
LU-TP 20-35
June 2020

A Program for SU(N) Color Structure
Decomposition into Multiplet Bases
Using Wigner 3j and 6j Coefficients

Andris Potrebko

Master’s thesis

Department of Astronomy and Theoretical Physics,
Lund University

Master thesis supervised by Malin Sjödahl

Abstract

The increased capacity of elementary particle accelerators raises the demand for the sim-
ulation data of the experiments. One of the bottlenecks in the simulations is the QCD
color structure calculation, which is usually treated using non-orthogonal and overcomplete
sets of bases. The computational cost could be decreased significantly if orthogonal bases,
such as the multiplet bases, were used instead. However, no computation tool performing
calculations using these bases is available yet. In this thesis, we present a Mathematica
program as proof-of-principle demonstrating the color structure decomposition into the
multiplet bases. For a given amplitude, the corresponding multiplet basis states can be
created and the scalar product between the amplitude and each of the basis states can be
evaluated whenever the required Wigner 6j coefficients are available. The program offers
tools for visualization of the tensor expressions in the birdtrack notation as well as a syntax
similar to how the tensor expressions would be defined on paper. The available functions
and replacement rules allow performing operations on SU(Nc) tensor expressions including
index contraction, tensor conjugation, and scalar product of tensors.

Popular science abstract

It might be stunning to realize that researching the smallest constituents of the world
we see requires building the largest constructions people have created. On the border
of Switzerland and France one can find the greatest of the examples, the Large Hadron
Collider, a more than eight kilometers in diameter large ring filled with a vacuum where
scientists let bunches of around 100 million protons collide almost 40 million times per
second. Despite all the great discoveries (you might have heard of the Higgs boson found
in 2012, for example), particle physicists often claim that further explorations of the funda-
mentals of the Universe require building even larger colliders and increasing the number of
collisions even more. However, something is often left out in this demand for faster, bigger,
and stronger. In order to find new unknown physics, we must obtain just as much data
from the computer simulations as we get from the experiments. Like with two fingerprints,
we analyze all the different curves and shapes in the graphs obtained from these two data
sets. Any discrepancy found in them would give a clue on where to search for discoveries
such as new types of elementary particles, or even change our view on how our Universe
works.
My contribution to particle physics is connected to speeding up the methods of mathe-
matical simulations of the collision data. A calculation of each clash of particles, like a
collision of two asteroids, involves keeping track of a tremendous mess of collision products
— where they fly, how fast and how they interact with each other. What is even more
complicated to calculate are predictions about what kind of particles get to be created in
each of these collisions. This is determined by the laws of Quantum Field Theory, a theory
stating that all particles can be viewed as energetic bumps in some invisible fields spanning
the whole Universe. The theory predicts how particles get created and destroyed in the
interaction points like waves on a drum membrane when it is hit.
Some of the particles created in these tiny interaction points attract each other so strongly
that they combine long before hitting the detectors. These particles are called quarks
and gluons and the force that creates these immensely strong bounds is called, well, the
strong force. An even more peculiar feature of this force is that unlike the electromagnetic
charge, the strong force charge comes in three types. Gluons and quarks interact differently
depending on what charge they possess. Even though simplified methods to simulate
particle collisions approximately exist, for exact calculations, all of the possible color charge
combinations have to be considered. This makes one of the greatest bottlenecks of the whole
simulation process and is a challenge that this thesis offers a possible solution to.
In my thesis, I computationally implemented a new technique that uses abstract math-
ematical objects called multiplet bases that could potentially speed up the strong force
calculations. We have already validated our method for the simplest collisions. However,
the highest hope is to update the multiplet bases method to be able to calculate collisions
where eight or more gluons and quarks appear and where the speed differences would be-
come more significant. When this is achieved, it should immensely increase the capacity
of simulating particle collisions. In this way, physicists would be able to search for even
more complicated processes and in this complexity maybe some great discoveries hide.

Populärvetenskaplig beskrivning

Det är häpnadsväckande att för att utforska de minsta delarna som vår värld består av
krävs de största maskinerna vi har skapat. På gränsen mellan Schweiz och Frankrike
kan man hitta det bästa exemplet, Large Hadron Collider, en 27 kilometer lång ring där
forskare låtar knippen av runt 100 miljoner protoner kollidera nästan 40 miljoner gånger
per sekund. Trots alla betydande upptäckter (du har möjligtvis hört om Higgsbosonen som
upptäcktes 2012) påstår partikelfysiker ofta att ännu djupare forskning av det grundläg-
gande i universum kräver ännu större experiment och ännu fler kollisioner. Någonting är
däremot ofta osagt i denna jakt efter snabbare, större och kraftigare experiment. För att
hitta ny, okänd fysik, måste vi skaffa lika mycket data från våra datorsimuleringar som vi
får från våra experiment. Precis som med två fingeravtryck, analyserar vi olika kurvor och
former i graferna som vi skapar från dessa två datauppsättningar. Varje avvikelse kan ge
oss en ledtråd om var vi borde leta efter nya partiklar eller till och med förändra vår syn
på hur världen fungerar.
Mitt bidrag till partikelfysiken är att implementera en metod som ska öka hastigheten på
simulationerna av partikelfysikexperimenten. Att beräkna varje partikelkollision är som att
bokföra en krock mellan två asteroider, det kräver att man håller reda på en enorm mängd
små bitar från asteroiderna — vart de flyger, hur snabbt och hur de påverkar varandra. Det
som är ännu mer komplicerat är att beräkna vilka partiklar som kommer att skapas i dessa
kollisioner. Det bestäms av kvantfältteorins lagar, en teori som säger att en partikel kan
beskrivas som ett knippe energi i ett osynligt fält som sträcker sig genom hela universum.
Teorin förutsäger hur partiklar skapas och förstörs liksom vågor på trumman som slås.
Några av partiklarna som skapas i kollisionerna hålls samman så starkt att de har satt sig
ihop länge innan de träffar detektorn. Dessa partiklar kallas kvarkar och gluoner. Den
starka kraften som binder dem till varandra så starkt kallas för den starka kärnkraften. En
märklig egenskap med denna kraft är att till skillnad från den elektromagnetiska laddnin-
gen kommer den starka laddningen i tre olika sorter. Gluoner och kvarkar påverkar varan-
dra olika beroende på vilka laddningar de har. Trots att enklare metoder finns för att
ungefärligt beräkna partikelkollisioner, måste man för exakta beräkningar överväga alla
kombinationer av laddningen i partiklar. Det utgör en av de största utmaningarna i hela
beräkningsprocessen.
I mitt examensarbete, implementerade jag en ny metod som använder abstrakta matema-
tiska objekt som kallas multiplet baser, för att öka hastigheten på beräkningar av den starka
kärnkraften. Vi har redan validerat vår metod för enkla processer. Det slutliga målet är
däremot att uppdatera metoden så att det blir möjligt att beräkna kollisioner där åtta
eller fler gluoner och kvarkar skapas och där hastighetsskillnaderna mellan beräkningarna
är som tydligast. När det är uppnått, kommer det att öka vår förmåga att simulera
partikelkollisioner med exakt färgstruktur oerhört. På detta sätt, ska fysiker kunna leta
efter ännu mer komplicerade processer och i denna komplexitet finns kanske några stora
upptäckter.

Contents

1 Introduction 1

2 Theory 3
2.1 Group theory . 3

2.1.1 Special unitary group SU(Nc) . 4
2.2 Quantum chromodynamics . 6
2.3 The diagrammatic birdtrack notation . 8

2.3.1 Generalized vertices . 10

3 The color structure calculation using multiplet bases 14
3.1 Trace bases . 14
3.2 Multiplet bases . 16
3.3 Important group theoretical identities . 18
3.4 Decomposing color-invariant quantities into the Wigner 3j and 6j coefficients 21

3.4.1 An arbitrary structure . 21
3.4.2 QCD amplitude contracted with a basis vector of the form as in

figure 1a . 22

4 The implementation of the program 25
4.1 Conventions and the normalization . 25
4.2 The implementation . 27

5 Usage of the program and examples 29
5.1 The building blocks of the program . 29
5.2 Color structure simplification . 31
5.3 Full color structure calculation . 33
5.4 Simplifying amplitudes containing arbitrary representations 35
5.5 Evaluating amplitude squares using multiplet bases 36
5.6 The built-in consistency and validity checks 37
5.7 Treatment of the number of colors Nc . 38
5.8 Validation . 39

6 Conclusion and Outlook 41

A The available ColorMath input 44

B Alternatives to the three vertex loop contracting functions 44

C Additional functions available in the program 45

1 Introduction

The ongoing upgrade of the Large Hadron Collider (LHC) is going to enable probing
particle physics processes with lower cross-sections and more complicated signatures [1,
2]. These processes include the search for beyond the standard model physics, such as
the production of hypothetical supersymmetric particles like gluinos and charginos [3] or
probing CP-violating standard model processes [4]. Moreover, it would allow reducing the
statistical uncertainties on parameters determining standard model processes such as the
cross-sections of Higgs boson production and its couplings [5].
Tests of the standard model and beyond the standard model predictions require comparing
the experimental data with the Monte Carlo simulations with the same accuracy [6]. In this
way, experimental advances require increasing both the speed of numerical calculations and
data accuracy. To achieve the latter, for several processes it is also suggested to increase the
order of the perturbative expansion of Quantum Chromodynamics (QCD) and electroweak
calculations1 from next-to leading order (NLO) to next-to-next-to leading order (NNLO)
[7, 8]. Similarly, higher energies of collisions allow processes with higher multiplicities of
partons in this way increasing the complexity of the calculations.
A major challenge for simulating events with color charged particles is the treatment of
the color structure. The need for it appears already when calculating the transition matrix
element of the hard scattering, that is, of the processes involving momentum transfer of
more than 1 GeV, where the strong coupling constant is small. In addition, the particles
created in the hard scattering emit virtual gluons and quark-antiquark pairs. In the cal-
culations of this radiation, large logarithms often appear that invalidate the perturbative
calculations. Hence, all the orders of perturbation have to be considered. All order pertur-
bative physics of these emissions is usually approximated through parton showers [9, 10] or
by resummation [11, 12, 13], which both contain evaluation of the color structure. Despite
being present in these steps of particle physics event generation, the common methods for
the exact calculations of the color structure using different types of non-orthogonal bases,
which we discuss later in this section, break down due to non-sufficient computation power
when the number of gluons reaches around 7 or 8 [14]. Increasing this number and satisfy-
ing the demand caused by the increased experimental opportunities is a problem that the
multiplet bases used in this thesis offer a possible solution.
The complication of treating the color structure arises due to the non-Abelian nature of
the strong force, i.e., that there are three types of color charges, called red, green, and blue.
In addition, QCD includes also gluon self-interactions. Hence, the color structure of the
QCD processes is non-trivial, that is, the result depends on the colors of the interacting
particles in a non-trivial way. Experimental evidence shows that color charged particles are

1We refer to calculations of the transition matrix element and, consequently, of the cross-section of
a process at the momentum scale where the coupling constants (electromagnetic, weak, strong) involved
are small. Hence the result can be approximated by taking terms up to a finite order in the perturbative
expansion in the coupling constants.

1

always confined in color neutral hadrons, a fact called color confinement. In other words,
one can only measure color invariant quantities, that is, color singlets. Consequently, an
exact treatment of the cross-section calculations of a QCD process involves averaging the
matrix element over all the possible combinations of the incoming colors of particles and
summing over all the possible outgoing colors. In addition, the sum over the colors of
all virtual particles is hidden inside the matrix element. Since each gluon comes in eight
different types and quarks in three, the color sum gets immensely large very quickly. For
example, a process involving 5 gluons, 2 quarks, and 2 antiquarks would involve a sum
over 85 · 34 = 2654208 possible indices. For this reason, alternative methods for doing this
color sum are usually used.
The usual treatment of the color sum is to express the color structure of the process in
sets of tensors, called bases. The most common and conceptually simplest bases are the
trace bases [14, 15, 16, 17, 18, 19], and other non-orthogonal bases [20, 21, 22]. The
non-orthogonality of these bases is their main drawback, which causes an increase in the
number of terms when performing amplitude squares from the number of basis states to
the square of that. Moreover, the set of basis states is often overcomplete, meaning that
one requires more basis states than the dimensionality of the color space.
In this way, increasing the complexity of processes for which the color sum can be calcu-
lated exactly beyond the seven partons mentioned earlier can be achieved using orthogonal
sets of bases. One such option is expressing the color structure in its irreducible represen-
tations (multiplets), that by construction are orthogonal [13, 23, 24]. A general recipe for
constructing these so-called multiplet bases has been described recently [24]. Moreover,
it has been found that expressing the color structure in these bases can be done without
explicitly constructing them but instead using the so-called Wigner 3j and 6j coefficients,
see, for example [25, 26]. These coefficients have all been calculated for decomposing LO
and NLO processes having up to six gluons and quark-antiquark pairs in total [26, 27].
Despite all this theoretical effort, no computational implementation of using the Wigner
3j and 6j coefficients for automatic color structure decomposition onto the multiplet bases
has so far been published. The multiplet bases have been shown to be suitable also for the
recursion, a different approach of dealing with the color structure where more complicated
structures are derived from simpler ones [28]. This thesis, however, is focused on the full
color structure decomposition in the multiplet bases.
In this thesis, we present a program written in Mathematica [29] demonstrating as a proof-
of-principle a computational implementation of the color structure decomposition into the
multiplet bases bases. Given an input of a QCD amplitude and the corresponding multiplet
basis, the components of the amplitude on the basis states can be calculated. Furthermore,
the corresponding multiplet basis can be constructed automatically. Lastly, the color sum
can be evaluated by squaring all of the components on the basis states and summing
them. Consequently, the multiplet bases are shown to be a possible alternative to the non-
orthogonal bases currently used in the event generators. Nevertheless, a full replacement
of the non-orthogonal bases with the multiplet bases would require further optimization

2

of the program, as well as extending the available list of Wigner 6j coefficients that are
currently only available for calculations of up to 6 gluon and quark-antiquark pairs in total
[26, 27].
Additionally to the color structure calculations, the program can be used as a platform
for performing color summed tensor calculations with the irreducible representations of
SU(Nc), where Nc ≥ 2 is the number of colors. Any fully color-summed (contracted) tensor
can be evaluated in terms of the Wigner 3j and 6j coefficients whenever these coefficients
are available, and several identities for simplifying partially contracted color amplitudes are
available. Finally, a work with tensors of arbitrary representations of SU(Nc) is permitted,
as well as visualizing tensor expression in the diagrammatic birdtrack notation. In this
way, the program can be viewed as an extension of the Mathematica package ColorMath
[18]. The program is available upon request and a publication of it in a package form is
possible.
This thesis is organized as follows. First, in section 2 we provide the most relevant the-
oretical concepts from group theory and QCD. Furthermore, we introduce the birdtrack
notation, a technique for group theoretical calculations which we use afterwards in sec-
tion 3 to derive and justify the methods used in the created program. The explanations in
section 2 and section 3 are often kept general, without adapting any particular convention,
while the later sections are narrowed down to our particular solution of color structure
decomposition process. In section 4 we turn theory into practice by describing how color
structure decomposition is computationally implemented in the Mathematica program.
Afterwards, in section 5 we document the usage of the program, provide examples of the
application and explain the tests we made to validate the program.

