
MASTER’S THESIS 2020

Quantization Profiler for
Artificial Neural Networks
Martin Lindström, Jakob Hök

ISSN 1650-2884
LU-CS-EX: 2020-20

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-20

Quantization Profiler for Artificial Neural
Networks

Martin Lindström, Jakob Hök

Quantization Profiler for Artificial Neural
Networks

Martin Lindström
dat15mli@student.lu.se

Jakob Hök
dat15jh1@student.lu.se

June 18, 2020

Master’s thesis work carried out at ARM Sweden AB.

Supervisors: Jörn Janneck, jorn.janneck@cs.lth.se (LTH)
Axel Berg, axel.berg@arm.com (ARM Sweden AB)
Kevin Wohnrade, kevin.wohnrade@arm.com (ARM Sweden AB)

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:dat15mli@student.lu.se
mailto:dat15jh1@student.lu.se
mailto:jorn.janneck@cs.lth.se
mailto:axel.berg@arm.com
mailto:kevin.wohnrade@arm.com
mailto:flavius.gruian@cs.lth.se

Abstract

We develop a software framework that is able to modify implementations of
operators within any artificial neural network (ANN). The framework is able to
import a trained TensorFlow model and target a subset of its network layers, to
provide them with custom operator implementations. Furthermore, the frame-
work uses signal-to-quantization-noise ratio (SQNR) as a metric to identify poten-
tial layer implementations that are bottlenecks for prediction accuracy. With the
use of the framework, we test various custom operator implementations for the
MobileNetV2 neural-network architecture, which was developed by researchers
Google. Specifically, we carry out experiments that benchmark operators that
are well adapted for low memory usage and execution time, e.g. 8-bit quantiza-
tion, but have a potential cost in prediction accuracy. With our results, we prove
that this tool can be useful for industries where running ANNs on devices with
limited hardware, like mobile phones, are of interest.

Keywords: quantization, inference, MobileNet, SQNR, artificial neural network, con-
volution, TensorFlow

2

Acknowledgements

We would like to thank Arm Sweden AB for giving us such a great opportunity with this
thesis and supplying us with resources. In particular, big thanks to Axel Berg and Kevin
Wohnrade who have guided and helped us from start to finish. Finally, special thanks to Jörn
Janneck at LTH who provided continuous and valuable feedback.

3

4

Contents

1 Introduction 7
1.1 Division of Work . 8
1.2 Research Questions . 10
1.3 Related Work . 10

2 Background 11
2.1 Artificial Neural Networks (ANN) . 11

2.1.1 Network Layers . 12
2.1.2 Bias Addition . 19
2.1.3 Top-N Accuracy . 19

2.2 MobileNet and ImageNet . 20
2.3 Quantization Design . 20

2.3.1 Uniform Quantization . 20
2.3.2 Quantized Matrix Multiplication 21
2.3.3 Per-Layer and Per-Channel Quantization 23
2.3.4 ReLU6 Within Quantized ANNs 23
2.3.5 Batch Normalization Within Quantized ANNs 24

2.4 Signal-to-Quantization-Noise Ratio . 25

3 Method 27
3.1 Implementation . 27

3.1.1 Core Functionality . 27
3.1.2 Extended Functionality . 28

3.2 Conducting Experiments . 28

4 QPANN - The Software Framework 29
4.1 Primary Functionality . 29
4.2 Fake quantization within QPANN . 31

4.2.1 Determining Quantization Parameters 31
4.3 Supported Operators . 32

4.3.1 Hyper-Parameters . 32
4.3.2 Layers . 33

4.4 The SQNR-Recorder Module . 34
4.5 Configuring Inference . 36

5

CONTENTS

5 Evaluation 39
5.1 Experimental Setup . 39
5.2 Experiments . 40

6 Conclusion & Future Work 47
6.1 Conclusion . 47
6.2 Future Work . 48

References 49

Appendix A Config Files Example 53

Appendix B Inference Accuracy Stats During Runtime 55

6

Chapter 1

Introduction

The ongoing research of Artificial Neural Networks (ANNs) is proceeding rapidly. Researchers,
from e.g. Google, are publishing multiple papers each year regarding both network architectures
and optimizations for speedup and accuracy for ANNs.

Today, there is a high demand for ANN applications within personal mobile devices,
performing tasks such as image classification and natural language processing. Even though
today’s hardware is not usually a limiting factor for software projects in general, any applica-
ble ANN model is usually an exception because it is large in both memory footprint and in
the amount of computations. Consequently, there is a demand for optimizing ANN software
in both computation speed and memory in order to be able to run inference (prediction) on
limited hardware. This is the central motive behind this Master’s Thesis project and why it
is carried out under supervision of the company Arm, which is a supplier of microprocessor
technology [2].

A commonmethod to make ANNmodels feasible within mobile devices is to make use of
quantization schemes to make the trainedmodel both faster to execute and smaller in memory
footprint. Often, an ANNmodel is first trained on a powerful machine with 32-bit floating-
point precision; the trained model is then converted to the quantized format and deployed
to a device; this is called post training quantization [11]. The goal is therefore to do as much
computation and optimization o�ine as possible before freezing amodel into its fully-trained
state and deploying it. The deployed model can then, for example, work with integer-only
arithmetic to perform inference.

Ultimately, optimizing an ANNmodel for speed, size, energy consumption or whichever
relevantmetric, will most likely result in an accuracy drop. After all, accuracy is an important
matter when running inference for an ANN; hence, it is not hard tomotivate an investigation
of how a model’s accuracy changes with implementation modifications. A software framework
tailored for investigations like this does currently, to our knowledge, not exist; the purpose
of the thesis is to develop such a framework from the ground up to fill this space; we have
named the framework: Quantization Profiler for Artificial Neural Networks (QPANN).

A modern and widely used API for training, testing and deploying ANNs is TensorFlow,

7

1. Introduction

which was first released as an open-source project in November 2015 [1]; it has since then been
regularly maintained and is still under development. TensorFlow has a software stack called
TensorFlow Litewhich is used for the creation and deployment of quantized models on limited
hardware. Naturally, when such models are exported, there will be a cost in terms of predic-
tion performance on the resulting neural network. Since TensorFlow Lite converts an entire
ANN model to a quantized 8-bit counterpart, one can not choose which layers to quantize
or specify the bit width. QPANN is therefore developed in order to help any user profile the
consequences of quantization.

QPANN enables its user to select specific layers, of a pretrained image-classifying net-
work, and quantize them to 8-bit integer, following TensorFlow Lite’s quantization scheme [6],
while the rest of the layers remain in their default 32-bit floating-point format, i.e., creating a
partially quantizedANN. QPANN thus opens up the possibility to easily evaluate the layers of
a neural network individually, in terms of how much they contribute to the overall accuracy
loss. If there are layers that cause more accuracy drop than others, they can be identified by
the user.

One can not onlymodify the underlying data type, but also analyze how SQNR (Signal-to-
quantization-noise, covered in Section 2.4) may a�ect accuracy, or how rounding of multiply-
accumulate operations might change accuracy.

The framework will simultaneously run inference on a model with floating-point preci-
sion, a fully quantized TensorFlow-Lite model and a partially quantized model, i.e. the user-
specified model. The accuracy for the three models can then be directly compared to one
another. With repeated iterations of di�erent setups of the partially quantized network,
the user can learn where quantization can be done more freely and where the model should
remain in a higher precision mode. The framework will export accuracy for the models, to-
gether with SQNR metrics.

The thesis is divided into four parts. Chapter 2 explains relevant theory regarding ANN
and quantization. Chapter 3 goes through the methodology for the project. Chapter 4 de-
scribes the software framework developed in the thesis. Chapter 5 evaluates the framework
and show potential use cases. Finally, in Chapter 6, we conclude the evaluation and discuss
future work.

1.1 Division of Work
The labor of this thesis, and how it was distributed between the two authors, is presented in
this section. The abbreviationsML and JH refers to the authors, Martin Lindström and Jakob
Hök respectively.

The first weeks of work was put into getting a better understanding of how quantiza-
tion works and how it is applied within neural networks. This means both to study related
work within the field, and to understand how TensorFlow Lite implements quantization for
its models. This was done by both the authors because it is necessary to understand these
central aspects within the work.

While still researching related work, the authors proceeded to getting a better under-
standing of the functionality of TensorFlow and which parts of it can be used to help the im-
plementation of the framework. Specifically, JH was investigating how one can implement
their own custom operator in TensorFlow, and implemented a test operator in C++. At the

8

1.1 Division of Work

same time,MLwas researching how quantization/dequantization conversion works and how
one can compute simple operations, like a scalar product between two quantized vectors.

After this was complete, the authors felt confident enough to start the actual implement-
ing the framework. ML implemented the first version of a quantized convolution operator
and wrote thorough unit tests for it. JH developed the base of the actual framework itself in
Python. At this point, the framework could run inference on a model that made all convolu-
tional layers (Section 2.1.1) by usingML’s quantized implementation.

JH continued to extend the framework by letting the user select which layers to replace
for a quantized model. ML made di�erent implementations for the convolutional operator
so that the framework can run di�erent types of convolutions for every layer. More unit tests
were written for both the operator and the framework.

ML and JH went over to finish the remaining quantized operators (explained in Section
4.3) in C++ together. The remaining work regarding development were smaller tasks that
were taken on by whomever was unoccupied at the moment.

The distribution of the writing the chapters and sections of the thesis is shown in Table 1.1.
In the leftmost column, a single number refers to a chapter’s text before any section begins.

Table 1.1: Division of work for the thesis’ sections.

Section ML JH
1 X X
1.1 X
1.2 X
1.3 X
2.1 X X
2.2 X
2.3 X X
2.4 X
3 X
3.1 X
3.2 X
4 X
4.1 X
4.2 X
4.3 X X
4.4 X
4.5 X
5.1 X X
5.2 X X
6.1 X X
6.2 X X

9

1. Introduction

1.2 Research Questions
The introduction motivates why it is interesting to be able to study the e�ect of quantiza-
tion, not only on the entire ANN but also on layers individually. More specifically, we will
study the network modelMobileNetV2 (covered in Section 2.2). The thesis will investigate the
following research questions, mentioned in no particular order:

• Can we build a framework that is able to partially quantize a network to 8-bit integer?

• Where is MobileNetV2 most sensitive to quantization; in the beginning or in the end?

• InMobileNetV2, are there one or multiple layers that may contribute more to the accu-
racy loss when quantized?

• In MobileNetV2, can SQNR be used to detect the most and the least sensitive layers to
quantization, in terms of inference accuracy?

1.3 Related Work
In papers published byGoogle, there have been research on quantization’s impact on accuracy
[10] [11]. In paper [11] the author investigates di�erent quantization schemes and bit widths.
In paper [10] the researchers explain how quantized layers can be optimized during inference,
such as optimized “integer-arithmetic-only matrix multiplication“ (will be covered in Section
2.3.2) and “batch-normalization folding“ (covered in Section 2.3.5). Both of these papers are
tangled with TensorFlow, where one describe how quantization is done in TensorFlow ([10]),
more precisely in TensorFlow Lite; and the other use the framework for experiments ([11]).
None of these papers look at individual layers in a network model, they study quantization
of entire models.

