
MASTER’S THESIS 2020

Drones in the Cloud: A Study
of IoT Architectures and
Simulation in AWS
Felicia Sucurovic Hedström, Anton Gudjonsson

ISSN 1650-2884
LU-CS-EX: 2020-19

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-19

Drones in the Cloud: A Study of IoT
Architectures and Simulation in AWS

Felicia Sucurovic Hedström, Anton Gudjonsson

Drones in the Cloud: A Study of IoT
Architectures and Simulation in AWS

Felicia Sucurovic Hedström
dat14fhe@student.lu.se

Anton Gudjonsson
dat14agu@student.lu.se

June 17, 2020

Master’s thesis work carried out at Dewire Consultants AB.

Supervisors: Christian Eriksson, christian.h.eriksson@knightec.se
Ulf Asklund, ulf.asklund@cs.lth.se

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:dat14fhe@student.lu.se
mailto:dat14agu@student.lu.se
mailto:christian.h.eriksson@knightec.se
mailto:ulf.asklund@cs.lth.se
mailto:flavius.gruian@cs.lth.se

Abstract

With IoT devices becoming both smaller and more computationally powerful,
new cloud computing architectures have evolved. These new architectures have
presented an opportunity to use IoT for more purposes, such as autonomous
drones which is what will be focused on in this thesis. As a result of this, many
cloud computing platforms now o�er support for hosting IoT networks. Ama-
zonWeb Services will be used for developing and hosting the IoT networks. The
three IoT architectures which will be investigated in this thesis are Cloud, Fog,
and Edge computing. These architectures will be evaluated using metrics rele-
vant to a real-time IoT system. The result of the evaluation is a recommendation
of an architecture that is the most suitable for our use case. This architecture is
a hybrid solution that performs time-critical computations onboard the device
and all other operations in the cloud.

Since IoT networks can consist of many devices it might not be feasible to
create large networks of physical devices for testing. Therefore there is a need
to investigate whether the simulation of devices is something that can be used
for testing, especially smart devices such as drones. As a solution to this, this
thesis will explore the possibilities of simulating drones using AWS. The AWS
simulation solution o�ers the possibility to generate large amounts of data from
simple devices. However, this is not enough to be able to simulate a drone system
completely since the simulated devices lack the ability to receive any input.

Keywords: MSc, IoTArchitecture, AWS, Simulation, Cloud computing, Fog computing,
Edge computing

2

Acknowledgements

Wewould like to thank everyone involved in the process of thismaster thesis. A special thanks
to our supervisor at Dewire Christian Eriksson whom has provided us with knowledge and
valuable input throughout this thesis.

We would also give a special thanks to our supervisor at LTH Ulf Asklund whom has
guided us trough this process, and provided us with valuable feedback in regard to our report
and how to structure our work.

A big thanks to everyone at the Dewire o�ce, for making our time there educative and
helping us with AWS related problems.

3

4

Contents

1 Introduction 7
1.1 About Dewire . 8

1.1.1 Use Case . 8
1.2 Problem definition . 10
1.3 Related work . 11
1.4 Contributions . 12

2 Theory 13
2.1 MQTT . 13
2.2 Drones . 14
2.3 Raspberry Pie Zero W . 14
2.4 Metrics . 14

2.4.1 Latency . 15
2.4.2 Packet error rate . 15
2.4.3 Data Usage . 15

2.5 IoT Architectures . 15
2.5.1 Cloud computing . 15
2.5.2 Fog computing . 16
2.5.3 Edge computing . 17

2.6 AWS Components . 17
2.6.1 AWS IoT Core . 17
2.6.2 AWS Greengrass . 18
2.6.3 AWS Lambda . 19
2.6.4 AWS EC2 . 19

2.7 Simulation . 20
2.7.1 IoT Device Simulator . 20

3 Approach 21
3.1 Method . 21
3.2 Description of the system . 22

5

CONTENTS

3.3 Categorization of data in use case . 22
3.3.1 Group A . 22
3.3.2 Group B . 23
3.3.3 Group C . 23

3.4 IoT Architectures . 23
3.4.1 Cloud Architecture . 24
3.4.2 Fog Architecture . 25
3.4.3 Edge Architecture . 27

3.5 Evaluation method . 28
3.5.1 Latency . 28
3.5.2 Packet Error Rate . 29
3.5.3 Data Usage . 29

3.6 Test setup . 29
3.6.1 Cloud . 30
3.6.2 Fog . 31
3.6.3 Edge . 33

4 Latency Results 35
4.1 Cloud . 35
4.2 Fog . 35
4.3 Edge . 35

5 Discussion 39
5.1 Cloud . 39
5.2 Fog . 40
5.3 Edge . 42

6 Simulation 43
6.1 IoT Device Simulator . 43

6.1.1 Using the simulator . 43
6.1.2 Customization . 44
6.1.3 Adaptability to di�erent architectures 45

6.2 Discussion . 46

7 Conclusions 49
7.1 RQ1: Which IoT architecture is the most suitable for a fleet of drones in

regards to the use case? . 49
7.2 RQ2: Can the AWS IoT Device Simulator be used to simulate drones for the

purpose of testing? . 50
7.3 Ethical and Societal Impact . 50
7.4 Future work . 51

7.4.1 Simulation . 51
7.4.2 IoT Architectures . 51

6

Chapter 1

Introduction

The Internet of Things (IoT) is the concept of connecting everyday physical "things" to the
internet. These "things" are devices such as microcontrollers, sensors, actuators, or other
smart appliances. Since the IoT devices are connected to the internet, it allows them to
communicate with each other or a central computer without human interaction, but can
also be monitored or controlled remotely by a human. As IoT has gotten bigger, it has been
introduced intomany areas of everyday life. Some of these areas are Smart Cities, Healthcare,
Wearables, and Smart Homes, and by 2025 it has been predicted that the amount of IoT
connections will reach at least 24.9 billion [1].

With IoT devices becoming more popular, several cloud service providers are o�ering
solutions for building IoT networks. Cloud computing is the concept of on-demand com-
puter resources, usually storage and computing power. The user simply requests access to
certain resources as the needs appear, needing not to worry about any physical hardware or
infrastructure. Amazon, Microsoft, and Google have, among others, established themselves
as cloud service providers with their services Amazon Web Services, Microsoft Azure, and
Google Cloud. They utilize big data centers across the continents to provide resources to
their users. Since these services are mostly pay-per-use or pay-as-you-go it has allowed com-
panies to become flexible and expand seamlessly as they grow and smaller companies can
handle great computational loads without the need of their own infrastructure.[2] The use
of cloud computing has allowed IoT devices to become both smaller and more lightweight
since the computing power can be outsourced. This has led to the emergence of a new IoT
domain called Flying IoT. These flying IoT devices are drones utilizing the computational
power of the cloud. This thesis will explore how flying IoT can be constructed using a cloud
service provider. The focus of the thesis will be on how the drones communicate and where
the computing power resides. Since IoT networks can consist of many devices it might not be
feasible to create large networks of physical devices for testing. It would be especially helpful
to simulate more computationally powerful devices such as drones since they can be expen-
sive. Therefore this thesis will also investigate the possibilities of testing flying IoT systems
using simulation.

7

1. Introduction

1.1 About Dewire
Dewire is a consulting company with o�ces in Sundsvall, Stockholm, and Gothenburg. They
are a certified APN Consulting Partner (a member of the Amazon Partner Network) and
specialize in digitalization solutions using Amazon Web Services. With future customers
showing an interest in autonomous drones and IoT, they have asked us to further explore the
AWS IoT services.

To narrow down the area of research Dewire provided us with a use case, detailing a
system for controlling drones. The use case identifies and summarizes the needs of future
projects and will be presented in the next section. The use case will be analyzed and discussed
further in chapter 3.

1.1.1 Use Case
With the landscape of autonomous drones quickly emerging, Dewire foresees that future
commissions may involve systems for controlling fleets of such devices. The system should
be able to control and set targets for drones out of sight from a central controlling system.
In turn, the drones should report back to the central system.

The envisioned network could be deployed and used for the following scenarios:

• supervision and inspection of equipment or assets in remote location, eg.

– electric power transmission networks

– firebreaks

– spread of forest fires

– ordnance surveying

• transportation of packages and equipment

• provide coverage (eg. internet) in remote areas.

The drones should:

• report data back to control. The reported data should include:

– coordinates (3D)

– conditions (wind, temperature)

– speed

– direction of travel

– system health (battery status, power level and status of motors, signal strength
(GSM/Cellular, GPS, Wifi))

– planned route

– sensor data, if available

• reports should be sent every second

8

1.1 About Dewire

Figure 1.1: A drone flying from point A to point B, while needing to
recalculate its route because of an object in its way.

• respond to new goals from the control and adjust route accordingly

• respect geo-fencing restrictions (3D) set up by the controller

• detect obstacles and avoid collision

• take emergency action if:

– lost connection to controller

– system failure

– battery levels under limit

• emergency actions could be:

– return to base (drone specific)

– hover

– continue to destination

In figure 1.1, it is illustrated how the drones will operate in the field. The drones will
receive an initial command from a user. This command will consist of instructions on how
to get from point A to point B with respect to areas restricted by geo-fencing. This route is
illustrated by the dotted line in the figure. Along the way to point B, the drones will report
data back to the controller. This controller will be located di�erently depending on the
architecture. Eventually, the drones will detect a tree and will need to take avoidance action.
This action will need to respect both the tree and the restricted area when calculating the new
route. This route is represented by the line. These calculations are made by the controller
and can di�er depending on the capacity of the drone.

9

1. Introduction

Figure 1.2: Communication paths for 1) Edge, 2) Cloud, 3) Fog

1.2 Problem definition
As IoT devices become smaller and computationally more powerful there are greater op-
portunities to distribute the workload, instead of performing all the computations in the
cloud. This has led to several di�erent IoT architectures emerging on the market. These ar-
chitectures take advantage of the increased computational power of the devices by moving
computations away from the cloud. We have narrowed it down to three architectures which
we will investigate further to see which one we believe fits our requirements the best.

These three architectures will have di�erent communication paths from the drone to
where the computations aremade. These paths are illustrated in figure 1.2. Number one in the
figure represents the edge architecture where the computations are made onboard the drone
itself. Number two is the Cloud architecture where all computations are made in the cloud.
Number three represents the Fog architecture where a local node, an intermediate device,
performs most computations. Both the edge and fog architectures still have a connection to
the cloud to be able to perform some computations in case the device cannot handle it by
itself.

