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Abstract

A major problem in the development of intelligent hearing aids is often re-
ferred to as the cocktail party problem. It describes the remarkable ability
of the human brain of filter out unwanted sounds in a noisy environment,
while focusing on a single talker or conversation. Without the ability to
select and enhance a specific sound source of choice while suppressing the
background, the hearing aids generally amplify the volume of everyone
in the environment. The problem of knowing which speaker to enhance
is unsolved and most people with hearing aids still experience discomfort
in noisy environments. This thesis uses EEG data from real-life scenarios
where the subjects for each trial listened to one female voice and one male
voice at the same time while giving attention to one of the speech streams.
The stories were simulated to come from a distance of 2.4m in a direction
of ±60° from the listener. Due to both instrumental and human factors,
data from different subjects will differ and it is not possible to create a
classifier which works on all data. It is said that the data from each subject
lives in different domains, and they need to be transported to the same do-
main in order to be classified together. The transportation is called domain
adaptation, and this thesis have used and compared two domain adaptation
methods: Parallel transport and Optimal transport. Two different classi-
fication problems are considered in this thesis: attention to male voice vs
female voice and attention to left side vs right side. The classification ac-
curacy differed greatly depending on which data was used. Generally, the
results were better for male/female separation which almost always gave
successful results, and the highest classification accuracy reached 95%.
Transportation of several subjects for the left/right separation problem did
not give results above the level of chance, however the best classification
accuracy reached above 93% which is considered a successful result.
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1
Introduction

Imagine that you are standing in the middle of a room at a party. The mingle
has just started and everywhere around you people are grouped together,
chattering happily with a drink in their hand. Background music is playing
from the speakers and the light is dim. The environment is excited, but
noisy, and it is hard to distinguish what the groups are talking about over
the buzz. Your friend next to you says something and you snap out of your
daydreaming and focus on him. Immediately, the background impressions
are damped and you hear him perfectly.

The scenario above is often referred to as the cocktail party problem. It
describes the remarkable ability of the human brain of filter out unwanted
sounds in a noisy environment, while focusing on a single talker or conver-
sation [Alickovic et al., 2019]. For a normal hearing person, this is done
several times during the day without any special thought or effort: in the
lunch room at work, on the subway station or in the grocery store. Some-
times it is even done consciously, when pretending to listen to your friend
next to you while actually eavesdropping on the conversation at the nearby
table.

Even though the suppressing and enhancing of different sound sources hap-
pens instantly and with impressive accuracy in the brain, the mathematical
model would be extremely advanced. This is a major problem in hearing
aids, where the aim is to boost the volume for people with hearing loss.
Without the ability to select and enhance a specific sound source of choice
while suppressing the background, the hearing aids generally amplify the
volume of everyone in the environment. Over the last few years, intelligent
hearing aids have entered the market which are better at suppressing back-
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Chapter 1. Introduction

ground noises significantly different from speech. However, the problem
of knowing which speaker to enhance is unsolved and most people with
hearing aids still experience discomfort in noisy environments [Han et al.,
2019]. Scientists hope that the key to the cocktail party problem in hearing
aids is to understand how the brain distinguishes the difference between
attended and unattended sound sources, a process known as auditory at-
tention decoding (AAD). After decades of research, there has recently been
a major breakthrough [O’Sullivan et al., 2015].

It was discovered that the cortical activity register the speech amplitude
and that there is a significant difference of the speech representation if the
sound source was attended or unattended [O’Sullivan et al., 2015]. The
cortical activity, commonly known as brain waves, are actually electrical
pulses from the communication between neurons. These signals can be
detected by several different methods, such as Magnetoencephalography,
Computed Tomography and Magnetic Resonance Imaging [O’Sullivan et
al., 2015; Satheesh Kumar and Bhuvaneswari, 2012]. However, the many
advantages of Electroencephalography (EEG) made researchers ask if it
could be used for auditory attention decoding. EEG is a cheap and widely
available technique where the signals are picked up by several small elec-
trodes placed on the head. Unlike some of the other methods, an EEG
scanning is able to capture both the radial and the tangential components
of the signal, which makes the method effective and accurate. There are
however some disadvantages with EEG, mainly that it has limited spatial
resolution, but it is still a widely used technique around the world. In 2015,
J. O’Sullivan et al. published their article Attentional Selection in a Cock-
tail Party Environment Can Be Decoded from Single-Trial EEG where they
showed for the first time that it is possible to use EEG for auditory attention
decoding. Ever since, the use of EEG scanning in this field has exploded
and it has become an important aid in the research for the solution to the
cocktail party problem in hearing aids.

A common approach of distinguishing between attended and unattended
sound sources in the EEG data is through machine learning (ML) and clas-
sification. Given a training set, the ML algorithm first learns how to clas-
sify the data and the algorithm can thereafter be used on new data, as in
real life conversations. However, many problems remain before this tech-
nique can be fully implemented into hearing aids. One major issue is that
the EEG scannings are made for different subjects. This means that the
EEG-measurements will differ due to instrument imperfectness or human
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Chapter 1. Introduction

factors, and a classification made for subject A might not work on subject
B. Hence, the classification algorithm would need to be constructed from
scratch for each new subject, which is time-consuming and not possible
in real-time situations. This has raised the question: is it possible to find a
way of constructing one classification algorithm which works for several
subjects?

This thesis focuses on domain adaptation, a specific field in machine learn-
ing where the source data distribution (subject A) is different from the tar-
get data distribution (subject B) [Weiss et al., 2016]. The objective is to in-
vestigate if domain adaptation can be used on EEG data for the purpose of
creating one classification algorithm that works on multiple data sources.
Two different domain adaptation methods are used: parallel transport (PT)
and optimal transport (OT), which both use covariance matrices on the Rie-
mannian manifold. Covariance matrices are powerful tools when working
with time series and their properties are preserved through the transporta-
tion.

The EEG-dataset used in the thesis, further explained in Chapter 3, reflects
complex, real life situations. Through 60 trials, each subject got to listen
to two different recorded fictional stories at the same time with one female
and one male voice. The stories were simulated to come from a distance of
2.4m in a direction of ±60° from the listener. In each trial, the subject was
asked to give attention to one of the speakers while suppressing the other
and EEG-data was collected from 64 electrodes placed on the head of the
subject. Two different classification problems are considered:

• Attention to male voice vs female voice

• Attention to left side vs right side

The goal of the thesis is to use the two domain adaptation methods paral-
lel transport and optimal transport to transport data from several subjects
and thereafter create a classifier which gets an accuracy above the level of
chance.

The outline of the thesis is: Transfer learning and domain adaptation are
defined in Chapter 2. The dataset and preprocessing steps are explained
in Chapter 3. The brain neural mechanisms for attention steering between
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Chapter 1. Introduction

different sound sources and location is briefly explained in Chapter 4 and
Chapter 5 contains a short pipeline of the structure of the Matlab script.
The different classification methods and statistically significant classifica-
tion performance are explained in Chapter 6 and the visualization tech-
nique t-SNE is explained in Chapter 7. The two transportation methods
use Riemannian geometry, which is defined in Chapter 8. The two domain
adaptation methods Parallel transport and Optimal transport are explained
in Chapters 9 and 10 respectively. The results are presented in Chapter 11
and they are discussed in Chapter 12. Lastly, Chapter 13 sums up the thesis
with some conclusions.
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2
Learning to learn in
Machine Learning

2.1 Introduction

The ability of learning to learn is vital to survival for all humans and ani-
mals. Babies do not have to relearn every possible motor skill in each new
environment since they learn how to generalize and adapt the skill in dif-
ferent situations. For each new motor skill learned, the biological cognitive
system grows and it gets easier to learn a new one [Patricia and Caputo,
2014].

Recently, the concept of learning to learn has been applied in Machine
Learning (ML) - a subset of artificial intelligence where the goal is to
get computer systems to learn for themselves from provided data [What
is Machine Learning? A definition 2020]. By observations, experience or
instructions, the ML-algorithm is able to discover patterns in the data and
the skill is learned if the training set is sufficiently large. A different test-
ing set is used to evaluate how well the ML-algorithm works on similar
data [How to Build A Data Set For Your Machine Learning Project 2020].
However, in real-life the learned skill needs to function in many different
situations. The testing data may not be similar to the training data and in
these cases, the ML-algorithm needs to be generalized. This is when learn-
ing to learn-methods are used.

One of the most common learning to learn-methods is called transfer
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Chapter 2. Learning to learn in Machine Learning

learning, and a specific case of transfer learning used in this thesis is
called domain adaptation [Patricia and Caputo, 2014]. They will both be
explained in more detailed after a few definitions.

2.2 Definitions and notations

The objective of classification is to predict a class label yi ∈Y to a feature
vector xi ∈ X. For example; if ’feathers’, ’claws’ and ’beak’ are features
of an image i, the class label from the ML-algorithm should be ’bird’. X
is a particular learning sample with n number of feature vectors and Y is
the label space with all possible labels. The feature space X contains all
possible feature vectors [Weiss et al., 2016].

In machine learning, a domain D is defined as D = {X ,P(X)} where X
is the feature space and P(X) is the marginal probability distribution with
the learning sample X = {x1, ...,xn} ∈X . A task T in a given domain D
is defined as T = {Y ,P(Y|X)} where Y is the label space, Y is the label
sample and P(Y|X) is the conditional distribution [Weiss et al., 2016].

The training data DS comes from a source domain DS = {XS,P(XS)}
and is defined as DS = {(xS1,yS1), ...,(xSn,ySn)} where xSi ∈ XS and
ySi ∈ YS. The testing data DT , as well as all other data used after the
training, comes from a target domain DT = {XT ,P(XT )} and is defined
as DT = {(xT 1,yT 1), ...,(xT n,yT n)} where xTi ∈XT and yTi ∈ YT [Ben-
David et al., 2010]. The source task and conditional distribution are de-
noted TS and P(YS|XS) meanwhile the target task and conditional distribu-
tion are denoted TT and P(YT |XT ) respectively. All notations are presented
in Table 2.1 [Weiss et al., 2016] and Figure 2.1 shows an illustration of the
differences between traditional machine learning and transfer learning.

2.3 Transfer Learning and Domain Adaptation

In classical machine learning, the domains and tasks of the source and
target are the same, hence DS = DT and TS = TT . This is the same as
fulfilling the conditions:
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2.3 Transfer Learning and Domain Adaptation

Figure 2.1: The left figure shows an example of traditional machine learn-
ing where a classifier is created for each domain. In this thesis, the blue dat-
apoints in domain 1 would represent all trials for subject 1 and the green
datapoints in domain 2 would represent all trials for subject 2. The clas-
sifier created for domain 1 will probably not work on the datapoints in
domain 2. The right figure shows an example of transfer learning where
learned knowledge from the source domain (subject 1) is transferred to the
classifier of the target domain (subject 2) [Asgarian, 2020].

XS = XT Same feature space
YS = YT Same label space

P(XS) = P(XT ) Same marginal distribution
P(YS|XS) = P(YT |XT ) Same conditional distribution

When one or more of these conditions are not satisfied, generalization
methods built on the learning to learn-principle need to be used. This is
most commonly referred to as transfer learning. The exact definition of
transfer learning varies between researchers and papers, but the one used
in this thesis comes from Weiss et al. in the article A survey of transfer
learning:

DEFINITION 2.3.1 "Given a source domain DS with corresponding source
task TS and a target domain DT with a corresponding task TT , trans-
fer learning is the process of improving the target conditional distribu-
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Chapter 2. Learning to learn in Machine Learning

Table 2.1: Notations used in this chapter [Weiss et al., 2016].

Notation Description

X Input feature space
Y Label space
T Predictive learning task
Subscript S Denotes source
Subscript T Denotes target
DS Source domain
DT Target domain
DS Source domain data
DT Target domain data
P(X) Marginal distribution
P(Y|X) Conditional distribution
X Particular learning sample
xi Feature vector i
yi Class label i

tion P(YT |XT ) by using the related information from DS and TS, where
DS 6= DT and/or TS 6= TT ." 2

The specific case when XS =XT , YS =YT and the mismatch between the
source and target only comes from the probability distributions is called
domain adaptation, and this is the case studied in this thesis [Kouw and
Loog, 2018]. The definition of domain adaptation presented by Weiss et al.
is:

DEFINITION 2.3.2 "Given a source feature space XS with corresponding
source label space YS and a target feature space XT with corresponding
target label space YT , domain adaptation is the specific case of transfer
learning when XS = XT , YS = YT and the mismatch between source and
target comes from P(XS) 6= P(XT ) and/or P(YS|XS) 6= P(YT |XT )." 2

After the transportation, the marginal and conditional distributions are
merged into the joint distribution P(X,Y)=P(Y|X)P(X). In domain adap-
tation, this joint distribution can be broken down to two different cases
[Kouw and Loog, 2019]:

16



2.3 Transfer Learning and Domain Adaptation

P(XS) = P(XT ) & P(YS|XS) 6= P(YT |XT ) Concept shift
P(XS) 6= P(XT ) & P(YS|XS) = P(YT |XT ) Covariate shift

It also exists a third case, when the joint distribution is presented as
P(X,Y)=P(X|Y)P(Y) and the mismatch is in the marginal (prior probabil-
ity) distribution of Y [Kouw and Loog, 2019]:

P(YS) 6= P(YT ) & P(XS|YS) = P(XT |YT ) Prior shift

Concept shift

A concept shift is sometimes referred to as a data shift where the condi-
tional distribution of the learning sample X is different between the source
and target domains. An example could be when developing a flu prognosis
of a specific patient based on features such as age, general health, socio-
economic status and severity of the flu. Lets assume that the doctor meets
and examines the patient four times, where the first three times are used for
training a model and the fourth is used for testing the model. Two classes
are considered: "remission" and "complications". A concept shift would
occur if the aspects defining what would belong to "remission" and "com-
plications" differ between training and testing. For example, in training the
only aspects of "severity of the flu" is the fever level, however in testing
the doctor realised that the level of nausea also needs to be considered and
adds it to the "complications" class [Kouw and Loog, 2019].