2 Theory

In this chapter, we introduce the theoretical base for this thesis. We begin by stating the
most important parts of group theory, particularly paying attention to the special unitary
groups SU(Nc). Using these concepts, we take a look at the Lagrangian of QCD and the
vertices following from it. Finally, we define the birdtrack notation, a powerful tool for
performing tensor calculations and state the advantages of this notation in comparison to
the equivalent matrix and tensor notations.

2.1 Group theory

Symmetries in physics are of great importance since studying them can provide information
about what conserved currents and charges the physical system has, what are the allowed
physical states and what are their properties. In particle physics, the electromagnetic,
weak, and strong force arise as a consequence of imposing three symmetries: U(1), SU(2),
and SU(3). Moreover, requiring new symmetries that are eventually broken in the world

3

that we observe is the usual method for the search of the physics beyond the standard
model.
Symmetries are described as transformations that leave a physical system invariant. These
symmetry operations fulfill the properties of a group [30, 31].
Def. A group G is a set of elements {gi, gj, gk...} and a bilinear operation ◦ between the
set elements, called group multiplication that satisfies closure, associativity, the existence
of an identity element e, and the existence of an inverse element.
A homomorphism from abstract group elements to matrices is called a group representation.
First, by a general linear group GL(V) we denote all matrices that act on a vector space V
over a field F and map it back into V . Using that, we define a group representation D(g)
as a homomorphism from G to GL(V), that is,

D(g): G → GL(V).

Every group possesses the so-called singlet or trivial representation 1, which is just a num-
ber 1 and might possess other representations. Moreover, for a given representation one
can find an often infinite set of equivalent representations, related by similarity transfor-
mations,

D′(g) = S−1D(g)S, (2.1)
where S is a matrix satisfying S−1S = I and I is the identity matrix. Such transformations
correspond to a change of basis in V .
In some cases, one can find a basis of the vector space V such that a non-trivial subset
of this basis is closed under the action of the representation. In other words, there exists
W ⊂ V , W ̸= {}, W ̸= V , so that ∀g ∈ G, ∀w ∈ W : D(g)w ∈ W . In such cases, we say
that the representation is reducible and otherwise — irreducible [30].
A representation, D(g), is reducible if and only if it can be brought into a block-diagonal
form:

S−1D(g)S =

D1(g) 0 · · · 0
0 D2(g) · · · 0
... . . . 0
0 · · · Dn(g)

 ,

where D1(g), ...Dn(g) are the irreducible representations D(g) reduces into. Such a decom-
position is denoted by the Direct sum of the corresponding irreducible representations

D(g) = D1(g)⊕D2(g)⊕ ...⊕Dn(g).

2.1.1 Special unitary group SU(Nc)

As will be apparent from the QCD Lagrangian, to be defined in section 2.2, this theory is
invariant under the continuous transformations according to SU(Nc) group with Nc = 3.

4

The method of color structure decomposition implemented in this thesis fully relies on the
irreducible representations of this group.
We define a vector vi to belong to the Nc dimensional complex vector space V = CNc

and its conjugate vi to belong to its dual space V . Then group elements of SU(Nc) are
matrices g that preserve the bilinear product of vectors vivj −→ vigg†vj = vivj and do not
change phase or reflect vi. The first condition requires unitary g · g† = I, while the second
condition requires det(g) = 1. Matrices with det(g) = 1 are called special.
In this way, the definition of SU(Nc) group is:
Def.

SU(Nc) := {g ∈ GL(CNc) | g · g† = I , det(g) = 1} (2.2)

The two conditions on g reduce the number of independent parameters, needed to specify
g uniquely, to N2

c − 1, which is called the dimension of SU(Nc). We are interested in group
elements of a continuous and smooth group (Lie group) which can be written as

g = exp

N2
c−1∑
a=1

iθata

 ,

where ta are matrices called infinitesimal generators of the Lie group and θa are real
parameters [30]. The generators, ta, satisfy the Lie algebra commutation relation (where
we adapt Einstein’s summation convention):

[ta, tb] = ifabctc, (2.3)

where fabc is an anti-symmetric matrix called the structure constant of SU(Nc). In other
words, the Lie algebra is closed under the action of the Lie algebra commutation relation,
the so-called Lie bracket. For SU(Nc), the unitarity of g implies the Hermicity of ta, while
the unit determinant implies the tracelessness of ta, that is, Tr[ta]=0.
The ta matrices are orthogonal and can be normalized arbitrarily

Tr[ta · tb] = TRδ
ab. (2.4)

Since SU(2) Pauli matrices are usually taken to be ta = 1
2
σa and normalized as Tr[σa ·

σb] = 2δab (and analogically for SU(3) Gell-Mann matrices ta = 1
2
λa), then the generator

normalization constant is usually fixed to TR = 1
2
. In the Mathematica program created

in this thesis we, however, let the user define the normalization or leave it as a constant.
Since in QCD Nc = 3, it is convenient to adapt a common notation, and label the most
frequently encountered representations of SU(Nc) by their dimension in the Nc = 3 case
[26, 27]. The vector space V , which can itself be viewed as an Nc dimensional representation
— the so-called defining representation — we thus denote by 3, a triplet.

5

Using group theoretical methods, such as Young tableaux, it is possible to determine how
a two representation direct product (tensor product) decomposes into irreducible represen-
tations, see, for instance [25, 31]. One important example is the direct product of a triplet
with an anti-triplet, that is,

3⊗ 3 = 1⊕ 8, (2.5)
where 1 is the singlet representation. The octet representation, 8, also called the adjoint
representation of the group, can be defined in terms of the structure constants, fabc [25, 30].
For the case of Nc = 2, the decomposition corresponding to Eq. (2.5) is the usual two
spin 1

2
state decomposition into a singlet and a triplet [32]. In other words, spin 1

2
is

the corresponding fundamental representation in the Nc = 2 case and the triplet is the
corresponding adjoint representation.
Not all representations can be denoted by integers, since there are in general several repre-
sentations having the same dimensions for Nc = 3. While for all the contents of this thesis,
the simple notation explained above is sufficient, in section 4.1 we explain a unique and
Nc-independent label for the representations that we have adapted in the created program.

2.2 Quantum chromodynamics

QCD is a part of the standard model of particle physics — the currently most successful
theory predicting the processes involving the elementary particles — that describes the
strong interaction. This interaction acts on particles possessing a color charge (or color),
namely, quarks and gluons. There are Nc = 3 colors in QCD and the strong force is discov-
ered to be invariant under the simultaneous change (rotation) of all three colors, motivating
the SU(3) symmetry of the theory. Moreover, writing QCD as an SU(3) invariant gauge
field theory turns out to explain many experiments precisely. While in this section, we
describe QCD as a theory satisfying SU(3) invariance, a general SU(Nc) invariant theory
with an arbitrary Nc and the same vertices as QCD can be written similarly.
The theory of QCD consists of quarks qi ∈ 3, antiquarks qi ∈ 3 and gluons Ga ∈ 8, where
a ∈ 1, ..., 8 is the gluon index. Using this notation, the QCD part of the standard model
Lagrangian can be written as,

L =
∑

q=u,d,s,c,b,t

(qi(i/∂ −m)qi − 1

4
(∂µG

a
ν − ∂νG

a
µ)

2 + gsG
a
µqiγ

µ(ta)ijq
j

+gsf
abc(δµG

a
ν)G

µbGνc − 1

4
g2s(f

eabGa
µG

b
ν)(f

ecdGµcGνd), (2.6)

where the sum runs over all quark types; gs is the strong force coupling constant and
qi = (qi)†γ0, see, for example [33]. Here and in what follows, we put the quark indices
(indices transforming as triplets) upstairs and the anti-quark indices (transforming as anti-
triplets) downstairs.

6

In Eq. (2.6), one can see three interaction terms. The first one, the quark-gluon vertex,
is proportional to the generator of SU(Nc), ta. Since we are interested only in the color
structure of the vertices, that is, what SU(Nc) invariant tensor these vertices correspond
to, we discard the Lorentz and Dirac indices whenever possible. We thus write:

a

i j = (ta)ij (2.7)

ignoring the spacetime structure that usually multiplies the vertex, since it is just a mul-
tiplicative factor which can be added afterwards whenever needed.
Similarly, we have the three-gluon vertex, which ignoring the spacetime structure of the
vertex is equal to the structure constant

a

b c

= ifabc. (2.8)

According to the Feynman rules of QCD, the four-gluon vertex can be expressed in terms
of the structure constants, which are equal to the three-gluon vertices according to our
definition in Eq. (2.8)

a, α b, β

d, δc, γ

= ig2s(g
αδgβγ − gαγgβδ) + ig2s(g

αδgβγ − gαβgγδ)

+ ig2s(g
αβgγδ − gαγgβδ), (2.9)

where the spacetime structure does not factorize from the color structure and, in this way,
does cannot be discarded, see, for example [34]. In other words, the Lorentz indices have
to be kept in Eq. (2.9). The possibility to express the four-gluon vertices into three-gluon
vertices is the reason why the four-gluon vertices will never appear later in this thesis. That
is to say, we will assume that all of the four-gluon vertices are expressed using Eq. (2.9).
An important property of all the three QCD vertices (shown in Eq. (2.7) to Eq. (2.9)) is
that they all preserve the total color charge. In other words, if a particle carrying, for
instance, red color charge comes in, then red must come out somewhere (or anti-red come
in). This means that all of these vertices are color singlets when all of the indices are
transformed simultaneously, just as their combinations as direct products and contractions
are. The number of colors, Nc, does not change the qualitative appearance of the QCD
vertices. For this reason, the method for color structure calculation described in the further
chapters applies to any SU(Nc) gauge theory. In the method, Nc is only going to appear as
a parameter determining what kind of representations appear in the direct products and
their dimensions. Also the Wigner 3j and 6j coefficients which play an important role in
the further calculations (see section 3.3) depend on Nc.

7

2.3 The diagrammatic birdtrack notation

For performing group theoretical calculations with tensors in this thesis, we will be using a
powerful diagrammatic notation called birdtracks [24, 25, 35, 36]. Visually, birdtracks often
look similar to Feynman diagrams. However, while a Feynman diagram is a diagrammatic
representation of contributions to a transition matrix element in a perturbative expansion,
birdtracks represent tensors. Moreover, the birdtrack notation allows performing tensor
calculations without converting to the equivalent tensor or matrix notations. The QCD
vertices encountered in Eq. (2.7) to Eq. (2.9), where we assigned a tensor to a particular
diagram, are thus examples of birdtracks. In this chapter, after explaining the advantages
of birdtracks and presenting the necessary definitions, we discuss how to apply the birdtrack
notation to perform such tensor operation as tensor scalar products and other operations
that are going to be used in the further sections.
All the tensor operations can be equivalently defined in the birdtracks, but it has several
advantages over the ordinary matrix and tensor notations. First, unlike matrices, it permits
working with tensors of an arbitrary rank and contracting them arbitrarily. Furthermore,
unlike the ordinary tensor notation, birdtracks do not require writing and keeping track
of dummy indices and in some cases even of the free indices. This is particularly handy
for the later parts of this thesis where we describe tensors corresponding to many different
representations and their tensor products. For such tensors, each of the different represen-
tations must have its own set of indices assigned and keeping track of all those would get
confusing and cumbersome very fast (see the scalar product in Eq. (2.15) for example).
Finally, it is often more straightforward to find and depict patterns in a diagrammatic
representation in comparison to a large block of symbols.
We are going to define the birdtrack notation for SU(Nc) tensors. With analogy to Feynman
diagrams, we define two different kinds of lines, one for triplets and one for octets. Hence
we draw the delta functions as propagators:

δij ≡ i j
, δa,b ≡

a b
, (2.10)

where i = 1, ..., Nc is the triplet index, j = 1, ..., Nc is the anti-triplet index, and a, b =
1, ..., N2

c − 1 the octet indices. Different representations will require different lines to
distinguish them. While various conventions can be chosen for complex representations
like triplets and anti-triplets, in this thesis, we define the arrow to point from the upper
index (triplet index in Eq. (2.10)) into the lower index (anti-triplet index in Eq. (2.10)).
Since the octet representation is real, the conjugated representation of an octet is the same
as the representation itself, so there is no reason to differentiate between them by using
different index positions. This transforms into discarding the arrow for octet lines.
It is useful to define a shorthand notation for n direct products of the same representation
as

R⊗n ≡ R⊗R⊗ ...⊗R︸ ︷︷ ︸
n times

. (2.11)

8

Then, consider an arbitrary tensor from the product space,

X ≡ (Xa1 a2...aNg)j1 j2...jnq
k1 k2...knq

∈ 8⊗Ng3⊗nq3⊗nq , (2.12)

where the term before the equivalence symbol is written in the matrix notation and after
the equivalence symbol in the tensor notation. In birdtracks, it may be denoted by an
arbitrary shape (square, circle, dot) with lines corresponding to the representations of the
tensor with their color indices coming in and out

X ≡

...

...
X

a1

j1

k1

knq

aNg

, (2.13)

where we apply the convention to order the indices on the lines anti-clockwise just like we
already did with three-gluon vertex in Eq. (2.8).
In our convention, taking the Hermitian conjugate (conjugate transpose) of a tensor re-
verses the order of the indices (transpose) and exchanges the representations with their
conjugate. In the birdtrack notation this corresponds to reversing the order of lines and
reversing the direction of arrows

X† ≡
...

...
X†

a1

j1

k1

knq

aNg

(2.14)

Connecting two lines with a common index means contracting this index. In this way, we
can define a scalar product of two tensors X and Y belonging to the same space as

⟨Y |X⟩ ≡ Y †X =
(
(Y an...a2 a1)kl...k2 k1jm...j2 j1

)(
(Xa1 a2...an)j1 j2...jmk1 k2...kl

)
≡

...

...

X

... Y
†

, (2.15)

where we obtain a closed topology, i.e. a vacuum bubble, meaning that all of the indices are
contracted and the object is a color scalar. Eq. (2.15) also demonstrates the redundancy
of the indices on the internal lines in birdtracks, that is, the dummy indices; the connected
lines fully determine which two indices are contracted. From now on, we are going to
discard the dummy indices.
Moreover, even the free indices can be discarded in birdtracks. Then, to contract two
indices one has to keep track of the order in which the lines exit/enter the image. For
example, if we discard the indices in Eq. (2.13) we know that the first quark line entering
in the upper left corner (with the index j1) can be contracted with the last anti-quark,

9

such as the j1 line on Y in Eq. (2.14). Similarly, the contraction can be performed with
all the lines in a birdtrack.
In birdtracks, there is no momentum flow, that is, no “in” or “out” and thus no distinc-
tion between an incoming quark and an outgoing antiquark (both are triplets, i.e. upper
indices), as well as no distinction between an incoming antiquark and an outgoing quark
(both anti-triplets, i.e. lower indices). As a consequence, the birdtrack can be turned and
twisted as long as it keeps the same topology while still representing the same tensor. If
the free indices are discarded, it has to be ensured that the external lines still exit the
image in the same order as before twisting.
An example of twisting that is not allowed is interchanging the order in which two legs
enter the vertex as shown below for the three gluon vertex.

a

b c

−→

a

b c

=

 a

b c

T

≡
−

a

b c

= (−1) ·
a

b c

.

