
MASTER’S THESIS 2020

Data Optimization for a Deep
Learning Recommender System
Gustav Hertz

ISSN 1650-2884
LU-CS-EX: 2020-23
DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-23

Data Optimization for a Deep Learning
Recommender System

Gustav Hertz

Data Optimization for a Deep Learning
Recommender System

Gustav Hertz
gust.hertz@gmail.com

June 11, 2020

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Patrik Persson, patrik.persson@cs.lth.se
Emil Joergensen, emil.joergensen@ingka.ikea.com

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:gust.hertz@gmail.com
mailto:patrik.persson@cs.lth.se
mailto:emil.joergensen@ingka.ikea.com
mailto:flavius.gruian@cs.lth.se

Abstract

This thesis investigates the performance of a deep learning recommender sys-
tem based on the given training data. The recommender system used in this
thesis a Long-Short Term memory network for sequence prediction of item se-
quences, i.e purchases at an e-commerce website. First, the performance of the
recommender system, in this case, is defined as a combination of Precision, Cat-
alog Coverage, and Novelty. Then the performance as a function of the available
amount of training data is investigated. It is concluded that depending on how
one values the given performance metrics, there is an optimal amount of training
data, and increasing the size of the training dataset might reduce performance.
Secondly, how to handle an excess of training data is investigated, concluding
that more recent data leads to better recommender system performance. Finally,
how to use data from secondary markets when there is a lack of data for training
the recommender system is investigated. A similarity metric for purchase data
between markets is proposed and results are promising, although more research
is needed on this topic.

Keywords: MSc, LSTM, recommender systems, IKEA, data ethics, deep learning

2

Acknowledgements

I would like to thank Emil Joergensen, Balázs Toth, Sandhya Sachidanandan, and Martin
Tegner and the rest of the Data Science team at IKEA for the support and the great patience
during the work with this thesis.

I would also like to thank Patrik Persson for the great discussions during the process as
well as valuable feedback on the report.

Gustav Hertz
Lund, Sweden, 20th May 2020

3

4

Terminology

In this thesis we use some terms and abbreviations that require a short explanation.

• RS: Recommender System

• LSTM: Long Short Term Memory network, briefly described in section 2.3

• GCP: Google Cloud Platform, an service provided by Google for cloud computing and
storage.

5

6

Contents

1 Introduction 9
1.1 Research Questions . 10
1.2 Contributions . 11
1.3 Related Work . 11

1.3.1 Recommender Systems . 11
1.3.2 Evaluating a Recommender System 13
1.3.3 Learning curves in deep learning 13
1.3.4 Embeddings . 14
1.3.5 Data ethics . 14

2 Background 15
2.1 Recommender Systems . 15

2.1.1 Collaborative-filtering methods . 16
2.1.2 Sparsity and the Long tail . 16
2.1.3 The Cold-start problem . 17

2.2 Neural networks . 17
2.2.1 Loss function - Categorical Cross Entropy 18

2.3 Recurrent neural networks and LSTMs . 19
2.4 The LSTM as a Recommender System . 22

2.4.1 The existing IKEA implementation 23
2.5 Embeddings . 24

2.5.1 Vector representations of anything 24
2.5.2 Calculating similarities between vectors 25
2.5.3 Word embeddings . 26

2.6 Learning Curves in Deep Learning . 26
2.7 Metrics for evaluating the performance of a Recommender System 27

2.7.1 Precision@k . 28
2.7.2 Catalog coverage . 29
2.7.3 Novelty . 29

2.8 The importance of recent data when developing Recommender Systems . . 29

7

CONTENTS

3 Method 31
3.1 Tools and workflow . 31
3.2 Performance as a function of dataset size 32
3.3 Down-sampling on excess data . 33
3.4 Up-sampling using data from other markets 33

4 Results 35
4.1 Performance as a function of dataset size 35
4.2 Down-sampling on excess data . 38
4.3 Up-sampling using data from other markets 42

5 Discussion 47
5.1 Performance as a function of dataset size 47
5.2 Down-sampling excess data . 48

5.2.1 Down-sampling by removing shorter sequences 48
5.2.2 Down-sampling by removing older datapoints 49

5.3 Up-sampling using data from other markets 49

6 Summary 51
6.1 Conclusions . 51
6.2 Future Work . 52

6.2.1 Online evaluation . 52
6.2.2 Biases introduced when customers opt-out of data collection 52
6.2.3 Further research on a Similarity metric between markets 53

References 55

8

Chapter 1

Introduction

Recommender systems (RSs) for personalized content are a huge part of our online experi-
ence today. They are algorithms and techniques that suggest what items might be of interest
to a particular user. The items suggested can be anything; products to purchase, links to click
on or music to listen to. Examples of when these algorithms has been used are personalized
playlists of songs on Spotify or "Customers who bought items in your cart also bought"-list on
Amazon [36].

The idea of RSs originates from the observation that individuals tend to rely on recom-
mendations from others when making decisions [36]. This is particularly important when the
number of available options is too large for the average user to be able to consider them all,
which is the case for services such as Youtube, Netflix, etc. From an e-commerce perspective,
this means showing products to users which they probably would not have found themselves
but are likely to appreciate. A successful RS in e-commerce helps customers make better
decisions online and thereby increase user satisfaction while also increasing revenue.