Figure 2.2 shows an illustration of a concept shift.

Covariate shift

A covariate shift is sometimes referred to as a data shift where the marginal
distribution of the learning sample X is different between the source and

17



Chapter 2. Learning to learn in Machine Learning

Figure 2.2: An illustration of a concept shift. The left figure shows equal
prior probability distributions for source and target domains. In the mid-
dle figure, the conditional distributions of the target domain is shifted to
the left of the conditional distributions of the source domain. The red and
blue colours represent two different classes y. This gives a shifted joint
distributions (right figure) [Kouw and Loog, 2019].

target domains. This is a very common case and several studies have been
made on this scenario. It often occurs when there is a selection bias, hence
when the selected data does not represent the whole picture [Tran and
Aussem, 2015].

In the medical example above, a covariate shift would occur if the model
of the flu prognosis was developed when the patient was a child, and the
same model was used when the patient was an adult or elderly. Unlike a
concept shift, the same aspects of the two classes and the same features are
used, however the age in the features are different.

Covararite shifts are closely related to when the training and testing
datasets are produced. The example above with several years between cre-
ating the model and using the model is an extreme situation, and covariate
shifts do also occur between different trials and sessions even though they
are made during the same day. It is also very common with covariate shifts
in non-stationary time series [Raza et al., 2016].

Figure 2.3 shows an illustration of a covariate shift.

Prior shift

Prior probability shift is when only the distribution over Y changes and
everything else stays the same, which can be seen as shift in the target la-
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2.4 Domain adaptation on EEG data

Figure 2.3: An illustration of a covariate shift. The left figure shows that the
target prior proabability distribution is shifted compared to the source prior
proabability distribution. In the middle figure, the conditional distributions
are equal for the source and target domain. The red and blue colours rep-
resent two different classes y. This gives a shifted joint distributions (right
figure) [Kouw and Loog, 2019].

bels [Kouw and Loog, 2019]. In the medical example, this could be that
the same features (age, general health, socio-economic status and severity
of the flu) and the aspects of the two class labels "remission" and "com-
plications" are the same. However, how the aspects are weighted are dif-
ferent between training and testing. For example, consider the aspect level
of fever of the feature severity of the flu. In training, a temperature above
37C°was included in "complications" but in testing, this temperature level
was changed to 37.2C°.

Figure 2.4 shows an illustration of a prior shift.

2.4 Domain adaptation on EEG data

The electrical pulses in the brain can be picked up by EEG electrodes
and are represented as time series. These time series are usually non-
stationary due to electrode placements, changes in attention levels, blink-
ing or other motor movements and environmental factors. This almost al-
ways gives covariate shifts in the EEG signals when comparing trial-to-
trial or session-to-session [Razaa et al., 2019]. However, when comparing
subject-to-subject (the procedure in this thesis), anatomic differences be-
tween individuals could give differences also in the conditional distribu-
tion, resulting in concept shifts [Albuquerque et al., 2019].
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Figure 2.4: An illustration of a prior shift for the two classes "red" and
"blue". The left figure shows that the conditional distributions, for each
class, is the same in the source and target domain. The conditional distri-
butions are however different between the classes. The middle figure shows
that the prior probabilities for both classes in the source domain are 1/2,
however they are to 2/3 and 1/3 respectively in the target domain. This
gives a shifted joint distribution (right figure) [Kouw and Loog, 2019].
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3
DTU Dataset

3.1 Introduction

The dataset used in this thesis was presented in the article Noise-robust cor-
tical tracking of attended speech in real-world acoustic in 2017 by Søren
Asp Fuglsang et al. The speech material for the experiments was recorded
at the Technical University of Denmark (DTU), and will be referred to as
the DTU-dataset. The dataset was in March 2018 made public and can be
downloaded at zenodo.org [Fuglsang et al., 2018].

3.2 Procedure

Each subject got to listen to two different speech streams at the same time,
one in the left ear and one in the right ear, while being asked to give atten-
tion to one of them with minimized motor activity. The subjects listened to
the speech streams in a soundproof, electrically-shielded booth with ER-2
insert earphones (Etymotic Research). Data from 64 scalp electrodes and
two mastoid electrodes was collected from 60 trials at a sample rate of
512Hz for each subject. Data from the two mastoid electrodes were re-
moved in the script. Figure 3.1 shows the placement of the electrodes on
the head of the subject. After each trial, the subject answered multiple-
choice questions about the stories to verify that the subject had attention to
the correct story.
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Chapter 3. DTU Dataset

Figure 3.1: The placement of the 64 scalp electrodes and two mastoid elec-
trodes on the head of the user [BioSemi headcap 2020].

3.3 Participants

Data was recorded from 19 subjects between 19 and 30 years old without
hearing problems and with no reported neurological disorders. One subject
was excluded due to missing data in several trials and the remaining data
is public and available at zenodo.org.

3.4 Speech stream material

The speech streams were recorded in an anechoic chamber at DTU by one
female and one male professional storyteller at a sample rate of 44100Hz.
The sound pressure level (SPL) for the speech streams were 65dB and they
were normalized to have similar root-mean square values. The two hours
audio recordings for each storyteller were divided into 50-seconds sections
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3.5 Preprocessing of the EEG and audio data

used for the trials.

To reflect real life situations some of these recordings were simulated in
a mildly reverberant room and some in a highly reverberant room by the
room acoustic modeling software Odeon. Hence, there are three environ-
ment scenarios:

1. Anechoic

2. Mildly reverberant

3. Highly reverberant

3.5 Preprocessing of the EEG and audio data

Both the EEG data and audio data were preprocessed through the Fieldtrip
and COCOHA toolboxes in Matlab. The script preproc_data.m which is
used for the preprocessing can be downloaded from zenodo.org.

The preprocessing scripts include these steps [Fuglsang et al., 2018]:

1. Filter out harmonics and 50Hz line noise in the EEG data

2. Downsample the EEG data to 64Hz

3. Minimize filter startup artifacts by a 1st order detrend

4. Highpass the EEG data at 0.1Hz by a 4th order forward-pass Butter-
worth filter

5. Denoising

6. Select events corresponding to attended talker

7. Split continuous data into trials

8. Split data into cells

9. Add attended and unattended audio and extract envelopes
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10. Extract the envelopes and downsampling of the audio signal - further
described below

11. Remove single-talker trials with no unattended talker

12. Trim trials to be the same length

13. Append data cells as trials

14. Save data

In scenarios with several talkers, researchers have noticed an increase
in oscillatory alpha (frequency band 7-14Hz) power due to the brain ac-
tivity of ignoring the unattended speakers [Paul et al., 2020]. Therefore,
an additional Butterworth bandpass filter of order 6 with frequency band
[8−12]Hz was applied to both the EEG data and the audio data.

Extract the envelopes of the audio signal

It is very common to extract the envelopes of oscillating signals, such as
speech audio, when working with audio features. The envelope outlines the
amplitudes of the oscillating signal into a smooth curve, illustrated in Fig-
ure 3.2. The envelope extraction is made with a Hilbert transform through
a 31-band gammatone filterbank with a frequency range 80-8000Hz. The
absolute value of the signals were computed and thereafter raised to the
power of 0.3, to mimic the human auditory system. The filterbank signal
outputs were summarised across the channels, giving the final envelopes.
These audio envelopes were downsampled to 64Hz and aligned in time
with the EEG data by the start-triggers stored in the EEG data struct. Fi-
nally, the envelopes were lowpassed at 9Hz, centered and Z-normalized
across the time dimension [Wong et al., 2018].

Only the anechoic signals were used for the envelope extractions. For the
trials with simulated reverberant, the envelopes were derived from their
underlying clean signals.
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3.5 Preprocessing of the EEG and audio data

Figure 3.2: The upper and lower envelopes of an oscillating signal [Waves
Packed in Envelopes 2020].

Visalization of the data

Figure 3.3 shows the t-SNE visualization for subjects 2 and 7 to illustrate
that the datapoints from each subject are separated. Each datapoint repre-
sents one trial where the colour shows which voice (male vs female) and
which direction (left vs right) the attention was to in that particular trial.
The two black lines are an illustration of a linear classification model be-
tween attention to the male voice and the female voice. The figure clearly
shows that the classifier created for subject 7 would not work well for the
data from subject 2. The red dashed line shows an illustration of a linear
classification model between attention to the male voice and the female
voice based on all data. Also in this case, the classification accuracy would
not be very good since both sides of the line contain several datapoints with
both attention to the male and female voice. This highlights the problem
formulation in domain adaptation. It is said that the datapoints from each
subject live in their own domain. A classifier created in one domain usually
does not work for data in another domain. The solution is to transport the
data to the same domain, which in a t-SNE visualization means that the
datapoints are merged together, while keeping as much of their structure
as possible.

Figures 3.4-3.6 show the t-SNE visualization of all subjects. It seems to be
possible to distinguish between attended male (M) and attended female (F)
voices easier than if the attended sound source is to the left (L) or right (R)
side of the listener. This separation is clearer in specific subjects such as
number 2, 3, 7, 10 and 15.
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Chapter 3. DTU Dataset

Figure 3.3: t-SNE visualisation of subjects 2 and 7 with attention to: ML =
Male/Left, FL = Female/Left, MR = Male/Right and FR = Female/Right.
The figure illustrates that a linear classifier between attention to male and
female voices created on subject 7 (black line) would not work well on
data from subject 2. The red dashed line shows that a linear classifier on
data from both subjects would not work well without the use of domain
adaptation.
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3.5 Preprocessing of the EEG and audio data

Figure 3.4: t-SNE visualisation of subjects 1-6 with attention to: ML =
Male/Left, FL = Female/Left, MR = Male/Right and FR = Female/Right.

Figure 3.5: t-SNE visualisation of subjects 7-12 with attention to: ML =
Male/Left, FL = Female/Left, MR = Male/Right and FR = Female/Right.
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Figure 3.6: t-SNE visualisation of subjects 13-18 with attention to: ML =
Male/Left, FL = Female/Left, MR = Male/Right and FR = Female/Right.
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4
Attention steering in the
brain

4.1 How the brain distinguishes different sound
sources

The human brain uses three different characteristics to distinguishing be-
tween sound sources: pitch, loudness and quality. In speeches, the vocal
cords produce vibrations which are detected by the ears. The number of
vibrations during a certain time period is called the pitch. These vibrations
are visible as oscillations of the speech signals, where few oscillations is
a feature of low pitches mostly common in male voices. Correspondingly,
speech streams with many oscillations is a feature of high pitches mostly
common in female voices. Figure 4.1 shows the signals before any prepro-
cessing of one female and one male speech stream from the DTU-dataset.

The definition of loudness is "the attribute of a sound that determines the
magnitude of the auditory sensation produced and that primarily depends
on the amplitude of the sound wave involved" [Merriam-Webster, 2020]
and it is measured in decibels (dB). The loudness is determined by the
SPL, frequency content and duration of the sound.

The quality of the sound source is often referred to as the timbre and it
describes the characteristics of a voice, such as thin, bright, harsh or dark.
Timbre is the reason why the same tone on a guitar and a piano sounds
different. It is determined by the harmonic content, vibrato and the attack-
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decay envelope of the sound. The harmonic content gives the waveform
shape of the signal in the time-domain. It is easier to distinguish the har-
monic content in the frequency domain which is given by the Fourier trans-
form of the time-domain signal, see Figure 4.2. The figure shows that the
amplitude shapes of the female and male speech streams seem quite simi-
lar, however the female amplitude is slightly greater. The vibrato describes
periodic changes in the pitch. The attack-decay envelope, on the other
hand, describes the shape of the rise and decay of the amplitude [Risset
and Wessel, 1982].

Figure 4.1: The signals before preprocessing of one female speech stream
and one male speech stream in the time-domain.

Figures 4.3 and 4.4 show the signals of one female and one male speech
stream after the preprocessing steps in time- respectively frequency do-
main. The different pitches and attack-decay envelopes of the female and
male sound is more apparent in Figure 4.3 comparing to the raw data pre-
sented in Figure 4.1.

4.2 How the brain distinguishes the sound source
location

The subjects listened to the speech streams binaurally through ER-2 in-
sert earphones. The software Odean was also used to simulate that the two
talkers are positioned at a distance of 2.4m, at an angle of ±60° along the
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4.2 How the brain distinguishes the sound source location

Figure 4.2: The signals before preprocessing of one female speech stream
and one male speech stream in the frequency domain which is used to
determine the harmonic content of a sound.

