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Abstract

Automatic speech recognition is a technology that enables a machine to tran-
scribe human speech into text. Keyword spotting is a subfield of it, which re-
stricts the problem to the identification of a few selected words.

Most current recognition algorithms require huge corpora of annotated spo-
ken data. They result in large machine learning models that often require ded-
icated servers to process the audio input at a responsive speed. When reduc-
ing the vocabulary to a finite amount of key words, the model can instead be
stored locally on mobile devices, eliminating the need for network connection.
Nonetheless, machine learning models, even for keywords, still need a lot of data.

In 2017, Google published a dataset of ∼106,000 English audio samples cor-
responding to a vocabulary of 35 words. Using such resources enabled researchers
to make rapid progress and reach a very high recognition accuracy. Such speech
corpora are expensive, however, as they take a long time to both collect and an-
notate. Smaller languages, like Swedish, have no such resources, restricting the
advances in the field and lowering the recognition accuracy. In addition, they
make the research rely on large private companies for data collection.

In this project, I developed a system to use the English dataset to train a
speech recognition model, and then adapting this model to a smaller, Swedish
dataset, which I collected myself. I could reach an accuracy of ∼86% with a
dataset 100 times smaller than the original one. This figure is to compare with
the 51% accuracy of a baseline model trained without the English dataset.

Domain adaption has been used in other fields of machine learning, and this
projects proves that its results are beneficial to speech recognition as well.

With this system, specific applications can be feasibly constructed without
the need for a large dataset, making it easier to make mobile systems responsive
and verbally interactive. This project is a starting point to use domain adaption
to retrain models for new languages, and it would be interesting to see how well
it works on languages from di�erent families.

Keywords: deep residual learning, domain adaption, keyword spotting, speech recogni-
tion, machine learning, transfer learning, data collection
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Chapter 1

Introduction

Speech recognition is a field of intense research, where machine learning improved greatly the
recognition quality. Corporate giants, such as Google and Apple, incorporate it into their ser-
vices and are at the forefront of research. This makes the field progress at an ever-quickening
pace. The sophisticated models they apply, which can transcribe arbitrary sentences from
utterances alone, require dedicated servers to function at a reasonable speed. This in turn
requires the user to be connected to the internet in order to use them on their phones. Such
pipelines come with security risks for the end user, who is required to be connected online
and send potentially personal data to the servers.

A sub-field of speech recognition, called keyword spotting (KWS), heavily reduces the re-
quirements of the model by requiring it to only be able to detect a limited amount of words.
This limited scope allows the software to be simplified to the level that it can feasibly be run
on edge devices such as smart phones or other internet-of-things (IoT) devices.

This field has also been explored to a great extent, from data pre-processing to modelling
new neural network (NN) structures to improve accuracy and reduce the models’ size. One
such NN structure is residual networks (Tang and Lin, 2018), resNets in short.

Deep residual learning is a neural network structure inspired by hidden Markov models,
in that it retains information from its previous state which is unprocessed, along with the
processed state. The NN technique has allowed for deeper networks to be feasible. One
common way to represent audio is with an image, for example a mel spectrogram.

Audio can be represented by its frequencies over time with a spectrogram. When repre-
senting human speech, and its small changes, the frequency spectrum can be converted to the
mel scale to make these changes more noticeable (see Figure 2.1). The mel-frequency cepstral
coe�cients (MFCC) form another, more compact, way to represent these frequencies.

Converting the one-dimensional audio wave to a compact 2D matrix allows for the usage
of convolutional neural networks (CNNs), which inherently connect the data points as a bigger
picture, which is useful for both images and speech (Sainath and Parada, 2015; Lin et al.,
2018).

In this thesis work, I describe the re-implementation of a previous resNet model structure
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1. Introduction

for KWS of English words and the adaptation of this model to Swedish using a smaller dataset.
This includes the following steps:

1. Collection of a spoken dataset;

2. Construction of a resNet model in Keras;

3. Data preprocessing;

4. Adaption of the model to the domain; and finally

5. Evaluation of the model’s performance.
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Chapter 2

Previous Work

2.1 Google’s dataset
In 2017, Google released a dataset of spoken command words in English (Warden, 2017).
The dataset contained ∼65,000 recordings spanning 30 words, where 10 of these words were
the words to recognize and the remaining 20 were considered noise words. Google later
complemented the dataset with more words and samples. The updated version of the dataset
contains ∼106,000 samples spanning 35 words.

The Google speech command dataset is made up of one second long 16bit WAV audio
files of common commands for voice control spoken by a wide variety of English speaking
people. The complete list of words is: yes, no, up, down, left, right, on, o�, stop, and go.

Google also provided noise words which the model may hear, but should ignore. These
words are labeled unknown. These words are: backward, bed, bird, cat, dog, follow, forward,
happy, house, learn, Marvin, Sheila, tree, visual, wow, zero, one, two, three, four, five, six, seven,
eight, and nine. See Table 2.1 for the word count in the dataset.

Word yes no up down left right on o� stop go
Count 4044 3941 3723 3917 3801 3778 3845 3745 3872 3880
Word zero one two three four five six seven eight nine
Count 4052 3890 3880 3727 3728 4052 3860 3998 3787 3934
Word forward backward bed bird cat dog follow happy house learn
Count 1557 1664 2014 2064 2031 2128 1579 2054 2113 1575
Word Marvin Sheila tree visual wow
Count 2100 2022 1759 1592 2123

Table 2.1: The size of the Google dataset (v2). The words in the first
row relate to keywords, and the following to the noise words.