In this thesis, we study how to optimize the training data for an RS used in production
at the IKEA online store. This particular RS is based on a type of recurrent neural net-
work known as a Long Short Term Memory (LSTM) network. This type of deep learning
architecture is specialized in sequence prediction, and in this implementation, it predicts the
continuation of product sequences. Every purchase is modeled as a sequence of items. The
model is trained to, from a sequence of items that have been added to the cart, predict what
item that is most likely to be the customer’s next purchase. This is a type of RS that does not
require extensive user profiling, as it can generate recommendations based on only data from
the current user session.

RSs for personalized recommendations are in general based on data generated by the
users, such as browsing patterns, purchase history, and item ratings [36]. This poses some
ethical di�culties as the data collection, what the data is used for, and its potential side
e�ects have surpassed the understanding of the average consumer. Privacy has been one of
the areas that have been discussed in connection to the ethics of data collection [44].

IKEA and Ingka Group have taken a unique standpoint on this matter where they promise

9

1. Introduction

to provide customers with control and accessible information about how data is handled, giv-
ing customers the ability to make informed decisions about their data [15]. Customers should
be aware of what data is being collected and for what purpose while having the ability to deny
data collection and thereby personalization of their shopping experience. When giving cus-
tomers the option to opt-out of personalized content and the collection of their data, it is
reasonable to assume that some customers will, and as consequence, the amount of relevant
collected user data will decrease. The user data is necessary to build well-functioning RSs,
and a decrease of the available amount of data poses a potential hindrance to the development
of these.

It is widely assumed that the performance of deep learning networks, such as the LSTM
used in this thesis, is an increasing function of the amount of available data to train the net-
work on [17]. However, the performance of RS is not only a question of prediction accuracy,
as the most accurate recommendation might not be the most useful one. An example of
this can be taken from movie recommendations; If a user has watched Harry Potter and the
Philosopher’s Stone the most accurate recommendation might be the sequel, Harry Potter and
the Chamber of Secrets, but it is likely that the user was already aware of this movie and planned
on watching it anyway. This makes the recommendation accurate without being useful and
providing any value for the user or increased revenue for the provider. Therefore other met-
rics for evaluating RSs, focusing on enhancing both customer experience and revenue, also
have to be considered such as catalog coverage and novelty [10, 3].

On the other hand, if metrics such as novelty and catalog coverage were to be maximized,
randomly sampled recommendations from the catalog would be the best possible RS. These
recommendations would be very novel and cover the entire catalog, but most likely useless
and without any accuracy at all. It is apparent that there is a trade-o� between accuracy-
metrics and diversity metrics such as novelty and catalog coverage [43].

In this thesis, with IKEAs ambitious standpoint regarding data ethics as the main moti-
vator, we investigate how the performance of this particular RS is a�ected by the data used
for training, hoping to answer how to handle both excess and shortage of relevant user data.

1.1 Research Questions
Giving customers control of their data and giving them the option to opt-out means less
feedback and impacts the training of models. The main research questions to be answered in
this thesis can thereby be formulated as below.

• RQ1: How is performance of this particular RS a�ected by the amount of available
training data?

Given that there seems to be a trade-o� between accuracy focused metrics and diversity-
focused metrics which are both included in what we consider good RS performance we try
to answer:

• RQ2: Is there an optimal amount of training data that gives the best overall RS per-
formance?

And in relation to these question we also try to answer the two following research ques-
tions:

10

1.2 Contributions

• RQ3: If there is more data available on a certain market than necessary to reach su�-
cient performance, is it possible to select a more relevant subset of this data to achieve
even better performance?

• RQ4: If there is less data available on a certain market than necessary to reach su�cient
performance, is it possible to complete the data using data from a secondary market?

1.2 Contributions
This thesis aims to make the following contributions:

• Evaluate the performance of an LSTM recommender system as a function of the avail-
able training data.

• Investigate how to select the most useful subset of a dataset when there is an excess of
training data for a recommender system.

• Propose a metric for measuring similarities between markets, based on purchase be-
havior.

• Evaluate the possibility of using data from secondary markets to build recommender
systems in markets where there is a lack of data.

1.3 Related Work
1.3.1 Recommender Systems
In this work the performance of RS as a function of the available training data is investigated.
The field of RSs is huge and a vast number of approaches and algorithms exists.

With the rise of the internet for personal use in the early 1990s the need for RSs also
increased. The idea in the earliest stages was that humans undoubtedly rely on the opinions
of our peers in decision-making and that the internet needed help in navigating increasing
information overflow. In light of this, the early RSs were developed, starting with various
variations of collaborative filtering algorithms. Early examples are Tapestry [11] in 1992 for
filtering among incoming emails and Group Lens [35] in 1994 designed to recommend online
news articles. Collaborative filtering aims to predict how a user will appreciate an item based
on how other users with similar tastes have appreciated the item before. Which users who can
be considered similar is determined by similarities in earlier usage patterns, such as similar
ratings of other items.

Collaborative filtering algorithms exist in many variations and have significantly devel-
oped since the early days, with one notable implementation being the item-item collaborative
filtering algorithm used to produce product recommendations at Amazon [27] from 2003.

In 2006 Netflix released a dataset containing 100M movie ratings and putting a 1M USD
reward for the team that could produce the most accurate RS based on this dataset. The
competition sparked the development of RSs and various collaborative filtering algorithms
in focus with more than 20 thousand teams registering for the competition [2].

11

1. Introduction

In 2004 matrix factorization (MF) for collaborative filtering was introduced [20, 29],
further improving the accuracy of collaborative filtering types of RSs. Matrix factorization
techniques compared to classic collaborative filtering have the benefits of higher accuracy,
constant time prediction, and compact model representation. There are several types of ma-
trix factorization models, such as Singular Values decomposition (SVD), Probabilistic Matrix
Factorization (PMF), and Principal Component Analysis (PCA). The core idea behind matrix
factorization is to factorize the user-item matrix containing information about interactions
between all users and items into a user-matrix with a set of k features for each user and an
item-matrix with k features for each item. Using the user-matrix and item-matrix it is then
possible to compute predictions for how each user will appreciate each item.