Figure 4.3: The envelopes after preprocessing of one female speech stream
and one male speech stream in the time-domain.

azimuth direction from the listener, shown in Figure 4.5. These simula-
tion algorithms ensure that the brain still perceives that each speech stream
from each ear plug reaches both ears, just like in real-life situations.

In real life situations, the brain easily recognizes the location of a sound
source. For example, hearing a car driving by, you would instinctively
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Figure 4.4: The envelopes after preprocessing of one female speech stream
and one male speech stream in the frequency domain.

know if it is on your left or on your right side. The localization of a sound
source, illustrated in Figure 4.6, gives information about [Risoud et al.,
2018]:

• The azimuth angle in the horizontal plane

• The elevation in the vertical plane

• The distance to the sound source

The brain mainly uses three features to solve the problem: time-of-arrival,
sound pressure level (SPL) and the spectral shape of the sound source
[Risoud et al., 2018].

The azimuth angle in the horizontal plane is evaluated by the difference of
the time-of-arrival and the SPL to each ear. Since the two ears are separated
by the head, the time of the sound source to the ear further away is longer
than to the closest ear. The head is also responsible for an acoustic shadow,
which gives a difference between the SPL between the two ears [Risoud et
al., 2018]. Even though the subjects used insert earphones, the simulation
in the software Odeon makes it possible for the sound to reach both ears.
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4.2 How the brain distinguishes the sound source location

Figure 4.5: The red circle represents the listener in the center with the two
talkers (blue circles) positioned at a distance of 2.4m, at an angle of ±60°
along the azimuth direction from the listener [Fuglsang et al., 2017].

The other two attributes, elevation and distance, are instead determined by
one ear using monaural cues, meaning that different shapes of the sound
source reach the ear. Naturally the original sound source first reaches the
ear, but due to reflection, diffraction and absorption from the body and
environment, different shapes of the spectral also reach the ear. This is
used to evaluate both the elevation in the vertical plane and the distance to
the sound source [Risoud et al., 2018].

In the DTU-dataset, both the distance and the elevation in the vertical plane
are the same for the two sound sources. The attribute of interest is instead
the azimuth angle in the horizontal plane, or rather if the attended sound
source is on the left or the right side of the listener.

The problem of attention steering towards a specific location is indeed very
complex. It is common knowledge that the brain is divided into a right and
a left hemisphere. The right hemisphere controls the left side of the body
and is responsible for functions such as creativity, imagination, intuition,
auditory and non-verbal stimuli processing such as music awareness. The
left hemisphere controls the right side of the body and is responsible for
functions such as analytic thought, logic, language and reasoning. This
means that sounds reaching the right ear is processed in the left hemi-
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Figure 4.6: The three attributes of sound source localization [Risoud et al.,
2018].

sphere and vice versa. These two hemispheres cooperate and exchange in-
formation through a communication route called the corpus callosum (CC)
[Right-Brain Hemisphere 2020; Left-Brain Hemisphere 2020].

In a single-talker quiet environment scenario, the listener receives the
speech stream to both ears, with a small time delay to the ear farthest away.
The pathways of the signals are crossed to reach the opposite hemisphere,
meaning that the sound stream reaching the right ear is treated in the left
hemisphere and vice versa. However, the right hemisphere does not under-
stand language and this signal is re-routed through the CC to the left hemi-
sphere for language processing, which gives a small time delay [Steinberg
and Sciarini, 2013]. This time delay of the re-routing step is one reason of
the so called right ear advantage (REA), meaning that sounds reaching the
right ear arrive to the left hemisphere first and are therefore preprocessed
before the other signal. It is the same reason why the majority of the popu-
lation favour using the right hand when writing or right foot when playing
football. Often without knowing it, most people are also right-eared [Jerger
and Martin, 2004].

In a noisy environment, or two talker scenario such as in the DTU-dataset,
the problem is even more complex. The listener receives both speech
streams to both ears, still with a time delay to the ear farthest away. All
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4.2 How the brain distinguishes the sound source location

signals are crossed to reach the opposite hemisphere and the signals to the
right hemisphere are re-routed through the CC to the left hemisphere with
a time delay [Steinberg and Sciarini, 2013]. In noisy environments, one
important component of the auditory system is the medial olivocochlear
bundle (MOC). The purpose of the MOC is to enhance the signal of atten-
tion [Smith and Keil, 2015]. In the single-talker quite environment scenario
described above, the MOC is inactivated since the attended sound source
does not have any other noise to compete with. In this two-talker scenario
without any attention steering, the MOC inhibits the left ear signal which
favours the REA. This behaviour might have been essential for the human
survival where the reaction to the footfalls of predators in noisy environ-
ments is the difference between life and death [Poeppel, 2003]. Figure 4.7
shows the signal pathways for a person listening to two speech streams,
where the REA is illustrated by a thicker red pathway compared to the
blue pathway. This is however a simplified figure and it does not illustrate
real-life scenarios perfectly. In the DTU-dataset, both speech streams reach
both ears, which would give a more complex illustration.

Figure 4.7: A simplified two talker scenario where the listener receives
one speech stream in each ear. The signals process from the ears to the op-
posite hemisphere and are thereafter re-routed through the CC for speech
processing and auditory scene representation. The MOC is activated by in-
hibiting the left ear signal, resulting in the REA represented by the thicker
red pathway [Spatial hearing loss 2020].

Now add the problem of attention steering. Given the two-talker scenario
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described above, the listener now pays attention to one of the speech
streams. How does this affect the signal pathways? The MOC in this case
inhibits the unattended signal [Smith and Keil, 2015]. Figure 4.8 illustrates
the case where attention is to the speech stream in the left ear, which is
represented by the thicker blue pathway.

Figure 4.8: A simplified two talker scenario where the listener receives one
speech stream in each ear and attention is to the left ear. The signals pro-
cess from the ears to the opposite hemisphere and are thereafter re-routed
through the CC for speech processing and auditory scene representation.
The MOC is activated by inhibiting the right ear signal, represented by the
thicker blue pathway [Spatial hearing loss 2020].

4.3 Attention steering with EEG

Naturally, the description above of the signal pathways is simplified and all
the neural underlying mechanisms are not yet understood by researchers.
The purpose of all these scenarios and left/right hemisphere comparison is
to highlight the complexity of the problem of attention steering. The time
delays, both from the separation of the two ears and from the re-routing be-
tween the hemispheres, are important keys which help the brain to evaluate
the location of the attended sound source. These time-delays, together with
all the signal crossings between left and right need be picked up by the EEG
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4.3 Attention steering with EEG

electrodes. Even though EEG scannings are quite accurate and outperforms
several other techniques, they are not able to catch all the information. The
limited spatial resolution means that it is hard to decide which areas of the
brain that are activated [Burle et al., 2015], which might be a problem with
all the cross-pathways. A Singular Value Decomposition (SVD) analysis
was made on the EEG data to investigate if some of the electrodes were
much more inactive and could be removed, but the results did not give any
significant difference and all electrodes were kept. Several studies show
that EEG data can be used for auditory attention decoding, however the
problem of deciding which direction the attended sound source is coming
from is more difficult.
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5
Pipeline

The pipeline of the Matlab script is:

1. Load EEG data and audio data

2. Preprocess the EEG data and audio data with a Butterworth bandpass
filter of order 6 between the frequencies [8 12]Hz

3. The preprocessed data includes data from two mastoid electrodes
which are irrelevant in this thesis. They are in this step removed.

4. Add the two audio data files to the EEG data

5. Extract the class labels for each trial

6. Compute the covariance matrices for each subject

7. Visualize before transportation with t-SNE

8. Apply parallel transport

• Visualize after parallel transport with t-SNE

• Compute the classification accuracy with SVM, k-nearest
neighbour and decision tree

• Compute the probability that the classification accuracy is
above the level of chance

9. Apply optimal transport

• Visualize after optimal transport with t-SNE
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• Compute the classification accuracy with SVM, k-nearest
neighbour and decision tree

• Compute the probability that the classification accuracy is
above the level of chance
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6
Classification methods

6.1 Introduction

Data classification methods are used to categorize data from predefined
classes. This thesis uses two classification problems uses a dataset with
four classes:

• Attention to male voice vs female voice

• Attention to left side vs right side

Three different classification methods are used: Support Vector Machine
(SVM), k-Nearest Neighbour (kNN) and Decision Tree.

6.2 Background

Each subject did 60 listening trials, which represent 60 datapoints, where
attention was to one of the classes stated above. Cross-validation is used to
compute the correct classification rate. It means that a model, also called
a classifier, is created to distinguish between the predetermined classes by
a training dataset. This classifier is then used to another set of datapoints
(testing data), and an accuracy is computed as the correct number of pre-
dicted classes over the total number of test datapoints. In cross-validation,
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6.3 Statistically significant classification performance

this procedure is repeated several times for different training and test data-
points, and a correct classification rate is computed as the mean of all the
accuracies from the different classifiers [Combrissona and Jerbi, 2015].

For classification of one single subject before any transportation, one dat-
apoint is used for testing and the other 59 datapoints for training. This
procedure is repeated 60 times so that each datapoint is used for testing
once. The prediction of each testing datapoint is either 1 (correct predicted
class) or 0 (incorrect predicted class). A correct classification rate is at last
computed as the mean of these 60 predictions.

Cross-validation is also used on multiple subjects after the transportation.
This means that the number of times the classification procedure is re-
peated equals the total number of datapoints from all subjects. For exam-
ple, transportation of two subjects (A and B) creates 120 classifiers since
each subject has 60 trials.

6.3 Statistically significant classification
performance

The performance of the correct classification rate is in this thesis compared
to how much it differs from the level of chance, i.e. if the classifier would
randomly select classes of the testing datapoints. The problem in this thesis
contains two classes for each problem (male/female or left/right), and for
an infinite number of datapoints the level of chance would be 50%. How-
ever, the number of datapoints in real experiments is never infinite and
the less datapoints used, the higher risk that chance plays into the results.
Therefore, the reliability of the correct classification rate depends on if it
is statistically significant greater than the level of chance. Table 6.1 shows
the statistically significant classification performance with different num-
ber of datapoints n for two classes with a significance level of p = 0.05
[Combrissona and Jerbi, 2015].

One way of determine how close the accuracy is to become statistically
significant is through the binomial cumulative distribution function:
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Table 6.1: Statistically significant classification performance with different
number of datapoints n for two classes with a significance level of p =
0.05. The values are rounded to the first digit and the binomial cumulative
distribution function is used to compute the threshold values [Combrissona
and Jerbi, 2015].

n Acc (%) n Acc (%) n Acc (%)

20 70,0 80 58,7 300 54,7

40 62,5 100 58,0 400 54,0

60 60,0 200 56,0 500 53,6

y = F (x|n, pc) =
x

∑
i=0

(n
i

)
pi

c(1− pc)
n−iI(0,1,...,n)(i) (6.1)

where x is the number of correct classified samples in n testing trials and
pc is the level of chance. Due to the cross-validation method where all
datapoints are used in testing, n in both Table 6.1 and Equation 6.1 is the
total number of datapoints, hence the number of subjects times the number
of trials. For example, transportation of two subjects would give n = 120
and transportation of three subject would give n = 160. The level of chance
in 2-classification problems is pc = 0.50. I(0,1,...,n) is an indicator function
which ensures that x only uses values of (0,1, . . . ,n). The value y ∈ [0,1]
is the probability of observing up to x correct classified samples, hence
a y close to 0 indicates that the result is far from statistically significant
and y = 1 shows that it is statistically significant with a 95% confidence
interval.

Taking into account the total number of subjects N = 18, the probability
that two or more of these subjects get a probability above y is:

f = 1−
(
yN +NyN−1 (1− y)

)
(6.2)

where f = 1 indicates that the result were due entirely by chance and f = 0
indicates that the result is statistically significant. An f -value in between
0 and 1 lies in a grey zone where it is not possible to know for sure if it
is statistically significant or not. However, one can interpretend that, for
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example, f = 0.005 is closer to become statistically significant than f =
0.5.

6.4 Support Vector Machine (SVM)

The Matlab function used for SVM is called fitcsvm.m and it is used for
two-class (binary) classification problems. The SVM classifier finds a hy-
perplane which separates the datapoints of the different classes. It exists
one parallel plane on each side of the hyperplane which are in contact with
the closest datapoints. The datapoints on these parallel planes are called
support vectors and the two parallel planes create a margin. The best hy-
perplane found by the SVM has the maximal margin width, and SVM is
therefore sometimes referred to as a maximum margin separator [Awad
and Khanna, 2015]. These features are illustrated in Figure 6.1 where the
hyperplane separates the two classes ”+ ” and ”− ”.

When it is not possible to separate the input data with a hyperplane, the
SVM uses predefined kernel functions to map the data into a new, higher-
dimensional space. This higher-dimensional space is created in a way such
that it is now possible to separate the classes with a hyperplane [Awad and
Khanna, 2015].

