
specific purpose. In this specific case, the data was transformed such that it could be used for
a machine learning model to predict the price of wine.

As one can see in Figure 4.1, the data pipeline building process followed a standard ex-
ecution of investigating, cleaning and processing. This way of working is very common and
was the overall approach found in all three of the interviews with subjects who work on
customer-facing projects.

Throughout this chapter we cover the work of designing and implementing this data
pipeline. We end the chapter with my own analysis, where we generalize and describe the
challenges that we faced and apply what we learned from the literature and interview studies

35

4. Case Study of Sentian

Figure 4.1: data pipeline overview

to the context. Since the purpose is to understand challenges related to constructing and
working with data pipelines we do not focus on minute technical details. The code imple-
mentation can be found in the appendix.

4.3.1 Method
Building the data pipeline itself was performed in conjunction with performing the following
tasks: (1) investigating and understanding the data (2) validating the data, i.e. making sure
that the data behaves as expected (3) cleaning the data and (4) engineering features that are
fit for model serving. In the following section the activities of these tasks will be covered
with the engineering of features being split up into individual parts for each feature that was
engineered. The choice to perform these specific tasks was based on practices described in
[3] and in the interviews with protocol A.

Python was chosen as the programming language because of the availability of mature
data science libraries. The data pipeline was implemented iteratively following agile prin-
ciples. Functionality was implemented in line with a micro-service architecture to achieve
loose coupling of components. Daily standups were held with the Sentian supervisor and a
Kanban board was used to organize task supervision.

Choosing a Dataset
We chose to look for non-mathematical problems for our data pipeline implementation since
the purpose behind the implementation was to work with data challenges and not to, for
example, use mathematical modeling to classify the data. When choosing a data set to im-
plement a data pipeline for, there were some aspects that were important for the scope of

36

4.3 Data Pipeline Implementation

this thesis. The main one being limited time and resources, another one being my limited
previous experience of data scrubbing.

The wine reviews dataset that we chose was rather clean and well structured compared to
the real world examples that have been experienced at Sentian. Each review also contained
numeric information about a wine through price and score along with other non numeric
information about a wine. Predicting a numerical value based on both numerical and non-
numerical values is a broad problem which serves learning well and as such we decided on
preparing the data for price inference. There were still, however, some processing that needed
to be done such as data cleaning, transformation and enrichment of the data further via the
features that are already present. The challenge of figuring out the features and inherent
tendencies of the data that can be used in modelling was also present.

The wine reviews data set covered many of the common pre-processing steps of a real
world dataset with a limited amount of unstructured chaos. Chaotic and unstructured data
can otherwise require specific ad hoc solutions which may consume a lot of time without
generalizing well for the understanding of constructing data pipelines.

4.3.2 Data Investigation, Validation and Cleaning
The first step in working with the data set was to understand the structure and broad prop-
erties of the data itself. This was foremostly done through simple exploratory data analy-
sis. Much of the work lied in manually looking at the data, what features were present and
how and if there are any internal relations. Locating where missing values are prevalent and
whether they should be remedied through interpolation or other heuristic solutions was done
early. It was done to eliminate unusable data before further processing.

An example of this would be rows where the price was missing, which unables using any
of the data in the row to train supervised machine learning models on predicting price, as it
has no label. This label could potentially be collected manually but one could not guarantee
that the price had not changed from when the review was made. One could still use an
unsupervised model for rows with missing price data that clusters them with other wines
that do have price data. But as rows with missing price data were rare there would likely be
little to gain from using an ensemble of both a supervised and an unsupervised model for
price inference.

With the wine reviews dataset, missing values were especially common in the designation,
price and region(1 2) columns. The number of rows containing missing values in any of the
columns except for price and points (score) was 17 percent. To decide whether or not to drop
the rows that contain missing values in any columns except for price and points, their price
mean and standard deviations were analyzed.

The price distribution diverged from the set of rows not containing any missing values in
the previously mentioned columns. The distribution skew from removing these rows should
be kept in consideration when choosing what model to use for inference, it might be prudent
to choose one that is more robust to small di�erences and not prone to overfitting. In Figure
4.2 we can see the di�erence in points and price expressed with means, standard deviation
and quartiles with the count describing the number of rows from the wine reviews dataset
that was used to produce the table.

Manually looking at the data inspired some possible relationships that could be explored
further by visualization through the pyplot library. Since the data was sampled and authored

37

4. Case Study of Sentian

Figure 4.2: points and price distribution of rows with missing values
(left) vs rows without missing values(right)

by humans, human bias was a good place to start.
Human bias might have an e�ect on the skew of the data, specifically the price and scores

of a wine. A large part of the experience when trying a wine may come from circumstantial
things other than specific taste attributes, such as visual cues [60]. Therefore we consid-
ered that knowledge of origin may a�ect the perception of a wine. The question was posed
whether the experience of a wine could be influenced by one’s worldview which may di�er
between cultures and nationalities. If it does, then that raises the question of how it a�ects
the perception of a wine.

Most of the reviewers in the data set are from America as it is an american magazine,
although some authors are based abroad. A significant part of the reviews in the dataset,
47%, are authored by the top five contributors out of a total of 19 authors. All of these top
authors are american, although one of them is based in France and one in Italy. This seems
to be a trend for all of the 19 authors, however it is hard to verify current residence through
online sources.

Visualization of score distribution by the di�erent authors through box plots showed
that, mostly, they had similar means and spreads in their scoring of the wines they had re-
viewed. The same comparison yielded similar results when producing boxplots for the dif-
ferent types of wine and di�erent regions as well. The di�erence laid primarily in the upper
extremes, some authors were more hesitant than others to give exceptionally high scores. This
may indicate that there is little bias in the data but that the range that they score their wines
within might di�er. Some might call this bias but we believe the term upper bound might
be more descriptive since it is not a general skew for the whole range of values.

4.3.3 Feature Extraction of Year
Following up on the human bias investigation, one could imagine that year would impact
any inference of the price of a wine. As it was, however, year was not present in the data set

38

4.3 Data Pipeline Implementation

in its raw form but could be extracted from most of the titles. Consequently, we performed
a feature expansion on the title column to extract all rows containing a title year from which
the title column was split into two new columns, one containing the name and one containing
the year.

4.3.4 Feature Extraction of Geographical Location
The geographical location of a wines origin was extracted through querying the Google Maps
API for coordinates for (region_1, province, country). We chose not to delve deeper into
origin, specifically through winery, since that might introduce noise into the data. Wineries
often have multiple addresses in an area and choosing which one to represent the geographical
origin was deemed to not likely contribute in predicting score or price of the wine. What is
interesting from this perspective is whether a geographic region tends to produce a certain
quality of wine or of a certain price range. The name of the winery could theoretically still
be used to further extract information about price range and quality, assuming that it occurs
often enough for an algorithm to notice the pattern.

4.3.5 Feature Encoding of Descriptions
As the descriptions all describe the same type of object, a wine, there were a lot of adjec-
tives and categorization terms present. From a theoretical micro economic perspective, there
should be certain properties of a wine that factor into its pricing. The hypothesis was that
these properties could be correlated with certain words used to describe a wine and that the
presence of certain words could be used by a model to glean information about the price of
the wine.

To implement this we traversed the descriptions of the dataset to gather the “N” most
commonly used unique words apart from stopwords and symbols. Each description of a
wine was then checked against this list to count the occurrences of these common words.
The words may then be encoded using a simple library implementation of the encoding that
fits the specific model the best, as there are many to choose from that suit di�erent situations.