In 2007 the use of Restricted Boltzmann Machines, a generative artificial neural network,
for collaborative filtering was introduced, with the motivation that most existing collabora-
tive filtering algorithms struggle to handle very large datasets, something RBM’s excels at.
The first implementation was done using the dataset from the Netflix Prize [37].

Another popular type of RS is the graph-based approach where each item is represented
as a node in a graph. The connections between nodes are determined and given weights
(probabilities). There are several methods of how to determine the weights on these con-
nections, e.g. based on how often items are purchased together or based on deep learning
embeddings. From this graph, there are several methods to compute recommendations, e.g.
using Random Walk over the graph, and computing similarities between the walk of two dif-
ferent items. These RSs have the benefit of being computationally light in real-time and are
able to produce recommendations with very low latency, without the need for data about the
specific user [21]. A notable implementation of a graph-based RS is Pixie by Pinterest from
2018, which can produce image recommendations in real-time from a database containing
billions of images [7].

RSs using recurrent neural networks such as Long Short Term Memory or Gated Recur-
rent Units have a slightly di�erent approach based on sequences. Given a sequence of items,
e.g. items added to cart on an e-commerce website, they predict the most likely following
item in the sequence. This approach does not require user profiling and can produce rec-
ommendations based on data from the current session. These RSs have shown to be very
e�ective in previous research such as [18], where the authors use a Gated Recurrent Unit
(GRU) on session data from two di�erent sets of data, one of them being click-stream data
from an e-commerce site, similar to the datasets used in this thesis. GRU is a similar tech-
nique to LSTM, both are recurrent neural networks. The LSTM has a slightly more complex
architecture, explained in section 2.3.

The recurrent neural network architecture behind the LSTM was introduced in 1997 in
[19] and has since been able to achieve astonishing results for time series prediction within
a range of fields apart from RSs such as text generation [23], music generation [22], language
translation [5], etc.

There are a plethora of approaches to RSs within the field of deep learning and recently
it has been discussed whether these novel approaches are better than simpler algorithms. In
2019 the progress made by these novel approaches was questioned in [6], as many of them were
not possible to recreate and even fewer managed to outperform simple baseline algorithms.
The authors stressed the importance of the work being reproducible and good baseline mod-
els for comparison.

Lastly, we can conclude that there are many options when choosing an algorithm for an

12

1.3 Related Work

RS. In this thesis, we are limited by the lack of extensive user profiling. Without being able
to connect di�erent sessions by the same user, finding relevant similar users based on a single
session is not feasible. This makes all classical collaborative filtering methods unsuited for
this specific task. Without extensive user profiling, the approaches using recurrent neural
networks or graphs are most suited. In this thesis we work with a recurrent neural network,
however, a graph-based approach would also be a possibility for this type of RS.

1.3.2 Evaluating a Recommender System
This work relies heavily on o�ine metrics for evaluating RSs. The choice of what metric to
use is therefore of great importance for the results. How to evaluate an RS using prerecorded
o�ine data has been discussed heavily within the field. It has been suggested that simple
accuracy metrics cannot fully describe the success of an RS. In [30] the authors suggest that the
accuracy focus within the field has hurt development. In [3] the authors suggest Novelty and
Diversity as other important metrics for o�ine evaluation. In [10] the authors suggest two
other metrics, Catalog Coverage and Serendipity while concluding that there is no perfect
metric and that every RS designer has to choose what metrics to optimize on depending on
how they would like the RS to perform. In [43] the authors conclude that there is a trade-o�
between diversity metrics and accuracy metrics. If an RS were to be optimized on diversity
without considering accuracy at all, selecting items by random would be su�cient. While
an RS optimized on accuracy would trend towards only recommending the most sold items
as they are more likely to be what the user actually bought. The authors conclude that the
trade-o� between these two important aspects of an RS and that the designer of the RS has to
decide on what trade-o�s to make, depending on the specific use case and implementation.

These studies all lead us to the conclusion that RSs cannot be judged by one metric alone.
In this work we will, therefore, use a combination of a few metrics, capturing both accuracy
and diversity, to judge the performance of an RS.

1.3.3 Learning curves in deep learning
In this work, the performance of a deep learning RS as a function of the amount of available
data is investigated. The performance of a generic learning system, such as a neural network,
as a function of the available amount of training data, has been referred to as its learning
curve. In 1997 it was proposed in [1] that the entropic loss of the system was proportional as
ε(m) ∼ d/m where d is the number of parameters and m the amount of available data. In 2017,
the learning curves of deep learning networks were further studied in [17] where the authors
implemented four di�erent deep learning networks, where one of them was an LSTM for
language modeling, similar to what we have used for product recommendations in this thesis,
and trained them on datasets of di�erent sizes. They concluded that the performance of deep
learning networks scaled predictably and proved a power-law (ε(m) ∼ amβ) generalization
error scaling as a function of the dataset size.

These studies suggest two di�erent, although very similar, relationships between perfor-
mance and the available training data. The more recent of them have performed empirical
research using more recent techniques within deep learning and having access to powerful
computing resources which were inaccessible in 1997. We, therefore, consider it more likely
that the findings in our thesis will conform to those in [17]. However, since theses studies

13

1. Introduction

only consider generalization error and loss it is not fully applicable on RSs as the definition
of performance must be wider, considering other metrics as well.