Google’s dataset was recorded in authentic settings with a wide variety of native English
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2. Previous work

1) 2)

3) 4)

Figure 2.1: Mel spectrograms of the words down (1), no (2), on (3),
visual (4).

speakers. Some recordings contained background noise and varying audio levels. Google also
recorded samples of such background noise and provided them in the dataset so that it could
be applied on custom audio files too, simulating a real life use case environment.

Together with the dataset the team included di�erent lists of the dataset put in text files,
which would separate the speakers across training, testing, and validation, so that one speaker
would not be multiple groups, which would potentially cause an over-fit.

If a model is over-fitting while training, it means it does not train to generalise what it is
seeing, but it learns to recognise exactly the data it is shown. This will yield in poor results
when the model is shown new data samples.

In this thesis, I chose to have Swedish keywords and noise words reflecting the ones above
in English. I could have selected them di�erently, for example, with numbers instead. How-
ever, this choice should not have consequences on the performance results and the conclusion
of this work.

10



2.2 Neural Networks

2.2 Neural Networks
Along with this dataset, Google provided programs to process the data, train a model, and
test it. They also shared a program for a basic phone application, which uses the model.
This app transcribes your speech and, through an interface showing the ten possible words,
highlights the word that the model recognizes.

Google’s model architecture consist of a neural network with convolutional layers along
with matrix multiplications in a straightforward Tensorflow model. This model take a one
second clip of the audio signal as input. The description of the structure can be found in the
dataset paper by Warden (2017).

Neural networks, or NNs for short, are very popular machine learning structures. They
take input data of a certain shape and return an output that of a certain shape which complies
with what the network has learned. NN have gained a lot of traction in recent years and their
performance depends on how the network and training data is structured.

In this thesis, the input is a 2D image, the MFCC of the audio (described below), which
is fed into the network, and the output is one of 12 classes (the keywords and the noise).

NNs are built up of layers of nodes of di�erent types, which hold weights with values.
These weights are part of what is adjusted when the neural network is trained.

One type of node, which are used for processing images, are convolutional neural nets
(CNNs). These utilise a so called kernel, normally of sizes 3-by-3 or 5-by-5 pixels, which
it uses to apply convolutions to the input images. These types of network nodes are useful
because they look at a certain pixel’s neighbours in 2D space, which is where the relevance in
images lie.

Connections run between these nodes and connect the node layers in di�erent arrange-
ments. The nodes can also be trained depending on their significance to the input-output
relation.

In order to see how far o� the correct answer a model is, they often include a loss function.
Loss functions, and their value, represent how wrong the model prediction was.

This loss function is also used to optimise the network, using an optimiser. One example
of such an optimiser is the Adam optimiser. Adam stands for Adaptive moment estimation,
and was developed by (Kingma and Ba, 2015). It uses the loss function’s past gradients to
calculate its current ones. It also utilises the concept of momentum to not stop at a very local
minimum.

There are several base node structures which can be used for a lot of applications. Some
applications, however, require a more specific node structure – either to more e�ectively
learn a task or to decrease the complexity or size of a NN.

One such special node structure are residual nodes.

2.3 Deep residual learning
The deeper a neural network is, the more it abstracts the data, which in turn often gives
better results. However, the deeper a network is built, the more di�cult it is to train. He
et al. (2015) showed that using residual learning makes training deeper networks easier and
more e�ective.
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2. Previous work

Residual networks are made up of smaller network blocks, where one connection passes
through nodes, processing the input and applying weights and biases while the other con-
nection shortcuts the processing. The processed path and the skipping identity path are then
joined at the end of the block (see Figure 2.2 for example).

Tang and Lin (2018) later adapted his structure to build small models for keyword spot-
ting e�ectively using Google’s speech command dataset. Using the resNet structure, they
managed to reach an even higher evaluation accuracy than the Google baseline.

Figure 2.2: Example of a residual network node group. The left part
shows the conceptual view of the structure; the right part shows the
first resnet node block in the actual Keras model.

2.4 EdgeSpeechNets
Lin et al. (2018) aimed to build optimised models with regards to di�erent parameters, such
as the number of nodes in the model or accuracy. This was a way to build specialised IoT
device models for di�erent tasks. They called this model: EdgeSpeechNets

Lin et al. (2018) trained their models using Google’s dataset as well as a resNet neural
net model structure. Their results surpassed the previously documented results while also
reducing the computational requirements and size of the network.
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2.5 Data Representation

The EdgeSpeechNets utilised a generator function to develop optimised neural networks
using convolutional layers, but that part is out of the scope of this project.

As a performance baseline, Lin et al. (2018) used a model described by Tang and Lin
(2018).

In my thesis, I will use the resNet model structure for my models, namely the one named
‘res26’ in the paper by Tang and Lin (2018).

2.5 Data Representation

Figure 2.3: [left to right] Amplitude, mel spectrogram and MFCC
representation of the Swedish word vänster ‘left’.