4.3.6 Analysis of the Data Pipeline Implementation
As previously stated, the WR dataset is very clean, especially so compared to the experiences
at Sentian. Despite this, it became clear during the investigation phase that deciding how to
perform the most basic cleaning, such as removing missing values, potentially could signif-
icantly skew the distributions of features in the dataset. One has to have an understanding
of the data, but also of the context of its consumption, to be able to implement even basic
functionality of a data pipeline. To clarify this with an example, we can imagine that the use
case for the WR dataset is expanded to a context where it is likely that other people would
consume it with other purposes in mind. Then one should consider that many of the de-
cisions that we made in processing the data, although they were motivated for our specific
application of predicting price, could counteract, say predicting origin. In that case it could
prove to be unhelpful to remove entire data rows if both (province, region_1) are present but

39

4. Case Study of Sentian

the country is missing. It could very well be worth the e�ort to instead fill in the country as
it would likely be easy to recover from the Google Geocoding API.

In our implementation we were spared from many of the more di�cult challenges which
often occur in putting a data pipeline in a production environment where additional de-
mands are incurred. An example of such a challenge could be that if the data is streamed to
the data pipeline and consumed in small batches for inference, then choosing how to process
the data is no longer trivial. The model’s capacity to make an inference is a�ected negatively
by missing values. Increasing the time window for the batching so that more data can arrive
may enable one to interpolate the missing values which could alleviate the performance drop
from missing values. However, stating the logic for all possible cases of this is di�cult and
the consequences of getting it wrong can be detrimental to inference performance. There
might also be time constraints from a required frequency of inferences which limits the time
window for batching.

4.3.7 Future Work
In regards to enrichment, weather and climate has a documented impact on wine [61], there-
fore it was hypothesized that this information could be useful for a multitude of analyses.
There was an idea that the year and geo location of wines could be used to gather weather
data. This could be done through [62], although it is not a free option. The main limitation
and the reason for not implementing this was shortage of time. There are surely many other
interesting enrichments and transformations that can be made that have the potential to be
useful. However, even though we do like wine (and data), endlessly improving the potential
of the wine reviews dataset was not the purpose behind the implementation of this specific
data pipeline.

It would be interesting to see how available tools could be applied to deploy the data
pipeline, either as it was implemented or according to our design that is presented in the
analysis, as a part of a machine learning pipeline in a production environment. The wine
reviews dataset could be split up into multiple batches which could be fed into the machine
learning pipeline, adjusting the data pipeline and the machine learning model after every new
batch. One could also scrape new wine reviews from the winemag.com website and make in-
ferences on these. It would be interesting to see a technical implementation that persists and
versions the information throughout the machine learning pipeline for reproducibility. It
would also be interesting to see a technical implementation of how such information could
be gathered and shared through a data platform with the discussed cataloguing system func-
tionality.

40

Chapter 5

Mapping to Agile practices

In analysing the literature and the case study it became evident that there is an overlap in
problems addressed by the big data community and by agile software development. This
spawned the second set of research questions, RQ2.1 and RQ2.2 which are presented below,
in an attempt to remedy part of the gap discovered in literature.

RQ2.1: “Can the principles behind the agile manifesto be mapped to the architecture of current
data platforms to extract insights that may be applied to a small scale context.”

RQ2.2: “Are there practices in small scale data engineering that map well to the principles of the
agile manifesto?”

When we were developing the data pipeline implementation we did so using agile prac-
tices. In this chapter we analyse one of the state of the art data platform architectures, the
data mesh, through a mapping of its concepts to agile principles. This provides an agile
perspective of designing a data platform which could facilitate analysis and discussions of a
custom data platform implementation for a small scale context.

5.1 Method
We chose to perform the mapping of each of the twelve principles behind the agile manifesto
to the two criterias (a, b) below.

(a) Mapping of agile principle in question to relevant concepts in data mesh (RQ2.1).
(b) Example of small scale data engineering practise that relate to agile principle in

question and how it does so (RQ2.2).

The reason for choosing the data mesh architecture to represent the state of the art of
data platforms in this mapping is because of its holistic approach. It does not only focus on
the technical implementation but discusses value creation, data ownership and organization
structure around the data platform as well. This can help answer not only RQ2.1 but RQ1.2
and RQ2.2 as well.

41

5. Mapping to Agile practices

5.1.1 Choosing a Definition to Represent Agile
There are many writers on the topic of agile practices. Agile has grown to become the de facto
approach for software development [63]. Amongst the authors, or cosigners if you would, of
the agile manifesto you will find both the authors of extreme programming and the authors
of SCRUM amongst many other well known figures within software engineering [8]. It is safe
to say that the collective knowledge of agile development amongst the authors of the agile
manifesto is comprehensive and that the principles behind the agile manifesto ought to be a
good representation of agile principles.

5.2 Mapping of Agile Principles
Below we present our mapping of our criteria to the twelve principles behind the agile mani-
fest. If one criteria is split into multiple points then i) and ii) is used to enumerate the points.

1. Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

(a) Data mesh specifies using Service Level Objectives (SLO) to ensure satisfaction
amongst data product consumers which could state timeliness of new delivery of
data and error rates amongst the data.

(b) Expedite the delivery of a data product by automating the data pipeline and up-
loading the data product to consumers via a data platform directly as the raw
data is made available.

2. Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

(a) Data mesh allows the data lake practise of using ELT in its source domains, al-
though its consumer domains do host processed and aggregated data. These data
source domains provide the consumers of raw data products with the possibilities
of performing unforeseen transformations and aggregations of data.

(b) i. Persisting raw data at ingestion when designing data pipelines allows for
unforeseen transformations and aggregations of data.

ii. Micro service architecture decouples functionality in an otherwise highly
coupled DAG such as a data pipeline.

3. Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

(a) The data mesh approach of providing data infrastructure as a platform which
is developed with the goal to shorten lead times for creating new data products
supports this.

(b) Micro service architecture and decoupling allows for constructing a data pipeline
with the most basic data processing to start with. This in turn allows a data
scientist to start modeling and training with one version of the data sooner. As

42

5.2 Mapping of Agile Principles

the data pipeline functionality is developed further, the training and serving data
will improve and allow for better accuracy of the model.

4. Business people and developers must work together daily throughout the project.

(a) Data mesh adoption of domain driven design, and its management structure
through domain teams to reduce siloing and promote cross functional teams.

(b) Data is widely used to inform business decisions, as such the data engineer needs
to have a communication line with business so that they are informed of available
information. The end goal of the work that a data engineer performs is to support
business, including them as they hold a holistic view is important.

5. Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

(a) The role of the data product owner of domains in the data mesh enables these
motivated individuals to take initiative to drive value creation.

(b) This principle is deemed as general advice that does not change between software
and data engineering contexts.

6. The most e�cient and e�ective method of conveying information to and within a
development team is face-to-face conversation.

(a) Is enabled by data mesh by cross functional domain teams.

(b) This principle is deemed as general advice that does not change between software
and data engineering contexts.

7. Working software is the primary measure of progress.

(a) Tracking usage of data products and how well the SLOs are met has a similar
focus in data mesh.

(b) Same as (a).

8. Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

(a) Data mesh consumer domains make aggregations and processed data available.
A data scientist may need data that is similar to a raw data refinement that has
already been performed. In this case that the data scientists use another pro-
cessed dataset, it has to be well described through metadata and provide data
provenance.

(b) Save and make available any existing refined data, doing so will allow reuse by
other data scientists and make it possible to continue working at a constant pace
without slowing down having to wait for development of a data pipeline that will
refine the raw data.

9. Continuous attention to technical excellence and good design enhances agility.

43

5. Mapping to Agile practices

(a) The concept of data governance policy for the data platform in data mesh guides
good design of data products. Stating this through policy imbues it in work prac-
tices to be used continuously.

(b) In a small scale context, as we mention in the interview results of interview pro-
tocol A, a data scientist might have to make their own data pipelines. If the data
platform is developed with agile principles in mind, then it is likely to promote
agile practices in using it. An example of this is my own application of litera-
ture regarding versioning in designing persistence of data in my data pipeline
implementation analysis. If an upload of a data product to the data platform
requires both an original “ground truth” file such as a .csv as well as one or more
serialized object files such as a .pickle, then the data scientist will be influenced
in their design of the data pipeline to create both of those entities as they will be
required to upload ones work. Not only uploading processed data but raw data
is ,as discussed in the context of ELT, in line with agile principle 2.