With these architectures in mind, we aim to answer the following question:

• Which IoT architecture is the most suitable for a fleet of drones in regard to the use
case?

The suitability of the architectures will be determined by looking at how the di�erent archi-
tectures perform in regards to a few metrics. These will be presented in section 3.5.

10

1.3 Related work

Since IoT networks can consist of many devices it might not be feasible to create large
networks of physical devices for testing. Simulating these IoT devices could solve this prob-
lem. It would be especially helpful to simulate more computationally powerful and complex
devices such as drones since they can be expensive. To simulate IoT devices AWS o�ers a so-
lution called IoT Device simulator. This solution claims to be used for the purpose of testing
IoT device integration and IoT back-end services. Therefore we aim to answer the following
question:

• Can the AWS IoT Device Simulator be used to simulate drones for the purpose of
testing?

The Device Simulator will be evaluated by its ability to emulate a drone as described by
the use case. With several di�erent potential IoT architectures for the fleet to use, it is also
important that the IoT Device Simulator can be used with any of them.

1.3 Related work
The research article "Distributed Measurement Data Gathering about Moving Objects" de-
scribes two di�erent approaches for measurement data gathering about moving objects [3].
The first approach, and the one most relevant to this thesis, is Fog computing. It presents
the idea of moving the assessment of the quality of the data to nodes located closer to the
moving objects. The second approach is predicting telemetry quality using mining models.
As a result of implementing these approaches, load balancing between the cloud and other
edge nodes became possible. This leads to a reduction of network tra�c and thereby low-
ering the requirements for the bandwidth of communication channels and the possibility to
gather measurement data over a wireless network.

With an increasing demand for autonomous drones, Devos et. al recognized that an im-
portant challenge in the field was for drones to avoid obstacles in a complex environment [4].
They developed an inexpensive obstacle avoidance algorithm capable of being run directly on
the drone itself. The obstacle detection was done using two LiDAR sensors attached to the
front of the drone and the algorithm was a simple two-neuron neural. The algorithm was run
on a Raspberry Pi Zero, connected to the controller by a serial link. In their tests, the drones
achieved a 100% success rate of navigating without crashing or getting stuck in an environ-
ment with a low density of obstacles and a 90% success rate in a high-density environment
with corners and deadlocks.

Alwateer et. al has studied the trade-o� between maximizing revenue and client satisfac-
tion for a drone renting service [5]. To do this they created a model for the drones’ onboard
decision making and performed a simulation in which clients could request a drone for a
task and the drone had to make a decision of whether it is able to satisfy the request. The
simulation was run with AnyLogic Simulation Software.

A lot of IoT systems are using 4G networks today, and these networks are still developing
in order tomeet the requirement for new IoT applications that are developed. However, there
are a lot of challenges when it comes to IoT and 4G, such as connecting a large number of
devices, security, and new standards. The paper "5G Internet of Things: A survey" brings
up these challenges and reviews the current research on how 5G will a�ect IoT and these
challenges [6]. It also presents some of the performance requirements of new IoT applications

11

1. Introduction

such as massive connectivity, security, trustworthiness, coverage of wireless communication,
ultra-low latency, throughput, ultra-reliable, for a huge number of IoT devices.

1.4 Contributions
This thesis will contribute to the understanding of IoT architectures and how they can be
used for di�erent types of data. It will also give an insight into how simulation can be used
for testing IoT systems.

Both Felicia and Anton contributed to every part of this thesis to some extent. Felicia
focused more on the implementation in AWS, while Anton wrote the scripts for connecting
and communicating. Anton also put in more work during research regarding the IoT archi-
tectures while Felicia focused on developing the test setup. In regard to the report, Felicia
did more writing on the simulation part while Anton focused on the IoT architectures.

12

Chapter 2

Theory

In this chapter, we will provide background concepts and practices used during this thesis.
It will explain the basics of IoT and present information about the AWS component that
will be used. This theory will be used for evaluating the IoT architectures and the IoT Device
Simulator.

2.1 MQTT
Message Queuing Telemetry Transport (MQTT) is a lightweight messaging protocol that is
used for communication in IoT andMachine toMachine (M2M). This is the protocol that our
devices will use. It is easy to implement and design for the situation where the setting might
be constrained in some way, which could be limitations of bandwidth and/or memory. Most
commonly MQTT runs over TCP/IP, but it is supported by any network protocol which can
provide ordered, lossless and bi-directional connections [7]. For clients to send messages to
each other, an MQTT broker is required. For a client to send a message, it needs to connect
to the broker and then publish the message to a topic. The clients that want a copy of this
message also needs to connect to the broker and then subscribe to the same topic. For every
publish/subscribe to a topic, quality of service (QoS) needs to be specified [8].

There are three levels of QoS:

• QoS 0 - "At most once", i.e the message will be sent only once without any acknowl-
edgment (ACK) from the receiver.

• QoS 1 - "At least once", i.e the message will be received at least once depending on if
the ACK from the receiver reaches the sender or not.

• QoS 2 - "Exactly once", i.e the clients will ensure that the message is sent exactly once
by using a four-step handshake.

13

2. Theory

Higher QoS will increase the guaranties for the message to be received, but will also lead
tomore data tra�c. These levels will be discussed for di�erent data types presented in section
3.3. How messages are sent between clients, via the MQTT broker, is illustrated in figure 2.1.

Figure 2.1: Clients communicating via an MQTT broker [9]

2.2 Drones
As mentioned in the previous chapter, the IoT devices we are mainly interested in are drones.
A drone also knows as an unmanned aerial vehicle, is an aircraft without a pilot. Depending
on their intended use, they come in varying sizes. A drone can either be controlled by a pilot
in another remote location or by having software that makes it fully autonomous [10]. There
are many areas in which drones could be useful: package delivery, performing inspections,
and collecting data from agricultural sensors among others [11].

The control unit of a drone will vary depending on several things such as application
area, model, or size. Therefore it is not certain that all drones can be integrated with AWS
without modification. A common way to solve this problem is to attach a Raspberry Pi, or
some other compatible microcontroller, to the existing control unit [4].

2.3 Raspberry Pie Zero W
In this project, we do not have access to actual drones. To represent drones and local nodes
in our test setups we instead use a Raspberry Pi Zero W. It is a complete computer built on
a small circuit board. Raspberry Pis uses a system on a chip (SoC) developed by Broadcom
for all their products. For this model, the SoC used includes the processor ARM1176JZF-S
1 GHz. It comes with 512MB RAM and connection possibilities via wireless LAN (2.4GHz)
and Bluetooth 4.1 [12]. The operating system installed on the SD card is Raspbian, which is
o�cially supported by the Raspberry Pi Foundation.

2.4 Metrics
In this section, we will present some metrics which we will use when evaluating the suitabil-
ity of our chosen IoT architectures. These metrics were chosen because we consider them
important for controlling drones.

14

2.5 IoT Architectures

2.4.1 Latency
In the IoT architectures, we will evaluate, data will be sent between edge devices, data centers,
and local nodes. The transmission time of this data is called latency. Latency can bemeasured
in two ways, where one is the time it takes for a packet to be sent by one end-point and then
received by another, this is also called one-way latency (OWL). The other one is called round-
trip latency (RTL), this is the time for OWL plus the time it takes for an acknowledgment
to be received by the source end-point [13]. The most common one to use is RTL, since
measuring time in only one end-point is not as complicated as syncing two end-points time-
wise. The latency will be measured to decide if all three architectures can be used for all types
of data presented in the use case

2.4.2 Packet error rate
Packet error ratemeasures the ratio between howmany packets reach their destination versus
howmany were sent. IoT systems often send a lot of data back and forth and since IoT devices
mostly use QoS 0, lost packets will not be present. This could result in even a small error
rate leading to a big loss of real-time data, which will not be possible to retrieve at a later
date. For our specific use case, errors can a�ect the ability to control the drones. Important
messages, such as flight instructions, need to be guaranteed to reach its targets.

2.4.3 Data Usage
Data usage is the amount of data that needs to be sent over a network. It measures howmuch
a unit is dependent on an internet connection and what requirements such a connection
needs to fulfill [14]. IoT networks can produce enormous amounts of data and can there-
fore be heavily dependent on a network connection. This dependency can be regulated by
the implementation of the IoT network which is what we will look at when using di�erent
architectures.

2.5 IoT Architectures
There are several di�erent ways to distribute computing and logic in IoT networks. These all
have di�erent benefits and drawbacks for flying IoT networks. The three architectures pre-
sented in this section are the ones we will evaluate in this thesis. More architectures can be
created by combining the three, but we are not interested in those since no new communica-
tion paths should arise in them. Therefore we consider it enough to look at each architecture
independently.

2.5.1 Cloud computing
Cloud computing is defined by having on-demand computing resources over the internet.
This can be anything from servers and databases to software and analytics. By having the
resources centralized in the cloud they become easy to modify and develop based on one’s
needs.

15

2. Theory

In terms of IoT, thismeans the IoTdevices themselves can be very computationally lightweight
and have very low energy consumption. This will give them a longer lifetime in the field since
they only need a network connection and some sensors or actuators. The computational
power available can also be much greater than what could have been on-board the device
itself, allowing for faster and more complex tasks to be performed. The downside would be
that the devices become reliant on a network connection, which might not always be possible
with sensors in remote places, and subject to latency issues meaning they should not rely on
any time-critical tasks to be performed by the cloud [15].

2.5.2 Fog computing
The term "Fog computing" was created by an employee at Cisco in 2014 with the idea of
creating an extension of the cloud somewhere in between the center and the "things". Fog
computing tries to move parts of the computation and logic closer to the end devices with-
out burdening the devices themselves. It does this by utilizing a central node, close to the
edge devices, with which the devices can communicate [13]. This allows the edge devices to
remain lightweight yet have low response times since the central node is close by and han-
dles computation. As shown in figure 2.2 the fog nodes are implemented at geographically
di�erent places, where every fog node operates as a lightweight version of the cloud. This
solution provides the edge devices with resources located closer to them. It also allows the
edge devices to communicate with each other over a fog node. The fog nodes together with
the edge devices form a network that provides storage and can perform computations in real-
time without the need to go via the cloud. The fog node can be any type of device as long as
it can o�er the resources the IoT devices requires. This could be storage, computing, or other
network resources. A fog node could be anything ranging from a PC to a drone. The purpose
of using Fog computing is not to replace the cloud entirely, but to take some of the workloads
of the cloud. This will also lead to less tra�c between the cloud and the edge devices which
will reduce the use of network bandwidth and energy consumption.