We can visualize audio in many ways. Aside from showing the signal amplitude as a func-
tion over time, see Fig. 2.3, it can be shown as a 2D matrix, usually as an image, showing
frequency energies over time. This representation is called a spectrogram.

Changes in human speech are usually in a relatively short span on normal spectrograms
(which covers multiple kHz). When working with voice recordings, it is more beneficial to
visualise it in a mel spectrogram (see Fig. 2.3), where the distance between frequencies is more
in line with what humans perceive them to be. The mel scale better displays the frequency
range where speech and vocal changes occur. Eq. 2.1 shows the function to convert frequency
f to mel scale:

M( f ) = 1125 · ln (1 +
f

700
) (2.1)

A mel-frequency cepstrum (MFC) is a way to represent sound by its mel scale power
spectrum. The power spectrum can be derived by windowing short time frames of the signal,
and calculating the windows’ respective frequency power distributions. As an example, the
window size used in this paper is 30ms and the time hop between each frame sampling is
10ms.

An MFC is made up of mel-frequency cepstral coe�cients (MFCCs) and since it is derived
from a mel spectrogram, it is useful for speech feature extraction. It is also compact because
the window framing joins 480 samples (in the case of a 16kHz sample rate and 30ms window
size) into one column.

2.6 Data Augmentation
A way to cope with small datasets is to augment them, making the number of unique samples
near never-ending. This is done by changing aspects or details in the picture to the degree

13



2. Previous work

that it’s a brand new sample, while still maintaining the structure of the object in the sample
intact, be that a picture of a dog or an utterance of the word left.

Keras preprocessing, a sub-module of Tensorflow, has a generator class, which augments
the image samples in a dataset and feeds the output to train the model. Something similar to
this, but for audio, will be required to make the most of the small dataset this paper uses.

Park et al. (2019) and Ko et al. (2018) describe useful parameters for this augmentation.
Quantities such as the pitch, phoneme dilation, and time shifts are examples of variables that
the augmentation can adjust. The parameters are explored further below.

2.7 Augmenting Speech Data
The speech representation suggests analogies with images to improve or extend the dataset.
Speech data is processed as 2D matrices, which could be interpreted as images. This indicates
that transformations like the ones used on images for image classification could be used to
augment the spectrograms.

When thinking of variance on spoken words, rotation and scale may not mean that much.
Dilation, intensity, and translation are more realistic variables. A syllable can be stretched
and shrunken, and the amplitude of the speaker can be higher and lower as well as shifted
earlier or later within the given window.

So to make the model independent of the audio level and tempo of the speaker, this was an
aspect of the data augmentation to consider. Ko et al. (2018) and Park et al. (2019) confirmed
these augmentation ideas. Outside of these, the standard time o�set and noise application,
which were present in all of the keyword spotting papers, are also used in the augmentation.

Ko et al. (2018) discussed extending datasets by augmenting the data with one fixed pa-
rameter of the following with a certain magnitude. Their data is processed as MFCCs. They
write about speeding up the recording, speed perturbation, a�ecting both duration and pitch.
They also test adjusting audio tempo, tempo perturbation, which emulated how quickly some-
thing is spoken without a�ecting the pitch of the speech. They finally try the e�ectiveness
of VTLP, vocal tract length perturbation, which is warping part of the audio after it has been
normalised through vocal tract length normalization.

Park et al. (2019) augmented data directly on the input features, which in their case are
mel spectrograms. They applied a random magnitude of each augmentation. One such aug-
mentation is time warping. The two other augmentations are time and frequency masking,
where they blank out parts of the input spectrogram.

14



Chapter 3

Architecture

3.1 Implementing the Model
The first step of the project was to reproduce the model used in EdgeSpeechNets (Lin et al.,
2018) using the residual network structure (see Fig. 3.1) coming from the papers by Tang and
Lin (2017, 2018). I did this with Keras, a high-level machine learning API in Python built on
Tensorflow.

This model takes as input the mel frequency cepstrum coe�cients (MFCC) of one second of
audio. The frame size used for the MFCC window function groups every 30ms together, and
that window jumps 10ms fowards for each grouping. This means there will be an overlap
of 20ms, which is 67%, between neighbouring groupings. Before applying the calculations,
the preprocessing restricts the frequency range to 20-4000 Hz, following the preprocessing
in Lin et al. (2018). I centered and padded the frames with the Python module librosa. The
shape of the resulting MFCC is 40 × 101 × 1 (reshaped to work as an image).

The model trained on the MFCCs created using the librosa Python module was di�cult
to deploy in the Android app, which is built using Java. This was because the Java implemen-
tation of librosa’s MFCC code, from GitHub (Fu, 2020), does not generate results identical
to the Python code.

The first di�erence was that the Python code used floats with 32-bit precision (except
for complex values which used 64 bits), while the original Java implementation used doubles,
which use a 64-bit precision. The Python code had some additional zero value solutions
which were not present in the Java code, as well as the window function for the short-time
Fourier transform di�ered from the Python implementation in regards to zero padding and
size. The Java code’s method comment also stated to use discrete cosine transform (DCT) type
3, while the default type in Python was type 2.

To bypass those di�erences, I chose the Java code as the only preprocessing code for both
the model training and the Android app. To access it in the Python code, I created a pipeline
using the py4j library. Py4j works by creating a local server through which the Java code is
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3. Architecture

accessible for Python code.
This spectrum serves as input to the neural net, shown in Figures 3.1 and 3.2, output to a

softmax function with 12 labels:

• The keywords (10),

• A label for background noise (labeled silence) and

• One for the noise words (labeled background_noise).