Similar to TensorFlow, an open-source machine-learning library called PyTorch, developed
primarily by AI researchers at FaceBook [14], has begun developing a quantization API which
currently is experimental [3]. Their API supports ANN models that “perform all or part
of the computation in lower precision“. The API is, as mentioned, experimental and only
allows the developer to change parameters in limited ways; alas, the specific- and customiz-
able parameters needed in the thesis would still need to be implemented, whether it being in
TensorFlow or in PyTorch. Hence, PyTorch will not be used in the thesis.

As a metric to quantify e�ect of quantization, SQNR (covered in Section 2.4) looks
promising. A paper that investigated the e�ect of SQNR for ANNs, showed how one can
optimize the bit widths of layers using fixed-point implementation [12]. Even though they
optimize per layer, it does not generalize well when one is limited to a set of bit widths, or for
example want to change specific layers’ implementations. However, the paper gives a sound
indication that SQNR is a viable metric; which is why we have chosen to work with SQNR.

10

Chapter 2

Background

2.1 Artificial Neural Networks (ANN)
Deep Learning is a field that has been researched thoroughly during the latest decade. The
term “deep“ comes from the fact that input data is propagated through a network, which is
called ANN, that consists of multiple hidden layers [5]. The name comes from the fact that it
is a model inspired from the human brain. Layers in an ANN are in practice functions that
transform their input data to outputs that are based on what the network has learned during
its training stage. These layers are trained on data samples and compute their outputs based on
that; together they form the ANN and the pipeline that the input data propagates through.
With this in mind, see Figure 2.2, where a set of images are taken through a trained neural
network, starting with a convolutional layer and ending with a final, classifying layer. After
that, the neural network outputs its prediction; in the case of the example, it is an array that
contains the probability of the image belonging to each respective class that the network has
been trained to recognize. In this example, the input to the classifying network is an image of
a dog. The output is an array that contains 0.9 at the index for the class dog, with the rest of
the 0.1 probability being spread out throughout the rest of the indices; this example is shown
in Figure 2.1.

0.90 0.02 0.03 0.01 0.04

Dog Cat HorseCowPig

Figure 2.1: Output array from a simple classifier that is 90% certain
that the input image shows a dog.

There are many architectures and application areas of ANNs that stretch beyond the
field of classifying images; however, in this work, the scope will be limited to only cover
image-classifying networks.

11

2. Background

Convolutional Batch
Normalization

ReLU Dense Softmax

Hidden	Layers

Array	of	probability
for	each	image	class

Set	of	images

...

Figure 2.2: A simple example ANN with a few hidden layers that
classifies images.

Training ANNs is an area that is central to the performance of the network and is carried
out by defining a cost function and applying, for example, a method called gradient descent
on the weights of the network [5]. The values of the weights within the hidden layers are
what represent a training state for the network. This thesis is carried out with ANNs with
pretrained weights, i.e., the assumption that a network has been su�ciently trained in floating
point formatwill bemade. Therefore, no theory regarding the trainingwill be covered; instead
focus will be held on the forward propagation of data, the process of classifying images.

2.1.1 Network Layers
Layers are what makes the ANN in its entirety; they are entities that operate on the output ac-
tivations of their predecessors and computes their own output activations. The term activations
refers to the temporary data that is passed between the layers.

For this work, a set of neural-network layers are included; specifically, the layers are taken
from what is included in the network architecture of MobileNetV2 [15], which will later be
covered in Section 2.2. Each of these layers will be covered in this section individually by
explaining their mathematical definitions and computational costs; they have all been im-
plemented or to some extent been dealt with during the implementation of the software
framework.

Fully Connected
The most fundamental layer is the fully-connected layer, where each of the n nodes in layer h
have a connection to them nodes of the following layer g. In other words, a node xgk in layer
g will receive an input from each n nodes xhi , i ∈ {1 . . . n}. Every connection is associated
with a weight whik, i.e., a factor of how much impact a node will have on xgk . This can be
expressed as a scalar product between the column vectors xh and wh

k , as shown in Equation
(2.1). The fully connected layer is visualized in Figure 2.3.

xgk = (xh)Twh
k =

n∑
i=1

xhiw
h
ik (2.1)

12

2.1 Artificial Neural Networks (ANN)

...

...

Figure 2.3: A fully-connected layer that takes its inputxh to perform
matrix multiplication with its weight matrix W, to compute the
output xg

With xg as a column vector and W as an n ×m matrix, which represent input activations
and weights respectively; the expression can be compactly expressed as:

xg1
xg2
...

xgm−1
xgm

 =

wh11 wh12 . . . wh1m
wh21 wh22 . . . wh2m
...

...
whn1 whn2 . . . whnm

T

·

xh1
xh2
...

xhn−1
xhn

xg =

 | | | |
wh

1 wh
2 . . . wh

m−1 wh
m

| | | |·

T

xh

xg = WT · xh

(2.2)

Given the Equations 2.1 and 2.2 one can easily calculate the computational cost in terms
of number of operations. For each output xgk there are nmultiplications and n−1 additions,
hence the computational cost is:m∗(n+(n−1)) = m∗(2n−1). The number of parameters
to store is simply the weight matrix W, which is: m ∗ n.

Convolution
One can take advantage of the fact that an input is an image and use the convolutional layer.
Pixels in close proximity are tightly coupled, and the pixels further away are less important.
Thus, given a pixel pij on ith row and jth column, the pixels surrounding it (i.e. {pkl :
k ∈ [i − D, i + D], l ∈ [j − D, j + D]} for some constant D) are only relevant for the
corresponding node in the next layer. This can be interpreted as setting the rest of the input
pixels’ weights to 0, i.e. a sparse fully-connected layer.

In image processing this is more commonly called a convolution (or filtering) with a kernel
of dimensions K × K where K = 2D + 1, hence the name convolution layer. Assuming a
gray-scale image and ignoring color channels for now, the resultXg from a single convolution

13

2. Background

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

30 35

50 55

0 1 0

1 1 1

0 1 0

Figure 2.4: Demonstrating a simple two-dimensional convolution,
with N = 4 and K = 3. On the left-hand side is the input image,
in the middle is the kernel and on the right-hand side is the output
image.

on imageXh can be expressed as:

Xg
k,l =

K∑
i=1

K∑
j=1

Wi,j ·Xh
(k+i−1),(l+j−1) (2.3)

where k is the row index and l is the column index. The single convolution in Equation 2.3
can be seen in Figure 2.4. IfK = 1 then the output from the convolution will have the same
dimensions as the input image, the convolution will simply be an a�ne mapping. However,
ifK > 1 then the resulting dimensions will be reduced. The relationship between input size
N , kernel sizeK and output dimensionD can be expressed as:

D = N − (K − 1) (2.4)

Equation 2.4 assumes that the stride of the kernel is S = 1 and that there is no padding.
Stride refers to the size of the steps that the kernel takes between each output index, whereas
padding means to extend the input matrix with, e.g. zeros, around its border. Taking stride
S and padding P into account, we can rewrite Equation 2.4 into:

D = 1 + N −K + 2P
S

(2.5)

As an example, with N = 3, K = 3, P = 1 and S = 2 the output dimension will be
D = 1 + 3−3+2·1

2 = 1 + 2
2 = 1 + 1 = 2, see Figure 2.5. The correctness of Equation 2.5 is

left as an exercise for the reader.
Introducing color channels, e.g., red, green and blue, the convolution has a third dimen-

sion, a depth. The only di�erence is that the kernels now have to span across the channels
and thus haveK ×K × Cin dimensions instead of the two dimensionalK ×K . Note, the
output image’s dimension is not a�ected. However, it may be desired to have multiple output
channels as well, this is solved by having one K ×K × Cin kernel per output channel, see
Figure 2.6. Now Equation 2.3 is modified with the inclusion of input- and output channels:

Xg
k,l,m =

Cin∑
c=1

K∑
i=1

K∑
j=1

Wm,i,j,c ·Xh
(k+i−1),(l+j−1),c

14

2.1 Artificial Neural Networks (ANN)

0 0 0 0

0 1 2 3

0 4 5 6

0 7 8 9

0 0 0 0

0

0

0

0

0

0 1

1 2

0 1

0

1

0

8

26

14

32

Stride = 2

Figure 2.5: Two-dimensional convolution displaying the additional
parameters stride and padding. The parameters in the example are:
N = 3,K = 3, P = 1 and S = 2.

Figure 2.6: Convolution with three input channels; red, green and
blue. Since there there is only one kernel, the output has only one
output channel.

15

2. Background

wherem is themth output channel.
To calculate the computational cost, consider that the convolution layer is a fully-connected

layer with an input image of dimensions N ×N × Cin and an output image of dimensions
M ×M × Cout:

Costfully connected = M ·M · Cout · (2 ·N ·N · Cin − 1)
= M2 · Cout · (2 ·N2 · Cin − 1)

Now, the fully-connected equation assumes there is a connection (non-zero weight) from
every input to every output. In the convolution case, however, the amount of connections is
dependant on the size of a kernel, which yields the following cost:

Costconvolution = M2 · Cout · (2 ·K2 · Cin − 1) (2.6)

In terms of weights, there are Cout kernels of dimension K ×K × Cin; hence the number
of parameters stored is: Cout ·K2 · Cin.

If K � N , the cost will be greatly reduced as well as the memory footprint, since the
number of weights that needs to be stored and loaded is decreased.

Depthwise Separable Convolution
Even with the addition of convolution layer, there is still room for improvement in terms
of cost and memory footprint. Researchers at Google have showcased in their paper [8] a
more e�cient convolution, Depthwise Separable Convolution, which splits the conventional
convolution into two separate operations. More specifically, the convolution is factorized
into a depthwise convolution and a 1×1 convolution called pointwise convolution.

The idea behind the factorization is that standard convolution both filters and combines
the input image in a single operation, whereas in the depthwise separable convolution, the
depthwise convolution filters the input, and the pointwise convolution combines the result
after the filtering.

Depthwise convolution uses a single two-dimensional kernel for each input channel, i.e.
filters an N × N × Cin image using a K × K kernel, to an intermediate image with size
M×M×Cin. The pointwise convolution then combines the intermediate image usingCout
kernels with size 1×1×Cin, see figure 2.7. The output image thus has the sizeM×M×Cout
which is the same as using standard convolution with Cout three-dimensional kernels of size
K ×K × Cin.

Starting with the depthwise convolution, the computational cost is:

Costdepthwise convolution = M2 · Cin · (2 ·K2 − 1)
Very similar to Equation 2.6 but with a kernel of only two dimensions. The pointwise con-
volution has the computational cost of:

Costpointwise convolution = M2 · Cout · (2 · 1 · 1 · Cin − 1)
= M2 · Cout · (2 · Cin − 1)

Finally, adding the cost of depthwise convolution and pointwise convolution, the total cost
then becomes:

Costdepthwise separable convolution = Costdepthwise convolution + Costpointwise convolution

= M2 · Cin · (2 ·K2 − 1) +M2 · Cout · (2 · Cin − 1)
= M2 · (Cin · (2 ·K2 − 1) + Cout · (2 · Cin − 1))

16

2.1 Artificial Neural Networks (ANN)

(a) Depthwise Convolution

(b) 1× 1 convolution called pointwise convolution

Figure 2.7: The two operations of a depthwise separable convolu-
tion. First a depthwise convolution (a), followed by a 1 × 1 convo-
lution (b).

In depthwise convolution, there are Cin kernels of dimension K ×K and in pointwise
convolution there areCout kernels of dimension 1× 1×Cin; thus the number of parameters
stored is: Cin ·K2 + Cout · Cin = Cin · (K2 + Cout).