10. Simplicity - the art of maximizing the amount of work not done - is essential.

(a) i. Data mesh source domains allow for ELT, which postpones the transforma-
tions until the specifically transformed data is needed. Combining source
domains with consumer domains which provide refined data products for
other users with similar needs minimizing.

ii. Data infrastructure as a platform also maximizes work not done by provid-
ing reusable functionality and striving for automation while hiding under-
lying complexity.

(b) i. Gathering domain expertise as a data engineer, or hiring it, saves time as
there may be industry standard semantics.

ii. A domain expert may have experience of common correlation and causation
relations of data and knowledge of who to ask regarding specific system pro-
cesses that generated poorly documented data.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

(a) The domain teams of data mesh are self organizing. Data pipeline architecture is
considered a domain-level concern. Although there are standards and some data
governance through policy that must be adhered to.

(b) Trust the data engineers to evaluate and make their own architecture and design
decisions for projects. Entrust a person such as a project leader with staving o�
the pressures from top management to use specific hyped architectures or tools.

12. At regular intervals, the team reflects on how to become more e�ective, then tunes
and adjusts its behavior accordingly.

(a) Not specifically brought up in the data mesh article.

(b) All users and contributors of a data platform should meet regularly to discuss
improvements not only of data platform functionality but governance policy as
well.

44

5.3 Data Pipeline Implementation Revisited

5.3 Data Pipeline Implementation Revisited
After having performed the agile mapping we revisited our data pipeline implementation
with both a new agile perspective and a new understanding of how to apply the findings
from the literature study. We used our newly gained knowledge of what parts of agile and
literature could be applied in constructing a data pipeline in conjunction with the existence
of a data platform. This section serves to exemplify what we, based on our findings, consider
to be best practise. It is our attempt at bridging the gap we found in literature on the subject
of best practices for small scale data engineering.

Figure 5.1: Our suggestion of the data pipeline, had it been imple-
mented with our agile perspective and best practices.

Figure 5.1 may serve as an example of the basics of what a batch oriented data pipeline
may look like with testing and monitoring according to what we found in the literature
study. It may also exemplify how to apply our agile mapping and our literature study findings
on data versioning and provenance through answering the questions (1) what data should
be persisted, (2) how should it be persisted and (3) how should it be catalogued. It is our
own view that these three questions should be answered by a data platform solution to drive
liveness through discoverability and reproducibility of data.

As to not clutter Figure 5.1, data checks, some data flows and the file validation schema
has been left out. The data validation schema would be implemented as a filter which does
not allow data that does not meet its criteria to pass through and instead discards it. As
data is discarded at a validation schema, it should be logged in a database which rows were
discarded and which criteria were not met. The dataflow of this logging is not included in the
figure. As we describe in the background chapter on data pipelines, simple checks on data
should be included where data is processed to catch wrongful data which could be caused by
software errors. Additionally the monitoring has been included as part of the process that

45

5. Mapping to Agile practices

it monitors instead of depicting it as an individual process which consumes and outputs its
own dataflow. The data flow from Google Geocoding API has also not been included.

5.3.1 Data Validation Schemas and Data Monitoring
The parts of the data pipeline design that have been implemented are explained in section
4.3 on our data pipeline implementation, therefore our focus in this design on the parts of it
that are new, i.e. the data validation schemas and the data monitoring. As mentioned in the
background chapter 2, data cleaning can be performed, or tightly coupled, with a data vali-
dation schema. In our proposed design they are separated as DVS1 is intended to work as a
filter which discards data that does not meet specific criteria. The data cleaning on the other
hand includes processes where data is not only discarded but remedied if possible. An ex-
ample of this is the previously mentioned example in the beginning of 4.3.6 where (province,
region_1) was present but the country of origin was missing. As stated this could likely be
remedied in most cases by retrieving the country by querying the Google Geocoding API
with (province, region_1). The second data validation schema, DVS2, would also work as a
filter and is included as the coordinates have newly entered the data pipeline. Both validation
schemas would, as previously stated, log what data is discarded and why in a database.

The monitoring of the di�erent processes collects metadata on specific intermediate
states of each batch run. Some examples of what could be tracked are presented below.

• Monitoring of file (the state before ingestion): file format (if multiple file formats are
allowed), file size, time of creation etc.

• Monitoring of data cleaning: distributions, means and standard deviation of price and
score before normalization, what percentage of rows have been complemented through
remedying missing country etc.

• Monitoring of Geo-coder: how many calls are made to Google Geocoding API and
how many are returned. If geographical zones are defined, what percentage of the
wines are from europe, america etc.

How e�ective the monitoring and data validation schemas are could also be subject to
testing. It could be done by having someone, who preferably did not work on the data
pipeline, perhaps a data scientist who will use it, introduce faulty values in the dataset that
would disturb a potential model. This new dataset containing faulty values could be passed
through the data pipeline in an exercise to see how well the monitoring catches for example
a distribution skew or unrealistic data. This could also serve to test the e�ciency of the data
validation schemas. It could also be done the other way around, similar to test driven devel-
opment, where the data engineer designs the monitoring and the data validation schemas to
catch potentially wrongful data that the data scientist believes could be disruptive.

5.3.2 Persistence to Data Platform and Cataloguing
For the sake of choosing a ground truth, the original data file itself will be saved. For practical
purposes all other data will be saved as serialized objects, in our case as a .pickle file as we use
python, which is significantly faster to read than a .csv file. The enrichments will be saved
individually as this enables higher granularity for a potential user to only retrieve exactly

46

5.3 Data Pipeline Implementation Revisited

the data enrichment that they want. At the states where the data was being monitored, the
metadata from the monitoring should be saved along with the data that it monitored. Parts of
the metadata from the monitoring can be tagged to be included in the catalogue description
of datasets and collections to help a browsing data scientist determine if they want to retrieve
it.

A data scientist working on another project might be interested in using a dataset similar
to theirs, perhaps to diversify their own dataset or test out their model on a di�erent dataset.
Experimenting with open datasets that are related to a problem to prepare for a potential
project has been used in practise at Sentian. As described by [19][20], enriching a dataset
by diversifying it with external data is a helpful and common practise among data scientists,
especially within deep learning where large amounts of data is needed to train models. As
machine learning is expanding within deep learning, this way of working may become more
relevant to Sentian in the future. Therefore implementing cataloguing and versioning on top
of a potential data platform could be worthwhile, we use our own data pipeline example in
Figure 5.1 to exemplify how it could be designed.

For the cataloguing system to provide provenance and dataset discoverability, it has to
have some way of versioning and structuring the datasets that are contingent to the same
data source. In our case we would like to be able to access all of the data that was persisted to
the data platform throughout the wine reviews data pipeline design above easily. Applying
the data versioning framework of RDA [27], which is described in the literature study, we can
explore one way of implementing the cataloging structure through our data pipeline design
and the wine reviews dataset as an example.

• Work, the tasting experience of the authors.

• Expression, the review and score along with info about the wine origin presented by
wine reviews magazine.

• Manifestation, the scraped wine reviews dataset that is hosted on kaggle, with the
specific data schema that the person who scraped the reviews defined.

• Item, the wine reviews .csv file

In our specific example we are somewhat limited in which of the levels we are able to
a�ect, since we enter this picture at the manifestation level and have no control over the
work, i.e. the sampling process of the data. In fact, this is often the situation that Sentian
themselves experience. The data that they are provided with is often extracted from the
customers’ existing database, which if done inconsistently leads to Sentian having to deal
with di�erent manifestations of data (di�erent file types and data formats).