1.3.4 Embeddings
In this thesis embeddings (vector representations) are used for finding similarities for ab-
stract things such as buying behavior on a specific market. There are several approaches to
generate such embeddings, and depending on the selected approach results may vary vastly.
Using a neural network to create embeddings of an item is a popular technique within the
field of Natural Language Processing, with models like Word2Vec [32] and GLOVE [34] pro-
viding vector representations of words capturing their semantic meaning. This technique
can be applied to many more categories such as images, songs, videos, and products. Meta-
Prod2Vec is a method to generate product embeddings for RSs introduced in [40], using a
similar strategy as in Word2Vec with the addition of a product attribute such as category. In
this thesis, we use embeddings to compare markets, which are represented as sets of purchase
sequences, much like a document that contains sets of word sequences (sentences). Doc2Vec
is a method for representing documents as embeddings introduced in [26], used to classify
text in document categories such as positive or negative.

The results from Word2Vec, Meta-Prod2Vec, and Doc2vec acknowledge that embeddings
from deep learning networks work well to capture information about an item based on the
context. For the applications in this thesis, both Meta-Prod2Vec and Doc2Vec could poten-
tially be su�cient solutions. However, these require implementations of new deep learning
models unrelated to the RS. Instead, we use the LSTM network used for the RS to generate
embeddings.

1.3.5 Data ethics
Data ethics is the motivation behind this work, in the sense that we investigate how giving
customers more control of their data might a�ect RS performance, as less data inevitably will
be collected. Ethics is a topic widely discussed within the field of data science today as privacy
and integrity might be compromised without the average person being aware of how his or
her data is being used. In [44] the author suggests that Big Data might compromise traditional
assumptions of individuality, free will, and privacy. It is stressed that the population needs to
be educated in the consequences that the digital footprint left behind by each and everyone
can have. This discussion has been actualized in media recently with projects such as The
Privacy Project by The New York Times [39]. The authors describe how positioning data is
collected without the user’s knowledge and then sold to third parties without restrictions on
how its used. This highlights how data even though it has been anonymized often can be
used for identifying an individual. IKEA has the ambition to educate and make the average
consumer aware of what data is being collected and for what purpose, giving back control
to the users. Personalization based on user data should be a choice made by each and every
user, as stated in [15].

These works highlight how topical this subject is. The rise of commercialized Big Data
and Artificial Intelligence has been rapid, leaving the understanding of the average consumer
behind. In this work, we touch on this by questioning the necessity of hoarding data without
the consent of a well informed, aware consumer.

14

Chapter 2

Background

In this chapter, we present a brief description of some key concepts in this thesis. It is in-
tended to be an introduction to the field as well as a background necessary to understand the
thesis.

2.1 Recommender Systems

The main purpose of an RS is to produce meaningful content recommendations to users. The
RSs help users discover new and relevant items and thereby enhance the user experience while
increasing revenue for the company. Examples of notable RSs are the algorithm suggesting
movies to users on Netflix, the algorithms that build personalized playlists on Spotify, and
algorithm generating the "Customers who bought this item also bought"-recommendations on
Amazon. These kinds of systems are of huge importance on the web today. 35% of purchases
on Amazon and 75% movies watched on Netflix are results of suggestions by RSs [28]. Users
are often presented with an overwhelming amount of choices and it can be very di�cult
to navigate this overflow of options for most. Therefore RSs are of great importance in e-
commerce.

There are several di�erent types of algorithms for RSs and which one to use depends
on what to be recommended, to whom, and what data that is available. Most RSs aspire to
develop notions of a�nity between users and items and recommend items that match the
user particularly well. There are three main approaches, the content-based recommendations,
the collaborative filtering methods, and the hybrid systems which are a combination of the
two [31]. In this thesis, we use a deep recurrent neural network approach to the collaborative
filtering technique. Below, we present a brief overview of collaborative filtering techniques.

15

2. Background

2.1.1 Collaborative-filtering methods
Collaborative filtering methods work by collecting data about user interactions with items,
such as ratings, views, purchases, etc. and then explore similarities in usage patterns. In user-
user collaborative filtering similarities between users are analyzed and users with similar
preferences are identified. These similar users are often referred to as neighbors. Based on
the preferences of the neighbors to a particular user, recommendations can be produced by
analyzing which items that are highly regarded by the neighbors are then likely to be of
interest to the user in question.

There’s also item-item collaborative filtering that analyses similarities between items.
Similarities between items are determined by usage data and items with similar usage pat-
terns are considered similar. This technique does not require as much information about a
user as the user-user collaborative filtering as its not necessary to determine similar users,
instead its only necessary to identify a small set of items that the user has enjoyed and then
recommend similar items. In online applications, the item-item approach often works better
as there are fewer items available than users in the system, in practice, this leads to a faster
system and often more accurate recommendations. There are several techniques and algo-
rithms that implement collaborative filtering type of RS, utilizing techniques such as, matrix
factorization, restricted Boltzmann machines, recurrent neural networks, etc [31].

2.1.2 Sparsity and the Long tail
One of the greatest challenges facing the development of RS is data sparsity, and the RS in
this thesis is no exception. This is due to most users not interacting with most items, and
the vast majority of the interactions are only with a few items, the most popular ones. This
causes problems when trying to find similar users and items based on interaction data, as
with di�erent collaborative filtering techniques. The probability of finding users or items
with similar interactions decreases when less data is available [31].