According to [8], with 3×3 kernels the amount of computations are reduced by a factor
between 8 and 9, and since there are less weights to store, the model size is reduced. The
downside is instead slightly worse accuracy, by the magnitude of 1%, which is impressive
seeing the advantages.

Global Average Pooling

Global Average Pooling takes as input a three dimensional tensor, with height H , width W
and number of channels C , and outputs the average of each channel. Thus the result is an
array with C elements, see figure 2.8. When global average pooling was first introduced,
as a replacement of the fully-connected layer at the end of the network, the results showed
state-of-the-art performance [13].

Flattening the input we get N nodes, where N = H ·W · C , and as output we getM
nodes, whereM = C . The computational cost of a fully-connected layer is, as mentioned in
Section 2.1.1, CostFC = M · (2N − 1) whereas global average pooling will haveH ·W − 1
additions and one division per output, resulting in a computational cost of: CostGAP =
(H ·W − 1 + 1) ·M = H ·W ·M = N . As one can see, there is a cost reduction of about
2M and also no weights to store, thus removing the memory footprint (N ·M) needed of a
fully-connected layer.

17

2. Background

16151413
1211109
8765
4321

8.5

Figure 2.8: Global average pooling with three channels. The result
is the mean for every channel.

Batch Normalization
When a neural network is trained, the data is often given to the network in so called batches,
which simply means multiple samples are propagated through the network simultaneously.
Batches are used because the network can adjust its trainable parameters according to data
that is a better estimate of the entire training dataset, rather than just propagating one sample
one at a time [9].

Since the values of samples and trainable weights change with each training iteration, the
inputs to each layer changes distribution during training. This property causes long training
times because of the amount of training iterations it requires; it is called covariate shift. To
combat the long training times, researchers at Google came upwith a solution by introducing
a normalization layer that normalizes inputs for each mini-batch (small batch). The layer is
called Batch Normalization and can be inserted after each layer [9].

The idea is to ensure the layers’ inputs have distributions of zeromeans and unit variances,
which in turn reduces the internal covariant shift. Thus, given anmini-batchB of size nwith
inputs x1, x2, . . . , xn to the batch normalization layer, the output x̂i is given as follows:

x̂i = xi − µB
σB

where: µB = 1
n

n∑
i=1

xi , σ2
B = 1

n

n∑
i=1

(xi − µB)2 (2.7)

The batch normalization layer also adds two trainable parameters, γ and β, which linearly
transforms x̂i → yi:

yi = γ · x̂i + β (2.8)

and combining Equation (2.7) and (2.8):

yi = γ · x̂i + β

= γ · xi − µB
σB

+ β
(2.9)

The purpose of γ and β is to ensure that the batch normalization layer can produce the same
output as input (if γ = σB and β = µB) which preserves the network capacity.

During inference the mean and variance will be fixed, thus the computation cost of calcu-
lating the mean and variance can be ignored. GivenA activations, i.e. number of inputs to be
normalized, for every input ai where i ∈ {0, 1 . . . A} the number of arithmetic operations
are 4 (disregarding the ine�ciency of division for simplicity). Hence the total cost is: 4A.

18

2.1 Artificial Neural Networks (ANN)

Following a convolutional layer, batch normalization will apply Equation 2.9 per chan-
nel meaning there will be batch-normalization parameters for every channel of the input.
Thus, given Cin input channels; the number of parameters stored is: 4Cin. Following a fully-
connected layer, one can view it as having one channel.

ReLU
The Rectified Linear Unit (ReLU) is a function that applies a ramp function to its argument.
ReLU is expressed mathematically as

ReLU(x) = max(0, x)

An extension of this function is the ReLU6, which sets an upper bound of the output as well
(Equation (2.13) contains the clamp function):

ReLU6(x) = clamp(x, 0, 6)

This function is often called on the output from a convolutional layer; MobileNet makes use
of this for a number of their convolutional layers [8]. In Section 2.3, it will be made clear why
the ReLU6 function is well suited for quantized ANNs.

2.1.2 Bias Addition
A common method to use after a layer has computed its output, is to add every output acti-
vation with a constant value that has been determined during training. For a fully-connected
layer, there is a unique bias for every output activation scalar, i.e., the output is added with
the bias vector which is b in the equation below:

xg = WT · xh + b

For the specific case of convolutional- and depthwise convolutional layers, the bias is instead
added per output channel, i.e., every output channel share a bias term.

The computational cost is simply one add operation per output. In terms of memory, for
a fully-connected layer there are m parameters to be stored (one for every output); and for
convolutional- and depthwise convolutional layers there are Cout parameters to be stored.

2.1.3 Top-N Accuracy
Often, a classifier is measured for how likely it is to predict the correct label, or rather, how
often the correct label is included within the topN predictions from the classifier. An array
that contains certainties (probabilities) for every label is computed from the classifier. The
top-N accuracy is simply the following: Given a dataset of samples, how many times are the
correct label included in the N topmost predictions if they are sorted by certainty, in de-
scending order. This number is divided by the size of the dataset to show it as a percentage.

19

2. Background

2.2 MobileNet and ImageNet
Even though QPANN is intended to function on any classifier, the scope of this project has
been set to only experiment on MobileNetV2 [15], trained on a large image dataset from the
database ImageNet [4].

MobileNetV2 is a neural network architecture that was developed by researchers at Google
and presented in a paper in 2019. The intension of MobileNet is to make it feasible to run
inference on mobile devices or hardware with limited computational resources in general.
The architecture contains layers that are a compromise to the abilities of the hardware, such
as using depthwise separable convolutions instead of ordinary convolutional layers in order to
reduce the amount of total computation.

To further reduce memory footprint and execution time, a possible solution is to quantize
all weights together with all the activations and operations within the ANN. The motivation
for choosing MobileNetV2 is that it is a modern architecture that is already aimed towards
making accuracy trade-o�s in its structure.

Asmentioned, theMobileNetV2 implementation used in this project was trained on a large
dataset taken from ImageNet, which is a database containing labeled images. This motive
behind ImageNet is to provide data to relevant application areas, such as training machine-
learning models [4]. For the experiments carried out while testing and developing QPANN,
ImageNet has been used as the only source.

2.3 Quantization Design
This section will cover background theory related to quantization in order to familiarize with
the concept as well as to understand the work that has been done in the thesis. First uniform
quantization will be explained, together with how quantized matrix multiplication can be made
more e�ciently. Then the di�erence between per-layer quantization and per-channel quanti-
zation will be described. Then an optimization technique called folding will be explained.
Finally, the section will explain the main metric, in the thesis, to measure quantization error
called SQNR.

2.3.1 Uniform Quantization
Consider a floating-point based interval (fmin, fmax) which is required to contain the num-
ber 0. The uniform quantizer maps a floating-point number to an signed/unsigned integer of a
desired bit width. Two parameters, scale ∆ and zero-point Z is computed according to Equa-
tions (2.10) and (2.11) to finally construct the parameterized quantizerQuant(x), described
in Equation (2.14). This section will derive this construction and explain its steps.

∆ is a floating-point number and represents the distance in the floating point domain
between each quantized step; therefore, to represent wide intervals, the ∆ will become large
and reduce precision for computations. The type of Z is the same as the quantized result
and is equal to the quantized value where the floating point counterpart is equal to zero. As
an additional note, Section 4.2.1 explains how to retrieve fmin and fmax for every activation

20

2.3 Quantization Design

and weight within a neural network.

∆ = fmax − fmin
2bit width − 1 (2.10)

Z = round
(
− fmin

∆

)
(2.11)

The quantization scheme can equivalently be applied for both unsigned and signed for-
mats; they only di�er in the clamp-ing part of the quantization formula. The advantage of
signed quantization, is that Z is 0 for symmetric quantization, rather than 128 which is the
case for the unsigned format [6]; Z = 0 means that, in practice, the addition in Equation
(2.12) can be omitted.

After these quantization parameters have been found, a real number can be quantized to
a integer number with the following formula:

Q(x) = round
(
x

∆

)
+ Z (2.12)

However, the integer needs to fit within the range given by the bit width of the quantized
format. If the operand x /∈ (fmin, fmax); then the quantized output lies outside this range,
it needs to be moved into the interval with the clamp function below:

clamp(x, a, b) =

a, if x < a

b, if x > b

x, otherwise
(2.13)

With these parameters and functions, the final quantization function can be expressed:

Quant(x) =

clamp(Q(x), 0, 2bit_width − 1), for unsigned
clamp(Q(x), − 2bit_width−1, 2bit_width−1 − 1), for signed

(2.14)

To dequantize a number back to floating point:

Dequant(q) = ∆(q − Z) (2.15)

2.3.2 Quantized Matrix Multiplication
With the quantization scheme from Section (2.3.1) the formula for quantized matrix multi-
plication can be derived. Equation (2.16) shows a multiplication matrices A and B:

Cij =
N∑
k=1

AikBkj (2.16)

The quantized formula is derived from Equation (2.15) and is shown below in Equation
(2.17). The quantization parameters ∆ and Z are defined per matrix and not per matrix
element; therefore, a reasonable selection to retrieve ∆A and ZA would be to substitute in
fmin = min(0,min(A)) and fmax = max(0,max(A)) into Equations (2.10) and (2.11).
Then, the value zero, from the non-quantized format is always perfectly representable in the

21

2. Background

quantized environment; this is similarly done in the paper [11], where the author has chosen
to use the method of selecting quantization parameters from the minimum- and maximum
values of weight tensors.

∆C(Cq
ij − ZC) =

N∑
k=1

∆A(Aqik − ZA)∆B(Bq
kj − ZB) (2.17)

By isolatingCq
ij , as Equation (2.18), a method evaluating matrix multiplications for quan-

tized matrices and their respective parameters has been found.

Cq
ij = ZC +M

N∑
k=1

(Aqik − ZA)(Bq
kj − ZB), whereM = ∆A∆B

∆C

(2.18)

There is more to the formula however. Firstly, the factor M is a real value and has to be
explicitly dealt with. The paper [10] states that this number has empirically been found to
always be between 0 and 1 and it can be expressed in a fixed-point format to perform the mul-
tiplication with the sum. In practice, this would mean to perform one integer multiplication
followed by a bit shift operation, which makes the this data-type conversion desirable.

Secondly, the sum can be separated into four parts, as Equation (2.19) displays, in order
to optimize the computation in terms of speed.

Cq
ij = ZC +M

 N∑
k=1

AqikB
q
kj − ZA

N∑
k=1

Bq
kj − ZB

N∑
k=1

Aqik +NZAZB

 (2.19)

NZAZB can be computed o�ine (before inference) so it becomes a constant. The first
sum is a scalar product and has to be computed for every index (i, j). The two following
sums can be reused between rows and columns so they do not need to be evaluated for every
index. Therefore, the sums of rows and columns leads to O(N2), whereas the bottleneck of
the computation is the scalar product with O(N3) in time complexity for full matrices.

Note that the computations in the parenthesis of Equation (2.19) are all signed-integer
arithmetic but are likely to overflow within the specified bit width. TensorFlow Lite has chosen
to accumulate the products with the sums in a 32-bit signed integer while keeping all operands
in a integer 8-bit format [10].