Specific catalogue structure can be done in many di�erent ways. Let’s imagine that it
is structured by domain and that food and beverages is its own domain. Here we find dif-
ferent works that are related to the domain such as our specific set of wine tastings (case
specific equivalent to the observation/data gathering process). The arrows represent rela-
tions which should be included in the metadata on each object to provide provenance. The
three abstract levels of manifestation, expression and work are mainly serve the purpose of
providing provenance. On the item level, each collection of files and each file within a collec-
tion should be versioned. Within a collection of files any dependencies between individual

47

5. Mapping to Agile practices

files must be included in the metadata. An example of this would be the geo-coordinate en-
richment data which should be documented was retrieved from Google Geocoding API via
(region_1, provenance, country) from the cleaned wine reviews file.

The relation between the wine reviews item and the enriched wine reviews expression is
drawn di�erently from the other relations simply to draw attention to it crossing multiple
abstraction levels, which is an important use case. In our specific example we have changed
the contents of, and enriched, the wine reviews dataset with external information which leads
us to having created a new expression of the wine tastings. Even though we have created
an expression, for provenance reasons, the enriched wine reviews dataset is related to an
item the wine reviews .csv file that we retrieved from Kaggle. Furthermore, the externally
collected data on geo-coordinates should also be included in the provenance information on
the expression level as its origin is the same regardless of how we manifest the information.

There are two main reasons for not persisting an enriched dataset as one object, but
as separate files: (1) separating the modified original dataset from the multiple individual
enrichments reduces redundancy (2) it allows for easier implementation of high granularity
provenance as specific enrichments can be traced directly to its specific creator and original
expression if come across as part of some other collection. A potential user can still retrieve
the same complete enriched representation of a dataset through the expressions’ collection.
Being able to use a processed dataset representation, although it gives up some control, does
save time. One can still retrieve the individual components of the collection if it is important
to maintain control since the enrichments are persisted as individual files.

5.4 Analysis
In reflecting on the mapping and discussions of possible angles and perspectives for where
to apply specific agile principles it dawned on us that although the mapping did lead to
formulations that can be useful to follow as good practise, the discussions themselves served
a far greater purpose. Using the principles behind the agile manifesto served as a guiding
document not only for what to discuss but also how. It provides a common language and a
basis for what level to discuss topics that are often related to technically advanced solutions
in regards to which the engaged participants may come from di�erent backgrounds and have
di�erent perspectives and vocabularies.

Evans [37], the author of domain driven design which is applied in data mesh, discusses
the need for a shared language, referred to in the book as the ubiquitous language, between
participants from di�erent backgrounds to e�ectively define and talk about problems spe-
cific to their domain. We argue based on the findings of this thesis that the principles served
this purpose and that it would be interesting to explore this further. Specifically through
including more potential stakeholders of the data engineering context who are from other
backgrounds, such as data product owners and data scientists.

There are surely more mappings and similarities between agile and both data mesh and
data engineering in small scale contexts that can be made. We believe that the mapping that
was made indicates that first of all it can be done, but also that the mapping that was made
can provide a useful perspective. The mapping can be read to extract best practices from big
data literature to a small scale data engineering context where it may help navigate solutions
and discussions that lie in the gap.

48

Chapter 6

Discussion

In this chapter we make an attempt to answer the RQs: 1.1, 1.2, 2.1 and 2.2 by tying together
the results from the three di�erent phases of this thesis. We also shed light on any tangent
findings that relate to data engineering for machine learning in a small scale context.

RQ1.1: “What is the state of the art of data platform architecture and how do one drive
liveness and value creation of a data platform?”

RQ1.2: ”How well can a state of the art data platform architecture be applied to a small
scale machine learning context outside of big data?”

RQ2.1: “Can the principles behind the agile manifesto be mapped to the processes of
state of the art data platforms to extract insights that may be applied to a small scale
context?”

RQ2.2: “Are there practices in small scale data engineering that map well to the princi-
ples of the agile manifesto?”

Starting with RQ1.1, data lakes seem to still dominate the conversation in regards to
data platform architecture. Especially so in the context of data science and machine learning
endeavors. Data mesh seem to have gained some traction in the grey literature for this same
context. Most of the literature on the subject of data platforms focuses mostly on scalability in
large or huge scale contexts and there is a lack of best practices that can be applied regardless
of scale. There are strategies to drive liveness and value creation of a data platform, such as
the data product owner concept, that are discussed in literature that can be useful at all scales
of operations. However, the fields of data platforms and data platform governance are still
evolving. The development of new data platform architectures is continuous and the debate
of which data platform governance methods are the most successful in driving liveness and
value creation are not, by any means, settled.

49

6. Discussion

In regards to RQ1.2, to put it short: yes we believe that state of the art architectures can
be applied to a small scale machine learning contexts outside of big data. There are modi-
fications that need to be made where the state of the art data platform architectures focus
on solving big data problems, which may interfere with the needs of small scale engineering
e�orts. An example of this is the heavy use of distributed computing tools, which for a small
scale context bring a significant overhead as described in the results from interview protocol
B.

As discussed in the literature study analysis, much of the literature on ELT-type data
platforms focuses on big data and distributed computing. We did find one architecture, the
data mesh, which was especially promising specifically because it brought a more holistic
view. In focusing less on software related technical details of how to implement scalability,
which other architectures such as the data lake heavily do, we find that data mesh has larger
potential to inspire solutions for a small scale context through the other aspects of its design.
Data as a product and clear data ownership to drive value creation being examples of such
aspects.

In the results of the case study interviews, it was expressed that the focus on distributed
computing in state of the art solutions was an architectural property that interfered with
their interests in a small scale context. An interest was also expressed in being able to share
metadata and data semantics amongst data scientists which as we mention in the analysis
of the interviews could be done via data management platforms [4]. However, these data
management platforms have not been evaluated in this thesis and as such we cannot vouch
for this kind of solution.

In our own data pipeline implementation analysis we focus on the practise of designing
a data pipeline and which intermediate states of data throughout this data pipeline should
be persisted to a data platform. We exemplify how data versioning can be applied to data
and how to structure the data catalogue of a data platform to provide discoverability and
the ability to ensure quality of data through data provenance. We believe that providing
discoverability and provenance should be part of the technical implementation and that if
executed correctly it will drive liveness and value creation.

Combining the philosophy and organizational concepts of the data mesh design with our
design of a data pipeline and a data platform implementation, we believe that it is possible to
design and implement a data platform based on a state of the art architecture that is suitable
to a small scale context. Furthermore we believe that the findings from our mapping to
agile principles can support the execution of the data platform implementation and of data
pipeline implementations as well. Using the agile perspective and our mappings can serve as a
solid starting point for identifying agile concepts and for starting to build on the ubiquitous
language, [37], of the domain of small scale data engineering for machine learning.

Throughout the thesis we made unrelated findings that are relevant to small scale data
engineering for machine learning overall but not to the research questions. The most promi-
nent such finding is that it has been made evident to us from our experiences of this thesis
that good data engineering cannot be performed in isolation. It has to be carried out in co-
operation with the data source provider, which we learned from the qualitative investigation,
and with the end user, which was exemplified by the findings from cleaning the wine reviews
dataset. This sentiment is also found in literature. It is one of the focal points in the critique
of Zhamak Dehghani, in her article on the data mesh, of how data engineers tend to be siloed
o� from the operational departments of an organisation.