(2.16)
Here we have written the indices explicitly to indicate that in the transformed term the
lines exit the vertex in a reverse order (acb instead of abc). Such an interchange corresponds
to transposing the vertex. In the term after the equivalence sign we have adapted the so-
called Yutsis notation. According to this notation, a minus sign by the vertex denotes
that the vertex is transposed or, in other words, that the order of lines is exchanged (lines
are read clockwise instead of anti-clockwise)[37]. Since the three-gluon vertex corresponds
to the anti-symmetric tensor then ifabc = −if cba, and transposing the three-gluon vertex
obtains a minus sign. In section 2.3.1, after introducing the generalized vertices, we show
that the signs obtained by transposing the vertices encountered in this thesis are always
±1.

2.3.1 Generalized vertices

We will define the generalized vertex in the birdtrack notation as a tensor proportional
to the Clebsch-Gordan coefficient and then discuss some important properties of these
vertices.
We saw previously in Eq. (2.5) how a direct product of a triplet and an anti-triplet decom-
poses into the irreducible representations of a singlet and an octet, 3 ⊗ 3 = 1 ⊕ 8. This
expression decodes the information that the 3 × 3 = 9 dimensional direct product space
3⊗3 can be spanned by two sets of bases. This space can, on the one hand, be spanned by
the eigenvectors of the matrices belonging to 3⊗ 3. On the other hand, it can be spanned
by the total set of the eigenvectors of the representations 1 and 8. In general, it is possible
to write the exact expansion of the direct product of two vectors |α1i1⟩ and |α2i2⟩ as

10

|α1i1⟩ ⊗ |α2i2⟩ =
∑
α,i

|αi⟩⟨α1i1;α2i2|αi⟩, (2.17)

where ⟨α1i1;α2i2|αi⟩ are the Clebsch-Gordan coefficients, α1 and α2 are two irreducible
representations and i1 and i2 are the corresponding vector indices, α are all irreducible
representations such that α ∈ α1 ⊗ α2 and i is the vector index in α [25, 30, 37]. An
example of this expansion is the addition of two angular momenta in quantum mechanics,
where it is more common to denote the Clebsch-Gordan coefficients and the vectors using
the angular momenta of the states j, which is related to the dimension of the representation
by α = 2 · j + 1, and using the z component of the angular momentum m instead of the
vector index [32].
Based on this, we define a generalized vertex to be a tensor proportional to the Clebsch-
Gordan coefficient, that is, in the birdtrack notation

α1,i1
α3,i3

α2,i2

∝ ⟨α1i1;α2i2|α3i3⟩. (2.18)

The normalization of the generalized vertex can be chosen arbitrarily, but, as described
later in this chapter, we normalize them to unity. Since in this thesis we calculate the color
summed tensor expressions, the indices i1, i2 and i3 will always be summed over and, as
explained above in section 2.3, can be discarded.
From 3⊗ 3 = 1⊗ 8 and Eq. (2.18), we see that triplet and anti-triplet lines connecting can
create two distinct vertices — the quark-gluon vertex as in Eq. (2.7) (where the outgoing
representations is an octet) and a delta function as in the left equation in Eq. (2.10) (the
outgoing representations is a singlet). The non-existence of any other vertex can be seen
as a consequence of a vanishing Clebsch-Gordan coefficient.
The direct product of two octets is

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27⊕ 0, (2.19)

where this decomposition into the irreducible representations contains also representations
not present in the standard model, see, for example, [31]. Note that the representations of
dimension 8 appear twice in Eq. (2.19). This means that two orthogonal eight-dimensional
vector spaces have to be used to characterize it; we need two different vertices connecting
three octets.
In QCD, only one of such vertices is found, namely the three-gluon vertex ifabc as in
Eq. (2.8). It is conveniently to choose ifabc as one of the two vertices and an orthogonal
vertex to it — as the other one. The later turns out to be the symmetric structure constant
of SU(Nc), dabc, defined by the anticommutator of the generators, {ta, tb} = 2TR

Nc
δab+dabctc.

11

In birdtracks we denote dabc by a three-gluon vertex with a gray circle in the middle

dabc ≡ . (2.20)

In particular, it can be shown that the scalar product between the two three-gluon vertices
is 〈 ∣∣∣∣

〉
= = = − − = (−1) · ,

(2.21)
where in the second step we only twisted the inner lines without changing the order of
them, but in the third step related the vertices with their transposed vertices. These two
steps together correspond to renaming two of the dummy indices in the tensor notation.
In the final step, we used the anti-symmetry of ifabc from Eq. (2.16) and the symmetry of
dabc, which together acquire a minus sign. Hence, in Eq. (2.21) we see that a scalar product
is equal to a minus-itself, so it has to vanish and dabc is thus orthogonal to ifabc.
We refer to different kinds of vertices connecting the same representations as different
instances of the same vertex. We will indicate the instance of the vertex whenever it has
several of them and when identifying them is important. We will, for example, order the
instances and indicate them by an integer a on the birdtracks as

γ α

β
a

. (2.22)

The vertex ifabc we identify with the instance a = 1 and dabc with a = 2. In general,
vertices with different instances do not have to be orthogonal. Nevertheless, it is always
possible to choose them to be orthogonal as we do in this thesis. In addition to vertex
instances, the vertices are also orthogonal unless all their representations are equal. that
is, taking the scalar product of two vertices, we get

〈 γ′ α′

β′

b

∣∣∣∣ γ α

β
a

〉
=

α′ γ′

β′

b ·
γ α

β
a = δabδ

α
α′δ

β
β′δ

γ
γ′

α

γ

β

a .

(2.23)
The normalization constant in Eq. (2.23) is called Wigner 3j coefficient2 and the represen-
tations γ in it corresponds to the line inside the circle. For the theoretical description of
color structure decomposition in section 3 we keep the normalization general. However,

2The “3j” in Wigner 3j coefficients and, in general, “3n j” in Wigner 3n j coefficients and 3n j symbols,
where n is a positive integer, refers to their applications in atomic physics, where they are used for
recoupling angular momenta of quantum systems that in total contain 3n angular momenta.

12

for the created Mathematica program, as explained in section 4.1, we choose to normalize
the generalized vertices to one, absorbing the constant appearing from Eq. (2.23) in the
definition of the vertices. In other words, all Wigner 3j coefficients in this can be set to
unity.
From the birdtrack of the vertex in Eq. (2.18), it can be seen that it possesses symmetries
that are not present in the Clebsch-Gordan coefficients. Since reversing the direction
of the arrow corresponds to conjugating the corresponding representation, the vertex for
representations α1 and α2 decomposing into α3 is the same as for representations α3 and
α2 decomposing into α1. In this way, the generalized vertex turns out to be proportional to
the so-called 3j symbols (not Wigner 3j coefficients in terminology used in this thesis) that
are commonly used in atomic physics as a more symmetric alternative to Clebsch-Gordan
coefficients for three angular momenta recoupling [25, 37, 38]. In section 3.3 we introduce
also the Wigner 6j coefficients that are products of four generalized vertices (which are
summed over all the dummy indices).
The generalized vertices can be transposed, similarly as was shown on the three-gluon
vertex example, Eq. (2.16),

γ α

β
a− = σαβγ,aT

γ α

β
a (2.24)

and conjugated γ α

β
a

∗

= σαβγ,aC

γ α

β
a , (2.25)

where the coefficients σαβγ,aT and σαβγ,aC are ±1. The absolute square of the vertex, which is
the product of the vertex with its Hermitian conjugate (complex conjugate and transpose),
should always be positive. This puts a constraint on the transposition and conjugation
coefficients σαβγ,aT · σαβγ,aC = 1. Just like with the normalization, the sign of the vertex
can be chosen freely and absorbed by the redefinition of the vertex, unless the conjugated
vertex or the transposed vertex is equal to the vertex itself. For such cases, all the signs
of the vertices that are used in program created have been determined in [26, 27].
As shown in Eq. (2.19), the decomposition of the two-octet tensor product also includes a
zero-dimensional representation. This representation appears and has a non-zero dimension
only for Nc > 3. Similarly, for the Nc = 2 case even the representations 10, 10 and one of
the 8 disappear from Eq. (2.19). These examples, show that there exist representations that
are only present for large enough Nc. In section 5.7 we describe how the representations
with vanishing dimensions are treated in the program created.

13

3 The color structure calculation using multiplet bases

The main goal of this thesis is to simplify the calculations of the color structure of SU(Nc)
processes. A distinct property of the QCD vertices (Eq. (2.7) - Eq. (2.9)) is that they
always contain the same number of triplet as anti-triplet lines, nq = nq. In other words,
even though SU(Nc) symmetry permits vertices proportional to the totally anti-symmetric
tensor, ϵijk, with three triplet indices, such vertices do not appear in QCD. Furthermore, as
discussed in section 2.2, all of the vertices and their combinations like the one in Eq. (2.13)
are color singlets. Such amplitudes satisfying these two properties are said to belong to the
color space, that is, the singlet subspace of 8⊗Ng3⊗nq3⊗nq and we denote such amplitudes
by c.
Calculating measurable quantities involves taking the absolute square of the amplitude that
contains contributions from all the possible Feynman diagrams with the given external
partons. In addition, as explained in section 1, one has to sum (average) over all the
colors of the outgoing (incoming) particles. For the color structure of the amplitude,
this corresponds to taking its absolute square, |c|2, according to the definition of the scalar
product in Eq. (2.15). As mentioned in section 1, the usual treatment of the color structure
is to express c in different sets of so-called bases, that is, sets of tensors into which all the
color structures with the same external partons can be expressed.
In this section, we first give an overview of the most frequently used bases, which are all
non-orthogonal and thus ineffective when squaring the color structure. This main draw-
back of non-orthogonal bases is solved by the multiplet bases. The ways of constructing
the multiplet bases are explained in section 3.2. Afterwards, in section 3.3, we introduce
several useful group theoretical identities, which are right away applied in section 3.4 where
we present a method for decomposing a color structure in the multiplet bases. An impor-
tant part of this will be showing that any group-invariant quantity can be expressed in
the Wigner 3j and 6j coefficients. Moreover, we also explain how the decomposition recipe
has to be changed to put constraints on the required 6j coefficients, when decomposing
scalar products of QCD amplitudes with multiplet basis states as in Eq. (3.5). This de-
composition method together with the group theoretical identities presented in section 3.3
is the foundation of the calculations performed by the Mathematica program created in
this thesis.

3.1 Trace bases

The most popular bases to express the color structure c in are the so-called trace bases
[15, 14, 18, 19, 24]. The two major properties of the trace bases are the existence of a
straightforward general algorithm for decomposing a color amplitude into these bases and
a simple method for constructing them for a general color amplitude. For leading order
(LO, tree level) color structures consisting only of Ng gluons, the basis vectors are all
the possible distinct traces over the products of Ng generators of SU(3). Defining σ as a

14

permutation from the permutation group SNg−1, an arbitrary amplitude A that besides
color structure contains also kinetic factors can be written in the trace basis as:

A =
∑

σ∈SNg−1

Aσtr[t1tσ(2)...tσ(Ng)], (3.1)

where Aσ do not contain any color index and are often called color ordered amplitudes.
The number of basis states is equal to (Ng − 1)!, that is, the size of SNg−1. However,
it can be reduced by approximately a factor of two by imposing the charge conjugation
invariance, i.e, that a charge conjugated gluon only amplitude is equal to the amplitude
itself [28]. Since no color invariant quantity can be built from one gluon, the size of the
basis space for Ng = 1 is 0. This is reflected in Eq. (3.1) by the fact that the SU(Nc)
generators are traceless and all the basis states vanish. In the birdtrack notation, each
of the basis states is a closed quark loop with Ng gluons attached to it. Generalization
of the trace basis exists for amplitudes that also contain loops and external quark lines,
where in the former case basis vectors must be extended to contain all possible products of
quark loops [16, 17], while in the latter case, open quark lines with gluons attached must
be added.
To demonstrate the simplicity of constructing the trace bases, we consider an arbitrary
color structure consisting of two gluons and two quarks c ∈ 8⊗2 ⊗ 3 ⊗ 3 as shown on the
left-hand side in Eq. (3.2). The first step is to attach a quark-gluon vertex to each of the
external gluons while the second step is to list all of the possible ways to connect the quark
lines (the external ones and those attached to the gluon lines in the first step). For a given
c, there are three ways of doing this, therefore c can be decomposed into the trace basis
as shown in Eq. (3.2).

= A · +B · + C · (3.2)

Some other advantages of the trace bases are the simplicity of describing the effects of
gluon emission and gluon exchange [39, 40]. One merely has to attach new gluons to the
existing basis.
Nevertheless, already in the example shown in Eq. (3.2) one can notice a crucial property
of the trace bases, namely that the basis states are not always orthogonal. Taking the
scalar product of the first and the third basis vector from the right-hand side we find()†

· = = TR · , (3.3)

where in the last step we removed one of the quark loops by using Eq. (2.4), which expressed
in birdtracks means that a quark loop with two attached gluons can be turned into a gluon

15

delta. The 3j coefficient on the right-hand side of the Eq. (3.3) is the normalization of ta,
which is greater than zero and thus the scalar product between basis vectors is non-zero.
When calculating amplitude squares the non-zero scalar product generates cross terms,
significantly complicating the computations.
Moreover, the trace bases turn out to be overcomplete for amplitudes with Nc < Ng and,
in this way, they would more accurately be described as spanning sets instead of bases
[15]. Recursive methods for determining the size of the sets of the trace basis states exist,
which reveal an approximately factorial scaling with Ng [15, 24]. From another perspective,
the trace bases become orthogonal when Nc → ∞ and the size of the trace basis can be
seen as the dimension of the orthogonal basis spanning the color space in the case when
Nc → ∞. For this reason, the trace bases become more advantageous for theories with
a larger Nc. Other non-orthogonal bases exist, such as Del Duca-Dixon-Maltoni [20] and
color-flow bases [21, 22]. They all, however, posses the same drawbacks as the trace bases,
namely, the same factorial scaling of the basis space with Ng and non-orthogonality.
Similar techniques for calculating the actual dimension of the color space demonstrate
a more favorable exponential behavior with respect to Ng for finite Nc [24, 28]. As a
comparison, for amplitudes with 5 gluons and no quarks or anti-quarks the length of the
trace basis set is 44 (for all orders of perturbation series) and the size of the full vector
space is 32, while for 8 gluons the ratio between these two becomes 14833/3598, rapidly
increasing for a larger number of partons. Since calculating amplitude squares requires to
square number of non-orthogonal basis states, this ratio of computational expenses for two
kinds of bases becomes 148332/3598. In the next section, we present the multiplet bases
that are both minimal and orthogonal, solving these scaling problems.