Figure 2.2: The concept of Fog computing[16]

16

2.6 AWS Components

2.5.3 Edge computing
The increasing number of IoT devices in today’s society not only puts an enormous load on
the cloud servers processing the data but also the network transporting it [17]. To alleviate
this, edge computing can be used. Edge computing moves computation and logic to the edge
device itself. By performing computations and making decisions directly on the device, sig-
nificantly less data needs to be sent to the cloud and the load on central servers decreased.
This architecture is also suitable for time-critical tasks. Delay can be split into two parts,
computational delay, and transmission delay. Since the edge device performs the computa-
tions in direct proximity to the sensors, the transmission delay is eliminated. The downsides
of running an edge architecture are the limitations of the device. A cloud server can have
virtually infinite resources, while the edge device often is small and have very limited com-
putational power. There can also be some load balancing issues with edge computing since
each device takes care of its data separately and some can have a heavy load, while others
are idle [18]. If the device is running on a battery, the life expectancy of the device may take
a severe hit since computations require a lot of energy. From a software perspective, each
device will have to be updated individually if there are any changes made.

2.6 AWS Components
AmazonWeb Services are a central part of the work we do in this thesis since the IoT systems
we build are built using AWS services. In this section, we will provide an introduction to the
AWS services which will be relevant to this work.

2.6.1 AWS IoT Core
The IoT Core provides Core functionality for enabling IoT devices to connect to both the
cloud and each other. The IoTCore can be seen in figure 2.3 and it consists of several subcom-
ponents: Device Gateway, Message Broker, Authentication, Device Registry, Device Shadow,
and Rules Engine [19]. The Device Gateway manages all device connections to the IoT Core
and supports MQTT, HTTP, and WebSocket messaging protocols. The Message Broker al-
lows devices to easily subscribe and publish data to di�erent topics. The broker keeps track
of which devices are subscribed to a certain topic and forwards messages to them when there
is something published to it. The broker uses MQTT version 3.1.1. However, the IoT Core
only supports sending och receiving messages with QoS 0 and 1, not QoS 2[20]. For a client
to connect to the AWS IoT Core it must use an AWS IoT SDK.

Using the Authenticator, the IoT Core also makes sure that all devices connected to the
IoT Core are authenticated which means one can always be certain of the identity of the de-
vice one is communicating with. All communication is always done using end-to-end encryp-
tion between all points of connection. The Device Registry provides devices with a virtual
identity that stores the attributes and metadata of the device. The Device Shadow is a virtual
copy of the device and keeps track of its state. This allows applications to change the state
of a device even if it is currently o�ine. An example of this would be changing the color of
a light bulb from yellow to red while it is turned o�. By using a device shadow the bulb will
know that it should be red the next time it is turned on. The Rules Engine will filter and

17

2. Theory

evaluate any messages reaching the IoT Core and can, based on those evaluations, transform
and forward them to other AWS services. This feature allows devices to connect to AWS
services easily.

These components of the IoT Core are all relevant to understand how central the IoT
Core is in the AWS IoT ecosystem but our work will mainly include the IoT Rules Engine,
the MQTT Message Broker, the Device Registry, and the Authenticator. In addition to this,
it is also the home of AWS Greengrass which will be presented shortly.

Figure 2.3: IoT Core components[19]

2.6.2 AWS Greengrass
Greengrass extends parts of the AWS cloud toward the edge of the IoT system, allowing
a remote Greengrass Core to run a subset of AWS Services outside of the cloud [21]. The
Greengrass Core performs some of the tasks which the IoT Core normally would handle, al-
lowing local IoT devices to send data and perform computing tasks on the Core instead of
in the cloud. Since the devices and the Greengrass Core share a local network, the devices
can message each other and use AWS services even if the connection with the cloud is of-
fline. Greengrass also supports AWS IoT Greengrass Connectors which makes it possible to
connect third-party applications and local resources directly to the Greengrass Core. What
device the Greengrass Core needs to be run on will depend on your use case but a minimum
of 1GHz (ARM or x86) CPU and 128MB of RAM is required which means it can be run on
very light devices.

By using lambdas or Docker containers you can develop code for Greengrass directly in
the cloud. Greengrass supports lambdas written in Python, Node JS, Java, C, and C++ and can
be deployed directly to the Greengrass Core using over-the-air updates. These deployments
contain everything the Greengrass Core needs from device configurations to settings and
lambdas. An example of how Greengrass can be utilized is illustrated in figure 2.4.

18

2.6 AWS Components

Figure 2.4: An example of hoe theAWSGreengrass Core can operate
[21]

2.6.3 AWS Lambda
AWS Lambda is a versatile tool that allows users to execute code in the cloud without the
need to set up hardware or a working environment[22]. It will take care of all requirements
for running the code as well as scaling it to meet the rate of requests. This is done using
containers, virtual sandboxes which can be tailored to suit the specific needs of the code.
If a single lambda is invoked multiple times in short succession it will automatically scale
up. More containers are temporarily started to meet the demand and when the number of
invocations is fewer the containers are shut down.

Lambda can be used by other services to make them more complex, adding filters and
logic to processes that are otherwise simple. By using lambdas one can chain together a
number of AWS services and thus create a more full solution. Two of the services which
make use of AWS Lambda is the IoT Core and Greengrass. They can invoke a lambda based
on the inputs of the IoT devices connected to them, allowing the IoT devices themselves to
make use of computing power that might not otherwise be available to them. Greengrass can
start two types of lambdas, long-lived and on-demand. An on-demand lambda will create
a container when the lambda is invoked and then shut down a while after it has stopped
executing, this is the type of Lambda used in non-Greengrass contexts. A long-lived lambda
will start when the Greengrass Core is deployed and keep running indefinitely, this is useful
for continuous tasks or tasks that require you to save a state. Both types will be used in our
test setups.

2.6.4 AWS EC2
Amazon Elastic Compute Cloud is a service that provides users with computing power in the
cloud. A user can create virtual containers with customizable specifications ranging from
CPU power and memory to which libraries and operating systems should be run[23]. The
containers will scale based on criteria set by the user, e.g a large number of requests to the
application running in the containers. The containers can be started on-demand or be kept
alive if an application needs to be online at all times. This service could be interesting when
discussing alternative simulation solutions but is also used by the AWS IoTDevice Simulator.

19

2. Theory

2.7 Simulation
For testing the IoT network we will investigate the possibility to simulate the devices instead
of using physical ones. A simulation is the prediction of the behavior or outcome of a certain
system. Given a set of initial parameters, the simulation will calculate the actions of the
system and how di�erent actions and parameters might a�ect each other. To be able to do
this one has to create a model of the system. Amodel is a representation of the system, often a
more simple one. Given a specific model and specific parameters a simulation should always
return the same outcome (assuming there are no random elements). There are several uses of
simulations. By using it before starting a new project or making changes to an existing system
one can use the results of the simulation to optimize system performance, find potential
bottlenecks, and reduce the chances of failure to meet requirements[24]. We will look to
AWS for simulation since it is the cloud platform we have chosen to use throughout this
thesis. The simulation solution they o�er is IoT Device Simulator, which is introduced in the
section below.

2.7.1 IoT Device Simulator
The purpose of this solution is to facilitate testing of device integration and other back-end
services built in AWS for the purpose of an IoT network. In the graphical user interface cre-
ated for this solution, a customer can easily build a network of simulated devices connected
to each other. These devices send user-defined data to the AWS IoT platform, where the
behavior of the back-end can be observed.

The IoT Device Simulator consist of twomain parts; a web-based graphical user interface
(GUI) and a simulation engine. The Out of the box solution comes with a GUI and a simple
random data generator, but these can both be customized to fit one’s needs.

By default, there are two categories of devices; general types which can be created and
customized by the user, and vehicles. Vehicles are a pre-defined device type that is configured
to generate data mimicking a car. At most 100 devices can be created at once but there is no
set limit to how many devices one can have. In any case, there can not be more than 1000
simulated devices running at once. Each device simulation has to run for a minimum of 60
seconds and the transmission interval of data can be no shorter than 1 second[25]. Since each
MQTT message has a maximum size of around 260MB this means that one can, in theory,
simulate around 260GB of data per second.

The source code for the IoT Device Simulator is provided by AWS along with a deploy-
ment guide. This allows the user to make any desired changes to the simulator.

20

Chapter 3

Approach

In this chapter, the method for our thesis will be presented. Then we will go through the
work process of how we design the IoT architectures and tested them.

3.1 Method

First of all, we conducted a literature study to determine which IoT architectures we would
research further during this thesis work. The only requirements we had for the architectures
were that they should fit the scenarios described in our use case. In order to pinpoint the
most important criteria for our system, we categorized the data that would be sent.

Once we had decided on which architectures to investigate we found what metrics we
thought were suitable for evaluating these architectures. After we established which archi-
tectures and metrics to use, we made a design for each architecture using AWS resources.

Given the designs, we implemented a simplified version to use for testing the latency of
the di�erent IoT architectures. Since we did not have access to drones we used Raspberry Pis
instead. The tests were then conducted and the results evaluated.

When we were done with testing the latency, we set up the AWS IoT Device Simulator.
First, we investigated the IoT Device Simulator’s ability to simulate a drone by customizing
the source code. Then we looked into the possibilities of adapting the IoT Device Simula-
tor to simulate devices for the architectures we had evaluated. First of all, we conducted a
literature study to determine which IoT architectures we would research further during this
thesis work. The only requirements we had for the architectures were that they should fit the
scenarios described in our use case. In order to pinpoint the most important criteria for our
system, we categorized the data that would be sent.

21

3. Approach

Figure 3.1: An illustration of how the system will operate

3.2 Description of the system
In figure 3.1 it is illustrated how the systemwill operate. The user will command the drones in
pointA tomove to point B. This commandwill be received by the cloud and depending on the
implementation and architecture used, the route can be calculated in a number of di�erent
ways. It can either be calculated directly in the cloud, on a local node (the grey box), or on the
drone itself. This route calculation will take restricted areas into consideration. If a drone
encounters an object in its way, it will need to perform an avoidance action and recalculate
its route based on this new information. These calculations will also take place at di�erent
locations in the system based on what architecture is used.