50

It is brought up in the literature study by Dehghani [36] on the topic of data mesh 3.2.3
that siloing of data engineers through centralized specialized teams is a bad practise. We
note that this is supported by Conway’s law [64] which is very relevant to understanding the
context of how a data platform may end up delivering middling results regarding its value
creation. If one were to leave it up to an isolated team of data engineers to build and maintain
a data platform and its contents, then one would run a high risk of ending up with a data
platform that supports the needs of the data engineers rather than the needs of the users.
We also find in our data pipeline implementation how decisions made when setting up the
data cleaning may heavily a�ect the predictive capabilities of a dataset. These two findings
exemplifies well why we identify that the role of the data engineer is very much that of a
team support player, and that this role is best served in cross functional team environments.
Of course this does not mean that the role of the data engineer is backstage, it is very much
an interconnected role as its actions a�ect all parts of the decision making chain of a data
driven organisation.

We believe that the results from this thesis can be useful in informing data engineering
solutions for machine learning in small scale contexts overall but that the work should be
viewed as exploratory and that it is far from complete. Things are however moving fast in
this area and we remain positive that more substantial research will be carried out to start
mending the gap between the current state of the literature and the needs of small scale data
engineering e�orts.

51

6. Discussion

52

Chapter 7

Conclusions

We find that there is a gap between what is being written about in literature in regards to
small scale data engineering for machine learning and what is applicable to the challenges
and needs uncovered in the case study. The results of this thesis can help inspire implemen-
tation of data platforms and data pipelines in a small scale context and remediate the gap
in literature. Most importantly we illustrate that there is a need for more research within
the area of small scale data engineering for machine learning. To conclude we would like to
emphasize the importance of focusing on solving challenges related to small scale e�orts, to
enable widespread adoption of machine learning throughout industry.

53

7. Conclusions

54

References

[1] The Economist. The world’s most valuable resource is no
longer oil, but data. The Economist: New York, NY, USA,
2017. https://www.economist.com/leaders/2017/05/06/
the-worlds-most-valuable-resource-is-no-longer-oil-but-data as
of May 24th 2020.

[2] Samuel Flender. Data is not the new oil. web: Medium, 2019. https:
//towardsdatascience.com/data-is-not-the-new-oil-bdb31f61bc2d as of
May 24th 2020.

[3] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich. Data man-
agement challenges in production machine learning. In Proceedings of the 2017 ACM In-
ternational Conference on Management of Data, pages 1723–1726, 2017.

[4] Jesus Rodriguez. How linkedin, uber, lyft, airbnb and net-
flix are solving data management and discovery for ma-
chine learning. 2019. https://towardsdatascience.com/
how-linkedin-uber-lyft-airbnb-and-netflix-are-solving-data-management-and-discovery-for-machine-9b79ee9184bb
as of May 24th 2020.

[5] Jim Gray and Prashant Shenoy. Rules of thumb in data engineering. In Proceedings of
16th International Conference on Data Engineering (Cat. No. 00CB37073), pages 3–10. IEEE,
2000.

[6] the Research Data Alliance. Big data - defintion. https://www.
rd-alliance.org/group/big-data-ig-data-development-ig/wiki/
big-data-definition-importance-examples-tools, year=2020.

[7] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical software engineering, 14(2):131, 2009.

[8] Martin Fowler, Jim Highsmith, et al. The agile manifesto. Software Development, 9(8):
28–35, 2001.

55

https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://towardsdatascience.com/data-is-not-the-new-oil-bdb31f61bc2d
https://towardsdatascience.com/data-is-not-the-new-oil-bdb31f61bc2d
https://towardsdatascience.com/how-linkedin-uber-lyft-airbnb-and-netflix-are-solving-data-management-and-discovery-for-machine-9b79ee9184bb
https://towardsdatascience.com/how-linkedin-uber-lyft-airbnb-and-netflix-are-solving-data-management-and-discovery-for-machine-9b79ee9184bb
https://www.rd-alliance.org/group/big-data-ig-data-development-ig/wiki/big-data-definition-importance-examples-tools
https://www.rd-alliance.org/group/big-data-ig-data-development-ig/wiki/big-data-definition-importance-examples-tools
https://www.rd-alliance.org/group/big-data-ig-data-development-ig/wiki/big-data-definition-importance-examples-tools

REFERENCES

[9] Agile Alliance. What is agile software development. 2015. https://www.
agilealliance.org/agile101/ as of May 24th 2020.

[10] Vahid Garousi, Michael Felderer, and Mika V Mäntylä. The need for multivocal lit-
erature reviews in software engineering: complementing systematic literature reviews
with grey literature. In Proceedings of the 20th international conference on evaluation and
assessment in software engineering, pages 1–6, 2016.

[11] James Furbush. Data engineering: A quick and simple def-
inition. 2018. https://www.oreilly.com/content/
data-engineering-a-quick-and-simple-definition/ as of June 08th
2020.

[12] Dice. Dice tech job report. 2020. https://techhub.dice.com/
Dice-2020-Tech-Job-Report.html as of June 08th 2020.

[13] Maarit Laanti, Jouni Similä, and Pekka Abrahamsson. Definitions of agile software
development and agility. In European Conference on Software Process Improvement, pages
247–258. Springer, 2013.

[14] digital.ai. State of agile report 14th addition. web: state of agile website, 2020. https:
//stateofagile.com/# as of May 24th 2020.

[15] Taiichi Ohno. Toyota production system: beyond large-scale production. crc Press, 1988.

[16] Ofri Raviv. What is the di�erence between a data pipeline
and an etl pipeline? https://www.alooma.com/answers/
what-is-the-difference-between-a-data-pipeline-and-an-etl-pipeline,
year=2017.

[17] Mark Smallcombe. Etl vs elt: 5 critical di�erences. https://www.xplenty.
com/blog/etl-vs-elt/#:~:text=ELT%20can%20load%20all%20data,
data%20to%20transform%20and%20analyze.&text=It%20transforms%
20data%20for%20integration,as%2Dneeded%20basis%20for%20analysis.,
year=2020.

[18] Won Kim, Byoung-Ju Choi, Eui-Kyeong Hong, Soo-Kyung Kim, and Doheon Lee. A
taxonomy of dirty data. Data mining and knowledge discovery, 7(1):81–99, 2003.

[19] Agnieszka Mikołajczyk and Michał Grochowski. Data augmentation for improving deep
learning in image classification problem. In 2018 international interdisciplinary PhD work-
shop (IIPhDW), pages 117–122. IEEE, 2018.

[20] Zach Eaton-Rosen, Felix Bragman, Sebastien Ourselin, and M Jorge Cardoso. Improving
data augmentation for medical image segmentation. 2018.

[21] Claus Pahl. Containerization and the paas cloud. IEEE Cloud Computing, 2(3):24–31,
2015.

[22] Docker. https://www.docker.com/, 2020.

56

https://www.agilealliance.org/agile101/
https://www.agilealliance.org/agile101/
https://www.oreilly.com/content/data-engineering-a-quick-and-simple-definition/
https://www.oreilly.com/content/data-engineering-a-quick-and-simple-definition/
https://techhub.dice.com/Dice-2020-Tech-Job-Report.html
https://techhub.dice.com/Dice-2020-Tech-Job-Report.html
https://stateofagile.com/#
https://stateofagile.com/#
https://www.alooma.com/answers/what-is-the-difference-between-a-data-pipeline-and-an-etl-pipeline
https://www.alooma.com/answers/what-is-the-difference-between-a-data-pipeline-and-an-etl-pipeline
https://www.xplenty.com/blog/etl-vs-elt/#:~:text=ELT%20can%20load%20all%20data,data%20to%20transform%20and%20analyze.&text=It%20transforms%20data%20for%20integration,as%2Dneeded%20basis%20for%20analysis.
https://www.xplenty.com/blog/etl-vs-elt/#:~:text=ELT%20can%20load%20all%20data,data%20to%20transform%20and%20analyze.&text=It%20transforms%20data%20for%20integration,as%2Dneeded%20basis%20for%20analysis.
https://www.xplenty.com/blog/etl-vs-elt/#:~:text=ELT%20can%20load%20all%20data,data%20to%20transform%20and%20analyze.&text=It%20transforms%20data%20for%20integration,as%2Dneeded%20basis%20for%20analysis.
https://www.xplenty.com/blog/etl-vs-elt/#:~:text=ELT%20can%20load%20all%20data,data%20to%20transform%20and%20analyze.&text=It%20transforms%20data%20for%20integration,as%2Dneeded%20basis%20for%20analysis.
https://www.docker.com/

REFERENCES

[23] Kubernetes. https://kubernetes.io/, year=2020.