Figure 3.1: A diagram of the Keras model built.

With Fig. 3.1 as reference, the model structure can be split up into the start, with a zero
padding layer, a convolutional layer and an average pooling layer, followed by the middle
consisting of the 12 ResNet blocks and ending with the average pooling and dense layer.

When adapting the model to Swedish and re-training it, all layers up to the ending layers
were frozen. Only the head was re-trained. See Figure 3.1.

3.2 Mobile apps
3.2.1 Speech Command App
As a way to help software development and research, Google has released a speech command
Android application which uses a Tensorflow Lite model trained on their dataset, along with
its code.

Before we can deploy a model onto a mobile device, we need to be convert it to a Ten-
sorflow Lite model. There are functions to generate such models within the Python module:

16



3.3 AudioDataGenerator

Tensorflow.Lite.TFLiteConverter

It has functions to convert a Keras model which is what is used in this project.
The application consists of a grid of the 10 keywords, text for the sampling frequency, and

how many threads Tensorflow is using for data inference. The microphone is continuously
listening for speech and, when one of the keywords is identified, its corresponding label is
highlighted along with the probability of this label being correct. The word box is highlighted
for one second and then returns to the original layout.

Under the hood, the recording part of the app has its own thread, as does the recognition
part of it.

3.2.2 Swedish Model Test App
I modified the source code to this application example and I used it with the Swedish model
to test the model’s usability.

I updated the label grid so it contained the Swedish labels instead of the English. Along
with this, I edited the part of the functionality which handles the label highlighting so it
linked properly to the new Swedish label indices. The pre-existing preprocessing in the code
was to normalise the recorded signal before feeding it into the model. I rerwrote this part of
the code to use the new MFCC preprocessing code.

To this base app’s functionality, I added some debugging features described in the result
chapter about it, and optimised the heavier-than-before preprocessing step to its own thread
(seen with the “Translation Time” value in the app).

3.3 AudioDataGenerator
I made two versions of the Generator class:

1. One which returns a Python generator that operates similarly to Keras’ ImageData-
Generator class and

2. A version which implements Tensorflow’s Sequence class.

The two classes di�er in the setup. The first version only needs one instance and then
creates generators when one of its methods is called. The other is more compact to use, but
needs a new class object for every generator (train / validation / testing). After writing the
Sequence implementation of the generator, I moved to using that over the previous iteration,
because it was easier to use. I simply provided a list of file paths, along with configurations
such as augmentation and subset type, when creating the object. The code also felt more
structured., since when making it I had the first generator class to compare to.

Table 3.1 shows a list of the augmentation parameters. These parameters are restricted
because after a certain point, the original audio is either too obscured to be audible or too
shifted to be realistic (when listening to pitch for example). Some restrictions were found in
papers (cited); others were chosen based on how they sounded. Within the ranges the values
were chosen uniformly.
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3. Architecture

Parameter Range Default value
Pitch ([-1, 1), (-1, 1]) (1., 1.)
Time stretch ([0, 1], [0, 1]) (1., 1.)
Time shift (100ms) {True, False} False
Time mask {None, [0.0, 0.5]} None
Noise probability [0.0, 1.0] 0.80
Percentage extra background noise [0.0, 1.0] 0.01

Table 3.1: The di�erent augmentation parameters in the generators.
The methods are using the Librosa Python library. Random values
are chosen uniformly.

18



3.3 AudioDataGenerator

Figure 3.2: Visualization of the neural net structure. Split pieces goes
left to right, up to down. Each cluster is the same as what is shown
in Fig. 2.2.
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Figure 3.3: A screenshot of the modified speech command app using
the Swedish model and MFCC preprocessing.
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Chapter 4

Collection of a Swedish Speech Corpus

4.1 Motivation
Speech recognition, like most machine learning fields, needs a lot of data to train a model.
Google has the resources to collect very large datasets including their speech command dataset
in English.

For this project, I needed a dataset in Swedish. To the best of my knowledge, when I
started, there was no such dataset available and I had to collect one.

Given limited time and resources, I obviously did not have the possibility to collect a
dataset of the size of Google’s. This explains the goal of the project, which was to adapt a
model from English using a smaller dataset in Swedish.

I chose to select words to record based on the first version of Google’s dataset, which
at that time contained 30 words. Fig. 2.1 shows the list of these words, where the first row
contains the command words.

I directly translated all but the names Marvin and Sheila, which did not seem necessary
nor useful to retrain in Swedish. The Swedish command words are upp, ner, ja, nej, kör, stopp,
av, på, höger, vänster, and the noise words to ignore are säng, fågel, katt, hund, glad, hus, Michael,
hej, träd, wow, noll, ett, två, tre, fyra, fem, sex, sju, åtta, nio.

4.2 Collection Procedure
When looking for a collection method, I prioritised the simplicity of the recording, gathering
and sending process, as well as how well the data samples would be organised, i.e. how the
folder structure would be when I downloaded them from the data collection server. Having
all of the files in one folder with generic names like “kör 4” would not be helpful when col-
lecting the files for training, as I had already formed the data generator class to label the files
based on how they were separated in Google’s dataset, one folder per word.