3.3 Categorization of data in use case
Data is a very general term and to make it easier to refer to the di�erent kinds of data in the
use case we have chosen to categorize it. We have chosen to divide them into three di�erent
groups based on what requirements they impose on the system.

Since the capabilities of the drones can vary, our focus is not on how the data is formulated
but rather how it is sent to the drone. An example of this is a drone receiving a command
to fly to a location. Some drones might only be able to process simple instructions such as
"Turn left" while others can process "Go to X, Y, Z". How these instructions are sent to the
drones can be impacted by implementing di�erent architectures.

3.3.1 Group A
This group is a data report including data from sensors such as condition, speed, and direc-
tion. This data will be stored in a database and used for analyses and other non-time-critical
tasks. The data reports are sent often and usually with a low QoS since each individual mes-
sage is not important for the autonomous functionality of the drone. The latency of the data

22

3.4 IoT Architectures

is not crucial for the system. It is more important that the messages arrive in the correct
order. This can easily be solved by adding a timestamp to every message, enabling the system
to sort the data.

3.3.2 Group B
Instructions for the drone. These instructions could be for collision avoidance or simply
coordinates for a new goal. It is important that the messages are received by the drone once
and only once, which can be solved by using a higher QoS. However, AWS IoT does not
support QoS 2, meaning the system needs to be able to handle if a message is received twice.
For this group, latency is something we need to take into account since some instructions,
such as avoiding collisions, needs to be executed quickly.

3.3.3 Group C
Data reports of critical data such as system health, coordinates, and obstacle detection sensor
data. This is data that the drone might have to take action upon such as respecting geo-
fencing and changing routes based on coordinates or take emergency action based on system
health. Therefore it is important that the data is guaranteed to reach its target, but this can
be implemented in a number of ways. The messages can either be sent with a higher QoS or
with a higher frequency to ensure it is acted upon in time. In this case, QoS 1 is enough since
it does not matter if duplicate data reaches its target. This data might trigger the instructions
in Group B.

3.4 IoT Architectures
We conducted a literature study to determine which IoT architectures would be suitable to
investigate further in the context of the use case. We found that the most common and
accepted architectures were Cloud, Fog, and Edge computing. It seemed natural to choose these
three architectures since Cloud and Edge computing are polar opposite concepts and Fog
computing is something in between.

Based on the requirements presented in section 1.1.1, we designed the three architectures
in AWS. To make it easier to understand how the architectures function and how they di�er
from each other we will present them in the context of a real-world scenario, this can be seen
in figure 3.3, 3.5 and 3.7.

For this scenario, we will assume the drones have some basic autonomous functionality.
Drones can have varying computational capacity and di�erent pre-installed functions. Col-
lision avoidance is not something that needs to be implemented on all drones since some
models will have it pre-installed. We have still chosen to use this as our scenario in section
3.4 since a lot of drones do not have this pre-installed and it is a crucial part of the system.
However, the obstacle detection scenario can be replaced with any scenario similar to this
e.g. respecting geo-fencing.

The scenario is as follows:
Somewhere along the route to the given destination, while flying autonomously, the drone
encounters a building in its path. This is detected by sensors attached to the drone. The

23

3. Approach

sensor data is used to make a decision on whether or not to perform an avoidance action. It
performs the potential action and then continues to its destination.

We have chosen to handle this scenario by using two lambdas, the Filter lambda, and the
Action lambda. The Filter lambda filters the data sent from the obstacle detection sensor and
decides if the drone needs to take avoidance action. If action is needed, the Action lambda
is invoked. The Action lambda will calculate an appropriate avoidance action based on the
data available at the time and give instructions to the drone.

3.4.1 Cloud Architecture
In figure 3.2 it is illustrated how the cloud architecture will operate in regards to the data
groups. As we can see, all group A and C data are being sent to the cloud and all the group B
data is being sent from the cloud. The thickness of the arrows represent the amount of data
sent, a thicker arrow means more data.

For the scenario, the sequence of events is illustrated in figure 3.3. The obstacle detection
sensor, attached to the drone, sends collected group C data to an IoT Topic in the cloud.
An IoT rule is set up to listen to that same IoT Topic. When the IoT Rule receives data, it
will invoke the filter lambda and forward the message there. The filter lambda decides if the
drone needs to perform an avoidance action or not based on the data. If action is needed i.e
the building is too close, the Action lambda is invoked. It will calculate what action needs
to be taken based on the data and publish these instructions (group B data) to an IoT Topic.
The drone is subscribed to that same topic and will perform any instructions published to it.

Figure 3.2: Data flow for each data group in the Cloud architecture

24

3.4 IoT Architectures

Figure 3.3: Obstacle detection using Cloud computing

3.4.2 Fog Architecture
The Fog architecture and how its data is sent is illustrated in figure 3.4. Unlike the cloud
architecture, the fog architecture has a local node, a fog node, which receives the data. Since
the fog node has processing power it can handle some of the computations, resulting in group
B and C data only going back and forth to the fog node. Group A still has to be sent to the
cloud, but the fog node can filter it which decreases the amount of data being sent to the
cloud.

In figure 3.5 the scenario is illustrated for the Fog architecture. As in the cloud architec-
ture, the obstacle detection sensor, attached to the drone, sends collected group C data to an
IoT Topic. However, in this case, the message broker is not located in the cloud but rather
on the Greengrass Core acting as the fog node. Instead of having an IoT rule, the Greengrass
Core can set subscriptions between AWS resources via IoT topics. A subscription is set from
the drone to the filter lambda. The filter lambda is invoked by the sensor data and decides if
the drone needs to perform avoidance action. If action is needed i.e the building is too close,
the Action lambda is invoked. It will calculate what action needs to be taken based on the
data and publish these instructions (group B data) to an IoT Topic. The drone will receive
these instructions since a Greengrass subscription is set up between the action lambda and
the drone via that specific topic.

This architecture di�ers from the Cloud architecture by having a local fog node, the
Greengrass Core. This fog node is located much closer to the drone and acts as an extension
of the cloud by hosting the message broker, executing the lambdas, and handling the sub-
scriptions. As long as there is an internet connection, both the drone and Greengrass Core
is still connected to the cloud. This connection can be used for syncing and logging or other
AWS resources that are not available on the Greengrass Core.

25

3. Approach

Figure 3.4: Data flow for each data group in the Fog architecture

Figure 3.5: Obstacle detection using Fog computing

26

3.4 IoT Architectures

3.4.3 Edge Architecture
In figure 3.6 it is illustrated how the Edge architecture will handle the data groups. The
computations for group B data are made by the drone itself, meaning group C data does not
need to be transmitted over a network. Data from group A is still sent to the cloud but can
be filtered by the drone.

The scenario for this architecture, illustrated in figure 3.7, di�ers the most from both the
Cloud and Fog architectures. Since the sensor is attached to the drone, which in this case
also is the Greengrass Core, the filter lambda has direct access to its local resources such as
sensors. The filter lambda continually accesses the new sensor data and decide if action needs
to be taken. If action is needed, the action lambda is invoked and calculates what actions will
be performed by the drone. These instructions are sent to the drone’s navigation system.

As in the Fog architecture, the Greengrass Core performs all computations in this sce-
nario. However, there is no network tra�c in this case, since the drone is the Greengrass
Core and can access local resources directly. The drone will still be connected to the cloud
to perform logging, syncing, and Greengrass incompatible services.

Figure 3.6: Data flow for each data group in the Edge architecture

27

3. Approach

Figure 3.7: Obstacle detection using Edge computing

3.5 Evaluation method
When evaluating the IoT architectures we have chosen to focus on these three aspects: latency,
error rate, and data usage. We consider these to be the most relevant when evaluating a system
for controlling drones, as we have it described in the use case. In this section, we will present
how each of these relates to the use case and how we will use them for the evaluation.

3.5.1 Latency
Latency was chosen since there is a significant di�erence in where the computing power is
located in the di�erent architectures. This means the data has to be sent to points at di�erent
lengths from the device.

The drones described in our use case are autonomous real-time systems, and the latency
for real-time control should at most be 100ms for one-way latency [26]. Several requirements
outlined in the use case in section 1.1.1 can be considered as real-time control and will, there-
fore, be a�ected by high latency. These requirements are related to unforeseen events that the
drone will have to react to, such as emergency actions, respecting geo-fencing restrictions,
and obstacle detection.

The measurements will be performed using round-trip-latency with a starting and end-
point in the drone. It will measure the time that it takes for the data to be sent from the
drone, be received and processed by the two lambdas, and then sent back to the drone.

28

3.6 Test setup

3.5.2 Packet Error Rate
Error rate was chosen because there is a significant risk that some messages may be lost since
IoT devices cause a great amount of network tra�c. Most IoT devices implement QoS 0
which is a "fire and forget" type ofmessage policy, meaning a lostmessage will not be resentful.
Losing messages will have varying consequences depending on what type of data the message
contained. These consequences range from losing a data point from a sensor to not receiving
critical instructions.

While designing how the architectures were to be tested, we realized that tests for error
rate would not give any meaningful results. Since the conditions of our testing environment
are more or less perfect there would be no packet loss to speak of. Instead of focusing on the
number of packets lost, we chose to discuss how the di�erent architectures can handle lost
messages. We will look at the loss of messages when data is transmitted over a network. In the
Cloud architecture, we are interested in the communication between the drone and the cloud.
In the Fog architecture, we are instead looking at the communication between the drone
and the fog node. Lastly, in the edge architecture, there will be no network communication
between the drone and the Greengrass Core and therefore no error rate that we are interested
in.

Errors might occur in other places than on the network, such as hardware related errors,
but this is not something that can be impacted by the IoT architectures and therefore not
something we have chosen to focus on.

3.5.3 Data Usage
We chose to include data usage as one of the metrics for evaluating the architectures. The
reason for this is because the amount of data sent over a network is one of the major dif-
ferences between the di�erent architectures. An architecture that sends a large amount of
data over the network will be more reliant on a stable network connection. The number of
devices in an IoT network will be limited by the network’s capacity.

One of the major di�erences between the three IoT architectures is where computing
power and logic lies. This means the architectures will handle data transmissions di�erently,
where some will send more data over the internet than others. The amount of data sent will
also have an impact on the other twometrics since they are directly related to network tra�c.