6.5 k -Nearest Neighbour

The Matlab function used for k-nearest neighbour is called fitcknn.m where
both the distance metric and the number of nearest neighbours k can be
determined by the user. The classifier assigns the datapoints to the class
with the most similar characteristics of a specific number of nearest neigh-
bours. An example where potatoes should be assigned to one of the classes
"fruits", "vegetables" and "grains" is illustrated in Figure 6.2. The consid-
ered characteristics of the classes are "crunchiness" and "sweetness". The
number of nearest kinds of food is in this example chosen to be four and
since two of them are vegetables, this is the class the potatoes will be as-
signed to [Zhang, 2016].
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Figure 6.1: Illustration of SVM where the hyperplane separates the two
classes ”+ ” and ”− ”. The closest datapoint on each side of the hyper-
plane are called support vectors and the width between the two parallel
planes created by these support vectors is called the margin. SVM finds
the hyperplance with the maximum width of the margin [Support Vector
Machines for Binary Classification 2020].

Choosing a good value of number of nearest neighbours k is a balance
between underfitting and overfitting. A too small value might increase the
variance caused by random errors. However, a too large value would reduce
the impact of small patterns which could be of importance [Zhang, 2016].
This thesis present the results from k = 2 and k = 4 since they in most cases
gave the highest accuracies.

Naturally, the distance function plays a significant part of finding the near-
est neighbour of a specific datapoint. The default distance function of the
fitcknn-function is Euclidean distance and this is the one which will be used
in this thesis. The Euclidean distance D between the two samples p and q
is computed by:

D(p,q) =
√

(p1−q1)2 +(p2−q2)2 + · · ·+(pn−qn)2 (6.3)

where n is the number of characteristics [Zhang, 2016].
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Figure 6.2: An example of a 4-nearest neighbours classification. Since two
of the nearest neighbour of potatoes are vegetables, this is the class pota-
toes will be assigned to [Zhang, 2016].

6.6 Classification tree

The Matlab function used for the classification tree method is called fitc-
tree.m. The method starts with a root node and branches out to internal
nodes and leaf nodes and the structure reminds of an inverted tree. The
root node, sometimes also called the starting node or parent node, repre-
sents a feature or attribute. Each branch can be viewed as a decision rule
which, if it is fulfilled, leads to the next node. The leaf nodes, sometimes
also called end nodes or child nodes, represent the final outcome from the
selected decisions. All nodes between the root node and leaf nodes are
called the internal nodes [Song and Lu, 2015].

Three of the most important steps in a classification tree are splitting, stop-
ping and pruning. Splitting is the procedure where a node is divided into
two or more sub-nodes. The splitting continuous until a pre-determined
stopping criteria is met. The stopping criteria considers complexity and ro-
bustness of the model, too much splitting often results in overfitting and
too few could result in underfitting. One way of dealing with this problem
and finding a good size and complexity of the tree is through pruning. This
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procedure first builds a large and complex tree, and then prunes it down by
removing unimportant nodes [Song and Lu, 2015].

Figure 6.3 illustrates a simple classification tree example with a binary
root variable Y and two variables x1,x2 ∈{0,1}. Through the decision rules
"Yes" or "No", the outcome is one of the leaf nodes {R1, . . . ,R5} depending
on the values of x1 and x2 [Song and Lu, 2015].

Figure 6.3: A simple classification tree example where the root node is the
binary variable Y and the outcome is one of the leaf nodes {R1, . . . ,R5}
[Song and Lu, 2015].

46



7
t-SNE for visualization

7.1 Introduction

One common way of understanding and gaining knowledge of data is
through visualization. However, reducing high dimensional data to two
or three dimensions for visualization might result in a loss of important
information. This is a challenging problem and various techniques have
been developed over the last decades. The article Visualizing Data using t-
SNE by Laurens van der Maaten and Geoffrey Hinton compares their own
developed method t-distributed Stochastic Neighbor Embedding (t-SNE)
with seven other commonly used techniques: (1) Sammon Mapping, (2)
Curvilinear Components Analysis, (3) Stochastic Neighbor Embedding,
(4) Isomap, (5) Maximum Variance Unfolding, (6) Locally Linear Embed-
ding and (7) Laplacian Eigenmaps. Their results show that t-SNE is supe-
rior at clustering and revealing global structure in a single map [Maaten
and Hinton, 2008]. Several articles support the advantages of using t-SNE.
For example, the result in Application of t-SNE to human genetic data by
Wentian Li et al. shows that t-SNE has a more robust way of taking care of
outliers compared to the Principal Component Analysis (PCA)-technique
[Li et al., 2017]. It has also been shown that t-SNE is exceptionally good
at distinguishing important functional states in biomacromolecules simula-
tions [Zhou et al., 2018]. Due to its widely use and superior results, t-SNE
is the dimensionality reduction technique used in this thesis.

All notations used in this chapter is collected in Table 7.1
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Table 7.1: Notations used in this chapter [Maaten and Hinton, 2008].

Notation Description

X High-dimensional data set
Y Low-dimensional map
xi Datapoint in the high-dimensional data set
yi Map point on the low-dimensional map
n Number of datapoints
p j|i Conditional probability for high-dimensional datapoints
q j|i Conditional probability for low-dimensional map points
pi j Joint probability for high-dimensional datapoints
qi j Joint probability for low-dimensional map points
σi Variance of the Gaussian centered on datapoint xi
Pi The conditional probability distribution over all datapoints

except xi
Qi The conditional probability distribution over all map points

except yi
H(Pi) Shannon entropy of Pi

7.2 Stochastic Neighbor Embedding (SNE)

t-SNE is developed from the Stochastic Neighbor Embedding (SNE)-
technique presented by Geoffrey Hinton and Sam Roweis [Hinton and
Roweis, 2002]. Therefore, SNE is first explained before moving on to t-
SNE in the next section.

Consider a high-dimensional data set X = {x1,x2, ...,xn} which should be
visualized in a two-dimensional map Y = {y1,y2, ...,yn} while preserving
as much of the significant structure as possible. This is preferably done
by keeping similar datapoints close to each other, which indicates that the
distances to the neighbours are relevant.

Each data point xi has a distance to all other data points which can be com-
puted by various techniques. The default method is usually the Euclidean
distance. The first step of the SNE-algorithm is to convert these distances
into conditional probabilities which represent the relation between the data
point and its neighbours. The interpretation of the conditional probability
p j|i is the probability that datapoint x j is picked as a neighbour to datapoint
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xi due to their probability density. This is under the presumption that xi is
Gaussian [Maaten and Hinton, 2008]. With the variance σi of the Gaussian
centered on datapoint xi, the conditional probability is computed using:

p j|i =
exp
(
−
∥∥xi− x j

∥∥2
/2σ2

i

)
∑k 6=i exp

(
−‖xi− xk‖2 /2σ2

i

) (7.1)

The equation shows that nearby datapoints give a small value of the L2-
norm which results in a high value of the conditional probability. It is ir-
relevant to know the conditional probability pi|i, and it is therefore put to
zero [Maaten and Hinton, 2008].

In a similar way, the conditional probability q j|i for the datapoints yi and
y j on the low-dimensional map Y is computed by:

q j|i =
exp
(
−
∥∥yi− y j

∥∥2
)

∑k 6=i exp
(
−‖yi− yk‖2

) (7.2)

where the variance of the Gaussian is put to 1/
√

2 and qi|i is put to zero
[Maaten and Hinton, 2008].

The aim of the SNE-algorithm is to minimise the discrepancy between p j|i
and q j|i. The interpretation of the case where the two conditional probabil-
ities are equal is that no information is lost in the dimensionality reduction
and that the map points yi and y j model the datapoints xi and x j perfectly.
However, this is not reasonable in reality and the SNE-algorithm needs
a measurement method of how close the conditional probabilities are to
each other. This is done by minimizing the sum of the Kullback-Leibler
divergences:

C = ∑
i

KL(Pi||Qi) = ∑
i

∑
j

p j|ilog
p j|i
q j|i

(7.3)
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where C is the cost function. Given the datapoint xi, the conditional prob-
ability distribution for all other datapoints is denoted Pi. Correspondingly,
given the map point yi, the conditional probability distribution for all other
map points is denoted Qi. The equation shows that the value of the cost
function is zero if q j|i = p j|i and that it is negative if q j|i > p j|i. The inter-
pretation of the latter case is that the cost is small if widely separated dat-
apoints in the high-dimensional set (small p j|i) are represented by nearby
map points (large p j|i). On the other hand, the cost is large if nearby data-
points are represented by widely separated map points, hence if q j|i < p j|i
[Maaten and Hinton, 2008].

One important parameter in the SNE-algorithm is the perplexity which usu-
ally is a number in the range [5,50] and describes how many neighbours
each datapoint takes into account in the calculations. The perplexity de-
pends on the Shannon entropy H(Pi) of Pi and is defined as:

Perp(Pi) = 2H(Pi)

H(Pi) =−∑
j

p j|ilog2 p j|i
(7.4)

With a fixed perplexity set by the user, it is possible to select an effective
value of the variance σi. Through a binary search, σi is set to the value
which gives the specified perplexity to the conditional probability distrbu-
tion Pi over all datapoints, except for the datapoint xi [Maaten and Hinton,
2008].

Finally, a gradient descent method is used to minimize the cost function in
Equation 7.3 [Maaten and Hinton, 2008]:

δC
δyi

= 2∑
j

(
p j|i−q j|i + pi| j−qi| j

)
(yi− y j) (7.5)

The SNE-technique gives reasonable good visualizations, but it has a few
disadvantages. Firstly, it is often necessary to redo the optimization a few
times to find good enough values of the parameters. This gives a cost func-
tion which is difficult to optimize and a long computational time. Secondly,
due to the scaling rm for a datapoint i in a sphere with radius r and di-
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mensional m, the area of the two-dimensional map has to be unreasonably
large to be able to capture all the information from the datapoints. This is
referred to as the crowding problem. The t-SNE technique was developed
to solve these problems.

7.3 t-distributed Stochastic Neighbour Embedding
(t-SNE)

The main difference between SNE and t-SNE lies in how the cost function
C is evaluated:

1. t-SNE uses a symmetric cost function which gives simpler gradients
to optimise and reduces the computational time.

2. In the low dimensional space, the similarities between two points
is measured by a Student-t distribution with one degree of freedom
in t-SNE instead of a Gaussian distribution, which deals with the
crowding problem.

The symmetric cost function is given by:

C = ∑
i

KL(P||Q) = ∑
i

∑
j

pi jlog
pi j

qi j
(7.6)

where P and Q are the same as in SNE, hence the joint probability dis-
tribution in the high- respectively low-dimensional space. Just like before,
pii = qii = 0 and the symmetric property comes from pi j = p ji and qi j = q ji
∀i, j. In a similar way as for SNE, the joint probabilities qi j in the low-
dimensional space is defined as:

qi j =
exp
(
−
∥∥yi− y j

∥∥2
)

∑k 6=l exp
(
−‖yk− yl‖2

) (7.7)
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Chapter 7. t-SNE for visualization

However, defining pi j correspondingly as:

pi j =
exp
(
−
∥∥xi− x j

∥∥2
/2σ2

)
∑k 6=l exp

(
−‖xk− xl‖2 /2σ2

) (7.8)

causes problems for outliers in the high-dimensional space. A huge value
of xi gives a very small value of pi j ∀ j, which becomes a problem when
evaluating the cost function. According to (7.6), unreasonable small values
of pi j reduces the impact of qi j, and hence the location of the map point
yi becomes irrelevant. Naturally, this is not desirable and t-SNE has an
effective way of dealing with outliers by putting the joint probabilities pi j
in the high-dimensional space to:

pi j =
p j|i + pi| j

2n
(7.9)

where p j|i and pi| j are estimated by Equation 7.1 and n is the number of
datapoints. Thereby, the impact of outliers xi is reduced.

Just like for the SNE technique, a gradient descent method is used to min-
imize the cost function in Equation 7.6:

δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j) (7.10)

Due to the symmetry, the gradients are simpler, less time-consuming and
easier to optimize compared to the corresponding gradient descent method
for SNE in (7.5).

The crowding problem refers to cases where the two-dimensional map area
has to become unreasonably large to capture all the important information
from the high-dimensional space. Since it is not possible to create the de-
sired map size, the map points end up too close to each other which results
in a crowded low-dimensional map. t-SNE deals with this problem by re-
placing the Gaussian distribution from SNE with a Student t-distribution
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7.3 t-distributed Stochastic Neighbour Embedding (t-SNE)

with one degree of freedom. This changes the evaluation of the joint prob-
abilities in the low-dimensional space in Equation 7.7 to:

qi j =

(
1+
∥∥yi− y j

∥∥2
)−1

∑k 6=l

(
1+‖yk− yl‖2

)−1 (7.11)

Thereby, qi j does not approach zero just as quickly as in Equation 7.7 for
large pairwise distances

∥∥yi− y j
∥∥, which in turn gives a lower value of the

cost function in Equation 7.6. In conclusion, large pairwise distances are
now not as dependent of the map size and may be evaluated in the same
way as nearby map points.