3.2 Multiplet bases

Multiplet bases correspond to the irreducible representations (multiplets) of the color struc-
ture c. We showed earlier in Eq. (2.5) and Eq. (2.19) how the direct products of two triplets
and of two octets decompose into the irreducible representations. Similarly, the whole color
structure c can also be decomposed. In particular, we can connect all the external lines
in vertices and determine what SU(Nc) representations are possible for the internal lines
that are created. There is, however, no unique method of connecting the lines and basis
vectors might look different.
In this thesis, we use the kind of multiplet bases first presented in [27]. These are shown
in figure 1a. They consist of all of the representations attached to a backbone of arbitrary
representations (α1, α2 ...), where all Np partons are arbitrarily grouped so that ⌈Np

2
⌉ are

on the left-hand side and ⌊Np

2
⌋ are on the right-hand side. By ⌊x⌋ (⌈x⌉) we denote the

floor (ceiling) functions, i.e, the greatest (smallest) integer that is less (greater) than or
equal to x. By construction, such bases are proper bases, that is, linearly independent and
complete, and can be constructed to be orthogonal as well.

16

α1 α2 α3 α4

(a)

α1

α3

α2 α4

(b)

Figure 1: Two possible ways of constructing the orthogonal multiplet bases for the case
of 7 partons. Bases used in this thesis are built by attaching the external lines to a
backbone of irreducible representations (a). A more general kind of bases can be built by
an arbitrary grouping of partons (b), but requires additional Wigner 6j coefficients for the
color-structure decomposition onto these bases using the methods of this thesis

As explained in section 2.3.1, even if the decomposition of a direct product of representa-
tions into the direct sum of irreducible representations is known, the exact transformation
of basis vectors between two spaces requires Clebsch-Gordan coefficients. Similarly, an
exact projection of vectors onto a representation α requires a projection operator Pα. This
operator Pα can be constructed by two Clebsch-Gordan coefficients (vertices), connected
by a delta line of α and summing over all the states in α

Pα =

µ

ν

µ

ν

α

. (3.4)

The projection operators satisfy idempotency, PαPα = Pα, that is, projecting a projected
vector does not change the vector, and completeness,

∑
α Pα = 1 where α runs through all

the irreducible representations in µ ⊗ ν. In other words, the completeness relation states
that the total action of the sum of projection operators on a vector maps this vector back
to itself.
To expand an arbitrary color structure in the corresponding multiplet basis, one has to
find the projection operators onto this basis. The recipe for finding the Hermitian pro-
jection operators for the multiplet bases of the form figure 1a has been described in [27].
Nonetheless, as will be shown in section 3.4.1, the decomposition of c into the multiplet
basis can be done even without the projection operators if all of the required Wigner 3j and
6j coefficients are known. Consequently, we will not discuss the techniques of constructing
the projection operators. In particular, to find the components of c in its corresponding
multiplet basis, it is first needed to find the possible representations on the backbone of
the basis vector shown in figure 1a for the specific case of external partons. Afterwards,

17

one simply has to multiply the basis vector with c obtaining a color singlet

〈
α4 α3 α2 α1

∣∣∣∣
〉

=

α1 α3α2 α4

, (3.5)

where we chose one particular example of c. This color singlet can then be evaluated using
the Wigner 3j and 6j coefficients by the strategy given later in section 3.4.1.
A more general case of a basis vector is shown in figure 1b. In this kind of basis vector,
partons can be joined in an arbitrary order, not being attached to the backbone, as in
figure 1a. However, the principles we describe in section 3.4.2 that put constraints on the
required 6j coefficients on the color decomposition do not apply and an extended set of
Wigner 6j coefficients is needed to decompose the color structure on them.

3.3 Important group theoretical identities

Similarly as the scalar product in Eq. (3.5), any scalar quantity in the birdtrack notation
has a bubble shape, meaning that all of the indices are contracted. The goal of this thesis
is to evaluate such scalars. Using the identities presented in this section, it will be possible
to remove all the pairs of dummy indices, that is, to remove the connected lines until the
result is expressed in the known constants. The simplest of such identities are traces over
the delta functions that have the vacuum bubble shapes with no vertices

Tr[δij] = Tr[α] = = dα, (3.6)

where dα is the dimension of the representation alpha and i, j = 1, 2, ...dα.
Another relation we use is Schur’s lemma. It states that for two group representations
α and β, a matrix that maps from α to β and commutes with the group action is either
proportional to identity if α is related to β by a similarity transformation, Eq. (2.1), or
zero if α and β are different [25, 31]. In the birdtrack notation, it is expressed by

α β
=

α

dα
δαβ

α

. (3.7)

The proportionality constant in front of the delta line on the right-hand side of Eq. (3.8)
can be found by choosing α = β and taking the trace on both sides, i.e, connecting the free
ends of the lines on both sides of Eq. (3.7). Then the loop on the right-hand side cancels

18

with dα according to the dimensionality, Eq. (3.6), and the both sides of Eq. (3.7) become
equal.
A special case of Schur’s lemma is used particularly often in this thesis. In this case, we
choose the matrix mapping from α to β to consist of two-vertices

α β

δ

γ

=

δ
γ

β

dα α β
, (3.8)

As mentioned in section 2.3.1, the 3j coefficient appearing in the numerator in Eq. (3.8) is
the vertex normalization, that in this chapter is kept arbitrary but in section 4.1 we choose
set to one. In what follows, we are going to refer to Eq. (3.8) as Schur’s lemma.
The completeness of the projection operators

∑
α Pα = 1 stated in section 3.2 can be

written in the birdtrack notation

µ

ν
=
∑
α∈µ⊗ν

dα

ν

α

µ

µ

ν

µ

ν

α

, (3.9)

where the normalization again can be proven by taking the trace on both sides. Taking
the trace in birdtracks for structures with many indices, according to our conventions
(see section 2.3 and [25]), is to connect the lines exiting from the right-hand side to the
lines exiting from the left-hand side with no crossings of lines. For Eq. (3.9) it means
connecting the both ends of µ line and the both ends of ν line. In this way, the left-hand
side of Eq. (3.9) gives the product of two dimensions dµdν while the right-hand side gives∑

α dα. These are just two different expressions for the dimension of the tensor product
space µ⊗ ν, hence the normalization in Eq. (3.10) is correct.
Applying the completeness relation, Eq. (3.9), on a loop connecting three vertices, we can
derive the so-called vertex correction relation:

α

β

γ
δ

ǫ

ζ =
∑
λ

dλ

α

λ

β

α

β

α

β

λ

ζ β

ǫ
γ

=
∑
a

ǫ

γ

α

δ

ζ

β
a

γ
α

β

a a

γ

β

α
a

, (3.10)

where in the first step the completeness relation was inserted between the representations
α and β and in the second step we used the generalized Schur’s lemma Eq. (3.7) to simplify
the expression between the lines with representations λ and γ. Since the representation γ

19

might appear several times in the sum over representations λ ∈ α ⊗ β, the delta function
appearing from Schur’s lemma transforms the sum over representations λ into the sum
over a, all the instances of the vertex between α, β and γ. This sum is most often a sum
over only one element. An exception is, for example, 8 ⊗ 8 into 8, where it is a sum over
the anti-symmetric and symmetric vertex. Furthermore, it can be shown that for Nc = 3
any vertex with 8 has at most two instances [24]. Therefore, whenever at least one of the
representations α, β or γ in Eq. (3.10) is 8, the sum over the instances for Nc = 3 is at
most over two elements. Similarly, it can be shown that if any of these representations is
either 3 or 3, the sum in Eq. (3.10) is only over one element.
The numerator on the right-hand side of Eq. (3.10) is another kind of constant called
Wigner 6j coefficient. These coefficients are rich in various kinds of symmetries as can
been seen by the form of their birdtrack:

1. Since changing the orientation of birdtracks does not affect them, the Wigner 6j
coefficients are invariant under rotations by 2π/3 and 4π/3.

2. Mirroring the 6j coefficient is equal to transposing all the vertices and interchanging
two of them.

η

δ
γβ

ǫ

α

= ǫ

δ βγ

η

α
−

−

−−

. (3.11)

Since, as explained below Eq. (2.24), transposing the vertex in our conventions gives
at most a minus sign, then the transformed 6j differs from the original by at most
a minus sign. Similarly, any two vertices can be interchanged by obtaining at most
a minus sign. By these two symmetries, that is, rotating and interchanging two
vertices, the 6j coefficient can be related to all of the other 6j coefficients consisting
of the same four vertices. In other words, these two symmetries correspond to all the
24 symmetries of a tetrahedral graph that preserve the connectivity of the vertices.

3. Each Wigner 6j coefficient can be related to the same coefficient with the vertices
conjugated. As was shown in section 2.3.1, the vertex conjugation also brings at
most a minus sign in the vertex.

In general, Wigner 3j and 6j coefficients (we will sometimes refer to them as simply 3j
and 6j coefficients) are not known and must be calculated. However, the symmetries these
coefficients possess make them convenient for group theoretical calculations. Moreover, as
we will show in the next section, an important property of 3j and 6j coefficients is that any
group theoretical invariant quantity can be decomposed into them. Due to this fact, the
procedure for calculating the components of the SU(Nc) color structure on the multiplet
bases that the created program is based on, is possible.

20

3.4 Decomposing color-invariant quantities into the Wigner 3j
and 6j coefficients

In this section, different methods for decomposing color-invariant quantities in the form of
a vacuum bubble, Eq. (3.5), into Wigner 3j and 6j coefficients are discussed. We begin in
section 3.4.1 by showing a universal method, presented in [26] and similar to the one shown
in [25] that can be applied to any color singlet. This general method, nevertheless, does not
guarantee to obtain a numerical value if the required 3j and 6j coefficients are not known.
These coefficients must be calculated in some other ways. An improved method used in the
Mathematica program created in this thesis is presented in section 3.4.2. This method puts
constraints on the required 6j coefficients and is similar to the method presented in [27].
The main differences between the two methods are explained at the end of section 3.4.2.

3.4.1 An arbitrary structure

The algorithm we present here works by applying the identities introduced in the previous
section to remove (contract) all of the loops in birdtracks of scalar quantities that are in the
form of vacuum bubbles, such as Eq. (3.5) [25, 26]. We point that writing all the tensors
in the birdtrack notation is not necessary, since birdtracks are equivalent to the ordinary
tensor notation. However, the loop patterns can often be found simpler in birdtracks. For
this reason, we also choose to explain the method using birdtracks.
First, note that Schur’s lemma, Eq. (3.8), and the vertex correction relation, Eq. (3.10), can
always be applied on structures containing small loops (by small loops in this section we
denote loops connecting two or three vertices). Each time applied, these identities remove
a small loop by removing two vertices from the color structure and multiply with some
constants including Wigner 3j and 6j coefficients. Using these identities, the expression
can be simplified until all of the small loops are removed, that is, the smallest loop left
connects four or more vertices.
The next step is to reduce the size of any of the loops that are left by displacing one of the
vertices out of the loop

=
∑
α

dα
α =

∑
α

dα
α

(3.12)
This step can be applied on any loop, so we demonstrate it on a six-vertex loop as shown
on the left-hand side in Eq. (3.12). First, the action of the completeness relation, Eq. (3.9),
on two edges of the loops splits it into two smaller loops (and turns it into a sum over the
representations) where the total number of vertices is increased by two. In any loop that

21

is larger than a two-vertex loop (and only such loops are left after the previous steps),
we can always find next-to-neighboring vertices which are marked in Eq. (3.12), in other
words, edges that have one more edge in-between. Acting on such edges, Eq. (3.9) splits
out one three-vertex loop that can be removed by the vertex correction relation, Eq. (3.10),
obtaining the expression after the second equality in Eq. (3.12).
Even though the rightmost expression in Eq. (3.12) contains the same number of vertices as
the leftmost, the new expression contains a loop that is one vertex smaller. After repeating
the process of splitting off the three-vertex loops and removing it using Eq. (3.10), in the
last step one obtains a four-vertex loop. Splitting this loop gives two three-vertex loops
that can now both be removed and in this way reduce the total number of vertices by
two. Such a process can be repeated on every loop, each time removing two vertices, until
either the expression again contains small loops to be removed by Eq. (3.6), Eq. (3.8) and
Eq. (3.10) or is fully contracted. So, we conclude that any scalar quantity can be expressed
in Wigner 3j and 6j coefficients using this strategy.
As can be shown, this strategy does not depend on the order of steps made [25, 26, 27].
Also, note that the application of the completeness relation, Eq. (3.9), gives a sum over
all the representations in the tensor product of the two representations that it is applied
on. This sum, unless one of the representations is a singlet, involves several terms (see, for
example, 8 ⊗ 8 in Eq. (2.19)). The removal of the small loops, on the other hand, in the
worst case gives a sum over all the instances of a vertex (from Eq. (3.10)) that most often
is a sum over only one instance. As a consequence, the computationally most efficient
method is to use the completeness relation, Eq. (3.9), as little as possible and remove all
of the small loops that have appeared after every step.