As with the case regarding the error rate, we decided not to measure data usage since it
would not give us any meaningful results. Data usage is not something that is impacted by
external factors but simply a product of our implementation. Since it is our implementation,
we will know how much data is being sent in the di�erent architectures and is, therefore,
nothing we need to measure. It is not the exact amount of data but rather the impact on the
system that we will discuss.

3.6 Test setup
In order to test the latency, we built a test setup for each architecture. The test setups were
built to resemble the IoT architectures that were designed for the obstacle detection scenario.
However, since we did not have access to drones, we usedRaspberry Pi ZeroW instead. To get

29

3. Approach

the most accurate latency measurements we tried to simplify the scenario by implementing
the lambdas without any real logic. By simplifying the lambdas we get a latency that is not
dependent on the implementation or programming language of the lambdas.

The Raspberry Pi Zeros had to be configured in the right way in order for them to be
compatible with AWS. We flashed the SD-cards with Raspbian since it is a requirement for
installing the Greengrass software. Then we created a virtual device in AWS for each Rasp-
berry Pi Zero. Each virtual device is associated with a private key, a public key, and a public
key certificate. All these are, together with a root CA, downloaded on the Raspberry Pi Zero
and used for authenticating the device to AWS IoT Core. Both the Fog and Edge architecture
are using Greengrass as a part of the solution. To set up a Greengrass Group, a Greengrass
Core needs to be created. This is also a type of virtual device with the same requirements
for keys and certificates. However, the Greengrass cores will also be required to install the
Greengrass software and start the Greengrass daemon. The devices which are going to com-
municate with the Greengrass Core needs to be added to the same Greengrass Group. Other
AWS resources, such as lambdas and connectors, that will be used by the Core also needs
to be added to the Group. To enable communication between these resources or devices,
subscriptions between them have to defined.

For each architecture, two tests were performed. In both tests, the Raspberry Pi Zero
was connected via Wi-Fi. However, in one test the Wi-Fi was a cellphone hotspot connected
to the internet via 4G, while the other was a router connected to the internet via a fiber
connection.

The reason for having the two setups with di�erent internet connections was because the
use cases can di�er. In some cases, the drones will have to fly great distances, and then it is
reasonable to assume they will be connected using a 4G connection. If, on the other hand, the
drones will be more stationary or operate in a limited area such as a large depot then it could
be reasonable to assume there could be a fiber connection. The main purpose of these latency
tests was to see if the architectures pass the latency limit for real-time control. We assumed
the fiber connection would be much faster and wanted to investigate if the connection type
would have an impact on if the architecture passes the latency limit or not.

3.6.1 Cloud
The test setup we built for measuring latency in the Cloud architecture consisted of a Rasp-
berry Pi Zero, two AWS Lambdas, the AWS IoT Core, and the IoT Rule Engine. This setup
and data flow are illustrated in figure 3.8.

Wewrote a python script, running on the Raspberry Pi Zero, which utilized the AWSIoT-
PythonSDK to establish an MQTT connection to the AWS IoT Core message broker with
the device keys and certificates. After the connection was established the script published
timestamps to the topic latencyTest/cloud/start. For the device to receive timestamps the
script also subscribed to latencyTest/cloud/stop. We set up an IoT Rule to be subscribed to
the latencyTest/cloud/start and invoke the Filter lambda with the messages published to that
topic. The Filter lambda in turn repackaged themessage and invoked theAction lambda. The
Action lambda repackaged and published the message to the topic latencyTest/cloud/stop.
When the Raspberry Pi received the message it saved a timestamp which was then used to
calculate the latency. 150 messages were sent to get a mean value of the latency. The first
50 messages were ignored because the lambda containers need a few seconds to be initial-

30

3.6 Test setup

ized which results in high latency for the first few messages. The messages were sent with
one-second intervals as specified in the use case.

Figure 3.8: Test setup for a latency test using Cloud computing

For both tests, the data between the Raspberry Pi Zero to the routing device was trans-
mitted via a Wi-Fi connection. When we used a mobile hotspot, the messages were routed
by a cellphone to the cloud via a 4G connection. In the other scenario, the messages will be
routed by a router via a fiber connection.

3.6.2 Fog
The test setup for the Fog architecture consisted of two Raspberry Pi Zeros (one referred to
as Greengrass Core and fog node) and two AWS Lambdas. In a real-world scenario, the fog
node would be much more powerful than the drones. However, we decided to represent the
fog node using a Raspberry Pi Zero as well since the lambdas only forward the messages and
the di�erence in execution time will be insignificant in relation to the latency.

To enable communication between devices and resources, subscriptions needed to be
set in the Greengrass Group. These subscriptions were from the Raspberry pi to the Filter
lambda via topiclatencyTest/fog/start and from the Action lambda to the Raspberry pi via
topic latencyTest/fog/stop. This setup and data flow is illustrated in figure 3.9.

31

3. Approach

As in the previous setup, we wrote a Python script that utilized the AWSIoTPythonSDK
to establish an initial connection to the message broker, this time locally in the Green-
grass Core. By running the script on the Raspberry Pi, it subscribed to the topic laten-
cyTest/fog/stop and then published timestamps to the topic latencyTest/fog/start. Due to
having a subscription set up in the Greengrass Group, the filter lambda received the times-
tamp. The lambda then repackaged the message and invoked the Action lambda with it.
In the Action lambda, the message was repackaged again and published to the topic laten-
cyTest/fog/stop. By having a subscription via that topic in the Greengrass Group, and also
subscribing to it in the script, the Raspberry pi received the message. When the message is
received the script saves a new timestamp which was then used to calculate the latency. As
before this was done with 150 messages with one-second intervals, where the 50 first were
ignored.

In this setup, the data transmitted between the Raspberry pi and the Greengrass Core is
through a Wi-Fi connection. As in the cloud setup, the routing device is either a cellphone
with a hotspot or a regular router. In our test case, there was no need to use the cloud and
all our communication was therefore via Wi-Fi. The only time a connection to the cloud is
needed is when we need to deploy the Greengrass Group to the Core or establish the initial
connection to the message broker.

Figure 3.9: Test setup for a latency test using Fog computing

32

3.6 Test setup

3.6.3 Edge
The test setup for the edge architecture consisted of a Raspberry Pi Zero running the Green-
grass Core software and two AWS Lambdas. By designating the Pi as a Greengrass Core it
could be given local access to AWS services. The Filter lambda was initialized as a long-lived
lambda, meaning it would run from the point the Greengrass daemon is started. The Fil-
ter lambda created messages containing a timestamp and then invoked the Action lambda
with the message. This can be done since both lambdas are deployed to the Core and can be
run without cloud interaction. When the Action lambda received a message it also saved a
timestamp and calculated the latency. This setup and data flow are illustrated in figure 3.10.

As in the fog setup, a connection to the cloud is needed for deploying the configurations
and resources needed to the Greengrass Core. Other than that the edge setup does not need
any connections, to the cloud or other devices, for it to be able to run the lambdas.

Figure 3.10: Test setup for a latency test using Edge computing

33

3. Approach

34

Chapter 4

Latency Results

In this chapter, the results of the measurements for latency will be presented.

4.1 Cloud
The results of the latency tests can be seen in figure 4.1. The plots are very similar and there
is no major di�erence in latency between the two, only an 8.5% increase of the mean latency
when using a cellular connection. Both graphs show a consistent oscillation of 0.1s which is
about 25% of the mean value. This is the architecture with the highest average latency.

4.2 Fog
This architecture has the greatest di�erence between running on fiber compared to 4G. Using
a 4G network resulted in an increase in latency of 38%, the largest di�erence out of all the
architectures. As can be seen in figure 4.2, the fiber plot show very little oscillation with only
a few peaks. The peaks are very large however, up to three times the average. The 4G plot
shows a higher number of and much more severe peaks, up to six times the average latency.

4.3 Edge
In this architecture, there was basically no di�erence between fiber and 4G. The latency is
very low since it is not dependant on a network but rather on the computational power of
the device. The peaks at the start of the plots in figure 4.3 is due to how AWS Lambda works
with containerization. The oscillation is quite large in relation to the mean latency but is
still low compared to the other architectures and is consistent.

35

4. Latency Results

Figure 4.1: Round-trip latency on Wi-Fi network, connected via
fiber, for Cloud computing

Figure 4.2: Round-trip latency on Wi-Fi network, connected via
fiber, for Fog computing

36

4.3 Edge

Figure 4.3: Round-trip latency on Wi-Fi network, connected via
fiber, for Edge computing

Cloud Fog Edge
Fiber 0.35459372520446775 0.18535657027333052 0.05864422798156738
4G 0.38516143798828123 0.25782711505889894 0.05820315837860107

Table 4.1: Mean values for latency in seconds

37

4. Latency Results

38

Chapter 5

Discussion

This chapter will present the discussion regarding the three IoT architectures we have evalu-
ated in this thesis. The discussion of the architectures will be based on the metrics and data
categorizations made earlier in the thesis.

5.1 Cloud
As familiar, the Cloud architecture performs all its computations in the cloud. Therefore
the system relies on a stable connection between the drones and AWS since all data and
instructions need to be sent in between these end-points. This makes the Cloud architecture
heavily dependent on the performance of all three metrics; latency, error rate, and data usage.

In figure 3.2 it is illustrated how the data will travel. Each arrow represents a data group
and the amount of data transmitted. A thicker arrow implies a greater amount of data. As
can be seen, all data goes to the cloud which makes the drone dependent on an internet
connection. With all of the data being sent to the cloud, it will set higher requirements for
the bandwidth of the network. Another consequence of sending all data to the cloud, it that
is will increase the risk of latency for all data groups.

This architecture has the highest latency of the three, both for 4G and fiber. As shown
in Table 4.1 there is no major di�erence in latency between the connection types, where 4G
has a latency of 0.38s while the fiber connection has 0.35s. Both results are significantly
higher than the latency limit of 0.2s for real-time control. This means the cloud architecture
should not be used for time-critical operations. Both graphs are oscillating fairly consistently
with an amplitude of 0.05s, which is the greatest of the three architectures. Even though the
mean value and oscillation are the greatest it is the most predictable latency which could
be a benefit. The higher latency for the cloud solution might depend on your location and
which AWS region you are using. In our case we were located in Sweden, using the Ireland
AWS region (since this was the closest region with support for Greengrass) meaning all data
needed to be sent to an Amazon data center in Ireland to be processed.