21



4. Collection of a Swedish Speech Corpus

4.2.1 Google Forms
In a first attempt, I created a Google Form. Using this way, I could add one question per
word, and when I chose that a file needed to be uploaded to answer that question, one folder
for each answer/word was created in the Google Drive folder that collects the answers. This
gave me the folder structure I wanted so that it was simple to train a model.

This kept the file samples well organised and, being Google Forms, it gave the added
benefit that participants’ samples were named after their recorder. I could then easily separate
speakers.

I collected the audio files through a URL to a free online tool to easily save audio. How-
ever, this solution was not optimal. Some uploads did not get uploaded properly to the form
and some were wrongly formatted in regards to file type or resolution, creating more over-
head preprocessing of the data before being usable.

In addition, there was no real restriction on the duration of the recordings. I only gave
instructions, in text, at the top of the Google Form, so the files were not precisely one second,
but varied slightly in duration.

4.2.2 Recording Application
The first collection enabled me to collect a dataset of about 560 recordings. I decided then to
write a dedicated application that would eliminate the shortcomings of Google Forms. This
new method had the goal to be easier to use, since I was not sure how many more samples
I would need. I also wanted as many participants as possible to be able to help me record
without limitations in technical know-how or limitations in technical equipment to provide
a good audio recording.

Application Architecture. In Fig. 4.1 the state machine of the recording app is
shown. The first grid shown is the key words.

Figure 4.1: Flow diagram of the processes that make up the recording
app.
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4.2 Collection Procedure

Figure 4.2: A screenshot of the recording application in the middle
of recording the word ett.

Interface and Description of Use. Figure 4.2 shows a screenshot of the record-
ing application that runs on the Android operating system.

The application has two pages with grids consisting of Swedish words. The first page
contains the keywords and the second page contains the noise words. By pressing one of the
buttons, the application will record for one second the selected word.

When the application has completed the recording, it will play the audio back and a
prompt will ask the user if s/he would like to keep the recording. This recording process
can be repeated as many times as needed. The number of recorded samples is tracked in the
bottom right of the application screen.

There is also a button to delete all of the recorded samples, in the top left of the app.
Next to this button, there is another button to send the recordings to me. When pressed, the
recordings will be concatenated into one WAV file, an ordered list of the recordings will be
created, and an email with those two files attached will be generated, with the receiver being
my email address.

After the send action is concluded, a prompt will ask if the user wants to clear the files
that were sent. This is in case someone changed their mind and decided to not send the
recordings yet.
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4. Collection of a Swedish Speech Corpus

4.3 Data Analysis
The format of the data samples followed that of the English dataset. They were one second
long, 16 bit WAV files recorded with a sample rate of 16 kHz.

• The gender of the speakers were three female and six male.

• There were some variety to the accents spoken, but most were Scanian.

• There were five speakers in the ages [20, 30], two in the ages [31, 40] and two in the
ages 41 and up.

• All words are limited to one second, i.e. 16,000 sample points.

• The 10 command words have 60 or more samples each, while the 20 noise words have
30 or more. Table 4.1 shows the exact number of samples broken down per word.

Word Av Höger Ja Kör Nej Ner På Stopp Upp Vänster
Count 66 64 63 63 61 61 64 65 68 60
Word Ett Två Tre Fyra Fem Sex Sju Åtta Nio Noll
Count 35 30 30 30 30 30 30 30 32 36
Word Säng Fågel Katt Hund Glad Hus Michael Hej Träd Wow
Count 30 31 34 37 30 30 30 30 30 31

Table 4.1: The number of samples in the Swedish dataset. The first
word row is for the keywords and their amounts. The other rows
describe the noise words.
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4.3 Data Analysis

Figure 4.3: Sample distribution. Blue hued slices belong to key-
words, green hued are numbers (noise words), gray slices are other
noise words.

Word Avg. amplitude Word Avg. amplitude
av 0.0319915 två 0.025331382
nio 0.028247776 ner 0.029569779
hund 0.030639486 upp 0.015508879
kör 0.03212368 ett 0.017379973
katt 0.016292006 glad 0.03131938
michael 0.029442405 fyra 0.032550946
fågel 0.028528877 höger 0.03549839
tre 0.024380192 fem 0.028214794
åtta 0.027719777 på 0.02318398
hej 0.025882196 ja 0.030171564
stopp 0.024081478 vänster 0.026099792
nej 0.021604436 träd 0.027674261
sex 0.014786018 sju 0.028273618
noll 0.030434398 säng 0.02333186
hus 0.024855552 wow 0.03628734

Table 4.2: Mean absolute value of amplitudes of the word recordings.
Audio was normalized to the range [-1, 1].
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4. Collection of a Swedish Speech Corpus

Table 4.3: Examples of audio signals from the dataset.

Table 4.4: Examples of MFCCs of recordings from the dataset.
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Chapter 5

Results

5.1 Training an English Model with Google’s
dataset

After training the English keyword spotting model on the full dataset for 50 epochs (without
converging), the accuracy was on average 99.4% between the two preprocessing resolutions.
For the English model, I used the Adam optimizer as it seems to let the model reach a higher
accuracy faster initially.