[24] Hannah Snyder. Literature review as a research methodology: An overview and guide-
lines. Journal of Business Research, 104:333–339, 2019.

[25] Renan Souza, Leonardo Azevedo, Vítor Lourenço, Elton Soares, Raphael Thiago, Rafael
Brandão, Daniel Civitarese, Emilio Brazil, Marcio Moreno, Patrick Valduriez, et al.
Provenance data in the machine learning lifecycle in computational science and en-
gineering. In 2019 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS), pages
1–10. IEEE, 2019.

[26] David Herron. Why git and git-lfs is not enough to solve the machine learn-
ing reproducibility crisis. 2019. https://towardsdatascience.com/
why-git-and-git-lfs-is-not-enough-to-solve-the-machine-learning-reproducibility-crisis-f733b49e96e8
as of June 08th 2020.

[27] Jens Klump, Lesley Wyborn, Mingfang Wu, Robert Downs, Ari Asmi, Gerry Ryder, and
Julia Martin. Principles and best practices in data versioning for all datasets big and
small. version 1.1. Research Data Alliance.

[28] RR Fisher. Nasa heliophysics science data management policy. Retrieved December, 19:
2008, 2007.

[29] Keith D. Foote. A brief history of the data warehouse. 2018. https://www.
dataversity.net/brief-history-data-warehouse/# as of May 31st 2020.

[30] James Dixon. Data lakes revisited. James Dixon’s Blog, 2014. https://jamesdixon.
wordpress.com/2014/09/25/data-lakes-revisited/ as of May 20th 2020.

[31] Guru99. What is data warehouse? types, definition example. https://www.guru99.
com/data-warehousing.html, year=2020.

[32] James Dixon. Pentaho, hadoop, and data lakes. James Dixon’s
Blog, 2010. https://jamesdixon.wordpress.com/2010/10/14/
pentaho-hadoop-and-data-lakes/ as of May 20th 2020.

[33] Pwint Phyu Khine and Zhao Shun Wang. Data lake: a new ideology in big data era. In
ITM Web of Conferences, volume 17, page 03025. EDP Sciences, 2018.

[34] Coral Walker and Hassan Alrehamy. Personal data lake with data gravity pull. In 2015
IEEE Fifth International Conference on Big Data and Cloud Computing, pages 160–167. IEEE,
2015.

[35] Rihan Hai, Sandra Geisler, and Christoph Quix. Constance: An intelligent data lake
system. In Proceedings of the 2016 International Conference on Management of Data, pages
2097–2100, 2016.

[36] Zhamak Dehghani. How to move beyond a monolithic data lake to a distributed
data mesh. Martin Fowler’s Blog, 2019. https://martinfowler.com/articles/
data-monolith-to-mesh.html as of May 20th 2020.

57

https://kubernetes.io/
https://towardsdatascience.com/why-git-and-git-lfs-is-not-enough-to-solve-the-machine-learning-reproducibility-crisis-f733b49e96e8
https://towardsdatascience.com/why-git-and-git-lfs-is-not-enough-to-solve-the-machine-learning-reproducibility-crisis-f733b49e96e8
https://www.dataversity.net/brief-history-data-warehouse/#
https://www.dataversity.net/brief-history-data-warehouse/#
https://jamesdixon.wordpress.com/2014/09/25/data-lakes-revisited/
https://jamesdixon.wordpress.com/2014/09/25/data-lakes-revisited/
https://www.guru99.com/data-warehousing.html
https://www.guru99.com/data-warehousing.html
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://martinfowler.com/articles/data-monolith-to-mesh.html
https://martinfowler.com/articles/data-monolith-to-mesh.html

REFERENCES

[37] Eric Evans. Domain-driven design: tackling complexity in the heart of software. Addison-
Wesley Professional, 2004.

[38] International Federation of Library Associations and Institutions. Section on Catalogu-
ing. Standing Committee. Functional requirements for bibliographic records, volume 19. KG
Saur Verlag Gmbh & Company, 1998.

[39] Joseph A Hourclé. Frbr applied to scientific data. Proceedings of the American Society for
information science and technology, 45(1):1–4, 2008.

[40] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton,
Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva San-
tos, Philip E Bourne, et al. The fair guiding principles for scientific data management
and stewardship. Scientific data, 3, 2016.

[41] Tomasz Miksa, Andreas Rauber, Roman Ganguly, and Paolo Budroni. Information in-
tegration for machine actionable data management plans. International Journal of Digital
Curation, 12(1):22–35, 2017.

[42] Tom Preston-Werner. Semantic versioning 2.0. 0. Semantic Versioning., 2013.

[43] PROV Model Primer. W3c working group note. W3C, 2013. http://www.w3.org/
TR/2013/NOTE-prov-primer-20130430/ as of May 24th 2020.

[44] Luc Moreau, Ben Cli�ord, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Natalia
Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, et al. The open provenance
model core specification (v1. 1). Future generation computer systems, 27(6):743–756, 2011.

[45] Jianwu Wang, Daniel Crawl, Shweta Purawat, Mai Nguyen, and Ilkay Altintas. Big data
provenance: Challenges, state of the art and opportunities. In 2015 IEEE International
Conference on Big Data (Big Data), pages 2509–2516. IEEE, 2015.

[46] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Ka-
mar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. Software engi-
neering for machine learning: A case study. In 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages 291–300.
IEEE, 2019.

[47] Leon Osterweil. Strategic directions in software quality. ACM Computing Surveys (CSUR),
28(4):738–750, 1996.

[48] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning testing: Survey,
landscapes and horizons. IEEE Transactions on Software Engineering, 2020.

[49] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich.
Data validation for machine learning. In Conference on Systems and Machine Learning
(SysML). https://www. sysml. cc/doc/2019/167. pdf, 2019.

[50] Denis Baylor, E Breck, HT Cheng, N Fiedel, CY Foo, Z Haque, S Haykal, M Ispir, V Jain,
L Koc, et al. The anatomy of a production-scale continuously-training machine learning
platform. In 23rd SIGKDD Conference on Knowledge Discovery and Data Mining, 2017.

58

http://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
http://www.w3.org/TR/2013/NOTE-prov-primer-20130430/

REFERENCES

[51] Nick Hynes, D Sculley, and Michael Terry. The data linter: Lightweight, automated
sanity checking for ml data sets. In NIPS MLSys Workshop, 2017.

[52] Zhamak Dehghani. Data mesh paradigm shift in data platform architecture. 2020.
://www.youtube.com/watch?reload=9v=52MCFe4v0UU.

[53] C Robson. Real world research Blackwell 2nd edition. 2002.

[54] Zack Thoutt. Wine reviews. 2017. https://www.kaggle.com/zynicide/
wine-reviews as of June 08th 2020.

[55] Ml-flow. web: https://mlflow.org/, 2020. https://mlflow.org/.

[56] Kubeflow. https://www.kubeflow.org/, 2020.

[57] Argo. https://blog.argoproj.io/, 2020.

[58] Fahad Pervaiz, Aditya Vashistha, and Richard Anderson. Examining the challenges in
development data pipeline. In Proceedings of the 2nd ACM SIGCAS Conference on Comput-
ing and Sustainable Societies, pages 13–21, 2019.

[59] Gartner. Gartner hype cycle. https://www.gartner.com/en/research/
methodologies/gartner-hype-cycle, year=2020.