The use of the Student t-distribution also changes the gradient descent
method in Equation 7.10 to:

δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j)

(
1+
∥∥yi− y j

∥∥2
)−1

(7.12)

The added contribution
(

1+
∥∥yi− y j

∥∥2
)−1

might seem to increase the
computational time compared to Equation 7.10. However, the evaluation of
the joint probability in Equation 7.11 is less time-consuming than the cor-
responding evaluation in Equation 7.7 since the exponential is removed.
All things considered, the gradient descent method in Equation 7.12 is
quite time effective.

t-SNE summary

Considering both the symmetric cost function and the Student t-
distribution with one degree of freedom, the relevant t-SNE equations
are:
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C = ∑
i

KL(P||Q) = ∑
i

∑
j

pi jlog
pi j

qi j
Symmetric cost function

pi j =
p j|i + pi| j

2n
Joint probability high-dim

qi j =

(
1+
∥∥yi− y j

∥∥2
)−1

∑k 6=l

(
1+‖yk− yl‖2

)−1 Joint probability low-dim

δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j)

(
1+
∥∥yi− y j

∥∥2
)−1

Gradient descent method

(7.13)
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8
Riemannian geometry

8.1 Introduction

The geometry taught in elementary and high schools is called Euclidean
geometry after the Alexandrian Greek mathematician Euclid (300 BC). It
is built on five simple axioms for plane and three-dimensional solid geom-
etry, but it could be expanded to high-dimensional manifolds [Euclidean
geometry 2020]:

1. Given two points, there is a straight line that joins them.

2. A straight line of finite length can be extended continuously without
bounds.

3. A circle can be constructed when a point for its center and a distance
for its radius are given.

4. All right angles are equal.

5. Through a point not on a given line there is only one line parallel to
the given line.

Two examples given by these axioms is that the sum of all angles in a
triangle always is 180 degrees (two right angles) and two parallel lines will
always have the same distance to each other. Hence, Euclidean geometry
is quite obvious, easy to understand and visualize and for 2000 years this
was taken for granted as the only true geometry. However, in the early
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Chapter 8. Riemannian geometry

19th century scientist realized that manifolds could be described using non-
Euclidean geometry.

One such example is the Riemannian geometry developed by the German
mathematician Bernhard Riemann in the mid-19th century [Riemannian
geometry 2020]. While Euclidean geometry studies shapes on a plane, Rie-
mannian geometry studies the shapes on a curved space such as the surface
of a cylinder or sphere. This means that a line in Riemannian geometry is a
great circle, i.e. the equator on Earth. All lines on a curved space must in-
tersect with each other, which implies that the firth Euclidean axiom stated
above is rejected in Riemannian geometry:

5. There are no lines parallel to the given line since all lines must inter-
sect.

This gives some easily understandable differences compared to the exam-
ples above: In Riemannian geometry, the sum of all angles in a (large)
triangle is greater than two right angles and it does not exist any parallel
lines. Since the Earth is a sphere, Riemannian geometry is used to com-
pute the routes of airplanes. However, small geometries on Earth could be
approximated as Euclidean [Riemannian geometry 2020] . The differences
between Euclidean and Riemannian geometry is illustrated in Figure 8.1.

Due to the complexity of high-dimensional datasets, the use of Euclidean
geometry in algorithms often gives unreliable results. Riemannian geom-
etry has been proven successful when working with covariance matrices,
and therefore it is used in both parallel transport and optimal transport
[Yair et al., 2019; Yair et al., 2020].

8.2 Definitions

Covariance matrices

By definition, all symmetric positive definit (SPD) matrices P ∈ Rd×d are
symmetric with strictly positive eigenvalues, where d is the number of EEG
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8.2 Definitions

Figure 8.1: Differences between Euclidean and Riemannian geometry. A
Saccheri quadrilateral (middle figures) has two equal sides perpendicular
to the base [Miller et al., 2014].

channels plus the two audio-files. One of the most commonly used SPD
matrix is the covariance matrix:

Ps,i = E
[(

xs,i(t)−µs,i
)(

xs,i(t)−µs,i
)T
]

(8.1)

where µs,i = E [xs,i(t)] for subject s and trial i. For d = 66 (64 EEG chan-
nels and two audio-files), each element in the 66×66 covariance matrix Ps,i
describes the covariance between the corresponding channels and audio-
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files. The structure is illustrated in Figure 8.2.

Figure 8.2: The covariance matrix structure with 64 EEG channels and two
speech streams.

Some of the advantages of using covariance matrices are that they are usu-
ally robust to noise and they work well with Riemannian geometry.

Riemannian distance

The Riemannian manifold M is simply connected and one way to describe
its curvature is through a so called sectional curvature. The manifold has
a tangent space TPM at the point P ∈M and the sectional curvature is
defined by the point P and a two-dimensional plane on the tangent space. In
this thesis, the point P is a covariance matrix. There exists a unique curve
between two covariance matrices P1,P2 ∈M :

ϕ(t) = P
1
2
1

(
P−

1
2

1 P2P−
1
2

1

)t

P−
1
2

1 , 0≤ t ≤ 1 (8.2)
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8.2 Definitions

Thereby, it exists a unique Riemannian distance along the curve between
the two covariance matrices:

d2
R(P1,P2) =

∥∥∥∥log
(

P−
1
2

1 P2P−
1
2

1

)∥∥∥∥2

F
=

n

∑
i=1

log2
(

λi

(
P−

1
2

1 P2P−
1
2

1

))
(8.3)

where ‖·‖F is the Frobenius norm, log(P) is the matrix logarithm and λi(P)
is the i-th eigenvalue of P.

Riemannian mean

The Riemannian mean P̄s for subject s is a 66×66 symmetric matrix com-
puted by the Fréchet mean:

P̄s , arg min
Ps∈M

∑
i

d2
R(Ps,Ps,i) (8.4)

where d2
R(Ps,Ps,i) is the Riemannian distance defined above. The interpre-

tation of the Riemannian mean is the same as finding the center of mass in
a high-dimensional Riemannian geometric figure. The Riemannian mean
of two covariance matrices P1,P2 ∈M is the midpoint of the curve ϕ(t)
in Equation 8.2:

P̄ = ϕ

(
1
2

)
= P

1
2
1

(
P−

1
2

1 P2P−
1
2

1

) 1
2

P−
1
2

1 (8.5)

The Riemannian mean for more than two covariance matrices can be com-
puted by an iterative algorithm (1) developed by Barachant et al, where
LogP̄ (Pi) and ExpP̄

(
S̄
)

are defined in Equations 9.1 and 9.2.
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Chapter 8. Riemannian geometry

Algorithm 1: The Riemannian mean iterative algorithm for more
than two SPD matrices [Barachant et al., 2013]

Input: a set of SPD matrices {Pi ∈M }n
i=1 where n is the number

of trials
Output: the Riemannian mean matrix P̄

1. Compute the initial term P̄ = 1
n ∑

n
i=1 Pi

2. while
∥∥S̄
∥∥

F > ε do

a) Compute the Euclidean mean in the tangent space
S̄ = 1

n ∑
n
i=1 LogP̄ (Pi)

b) Update P̄ = ExpP̄
(
S̄
)

end

Weigthed Riemannian mean

In optimal transport, explained in Chapter 10, a transportation plan matrix
Γ is developed by a Sinkhorn OT algorithm. This transportation plan uses
the weighted mean:

x̂i = t(xi) = arg min
x∈Rn ∑

j
Γ [i, j]‖x− zi‖2

2 (8.6)

to define a well-defined transportation map in Equation 10.7. The solution
to the weighted mean problem is presented in Algorithm 2.
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8.2 Definitions

Algorithm 2: The Weighted Riemannian mean iterative algo-
rithm for more than two SPD matrices [Yair et al., 2020]

Input: a set of SPD matrices {Pi ∈M}n
i=1 and non-negative

weights {wi}n
i=1 such that ∑i wi = 1

Output: the weighted Riemannian mean matrix P̄ satisfying
P̄ = arg minP∈M ∑i wid2

R (P,Pi)

1. Compute the initial term P̄ = 1
n ∑

n
i=1 wiPi

2. while
∥∥S̄
∥∥

F > ε do

a) Compute the Euclidean mean in the tangent space
S̄ = 1

n ∑
n
i=1 wiLogP̄ (Pi)

b) Update P̄ = ExpP̄
(
S̄
)

end
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9
Method 1: Parallel
Transport

9.1 Introduction

The first domain adaptation-method used in this thesis is named parallel
transport (PT) and it was presented in the article Parallel Transport on the
Cone Manifold of SPD Matrices for Domain Adaptation by Or Yair et al
in 2019. The article focuses on covariance matrices that do not live in the
same region of the manifold, a scenario occurring when data is collected
from several subjects and/or sessions. Covariance matrices are commonly
used and proven to be effective features when working with time series.

Briefly described, the parallel transport method uses Riemannian geometry
to:

1. Compute the Riemannian mean Ms of all covariance matrices for
each subject s.

2. Compute the Riemannian mean D of all Ms from step 1

3. Project all the covariance matrices from the Riemannian manifold
onto a Riemannian tangent plane at Ms for each subject s.

4. Move all the data to D using parallel transport

5. Project the covariance matrices from the Riemannian tangent plane
back to the Riemannian manifold
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9.1 Introduction

6. Project the covariance matrices to the Euclidean tangent space for
classification and plotting purposes

The reason for the last step is that Euclidean geometry is convenient since
the default metric in both the t-SNE and the classification algorithm is
Euclidean.

An illustration of parallel transport is shown in Figure 9.3. The Riemannian
mean D is a 66×66-matrix, and the dimensional reduction through t-SNE
to two dimensions is the reason it does not look like it is the mean in the
figure.

Figure 9.1: Parallel transportation of data from subjects 1-3, where Ms is
the Riemannian mean of subject s and D is the target Riemannian mean of
of all Ms.

All notations used in this chapter are presented in Table 9.1.
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Chapter 9. Method 1: Parallel Transport

Table 9.1: Notations used in this chapter [Yair et al., 2019].

Notation Description

n Number of trials
d Number of EEG channels and audio-files
N Number of subjects
Ps,i Covariance matrix for trial i and subject s
M The Riemannian manifold
TPM The tangent plane of the manifold M at the

symmetric matrix P
ϕ(t) The unique curve between two covariance matrices

0≤ t ≤ 1
d2

R(P1,P2) The squared Riemannian distance between the covariance
matrices P1,P2 ∈M

Ms Riemannian mean of Ps,i,∀i, for subject s
D Riemannian mean of Ms,∀s
Ss,i Symmetric matrix ∈TPM for trial i and subject s

9.2 Definitions

Riemannian mean

Algorithm 1 in Chapter 8 is used to compute the Riemannian mean in the
parallel transport method. Since the number of covariance matrices is the
same as the number of trials (which are more than two), Algorithm 1 is
used to compute the Riemannian mean Ms for each subject s. For general-
ization purposes, the Riemannian mean D of the centroids Ms, s = 1, ...,N
is also computed by Algorithm 1 (step 2), even though Equation 8.5 could
be used in the specific case of N = 2. Theoretically, the point D could be
chosen arbitrary. However, computing D as the mean of the centroids Ms
has the advantage of an overall minimum transportation which avoids un-
necessary distortions.

Exponential and Logarithm Maps

As described in the introduction to the chapter, parallel transport first
projects the covariance matrices to the tangent plane TPM of the mani-
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9.3 Transportation

fold M , moves the data to the Riemannian mean D and then projects the
covariance matrices back to the manifold. The projection of Ps,i onto the
tangent plane at the point P (step 3) is done by the Logarithm map:

Ss,i = LogP(Ps,i) = P
1
2 log

(
P−

1
2 Ps,iP−

1
2

)
P

1
2 ∈TPM (9.1)

where Ss,i is a symmetric matrix which can be represented as a vector.
After the transport, this vector is projected back to the manifold by the
Exponential map (step 5):

Ps,i = ExpP(Ss,i) = P
1
2 exp

(
P−

1
2 Ss,iP−

1
2

)
P

1
2 ∈M (9.2)

The exponential and logarithm maps are illustrated in Figure 9.2. The
grey/black line between the two points x0 and x on the Riemannian mani-
fold M is the minimum length curve. u is a vector on the tangent plane of
x0. The exponential map projects u to a point x ∈M in the direction of u.
The logarithmic map is the inverse where the point x ∈M is projected to
the tangent plane u ∈Tx0M [Calinon, 2020].

9.3 Transportation

Step 4 in the introduction contains the transportation of all the covariance
matrices Ps,i from Ms to D for subject s= [1, ...,N] and trial i= [1, ...,n]. As
described above, Ms is the Riemannian mean of all the covariance matrices
for subject s and D is the Riemannian mean of all Ms.

The transportation could be explained through the map Γ : TMsM →
TDM , meaning that the covariance matrices at the tangent plane of Ms
are moved to the tangent plane of D. Since the transportation is made on
the tangent plane, it is actually the symmetric matrices Ss,i ∈ TMsM from
the Logarithm map in Equation 9.1 which are transported using:

SD
s,i = ΓMs→D

(
SMs

s,i

)
, ESMs

s,i ET (9.3)
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Figure 9.2: Illustration of the exponential and logarithmic maps between
the Riemannian manifold M and the tangent plane Tx0M , where x0 ∈M
[Calinon, 2020].

where E = (DM−1
s )

1
2 [Yair et al., 2019].