3.4.2 QCD amplitude contracted with a basis vector of the form as in figure 1a

We will show how the method presented in the previous section can be changed to put a
constraint on the form of the obtained 6j coefficients if the decomposition is done for a
scalar product between a QCD amplitude and a basis state of the form

α1 α2 α3 α4

. (3.13)

Since to form a scalar product each of the external lines of Eq. (3.13) will connect to the
external lines of the color structure, no loop containing only the vertices coming from the
basis state are possible. In other words, every loop is guaranteed to contain at least one
vertex that has only QCD representations (only 3, 3 and 8). The limiting case is when the
loop has only one vertex coming from the initial color structure as depicted in the leftmost

22

expression in Eq. (3.14),

α

β
γ

=
∑
ψ

dψ
ψ
γ

α

β
γγ

ψ
=
∑
ψ,a

dψ
ψ
γ

ψ

α
γ

β

a

α
ψa
a

α
γ

ψ

a

,

(3.14)
where the loop can be of an arbitrary length, including a two-vertex loop. The thin

lines with no arrows can represent both 3 and 8, while the gray cycle, , can depict
the anti-symmetric three-gluon vertex, Eq. (2.8), or the quark-gluon vertex, Eq. (2.7). In
what follows, this vertex might also represent the symmetric three-gluon vertex, Eq. (2.20).
In this way, we can always choose to insert the completeness relation, Eq. (3.9), between
representations where at least one of them belongs to a QCD vertex (vertex only containing
3, 3 and 8) coming from the initial color structure. Following the steps shown in Eq. (3.14),
similarly as in Eq. (3.12), we can reduce the size of the loop by one vertex, where the new
loop still contains a QCD vertex. Hence, the process can be repeated, each time obtaining
a 6j coefficient of the form as in the numerator in the rightmost expression of Eq. (3.14).
Another kind of 6j coefficient appears if we choose to insert the completeness relation
between the non-highlighted thin line and the line with the β representation in the loop on
the left-hand side in Eq. (3.14). The three-vertex loop split out then brings a 6j coefficient
of a different shape

α

β

ψ
=
∑
a

ψ

β

α

a

ψ

α
a a α

ψa
. (3.15)

By choosing to insert the completeness relation in loops containing at least one QCD
vertex, we put a constraint such that the only 6j coefficients that appear in the result are
of the form as in Eq. (3.14) and Eq. (3.15). Replacing the thin lines by all the possible
combinations of representations 3 and 8 for the 6j coefficient in Eq. (3.14) we obtain

β

α
γ

δ

,

β

α
γ

δ

,

β

α
γ

δ

, (3.16)

23

where we have excluded the 6j coefficient similar to the second coefficient but octet and
triplet representations exchanged since these two 6j coefficients are related by symmetries.
Similarly, the second 6j coefficient appearing from the contraction in Eq. (3.15), gives three
other distinct types of 6 coefficients

γ

β

α

,
γ

β

α

,
α

β

γ

, (3.17)

where for clarity we point that the gray vertex appearing in the last 6j coefficient in the
symmetric three gluon vertex. Likewise in the process described in section 3.4.1, the full
contraction of color scalars includes contracting all the small loops first. When no small
loops are present, then the method is to choose one of the loops and reduce its size as
depicted Eq. (3.14) until the loop can be contracted using Eq. (3.10). By repeating the
whole process of small loop removal and using Eq. (3.14), when no small loops are available,
a QCD amplitude can be decomposed into constants and Wigner 6j coefficients.
The representations α, β, γ and δ in Eq. (3.16) and Eq. (3.17) can still be arbitrary.
However, as described in [26, 27], constraints on these representations can be put in terms
of the so-called first occurrences for each number of external partons in the amplitude and
for each order of perturbation expansion in the strong coupling constant. Furthermore, in
[26] all the necessary 6j coefficients for decomposing an LO and NLO QCD amplitude with
up to six gluons and quark-antiquark pairs in total were calculated for a special case if
quark and anti-quark pairs are first combined into the octets and singlets. For the program
created in this thesis, we, nevertheless, use the coefficients that are suitable for using the
basis shown in Eq. (3.13) and were calculated in [27]. These coefficients are sufficient to
decompose amplitudes of up to six gluons and quark-antiquark pairs, but only for LO [27].
The method we presented above, that is, always choosing to insert completeness relation
in loops with at least one QCD vertex, is a simplified case to the method presented in
[27], where the completeness relation has to be inserted in a loop where exactly one vertex
is a QCD vertex and always has to come from the initial color structure. Consequently,
our method does not put the same constraints on the representations α, β, γ and δ in
Eq. (3.16) and Eq. (3.17). In this way, there could be cases of LO QCD amplitudes
with up to six external partons that would require more 6j coefficients than the ones
available. Nevertheless, the breaking point of the current computational capabilities of
exact computations of the color structure using the ordinary methods is at around eight
gluons and for such amplitudes, the required 6j coefficients have not been calculated yet. In
this way, the method chosen here does not limit the applications of the program. Moreover,
it is often possible to decompose more complicated vacuum bubbles than created by an NLO
amplitude with 6 partons, and applying the completeness relation is often unnecessary.

24

4 The implementation of the program

In the previous section, we showed how a general color structure would be decomposed
into the 6j coefficients (section 3.4.1) and presented a method for decomposing QCD color
structures into multiplet bases that ensures that only the previously calculated 6j coef-
ficients are used (section 3.4.2). The following section provides more detail on how this
recipe is performed in the Mathematica program created in this thesis. After explaining all
the necessary conventions chosen, we discuss the loop search and contraction algorithms
in tensors as well as the order of steps that are performed by the program to implement
the color decomposition.

4.1 Conventions and the normalization

We follow closely the convention used in [24, 26, 27]. This is particularly convenient because
the 6j coefficients that were calculated in [27] and are used in the created Mathematica
program have the same convention.
Most of the derivations in this thesis have been done in the birdtrack notation. This
includes also the strategy of the color structure decomposition presented in section 3.4.2.
Nevertheless, to implement this algorithm numerically, it has to be specified in a machine
understandable way. For this reason, we return to the tensor notation and define the
generalized vertex, the fundamental object of the program, as

r1,i1 r3,i3

r2,i2

a
≡ Va,{r1,r2,r3}

{i1,i2,i3} , (4.1)

where {r1, r2, r3} correspond to the representation indices, {i1, i2, i3} – to the color indices
and a – to the vertex instance. Note that we abandon the notation of using upper and lower
indices. Instead, the information about the representation is put in the list {r1, r2, r3}. The
representations are defined to go into the vertex, and flipping the direction of the arrows
corresponds to the conjugate representations. For instance, the quark-gluon vertex in
Eq. (2.7), up to the multiplicative factor described below, would be equal to

3 3

8

= V1,{3,3,8}
{i,j,a} ∝ (ta)ij = .

The generalized vertex can be normalized arbitrarily. In this thesis, we choose a convention
to normalize all the vertices so that all Wigner 3j coefficients, which can be seen as the
vertex absolute squares, become 1 [26]. As a consequence, when defining the amplitudes,
one has to convert the common SU(Nc) invariant tensors (like ta and if) into the generalized

25

vertices, dividing by the square root of its norm. For example, the absolute square of the
triple-gluon vertex is the 3j coefficient below

||ifabc||2 =

()†

= = 2NcTR(N
2
c − 1) (4.2)

whereas, for the generalized three-octet vertex, as mentioned above, we normalize the 3j
to identity, that is

8

8

8

1 = 1. (4.3)

To convert the usual three-gluon vertex to the generalized three-gluon vertex, we divide
by the square root of the normalization

8

8

8

1

=
1√

2NcTR(N2
c − 1)

. (4.4)

The advantage of this normalization is avoiding keeping track of the 3j coefficients appear-
ing from almost all of the identities used for the decomposition process, such as Eq. (3.8),
Eq. (3.9) and Eq. (3.10). All normalization factors for each vertex can be multiplied into
the expression before or after doing the decomposition.
Consequently, the normalization of the multiplet basis states used in the program can be
obtained by taking its square and using Eq. (3.8) to one by one remove all the two vertex
loops that appear

α1 α2 αn αn α2 α1
... ... =

1

dα1dα2 ...dαn

, (4.5)

where dα is the dimension of the representation α.
In the program, we adapt a unique and Nc-independent labeling for the SU(Nc) repre-
sentations, which was used for the 6j coefficients that the program operates with [24, 27].
According to this notation, the representations are labeled by two sets of integers, the
lengths of the columns of the quark Young tableaux and the lengths of the columns of the
anti-quark Young tableaux of the representation. For simplicity, the representations with
a given dimension in the Nc = 3 case that appear first in the tensor products of octets and
triplets we denote by their dimensions in Nc = 3.
In this subsection, we have thus introduced the most essential conventions defined in the
program. Other conventions regarding the generalized vertices and the representations
can be seen from the supplementary material added to [27], which also contains the 6j
coefficients used in the program.

26

4.2 The implementation

The decomposition of the color-invariants follows the recipe described in section 3.4.2.
The Wigner 6j coefficients used in the program are loaded from a separate file that can
be updated or replaced by a new file if more 6j coefficients are calculated. In general, the
program simplifies not only vacuum bubbles of the form Eq. (3.5) but also any given tensor
containing loops (dummy indices) as far as possible with the given 6j coefficients.
As mentioned in section 4.1, the SU(Nc) tensor in the program is given as a product
of generalized vertices, Eq. (4.1). In addition, the program contains notation for delta
function lines (propagators)

i2i1

r

≡ δ{r}
{i1,i2}, (4.6)

where r is defined to point from i1 to i2.
We denote C to represent a tensor product of generalized vertices, Eq. (4.1), and deltas,
Eq. (4.6). The information about how the vertex or delta is connected to the other vertices
and deltas in C is given in the color indices (indices ij in Eq. (4.1) and Eq. (4.6), where
j = 1, ...). Specifically, if the index ij appears only once in C, then it is a free index,
while if it appears twice, then the two vertices containing this index are connected. An
index appearing more then twice in C is not permitted and the program, by the procedure
described in section 5.6, produces a warning when such a color structure is defined or
simplified. For implementing the identities Eq. (3.8) to Eq. (3.10) and delta functions,
we use the pattern search built into Mathematica to see if C contains vertices that are
connected according to the corresponding pattern. For simplifying deltas it, for instance,
corresponds to finding an index appearing twice in C, where at least one of the repeated
indices belongs to the generalized delta. In the example below

r1,i1 r3,i3

r2,i2
a

r3,i4 ≡ Va,{r1,r2,r3}
{i1,i2,i3}δ{r3}

{i3,i4} (4.7)

it would thus correspond to finding the index i3 that is repeated twice in the expression
and belongs to one delta. Similarly, for Schur’s lemma, Eq. (3.8), it involves finding two
vertices that contain two common indices and for the vertex correction relation — finding
three vertices where each two have an index in common. When the pattern corresponding
to the left-hand side of an identity is found, the function replaces the found vertices with
the new vertices and constants corresponding to the right-hand side of the identity.
The implementation of the completeness relation, Eq. (3.9), according to Eq. (3.14) in-
volves finding a loop of at least four vertices, where at least one vertex contains only
representations from {3, 3, 8} (is a QCD vertex). The loop search exploits the function
FindCycle built into Mathematica, which searches for cycles in the graph. First, the in-
formation about connections between vertices, which is given by the color indices in the
vertices, is converted into a Mathematica graph object with generalized vertices as graph
vertices. Then the loop search is performed using FindCycle and, finally, the loops found
in terms of the graph edges are converted back into the generalized vertices.

27

Figure 2: The flow chart of the loop search algorithm. Given an input color structure it
finds a loop, where the completeness relation, Eq. (3.9), can be applied ensuring that only
the available 6j coefficients are used. After a verification that no small loops (connecting
up to three vertices) are found, the algorithm enters an iterative search where for every
loop length n it searches for the first loop containing vertex with all of its representations
belonging to {3, 3, 8}.

The flow chart of the loop search in the program is shown in figure 2. First, since according
to the method described in section 3.4.2, the completeness relation should be inserted only
when no small loops (loops containing up to three vertices) are found, the algorithm involves
an additional check to verify that no small loops are left before searching for larger loops.
If a small loop is found, it prints an error message. After that, the algorithm enters an
iterative process. Starting with the loop length n = 4, it searches through all the loops
found in the structure to be simplified and for every new loop found, tests if any of the
vertices is a QCD vertex. If such a loop is found, the algorithm outputs a list of the
color indices of the vertices in the loop. If no such loop is found, then n increases by one
and the loop search with length n is repeated until either an appropriate loop is found or
until n reaches nmax. The default value of nmax is 6 as it is the maximal possible loop
length appearing in color structures with a maximum of six partons but this value can be
changed by adding an additional argument in the function performing the loop search (see
LoopForCR in section 5.3).
Together with the color indices of the vertices in the loop, the algorithm outputs two first
found color indices of the lines where the completeness relation can be applied. The first of
the indices belongs to a QCD vertex and the second one is chosen to be the index of one of
the next-to neighboring lines in the loop. Additionally, if any of the representations in the
loop belonging to QCD vertices is either 3 or 3, this representation is chosen as the first
one since any direct product with these representations usually contains fewer terms than
with 8. This can be seen, for example, from the Young tableaux of these representations
[25]. Compare also, for instance, Eq. (2.5) and Eq. (2.19).
When one required loop is found, the completeness relation, Eq. (3.9), is applied which
adds two new vertices to C and replaces the indices of the connected vertices accordingly.

28

If no such loop is found, then either the final result is obtained or the given structure
cannot be simplified anymore with the available 6j coefficients.

5 Usage of the program and examples

In this section, we describe the usage of the created program. The program itself is
available upon request. Throughout the chapter we present examples that can simply be
performed and adapted in the program while reading the chapter. The main functions and
replacement rules are listed in tables 1-4, while other functions that can be useful, but are
not mentioned in the text are found in appendix B and appendix C. We begin this section
by showing how SU(Nc) tensors are defined and visualized in the program, which includes
tools for drawing birdtracks from the defined tensors. Afterwards, we explain the usage
of the simplest functions performing tensor index contractions using the identities that
were introduced in section 3.3. The main function of the program, TheGreatSimplifier,
performing full color singlet decomposition algorithm given in section 3.4.2 is introduced in
section 5.3. Creation and color structure decomposition in the multiplet bases is discussed
in section 5.5. Subsequently we introduce additional tools implemented in the program
for simpler use, discuss the usage of specific number of colors Nc and the validation of the
program we made.