Figure 2.1 describes the sales distribution on IKEA.de. It is clear that very few items sell in
great quantities while most sell less regularly. Understanding the dynamics of the sales on an
e-commerce platform is necessary to understand the workings of the diversity metrics used
in this thesis, catalog coverage, and novelty (described in section 2.7) and the choice of RS
algorithm made by the developer.

In this particular case, 50% of the total number of items sold is just composed of 5.4% of
the products. This condition with a small number of very popular items and the remaining
items (the vast majority) being less popular is called the Long Tail. A consequence of the sales
being unevenly distributed over the product space is that there is an excess of data about
the most sold products, but a significant shortage of data about the less popular products.
Good RSs helps users discover products that may be of interest to them from the entire
product space, not only among the most popular ones. It has been suggested that RSs that
premier more novel, or less known products to a higher extent may increase total sales [4].
This poses a great challenge to most RS as they are more likely to recommend products that
more frequently occur in the data, as the probability of finding similar items based on the
data increases when there is more data available.

16

2.2 Neural networks

0% 20% 40% 60% 80% 100%
Products

0.0

0.2

0.4

0.6

0.8

1.0

P
op

ul
ar

ity

The long tail plot

Figure 2.1: The long tail plot showing the popularity distribution
among products. The y-axis displays the product popularity scaled
between 1 and 0, and the x-axis displays the percentage of the prod-
ucts that reach given popularity or higher. Sales data from IKEA.de
has been used to produce this figure.

2.1.3 The Cold-start problem
Introducing new items and users to the system causes a problem to most RSs. This is due
to the lack of data concerning these new items or users. If there is no data about the users,
it is not possible to find suitable recommendations and if there is no data about a specific
item it will never occur in the recommendations. This is often referred to as the cold-start
problem. If we consider a user-user collaborative filtering system where the idea is to find
similar users (neighbors) based on usage patterns, but if there are no earlier interactions by
a user it is impossible to determine which other users that are similar.

Similar problems arise in item-item based collaborative filtering systems when there is no
usage data about a new item, which then will lead to that this item is not considered similar
to any other item and therefore never recommended. If an item is never recommended, the
time required to collect enough data for it to be included in the recommendation will be
significantly longer.

Content-based RSs do not su�er from the cold start problem in the same way as collaborative-
filtering approaches, as all the data needed are attributes of that specific item or user which
most often are added when the item or user is registered.

2.2 Neural networks
In this thesis, we use a deep recurrent neural network, LSTMs which are described in section
2.3, as an RS. To be able to understand these networks, some general knowledge about neural
networks is necessary.

Neural networks are a type of machine learning, in its earliest models designed to mimic
a biological neural network, such as the human brain. The network is built up from a series

17

2. Background

of non-linear elements (neurons). Each neuron takes an input, applies a weight, W , and adds
a bias, b, and then applies a non-linear activation function, f . See equation 2.1. Each neuron
takes several inputs and has a specific weight and bias for each input. There are a couple of
di�erent non-linear activation functions commonly used such as tanh (Hyperbolic tangent)
and sigmoid among others, see equation 2.2 and figure 2.2. Each activation function takes
a single number and performs a fixed operation on it. Which one to use depends on the
specific use case. The sigmoid function is often used for models that predict probabilities
since it ranges between 1 and 0, while the tanh which ranges from −1 to 1 often is used for
classification problems.

Y = f (X ·W + b) (2.1)

f (x) = σ(x) =
1

1 + e−x f (x) = tanh(x) =
ex − e−x

ex + e−x (2.2)

4 2 0 2 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 Sigmoid
Hyperbolic Tangent

Figure 2.2: The Sigmoid and Hyperbolic tangent activation func-
tions commonly used in neural networks.

Neural networks are often structured as distinct layers of neurons stacked together, most
commonly fully connected layers which means that neurons are fully pairwise connected
between two adjacent layers. Therefore, outputs of neurons in one layer become inputs for
the neurons in the following layer. A simple neural network is described in figure 2.3.

The weights and biases are the learned parameters of the network and the learning hap-
pens when the network is trained on labeled training data using backpropagation. Backprop-
agation is an algorithm using stochastic gradient descent to calculate the gradient of a given
loss function (error) with respect to the weights. This is known as supervised learning, where
an input with a correct output is provided to the network which updates its parameters. Deep
neural networks can capture exceptionally complex patterns [24].

2.2.1 Loss function - Categorical Cross Entropy
The loss function is what the neural network is minimizing when training the weights using
stochastic gradient descent. In previous work, the loss of a neural network as a function of the
size of the available training dataset (the Learning curve) is described [17]. In this thesis, the

18

2.3 Recurrent neural networks and LSTMs

Hidden layersInput layer Output layer

Figure 2.3: A three layer (input layer does not count in accordance
with the convention) neural network with two hidden layers with 4
neurons each and one output layer of 4 neurons.

loss as a function of training dataset size when validated on a separate validation set is used
to compare the results with previous work. In the implementation used in this thesis a loss
function known as Categorical Cross Entropy is used [13]. It is also known as Softmax Loss
or simply Cross-Entropy loss. It is most commonly used for classification tasks where more
than one option among the possible classes could be correct. Categorical Cross Entropy is
defined in equation 2.3 where C is the set of all possible classes in the classification problem.
t is the target vector where all elements, ti are zero except for the ground truth tp = 1, si is the
score for that given class from the neural network. f (si) is the softmax activation function
which is a common activation function for the final layer in a classifying neural network as
it outputs a probability for each class between 1 and 0, and the sum of the probabilities for
all classes is 1.