I trained on the English data using two di�erent preprocessing settings for MFCC con-
struction:

1. One higher resolution using 2048 fast Fourier transform (FFT) frequencies and 128 mel
frequencies, and

2. One faster model with 480 FFT and 40 mels.

I used the same resolution for the Swedish models as for the English one, making a total of
two model types. The final confusion matrices are shown in Tables 5.1 and 5.2.

5.1.1 Training a Swedish Model
Augmenting the Data. With the Swedish dataset being so much smaller than the
original one (≈1%), training and data usage needed to be augmented in order to be e�ective. I
tried di�erent methods to make the most of the data, and eventually, I wrote a data generator
along the lines of Keras’ ImageDataGenerator, which augments the audio data.

With inspiration from Park et al. (2019) and Ko et al. (2018), I chose as parameters: pitch
range, time dilation, time shift, time masking, noise probability as well as likelihood for the gener-
ator to add a sample of solely background audio.
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5. Results

_silence_ _unknown_ yes no up down left right on o� stop go
1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.997 0. 0. 0. 0.001 0. 0. 0.001 0.001 0. 0.
0. 0.005 0.993 0. 0. 0. 0.002 0. 0. 0. 0. 0.
0. 0.012 0. 0.983 0. 0. 0.002 0. 0. 0. 0. 0.002
0. 0.012 0. 0. 0.979 0. 0. 0. 0.002 0.007 0. 0.
0. 0.025 0. 0. 0. 0.975 0. 0. 0. 0. 0. 0.
0. 0.01 0. 0. 0. 0. 0.99 0. 0. 0. 0. 0.
0. 0.018 0.003 0. 0. 0.003 0. 0.977 0. 0. 0. 0.
0. 0.015 0. 0. 0. 0. 0. 0. 0.982 0.003 0. 0.
0. 0.012 0. 0. 0.007 0. 0. 0. 0.002 0.978 0. 0.
0. 0.005 0. 0. 0.002 0. 0. 0. 0. 0. 0.993 0.
0. 0.015 0. 0.002 0. 0.002 0. 0. 0. 0. 0. 0.98

Table 5.1: Low resolution Keras model trained on the entire Google
dataset. The labels are _silence_ (background noise), _unknown_ (noise
words), yes, no, up, down, left, right, on, o�, stop and go. Accuracy:
99.1%.

_silence_ _unknown_ yes no up down left right on o� stop go
0.91 0.09 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.002 0. 0.998 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.005 0. 0. 0.993 0. 0. 0. 0. 0. 0.002 0.
0. 0.007 0. 0. 0. 0.993 0. 0. 0. 0. 0. 0.
0. 0.005 0. 0. 0. 0. 0.995 0. 0. 0. 0. 0.
0. 0.013 0. 0. 0. 0. 0. 0.987 0. 0. 0. 0.
0. 0.01 0. 0. 0. 0. 0. 0. 0.99 0. 0. 0.
0. 0.005 0. 0. 0. 0. 0. 0. 0. 0.995 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.
0. 0.012 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.988

Table 5.2: High resolution Keras model trained on the entire Google
dataset. The labels are _silence_ (background noise), _unknown_, yes,
no, up, down, left, right, on, o�, stop and go. Accuracy: 99.7%.

The original Keras generator class was built to be useful for many di�erent users, and
configurable to fit as many di�erent data architectures as possible. Since the generator I built
was made to aid this project specifically, the generator is simplified, and parameters such as
data normalization and data shape are fixed.

The generator class has a parameter which determines how many extra data samples of
background noise, or "silence", should be added to the training. For the English dataset 1%
was added, which is about 1’060 clips, and for the Swedish training the value was set to 5%,
adding up to about 63 samples.

Training the Model. Originally, Tang and Lin (2017) as well as Lin et al. (2018)
used a stochastic gradient descent with learning rate of 0.1 and a momentum 0.9. These were
however based on the bigger dataset by Google, and they applied it to mini-batches of 64
examples.
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5.1 Training an English Model with Google’s dataset

This smaller Swedish dataset uses a mini-batch of 32. In addition, changing the learning
rate to 0.01 and momentum to 0.8 improved the learning e�ectiveness.

_tystnad_ _okänt_ av höger ja kör nej ner på stopp upp vänster
0.231 0.769 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.912 0.011 0.01 0.01 0.003 0.011 0.032 0.0 0.006 0.0 0.005
0.0 0.545 0.318 0.0 0.015 0.045 0.0 0.0 0.015 0.03 0.0 0.03
0.0 0.641 0.047 0.125 0.0 0.062 0.016 0.062 0.0 0.016 0.0 0.031
0.0 0.635 0.016 0.016 0.111 0.032 0.095 0.016 0.0 0.0 0.048 0.032
0.0 0.698 0.016 0.032 0.0 0.079 0.032 0.032 0.0 0.048 0.0 0.063
0.0 0.525 0.0 0.033 0.049 0.016 0.213 0.082 0.016 0.0 0.0 0.066
0.0 0.557 0.016 0.0 0.033 0.0 0.098 0.279 0.0 0.0 0.0 0.016
0.0 0.688 0.109 0.016 0.016 0.031 0.062 0.0 0.0 0.062 0.0 0.016