This computation algorithm was described to be used for matrix multiplications; natu-
rally, it can be used for convolutions as well since every output index is practically a scalar
product of two operands. The final part of the algorithm is to add the bias term b, if such one
exists, which is defined to have ∆b = ∆A∆B and Zb = 0. With these constraints, the bias
term can be included in the parenthesis of Equation (2.19), such that:

Cq
ij = ZC +M

 N∑
k=1

AqikB
q
kj − ZA

N∑
k=1

Bq
kj − ZB

N∑
k=1

Aqik +NZAZB + bq

TensorFlow Lite uses 32-bit signed integer numbers rather than 8-bit for bias terms [6]. The

reason for this, as [10] explains it, is that if 8-bit biases are used, there will be an overall biased
error which continues to propagate through the network. That is, all nodes which the 8-bit
bias are added onto, will receive the same biased error with a non-zero mean. If instead a

22

2.3 Quantization Design

32-bit format is used, this error will become much smaller and is consequently a must for
achieving accuracy close to a network’s floating-point counterpart. Since the scalar-product
also uses 32-bit signed integer, the bias addition becomes simple.

To summarize, the quantized inference at a convolution layer can be described in four steps:

1. Multiply-accumulate operation of input activation and weights:

int32 += int8 * int8

2. Add the bias term with the result from multiply-accumulate operation:

int32 = int32 + int32

3. Perform the fixed-point multiplication with the factorM to rescale the accumulator:

int32 = rescale(int32)

4. Saturate the resulting 32-bit integer down to signed 8-bit integer which is the activa-
tion in the next layer:

int8 = saturate(int32)

2.3.3 Per-Layer and Per-Channel Quantization
Section 2.3.2 discusses how a quantizedmatrixmultiplication can be performed if the operands
have their own separate ranges (per-layer quantization). An extension of this that fits the do-
main specific properties of a convolutional layer can be used to improve prediction accuracy.
This extension is called per-channel quantization [11]. TensorFlow Lite has enabled this by default
for convolutional layers [6].

Per-channel quantization means that the weight kernel uses separate scale and zero point
parameters for each output channel. As explained in Section 2.1.1, there exists Cout number
of weight kernels, each with the dimension K × K × Cin; therefore, Cout pairs of quanti-
zation parameters are required for each convolutional layer. This arrangement issues greater
memory footprint, but has a positive e�ect on prediction accuracy [11].

2.3.4 ReLU6 Within Quantized ANNs
With the established theory from 2.3, one can note that (Quant◦ReLU6)(x) = Quant(x),
given that fmin = 0, fmax = 6. TheQuant function will clamp its output into the specified
interval which is equivalent to the behaviour of ReLU6; therefore, in a quantized ANN,
all ReLU6 layers can be disregarded and instead set quantization parameters (∆, Z) for
the output of the previous layer accordingly. To clarify, it is known that the output after a
ReLU6 is contained in the interval (0, 6), and is also just an identity function (f(x) = x)
within the interval; the quantization parameters is then simply based on this interval. The
act of merging in the ReLU with the output quantization parameters is called ReLU folding.

Figure 2.9 shows an illustration of a quantizedReLU6; the x-axis shows the input to the
function, as a real number; the y-axis represents values that the quantized ReLU6 can output.

23

2. Background

Figure 2.9: A side-by-side comparison between a regular ReLU6
and a ReLU6 which output is quantized with 3 bits and fmin = 0,
fmax = 6.

2.3.5 Batch Normalization Within Quantized ANNs
During inference of a quantized ANN, the trainable parameters are frozen, i.e. fixed. The
same goes for batch normalization. One can see in Equation (2.9) that the layer is just an a�ne
transformation with constants. The constants are subject to o�ine optimizations with what
is called Batch-normalization folding when batch normalization is following a convolution or
fully-connected layer [10]. Starting with Equation (2.9), removing subscripts for brevity, we
can split it into two parts, one constant and one variable part:

y = γ · x− µ
σ

+ β = γ

σ
x+ β − γ · µ

σ

⇒ Const = β − γ · µ
σ

,Var = γ

σ
x

Since the batch normalization is after a convolution or fully-connected layer, the variable
x in this case is the scalar product of activation and weights (x = a · w). Now γ

σ
is just a

constant scale, thus it can be optimized by folding it with the weights:

Var = γ

σ
· x = γ

σ
· a · w = a · γ

σ
· w = a · w̃

In more detail, following the scheme in [10], the folded weights w̃ are defined as:

w̃ = γ · w√
σ2 + ε

where ε is a small constant added for numerical stability, to prevent division with zero. The
constant o�set Const can simply be added in conjunction with the bias, hence the folded

24

2.4 Signal-to-Quantization-Noise Ratio

bias will be the following:

b̃ = γ · b√
σ2 + ε

+ Const

= γ · b√
σ2 + ε

+ β − γ · µ
σ

To summarize, the optimization removes the computational cost and memory footprint
during inference since the parameters are incorporated into the layer.

2.4 Signal-to-Quantization-Noise Ratio
When quantizing weights from a higher to lower precision such as from 64-bit floating point
to an 8-bit unsigned integer, rounding error, also called quantization error, is introduced. To
see the e�ect of the error, one can view it as adding noise to the given signal:

w̃ = w + ηw (2.20)

where w is the weight, w̃ is the value of the weight after quantization and finally, ηw is
the noise. Using the insight from Equation (2.20) we arrive at the formula for signal-to-
quantization-noise ratio (SQNR):

ξ = E[w2]
E[η2

w] (2.21)

Commonly, it is desired to express the SQNR in decibel (dB):

ξdB = 10 log10(ξ) (2.22)

25

2. Background

26

Chapter 3

Method

The work of this is summarized with the steps below, where each step had to be finished
before proceeding to the next one.

1. Research TensorFlow, quantization and related work within the field

2. Develop the core functionality of the framework

3. Extend the framework with new features as far as time allows

4. Evaluate the framework with smaller experiments

After the authors were familiar with the concept of quantization within neural networks and
related work that are presented in Section 1.3, adequate knowledge were in place to proceed
on to starting the actual implementation.

3.1 Implementation
3.1.1 Core Functionality
Because this project both focuses on carrying out experiments, motivated from the research
questions listed in Section 1.2, and providing a software framework that enables future exper-
iments to be carried out, there was a need for a structured implementation that is extendable
with additional features. Specifically, the features that are part of this implementation are:

• a quantized, custom implementation of the convolutional layer, in Section 2.1.1, and
unit testing it thoroughly

• batch-norm- and ReLU folding, as explained in 2.3.4 and 2.3.5

27

3. Method

• making the network compute all its quantization parameters (Section 2.3), which is
called activation calibration and is explained in Section 4.2.1

• main program that runs inference on the partially quantized model and compares it
to a non-quantized counterpart, and measures them both for classification accuracy

With these features, a user can start to investigate how the accuracy changes when it is quan-
tized for all or some of its convolutional layers in comparison to a non-quantized model;
however, this implementation does not provide any metric beyond classification accuracy
which opens up for extensions. Also, to widen the possible use of the framework, more net-
work layers could be implemented.

3.1.2 Extended Functionality
The authors decided to extend the framework with features as time allowed, which were the
following, in no particular order:

• quantized, custom implementations of the rest of the network layers in Section 2.1.1
and unit tests to each one of them

• hyper-parameters to the implemented layers that controls which quantized implemen-
tation to use; some compromise precision for computation speed and/ormemory usage
(these are described in Section 4.3)

• run inference on a TensorFlow-Litemodel, in parallel to the other two, that act as a fully
quantized model, that opens up for more accuracy comparison

• SQNR metric as a measure of noise, as explained in Section 4.4

• make the framework export a graph displaying quantization error (example graph in
Figure (4.3)), that act as a visual representation for where weaknesses, with respect to
noise, are found

3.2 Conducting Experiments
As a final step, several experiments were carried out, both to evaluate the implementation
of the framework in its whole, and to answer the research questions from Section 1.2. With
these experiments, a decision can be made on whether extending the framework even further
is a reasonable idea. Should the experiments instead not lead any further from their results,
this can be concluded as well. In summary, the experiments are focused on evaluating quan-
tization on di�erent combinations of the convolutional layers withinMobileNetV2 by using a
dataset from the database ImageNet.

28

Chapter 4

QPANN - The Software Framework

Quantization Profiler for Artificial Neural Networks (QPANN) is the central part of this thesis; it
has been developed from scratch with the support of the TensorFlow library. The purpose of
this framework is to evaluate implementations of ANNoperators; it is therefore important to
verify that every operator works as expected so there are not any flaws in potential hardware
translations of these operators. This section will go through how QPANN works on a high
abstraction level, what the intention of its modules are, how one can use it to evaluate a
quantized model.

4.1 Primary Functionality
The main idea behind QPANN is to select layers within a ANN (the reference model), and
replace themwith other implementations, such as a quantized counterpart. In fact, the frame-
work accepts any custom operations to be carried out within the replacing layer; it is up to
the user running an experiment to know and verify that the replacing layer has the same
intention as the replaced layer.

When executing QPANN once, the reference model, which ideally is a 32- or 64-bit float-
ing point model, will be reconstructed to create the recreated model, which is a copy of the
reference model with the replaced layers which were specified by the user. In addition to this,
the program will export the reference model to a 8-bit TensorFlow Lite Model with TensorFlow’s
own Lite converter [11]. QPANN then runs inference for the three models and gathers top-1
and top-5 accuracy metrics for them. After the program terminates, the user can compare the
accuracy between the three models in order to evaluate the recreated model. By doing multiple
runs of the program, the user can then investigate what the bottlenecks are of the recreated
model when it comes to classification accuracy.

Currently, QPANN only accepts models used for image classification, i.e., models that
takes in images and predicts probabilities for every possible label; therefore, this section is
limited to cover only such models, even though it should be possible to extend QPANNwith

29

4. QPANN - The Software Framework

other types of models. The framework has been written with the primary intention of being
able to run on MobileNetV2 with the widely used dataset of 1000 labels called ImageNet [4].

Custom layers are implemented as Keras layers within Tensorflow (Keras is a nested high-
level API within TensorFlow for creation and training of deep-learning models [1]). Their
implementations are responsible for performing the three steps described in Section 4.2, i.e.,
quantize the input, perform the operations and then dequantize back to floating point. Dur-
ing planning of the project, Keras alone was declared to not be su�cient because there is a
need to do operations on bit level; therefore, the low-level operators are programmed in C++
for full control of the implementations. Figure 4.1 displays how the modules are interfaced;
the C++ implementation is hidden from the rest of the program and only visible from within
the wrapping Keras layer.

The labels shown in Figure 4.1 are summarized below:

Data samples and labels is a dataset of validation images, that the Reference Model has
trained to classify, and the corresponding ground-truth labels. The Reference Model is a
trained, 32-bit float model.

Model Recreation is the module that is responsible for copying the reference model, but
also replacing the specified layers that are stated in the Recreation Config. After this opera-
tion, the Recreated Model should be a copy of the reference model, but some layers contain
custom-implemented operators so that one can study how these operators a�ect accuracy.

The TF-Lite Model is exported from the Reference Model with TensorFlow’s native method.

QPANN is the main module that delegates instructions to other modules. The main module
will run inference on the Recreated Model, TF-Lite Model and Reference Model with the
same validation set. After running through the entire dataset, the program returns with the
accuracy for the three models.