CE = −
C∑
i

ti log (f (s)i) f (s)i =
esi∑C
j es j

(2.3)

2.3 Recurrent neural networks and LSTMs
Recurrent neural networks are a type of neural network which utilizes previous outputs from
the neural network as an input. This is particularly useful when predicting time series and
other sequences. In this thesis, a recurrent neural network is used as an RS. Understanding
the di�erence between an ordinary neural network and a recurrent neural network is vital
to understand why they are a good fit for an RS based on purchase sequences.

Traditional neural networks do not consider earlier results which makes them less suited
for modeling time series, where the current state might depend on the previous state. The
recurrent neural network utilizes the previous states for predicting the following. Figure 2.4
gives a graphical representation of a generic recurrent neural network. Each cell, A, is a part
of the neural network which considers some input xt and outputs a value ht and passes the

19

2. Background

output to the next cell in the network, which takes the following input and so on.

A

h0

X0

A

h1

X1

A

h2

X2

A

ht

Xt…

Figure 2.4: The architecture of a generic neural network, where the
output of one cell is passed on to the next. This enables learning from
sequences of data, where the one data point in some way depends on
the previous ones. Image adapted from [33]

A powerful version of recurrent neural networks are Long Short Term Networks, referred
to as LSTMs, which are capable of capturing long term dependencies. Long term dependen-
cies are connections between data points that are adjacent to each other. An example from
language modeling is the sentence "When I traveled to Paris last year, I learned to speak French".
From the context, it is obvious to a human that the language the person learned was French,
because he or she went to Paris. For a neural network, this is really hard if it is not able to
keep the geographical information from word 5 in the sentence until it needs to predict the
language for word 12. LSTMs can capture these long term dependencies better than other
types of recurrent neural networks which makes them remarkably powerful for a variety of
applications, from financial predictions and language models to RSs. Figure 2.5 describes
the dynamics of an LSTM-cell, denoted as A in figure 2.4. This is the architecture of the
recurrent neural network in the RS used in this thesis, and to be able to understand why it
is an e�cient algorithm for this purpose, a general knowledge about the algorithm in each
LSTM-cell is necessary. Each LSTM cell, see figure 2.5 and equation 2.4, consists of 4 neural
network layers, connected in a slightly di�erent way than the ordinary feed forward neural
network presented in figure 2.3.

The reason LSTMs are able to model long term dependencies successfully is the cell state,
denoted as C in figure 2.5 and equation 2.4. It runs through the entire LSTM chain with
a slight modification in every cell and therefore it can transport and preserve information
over long distances in sequences. Information can be added and removed from the cell state
through gates, and the LSTM cell has three di�erent gates. Gates are operations that select
what information to let through to the cell state.

The first gate in the LSTM is the forget gate, labeled as ft in equation 2.4. This is where
some information from the incoming cell state can be removed, decided by the sigmoid layer
in the forget gate. The layer considers ht−1 and xt and the sigmoid function outputs a number
between 1 and 0 for all values in the cell state, where a 1 completely preserves the information

20

2.3 Recurrent neural networks and LSTMs

ht

Xt

+

tanh

x

tanh

σ

xx

σ σ

x
Ct-1 Ct

it ot

ht-1 ht

ht

Ĉt

σ

σ

Neural network
layer

+
Pointwise
operation

Vector transfer Concatenation Copy

Figure 2.5: The architecture of an LSTM cell in a neural network.
Image adapted from [33]

and a 0 deletes the information.

ft = σ(W f · [ht−1, xt] + b f)
it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)
Ct = ft ∗Ct−1 + it ∗ C̃t

(2.4)

The second gate is known as the input gate and it is the combination of it and C̃t in equation
2.4. it is often referred to as the input gates activation vector as it decides which values to
update the cell state with and to what degree, from 1 to 0. The values to update the cell state
with comes from the tanh layer, denoted as C̃t . The final operation in the input gate is adding
it ∗ C̃t to the cell state.

o(t) = σ(W f · [ht−1, xt] + bo)
ht = ot ∗ tanh(Ct)

(2.5)

The output of the LSTM-cell, ht , is computed in the output gate, described in equation 2.5.
The output is a filtered version of the cell state, ot is the activation vector which decides what
to keep from the cell state to the output. The cell state is put through a tanh operation to
push the values between −1 and 1 and then multiplied with the activation vector, ot .

The equations 2.4 and 2.5 describe the forward pass in one LSTM-cell. The chain of
LSTM cells are often between 20 to 100 cells long depending on the application [33].

21

2. Background

2.4 The LSTM as a Recommender System

The LSTM networks described above can be applied to RSs advantageously when there is a
lack of user profiling, as it is possible to make recommendations based on only data from the
current session without any specific knowledge about the user. It is an implementation of an
item-item based RS which utilizes information about the items, instead of information about
the specific user to whom the item is being recommended. In this case, the information about
an item is which context it occurs in, i.e which items that frequently occur together. This
means that this particular RS su�ers from the cold start problem with new items, as there
is no information about what context a new product is usually bought in. The network is

1 34 0 2

Figure 2.6: One possible sequence of products bought together. Each
product has a unique product ID and the sequence of products is
represented as a vector of these IDs.

trained on purchase data from an online store. Every purchase can be converted to a sequence
with the order of the purchased items being based on in which order they were added to
the cart, as in figure 2.6. Each product is given an ID number from in the range from 0 to
|items in catalog|−1. Indexing starts from 0 instead of 1 as it is intended to be used as indexes
in a vector.