[60] Gil Morrot, Frédéric Brochet, and Denis Dubourdieu. The color of odors. Brain and
language, 79(2):309–320, 2001.

[61] Orley Ashenfelter and Karl Storchmann. The economics of wine, weather, and climate
change. Review of Environmental Economics and Policy, 10(1):25–46, 2016.

[62] OpenWeather. Historical weather api. 2020. https://openweathermap.org/
history as of May 27th 2020.

[63] Alexander Scheerer, Tobias Hildenbrand, and Thomas Kude. Coordination in large-
scale agile software development: A multiteam systems perspective. In 2014 47th Hawaii
international conference on system sciences, pages 4780–4788. IEEE, 2014.

[64] Melvin Conway. Demystifying conways law. https://www.thoughtworks.com/
insights/articles/demystifying-conways-law, year=2020.

59

https://www.kaggle.com/zynicide/wine-reviews
https://www.kaggle.com/zynicide/wine-reviews
https://mlflow.org/
https://www.kubeflow.org/
https://blog.argoproj.io/
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
https://openweathermap.org/history
https://openweathermap.org/history
https://www.thoughtworks.com/insights/articles/demystifying-conways-law
https://www.thoughtworks.com/insights/articles/demystifying-conways-law

REFERENCES

60

Appendices

61

Appendix A

Interview Protocol A

This interview was conducted in Swedish, the interview protocol has been translated to En-
glish.

1. About the interviewee

(a) Job title

(b) Number of years of experience within relevant field

2. In what file format does the data reach you, is it consequent per project and do you
recieve metadata, such as precision, of the data?

3. How large is the amount of data that is normally recieved for training a model and
what is a normal velocity of the data stream in production?

4. Is there normally a structure for the recieved data and if so, to what level (structured vs
unstructured)? Does it vary between the training data and live streaming data? Please
exemplify.

(a) Are you informed of which features are guided by control values and which fea-
tures are not and are you informed of their dependencies?

5. What is the level of quality like of data, is there often cleaning that has to be done
before the data can be used?

(a) If yes: what types of cleaning are commonly perfomed?

6. How long time does the whole data processing take. Is choice of what model to use
for inference a�ected by data processing lead time in regards to expected velocity and
volume of data?

63

A. Interview Protocol A

7. Is there further work unrelated to data processing that has to be done before one can
start building a model for the data?

(a) Is data persisted at the processed stage so that one can reuse it for future devel-
opment of other models?

8. In what state do you prefer to recieve data?

(a) Do you only work with data in local environments to train and test out models
or do you also work with production environments? [From here on referred to
as local laboratory environment]

i. If they do work with production environments: How involved are you in set-
ting up data infrastructure in the production environment and what type of
infrastructure (scheduled batch-oriented, streaming, manual) is most often
used?

9. Illustrate and describe a typical data pipeline and its processes. [whiteboard was used]

(a) What activities are performed in each processing step?

(b) What processes exist in a laboratory environment and how does it di�er from a
production environment?

(c) What tools are commonly used by you for these processes and activities of the
data pipeline?

10. What do you believe are the greatest challenges related to working with the data. Please
describe using [their illustration] the whiteboard. If they work with data processing
and infrastructure in production:

(a) How much of the infrastructure that is built can be reused between the local
laboratory environment and the production environment? What are the main
di�erences between the local laboratory environment and the production envi-
ronment?

11. Are you aware of any data versioning tools?

(a) If yes: are you using any of them and if so, how?

12. Do you believe that a tool that simulates git [Sentian uses git] in its user experience
but that versions data and data-to-code relationships would be helpful for developing
models?

64

Appendix B

Interview Protocol B

This interview was conducted in Swedish, the interview protocol has been translated to En-
glish.

1. Who [which job titles] develops data piplines and does it depend on the level of com-
plexity of the specific data pipeline?

2. Do you use mockups [or similar techniques] that a data scientist can provide a data en-
gineer with if it is too advanced for the specific data scientist to deploy a data pipeline
to production themselves?

3. Would it be possible to get data scientists to work according to test driven development
[when developing their data pipelines], especially in the case that the data scientist is
not responsible for deploying the data pipeline to production?

4. What information were you interested in gathering [on a data platform], where you
only interested in structuring data provided for customer projects or internal data as
well?

5. Would you agree that one could view your organization as its own domain [with regards
to the data mesh design [36]] since it is rather small?

6. How are product owners [or similar role] defined in your customer projects? [With re-
gards to the potential catch 22 of: (1) the role of product owner being shifted to Sentian
as the customer often wants an overall solution and (2) Sentian often not possessing
domain expertise inhouse which would be useful for someone in the role of project
owner.]

65

B. Interview Protocol B

66

Appendix C

Code Used in Data Pipeline Implementation

import matplotlib.pyplot as plt
import pandas as pd
import collections as c
import numpy as np
import os
from sklearn import preprocessing as pp

Ingest data (read from file)
wine_reviews = pd.read_csv(’winemag-data-130k-v2.csv’, index_col = 0)

#Drops rows containing missing values in columns considered too important (see subset below) to contain None when predicting.
def cleanup_filter(df):

df_no_missing_values = df.dropna(subset=[’price’, ’points’, ’title’, ’taster_name’, ’region_1’, ’country’])
return df_no_missing_values

Expand titles -> year, name.
def feat_expander(df):

df1 = df.title.str.extract(’(\d+)’)
df1.columns = [’year’]
title = df.title.str.replace(’\d+’, ’’)
df1[’title w/o year’] = title
return df1

Normalizes numeric data such as price and points.
def normalizer(df):

x = df[[’price’, ’points’]] #returns a numpy array
min_max_scaler = pp.MinMaxScaler()

67

C. Code Used in Data Pipeline Implementation

x_scaled = min_max_scaler.fit_transform(x)
df_numerics_scaled=pd.DataFrame(x_scaled, columns=x.columns)
return df_numerics_scaled

Remove symbols such as !,. etc. (non-words)
def clean(word):

word = word.lower().strip()
word = re.sub(r’[^a-z0-9]’, ’’, word)
return word

Returns a counter for all words in a discription column
def word_counter(df): # count all words

words = dict() # set: {1,2,3}, dict: {k:v,k:v}... {} => dict, dict() => dict, set() => set
for row in df:

words = count(row)
for word in row.split():

word = clean(word)
words[word] = words.get(word, 0) + 1

return words

Remove stopwords, and lowcount words, etc
def filter_words(words, limit=2):

stopwords = {“and“, “or“}
words = {key: value for key, value in words.items() if value >= limit and key not in stopwords}
return words

For each description of the rows in a df, count appearences of unique
words in word_count that are deemed important
def count_words_by_row(df, word_count):

list_of_series = list()

for index, row in df.iteritems():
row_dict = dict()
for word in row.split():

word = clean(word)
if word in word_count:

row_dict[word] = row_dict.get(word, 0) + 1
row_series = pd.Series(row_dict, name=index)

list_of_series.append(row_series)
new_df = pd.DataFrame(list_of_series)
new_df.fillna(0, inplace=True)
return new_df

Example of a test-cell for methods: clean(), count_words_by_row(), word_counter() and filter_words(). These
are the methods related to preparing the data for feature encoding of description.