C++ API

Quantized ops

Python API

Custom Keras
layer

Delegate
low-level ops

Quantize

Custom ops

Dequantize

Do computation
steps

Data
samples

and labels

QPANN

Main program
that runs
inference

Model Recreation

Constructs
quantized models

Samples for
inference

Construct
recreated model

Recreated Model

Start inference

Program output

Fake-quantized
result

Recreation
Config

Data on how
to recreate

Reference
ModelModel to

recreate

Fake-quantized
result

Start
inference

Accuracy for
the three models

Float
precision

result

TF-Lite
ModelConvert

Model

Start
inference

TF-Lite
result

Figure 4.1: A diagram of QPANNs high-level architecture.

30

4.2 Fake quantization within QPANN

4.2 Fake quantization within QPANN
Early in the project’s lifetime, the choice to use TensorFlow Lite was considered because it
is TensorFlow’s software for building and deploying quantized models on e.g., mobile devices.
This idea was dropped because there was a need of using the extended functionality of regular
TensorFlow. Instead of using a fully quantized model, a 32-bit floating point model is used. For
the layers that are to be quantized, fake quantization is used for simulating the e�ect of real
quantization. In practice, this means that the following steps are carried out for a quantized
layer within QPANN:

1. quantize the input of the layer from 32-bit float to 8-bit signed integer

2. perform the operation within the layer in its quantized form

3. dequantize the output back to 32-bit float and propagate it to the next layer

A question that might arise then is: For two adjacent fake-quantized layers, Will addi-
tional error be introduced when output activations are dequantized in the first layer, and
then quantized again in the second layer, as opposed to just propagate the activations in
the quantized format to the second layer? Actually, the results are the same for the both
cases, if the dequantization and quantization use the same scale ∆ and zero point Z , i.e.,
(Quant ◦ Dequant)(q) = q, for all quantized numbers q. This can be confirmed by study-
ing Equations 2.14 and 2.15. This means that if all layers are fake quantized, then the model
would behave as real quantized model.

The process of quantizing and dequantizing multiple times in the network is naturally
slower than a fully quantized model; but fits this application because there is not a critical
need of performance in terms of speed.

4.2.1 Determining Quantization Parameters
As mentioned, the quantization scheme requires the parameters ∆ and Z for every operand,
output vector inclusive. For weights, there are two supported methods in QPANN to decide
them. The first way enforces symmetrical quantization and defines the following:fmin(w) = −r

fmax(w) = r
where r = max(max(w),−min(w))

Amotivation for choosing the symmetric approach is to make operations like the scalar prod-
uct simpler for the hardware. The 8-bit integer format in QPANN is signed which implies that
the zero point Z becomes 0; one sum in the scalar product (Equation (2.19)) does not have to
computed as a result of this, because it is guaranteed to be zero, along with NZAZB , which
is also zero.

The second method relaxes the requirement of symmetric quantization, but still requires
the number zero to be representable, by setting:fmin(w) = min(0,min(w))

fmax(w) = max(0,max(w))

31

4. QPANN - The Software Framework

The resulting floating-point range are then substituted into the quantization-converting
Equations (2.10) and (2.11) to find ∆w and Zw .

For input and output to a layer, there are no minimum and maximum values in the same
manner as for the weights. Instead, a method called activation calibration is used, which is
also supported by TensorFlow Lite [1]. This means that the full precision model that is to
be quantized are run with a desired amount of samples, e.g., 100. Then the minimum and
maximum values across all samples are found for the input and output tensors. These values
then retrieves ∆ and Z in the same way as for the weights.

4.3 Supported Operators
For anyKeras layer that one intends to replace, an implementation of a quantized version needs
to exist. These quantized counterparts have been implemented from the ground up together
with unit tests that run the implementations in isolation; this section lists the replacement
operators that have been implemented.

Additionally, some of these layer implementations have hyper-parameters attached to
them which are there to adjust specific parts of the layer, e.g., whether the layer should have
symmetric or asymmetric quantization for weights. QPANN is written in a such a way that
it is extendable with respect to these hyper-parameters. The ones implemented during the
work of this thesis are listed together with the corresponding layer in the subsections below.
The parameters are named the same as they are in the source code.

4.3.1 Hyper-Parameters
This sectionwill describe the supported hyper-parameters in general, whereas in Section 4.3.2
will list which hyper-parameters are attached to which layer. Every hyper-parameter in this
list are boolean flags, i.e., they can be toggled on and o� for an implementation.

• rounding_div: Some operators make fixed-point multiplications, i.e., integer multi-
plication followed by a bit-shift division. This bit-shift division can be chosen to round
its output to the nearest whole number. This rounding is expensive for the hardware
because it contains a conditional branch. This flag controls whether to do truncating
or rounding division.

• symmetric_weights: This flag toggles whether to force symmetrically quantizedweights
or not. Section 4.2.1 explains this property.

• per_channel_quantization: As covered in Section 2.3.3, this controls whether to
apply per-channel (output channel) or per-layer quantization for the weights. Enabling
this flag increases memory requirement but may lead to prediction-accuracy increase.

• merge_batch_norm: Toggles batch-norm folding, as explained in Section 2.3.5. This
means to merge the batch-norm layer into this layer.

• merge_relu: If the layer is followed by a ReLU6, this layer can fold the ReLU6 into
the output quantization parameters. Since the range of a ReLU6 function is [0, 6], this
range defines fmin = 0 and fmax = 6 for the output scale and zero point in order

32

4.3 Supported Operators

to construct a uniform quantizer for that range. In practice, this means to remove the
ReLU6 layer/activation completely, as explained in 2.3.4.

4.3.2 Layers
Convolutional Layer
The quantized convolutional layer applies the convolution formula described in Section 2.1.1
and applies it in a quantized format as described in Section 2.3.2 (This section covers matrix
multiplication, but it is analogous to convolution because they are both composed of a set of
scalar products). This layer also support bias weights that are added in the quantized domain.

Hyper-parameters:

• rounding_div

• symmetric_weights

• per_channel_quantization

• merge_batch_norm

• merge_relu

Depthwise Convolution Layer
With the theory of depthwise convolution, described in Section 2.1.1, a quantized layer has been
included into this framework. This step is the first of two for depthwise separable convolution.
The implementation is close to identical to the convolution layer; it is likewise a set of scalar
products, which makes Equation 2.17 also the underlying formula. The layer supports quan-
tized bias addition as well.

Hyper-parameters

• rounding_div

• symmetric_weights

• per_channel_quantization The per-channel quantization refers to output and in-
put channel simultaneously because one output channel is dependent on a single input
channel; there is a 1-to-1 mapping.

• merge_batch_norm

• merge_relu

33

4. QPANN - The Software Framework

Add Layer
This layer performs simple addition between two tensors; the two tensors need to have the
same shape and the output tensor inherits this shape as well. This layer has no weights and
supports di�erent quantization parameters for its input and output.

Hyper-parameters:

• rounding_div

Fully Connected (Dense) Layer
The fully connected layer is a simplematrixmultiplication between the input and theweights.
This quantized implementation uses Equation (2.17) to achieve themultiplication and applies
bias addition to the output if desired.

Hyper-parameters:

• rounding_div

• symmetric_weights

Global Average Pooling
Global Average Pooling inputs a three-dimensional tensor (height, width, channel) and out-
puts the mean of each channel. The layer has no weights and the input and output have the
same quantization parameters.

4.4 The SQNR-Recorder Module
Since the framework is a profiler for quantized ANNs, there is supported functionality for
quantifying the noise that each replaced layer contributes with. The metric used is signal-to-
quantization-noise ratio (SQNR), which is introduced in Section 2.4. When inference is started
for the validation samples (after activation calibration), the framework will use the module
called SQNR Recorder to accumulate the sum of the reference activations and the sum of ac-
tivation noise for each layer. After inference is complete and the data has been recorded,
Equation (2.21) is used for computing the final SQNR for all layer outputs. By comparing
the outputs from the replaced- and reference layers, the mean SQNR across all their activations
can be computed. This computation can be expressed with the equations below.

First, define λi as the sum of quadratic activation values for the activation with index i of
the reference model. In a similar way let µi be the sum of the quadratic di�erence between the
reference model’s activations and the recreated model’s activations. The sum is computed from
every validation sample n.

λi =
∑
n

(arefni)2 (4.1)

34

4.4 The SQNR-Recorder Module

µi =
∑
n

(arefni − a
rep
ni)2 (4.2)

Use Equation (2.21) to compute the SQNR for that layer activation:

ξi = λi
µi

Finally, compute the mean of this ratio and apply the logarithmic transformation. N is the
number of activations for the layer.

SQNR(layer) = 10 log10

(
1
N

N∑
i=1

ξi

)
(4.3)

This computation is done in the SQNR-recordermodule, where it accumulates the quadratic
sums from Equation (4.2) and (4.1) in memory. Figure 4.2 shows a diagram of how the data
is propagated during inference.

Quantized
Layer

Reference
Layer

...

...

...

...

SQNR
Recorder

SQNR	for
quantized
activations

quantized
activations

reference
activations

Figure 4.2: The output activations from all layer pairs are accumu-
lated into the SQNR Recorder. The SQNR can then be computed
after inference is complete.

After the recorder has computed the SQNR for all layers, QPANN exports the results
of these computations in a viewable graph; Figure 4.3 shows an example of such a graph.
Each directed edge display the output SQNR from layers, which act as vertices in the graph.
The SQNR values are displayed in dB, computed from Equation (4.3). With this graph, the
user can detect which layers might reduce the accuracy of the model, and optimize operators
accordingly. Note, if the output SQNR of a layer is lower than its input SQNR, then it would
mean that the layer is introducing more noise than it received during inference, and could
then benefit from a precision optimization.

35

4. QPANN - The Software Framework

The layer’s noise contribution is compared to the reference model, which then in turn
does not necessarily have to be better in accuracy. Quantization noise does not directly
mean worse accuracy; it is just a measure of deviation from the reference model. The noise
can also be greater on activations that are less important for the output prediction. The
SQNR measure does not take that into account, which is why the user should not believe in
a monotonous relationship between output SQNR and prediction accuracy.

A paper [12] showed an approach to optimize convolutional neural networks with the use
of SQNR, which was the inspiration for including the metric. The paper also showed that
the SQNR for the output layer is approximately equal to the harmonic mean of the output of
the preceding layers (Equation 4.4). This approximation does work for convolutional layers,
but not as well for fully-connected layers, according to the paper.

1
ξout

= 1
ξL1

+ 1
ξL2

+ . . .+ 1
ξLN

(4.4)

Whether this formula is accurate or not, there is inevitably a relationship between output
SQNR and prediction accuracy. The user might have to investigate how the SQNRmeasure-
ments contributes to the performance for that specific network architecture. Exactly how
the relation between SQNR and accuracy is manifested in practice for other types of layers
is not examined within this work; it is instead left as potential future work. In paper [12],
the authors optimized for high SQNR in order to achieve better prediction accuracy which
could mean that this type of optimization can be carried out with QPANN for an arbitrary
classifying network.

A further note on SQNRmetrics during inference is that measures for any layer is depen-
dant on the noise produced from preceding layers. If the user desires to measure the SQNR
of one layer in isolation, a model with just that layer replaced can be created.

4.5 Configuring Inference
An important matter of this work is to enable the user to easily switch and try out di�erent
implementations of layers and operators; therefore, a config-file specification has been estab-
lished. Any user can then change parameters easily within the two config files that QPANN
needs in order to execute. The two config files are named network config and recreation config;
they are regular python files. See Appendix A for examples of how the files are structured.