Figure 9.3 shows an illustration of the parallel transport method of the vec-
tor u∈TgM . The goal is to transport u, along infinitesimally close tangent
spaces, to the tangent space ThM of the point h on the manifold M . The
black vectors show the direction of the transportation in each tangent space.
Using infinitesimally close tangent spaces gives a smooth transportation
with preserved features of the vector u [Calinon, 2020].

In the last step, the covariance matrices PD
s,i are projected from the Rieman-

nian manifold to the Euclidean tangent plane to facilitate the classification
and plotting. This is done by approximating the Riemannian distances d2

R
between the covariance matrices PD

s,i and PD
s, j as a squared Euclidean dis-

tances by:

d2
R
(
PD

s,i,P
D
s, j
)
≈
∥∥S̃D

s,i− S̃D
s, j
∥∥2

F (9.4)

where S̃D
s,i = D−

1
2 LogD

(
PD

s,i

)
D−

1
2 = log

(
D−

1
2 PD

s,iD
− 1

2

)
. Since S̃D

s,i are
symmetric matrices in the Euclidean space, they could be vectorized from
only the upper (or lower) triangular elements with a gain factor of

√
2 on
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Figure 9.3: An illustration of the parallel transport method of the vector u∈
TgM . The goal is to transport u, along infinitesimally close tangent spaces,
to the tangent space ThM of the point h on the manifold M . [Calinon,
2020].

all the elements except the diagonal. These feature vectors are used for
classification and plotting through t-SNE.

9.4 Matlab

All the steps from the introduction have now been explained and summa-
rized, including the equations, in Table 9.2.

Steps 3-5 can be combined with gives the projection to the tangent plane,
transportation along the tangent planes and projection back to the manifold
in one equation:

PD
s,i = ExpD

(
ΓMs→D

(
LogD

(
PMs

s,i

))
= EPMs

s,i ET (9.5)

where E = (DM−1
s )

1
2 [Yair et al., 2019]. Hence, the Matlab pseudo code is

given by Algorithm 3.
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Table 9.2: The parallel transport steps

Step Description Matlab

1. Compute the Riemannian means Ms,∀s Algorithm 1, Chapter 8
2. Compute the Riemannian mean D Algorithm 1, Chapter 8

of all Ms

3. Project all the covariance matrices SMs
s,i = LogD

(
PMs

s,i

)
, (9.1)

Ps,i from the manifold M to the
tangent plane TMsM

4. Move all the data to D SD
i = ΓMs→D

(
SMs

s,i

)
, (9.3)

5. Project the symmetric matrices
Ss,i back to the manifold M PD

i = ExpD
(
SD

i
)
, (9.2)

6. Project the covariance matrices to the

Euclidean tangent space S̃D
i = log

(
D−

1
2 PD

i D−
1
2

)

Algorithm 3: Domain Adaptation Using Parallel Transport for
SPD Matrices [Yair et al., 2019]

Input: {P1,i}n
i=1 , . . . ,{Ps,i}n

i=1 , . . . ,{PN,i}n
i=1 where Ps,i is the

covariance matrix for subject s and trial i.
Output:

{
S̃s,i
}n

i=1 , . . . ,
{

S̃s,i
}n

i=1 , . . . ,
{

S̃N,i
}n

i=1 where S̃s,i is the
new representation of Ps,i in a Euclidean space.

1. For each i ∈ {1,2, . . . ,n}, compute the Riemannian mean Ms of the
subset {Ps,i}

2. Compute D, the Riemannian mean of {Ms}N
s=1

3-5. For all s and i, apply projection and Parallel Transport using
Equation 9.5:

PD
s,i = EPMs

s,i ET , E = (DM−1
s )

1
2

6 For all i, project the transported matrix to the tangent space via:

S̃D
s,i = log

(
D−

1
2 PD

s,iD
− 1

2

)
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Method 2: Optimal
transport

10.1 Introduction

The second method is called Optimal Transport (OT) and was presented in
the article Optimal Transport on the Manifold of SPD matrices for domain
adaptation in March 2020 by Or Yair et al. Optimal transport is similar to
parallel transport since they both uses Riemannian geometry on SPD matri-
ces, in these cases covariance matrices. A difference between the methods
is however that PT moves the covariance matrices from all the subject to
a Riemannian mean D, meanwhile OT keeps the covariance matrices from
one subject and moves all the other covariance matrices to this domain.
Another difference is that optimal transport views the covariance matrices
as measures with densities f̂ ∈ Rn, where n is the number of trials. This is
used to create an optimal transportation plan by minimizing a certain cost
function with respect to these densities.

Briefly described, the optimal transport method uses Riemannian geometry
to:

1. Compute the densities f̂s ∈ Rn for each subject

2. Compute the Riemannian distances between the covariance matrices
of the target data from subject A and all the covariance matrices from
the other subjects
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3. The Riemannian distances from step (2) are viewed as transportation
costs. An optimal transportation plan Γ∗ is produced by minimizing
the transportation cost with the Sinkhorn OT algorithm

4. Apply the transportation plan using the map t(Ps,i) which is defined
by the weighted Riemannian mean

5. Project the covariance matrices to the Euclidean tangent space for
classification and plotting purposes

All notations used in this chapter are presented in Table 10.1.

Table 10.1: Notations used in this chapter [Yair et al., 2019].

Notation Description

n Number of trials
d Number of EEG channels and audio-files
N Number of subjects
M The Riemannian manifold
TPM The tangent plane of the manifold M at the

symmetric matrix P
Ps,i Covariance matrix ∈M for trial i and subject s
Ss,i Covariance matrix ∈TPM for trial i and subject s
d2

R(P2,P1) The Riemannian distance between the covariance
matrices P1,P2 ∈M

C Cost function
Γ Transportation plan
f Density of a covariance matrix
t(x) Transportation map
Ms Riemannian mean of Ps,i,∀i, for subject s
D Riemannian mean of Ms,∀s
Ss,i Symmetric matrix ∈TPM for trial i and subject s

10.2 Definitions

Covariance matrices P, the Riemannian manifold M , Riemannian squared
distance d2

R(Ps,P1),s 6= 1 and weighted Riemannian mean are all defined
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in Chapter 8.

Cost function

The cost function C(Ps,P1) ∈Rn1×n2 , s 6= 1 is a matrix describing the cost
of moving all covariance matrices from subject s 6= 1 to subject 1, where n1
is the number of trials in the source set and n2 is the number of trials in the
target set. In the DTU-dataset, n1 = n2 = n. It makes sense to choose the
cost function as the Riemannian distance matrix d2

R(Ps,P1), s 6= 1, where
a large distance between two SPD matrices gives a large cost.

Optimal transportation plan

One way of solving the optimal transport problem is by the Kantorovich
formulation where the aim is to find the optimum transportation plan γ∗

[Yair et al., 2020]. Imagine the transportation of the covariance matrix P2
to the location of the covariance matrix P1 on the Riemannian manifold
M . This transportation γ can be done in many different ways, but only one
route γ∗ is optimal in the sense that it occurs at a minimal cost C (P2,P1),
meaning a minimal Riemannian distance between the two covariance ma-
trices. The Kantorovich formulation defines two continuous Borel mea-
surements µ1 and µ2 on the Riemannian manifold M which have densities
[Yair et al., 2020]:

f1 (P1) =
∫

M
γ (·,P1)dvol

f2 (P2) =
∫

M
γ (P2, ·)dvol

(10.1)

The Kantorovich optimal transportation plan γ∗ in the continuous case is
given by the solution to:

infγ

∫
M×M

C (P2,P1)dγ (P2,P1) (10.2)
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The problem in this thesis is discrete and data from each subject s contains
ns number of trials, where each trial is a covariance matrix. The aim is to
move all covariance matrices from subject 2 to the location of subject 1.
The densities in Equation 10.1 are in this case sampled with n1 respec-
tively n2 points which gives two density vectors f̂1 ∈Rn1 , f̂2 ∈Rn2 and the
discrete optimal transport plan Γ∗ is the solution to:

min
Γ∈F
〈Γ,C〉 (10.3)

where F =
{

Γ ∈ Rn1×n2 |Γ1n2 = f̂1,Γ
T 1n1 = f̂2

}
and C∈Rn1×n2 is the cost

matrix [Yair et al., 2020].

An extended and more accurate version of the classical optimal trans-
portation plan in Equation 10.3 is preferred for larger values of the
number of trials n1 and n2. A regularization entropy term h(Γ) =
−∑

n1
i=1 ∑

n2
j=1 Γ[i, j]log(Γ[i, j]) is subtracted accordingly:

min
Γ∈F
〈Γ,C〉− 1

λ
h(Γ) (10.4)

where λ ∈ [0,∞) is adaptively set to:

λ =
1

2m2 (10.5)

for m = 0.05 ·median{C[i, j]}i, j [Yair et al., 2020]. Equation 10.4 is solved
by a sinkhorn optimal transport algorithm described in Algorithm 4.

The polar factorization theorem

Step 4 in the introduction is about applying the computed transportation
plan Γ. This gives the map:

t(xi) = Txi +b (10.6)
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10.2 Definitions

Algorithm 4: Sinkhorn OT between the covariance matrices of
source subject s, Ps,i and the covariance matrices of the target
subject P1, j for the trials i, j = [1 . . .n] [Cuturi, 2013].

Input: The transportation cost matrix C(Ps,P1) ∈ Rn×n and the
densities f̂ ∈ Rn

Output: The matrix transportation plan Γ ∈ Rn×n

1. Compute the number of trials n

2. Compute λ = 1/(2∗ (0.05∗median(C(:)))2)

3. K = exp(−λC)

4. u = length(n,1)/n

5. K̃ = K./f̂

6. for i=1:1000, or any other stopping criterion

• u = 1./(K̃(f̂./(KT u)))

7. v = f̂./(KT u)

8. Γ = (K.∗u).∗ vT

where xi ∈ Rd ,∀i ∈ {1,2, ...,n} is the source sample, S ∈ Rd×d and T =(
SST

) 1
2 > 0. Just like earlier, n is the number of trials and d is the number

of channels and audio files. Equation 10.6 is the solution to the OT problem
for two discrete distributions µ1 and µ2 with N Diracs, if and only if four
conditions are fulfilled [Yair et al., 2020]:

1. The source sample xi ∈ Rd ,∀i ∈ {1,2, ...,n} fulfills xi 6= x j for i 6= j

2. The source and target distribution weights are 1
n

3. The target samples are defined as zi = Txi +b, where T > 0

4. The cost function is C(x,z) = ‖x− z‖2
2

As explained above, the cost function in this thesis is set to be the squared
Riemannian distance matrix, hence:
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Chapter 10. Method 2: Optimal transport

C(Ps,P1) = d2
R(Ps,P1) ∈ Rn×n, s 6= 1 (10.7)

The map t(x) is well-defined if it is computed by the weighted Riemannian
mean (defined in Section 8.2) which gives a strictly convex optimization
problem. Finally, step 4 in the introduction gives the solution to the OT
problem by:

P̃D
s,i = t(Pi) = arg min

P∈M

n

∑
j=1

Γ [i, j]d2
R(Ps, j,P1, j) s 6= 1 (10.8)

where M is the Riemannian manifold.

Step 5 in the introduction is the same as the last step in the parallel transport
method, hence projecting the covariance matrices to the Euclidean tangent
space for classification and plotting purposes:

S̃D
s,i = D−

1
2 LogD

(
P̃D

s,i
)

D−
1
2 = log

(
D−

1
2 P̃D

s,iD
− 1

2

)
(10.9)

where D is the Riemannian mean of all the covariance matrices.

10.3 Matlab

All the steps from the introduction have now been explained and the Matlab
pseudo code is given by Algorithm 5.
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10.3 Matlab

Algorithm 5: Domain Adaptation Using Optimal Transport for
SPD Matrices [Yair et al., 2020]

Input: the source set {P1,i}n
i=1 and the target sets

{
Ps, j
}n

j=1,
s ∈ {2, . . . ,N} where Ps,i and Ps, j are the covariance matrices for
subject s and trial i respectively trial j, and N is the total number
of subjects.
Output: the adapted source sets

{
S̃s,i
}n

i=1, where S̃s,i is the new
representation of Ps,i,∀s in a Euclidean space.

1. For each subject s, compute the densities f̂s = 1/n

2. For each trial [i, j] and subject s 6= 1, compute the cost function:
C(Ps,i,P1, j) = d2

R(Ps,i,P1, j)

3. Compute the transportation plan Γ using sinkhorn OT in Algorithm
4.

4. Apply the transportation plan:

P̃s,i = t(Ps,i) = arg min
P∈M

n

∑
j=1

Γ [i, j]d2
R(Ps,P1, j) s 6= 1

5. For all s and i, project the transported matrix to the tangent space
via:

S̃D
s,i = log

(
D−

1
2 PD

s,iD
− 1

2

)

75



11
Results

11.1 Classification for each subject before
transportation

Male/female attention classification

Figure 11.1 shows that cross-validation classification accuracy for each
subject with SVM, 3-nearest neighbours and decision tree classification
methods. The figure shows that the classification accuracy differed greatly
between the subjects. SVM gave the best results and decision tree gave,
for most subjects, the worst results. All subjects, excepts two with decision
tree, were above the statistically significant level of 60% for n = 60 testing
points. Table 11.1 shows the classification accuracies with SVM where
subjects 2, 3, 7, 8, 12, 15 and 18 were over 90%.
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11.1 Classification for each subject before transportation

Figure 11.1: Male/female cross-validation classification accuracy with
SVM, 3-nearest neighbour and decision tree for all 18 subjects. Baseline is
the level of chance for n = 60 testing points.