5.1 The building blocks of the program

The building blocks of the program, the generalized vertices and the generalized delta
functions, were defined in Eq. (2.18) and Eq. (4.6) respectively. Table 1 shows how these
objects are accessed and defined in Mathematica. The simplest way of defining the input
is in the function form (see, table 1) that automatically converts into the Mathematica
StandardForm. Another way of input is copying other expressions in StandardForm and
changing the corresponding indices. This form has the advantage of resembling the way
tensors are written on paper. Finally the Mathematica FullForm can be used that also
converts into the StandardForm automatically.
The SU(Nc) representations in the program are denoted by strings ”r”, for example, triplet
has to be inserted as ”3” and anti-triplet as ”3bar”. However, in the objects given in table
1, representations ri can be written in a often more convenient way, namely, as integers
representing their dimensions at Nc = 3. The corresponding anti-representations are then
denoted by negative integers. In this way, the triplet can be written as 3 and anti-triplet
as –3. When defined in the input, the representations given as integers are converted
to strings automatically. For the representations denoted using the generalized notation
described in section 4.1 no shorthand notation is created, so c2c2, for example, can only
be defined as ”c2c2”. If any r in the objects from table 1 is a symbol, it will be interpreted

29

Pictorial
representa-
tion

Mathematica
StandardForm

Function form Mathematica FullForm

r1,i1 r3,i3

r2,i2

a
Va,{r1,r2,r3}

{i1,i2,i3} V[{r1, r2, r3}, a, {i1, i2, i3}] Subscript[Superscript[V,
a, {r1, r2, r3}], {i1, i2, i3}]

i2i1

r

δ{r}
{i1,i2} delta[r,{i1, i2}] Superscript[Subscript[

\[Delta], {r}], {i1, i2}]

Table 1: Different input forms of the building blocks of the program — the generalized
vertices (Eq. (4.1)) and the generalized deltas Eq. (4.6). The simplest approach of defining
input is the Function form that automatically transforms into the StandardForm. The
expressions in the StandardForm have the depicted Mathematica FullForm. From the
FullForm it can be seen that objects in the program are written using Superscript instead
of Power. Since the program uses pattern matching to do simplifications on expressions,
using Power is not a valid input.

as an arbitrary representation. A totally or partially mixed notation is permitted, as can
be verified in the program by

In[1]:= V[{r,"3",-3},{i1,i2,i3}]==V[{r,3,-3},1,{i1,i2,i3}]==V1,{r,"3","3bar"}
{i1,i2,i3}

Out[1]= True

QCD amplitudes are conveniently defined using the notation we adapted from ColorMath,
a Mathematica package for SU(Nc) color summed calculations [18]. The set of available
ColorMath input is given in table 1 in [18], which we add in appendix A. Besides all
the QCD vertices and delta functions, the ColorMath notation involves quark loops with
attached gluons o{g1,g2,...,gn}, and quark lines with attached gluons t{g1,g2,...,g3}q1q2. Conver-
sion to the generalized vertices is done by the replacement rules ColorToMultiplet as, for
instance, an NLO diagram for g → q1 q2 via loop of gluons and quarks can be written as

In[2]:= t[{g1,g2},q1,q2] I f[g1,g4,g2]/. ColorToMultiplet

Out[2]=

√
2 (Nc (-1 + Nc2) TR)3/2 V1,{8,3,3bar}{g1,q1,qI$2998} V1,{8,3,3bar}{g2,qI$2998,q2} V1,{8,8,8}{g1,g4,g2}

Nc

where qI$2998 is an automatically generated unique quark index.
As seen above, the generalized vertex notation becomes complicated and unpleasant to
read when there are more then few vertices. An alternative is to use DrawBirdtrack that
uses the built-in Graph function to draw a birdtrack of the given expression

In[3]:= t[{g1,g2},q1,q2] I f[g1,g4,g2] δ[q2, q1]/. ColorToMultiplet// DrawBirdtrack

30

Out[3]=
g1, 8

g2, 8

g4, 8qI$298, 3bar

q1, 3

q2, 3bar

1

-1

1

0

Here circles with integers represent vertices with vertex instances and the circles with
no numbers represent exiting or incoming lines. Furthermore, transposed vertices (ver-
tices where the indices are ordered anti-clockwise instead of clockwise) are represented by
negative vertex instances and a zero instance represents a delta function, that is vertices
connecting only two lines. The numbers of the edges represent the color indices and the
representations respectively. The directed representations, that is, representations that are
not equal to their conjugates are depicted by arrows pointing as defined below Eq. (4.1),
otherwise there is no arrow on the lines.
In the cases when the expression contains pairs of vertices that are connected by more
then one line and one of the vertices in the pair is transposed, DrawBirdtrack might
fail displaying which of the two it is. This, nevertheless, never impacts the sign of the
expression. Such pairs of vertices connected by two or three lines correspond to the two-
vertex loops on the left-hand side of Schur’s lemma, Eq. (3.8), and the 3j coefficients. It
was shown for the special case of 3j coefficient in Eq. (2.21), that the value of a 3j coefficient
is the same if both vertices are transposed. Similarly, two vertices in any 3j coefficient or
two-vertex loop can be transposed, without changing their value. Another way to see it
is that as a consequence of Schur’s lemma, the only non-zero case when two vertices can
be connected by two or three lines is when the vertices are Hermitian conjugates of each
other. This also means that both vertices obtain the same sign under transposition and
thus determining the wrong vertex that is transposed does not change the result. In a
similar way, if both of the vertices are transposed, DrawBirdtrack does not display it.
Finally, DrawBirdtrack does not show the constant in front of the expression, only the
tensorial structure of the expression. When the expression is a sum of terms, only the first
one of the terms is displayed.
Since the output of DrawBirdtrack is a Graph object, it is not a valid input for any of
the simplifying functions. However, as a graph it can modified using the built-in graph
visualizing and analysis functions, e.g, emphasizing parts of it, finding cycles. Through
the second optional argument Options, DrawBirdtracks[Expr,Options] accepts all the
arguments of the Mathematica Graph function.

5.2 Color structure simplification

The color structure simplification in the program can be done using the replacement rules
given in table 2. The application of replacement rules on an expression in Mathematica
is done by Expr/.TheRule for applying a rule TheRule once or Expr//.TheRule for
applying TheRule repeatedly until the expression does not change. As an example, the
Schur’s Lemma, Eq. (3.8), is accessed by the rules SchursLemma as

31

In[4]:= V[{8,8,8},{i1,i2,i3}] V[{8,8,8},{i2,i3,i4}]/. SchursLemma

Out[4]= -
δ{8}

{i1,i4}

-1+Nc2

where the minus sign appears because one of the vertices has to be transposed to obtain
Eq. (3.8) and transposing brings a minus sign in the three-gluon vertex (see section 2.3).

Replacement rule Effect
SchursLemma Applies Schur’s lemma, Eq. (3.8).
VertexCorrectionRel Applies vertex correction relation, Eq. (3.10).
DeltaRules Simplifies expressions containing deltas, e.g, replacing a

dummy index or dimensionality, Eq. (3.6).
InsertCompletenessHere InsertCompletenessHere[{i1,i2},Loop] is a more flexible al-

ternative to CompletenessRelation (see table 4), which ap-
plies completeness relation between the lines with indices i1
and i2 for vertices in the loop Loop. Loop has to be specified
according to the output of FindLoop and LoopForCR. The
case if i1 and i2 belong to the same vertex is not included in
InsertCompletenessHere, since it is not required in any of the
simplification algorithms.

SimplifyDelayedTables Simplifies sums, given in terms of the built-in Table function,
over the vertices that are created when the simplification rules
given in this table are applied on expressions containing arbi-
trary representations.

Table 2: Replacement rules performing simplifications on expressions. Given that all the
necessary Wigner 6j coefficients are available, an expression can be simplified by con-
tinuously applying these. All the rules can be applied on vertices with arbitrary repre-
sentations, but InsertCompletenessHere must be applied between lines where at least
one of the representations is either of {3,3,8}. In the arbitrary case, sums over vertices
given in terms of Table do not simplify automatically and have to be simplified using
SimplifyDelayedTables.

Vertex correction relation, Eq. (3.10), is accessed via the replacement rules VertexCorrec-
tionRel

In[5]:= o{g1,g2,g3}/. ColorToMultiplet/. VertexCorrectionRel//Simplify

Out[5]=
TR

√
(-1 + Nc2) TR

(√
Nc V1,{8,8,8}{g1,g2,g3} +

√
- 4
Nc + Nc V2,{8,8,8}{g1,g2,g3}

)
√

2

The completeness relation, Eq. (3.9), is simplest applied using CompletenessRelation[
Expr] (see table 4), that inserts it in the first appropriate loop found, that is, the first loop

32

Function Usage
LoopForCR {{i1,i2},Cycle}=LoopForCR[Expr, MaxLoopLen] finds a loop in the expres-

sion Expr according to the flow chart in figure 2. The maximal loop length,
MaxLoopLen has the default value MaxLoopLen = 6. The first output {i1,i2}
is a list of two next-to neighboring line indices in the loop, where at least i1 is
one of {3, 3, 8}. Cycle, a list of all the indices of vertices that make the loop
found.

FindLoop FindLoop[Expr, k] finds a loop in expression Expr.
FindLoop[Expr, k] finds loop of a length at most k.
FindLoop[Expr, {kmax}] finds a loop of exactly length kmax
FindLoop[Expr, {kmin, kmax}] finds a loop of a length between kmin and kmax
FindLoop[Expr, karg, s] finds at most s loops with loop length specifications
karg, according to the cases given above.
FindLoop[{Expr, ind}, ...] finds a loop that includes a line with the index ind

Table 3: Functions for finding loops in the expression with generalized vertices.

containing at least one QCD vertex. If the completeness relation needs to be inserted at
a specific place in a specific loop, the rule InsertCompletenessHere[{i1,i2},Loop] can be
used. It requires to specify the two indices i1 and i2 of the lines where the completeness
relation should be inserted, as well as Loop, the list of the indices of the vertices in the
loop. Loop is in the form {I1, I2, ... In }, where Ii is a list of the three indices in the i-th
vertex in the loop.
Loops can be found using FindLoop and LoopForCR. The former finds a loop in the
expression but does not verify if the completeness relation can be inserted in the loop.
To help finding an appropriate loop, FindLoop accepts several optional arguments listed
in table 3. LoopForCR, on the other hand, finds the first loop where the completeness
relation can be inserted.
Since applying VertexCorrectionRel and InsertCompletnessHere can insert sums in the
expression, a repeated use of these rules requires expanding the expression after each time
applying them. However, using the built-in Expand can significantly increase the number
of terms and slow down the simplification process, since it expands also the brackets that
do not contain any vertices. This can be avoided by using ExpandVertices instead, which
expands only the brackets containing vertices or deltas. RemoveAllTriangles is a function
that simplifies all of the three-vertex loops found in the expression. Additionally, for
expressions containing lengthy sums, it automatically finds the terms of the sum with
common vertices and simplifies them simultaneously, which makes it a faster alternative
to //.VertexCorrectionRel.

5.3 Full color structure calculation

The main function of this thesis is TheGreatSimplifier[Expr] that, whenever the 6j coeffi-
cients appearing in the results of calculations are available, simplifies the expression Expr

33

Function Usage
TheGreatSimplifier TheGreatSimplifier[Expr] performs the full loop removal algorithm

according to the method described in section 3.4.2.
CompletenessRelation CompletenessRelation[Expr, MaxLoopLen] inserts a completeness

relation, Eq. (3.9), in the first found loop where it is possible to
insert it. The loop search is done until the maximal loop length,
MaxLoopLen, which has the default value MaxLoopLen = 6.

RemoveAllTriangles RemoveAllTriangles[Expr] contracts all the three-vertex loops in
Expr.

ConjugateRep ConjugateRep[Rep] conjugates the representation Rep. If Rep is a
symbol then ConjugateRep does not evaluate the expression until it
is substituted by a string.

ExpandVertices ExpandVertices[Expr] expands only the brackets containing gener-
alized vertices or deltas in Expr.

DrawBirdtrack DrawBirdtrack[Expr, {Options}] draws a graph of the form of a
birdtrack from expression Expr. The optional argument Options
accepts all the arguments from the built-in Graph function.

Table 4: Helpful functions for simplifying and visualizing the expressions.

by contracting all of the loops in it. If Expr has no free indices, then TheGreatSimplifier
outputs a fully contracted expression, that is, containing no generalized vertices. The-
GreatSimplifier unites the replacement rules defined in the previous section and imple-
ments the algorithm described in section 4.2.
As an example consider q1q2 → q3q4 via gluon exchange with two channels, s- and t-channel,

In[6]:= Ampl = S t{g}q1
q2 t{g}q4

q3 + T t{g}q1
q3 t{g}q4

q2 /. ColorToMultiplet; .

The absolute square of an amplitude is calculated by multiplying the amplitude with its
conjugate. It is then evaluated by applying TheGreatSimplifier

In[7]:= TheGreatSimplifier[Conjugate[Ampl] ReplaceDummyIndices[Ampl]]

Out[7]=
(-1 + Nc2) TR2 ((Nc S - T) S* + (-S + Nc T) T*)

Nc

where ReplaceDummyIndices has to be applied to any of the two terms to replace the
dummy indices of the expression with unique symbols and thus make sure that no dummy
index would appear more than twice in the expression. The combined action of Conjugate
and ReplaceDummyIndices is united in one function, ScalarProduct, so the scalar prod-
uct above can be written simpler as ScalarProduct[Ampl,Ampl].

We can generalize the amplitude above and substitute the triplets and the octets by ar-
bitrary representations. For example, the same quark process but with an unspecified
mediator a in between them is written as

34

In[8]:= Ampl2 = TR (-1 + Nc2)(T V1,{a,3,-3}
{g,q1,q3} V1,{ConjugateRep[a],3,-3}

{g,q4,q2} +
S V1,{a,3,-3}

{g,q1,q2} V1,{ConjugateRep[a],3,-3}
{g,q4,q3})

For simplification of the vertices with arbitrary representations the extension of TheGreat-
Simplifier has to be used, namely TheGreatSimplifierArb. The result is thus obtained
by

In[9]:= Result = TheGreatSimplifierArb[ScalarProduct[Ampl2, Ampl2]];

In this way, we calculate several color structures simultaneously — for each representation
a. Because 3⊗3 = 1⊕8, there are only two vertices connecting 3 and 3, that is, 1 and 8. For
all the other representations a, the result at In[9] is zero. The value of the absolute square
for a specific case can be obtaining by substituting a in Result by specific representations

In[10]:= {Result/. a →→→"1", Result/. a →→→"3", Result/. a →→→"8"}//Simplify

Out[10]=
{(-1 + Nc2)2 TR2 ((Nc S + T) Conjugate[S] + (S + Nc T) Conjugate[T])

Nc
,

0,
(-1 + Nc2) TR2 ((Nc S-T) Conjugate[S] + (-S + Nc T) Conjugate[T])

Nc

}
where for a = 8 we obtain the same result as calculated in Out[7] without using arbitrary
representations.

5.4 Simplifying amplitudes containing arbitrary representations

Unless stated otherwise, all of the rules and functions in the program can be applied to
expressions containing arbitrary representations. The result of such expressions is not
always human-readable, but it can be drawn using DrawBirdtrack. Below we show, for
example, how a three-vertex loop is removed from an object containing two unspecified
representations, a and b,

In[11]:= V1,{b,3,3bar}
{g1,q1,q2} V1,{8,3,ConjugateRep[a]}

{g2,q2,q3} ×

V1,{8,a,3bar}
{g3,q3,q1}//. VertexCorrectionRel// DrawBirdtrack

Out[11]=

g1, b

g2, 8

g3, 8

-VNr$445

where the arbitrary vertex instance appears because the number of instances of the vertex
with representations {8, 8, b} is unknown before a specific representation b is supplied.
This shows that the sums over the vertex instances and representations appearing from
VertexCorrectionRel and CompletenessRelation are left non-evaluated in cases when

35

the terms of the sum are not known. If an expression containing non-evaluated sums has
to be simplified further the terms inside these sums have to be expanded. However, the
usual ExpandVertices does not recognize such non-evaluated sums and the replacement
rules SimplifyDelayedTables have to be used instead.
For a similar reason, TheGreatSimplifier cannot be used to simplify expressions contain-
ing arbitrary representations. However, it is particularly optimized for dealing with lengthy
sums in the expressions. Just like RemoveAllTriangles it simplifies terms of these sums
containing common vertices simultaneously and is thus a faster alternative to TheGreat-
SimplifierArb, when all of the representations in the vertices are specified.