39

5. Discussion

A longer distance to the data center will likely result in more hops for each data packet
in order for it to reach its destination. Since each hop is a potential source of error, a longer
distance will increase the likelihood of an error occurring. With the computations in the
cloud, all data is vulnerable to errors since it needs to be sent over a network. The impact
of an error will di�er depending on which group the data belongs to. The data in group A
is not critical to the system and a loss of such a message would not a�ect it to any greater
extent than a few missing data points. Losing data from group B on the other hand would
have a major impact on the system since these instructions are essential for the autonomous
functionalities of the drone. Data from group C can often be what triggers the system to
send instructions to the drone and is therefore as essential to the drone as the data in group
B. However, it is important that the instructions are executed exactly once while data from
group C has to be received at least once. To make sure instructions are received and executed
exactly once, QoS 2 should be used. Unfortunately, AWS only supports up to QoS 1, which
guarantees message delivery but duplicates can occur. To detect duplicate instructions the
drone has to contain logic, which is not possible in a pure cloud architecture. To guarantee
that the group C data arrive at the controller, QoS 1 can be used but is not necessary since
data reporting from the sensors are done with a high frequency. GroupA generates the largest
amount of data in the system. This is because the drone report sensor data to the cloud each
second. This also applies to group C, but this group reports data from a subset of sensors
which reduces the amount of data sent in comparison to group A. Group B is instructions
which are based on sensor data from group C. However, not all data point from group C will
require action in the form of a group B instruction. Therefore the amount of group B data
will always be proportionally smaller than the amount of group C data.

By centralizing all logic in the cloud, the drones themselves can be smaller and less power-
ful at the cost of being entirely dependent on an internet connection. By using less powerful
drones one could reduce the cost of a large system of drones significantly. Due to not having
any logic on the drone, there will be no maintenance of duplicate code since all drones use
the same functions. The only requirement for the devices is to be able to run any of the AWS
IoT device or mobile SDKs, which makes it possible for the devices to connect to AWS IoT
Core. The SDKs are available in a number of di�erent programming languages and can thus
be run by any device that supports the common high-level programming languages [27].

We found this architecture to be the most straight forward to set up in AWS. It was
not di�cult to add or remove devices from the system, making it highly scalable. Overall the
Cloud architecture is a simple system and easy to use. The administrative tasks become easier
by collecting them all in one place but by locating the logic in the cloud the drone will have
an increased dependency on the performance of the network. A Cloud architecture could be
used for an autonomous drone system but the degree of suitability will vary depending on
the scenario for which it will be used. For example, it is not suitable for a scenario where
the system requires time-critical operations but is perfectly usable for collecting and storing
data.

5.2 Fog
Instead of performing all computations in the cloud, the Fog architecture has a local node
that can be seen as an extension of the cloud. This node is located closer on the same net-

40

5.2 Fog

work and therefore closer to the device. As with the Cloud architecture, the distance to the
computations will have an impact on both latency and error rate. By having a local fog node
perform some of the computations, the distance to the computing platform will decrease,
and therefore the latency and error rate as well. Our measurements in table 4.1 show that the
latency in a Fog architecture is significantly lower than for a Cloud architecture. The Fog
architecture has the greatest di�erence between running on fiber and 4G. This most likely
because our 4G hotspot is not as good as the fiber router at forwarding messages. The latency
tests for this architecture show mixed results. The fiber connection has lower latency than
the limit for real-time control while the 4G connection is slightly above. This means a fog
architecture could be used for controlling a real-time drone system but it will be sensitive to
environmental factors.

Since the system operates on a local network, we can assume that the error rate will
be close to zero. Overall, the error rate of this architecture will be lower than the Cloud
architecture for the data in Group B and C since it only has to travel to the local node. Data
from Group A will have to be sent to the cloud for storage since Greengrass does not support
databases. This means the error rate of data from Group A stays the same as in the Cloud
architecture. The impact of an error, for all data groups, is the same as we discussed previously
in our Cloud architecture discussion.

In a Fog architecture, we can decrease the amount of data that is being sent to the cloud
by using a filter. If a data point has not changed much, the local node can decide whether
or not to forward it to the cloud. With a smaller amount of messages being sent one could
prioritize a higher QoS to ensure message delivery. This is illustrated in figure 3.4, where it
can be seen that the amount of group A data is reduced before it is sent to the cloud. The
amount of group B and C data follows the same logic as discussed in the previous section
but in this architecture, the data is transmitted between the drone and the fog node. As a
result of using a filter, there will be less bandwidth consumption between the fog node and
the cloud. The local network still has to be able to handle large quantities of data.

The Greengrass software does not provide support for a full Fog architecture since some
computation has to be made in the cloud, e.g database storage. As mentioned previously, a
Greengrass Group can be run o�ine as long as there is a local network. Any messages to the
cloud will then be queued and sent when a new connection to the cloud is established. If we
weren’t using Greengrass, we could have connected a database to the fog node and avoided
having to send the data to the cloud for database storage.

Updates of the logic will be made in the cloud but will then have to be deployed to the
relevant Greengrass Groups for it to be used. If we have several Greengrass Groups using the
logic, the changes have to be deployed to each Group manually which is not very e�cient
when having a large number of fog nodes. The Fog architecture allows the drones to be
lightweight but requires a more powerful fog node. The fog node can be any type of device as
long as it has support for the Greengrass software. The biggest downside when implementing
a Fog architecture in AWS is that the drone and fog node needs to be on the same network
limiting the range of the drones to the reach of the Wi-Fi. This severely limits the area of
application of the IoT network. One possibility which could be interesting to explore further
would be to let a more powerful drone be the fog node, making the node portable. Having
a local fog node will still outweigh strictly cloud solutions in many situations since it will
reduce overall latency.

41

5. Discussion

5.3 Edge
An Edge architecture performsmost of its computations on the device. By not having logic at
another location there is no need to send the data over the network which will result in lower
latency, no error rate, and no sent data. However, this only applies to data from Group B and
C while data from group A still has to be sent to the cloud since Greengrass does not support
database storage. This is illustrated in figure 3.6 where group A is the only data going to the
cloud. The left-most arrow marked with an A represents the data collected by sensors. This
is then filtered and sent to the cloud, which results in the thinner A-arrow. The principles
are the same as in the Fog architecture, but in this case, the data only has to be transmitted
within the drone.

As seen in table 4.1 there is no di�erence between running on fiber or 4G since it does
not communicate over the network. However, it is also significantly lower than the latency
of the other architectures. Both the connections have significantly lower latency than the
limit for real-time control, even the highest peaks are below the limit. This makes the Edge
architecture highly suitable for controlling real-time drone operations. The latency in this
architecture is only the time it takes for the lambdas to execute since there is no transmission
time. Because the other architectures were running the same lambdas their latency can be
seen as transmission time and edge latency added together. As in the Fog architecture, the
data from Group A can be pre-processed on the device to reduce the amount of data sent to
the cloud. The data in groups B and C are not at risk for any errors since this data will not
leave the device. Errors can still occur but those will not be related to the architecture but
rather to the hardware or software.

The edge architecture can be run completely o�ine, and while it has available memory it
can queue messages that will be sent to the cloud when a connection is re-established. Since
all computations are made on the device itself, it does not require a local network as the Fog
architecture does. Running an Edge architecture would require more powerful hardware on
each drone since it needs to meet the requirements for running the Greengrass software. By
having a Greengrass Core on each drone, any updates to the software will have to be deployed
to each Core manually.

An edge solution is the most suitable for real-time operations in our use case because
of the extremely low latency and error rate. However, this will lead to more maintenance
since each drone will be its own Greengrass Group. Therefore it is beneficial to host as many
non-time-critical functions as possible in the cloud.

42

Chapter 6

Simulation

In this chapter, the IoT Device Simulator will be evaluated based on its ability to simulate
drones. First of all, a description of how to use the simulator will be provided. Then we
will evaluate how well the simulator can adapt to the di�erent architectures and explore
the possibilities of customization. Lastly, we will present our findings and discuss potential
solutions to some of the problems that we encountered.

6.1 IoT Device Simulator
The first step was to explore the functionality of the IoT Device Simulator. To do this we set
up the out-of-the-box solution by launching the IoT Device Simulator stack. This stack was
created by using a default template, provided by the Amazon Deployment Guide. A stack is
a collection of AWS resources that can be handled as a single unit. In figure 6.1 we can see all
the resources, and their relationships, which the IoT Device Simulator template defines.

One can access the simulator through a custom website hosted by Amazon CloudFront,
using code from the S3 Bucket (IoT Device Simulator Console). AWS Fargate is running the
containers containing the Simulation Engine. The rest of the services are utilities that are
required to set up the simulator.

6.1.1 Using the simulator
To use theDevice Simulator one first need to define aDevice Type. As can be seen in figure 6.2
one gets to configure Name, Visibility (to other users), Data Topic (IoT Topic), Transmission
Duration, and Transmission Interval. Then one adds their desired attributes, which could be
an Integer, String, or Timestamp. For each attribute, you set some kind of MIN and MAX
value from which it will pick a random value.

Once the device type is created one can create Widgets of that type. These Widgets
represent the IoT devices and one can create at most 100 Widgets at once and have 1000

43

6. Simulation

Figure 6.1: The IoT device simulator components and their relation-
ships[25]

simulations running at the same time. When simulating a widget, data is published with
a given interval and duration, to the Data Topic in the IoT Core. AWS services and other
devices can subscribe to the topic in the IoT Core to receive the data published by the widget.

6.1.2 Customization
After exploring the possibilities of the IoT Device Simulator we looked into how the simu-
lator could adapt to the di�erent architectures. We realized that the simulator would not be
able to simulate the drone described in our use case. To do this, the simulated drone would
need to be able to both send messages and receive input. Since the out-of-the-box solution
does not provide any support for device input we needed to take a look at the possibilities to
customize the simulator. This was a possibility since Amazon provides the source code and
some instructions on how to deploy the custom solution[28].

The IoT Device Simulator consists of two parts, the simulation engine, and the console.
The simulation engine is the part of the IoT Device simulator which manages the virtual
devices and the data they generate. Any changes concerning the data generation itself, e.g at-
tributes, data transmission, or visibility, should be made here. A Docker container is hosting
the simulation engine. To make an update to the engine, the changes need to be applied to
a new docker image which is then uploaded to AWS. The console consists of a distributable
and a template. The template is used when launching the stack, which will create all the
required Amazon resources. If you want to add, remove, or change any Amazon resources it
should be made to this template. However, this is not something we have looked into since it
is outside of our scope. The distributable is the website, both front-end and some back-end.
Any changes to how the GUI looks or functions have to be made here.