68

raw = pd.DataFrame([[“hej jag heter Johan“], [“hej jag heter Anton “], [“din mamma, din pappa“],[“STORA BOKSTAVER!“]], columns=[“description“], index=[1,2,3,4])

indata = pd.DataFrame([[“hej jag heter Johan“], [“hej jag heter Anton “], [“din mamma, din pappa“],[“STORA BOKSTAVER!“]], columns=[“description“], index=[1,2,3,4])
actual = word_counter(indata[“description“])
expected = {“hej“: 2, “jag“: 2, “heter“:2, “johan“: 1, “anton“: 1, “din“: 2, “mamma“: 1, “pappa“: 1, “stora“: 1, “bokstaver“: 1}
assert(len(actual) == len(expected))
for key, value in expected.items():

assert(actual[key] == value)

df_boxplot to help investigate distributions of values in a column
def df_boxplot(df, colName, nbrOfRows, sampleSize):

varieties_count = df.variety.value_counts()
Filter by greater than (gt) according to count made above of number of occurences of
values in a certain column.
varieties_filtered = df[df.variety.isin(varieties_count.index[varieties_count.gt(nbrOfRows)])]
col_values = varieties_filtered[colName].unique()
col_scores = []
#TODO sort according to descending for col_scores

for title in col_values[:sampleSize]:
col_value_row = df[df[colName] == title]
col_scores.append((title, col_value_row[’points’].tolist()))

#print(titles_scores)
col_values, scoress = zip(*col_scores)
#print(titles)
plt.xticks(rotation=90)
plt.boxplot(scoress, labels=col_values)
plt.show()
pass

df_boxplot(wine_reviews, ’country’, 0, 25)
df_boxplot(cleanup_filter(wine_reviews), ’country’, 0, 25)

Adds the two columns ’lat’ and ’lon’ which are the latitudes
and longitudes of the country, province and region_1 of the df.
These columns are filled with values retrieved from google maps.
def geo_adder(df):

#Make sure we dont change the original df object.
df = df.copy()
latlon = list()
for row in df.iterrows():

geocode_result = gmaps_key.geocode({’locality’: row[0],’administrative_area_level_1’: row[1][’province’],’country’: row[1][’country’]})

#TODO spara geocode i en fil
try:

lat = geocode_result[0][’geometry’][’location’][’lat’]

69

C. Code Used in Data Pipeline Implementation

lon = geocode_result[0][’geometry’][’location’][’lng’]
except (KeyError, IndexError) as e:

lat = None
lon = None

latlon.append((lat,lon))
#print(latlon)

df[’lat’] = list(zip(*latlon))[0]
df[’lon’] = list(zip(*latlon))[1]

return df

Example of running one of the enrichments, Geocoding, and persisting data as .pickle
if not os.path.exists(’geo_coordinates.pickle’):

#Remove the USA niagara row that messes up the unique list below and process its coordinates individually
#to later concatenate it with the df with coordinates manually. The df_new looks as expected with the coordinates added.
niagara_quickfix = df.iloc[[123755]]
wine_reviews_no_usa_niagara = wine_reviews.drop(123755)

#Remove duplicates
wine_reviews_no_duplicates = wine_reviews.drop_duplicates(subset =“title“,keep=“first“, inplace=False)

#Groupby uniques so we dont call google api 100k times but only once for each region.
unique_geographical_wine_origins = wine_reviews_no_duplicates.groupby(’region_1’)[[’province’,’country’]].agg([’unique’])
#Same for the quickfix, its to get same format on them so that they can be concatenated later
niagara_quickfix = niagara_quickfix.groupby(’region_1’)[[’province’,’country’]].agg([’unique’])

#Get coordinates for list of unique places and USA niagara.
origin_coordinates = geo_adder(unique_geographical_wine_origins)
niagara_coordinates = geo_adder(niagara_quickfix)
#Add the df with coordinates for USA niagara
complete_coordinates = pd.concat([niagara_coordinates, origin_coordinates], ignore_index=False)
complete_coordinates.to_pickle(“geo_coordinates.pickle“)

else:
complete_coordinates = pd.read_pickle(’geo_coordinates.pickle’)

70

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-15

EXAMENSARBETE Towards Agile Data Engineering for Small Scale Teams
STUDENT Anton Engström
HANDLEDARE Johan Ullén (Sentian), Emma Söderberg (LTH)
EXAMINATOR Per Runeson (LTH)

Datainfrastruktur för maskininlärning
inom industrin

POPULÄRVETENSKAPLIG SAMMANFATTNING Anton Engström

Industrin rör sig snabbt mot vad man kallar industry 4.0 där man med hjälp av datain-
samling och smarta system går mot nästa era. För att matematiker och datavetare
ska kunna integrera sina modeller som utgör hjärnan i de smarta systemen så krävs
det välfungerande datainfrastruktur, men hur man utvecklar denna är ännu ett ungt
område inom forskning.

När det kommer till att bygga smarta system så
har man ofta en matematisk modell av det man
vill styra eller samla insikter om. Under 2010-talet
har det blivit mer och mer vanligt med matema-
tiska maskininlärningsmodeller, som med en upp-
sättning av parametrar tränar sig själva på data
för att förstå ett visst problem. Denna teknologi
har till stor del hittills applicerats i sammanhang
såsom sociala medier för att förutspå beteenden
och för att rekomendera rätt produkter genom
reklam. I dessa sammanhang så skapas enorma
mängder data från användares beteenden och det
skapas med en accelererande takt då allt mer
data samlas in av smarta produkter såsom mobil-
telefoner och internetuppkopplade tv-apparater.
Detta har namngivits "Big Data" och hur man
hanterar problem som uppstår i samband med den
explosionsartade tillväxten av data är just nu hu-
vudfokus inom stora delar av den akademiska lit-
teraturen på området "data engineering" som kan
översättas till datahantering på svenska.
I mitt examensarbete har jag samarbetat med

ett företag, Sentian, som implementerar maskinin-
lärningslösningar för kunder inom industri som
strävar mot industry 4.0. Under mitt examensar-

bete så upptäckte jag att det fanns ett gap mellan
problemen och lösningarna som diskuterades i lit-
teraturen och de problem som Sentian stöter på
när det kommer till just datahantering.
Jag gjorde en egen ansats på att brygga gapet

genom att applicera principer från agil utveck-
ling av programvarusystem och kartlade dessa mot
mina resultat från litteraturstudien. Detta gjordes
som ett försök att extrahera koncept och principer
från litteraturen som fokuserade på "Big Data" till
allmänna principer för datahantering. Dessa kan
appliceras av Sentian vid utveckling av datainfras-
truktur även i mindre sammanhang utanför domä-
nen av "Big Data", vilket ofta är det sammanhang
som de arbetar inom med kunder från industri.
Det finns stora potentiella samhällsnyttor i att

stötta industrin i sin strävan mot att introducera
smarta system som t.ex. kan effektivisera resur-
sanvändningen och minska utförandet av farliga
aktiviteter av människor. Resultatet är av ex-
plorativ karaktär och kan användas av företag i
Sentians situation för att inspirera arbetssätt vid
utveckling av datahanteringsinfrastruktur. Resul-
tatet agerar också som en pekare mot att det be-
hövs mer forskning inom detta området.

	Introduction
	Research Questions
	Approach
	Contributions
	Covering the Report Outline

	Background
	Data Engineering
	Agile Principles
	Data Pipelines
	Data Understanding and Validation
	Data Cleaning
	Data Enrichment
	Containerization

	Literature Study
	Method
	Data Platform Architectures
	Data Warehouse
	Data Lakes
	Data Mesh

	Data Versioning
	Data Provenance
	Data Pipeline Testing
	Analysis of the Literature

	Case Study of Sentian
	About Sentian
	Interview Study
	Method
	Results
	Analysis of the Interviews

	Data Pipeline Implementation
	Method
	Data Investigation, Validation and Cleaning
	Feature Extraction of Year
	Feature Extraction of Geographical Location
	Feature Encoding of Descriptions
	Analysis of the Data Pipeline Implementation
	Future Work

	Mapping to Agile practices
	Method
	Choosing a Definition to Represent Agile

	Mapping of Agile Principles
	Data Pipeline Implementation Revisited
	Data Validation Schemas and Data Monitoring
	Persistence to Data Platform and Cataloguing

	Analysis

	Discussion
	Conclusions
	References
	Appendix Interview Protocol A
	Appendix Interview Protocol B
	Appendix Code Used in Data Pipeline Implementation