5.5 Evaluating amplitude squares using multiplet bases

For any amplitude having external lines with only QCD representations, we can create the
corresponding multiplet basis, {Basis, RepKeys} = CreateMultipletBasisStates[Ampl].
In the output, Basis is a basis of the form

α1 α2 α3 α4

(5.1)

described in section 3.2. The representations on its backbone in Basis are unique symbols
and can be replaced by any representations. The set of all the allowed (non-vanishing)
combinations of the representations on the backbone is given in the replacement rules
RepKeys. Specifically, we can obtain a list of all of the possible basis states if for each
key in RepKeys we apply this key on Basis as Basis/.# &/@RepKeys. However, if the
representations on the backbone of Basis are kept arbitrary, the contractions only have to
be done once. When the simplification process is completed, the representations can be
inserted in the expression.
As an example, for the amplitude defined in In[6] we obtain

In[12]:= {Basis, RepKeys} = CreateMultipletBasisStates[Ampl];
Basis//DrawBirdtrack
RepKeys

Out[12]= d$179, r$179

q1, 3

q2, 3bar

q3, 3bar

q4, 3

-n$179n$178

Out[13]= {{r$179 → "1", n$178 → 1, n$179 → 1}, {r$179 → "8",n$178 → 1, n$179 → 1}}
36

The indices r$179, n$178, n$179 and d$179 are unique symbols representing an arbitrary
representation, two arbitrary vertex instances and a unique color index respectively. In
other words, RepKeys tell that the representation r$179 in Out[12] can be either ”1” or ”8”
and in both cases the only possible vertex instances n$178 and n$179 are 1 and 1 respectively.
The scalar product between the amplitude and the basis vector can be simplified without
the knowledge about what representations are possible on the backbone of the basis vector

In[14]:= SimplifiedScalarProduct = TheGreatSimplifierArb[ScalarProduct[Ampl, Basis]]

After that, the keys for the representations and vertex instances can be inserted in the
simplified expression, obtaining a list of components of the amplitude on each of the basis
vectors

In[15]:= Components = SimplifiedScalarProduct/. # & /@ RepKeys

The basis states created are normalized. Hence, to obtain the scalar product of the ampli-
tude, a sum of the absolute squares of the components has to be taken

In[16]:= Simplify[ReleaseHold[Total[Components Conjugate[Components]]]]

Out[16]=
(-1 + Nc2) TR2 ((Nc S - T) Conjugate[S] + (-S + Nc T) Conjugate[T])

Nc

were we obtain the same expression as we got in section 5.3 by taking the absolute square
of the amplitude directly.
All the steps from creating the multiplet basis states up to calculating the amplitude
square are included in AmplitudeSquare[Expr, {Basis,RepKeys}, NcVal], where {Basis,
RepKeys} and NcVal are optional arguments specifying the basis and the number of colors
respectively. If {Basis, RepKeys} is not specified, a new basis is created.

5.6 The built-in consistency and validity checks

The great number of indices and different representations in the tensor expressions make
the process of defining color structures in the program susceptible to errors. For this reason,
several measures were created that warn the user when at some point an invalid input is
given. Here we shortly present some of them.
Attempting to define objects with representations that are not recognized in the program
will create an error message and not output any result. Defining one of the representations
in the vertex to be 25, which does not exist, will, for example, cause such a message

In[17]:= V[{8,8,25},{i1,i2,i3}]

V:One or more of the representations {8,8,25} is not recognized in the system.

37

All of the replacement rules, except InsertCompletenessHere, contain an index control.
It sees if in the expression to be simplified, the same dummy indices correspond to rep-
resentations that are conjugated of each other. Instead of adding this check to Insert-
CompletenessHere, it is implemented in the loop search in LoopForCR, as well as in
DrawBirdtrack, making it a good tool not only for visualizing the results but also for
searching for the errors in the input.
These input tests include also arbitrary representations in the expressions, even if incon-
sistencies appear only later in the simplification process

In[18]:= Obj=V[{8,ConjugateRep[a],8},{i1,i2,i3}] V[{a,8,8},{i2,i3,i4}]

In[19]:= Obj /. SchursLemma //DrawBirdtrack

Out[19]= i1, 8 i4, 80

In[20]:= Obj /. SchursLemma /. a→"25"

NVertHold:The vertex with representations {8,8,25} is not known.

Here we see that, since result of Schur’s lemma, Eq. (3.8), does not depend on the repre-
sentation a in the loop, the result simplifies to delta regardless on what is the value of a.
However the result still contains a condition, that outputs a warning if any of the initial
vertices did not exist.

5.7 Treatment of the number of colors Nc

As argued in section 2.2, all the treatment of color structures done in the program is
independent of Nc, which only appears as a parameter in the coefficients like Wigner
6j coefficients and representation dimensions as well as determines what representations
are possible for the given Nc. The dimensions of the representations used in the created
program for the general Nc case were calculated in [27] using the Young tableaux [25]. As
an artifact of the calculation procedure, the non-present representations for a given Nc case
appear to have non-positive dimensions. This gives a possibility to distinguish such non-
existent representations and to remove them. As explained below, terms containing zero-
dimensional representations vanish when calculating the components of a color structure on
a multiplet basis. However, the negative dimensional representations have to be removed
manually when choosing a particular value of Nc. In addition, some of the representations
appearing repeatedly in the tensor products of representations, such as the two 8 in 8⊗ 8
might appear only once at low enough Nc and have to be taken out manually as well.
The program always performs simplifications assuming that all the representations are
possible, that is, Nc → ∞. In this way, applying the completeness relation, Eq. (3.9),
and vertex correction relation, Eq. (3.10), or creation of the multiplet basis states, bring
representations that are not present at low enough Nc. We denote one of the vanishing

38

representations at some Nc by α and its dimension by dα. Since the normalization of the
basis states is proportional to

√
dα (see Eq. (4.5)), the scalar product between a QCD

amplitude containing only 3, 3 and 8 and a multiplet basis state containing α always
vanishes in the case dα = 0. Even though from applying Schur’s lemma, Eq. (3.8), dα might
appear in the denominator in front of the expression, for Schur’s lemma to be applied, the
expression has to contain at least two representations α. The second representations α
can appear in the expression only by applying the completeness relation, Eq. (3.9), which
has dα in the numerator. In this way, the dα in the numerator and denominator cancel
each other and the obtained component on the basis vector stays zero. However, it might
happen that the built-in Simplify does not find and cancel the two dα, e.g when one of
them is conjugated and the calculation might encounter an infinity

In[21]:= Obj = f[g1, g2, g3] f[g3, g4, g9] f[g5, g4, g6] f[g6, g7, g8] /.ColorToMultiplet;

In[22]:= AmplitudeSquare[Obj] /. Nc → 3;

Power:Infinite expression 1√
0

encountered.

In the calculation above, Simplify is used at the end of AmplitudeSquare. To avoid
non-canceled divergences, if the program is applied for calculations at a specific Nc, it
is recommended either to use AmplitudeSquare specifying the number of colors in the
last argument as AmplitudeSquare[Expr, NcVall] or to define Nc in the beginning of the
calculation as

In[23]:= Nc = 3;

In[24]:= Obj = f[g1, g2, g3] f[g3, g4, g9] f[g5, g4, g6] f[g6, g7, g8] /.ColorToMultiplet;

In[25]:= AmplitudeSquare[Obj]

Out[25]= 10368 TR4

The arbitrariness of Nc can be restored at the end of the calculation by Clear[Nc]. After
that all of the replacement rules and function will work as if Nc is arbitrary again.
If at the given Nc, representations with negative dimensions appear, they have to be
removed manually by choosing only appearing basis states. At the time of publication of
this thesis, the program offers no treatment for such representations.

5.8 Validation

In this section, we explain the validation and consistency tests that have been performed
on the program and the results they gave.
As seen from the algorithm described in section 3.4.2, the order of contractions, that is, in
what order and on which loops Eq. (3.8), Eq. (3.9) and Eq. (3.10) are applied may lead to

39

the result expressed in different combinations of Wigner 6j coefficients and other constants.
Regardless of the order of the contractions, the final result always has to be the same, even
if it consists of different 6j coefficients. This offers various options for consistency tests of
the program.
As a validation of the program, we performed various contractions of the absolute square
of the box loop

O ≡ r1

r2

r3

r4

re1

re4
re3

re2

. (5.2)

While more complicated structures could be used, already with O all of the functions
participating in the simplification algorithm can be tested with all of the possible repre-
sentation combinations. The absolute square, |O|2, contains only four-vertex loops. So,
to contract |O|2, at least one completeness relation has to be inserted. It can be inserted
either between vertices with representations r1 and r3 or with representations r2 and r4,
and two different expressions for O can be obtained, which we denote O1 and O2 respec-
tively. For consistency checks, the calculation of |O|2 was performed in four different ways,
namely, by evaluating |O1|2, O1 ·O†

2, O2 ·O†
1 and |O2|2. Besides the two cases with O1 ·O†

2

and O2 · O†
1, where the 6j coefficients obtained by the contraction process are related by

symmetries, all the other cases give different sets of Wigner 6j coefficients. Both of the
products O1 · O†

2 and O2 · O†
1, in particular, offer checks for additional sign errors as the

signs do not cancel when taking the absolute squares in the other two cases.
Such a test was performed for all of the possible combinations of {3, 3, 8} in the box,
Eq. (5.2) and the results were compared to the ones obtained using ColorMath [18]. No
discrepancies were found.
Allowing representations, like 6 and 15 in Eq. (5.2), however, lead to inconsistencies, namely
that the results from O1 ·O†

2 and O2 ·O†
1 differ from the result with |O1|2 and |O2|2. Such a

case is, for example, for {r1, r2, r3, r4, re1, re2, re3, re4} = {3, 8, 3, 6, 8, 3, 3, 6}. This time, no
comparison with programs like ColorMath is available, since no such program is known to
treat arbitrary representations of SU(Nc). Instead the result was verified by calculations
on paper, obtaining a result that agreed with the one calculated by the program. The
inconsistency could be explained in two ways. On one hand, as this example shows, the
program performs contractions correctly, but the numerical values of the 6j coefficients
obtained in [27] might not all be valid. For example, the error in the case above can be
solved by multiplying only one of the 6j coefficient by a minus sign

6

3

6

15

8

3
1

1

1

1 → − 6

3

6

15

8

3
1

1

1

1 . (5.3)

On the other hand, the discrepancy could suggest that our theoretical validation of the
algorithm done in section 3 has flaws.

40

6 Conclusion and Outlook

In this thesis, a program in Mathematica performing color structure decomposition in the
multiplet bases was presented. In this way, the multiplet bases were demonstrated to be
a possible alternative to the non-orthogonal bases commonly used for the color structure
calculations in particle physics event generators. The usage of orthogonal bases, such as the
multiplet bases, could significantly speed up the color structure calculations since squaring
the color structure in these bases does not require calculating the cross terms between
different basis states. In this way, multiplet bases is a promising option for exceeding
the current limit of approximately eight external gluons for the exact color sum evaluation
available in the common event generators. However, as explained below, using the program
as a fully-fledged alternative to the current color structure calculation algorithms used in
particle physics event generators requires an optimization of the program and extending
the list of available Wigner 6j coefficients. The program is available upon request to the
author of the thesis and a publication of it in a package form is possible. Even though
the thesis did not focus on the recursive methods of color structure calculations, multiplet
bases are applicable there as well.
For a given QCD amplitude, the program can construct the corresponding multiplet basis
states and obtain the components of the amplitude in this basis. Moreover, the program
offers a variety of tools for manipulating the color-summed tensor expressions such as
automatic contraction of loops over the tensor indices, conjugation and scalar product
for tensors with arbitrary representations of SU(Nc). A simple input form that resembles
the way tensors are written on paper is available, as well as options for drawing tensors
in the birdtrack notation. A list of the available replacement rules is given in table 2
while the main functions are summarized in tables 3 and 4. Even though inconsistencies
in the calculations have been found when performing the operations in different order, a
comparison with calculations done on paper indicates that the error may be caused by
wrong signs in some of the Wigner 6j coefficients we use.
The program will succeed in completing the tensor contraction whenever the required
Wigner 6j coefficients are available. However, the list of previously calculated 6j coefficients
is not sufficient to guarantee the amplitude decomposition of more than six gluons and
quark-antiquark pairs in total and of orders higher than the NLO in the strong coupling
constant. For the multiplet bases to be convenient for usage in particle physics event
generators the limit where application of the non-orthogonal bases breaks down has to be
exceeded, that is, as mentioned before, around eight gluons. In addition, decomposition of
up to NNLO has to be ensured. As a solution to this challenge, the functions available in
the program performing tensor index contraction can be used to calculate the 6j coefficients
required for extending the scope where the multiplet bases can be applied. This can be
done by, for instance, evaluating the 6j coefficients from the projection operators as shown
in [26, 27]. Moreover, as was seen in section 3.4.2 and section 5.2, different orders of index
contractions on the color singlets lead to expressions containing different combinations of

41

6j coefficients. This suggests that a recursive method for computing the 6j coefficients from
the already known ones might be possible. If such a method is found, the program would
be a possible tool to perform the required calculations.
Another application of the program is SU(Nc) tensor calculations at any Nc. This includes
working with SU(2) generators, that is, Pauli matrices, and SU(2) structure constants.
Using the notation adapted from Mathematica package ColorMath (see table A), these
can be defined as their SU(3) counterparts, i.e. ta and ifabc matrices. The other SU(2)
tensors can be defined using the generalized vertices. Dealing with SU(Nc) with a high Nc,
encountered in, for instance, beyond the standard model theories might also be a field where
the program could be applied. Since the program operates with arbitrary representations
of SU(Nc), it can be viewed as an extension of ColorMath, where only calculations with
the defining representation and the adjoint representation of SU(Nc) are supported [18].
Furthermore, the input of the created program is compatible with the ColorMath input (see
section 5.1) and thus allows combining both programs for computations. An example of this
would be first applying our program to contract such QCD tensors that can be decomposed
using the known 6j coefficients. Afterwards, the tensors left could be simplified using
the additional QCD tensor identities and index contraction tools available in ColorMath.
Furthermore, as our program permits converting ColorMath objects into the generalized
vertices, the options for visualizing tensor expressions in birdtracks and finding loops in
them would be useful tools also in ColorMath. A merge between the two programs is a
potential option for future development and would simplify their combined application.
Since the aim of this thesis was a computational demonstration of the color structure de-
composition in the multiplet bases rather than creating a high-speed alternative in the
common color structure decomposition programs such as [14, 19, 22], our implementation
of the algorithm might not be fully optimized. Challenges that should be tackled for speed-
ing up the calculations include dealing with cases when the expression to be simplified is a
long sum containing several repeated color structures with different coefficients. In order
to avoid performing the calculations on the same expressions several times, they should be
collected together. For the vertex correction relation, such a procedure is implemented in
RemoveAllTriangles, but similarly, other replacement rules could be upgraded. Further-
more, to require a smaller set of 6j coefficients, the algorithm searching for loops shown in
figure 2 could be improved to follow, for example, the method presented in [27]. The con-
ditions for the pattern search, which the program performs to find parts of the expression
to simplify, might be optimized as well. Finally, more user-friendly treatment of small Nc

could be implemented, including filtering out the basis states that are non-existent at a
given Nc.