0.031 0.754 0.015 0.0 0.015 0.015 0.031 0.0 0.031 0.062 0.015 0.031
0.044 0.824 0.059 0.0 0.029 0.0 0.0 0.0 0.0 0.015 0.015 0.015
0.017 0.883 0.0 0.0 0.017 0.0 0.017 0.05 0.0 0.0 0.017 0.0

Table 5.3: Confusion matrix of the Swedish model trained without a
pre-trained stack. Acc: 51%, loss: 1.88

_tystnad_ _okänt_ av höger ja kör nej ner på stopp upp vänster
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.002 0.888 0.005 0.013 0.016 0.01 0.002 0.011 0.027 0.008 0.013 0.006
0.0 0.061 0.879 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.03 0.0
0.0 0.062 0.0 0.875 0.0 0.0 0.0 0.0 0.031 0.0 0.0 0.031
0.0 0.063 0.0 0.0 0.857 0.032 0.0 0.016 0.016 0.016 0.0 0.0
0.0 0.048 0.0 0.016 0.016 0.921 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.18 0.0 0.0 0.0 0.0 0.77 0.033 0.0 0.0 0.016 0.0
0.0 0.098 0.0 0.0 0.016 0.0 0.0 0.852 0.0 0.0 0.0 0.033
0.0 0.234 0.016 0.0 0.0 0.016 0.0 0.0 0.719 0.016 0.0 0.0
0.0 0.046 0.015 0.0 0.0 0.046 0.0 0.0 0.015 0.831 0.031 0.015
0.0 0.103 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.015 0.882 0.0
0.0 0.133 0.0 0.0 0.0 0.017 0.017 0.0 0.0 0.017 0.0 0.817

Table 5.4: (Highres) Confusion matrix of the Swedish model, pre-
trained on the English dataset. Acc: 86%, loss: 0.39

Influence of the Corpus Size. I investigated a possible bias for words which have
more samples and I tried to determine if the accuracy improvement begins to slow down with
the amount of samples. For this, I ran the Swedish training multiple times, using di�erent
subset sizes of the dataset.

Table 5.5 and Figure 5.1 show the results of these experiments. The amount of noise words
were a consistent 80/20 split for each of the subset results. All tests displayed in that table
use the higher resolution preprocessing, and ran with EarlyStopping looking at val_accuracy
(5 epochs). This means that the model would stop its training if the validation accuracy did
not improve over 5 epochs, essentially when it was no longer improving. It is set to look at
validation accuracy because the validation examples are not augmented like those going in to
the training phase, and so they were more consistent and reliable for the model accuracy.
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5. Results

model type dataset accuracy loss
not pre-trained 80/20 split, kfold 47.6% 6593.2

pre-trained 10ex 71.2% 1.06
20ex 79.4% 0.68
30ex 82.5% 0.55
40ex 84.5% 0.49
50ex 86.0% 0.44

80/20 split, kfold 85.7% 0.43

Table 5.5: [2020-04-30] Partial training of the Swedish data, average
of 5 training runs. The "N"ex means N entries of each keyword class
was chosen for the training dataset (noise words stayed 80/20 split).
80/20 splits mean 48 samples on training, 12 on testing. Average and
standard deviation for the not pre-trained model is huge!

Figure 5.1: [Upper is accuracy in %, bottom is loss] The partial ac-
curacies and losses from Table 5.5 plotted in a graph. The values for
the “not pre-trained” model are omitted as they are much larger than
the others.

Statistical Observations. It is worth noting that the standard deviation was rather
high between each run for each subset. I believe this was caused by the selection of the
samples, which was randomised. Given a train/validation split which considered the speakers,
like they did in the English dataset, I think the result would be more aligned. However,
given the restricted amount of speakers for this dataset, 9, this would be more di�cult to
accomplish. See Table 4.1 for the number of samples for each of the words in the Swedish
dataset.

The trade-o� between the slower and faster model types were .6% for the English model,
and 8.1% for the Swedish, and the faster preprocessing is about 5 times quicker on the mobile
application as well as when training.
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5.2 Android Application

5.2 Android Application
I wrote an Android application to embed the speech recognition engine. I started from code
provided by Google for command word recognition. I modified it to work with my model
– both with the labels being di�erent (order) and with the model using MFCC as input and
not the audio samples.

Figure 5.2: The Thread and resource architecture of the speech
recognition app.

With the two models deployed on the mobile application, while the more accurate one is
slower, it is still quick enough to realistically be usable: ∼75ms, compared with ∼15ms. These
values were measured on a OnePlus 7 Pro running Android 10.

Along with the two models and an option to change in real-time, the app also got some
debugging features like an image of the MFCC fed into the model, and the di�erent proba-
bilities. The features can be seen in Fig. 5.3.
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5. Results

Figure 5.3: A screen shot showing the debug features of the Swedish
speech commands app, displaying the MFCC, the di�erent proba-
bilities, and a button to toggle the high-res model.
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Chapter 6

Discussion & Conclusion

The project aimed at utilising the speech command dataset released by Google to train a
keyword spotting model, and then retrain this model to recognise Swedish words. I could
reach an accuracy of 86% from a baseline of 51%, yielding an improvement of a 29% lower
false rejection rate.

I researched the English dataset, the resnet model structure and built it in Keras. I also
gathered a Swedish dataset consisting of 1261 recordings over a total of 30 words between
9 speakers, and rewrote a demo app on Android to test the model adapted to this Swedish
dataset. To collect this dataset, I built another Android app, sent it out to my friends and
family so that they could record the words and email them to me.