Table 11.1: Male/female cross-validation classification accuracy with
SVM for each subject. All subjects gave statistically significant results
(above 60%).

Subject # Acc (%) Subject # Acc (%) Subject # Acc (%)

1 76,67 7 98,33 13 78,33
2 96,67 8 91,67 14 73,33
3 91,67 9 75,00 15 95,00
4 83,33 10 83,33 16 85,00
5 81,67 11 85,00 17 80,00
6 85,00 12 100 18 93,33
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Chapter 11. Results

Left/Right attention classification

Figure 11.2 shows that cross-validation classification accuracy for each
subject with SVM, 3-nearest neighbours and decision tree classification
methods. The results differed greatly between subjects and were generally
lower than for male/female classification. Only SVM gave a mean accu-
racy above the statistically significant level of 60%, and the worst results
were from decision tree. Table 11.2 shows the classification accuracies
with SVM where subjects 2, 9, 10, 11, 12, 14, 17 and 18 gave the best
results.

Figure 11.2: Left/right cross-validation classification accuracy with SVM,
3-nearest neighbour and decision tree for all 18 subjects. Baseline is the
level of chance for n = 60 testing points.

11.2 Transportation of two subjects

Several subjects were tested and the classification accuracy after the trans-
portation differed greatly depending on which subjects were used. The the-
sis presents the best results for male/female classification acquired by sub-
jects 2 and 7, and the best results for left/right classification acquired by
subjects 4 and 9. Two results are also presented with randomized subjects.
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11.2 Transportation of two subjects

Table 11.2: Left/right cross-validation classification accuracy with SVM
for each subject. 13 subjects gave statistically significant results (above
60%).

Subject # Acc (%) Subject # Acc (%) Subject # Acc (%)

1 50,00 7 58,33 13 53,33
2 65,00 8 60,00 14 70,00
3 61,67 9 70,00 15 63,33
4 61,67 10 66,67 16 50,00
5 43,33 11 66,67 17 65,00
6 41,67 12 68,33 18 75,00
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Chapter 11. Results

Transportation of subjects 2 and 7

Table 11.3 shows the cross-validation classification accuracy for subjects
2 and 7 which gave the best results for male/female classification. SVM,
decision tree and k-Nearest Neighbour are used for both male/female and
left/right classification. Visualization through t-SNE is presented in the Ap-
pendix.

Table 11.3: Cross-validation classification accuracy for both male/female
and left/right classification with subjects 2 and 7. f = 0 means that the re-
sult is statistically significant at a 0.05 level and f = 1 means that the result
could be due to chance. The highest male/female and left/right accuracies
acquired are bolded.

Male/Female PT (%) f OT (%) f

SVM 95,00 0 80,83 0
Decision tree 84,17 0 92,50 0

2-nearest neighbour 91,67 0 87,50 0
4-nearest neighbour 94,17 0 92,50 0

Left/Right PT (%) f OT (%) f

SVM 65,83 4,17e-6 55,83 4,62e-1
Decision tree 47,50 1 57,50 1,68e-1

2-nearest neighbour 45,83 1 53,33 9,10e-1
4-nearest neighbour 50,00 1 49,17 1
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11.2 Transportation of two subjects

Transportation of subjects 4 and 9

Table 11.4 shows the cross-validation classification accuracy for subjects
4 and 9 which gave the best results for left/right classification. SVM, de-
cision tree and k-Nearest Neighbour are used for both male/female and
left/right classification.

Table 11.4: Cross-validation classification accuracy for both male/female
and left/right classification with subjects 4 and 9. f = 0 means that the re-
sult is statistically significant at a 0.05 level and f = 1 means that the result
could be due to chance. The highest male/female and left/right accuracies
acquired are bolded.

Male/Female PT (%) f OT (%) f

SVM 42,50 1 55,00 6,42e-1
Decision tree 55,83 4,62e-1 61,67 2,26e-3

2-nearest neighbour 81,67 0 53,33 9,10e-1
4-nearest neighbour 79,17 0 59,17 3,96e-2

Left/Right PT (%) f OT (%) f

SVM 65,00 1,69e-5 52,50 9,69e-1
Decision tree 55,00 6,42e-1 52,50 9,69e-1

2-nearest neighbour 85,00 0 85,83 0
4-nearest neighbour 75,83 5,55e-16 74,17 5,45e-14
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Chapter 11. Results

Transportation of subjects 5 and 17

Table 11.5 shows the cross-validation classification accuracy for subjects
5 and 17 which were selected randomly. SVM, decision tree and k-Nearest
Neighbour were used for both male/female and left/right classification.

Table 11.5: Cross-validation classification accuracy for both male/female
and left/right classification with subjects 5 and 17. f = 0 means that the re-
sult is statistically significant at a 0.05 level and f = 1 means that the result
could be due to chance. The highest male/female and left/right accuracies
acquired are bolded.

Male/Female PT (%) f OT (%) f

SVM 73,33 4,79e-13 77,50 0
Decision tree 61,67 2,26e-3 69,17 7,39e-9

2-nearest neighbour 75,83 5,55e-16 72,50 3,87e-12
4-nearest neighbour 83,33 0 73,33 4,79e-13

Left/Right PT (%) f OT (%) f

SVM 55,00 6,42e-1 45,83 1
Decision tree 55,83 4,62e-1 39,17 1

2-nearest neighbour 80,00 0 74,17 5,45e-14
4-nearest neighbour 75,83 5,55e-16 68,33 4,02e-8
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11.3 Transportation of three subjects

Transportation of subjects 1 and 10

Table 11.6 shows the cross-validation classification accuracy for subjects
1 and 10 which were selected randomly. SVM, decision tree and k-Nearest
Neighbour were used for both male/female and left/right classification.

Table 11.6: Cross-validation classification accuracy for both male/female
and left/right classification with subjects 1 and 10. f = 0 means that the re-
sult is statistically significant at a 0.05 level and f = 1 means that the result
could be due to chance. The highest male/female and left/right accuracies
acquired are bolded.

Male/Female PT (%) f OT (%) f

SVM 78,33 0 62,50 7,41e-4
Decision tree 74,17 5,45e-14 69,17 7,39e-9

2-nearest neighbour 80,00 0 70,00 1,26e-9
4-nearest neighbour 82,50 0 70,00 1,26e-9

Left/Right PT (%) f OT (%) f

SVM 88,33 0 59,17 3,96e-2
Decision tree 48,33 1 50,83 9,98e-1

2-nearest neighbour 53,33 9,10e-1 59,17 3,96e-2
4-nearest neighbour 50,00 1 56,67 2,96e-1

11.3 Transportation of three subjects

Several subjects were tested and the classification accuracy after the trans-
portation differed greatly depending on which subjects were used. The the-
sis presents the best results for male/female classification acquired by sub-
jects 2, 7 and 12, and the best results for left/right classification acquired
by subjects 4, 9 and 18. Two results are also presented with randomized
subjects.
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Chapter 11. Results

Transportation of subjects 2, 7 and 12

Table 11.7 shows the cross-validation classification accuracy for subjects 2,
7 and 12 which gave the best results for male/female classification. SVM,
decision tree and k-Nearest Neighbour were used for both male/female
and left/right classification. Visualization through t-SNE is presented in
the Appendix.

Table 11.7: Cross-validation classification accuracy for both male/female
and left/right classification with subjects 2, 7 and 12. f = 0 means that
the result is statistically significant at a 0.05 level and f = 1 means that
the result could be due to chance. The highest male/female and left/right
accuracies acquired are bolded.

Male/Female PT (%) f OT (%) f

SVM 93,89 0 58,33 1,45e-2
Decision tree 81,67 0 70,56 7,44e-15

2-nearest neighbour 92,78 0 67,22 1,68e-10
4-nearest neighbour 92,22 0 72,78 0

Left/Right PT (%) f OT (%) f

SVM 62,22 2,15e-5 60,56 4,69e-4
Decision tree 47,22 1 46,67 1

2-nearest neighbour 77,22 0 77,78 0
4-nearest neighbour 71,67 1,11e-16 70,56 7,44e-15
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11.3 Transportation of three subjects

Transportation of subjects 4, 9 and 18

Table 11.8 shows the cross-validation classification accuracy for subjects
4, 9 and 18 which gave the best results for left/right classification. SVM,
decision tree and k-Nearest Neighbour were used for both male/female and
left/right classification.

Table 11.8: Cross-validation classification accuracy for both male/female
and left/right classification with subjects 4, 9 and 18. f = 0 means that
the result is statistically significant at a 0.05 level and f = 1 means that
the result could be due to chance. The highest male/female and left/right
accuracies acquired are bolded.

Male/Female PT (%) f OT (%) f

SVM 56,11 1,81e-1 63,89 6,50e-7
Decision tree 52,78 9,11e-1 73,33 0

2-nearest neighbour 84,44 0 60,56 4,69e-4
4-nearest neighbour 83,89 0 60,00 1,19e-3

Left/Right PT (%) f OT (%) f

SVM 71,67 1,11e-16 57,22 5,83e-2
Decision tree 52,22 9,61e-1 47,22 1

2-nearest neighbour 59,44 2,89e-3 53,33 8,26e-1
4-nearest neighbour 58,33 1,45e-2 56,11 1,81e-1
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Transportation of subjects 1, 10 and 12

Table 11.9 shows the cross-validation classification accuracy for subjects
1, 10 and 12 which were selected randomly. SVM, decision tree and k-
Nearest Neighbour were used for both male/female and left/right classifi-
cation.

Table 11.9: Cross-validation classification accuracy for both male/female
and left/right classification with subjects 1, 10 and 12. f = 0 means that
the result is statistically significant at a 0.05 level and f = 1 means that
the result could be due to chance. The highest male/female and left/right
accuracies acquired are bolded.

Male/Female PT (%) f OT (%) f

SVM 81,11 0 57,78 3,00e-2
Decision tree 67,22 1,68e-10 62,22 2,15e-5

2-nearest neighbour 70,56 7,44e-15 37,78 1
4-nearest neighbour 77,78 0 45,00 1

Left/Right PT (%) f OT (%) f

SVM 67,22 1,68e-10 58,33 1,45e-2
Decision tree 38,89 1 60,00 1,19e-3

2-nearest neighbour 27,78 1 31,11 1
4-nearest neighbour 35,56 1 36,67 1
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11.3 Transportation of three subjects

Transportation of subjects 2, 6 and 14

Table 11.10 shows the cross-validation classification accuracy for subjects
2, 6 and 14 which were selected randomly. SVM, decision tree and k-
Nearest Neighbour were used for both male/female and left/right classi-
fication.

Table 11.10: Cross-validation classification accuracy for both male/female
and left/right classification with subjects 2, 6 and 14. f = 0 means that
the result is statistically significant at a 0.05 level and f = 1 means that
the result could be due to chance. The highest male/female and left/right
accuracies acquired are bolded.

Male/Female PT (%) f OT (%) f

SVM 80,56 0 50,00 1
Decision tree 62,78 7,01e-6 60,00 1,19e-3

2-nearest neighbour 66,67 7,52e-10 34,44 1
4-nearest neighbour 75,00 0 42,22 1

Left/Right PT (%) f OT (%) f

SVM 93,33 0 46,67 1
Decision tree 52,78 9,11e-1 38,89 1

2-nearest neighbour 52,22 9,61e-1 45,00 1
4-nearest neighbour 47,22 1 40,56 1

Transportation of all 18 subject

Table 11.10 shows the cross-validation classification accuracy for all
18 subjects with SVM, decision tree and k-Nearest Neighbour for both
male/female and left/right classification.
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Chapter 11. Results

Table 11.11: Cross-validation classification accuracy for both male/female
and left/right classification with all 18 subjects. f = 0 means that the result
is statistically significant at a 0.05 level and f = 1 means that the result
could be due to chance. The highest male/female and left/right accuracies
acquired are bolded.

Male/Female PT (%) f OT (%) f

SVM 67,41 0 52,78 1,20e-1
Decision tree 56,76 2,14e-9 52,41 2,49e-1

2-nearest neighbour 80,19 0 54,26 8,01e-4
4-nearest neighbour 79,35 0 53,33 2,30e-2

Left/Right PT (%) f OT (%) f

SVM 61,20 0 53,43 1,71e-2
Decision tree 54,54 2,50e-4 51,94 5,23e-1

2-nearest neighbour 78,98 0 74,44 0
4-nearest neighbour 71,20 0 69,82 0

88



12
Discussion

12.1 Classification accuracy for each subject
before transportation

Both PT and OT seem to work as they capture and preserve the structure
of the data before and after the transportation, shown with subjects 2 and 7
in the Appendix. The problem is that the results differed greatly depending
on which subjects were used and if it is not possible to distinguishing the
separation before the transportation it wont exist after the transportation.