The recreation config relates to parameters that a�ect the construction of the recreated
model. This is where the user chooses which layers to replace and provide hyper-parameters
(specified in section 4.3) to them.

The network config file relates to the reference model, activation-calibration batch-size
and the validation dataset. Here one can specify how many samples the inference will be
carried out on and where to load the image data from.

To ensure that a carried out experiment can be investigated and/or reconstructed any
time in the future, QPANN exports the config files and places them together with the accu-
racy result for the models.

36

4.5 Configuring Inference

input_1 inf

Conv1_pad

inf

fake_quantized_conv2d

inf

expanded_conv_depthwise

47.03

expanded_conv_depthwise_BN

40.98

expanded_conv_depthwise_relu

41.58

fake_quantized_conv2d_1

60.15

fake_quantized_conv2d_2

28.75

block_1_pad

49.49

block_1_depthwise

49.49

block_1_depthwise_BN

37.48

block_1_depthwise_relu

36.71

fake_quantized_conv2d_3

44.84

fake_quantized_conv2d_4

25.94

block_2_add

25.94

block_2_depthwise

34.50

fake_quantized_conv2d_6

22.58

block_2_depthwise_BN

27.11

block_2_depthwise_relu

29.29

fake_quantized_conv2d_5

29.12

20.89

block_3_pad

26.97

block_3_depthwise

26.97

block_3_depthwise_BN

28.57

block_3_depthwise_relu

28.51

fake_quantized_conv2d_7

28.14

fake_quantized_conv2d_8

21.33

block_4_add

21.33

block_4_depthwise

31.08

fake_quantized_conv2d_10

20.67

block_5_add

20.67

block_4_depthwise_BN

26.52

block_4_depthwise_relu

27.03

fake_quantized_conv2d_9

28.48

18.95

block_5_depthwise

30.00

fake_quantized_conv2d_12

20.00

block_5_depthwise_BN

27.41

block_5_depthwise_relu

24.25

fake_quantized_conv2d_11

22.63

17.42

block_6_pad

24.26

block_6_depthwise

24.26

block_6_depthwise_BN

26.02

block_6_depthwise_relu

30.30

fake_quantized_conv2d_13

30.36

fake_quantized_conv2d_14

20.39

block_7_add

20.39

block_7_depthwise

28.93

fake_quantized_conv2d_16

20.42

block_8_add

20.42

block_7_depthwise_BN

25.74

block_7_depthwise_relu

24.22

fake_quantized_conv2d_15

25.96

18.39

block_8_depthwise

27.27

fake_quantized_conv2d_18

20.18

block_9_add

20.18

block_8_depthwise_BN

23.93

block_8_depthwise_relu

24.67

fake_quantized_conv2d_17

23.46

18.26

block_9_depthwise

25.37

fake_quantized_conv2d_20

19.80

block_9_depthwise_BN

23.54

block_9_depthwise_relu

24.61

fake_quantized_conv2d_19

22.91

16.98

block_10_depthwise

26.11

block_10_depthwise_BN

24.62

block_10_depthwise_relu

26.69

fake_quantized_conv2d_21

26.67

fake_quantized_conv2d_22

19.84

block_11_add

19.84

block_11_depthwise

24.71

fake_quantized_conv2d_24

15.68

block_12_add

15.68

block_11_depthwise_BN

23.96

block_11_depthwise_relu

27.09

fake_quantized_conv2d_23

25.51

12.33

block_12_depthwise

18.76

fake_quantized_conv2d_26

10.38

block_12_depthwise_BN

18.26

block_12_depthwise_relu

23.26

fake_quantized_conv2d_25

22.08

4.10

block_13_pad

11.29

block_13_depthwise

11.29

block_13_depthwise_BN

12.80

block_13_depthwise_relu

21.23

fake_quantized_conv2d_27

21.32

fake_quantized_conv2d_28

8.49

block_14_add

8.49

block_14_depthwise

13.68

fake_quantized_conv2d_30

7.97

block_15_add

7.97

block_14_depthwise_BN

12.81

block_14_depthwise_relu

14.99

fake_quantized_conv2d_29

13.14

6.69

block_15_depthwise

12.36

fake_quantized_conv2d_32

7.47

block_15_depthwise_BN

13.46

block_15_depthwise_relu

40.28

fake_quantized_conv2d_31

21.64

5.95

block_16_depthwise

8.71

block_16_depthwise_BN

10.17

block_16_depthwise_relu

18.49

fake_quantized_conv2d_33

18.49

fake_quantized_conv2d_34

6.60

global_average_pooling2d

4.40

Logits

7.89

softmax_Logits

7.11

Figure 4.3: An example of a SQNR graph, of the recreated model,
that the framework exports after inference. This graph can be used
to find potential weaknesses in the layer structure for the model to
find which layers need to remain in higher precision and which can
be quantized harder. The red vertices represent replaced layers.

37

4. QPANN - The Software Framework

38

Chapter 5

Evaluation

5.1 Experimental Setup
The following chapter will go through several experiments that were done with QPANN and
the results of these experiments. The experiments will not be aimed towards finding optimal
implementations of a quantized model, but rather to show examples of what QPANN can
find with experiments and how one can proceed investigating to find a balanced implemen-
tation of a quantized model. A balanced model in this case would be a model that has a good
standing in accuracy versus speed and memory usage. The experiments are limited to only
replace convolutional layers with di�erent quantized implementations, since, at the time of
experimentation, these were the only layers that had a complete implementation.

The reference model used in all experiments is MobileNetV2, which is pretrained on Ima-
geNet. In MobileNetV2 there are 35 convolutional layers in total, evenly distributed across the
network, which creates a large space of implementation permutations to discover.

The results from the experiments on our custom quantized model, will be compared with
TensorFlow’s 32-bit floating-point model (the reference model) and TensorFlow Lite’s 8-bit in-
tegermodel (converted from the referencemodel using the converter embedded in TensorFlow
Lite). All experiments were done by validating the result on 50000 images of ImageNet. The
activation-calibration batch (explained in Section 4.2.1) were 100 samples selected randomly
for each new experiment, inspired by paper [11]. All SQNR values in the results are in dB.

The first experiment to be carried out is to replace all convolutional layers inMobileNetV2
with quantized layers. Following TensorFlow Lite’s quantization specification [6]; for all lay-
ers, rounding division, symmetric weights, per-channel quantization and batch-norm folding were
present; furthermore, the layers that also could fold a ReLU6 did so, which were 18 of the 35
convolutional layers.

In the second experiment we will identify five low and five high data points with respect
to how they a�ect SQNR, given the result from the first experiment. As previously explained
with Equation (4.4), the SQNR of the model should be mostly a�ected when modifying its

39

5. Evaluation

weakest links; therefore, we expect the accuracy to di�er more if the five convolutional lay-
ers with low SQNR are modified rather than if the five with high SQNR are. The identified
convolutional layers will vary their hyper-parameters; more specifically, bit width (32-bit float
precision), type of division (truncating division) and finally the amount of quantization param-
eters used on a given layer (per-layer quantization).

To answer whether MobileNetV2 is the most sensitive in the beginning or in the end,
a third experiment will be carried out. In the experiment we will quantize the first half
of the convolutional layers and compare it with the second half of the convolutional layers
quantized, using the same scheme as the first experiment.

5.2 Experiments
For a comparison of how a custom quantized model compares to TensorFlow’s 32-bit floating-
point model and TensorFlow Lite’s 8-bit integer model, the result of these two models are
shown in Table 5.1.

Table 5.1: Results for the reference model (TensorFlow 32-bit float) and
TensorFlow Lite (8-bit integer) when validating on the 50000 samples
of ImageNet.

Setting Top-1 Accuracy Top-5 Accuracy
Reference Model 68.05% 88.40%

TensorFlow-Lite Model 67.39% 87.82%

Experiment Suite 1
The result of quantizing all convolutional layers, got a top-1 accuracy of 63.81%, top-5 accu-
racy of 85.65% and 11.14 in the model’s output SQNR (shown in theA setting in Table 5.2).
The top-1 accuracy is therefore a decrease of over 4 percent points compared to the reference
model, which means our implementation cannot match TensorFlow Lite’s 8-bit integer model.

To see how SQNR propagates through the model, Figure 5.1 shows how it accumulates
for each layer in the topmost graph. The bottom graph instead shows the di�erence between
the SQNR (computed from Equation (4.3)) for the layer output and its input, i.e.:

SQNR(layer[i+ 1])− SQNR(layer[i])

Note: QPANN does not export Figure 5.1; it is included in this report for helping visualiza-
tion for the specific case of MobileNetV2. If the graph is not completely sequential, i.e., every
layer has only input and output, this type of plot is misleading and therefore not included as
part of the framework.

A part of the SQNR graph exported for this experiment is shown in Figure 5.2. As seen
in both in the graph and Figure 5.1, the SQNR is oscillating up and down when propagat-
ing through the layers; specifically some of the non-quantized batch-normalization layers have
been observed to increase SQNR, like vertex block16_depthwise_BN does in Figure 5.2. The

40

5.2 Experiments

0 20 40 60 80 100

20

40

60
La

ye
r

ou
tp

ut
 S

Q
N

R
sqnr of layer output
replaced layers

0 20 40 60 80 100
Layer Index

20

0

20

La
ye

r
ou

tp
ut

 S
Q

N
R

 (
di

ffe
re

nc
e)

Figure 5.1: Mean, through 50000 validation samples, of SQNR (in
dB) of output activations for every layer index ofMobileNetV2. Start-
ing from index 0, where the image first pass through, it propagates
through all the layers until the output is computed at the last index
103.

reason for this unknown, but a theory of ours, from brief investigations, is that such batch-
normalization layers are strongly a�ected by β, and not as much from γ · x̂i, i.e., the output
is dominated by β because it is, e.g. five times larger than the other term; refer to Equation
(2.9) to see these parameters. The following equations clarifies our theory. Consider the in-
put activation to a batch-normalization layer x̂i. Within the experiment, this activation has
quantization noise so it can be expressed as xqi + ηi. The SQNR (Equation (2.21)) for the
input is:

ξini = E[(x̂i)2]
E[η2

i]
The output of the batch normalization is defined as:

yi = γx̂i + β = γxqi + γηi + β

The SQNR of the output then becomes:

ξouti = E[y2
i]

E[η2
yi

] = E[(γxqi + γηi + β)2]
E[(γηi)2]

As seen in the output’s SQNR, large β ’s can potentially increase the SQNR; furthermore,