The sequences contain plenty of information. In the case of the sequence in 2.6 there is
value in knowing that the chair follows the plant and after a plant and a chair the drawer is a
likely next purchase. Therefore it is favorable to split the sequence into as many subsequences
as possible, with the shortest sequence containing only 2 items, this is illustrated in figure 2.7.
This way, one purchase with 5 items contains 4 subsequences worth using as data points for
training the LSTM-network. To prepare the data for training the network, each purchase is
divided into as many subsequences as possible and in each sequence the last item is selected
as the label while the rest is given as the input to the LSTM. This input/target partition is
highlighted in figure 2.7.

To produce product recommendations the trained LSTM is given a sequence, with mini-
mum length 1 of products that a user has added to the cart. The LSTM then outputs a vector
with length |items in catalog| −1 with the estimated probability for each item being the next
purchase at that index in the vector, illustrated in figure 2.8 As it is often desired to recom-
mend more than one item at the time, to increase the likelihood of giving the user a useful
recommendation. This is done by selecting the k most probable items, where k is the number
of items to be presented to the user.

22

2.4 The LSTM as a Recommender System

TargetsSequence of items TargetsSequence of items

4

4

4

4 1

1

1

1

3

3

3

0

0 2

Figure 2.7: The di�erent subsequences that can be gathered from
purchase in figure 2.6 and then used to train an LSTM RS.

421 3

0.13 0.91 0.210.97

0

0.944 1
LSTM

Figure 2.8: Given the input of sequence the sequence plant then chair
the LSTM would output a probability vector with the probabilities
for each product in the catalog being the next purchase.

2.4.1 The existing IKEA implementation
The RS described in the previous section has been implemented by the Recommender System
team at IKEA using Keras and Tensorflow. The implementation as presented by Keras is
described in figure 2.9.

The input is a sequence of 64 products. This poses a problem in the sense that not all
purchases contain the same number of products (64 in this case). To solve this all sequences
shorter than 64 items are padded with zeroes. This makes a purchase containing 20 products
represented by 44 zeroes and then the 20 products.

The first layer is an embeddings layer. The details of embeddings are described in section
2.5, generating a sequence product embeddings with 20 dimensions per product which are
then the input to the LSTM layer. Using embeddings as inputs to the LSTM instead of only
the product ID has the benefit that information about relations between products is included
when using embeddings the model is made aware that two di�erent chairs are similar. If
only product IDs are considered, there is no information that makes a chair more similar to
another than something completely unrelated like a fork. Using embeddings like this was
shown to substantially improve recommender performance in [38].

The LSTM layer has 50 LSTM-cells and their structure is described in detail in section
2.3.

The output layer has the length of the number of products included in the dataset. Each

23

2. Background

neuron in the layer outputs the probability of this particular product being the following one
given the input sequence.

Layer (type) Output Shape Param #
===
embedding_1 (Embedding) (None, 64, 20) 197840

lstm_1 (LSTM) (None, 50) 10650

dense_1 (Dense) (None, 9892) 504492
==
Total params: 712,982
Trainable params: 712,982
Non-trainable params: 0

Figure 2.9: The model summary printed by the summary() method
in Keras.

2.5 Embeddings
Embeddings are a technique to map an item to a vector with numerical values. The item
could be a word, a product, a sequence, or anything else that can be an input to a neural
network. In this thesis, we use embeddings to describe the purchase behavior of customers,
to compare the purchase behavior of customers in di�erent markets.

The numerical values in the vector are meant to capture information about the item based
on its context, and if successful enables comparing similarities between items. Examples of
this are the words Hike and Trek which are words very semantically similar, but very di�er-
ent in spelling. If an embeddings model has been able to capture semantically similarity it
should consider these words very similar. Embeddings are produced by neural networks, of-
ten trained to perform another, related task. The network is stripped of one or more layers,
and the embedding vector is the output of one of the hidden layers in the network. The di-
mensions of the embedding are therefore equal to the number of neurons in that particular
layer.

2.5.1 Vector representations of anything
An example of how things can be represented as numerical vectors could be persons and their
attributes. An attribute could be humor, generosity, temperament, etc. In figure 2.10 four
persons are described as vectors of five attributes. Each attribute has a score between 1 and
0. This range can also be between -1 and 1 or any other range depending on the activation
function in the neural network. Five dimensions are not enough to capture a full personality
or the full semantical representation of a word, but if increased to between 100 and 1000
dimensions, a lot of information can be stored.

Each position in a vector represents how this particular person ranks on this specific
attribute. When these vectors are generated by a neural network, the values in cells do not

24

2.5 Embeddings

0.9 0.1 0.2 0.9 0.1

0.7 0.9 0.5 0.2 0.8

0.1 0.5 0.5 0.4 0.2

0.9 0.8 0.6 0.1 0.7

Person 1

Person 3

Person 2

Person 4

Attr
ibu

te
1

Attr
ibu

te
2

Attr
ibu

te
3

Attr
ibu

te
4

Attr
ibu

te
5

1

Figure 2.10: Five persons described as vectors containing their at-
tributes as a score in the range from 0 to 1

correspond to a specific attribute that can be interpreted by a human. Instead, it captures
an attribute important the network found important to consider when minimizing the loss
function.

2.5.2 Calculating similarities between vectors
Similarities between these vector representation of persons can be calculated using cosine
similarity. [14]

cosine similarity =
A · B
‖A‖ · ‖B‖

(2.6)

If this is applied to the persons in figure 2.10, and their made up personality vectors we obtain
the similarity metric in figure 2.11. Among these four persons, 2 and 4 are the most alike when
only considering these 5 attributes of a person.