Male/female attention steering

Figure 11.1 shows the male/female cross-validation classification accuracy
for each subject before the transportation. The results differed greatly de-
pending on the subjects, but they were all (except two with decision tree)
above the statistically significant level of 60%. It seems that SVM gives the
best accuracy and subjects number 2, 7, 12, 15 and 18 reached the highest
values. Table 11.1 shows the classification accuracy for each subject with
SVM, which all are statistically significant. This indicates that it is possible
to detect the differences in pitch and timbre with EEG data and covariance
matrices and that the distinguishing is easier for some subjects.

It would have been very interesting to know the gender of listener. Several
behavioural and neural activation studies show that there is a difference
between male and female listener’s perception of voices. The study Gen-
der differences in the temporal voice areas by Marle-Marie Ahrens et. al.
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Chapter 12. Discussion

shows that there exist regions in the brain that are locally activated for fe-
male listeners in a classification task between vocal and nonvocal sound
sources. These regions were not activated for the male listeners. Generally,
the females in the study performed a better classification accuracy com-
pared to the male listeners, however if this is due to the activated regions
is at present unknown. The distinguishing between vocal sounds (male and
female speeches from infants, children, adults and elderly) and nonvocal
sounds (laughs, cries, sighs and coughs) might be an easier classification
task than the one between male and female voices. The subjects in the study
by Marle-Marie Ahrens et. al. listened to one sound at the time, without
the attended/unattended problem, which is another difference between this
thesis and the results in the study. However, it would still be interesting
to investigate if the gender of the listener differed between subjects with
really good and not as good classification accuracy.

Studies show that the attention steering problem is easier when the voices
are of different gender, as in the DTU-dataset [Treisman and Phil, 1964].
It would have been interesting to investigate how much the results would
have differed in this thesis if the two speech streams were from the same
gender, which generally decreases the pitch impact on the attention steer-
ing. One might also take it one step further and use the same voice but
different stories to really study the differences between attended and unat-
tended sound sources. Even though it is not a real-life situation, it might
spread some light over the neural functions in the brain.

It would also have been interesting to know the results on the multiple-
choice questionnaires the subjects made after each trial. Were there any
significant difference between subjects with really good and not as good
classification accuracy?

Left/right attention steering

Figure 11.2 shows the left/right cross-validation classification accuracy for
each subject before the transportation. The results differed greatly depend-
ing on the subjects, and between the classification methods were SVM
outperforms the other two. The accuracies are generally lower than for
male/female classification and several subjects did not give statistically
significant results. This indicates that attention location steering is a harder
problem than the male/female classification problem. Table 11.2 shows the
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12.2 Parallel transport vs Optimal transport

classification accuracies for all subjects with SVM where the highest value
reached 75% for subject 18.

The results differed greatly between the subjects in both the male/female
and the left/right classification problems. One reason for this could be that
they all used the same electrode head cap when recording the EEG data.
The head cap has a specific size which may not fit all individuals. For
example, subjects 2, 12 and 18 gave good results for both classification
problems while subjects 1, 5 and 6 have lower classification accuracies in
both problems.

One reason why the results are not always good with left/right attention
steering could come from the nature of volume conduction. Volume con-
duction is used when the electrodes are not in contact with the actual source
generator. This occurs in EEG data since the electrodes are placed outside
the head while the neuron firing happens inside the brain. However, the
volume conduction does not only transport the electrical pulses from fir-
ing neurons to the nearest electrode, but spread it in all directions. This
means that the electrical pulses from a single neuron is registered in many,
and sometimes all, electrodes on the head [Carvalhaes and Acacio de Bar-
ros, 2015]. This attribute of volume conduction complicates the measure of
attention steering EEG data, especially in the left/right classification prob-
lem where the signals already are crossed several times between the two
hemispheres. One way to solve the volume conduction problem is with a
spatial filter on the EEG data with makes it possible to extract more in-
formation from the data. One of the most common spatial filter is called
Surface Laplacian. Unfortunately, due to lack of time, a Surface Laplacian
spatial filter was not used in this thesis. It would be very interesting to in-
vestigate if it would have made a significant difference and is a relevant
field for future work.

12.2 Parallel transport vs Optimal transport

Both parallel transport and optimal transport have been proven to work on
EEG data with motor cues [Yair et al., 2019; Yair et al., 2020]. They seem
to work with the DTU-dataset in the sense that when a structure exists
(such as male/female separation in subjects 2 and 7 which is presented in
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the t-SNE visualization in the Appendix), the transportation preserves this
structure. The best male/female classification accuracy were from subjects
2 and 7 in Table 11.3 reached 95,00% for PT with SVM and 92,50% for
OT with decision tree and 4-nearest neighbour. Just like the classification
for each subject before the transportation, both PT and OT generally gave
lower accuracies for left/right classification, which for some subjects are
not statistically significant. However, the best results were high: 93,33%
with PT and SVM (Table 11.10) and 85,83% with OT and 2-nearest neigh-
bour (Table 11.4). Transportation of three subjects in Tables 11.7-11.10
gave classification accuracies around the same values as for transportation
of two values. This indicates that the number of subjects transported is ir-
relevant, and the results depend more on which subjects are used and how
well the datapoints were separated before the transportation. Generally, PT
gave slightly better results than OT.

Table 11.11 shows the cross-validation classification accuracies after PT
and OT for all 18 subjects. It gave statistically significant results for
male/female classification which reached above 80% with PT. Left/right
classification gave a bit lower accuracies but were statistically significant
for 2-nearest neighbour with 78,98% for PT and 74,44%. This indicates
that it is possible to use both PT and OT in attention steering problems
with statistically significant results.

12.3 Classification methods

SVM, k-nearest neighbour and decision trees are all widely used classifica-
tion methods. It is not often obvious which method to use since their perfor-
mance differ between various problems, especially for high-dimensional
data such as the DTU-dataset. The results in this thesis show that the best
classification methods for attention steering between male/female and left-
/right with the DTU-dataset seem to be SVM and k-nearest neighbour. Two
k-values are presented in the results (k = 2 and k = 4) since they in most
cases gave be highest accuracies. k = 3 gave similar results, but higher
values of k seem to decrease the accuracy.

Decision trees gave, in almost all cases, the lowest accuracy and is not rec-
ommended to be used in future work with similar problems. Some reasons
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12.4 Pros and cons with EEG data

for this could be that decision trees tend to overfit, are sensitive to small
data disturbances (which would create a completely different tree) and that
they usually find the local optima at the current level - not necessarily the
global optima [Decision Trees – Tree Development and Scoring 2020].

Two other classification methods were also tested: Regression trees and
a pattern recognition neural network with different numbers of neurons
and hidden layers. However, the regression trees gave poor results and the
pattern recognition neural network gave accuracies in the same values as
SVM, but the training time was much longer. Therefore, these two methods
are not presented in the thesis.

12.4 Pros and cons with EEG data

EEG data has many advantages, such as a very low cost compared to other
methods, widely available and easy to use and it is able to capture both the
radial and the tangential components of the signal. There are however some
disadvantages that cannot be overlooked, especially when considering the
development of intelligent hearing aids. When collecting the EEG data, the
subjects wear a head cap with a smooth layer of gel between the electrodes
and the head. It is not reasonable in real-life situations that the hearing aids
are connected to a head cap with gel. However, EEG analysis can be used
in the research of understanding how the brain solves the cocktail party
problem, but different mechanisms have to be considered when developing
intelligent hearing aids.

12.5 The use of covariance matrices

This thesis uses covariance matrices of the EEG data and the two speech
streams for both classification and plotting. Covariance matrices are power-
ful tools when working with time series and they have been used in earlier
studies for classification problems with EEG data. For example, both par-
allel transport and optimal transport have used covariance matrices on the
BCI Competition IV dataset 2a with good results [Yair et al., 2019; Yair
et al., 2020]. However, in these dataset the subjects had four cued motor
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imageries: left hand, right hand, feet and tongue, and it might be greater
differences in the brain wave activity for different motor movements than
between attention steering to a left or right sound source.

One problem with covariance matrices is that they do not capture the time
dependence between the EEG signals. Especially in the left/right case,
where the time difference between the ears and signal crossings in the
brain, are crucial mechanisms for the brain to distinguishing the sound lo-
cation, important information is probably lost in the covariance matrices.
Some domain adaptation methods of interest in future attention steering
problems which do not use covariance matrices are Transfer Component
Analysis (TCA), Subspace Alignment (SA) and Information Theoretical
Learning (ITL).

12.6 The goal of the thesis

The goal of the thesis is to use the two domain adaptation methods paral-
lel transport and optimal transport to transport data from several subjects
and thereafter create a classifier which gets an accuracy above the level of
chance. Two classification problems were considered:

• Attention to male voice vs female voice

• Attention to left side vs right side

The accuracy for male/female classification were above the level of chance
for almost all combinations of subjects used. However, the accuracy for
left/right classification were only above the level of chance for transporta-
tion of a few subjects. Interestingly, transportation of all 18 subjects gave
an accuracy above the level of chance with 2-nearest neighbour for both
male/female and left/right classification. The results were not as good as
when transporting only the "best" subjects, but it indicates that the "good"
subjects outweigh the "bad" subjects. With this in mind, the goal can be
considered to be achieved even though more work needs to be done, for
example with a Surface Laplacian spatial filter, to improve the results.
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12.7 Future work

The two domain adaptation methods used in this thesis are quite simi-
lar since they both use covariance matrices on the Riemannian manifold.
There might exist domain adaptation methods built which capture the time
dependence between the EEG signals which would work better for left-
/right attention steering problems. It would be interesting to try PT and
OT on a different dataset where the two speakers have the same gender,
which would focus more on the left/right attention steering problem. Even
though reverberation is added to some trails, which can be seen as back-
ground noise, are added there might be essential to add more noise to really
match a cocktail party situation. Another aspect of the DTU-dataset is that
all subjects have normal hearing. The data might not look the same for
subjects with hearing loss and it would be interesting to investigate the dif-
ferences, both with and without the use of hearing aids. Future work could
also include how the use of a Surface Laplacian spatial filter would affect
the results.
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Conclusions

Attention steering is a very complex problem which involves several parts
of the brain. Different sound sources can be distinguished with pitch, loud-
ness and timbre analysis and the brain uses time-of-arrival, SPL and spec-
tral shape to determine the voice location. The classification accuracy of
EEG signals differed greatly depending on which subjects were used. It
seems to be easier to distinguishing between male/female voices than be-
tween the location of the sound sources, since these classification accura-
cies generally were higher and almost always above the level of chance.
Meanwhile, several subjects did not give statistically significant results for
left/right classification. Table 11.11 shows the transportation of all 18 sub-
jects, were PT gave an accuracy above 80% for male/female classification
and above 77% for left/right classification for 2-nearest neighbour. This in-
dicates that the number of "good" subjects outweigh the number of "bad"
subjects in the DTU-dataset and that it is possible to distinguishing be-
tween male/female and left/right attention steering with PT and OT.

EEG data and covariance matrices seem to work for domain adaptation
in attention steering problems, but there might exist other methods which
are more effective. Future work would also include data with added noise,
a Surface Laplacian spatial filter, same gender of the two storytellers and
more focus on left/right attention steering. Much work remains in solving
the cocktail party problem in intelligent hearing aids.
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Appendix

14.1 Visualization with t-SNE

Transportation of subjects 2 and 7

Male/Female classification Figures 14.1-14.3 show the t-SNE visualiza-
tion for subjects 2 and 7 before transportation, after parallel transport and
after optimal transport.

Figure 14.1: Male/female: Before applying transportation of subjects 2 and
7
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Figure 14.2: Male/female: After parallel transport of subjects 2 and 7.

Figure 14.3: Male/female: After optimal transport of subjects 2 and 7.
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14.1 Visualization with t-SNE

Left/right classification classification Figures 14.4-14.6 show the t-SNE
visualization for subjects 2 and 7 before transportation, after parallel trans-
port and after optimal transport.

Figure 14.4: Left/right: Before applying transportation of subjects 2 and 7

Figure 14.5: Left/right: After parallel transport of subjects 2 and 7.
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Figure 14.6: Left/right: After optimal transport of subjects 2 and 7.

Transportation of subjects 2, 7 and 12

Male/Female classification Figures 14.7-14.9 show the t-SNE visualiza-
tion for subjects 2, 7 and 12 before transportation, after parallel transport
and after optimal transport.

Figure 14.7: Male/female: Before applying transportation of subjects 2, 7
and 12
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14.1 Visualization with t-SNE

Figure 14.8: Male/female: After parallel transport of subjects 2, 7 and 12.

Figure 14.9: Male/female: After optimal transport of subjects 2, 7 and 12.
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Left/right classification classification Figures 14.10-14.12 show the t-
SNE visualization for subjects 2, 7 and 12 before transportation, after par-
allel transport and after optimal transport.

Figure 14.10: Left/right: Before applying transportation of subjects 2, 7
and 12.

Figure 14.11: Left/right: After parallel transport of subjects 2, 7 and 12.
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14.1 Visualization with t-SNE

Figure 14.12: Left/right: After optimal transport of subjects 2, 7 and 12.
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