41

5. Evaluation

input_1 inf

Conv1_pad

inf

fake_quantized_conv2d

inf

expanded_conv_depthwise

47.02

expanded_conv_depthwise_BN

40.93

expanded_conv_depthwise_relu

41.52

fake_quantized_conv2d_1

46.53

fake_quantized_conv2d_2

28.83

block_1_pad

59.91

block_1_depthwise

59.91

block_1_depthwise_BN

37.61

block_1_depthwise_relu

35.84

fake_quantized_conv2d_3

32.73

fake_quantized_conv2d_4

25.98

block_2_add

25.98

block_2_depthwise

34.44

fake_quantized_conv2d_6

22.72

block_2_depthwise_BN

27.09

block_2_depthwise_relu

29.19

fake_quantized_conv2d_5

31.72

21.11

block_3_pad

26.97

block_3_depthwise

26.97

block_3_depthwise_BN

28.68

block_3_depthwise_relu

28.58

fake_quantized_conv2d_7

28.19

fake_quantized_conv2d_8

21.44

block_4_add

21.44

block_4_depthwise

31.21

fake_quantized_conv2d_10

20.83

block_5_add

20.83

block_4_depthwise_BN

26.65

block_4_depthwise_relu

27.10

fake_quantized_conv2d_9

26.00

19.08

block_5_depthwise

30.10

fake_quantized_conv2d_12

20.15

block_5_depthwise_BN

27.45

block_5_depthwise_relu

24.29

fake_quantized_conv2d_11

22.57

17.45

block_6_pad

24.29

block_6_depthwise

24.29

block_6_depthwise_BN

26.11

block_6_depthwise_relu

30.33

fake_quantized_conv2d_13

30.36

fake_quantized_conv2d_14

20.50

block_7_add

20.50

block_7_depthwise

29.08

fake_quantized_conv2d_16

20.57

block_8_add

20.57

block_7_depthwise_BN

25.84

block_7_depthwise_relu

24.36

fake_quantized_conv2d_15

22.75

18.57

block_8_depthwise

27.41

fake_quantized_conv2d_18

20.31

block_9_add

20.31

block_8_depthwise_BN

24.07

block_8_depthwise_relu

24.65

fake_quantized_conv2d_17

22.04

18.38

block_9_depthwise

25.47

fake_quantized_conv2d_20

19.93

block_9_depthwise_BN

23.65

block_9_depthwise_relu

39.54

fake_quantized_conv2d_19

21.80

17.09

block_10_depthwise

26.25

block_10_depthwise_BN

24.77

block_10_depthwise_relu

26.75

fake_quantized_conv2d_21

26.68

fake_quantized_conv2d_22

19.91

block_11_add

19.91

block_11_depthwise

24.74

fake_quantized_conv2d_24

15.71

block_12_add

15.71

block_11_depthwise_BN

24.09

block_11_depthwise_relu

26.94

fake_quantized_conv2d_23

25.15

12.31

block_12_depthwise

18.51

fake_quantized_conv2d_26

10.32

block_12_depthwise_BN

18.28

block_12_depthwise_relu

23.10

fake_quantized_conv2d_25

21.82

3.97

block_13_pad

11.09

block_13_depthwise

11.09

block_13_depthwise_BN

12.64

block_13_depthwise_relu

21.00

fake_quantized_conv2d_27

21.08

fake_quantized_conv2d_28

8.35

block_14_add

8.35

block_14_depthwise

13.51

fake_quantized_conv2d_30

7.83

block_15_add

7.83

block_14_depthwise_BN

12.68

block_14_depthwise_relu

14.72

fake_quantized_conv2d_29

12.39

6.56

block_15_depthwise

11.63

fake_quantized_conv2d_32

7.34

block_15_depthwise_BN

13.31

block_15_depthwise_relu

21.74

fake_quantized_conv2d_31

19.28

5.83

block_16_depthwise

8.27

block_16_depthwise_BN

9.95

block_16_depthwise_relu

17.85

fake_quantized_conv2d_33

17.84

fake_quantized_conv2d_34

6.48

global_average_pooling2d

4.13

Logits

7.66

softmax_Logits

6.91

Figure 5.2: Apart of the SQNR graph thatQPANN exported for the
experiments of quantizing all convolutional layers. The red vertices
represent quantized layers.

this can be applied to bias additions in general. Note that this proof was based on a batch-
normalization-layer without noise. For a fully quantized model, like one of TensorFlow Lite,
every operation are in a quantized format; a batch-normalization layer is usually folded into
the previous layer, as explained in Section 2.3.5. One should therefore be careful whenmaking
conclusions about how well a partially quantized model within an experiment generalizes to
a fully quantized model. Because of this potential increase of SQNR when adding constant
terms, like bias additions, one can investigate if the preceding layer can be optimized even
further for performance rather for precision, because the bias term can potentially save the
output SQNR and consequently even accuracy. The theory we have provided with this ex-
periment is just an example of what one can discover when using the framework.

Experiment Suite 2
In the bottom plot of Figure 5.1, together with the SQNR graph that QPANN exports, we
identified five low and five high data points with respect to how they a�ect SQNR. In Figure
5.1 it is the sets of indices {6, 70, 76, 82, 94} and {8, 13, 25, 31, 43} respectively. The motivation
for running these experiments is to show that QPANN can help its user to identify operators

42

5.2 Experiments

within amodel where the accuracy is sensitive tomodifications andwhere precision-reducing
optimizations are allowed. As previously mentioned, we expect the accuracy to di�er more
if the five convolutional layers with low SQNR are modified rather than if the five with high
SQNR are. With this information, seven experiments, labeled A-G were set up to see if the
hypothesis is true.

For all the entries in the list below, a quantized layer with no further description means
that it uses TensorFlow’s default quantization scheme, i.e., it is quantized symmetrically and
per channel, have rounding division in its implementation, has Batch-Normalization- and ReLU-
folding if applicable (Section 4.3 shows further information regarding these attributes).

• A: All convolutional layers are quantized

• B: Five layers with high output SQNR use 32-bit float precision; the rest are quantized

• C: Five layers with low output SQNR use 32-bit float precision; the rest are quantized

• D: Five layers with high output SQNR are quantized per tensor; the rest are quantized per
channel (TensorFlow’s default quantization scheme)

• E: Five layers with low output SQNR are quantized per tensor; the rest are quantized per
channel (TensorFlow’s default quantization scheme)

• F: Five layers with high SQNR implement truncating division; the rest use rounding divi-
sion (TensorFlow’s default quantization scheme)

• G: Five layers with low SQNR implement truncating division; the rest use rounding divi-
sion (TensorFlow’s default quantization scheme)

Table 5.2: SQNR and accuracy metrics for the di�erent experiments
listed above.

Setting SQNR Top-1 Accuracy Top-5 Accuracy
Reference model N/A 68.05% 88.40%

A 11.14 63.81% 85.65%
B 10.80 63.82% 85.69%
C 10.82 64.00% 85.69%
D 10.70 63.68% 85.58%
E 10.12 63.50% 85.18%
F 10.76 63.95% 85.65%
G 10.31 63.73% 85.28%

Indeed, the hypothesis, that lower-SQNR layers a�ects accuracy more when modified,
conforms with the results in Table 5.2. We investigate each of the settings B-G pairwise (A
behaves as the default reference setting).

B and C removes five layers of high and low SQNR respectively. According to our hypothe-
sis, C should have higher accuracy than B, which is the case. Keep in mind, even though the
accuracy increase may be small, when optimizing a model every small increase is important.

43

5. Evaluation

Removing quantization from five high layers (B) does barely raise the accuracy compared to
A; however, when five lower layers are changed to full precision, the top-1 accuracy increases
noticeably from 63.81% to 64.00%.

D and E introduce per-tensor quantization for five layers of high and low SQNR respectively.
We expect the SQNR to drop more where the lowest layers are compromised (E), which is
indeed the case for both the top-1- and top-5 accuracy.

F and G implement truncating division for five layers with high and low SQNR respectively.
The same holds for this pair; G cause a greater accuracy drop than F, which we expected.

After the weak- and strong links are found in the model, we have showed that if the im-
plementation of the weaker links are optimized for precision and the stronger links are opti-
mized for computation speed and memory, we can reach a desired state of trade-o� between
accuracy, computation speed and memory usage. This experiment does not verify that this
approach always works for any model, but the results are a solid indication that this strategy
can be used when optimizing a model.

Experiment Suite 3
In the final experiment, the first and second half of the convolutional layers are quantized
separately; the remaining half use 32-bit precision layers. To clarify, there are 35 convolutional
layers in total for MobileNetV2; starting from the input layer the 18 first layers (according to
breadth-first search on the model’s graph) corresponds to the first half and the rest makes the
second half. From the topmost graph in Figure 5.1, one interesting property that can be seen
is that the SQNR suddenly starts to drop after around layer index 70. With this in mind, the
hypothesis is that MobileNetV2 should be more sensitive in the second half.

The results of how SQNR accumulates for the two experiments are shown in Figure 5.3.
Starting by observing the blue curve, where the first half of the convolutional layers are quan-
tized, one can see that it drops until it reaches an SQNR of 20. After this point, the SQNR
approximately oscillates between 20 and 30.

For the green curve, where the second half of convolutional layers are quantized, the
SQNR instead starts to drop rapidly after quantization is introduced; it reaches below the
blue curve at the same layer indices as Figure 5.1 showed. This indicates that the output noise
is more a�ected by the later layers of inference. To complement the noise data with actual
results of accuracy, Table 5.3 shows this along with the output SQNR. There is a significant
accuracy di�erence between quantizing the first- and the second half of the network. The
network with the first half quantized only drops 0.16 percentage points in top-1 accuracy from
the reference model compared to the second half’s drop of 3.82 percentage points. The reason
for this di�erence was not investigated; it could be because of the fact that activations, for
this specific model architecture, have more channels the closer they come to the network’s
output. This results in longer accumulation chains (explained in Section 2.3.2) which could
amplify quantization errors.

The results of this experiment shows that, for this specific case ofMobileNetV2 trained on
ImageNet, the first half of convolutional layers are more allowing for memory- and computa-
tion speed optimizations, while the second half will reduce accuracy even further if additional

44

5.2 Experiments

0 20 40 60 80 100
Layer Index

10

20

30

40

50

60

La
ye

r
ou

tp
ut

 S
Q

N
R

Figure 5.3: Accumulation of SQNR if the first (blue curve) and the
second (green curve) half of the convolutional layers are quantized.
The red markers denote quantized layers.

precision-compromising implementations are introduced for those layers. With QPANN,
one could continue optimizing the operator implementations with these results in mind.

Table 5.3: Performance comparison between quantizing the first and
the second half of the convolutional layers of MobileNetV2; the first
half contains 18 layers and the second half 17 layers.

Setting SQNR Top-1 Accuracy Top-5 Accuracy
First half 23.60 67.89% 88.18%
Second half 11.10 64.23% 85.89%

All Conv2d layers 11.14 63.81% 85.65%
Reference model N/A 68.05% 88.40%

45

5. Evaluation

46

Chapter 6

Conclusion & Future Work

6.1 Conclusion
For a use case of running ANNs with limited memory, hardware capacity or similar, it is
paramount to be able to analyze the relationship between computation precision and infer-
ence accuracy. Generally speaking, when compromising precision, a question that arises asks
how much accuracy is sacrificed in order to conform to constraints of the domain where the
model is deployed.

Our evaluation demonstrates howQPANN can be used quantitatively to investigate how
inference accuracy is a�ected by degrading parameters, such as faster division or per-tensor
quantization. The framework particularly allows for studying of how SQNR may or may not
be able to model how accuracy is a�ected by altering parameters. A user can select layers to
provide with custom implementations to investigate how they change the model’s accuracy.
The framework gives the developer full control of the implementation and can be extended in
multiple ways to further research the relationship between precision and prediction accuracy.