We were not able to customize the simulator to the extent that the devices could receive
input and change the state. What we managed to do was some changes to the simulation
engine and console. Specifically, we changed how data was generated for some attributes and

44

6.1 IoT Device Simulator

Figure 6.2: Screenshot of the IoT device simulator data type config-
uration page.

some small changes in the GUI. However, it was not enough to simulate a drone from our use
case. To test the changes we made, we tried following the guide provided by AWS. We found
the guide lacking in some regards but we managed to upload the code and test our changes.

6.1.3 Adaptability to different architectures

Wewere not able to customize the simulator in regards to the previously stated requirements,
but we still had to investigate the simulators’ ability to adapt to di�erent architectures. What
the device simulator o�ers is a solution to generate a big amount of data without any physical
devices. This is a good solution when you want to test out your back-end in the cloud.

When trying to adapt the IoT Device Simulator to the Fog and Edge architectures, we ran
into some issues. There was no way to include a simulated device in a Greengrass Group or
allow one of them to act as a Greengrass Core since we could not attach a Device Certificate
to a widget.

45

6. Simulation

6.2 Discussion
Setting up an initial simulation environment was not a particularly di�cult task. The Device
Simulator was easy to understand and user friendly. There were some easy examples of how
to create a custom device type, but it was barely needed since the GUI was self-explanatory.

Customizing theDevice Simulator was farmore complicated. The source code for theDe-
vice Simulator, written in javascript, was not that well documented and it could be di�cult
at times to find where a change should bemade or how the di�erent classes andmodules were
related to each other. When we were to deploy the changes we tried following the README
which was included with the source code. We found the instructions lacking in many areas
and had to spend a lot of time trying to figure out how it all was connected in AWS. As can
be seen in figure 6.1, the Device Simulator consists of many interlocking parts. Once the
customized solution is deployed it is easy to update it again. One can upload new simula-
tion engines or distributables and then easily add a changeset to the stack template to make
it point to the new versions. This makes it easy if one wants to swap a simulation engine
without having to create a whole new Device Simulator stack.

We have previously discussed three di�erent IoT Architectures which could be used for
setting up a drone system. The compatibility of these architectures and the Device Simulator
varied somewhat. Simulating simple sensors (e.g a thermometer) can easily be done without
modification using a Cloud architecture. What the simulator cannot do is keep track of the
state of a device or provide the device with input. The input we would like to give to the
devices are commands that will change its state, this could be a new route which the device
then needs to follow. In a Fog or Edge architecture, the logic is run on a Greengrass Core.
To publish data to a Greengrass Core you need to set up a subscription between an endpoint
and a resource in the Greengrass Group. Preferably we would want to be able to add the
simulated devices to the Greengrass Group and set up a subscription between them directly,
but this is not possible. An alternative solution is to publish the data from the simulator to
the IoT Core and set up a subscription between the IoT Core and the endpoint. However,
this is only relevant for the Fog architecture because there are no other devices to simulate
other than Greengrass Cores in an Edge architecture.

In our architectures, we used Greengrass Cores to run logic outside of the cloud. There-
fore to fully simulate a Fog or Edge architecture we would need to simulate a Greengrass
Core. As mentioned in section 2.6.2 a Greengrass Core needs to contain a device certificate
to connect to AWS. For the Core to function it needs to have the Greengrass software in-
stalled and running. However, the device simulator does not support adding certificates or
installing software on its devices which makes fully simulating a Fog or Edge architecture
impossible.

By customizing the Device Simulator we hoped to make it more compatible with our
three IoT Architectures. To improve the Cloud architecture simulation we wanted to add
functionality for the devices to receive input. Unfortunately, we discovered that the SDK
used for the IoT connection did not support a subscription function. So for the devices to be
able to receive input we would need to use a new SDK. This would mean we’ll have multiple
connections to the IoT Core which would work but would not be ideal. Preferably, all com-
munication would go through a single connection but this would mean a lot of code would
need to be replaced. Even if you choose to not replace the other SDK, adding input func-
tionality is not simple. We tried to add functionality for input but found it too complicated

46

6.2 Discussion

for us to implement. We are no javascript experts and without rigorous documentation, the
code was simply too messy and had too many dependencies for us to get a grip on it.

An important part of the Fog and Edge architectures is the Greengrass Core, but since the
Device Simulator does not provide any support for simulating a Greengrass Core we need to
look at alternative solutions. Such a solution could be running a Greengrass Core in an EC2
instance or another arbitrary virtual machine. This would not simulate the whole system but
would eliminate the need for physical devices while testing.

One thing we missed while working with the Device Simulator was a smooth integration
with the IoT Core. We would have liked to see the ability to add simulated devices to the
device list in theCore. Right now the simulated devices are contained in theDevice Simulator
and only use the IoT Core to publish its data generation. Adding them to the IoT Core would
mean we could add them to Greengrass Groups and possibly have hybrid Groups containing
both physical and simulated devices. The device simulator felt very detached from the rest
of AWS and we would like to see it integrated with the rest of the IoT services.

47

6. Simulation

48

Chapter 7

Conclusions

In this chapter, wewill answer the research questions stated in chapter 1 and also suggest some
topics for future work. Research questions one will be discussed in regards to the data groups
presented in section 3.3 and the scenarios provided in the use case in section 1.2. The second
research question will conclude the findings and discussion for the IoT device Simulation in
regards to the drones functionality and IoT architectures discussed in this report.

7.1 RQ1: Which IoT architecture is the most
suitable for a fleet of drones in regards
to the use case?

We have concluded that the most suitable solution will be a hybrid architecture. This is be-
cause the data groups prioritize metrics di�erently. The data in group A does not require the
drone to take action and is therefore not time-critical. Using Edge computing would in this
case be unnecessary and letting the data go to the cloud directly would be a better solution.
However, when the number of devices increases the network tra�c will increase as well, this
will over time lead to network congestion and overloaded cloud severs. To solve this and
o�oad the cloud, fog nodes can be implemented to take some of the workloads. Some of the
instructions sent as part of group B will be a direct response to data in group C, which means
they need to have the same computing model. Since the data in both of these groups can be
considered time-critical, the distance to the computations should be minimized to reduce
latency. The best solution to this is to use Edge computing which eliminates transmission
latency.

To sum up, a hybrid solution combining Fog and Edge computing would be optimal for
handling the data in our use case. This solution would provide computational power to the
device to handle time-critical autonomous functions while reducing the communication to
the cloud by filtering and aggregating data in a fog node.

49

7. Conclusions

Unfortunately, implementing this in AWS is not possible due to the limitations of Green-
grass. In our implementation, the Fog architecture is a Greengrass Group consisting of a
Greengrass Core acting as a fog node and a device acting as a drone. The Edge architecture
consists of a single Greengrass Core acting as a drone. To combine the two solutions we
would like to add an Edge Core to the same Greengrass Group as a Fog Core. However, this
is not possible since AWS only allows one Greengrass Core per Greengrass Group.

Instead, what we can do is use Edge computing for the most time-critical computations
and utilize the cloud for the rest. The reason why not all computations are made in the edge
devices is that we want to keep the devices fairly lightweight even though network tra�c will
increase. This will both ease maintenance but also keep the costs of the drones down.

Another limitation of Greengrass is that the Core and devices in the same Group have to
be connected to the same local network. Since the scenarios presented in section 1.2 involves
covering great distances, having the drones on the same network as a fog node would likely
not be possible. Thismakes the cloud and edge combinationmore suitable for these scenarios.

7.2 RQ2: Can the AWS IoT Device Simu-
lator be used to simulate drones for the
purpose of testing?

To simulate a drone, the AWS IoT Device Simulator is required to provide support for creat-
ing a virtual device that can generate data and receive input. Based on this input the device
should be able to change its behavior and output accordingly. However, the IoT device simu-
lator can only generate large quantities of data and does therefore not provide enough features
to simulate a drone completely. We do not consider the IoT Device Simulator to be su�cient
to simulate a complete system for the purpose of testing.

Not all architectures are compatible with the IoT Device Simulator, not even for generat-
ing data. A Cloud architecture will be the most compatible since it has the best integration
with IoT Device Simulator. Because of Greengrass, neither the Fog nor Edge solutions can
be integrated with IoT Device Simulator. Instead, an EC2 instance can be used to simulate a
Greengrass Core. In a Fog solution, it is not enough to only simulate the Greengrass Core, you
also need devices connected to the Core. This does not apply to the Edge solution since the
Greengrass Core is the drone, and thereby making it easier to simulate with an EC2 instance.

There are ways to customize the simulator, but we only managed to change small parts
of the data generation and GUI. Making a greater change such as adding input functionality
would be very complicated and time-consuming since the simulator source code is complex
and not very well documented.

7.3 Ethical and Societal Impact
One of the goals of this thesis was to make the process of implementing a system of drones
easier by utilizing a cloud platform. This could lead to drones becoming more accessible to
the public and expand their area of application. Drones are highly debated when it comes to
privacy and espionage and by making it more accessible there is a risk for drones being used

50

7.4 Future work

for nefarious purposes. Individuals could use drones to stalk other individuals. Companies
and governmental institutions could utilize drones to track citizens.

Using simulation for the purpose of testing could on the other hand lead to companies
not buying drones for the sole purpose of testing their IoT systems. With reduced demand
for drones, fewer drones could be manufactured which will decrease the impact on the envi-
ronment.

7.4 Future work
This section will bring up areas of research that could be interesting to look into as a contin-
uation of this thesis work.

7.4.1 Simulation
Since we did not succeed in simulating drones in the IoT Device Simulator, we would suggest
conducting further research into both the IoT Device Simulator and other potential simula-
tion solutions. We believe there is greater potential in customizing the IoT Device Simulator
that we were not able to investigate because of a lack of experience and time.

With IoT devices becoming more complex, there is a great need for a simulator that can
perform these simulations. It is not only the devices that become more complex but also the
IoT architectures and systems. They would also benefit from the opportunity to be able to
be tested with the help of simulation.

7.4.2 IoT Architectures
IoT architectures are interesting concepts and could be explored further in the context of
smart devices and drones. There were some major limitations regarding AWS Greengrass
which limited the possibility to set up a Fog architecture. Further research could be con-
ducted into other Cloud platforms and their IoT solutions for Fog computing.