42

Acknowledgments

I would like to thank Malin Sjödahl for trusting in my strengths and knowledge to do this
exciting project and showing how research is conducted in this field. When answering my
questions and explaining the topic, she always made sure that I understand it thoroughly.
Moreover, she inspired and encouraged me giving a sense of significance for my work.
I thank Hristina Hristova for making sure that every sentence in this thesis both, sounds
well and makes sense. Thanks to Anja Langheld for long-distance discussions about Group
Theory and to other colleagues at the university for support.
My sincere gratitude goes to my dad, working hard to make my studies in Sweden possible,
as well as, to my supporters in Latvia praying for me and encouraging me!
Thanks to everybody who considered me to be worthy enough to read my thesis and even
to have a look in my acknowledgments. Of course, big thanks to my bike Swifty for making
my travels to university possible and finally thanks to Corona for making this last semester
at university unforgettable.

43

A The available ColorMath input

This appendix lists the definitions of building blocks of the ColorMath package [18] that
are available in the program created in this thesis.

Pictorial repre-
sentation

Mathematica
Standard-
Form

Function form Mathematica FullForm

q1 q2 δq1q2 δ[q1, q2] Subscript[Superscript[\[Delta], q1], q2]
g1 g2

∆{g1,g2} ∆[g1, g2] Superscript[\[CapitalDelta], List[g1, g2]]
1
i

g1

g2

g3 f{g1,g2,g3} f[g1, g2, g3] Superscript[f, List[g1, g2, g3]]

g1

g2

g3

d{g1,g2,g3} d[g1, g2, g3] Superscript[d ,List[g1, g2, g3]]

q1 q2

g1 gkg2

...

t{g1,...,gk}q1q2 t[{g1,…, gk}, q1, q2] Subscript[Superscript[Superscript[t,
List[g1,…, gk]], q1], q2]

...

g1 g2 gk

o{g1,...,gk} o[{g1,…, gk}] Superscript[o, List[g1, …, gk]]

Table 5: The accepted notation used in the Mathematica package ColorMath [18]. Convert-
ing the ColorMath objects into the generalized notation can be done using the replacement
rules /.ColorToMultiplet. Similarly as for the generalized vertex and delta shown in table
1, the simplest input way is using the function form.

B Alternatives to the three vertex loop contracting
functions

To suppress evaluating the 6j coefficients numerically, two other replacement rules in-
stead of VertexCorrectionRel are available, namely, VertexCorrectionRelWrite6j and
VertexCorrectionRelNonZero6js. The former outputs the result keeping all the 6j co-
efficients non-evaluated while the later keeps only non-zero 6j coefficients non-evaluated.
The non-evaluated 6j coefficients are in the form W6C{{α1,...,α6},{a1,...,a4}}, where αi and
ai are the representations of the lines and vertex instances as defined in Eq. (B.1).

44

α3

α4

α1

α2

α5

α6
a1

a2

a3

a4 (B.1)

The non-evaluated coefficients W6C can be replaced by their numerical values using the
replacement rules Evaluate6js.

C Additional functions available in the program

This appendix includes additional functions and replacement rules which could be helpful
for tensor calculations but are not mentioned in the text. Table 6 lists several useful
functions, while table 7 gives two replacement rules.

Function Usage
RepDirectProduct RepDirectProduct[Rep1,Rep2] returns the irreducible representations

of Rep1 ⊗Rep2.
VertexToGraph VertexToGraph[Expr] converts vertices to Mathematica Edges to be

read by the built-in function Graph.
GetVetexInfo GetVertexInfo[Expr] returns three lists {I, V, N} — all indices, rep-

resentations and vertex instances — in the expression Expr.
CountVertices CountVertices[Expr] returns the number of vertices in an expression.

If the expression can be expanded into a sum or is a list, then it returns
the number of vertices for each term as a list {Term1, Term2, ...},
otherwise returns an integer.

Coef3J Coef3J[{α1, α2, α3}] returns the normalization of a QCD vertex, that
is, the Wigner 3j coefficient, with representations {α1, α2, α3}, where
αi ∈ {3, 3, 8}.

GetIndicesList GetIndicesList[Expr] returns all of the indices in the expression.
DummyIndices DummyIndices[Expr] returns all the dummy indices in the expression
FreeIndices FreeIndices[Expr] returns all the dummy indices in the expression.
GetRepresentations GetRepresentations[Epr] returns all the representations found in the

expression.

Table 6: Useful functions for tensor summed calculations available in the program.

45

Rule Usage
SingletToDelta Converts a vertex containing a singlet into a delta function, including the nor-

malization.
DeltaToSinglet Converts a delta function into a vertex containing a singlet. Conversion includes

the normalization.

Table 7: Additional replacement rules available for tensor calculations and for comparison
between deltas and vertices with singlets.

46

References

[1] “High-Luminosity Large Hadron Collider (HL-LHC).”
https://home.cern/science/accelerators/high-luminosity-lhc, 2020.

[2] The HSF Physics Event Generator WG, A. Valassi, E. Yazgan, J. McFayden et al.,
Challenges in Monte Carlo event generator software for High-Luminosity LHC,
CERN-LPCC-2020-002 (2019) [arXiv:2004.13687].

[3] X. C. Vidal, M. d’Onofrio, P. J. Fox, R. Torre et al., Beyond the Standard Model
Physics at the HL-LHC and HE-LHC, CERN-LPCC-2018-05, HL-LHC Workshop
(2018) [arXiv:1812.07831].

[4] LHCb collaboration, I. Bediaga, M. C. Torres, J. M. D. Miranda, A. Gomes et al.,
Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond,
in the HL-LHC era, CERN-LHCC-2018-027 (2018) [arXiv:1808.08865].

[5] M. Cepeda, S. Gori, P. Ilten, M. Kado et al., Higgs Physics at the HL-LHC and
HE-LHC, CERN-LPCC-2018-04, HL/HE-LHC Workshop (2019)
[arXiv:1902.00134].

[6] P. Azzi, S. Farry, P. Nason et al., Standard Model Physics at the HL-LHC and
HE-LHC, CERN-LPCC-2018-03, HL-LHC Workshop (2019) [arXiv:1902.04070].

[7] S. Dittmaier, Standard Model Theory, Eur. Phys. Soc. Conf. High Energy Phys.
(2017) [arXiv:1709.08564].

[8] G. Heinrich, QCD calculations for the LHC: status and prospects, in 5th Large
Hadron Collid. Phys. Conf., (2017), arXiv:1710.04998.

[9] T. Sjostrand, S. Mrenna and P. Z. Skands, A Brief Introduction to PYTHIA 8.1,
Comput. Phys. Commun. 178 (2008) 852 [0710.3820].

[10] S. Platzer and M. Sjodahl, The Sudakov Veto Algorithm Reloaded, Eur. Phys. J.
Plus 127 (2012) 26 [1108.6180].

[11] G. Sterman, Summation of large corrections to short-distance hadronic cross
sections, Nucl. Phys. B 281 (1987) 310.

[12] S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard
processes, Nucl. Phys. B 327 (1989) 323.

[13] M. Sjodahl, Color evolution of 2 → 3 processes, JHEP 12 (2008) 83
[arXiv:0807.0555].

[14] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going
beyond, JHEP 2011 (2011) 128 [arXiv:1106.0522].

47

https://home.cern/science/accelerators/high-luminosity-lhc
https://arxiv.org/abs/arXiv:2004.13687
https://arxiv.org/abs/arXiv:1812.07831
https://arxiv.org/abs/arXiv:1808.08865
https://arxiv.org/abs/arXiv:1902.00134
https://arxiv.org/abs/arXiv:1902.04070
https://doi.org/10.22323/1.314.0581
https://doi.org/10.22323/1.314.0581
https://arxiv.org/abs/arXiv:1709.08564
https://arxiv.org/abs/arXiv:1710.04998
https://doi.org/10.1016/j.cpc.2008.01.036
https://arxiv.org/abs/0710.3820
https://doi.org/10.1140/epjp/i2012-12026-x
https://doi.org/10.1140/epjp/i2012-12026-x
https://arxiv.org/abs/1108.6180
https://doi.org/https://doi.org/10.1016/0550-3213(87)90258-6
https://doi.org/https://doi.org/10.1016/0550-3213(89)90273-3
https://doi.org/10.1088/1126-6708/2008/12/083
https://arxiv.org/abs/arXiv:0807.0555
https://doi.org/10.1007/jhep06(2011)128
https://arxiv.org/abs/arXiv:1106.0522

[15] P. Cvitanović, Group theory for Feynman diagrams in non-Abelian gauge theories,
Phys. Rev. D 14 (1976) 1536.

[16] Z. Bern and D. A. Kosower, Color decomposition of one-loop amplitudes in gauge
theories, Nucl. Phys. B 362 (1991) 389.

[17] Z. Nagy and D. E. Soper, Parton showers with quantum interference, JHEP 2007
(2007) 114.

[18] M. Sjödahl, ColorMath—a package for color summed calculations in SU(Nc), Eur.
Phys. J. C 73 (2013) 2310 [arXiv:1211.2099].

[19] M. Sjodahl, ColorFull – a C++ library for calculations in SU(Nc) color space, Eur.
Phys. J. C 75 (2014) 236 [arXiv:1412.3967].

[20] V. Del Duca, L. Dixon and F. Maltoni, New color decompositions for gauge
amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51.

[21] F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color-flow decomposition of
QCD amplitudes, Phys. Rev. D 67 (2003) 14026.

[22] E. Bothmann, G. Singh Chahal, S. Höche, J. Krause et al., Event generation with
Sherpa 2.2, SciPost Physics 7 (2019) 034.

[23] M. G. Sotiropoulos and G. Sterman, Color exchange in near-forward hard elastic
scattering, Nucl. Phys. B 419 (1994) 59.

[24] S. Keppeler and M. Sjödahl, Orthogonal multiplet bases in SU(Nc) color space,
JHEP 2012 (2012) 124 [arXiv:1207.0609].

[25] P. Cvitanović, Group Theory. Princeton University Press, feb, 2008.

[26] M. Sjodahl and J. Thorén, Decomposing color structure into multiplet bases, JHEP
2015 (2015) 55 [arXiv:1507.03814].

[27] M. Sjodahl and J. Thorén, QCD multiplet bases with arbitrary parton ordering,
JHEP 2018 (2018) 198 [arXiv:1809.05002].

[28] Y.-J. Du, M. Sjödahl and J. Thorén, Recursion in multiplet bases for tree-level MHV
gluon amplitudes, JHEP 2015 (2015) 119.

[29] Wolfram Research, Inc., “Mathematica, Version 12.1.”

[30] A. Zee, Group Theory in a Nutshell for Physicists. Princeton University Press, 2016.

[31] H. F. Jones, Groups, representations, and physics. Insitute of Physics Pub., 2nd
ed. ed., 1998.

48

https://doi.org/10.1103/PhysRevD.14.1536
https://doi.org/10.1016/0550-3213(91)90567-H
https://doi.org/10.1088/1126-6708/2007/09/114
https://doi.org/10.1088/1126-6708/2007/09/114
https://doi.org/10.1140/epjc/s10052-013-2310-4
https://doi.org/10.1140/epjc/s10052-013-2310-4
https://arxiv.org/abs/arXiv:1211.2099
https://doi.org/10.1140/epjc/s10052-015-3417-6
https://doi.org/10.1140/epjc/s10052-015-3417-6
https://arxiv.org/abs/arXiv:1412.3967
https://doi.org/10.1016/S0550-3213(99)00809-3
https://doi.org/10.1103/PhysRevD.67.014026
https://doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.1016/0550-3213(94)90357-3
https://doi.org/10.1007/JHEP09(2012)124
https://arxiv.org/abs/arXiv:1207.0609
https://doi.org/10.1007/JHEP09(2015)055
https://doi.org/10.1007/JHEP09(2015)055
https://arxiv.org/abs/arXiv:1507.03814
https://doi.org/10.1007/JHEP11(2018)198
https://arxiv.org/abs/arXiv:1809.05002
https://doi.org/10.1007/JHEP05(2015)119

[32] J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics. Cambridge University
Press, 2 ed., 2017, 10.1017/9781108499996.

[33] G. Kane, Modern Elementary Particle Physics. Cambridge University Press, feb,
2017, 10.1017/9781316691434.

[34] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory.
Addison-Wesley, Reading, USA, 1995.

[35] S. Keppeler, Birdtracks for SU(N), QCD Master Cl. (2017) [arXiv:1707.07280].

[36] S. Chadha and M. E. Peskin, Implications of chiral dynamics in theories of
technicolour: (I). Elementary couplings, Nucl. Phys. B 185 (1981) 61.

[37] A. B. Yutsis, I. B. Levinson and V. V. Vanagas, Theory of angular momentum. Israel
Program for Scientific Translations, 1962.

[38] A. Messiah, Quantum Mechanics, no. v. 2 in Dover books on physics. Dover
Publications, 1999.

[39] M. Mangano, The color structure of gluon emission, Nucl. Phys. B 309 (1988) 461
[arXiv:1503.00530].

[40] M. Sjödahl, Color structure for soft gluon resummation: a general recipe, JHEP
2009 (2009) 87 [arXiv:0906.1121].

49

https://doi.org/10.1017/9781108499996
https://doi.org/10.1017/9781316691434
https://doi.org/10.21468/SciPostPhysLectNotes.3
https://arxiv.org/abs/arXiv:1707.07280
https://doi.org/https://doi.org/10.1016/0550-3213(81)90364-3
https://doi.org/10.1016/0550-3213(88)90453-1
https://arxiv.org/abs/arXiv:1503.00530
https://doi.org/10.1088/1126-6708/2009/09/087
https://doi.org/10.1088/1126-6708/2009/09/087
https://arxiv.org/abs/arXiv:0906.1121

	Introduction
	Theory
	Group theory
	Special unitary group SU(Nc)

	Quantum chromodynamics
	The diagrammatic birdtrack notation
	Generalized vertices

	The color structure calculation using multiplet bases
	Trace bases
	Multiplet bases
	Important group theoretical identities
	Decomposing color-invariant quantities into the Wigner 3j and 6j coefficients
	An arbitrary structure
	QCD amplitude contracted with a basis vector of the form as in figure 1a

	The implementation of the program
	Conventions and the normalization
	The implementation

	Usage of the program and examples
	The building blocks of the program
	Color structure simplification
	Full color structure calculation
	Simplifying amplitudes containing arbitrary representations
	Evaluating amplitude squares using multiplet bases
	The built-in consistency and validity checks
	Treatment of the number of colors Nc
	Validation

	Conclusion and Outlook
	The available ColorMath input
	Alternatives to the three vertex loop contracting functions
	Additional functions available in the program