As a method to evaluate QPANN and its potential future usage,MobileNetV2was selected
as a neural network to carry out experiments on. For this specific architecture, we found
layers where accuracy is sensitive for numerical-precision compromising implementations.
The downside is that we do not know if our findings are generalizable to other architectures;
one would need to use QPANN for every architecture to investigate. However, no software
available to the public, that we are aware of, is specifically tailored for the type of post-
training quantization analysis which QPANN enables. Thus, we conclude that the software
framework is a great contribution to the ongoing research of machine learning.

As a final remark, we consider the societal impact the framework imposes. We think
that our work is rather safe from potential malicious intentions of usage; of course, we are
unable to control what Arm’s customers do with the optimized hardware that their future
chips have. However, we do not feel that this work promotes ethical violations or similar,
more than any other research within machine learning does.

47

6. Conclusion & Future Work

6.2 Future Work
The implementation of QPANNwas more time demanding than what was anticipated when
starting the project; therefore, the framework has parts of it that we feel are, to some extent,
incomplete and could be starting points for a possible continuation.

The first recommendation from us would be to go through the custom quantized opera-
tors and aim for closer results compared to TensorFlow Lite’s implementations. Even though
all layers ofMobileNetV2 can be replaced with our implementations, it is not on a par with the
actual accuracy of a fully quantized model that uses TensorFlow’s own Lite Converter. Similar
to the batch-normalization- and ReLU folding, TensorFlow’s quantized models might do opti-
mizations in between operators that we are not aware of; this could use further investigation.

Once the operators’ performance are adequate, one could continue by extending the func-
tionality of QPANN. It has only been evaluated on MobileNetV2; verifying that it works on
other architectures is advised. Implementing quantized versions of other operators, e.g. Soft-
max, Tanh and Swish, as they use in the successor,MobileNetV3 [7], could also be a way forward.

Another matter that is worth investigating is whether the SQNR measure for output of
layers is a sound method for estimating prediction accuracy. During the work of this thesis,
there was no thorough verification of this; our results could just be coincidences that apply
specifically for MobileNetV2. The choice of including SQNR measures originates from the
work presented in [12], where they tuned quantization of layers based on bit width. In this
work, more general SQNR a�ecting implementations, e.g. truncating division, have been
tested which could introduce new and di�erent characteristics for the prediction accuracy.

As a final mention, QPANN does currently not make any estimation of how an imple-
mentation a�ects the hardware in terms of speed and memory; it could therefore be useful
to extend the framework with this. One can study the source code and attach performance
estimations for every type of implementation. An example would be that the framework
could estimate memory savings from using per-tensor quantization over per-channel quantiza-
tion within a network to give the user an idea of the benefit of this optimization.

48

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Arm. O�cial homepage. https://www.arm.com.

[3] Torch Contributors. Pytorch quantization. https://pytorch.org/docs/stable/
quantization.html.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[6] Google. Tensorflow lite 8-bit quantization specification. https://www.tensorflow.
org/lite/performance/quantization_spec.

[7] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing
Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and
Hartwig Adam. Searching for mobilenetv3. CoRR, abs/1905.02244, 2019.

[8] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: E�cient convolu-
tional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861,
2017.

49

https://www.arm.com
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
http://www.deeplearningbook.org
https://www.tensorflow.org/lite/performance/quantization_spec
https://www.tensorflow.org/lite/performance/quantization_spec

REFERENCES

[9] Sergey Io�e and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[10] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neu-
ral networks for e�cient integer-arithmetic-only inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2704–2713, 2018.

[11] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for e�cient
inference: A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

[12] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point quantization
of deep convolutional networks. In International Conference on Machine Learning, pages
2849–2858, 2016.

[13] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
torch: An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.,
2019.

[15] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Inverted residuals and linear bottlenecks: Mobile networks for classifi-
cation, detection and segmentation. CoRR, abs/1801.04381, 2018.

50

Appendices

51

Appendix A

Config Files Example

This python list is contained in the recreation-config file:

recreation_config = [
{

The name of the keras layer to replace
’name’: ’conv2d’,

The indices of replaced layers
’indices’: [2,46],

’merge_batch_norm’: True,
’merge_relu’: True,
’quantized’: True,
’per_channel_quant’: True,
’rounding_div’: False,
’symmetric_weights’: True,

},
{

’name’: ’conv2d’,
’indices’: [108],
’merge_batch_norm’: True,
’merge_relu’: False,
’quantized’: True,
’per_channel_quant’: True,
’rounding_div’: True,
’symmetric_weights’: True,

},
{

’name’: ’depthwise_conv2d’,

53

A. Config Files Example

’indices’: [5,22,32],
’merge_batch_norm’: True,
’merge_relu’: True,
’quantized’: True,
’per_channel_quant’: True,
’rounding_div’: True,
’symmetric_weights’: True,

},
{

’name’: ’dense’,
’indices’: [156],
’quantized’: True,
’rounding_div’: True,
’symmetric_weights’: True,

},
]

This python dict is contained in the network-config file:

network_config = {
File path to a keras model
’model_file’: path/to/mobilenetv2.h5,

(height, width, channel) of input
’input_shape’: (224, 224, 3),

A sequence, e.g. list or range, containining the indices for the
samples used for validation.
’image_indices’: range(1, 50001),

batch size for activation calibration
’calibration_batch_size’ : 100,

The folder containing input samples (file type png or jpg)
’validation_samples’: ’path/to/validation_set/samples/’

The file containing ground-truth labels for each sample.
’validation_labels’: ’path/to/validation_set/ground_truth_labels.txt’

The file containing the name of each label (optional)
’label_names’: ’path/to/validation_set/label_names.txt’

}

54

Appendix B

Inference Accuracy Stats During Runtime

Below is an example of inference output when executing QPANN.

########## ILSVRC2012_val_00006899.JPEG ##########

> Recreated Model Prediction : laptop (23.5890%) <

> TFLite Model Prediction : gong (23.4375%) <

> Reference Model Prediction : notebook (29.7965%) <

> Ground Truth : notebook <

########## ILSVRC2012_val_00006900.JPEG ##########

> Recreated Model Prediction : Rhodesian ridgeback (54.0703%) <

> TFLite Model Prediction : Rhodesian ridgeback (69.1406%) <

> Reference Model Prediction : Rhodesian ridgeback (75.1466%) <

> Ground Truth : Rhodesian ridgeback <

55

B. Inference Accuracy Stats During Runtime

######################################
| Batch Accuracy Score: 100 samples |
| Recreated model |
| > Top 1: 61.0000 |
| > Top 5: 77.0000 |
| TFLite model |
| > Top 1: 57.0000 |
| > Top 5: 79.0000 |
| Reference model |
| > Top 1: 59.0000 |
| > Top 5: 81.0000 |
######################################
######################################
| Total Accuracy Score: 6900 samples |
| Recreated model |
| > Top 1: 63.9130 |
| > Top 5: 85.4783 |
| TFLite model |
| > Top 1: 67.8841 |
| > Top 5: 87.7536 |
| Reference model |
| > Top 1: 68.8116 |
| > Top 5: 88.2174 |
######################################

56

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-11

EXAMENSARBETE Quantization Profiler for Artificial Neural Networks
STUDENTER Martin Lindström, Jakob Hök
HANDLEDARE Jörn Janneck (LTH), Axel Berg (ARM Sweden AB), Kevin Wohnrade (ARM Sweden AB)
EXAMINATOR Flavius Gruian (LTH)

Optimeringsverktyg som effektiviserar
AI på inbyggda system

POPULÄRVETENSKAPLIG SAMMANFATTNING Martin Lindström, Jakob Hök

Optimering av slutledning för artificiella neurala nätverk är ett måste vid exekvering
på inbyggda system på grund av begränsad datorkraft. Examensarbetet har utvecklat
ett verktyg som ska hjälpa utvecklaren att analysera avvägningen mellan prestandaop-
timeringar och slutledningsförmåga.

Maskinlärning och AI etablerar sig allt mer i
samhället, där de används till att ge videorek-
ommendationer, vänförslag på sociala medier,
självkörande bilar, röstassistenter och mycket
mera. “Artificiella neurala nätverk“ (ANN) är ett
vanligt förekommande uttryck som är en mjuk-
varuteknik som använder sig av nätverk med mod-
uler. Dessa nätverk tränas för att kunna känna
igen och identifiera domänspecifika mönster. Efter
träning används de i flera användingsområden,
däribland bildklassificering. Vid bildklassificering
skickas en bild in till nätverket som sedan gör en
kvalificerad gissning på vad som visas på bilden;
om exempelvis nätverket har tränats för att kunna
särskilja hundar ifrån katter så skulle en modul till
exempel kunna ha lärt sig hur en nos ser ut och
en annan modul hur en svans ser ut hos de två
olika djuren. Efter denna typ av igenkänning tas
ett beslut av nätverket om det faktiskt är en hund
eller en katt. Fundera på hur du själv skiljer på
en hund och en katt!
Att skicka in en bild till ett ANN för att

få ett utsägande kallas slutledning. Eftersom
forskningen kring ANN har ökat explosionsartat
det senaste decenniet, mycket tack vare tillgången
på stor mängd träningsdata och kraftfullare da-
torer, har efterfrågan på tekniken ökats. Dessu-

tom finns det ett behov av att kunna behärska
tekniken på maskiner med begränsad datorkraft,
så som mobiltelefoner. Slutledning kräver mycket
datorkraft och därav för att köra det på begränsad
hårdvara, behöver utvecklare optimera nätverken
till att bli snabbare och effektivare, och samtidigt
bibehålla tillräckligt bra slutledningsförmåga.
Ett sätt att optimera ett ANN för en mobil-

processor är att utföra beräkningarna enbart med
heltal istället för decimaltal, eftersom decimal-
tal är mer krävande att hantera för en dator.
Vad som är intressant för en utvecklare är att
enkelt kunna testa och analysera hur olika genvä-
gar och optimeringar påverkar slutledningsförmå-
gan, för att till slut kunna framställa en modell
över avvägningen mellan prestandaoptimeringar
och slutledningsförmåga.
Vårt examensarbete gick ut på att skapa ett

mjukvaruhjälpmedel till utvecklare som vill kunna
undersöka olika typer av optimeringar för ett
ANN. Programmet kallas QPANN och låter en
användare enkelt ändra på moduler i ett ANN
för att köra enbart heltalsberäkning, m.m. för
att sedan se hur slutledningsförmågan förändras.
QPANN har stor utvecklingspotential, eftersom
det går att programmera egna operatorer för att
testa hur det påverkar slutledningsförmågan.

	Introduction
	Division of Work
	Research Questions
	Related Work

	Background
	Artificial Neural Networks (ANN)
	Network Layers
	Bias Addition
	Top-N Accuracy

	MobileNet and ImageNet
	Quantization Design
	Uniform Quantization
	Quantized Matrix Multiplication
	Per-Layer and Per-Channel Quantization
	ReLU6 Within Quantized ANNs
	Batch Normalization Within Quantized ANNs

	Signal-to-Quantization-Noise Ratio

	Method
	Implementation
	Core Functionality
	Extended Functionality

	Conducting Experiments

	QPANN - The Software Framework
	Primary Functionality
	Fake quantization within QPANN
	Determining Quantization Parameters

	Supported Operators
	Hyper-Parameters
	Layers

	The SQNR-Recorder Module
	Configuring Inference

	Evaluation
	Experimental Setup
	Experiments

	Conclusion & Future Work
	Conclusion
	Future Work

	References
	Appendix Config Files Example
	Appendix Inference Accuracy Stats During Runtime