Although Greengrass was not the best for our Fog computing needs, it o�ers a lot more
functionality than we had time to explore such as support for local machine learning in-
ference. Some further research into the possibilities of using Greengrass to make a drone
autonomous could, therefore, be interesting.

51

7. Conclusions

52

References

[1] Ericsson. Ericsson Mobility Report November 2019. May 18, 2020. url: https://www.
ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/
emr-november-2019.pdf.

[2] S. Ranger.What is cloud computing? Everything you need to know about the cloud, explained.
Mar. 11, 2020. url: https://www.zdnet.com/article/what- is- cloud-
computing-everything-you-need-to-know-from-public-and-private-
cloud-to-software-as-a/.

[3] I. Kholod,N. Plokhoy, andA. Shorov. “DistributedMeasurementDataGathering about
Moving Objects”. In:Wireless Communications and Mobile Computing (2017).

[4] A. Devos, E. Ebeid, and P. Manoonpong. “Development of Autonomous Drones for
Adaptive Obstacle Avoidance in Real World Environments”. In: 21st Euromicro Confer-
ence on Digital System Design (2018).

[5] M. Alwateer and S. W. Loke. “On-Drone Decision Making For Service Delivery: Con-
cept And Simulation”. In: IEEE International Conference on Pervasive Computing and Com-
munications Workshops (PerCom Workshops) (2019).

[6] S. Li, L. Da Xu, and S. Zhao. “5G Internet of Things: A survey”. In: Journal of Industrial
Information Integration 10 (2018), pp. 1–9.

[7] OASIS Technical Committee. MQTT Version 5.0. June 3, 2020. url: https://docs.
oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf.

[8] OASIS Technical Committee. MQTT Version 3.1.1. Apr. 7, 2020. url: http://docs.
oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.

[9] openHAB. MQTT Things and Channels Binding. June 12, 2020. url: https://www.
openhab.org/addons/bindings/mqtt.generic/.

[10] International Civil Aviation Organization. “Unmanned Aircraft Systems (UAS)”. In:
Circular 328 (2011).

[11] R. Nouacer, H. Espinosa Ortiz, Y. Ouhammou, and R. Castiñeira González. “Frame-
work of key enabling technologies for safe and autonomous drones’ applications”. In:
22nd Euromicro Conference on Digital System Design (DSD) (2019).

53

https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf
https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf
https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf
https://www.zdnet.com/article/what-is-cloud-computing-everything-you-need-to-know-from-public-and-private-cloud-to-software-as-a/
https://www.zdnet.com/article/what-is-cloud-computing-everything-you-need-to-know-from-public-and-private-cloud-to-software-as-a/
https://www.zdnet.com/article/what-is-cloud-computing-everything-you-need-to-know-from-public-and-private-cloud-to-software-as-a/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://www.openhab.org/addons/bindings/mqtt.generic/
https://www.openhab.org/addons/bindings/mqtt.generic/

REFERENCES

[12] Raspberry Pi Foundation. Raspberry Pi Zero W. Mar. 11, 2020. url: https://www.
raspberrypi.org/products/raspberry-pi-zero-w/.

[13] G. Caiza, M. Saeteros, W. Oñatea, and M. V.Garcia. “Fog computing at industrial level,
architecture, latency, energy, and security: A review”. In: Heliyon 6.4 (2020).

[14] X. Liu, T. Zhang, N. Hu, and P. Zhang Yu Zhang. “The method of Internet of Things
access and network communication based on MQTT”. In: Computer Communications
153 (2020).

[15] H. Hong. “From Cloud Computing to Fog Computing: Unleash the Power of Edge
and End Devices”. In: IEEE International Conference on Cloud Computing Technology and
Science (CloudCom) (2017).

[16] TipsMake.What is fog computing? June 12, 2020. url: https://tipsmake.com/fog-
computing-what-is-fog-computing.

[17] W. Yu, F. Liang, X. He, W. Grant Hatcher, C. Lu, J. Lin, and X. Yang. “A Survey on the
Edge Computing for the Internet of Things”. In: IEEE Access 6 (2017).

[18] N. Ky Giang, R. Lea, M. Blackstock, and V. C.M. Leung. “Fog at the Edge: Experiences
Building an Edge Computing Platform”. In: IEEE International Conference on Edge Com-
puting (EDGE) (2018).

[19] Amazon Web Services. IoT Core. May 16, 2020. url: https://aws.amazon.com/
iot-core/.

[20] Amazon Web Services. MQTT. Mar. 11, 2020. url: https://docs.aws.amazon.
com/iot/latest/developerguide/mqtt.html.

[21] Amazon Web Services. IoT Core. May 16, 2020. url: https://aws.amazon.com/
greengrass/.

[22] Amazon Web Services. IoT Core. May 16, 2020. url: https://aws.amazon.com/
lambda/.

[23] Amazon Web Services. IoT Core. May 16, 2020. url: https://aws.amazon.com/
ec2/.

[24] A. Maria. “Introduction to Modeling and Simulation”. In: Proceedings of the 1997 Winter
Simulation Conference (1997).

[25] Amazon Web Services. IoT Core. May 16, 2020. url: https://aws.amazon.com/
solutions/implementations/iot-device-simulator/.

[26] G. Yang, X. Lin, Y. Li, H. Cui,M. Xu, D.Wu,H. Rydén, and S. BinRedhwan. “ATelecom
Perspective on the Internet of Drones: From LTE-Advanced to 5G”. In: (2018).

[27] Amazon Web Services. AWS IoT device and mobile SDKs. June 16, 2020. url: https:
//docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html.

[28] AWSlabs. IoT Device Simulator source code. June 15, 2020. url: https://github.com/
awslabs/iot-device-simulator.

54

https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://tipsmake.com/fog-computing-what-is-fog-computing
https://tipsmake.com/fog-computing-what-is-fog-computing
https://aws.amazon.com/iot-core/
https://aws.amazon.com/iot-core/
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/solutions/implementations/iot-device-simulator/
https://aws.amazon.com/solutions/implementations/iot-device-simulator/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html
https://github.com/awslabs/iot-device-simulator
https://github.com/awslabs/iot-device-simulator

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-11

EXAMENSARBETE Drones in the Cloud: A Study of IoT Architectures and Simulation in AWS
STUDENT Felicia Hedström och Anton Gudjonsson
HANDLEDARE Ulf Asklund (LTH), Christian Eriksson (Dewire)
EXAMINATOR Flavius Gruian (LTH)

Är det en fågel? Är det ett flygplan? Nej,
det är en drönare!

POPULÄRVETENSKAPLIG SAMMANFATTNING Felicia Hedström och Anton Gudjonsson

Drönare har kommit att bli alltmer populära i samhället. För att göra det mer till-
gängligt för företag och privatpersoner att nyttja drönare måste det bli enklare. Detta
examensarbete tar fram den bästa arkitekturen för bygga nätverk av drönare.

Samtidigt som IoT enheter blir mindre och mindre
ökar även deras kapacitet och beräkningsförmåga.
Genom att placera logiken för dess system på olika
ställen så kan man öka prestandan. Genom att
till exempel placera all logik i molnet så minskar
underhåll och konfiguration av enheter, men till
ett pris av sämre prestanda så som fördröjningar
och fel.
Under vårt arbete har vi fokuserat på

självstyrande drönare och var logiken bör placeras
för att systemet ska fungera så bra som möjligt.
Idag finns ingen best practice för hur ett sådant
system ska se ut och därför har vi utforskat olika
arkitekturer för dessa IoT nätverk. Resultatet
av vårt arbete är en rekommendation för hur ett
nätverk med drönare bör utformas med fokus på
enkelhet utan att behöva göra avkall på prestan-
dan. För att göra rekommendationen var vi först
tvungna att dela upp det data en drönare kan
tänkas skicka, i olika grupper. Dessa grupper är
baserade på vilka krav som ställs på data, ex-
empelvis att ett avvärjningskommando måste nå
drönaren snabbt samtidigt som systemet måste
kunna garantera att det når den. För att göra rek-
ommendationen tittade vi på var och en av data-
grupperna och tilldelade varje grupp den arkitek-
tur som passade bäst. Detta resulterade i att den
slutgiltiga rekommendationen för helhetslösningen

blev en kombination av arkitekturer beroende på
vilket data som skulle skickas.

Vi hoppas att fler företag, med hjälp av
vårt arbete, enkelt ska kunna bygga system för
självstyrande drönare och att de därigenom kom-
mer kunna nyttjas i samhället. Några använd-
ningsområden skulle kunna vara paketleveranser,
temporära Wi-Fi hotspots och sökinsatser.
2016 lanserade Amazon den första versionen av

sin helt autonoma leveransdrönare Amazon Prime
Air. Under sommaren 2019 kom den andra versio-
nen, men fungerar dock bara på ett antal utvalda
platser. Om du är intresserad av att se mer hur
detta fungerar så kan du kolla på detta YouTube-
klipp: https://youtu.be/3HJtmx5f1Fc

	Introduction
	About Dewire
	Use Case

	Problem definition
	Related work
	Contributions

	Theory
	MQTT
	Drones
	Raspberry Pie Zero W
	Metrics
	Latency
	Packet error rate
	Data Usage

	IoT Architectures
	Cloud computing
	Fog computing
	Edge computing

	AWS Components
	AWS IoT Core
	AWS Greengrass
	AWS Lambda
	AWS EC2

	Simulation
	IoT Device Simulator

	Approach
	Method
	Description of the system
	Categorization of data in use case
	Group A
	Group B
	Group C

	IoT Architectures
	Cloud Architecture
	Fog Architecture
	Edge Architecture

	Evaluation method
	Latency
	Packet Error Rate
	Data Usage

	Test setup
	Cloud
	Fog
	Edge

	Latency Results
	Cloud
	Fog
	Edge

	Discussion
	Cloud
	Fog
	Edge

	Simulation
	IoT Device Simulator
	Using the simulator
	Customization
	Adaptability to different architectures

	Discussion

	Conclusions
	RQ1: Which IoT architecture is the most suitable for a fleet of drones in regards to the use case?
	RQ2: Can the AWS IoT Device Simulator be used to simulate drones for the purpose of testing?
	Ethical and Societal Impact
	Future work
	Simulation
	IoT Architectures