The bias of the baseline model, in Table 5.3 to lean towards the unknown label, "_okänt_",
even the silence samples, can be explained that 50% of the words coming in are labeled noise
words, and 5% of the dataset, about 63 audio clips, are silence

In table 5.4 the individual label accuracies are somewhat varied. This can be caused by
the choice of noise words. "På" shows an accuracy of 71.9%, which can be correlated to the
noise word "två" (two). The most confused label for "på" is just "_okänt_" (unknown), so it is
quite likely. The same deduction can be made for the 77% accuracy for "nej" (no). Among the
noise words is "hej" (hello), and with "nej" spoken without a Scanian accent is very similar to
"hej".

Besides those two words the other keywords are accurate more than 80% of the guesses.

6.1 Future Work
At the moment, the model has a bias towards Scanian Swedish since most data samples come
from speakers of this region. An obvious improvement would be to collect a larger corpus
with more data samples and from a larger variety of speakers.

I carried out this adaptation experiment on one single language: Swedish. A further
work could be to evaluate the adaptation technique I developed on other languages or word
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6. Discussion & Conclusion

subsets. In addition to porting the system to new languages, this would probably give insights
on language di�erences: Do we need more samples, epochs, etc.?

Another interesting topic to pursue would be to get a better understanding of the model
parameters such as the influence of the number of speakers, distribution of speakers across
age, regional accents, gender, etc., number of samples per word, and adapted language. This
would enable us to fine-tune the model with a greater e�ciency.

Another point of interest would be to analyse the preprocessing resolution more in depth.
I compared two configurations and I showed a significant di�erence both in performance
and in computational demand. Finding a good middle ground or which parameters a�ect
the trade-o�s would be useful to look into.

In the literature, I found a couple of resnet block structures with di�erent numbers of
convolutional layers. In my experiments, I evaluated only one variant of a resnet block. Ana-
lyzing the influence of di�erent numbers of nodes and layers on the training time and adapt-
ability could also be interesting.

6.2 Conclusion
All in all, this project has taught me the benefits of using networks trained on large datasets
to adapt speech recognition to di�erent domains and languages. It has also provided evi-
dence that this is a viable solution when it comes to keyword spotting within a more specific
application context.

I am really happy with how well the data collection went and how good the resulting
adaptation was. The fact that the smaller dataset for the specified domain still performed so
well shows that this system can be applied to keyword spotting domains, even if there is no
large pre-existing dataset.
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Konsten att lära en engelskförstående
maskin svenska

POPULÄRVETENSKAPLIG SAMMANFATTNING Michael Hansen

Taligenkänning används mycket och väl idag, men det kräver mycket data för att
fungera bra. I detta projekt utvecklades ett system för att träna om en engelsk
taligenkänningsmodell till svenska med ett insamlat dataset 100 gånger mindre än det
ursprungliga.

Automatisk taligenkänning handlar om att få
en dator att översätta mänskligt tal till text.
Nyckelordssökning är en fördjupning av detta, där
man förenklar uppgiften till att urskilja mellan
några specifika ord.

Många av dagens lösningar för taligenkänning
kräver massvis med inspelningar, vilket leder till
invecklade maskininlärningsmodeller som kräver
egna servrar för att behandla ljudet snabbt nog för
användning. Genom att minska antalet möjliga
ord till ett bestämt antal kan man förenkla mod-
ellen så att den kan användas direkt på mobila
enheter, vilket eliminerar behovet av internetup-
pkoppling. Denna sortens modeller behöver dock
fortfarande en massa data att träna på.
I 2017 släppte Google ett dataset med ∼106’000

engelska ljudklipp av 35 olika ord. Med hjälp
av dessa inspelningar kan forskare utveckla tal-
igenkänningslösningar som presterar bra, visat
med en hög träffsäkerhet på deras gissningar. Så
stora dataset tar lång tid att samla in och kate-
gorisera. Språk som svenska har inte möjligheten
att samla in data av samma storlek, vilket begrän-

sar framsteg och prestationen inom området på
hemmaplan. Det leder också till att forskningen
blir beroende av de engelska företagen för sådan
datainsamling.
I detta projekt har jag utvecklat ett system som

använder det engelska datasettet för att träna en
taligenkänningsmodel som jag sedan anpassar till
svenska ord, med ett mindre svenskt dataset som
jag själv samlat in. Med denna metod nådde jag
∼86% i träffsäkerhet med en datamängd på ∼1%
av den engelska. Jämför det med träffsäkerheten
på 51% som fås om jag tränar modellen utan att
ha använt den engelska datan innan.
Domänanpassning har använts i andra områden

för maskininlärning, och detta projektet visar att
dess resultat är även användbart inom taligenkän-
ning.
Med detta system kan specialiserade program

för taligenkänning byggas utan att man behöver
samla in en stor mängd data, vilket gör det
lättare att, till exempel, skapa mobilapplikationer
med taligenkänningsfunktioner. Med detta pro-
jekt som utgångspunkt kan man lättare träna
taligenkänningsmodeller för nya språk, och det
skulle vara intressant att se hur systemet fungerar
med språk som har andra ursprung än sven-
ska/engelska.
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