This method of computing similarities between the vector representation of persons can
be applied to any type of embedding describing anything.

1 0.55 0.56 0.59

0.71 1 0.80 0.98

0.96 0.80 1 0.75

0.70 0.98 0.75 1

Person 1

Person 3

Person 2

Person 4

Pe
rs

on
 1

Pe
rs

on
 2

Pe
rs

on
 3

Pe
rs

on
 4

1

Figure 2.11: A similarity matrix comparing 4 di�erent persons using
cosine similarity on the numerical vectors (embeddings) describing
them in figure 2.10.

25

2. Background

2.5.3 Word embeddings
The most common application of this technique is word embeddings, where words are given
a vector representation to capture their semantic meaning, based on what context they occur
in. A commonly used model to do this is the Word2Vec algorithm. In the original Word2Vec
paper [32], two di�erent algorithms were proposed. For simplicity, only one of them, known
as Continuous bag of words, is described here. Word2Vec is used as an example to give a gen-
eral understanding of the concept of embeddings. Although Word2Vec is not used in this
thesis, the method of generating the embeddings is identical to what has been used here and
therefore suitable as an example of how to generate embeddings.

A neural network was trained to predict the missing word given the previous two and
the following two words, as described in table 2.1. The neural network learns what words
often occurs in what contexts and is thereby able to capture its meaning. An example of this
is the second sentence in table 2.1 where ten just as well could have been five and these words
should occur in similar contexts, and therefore ten and five are semantically similar.

Table 2.1: The data structure for training the continuous bag of
words model in word2vec.

Sentence Input Label
What does the fox say what, does, fox, say the
I found ten dollars today i, found, dollars, today ten
Some people like spicy food some, people, spicy, food like

The network is trained to perform a fake task, and when the training is done, the output
layer of the network is removed. This enables access to the output of one of the hidden layers,
and this is the numeric vector containing the semantic information about the word.

To demonstrate the function of this alogirthm one can take the vectors representing
France, Italy and Paris and compute Paris - France + Italy. The most similar word vector in
the dictionary to the resulting vector is Rome, proving that the embeddings have captured
the relationship between the words and their meaning [32].

2.6 Learning Curves in Deep Learning
Learning curves describe at what rate a learning machine, such as a deep learning network as
the LSTM, improves as the amount of training data increases. In this thesis, the performance
of a deep learning RS depending on what and how much training data it is provided with is
evaluated.

It is widely believed that increasing the amount of training data will improve the accuracy
of the deep learning networks. However, information gained by each added training example
will decrease as a function of the total amount of available training data.

In 1992 it was proposed that learning curves of learning machines universally would fol-
low the asymptotic function in equation 2.7 where e(t) is the average entropic error or loss, t
is the number of available data points for training and d is the number of parameters in the

26

2.7 Metrics for evaluating the performance of a Recommender System

model [1].

e(t) ∼
d
t

(2.7)

More recently it has been suggested that the error scaling would take more of a power-
law relationship between the error and the number of data points available for training as in
equation 2.8 where γ is the error when the model has exhausted its capacity, α is a constant
and the exponent β is an exponent in the range 0 > β > −0.5 [17].

e(t) ∼ αt−β + γ (2.8)

However, also according to [17] there are two regions of dataset sizes where the error does
not decrease when adding more samples. At first, when the dataset is very small, the model
will struggle to learn and only perform as well as random guessing. There is also a theoretical
limit to the lower bound of the error which the model is unable to improve upon. Due to noise
and other factors that cause imperfect generalizations, there will be an irreducible error, and
as the model approaches this limit the information gain per added sample will asymptotically
approach 0 [17]. These dynamics are sketched in figure. 2.6

Small data region Power law region Irreducible error
region

Irreducible error

Error of random
guessing

Figure 2.12: A sketch of law learning curves for deep learning net-
works. Image adapted from [17]

2.7 Metrics for evaluating the performance of a Rec-
ommender System

The best way to evaluate an RS is through online A/B testing on real users [16]. Due to time
constraints, it was not a possibility for this thesis. Instead o�ine evaluation using previously

27

2. Background

recorded user-data was used for evaluation in this thesis.
Evaluating RSs on recorded data o�ine is complex and non-obvious, and how its done

is dependent on what is considered good performance for a specific application [10].
Traditionally RS has been evaluated on accuracy and the main target has been improving

the accuracy. However, accurate recommendations are important but insu�cient to describe
the performance of an RS. One example of when accuracy is an insu�cient metric could be
if a user has watched The Lord of the Rings: The Fellowship of the Ring, recommending the
sequel The Lord of the Rings: The Two Towers will most likely be very accurate but since the
user with high likelihood already knew that there was a sequel and planned on watching it
anyway, the recommendation did not provide much value for the user. Several metrics are
related to accuracy but have slightly di�erent definitions, such as Mean Average Precision
and Precision@k.[30, 16]

It is therefore important to consider other aspects of performance as well to judge an RS.
Metrics that do not premier the most accurate recommendation but instead try to describe
value provided to the user in the sense that the recommendations are more diverse are among
others catalog coverage and novelty. These are described in detail in section 2.7.3 and 2.7.2

To be able to measure the performance of an RS, performance has to be defined. Con-
cerning which metrics to use there has been a lot of discussion within the field [10, 43, 3, 30]
and the answer is problem specific and therefore chosen with that specific problem in mind.
In this thesis, we consider three metrics, Precision@k, Novelty, and Catalog Coverage as de-
fined in the following sections. These have been chosen to be able to judge both based on how
close the RS predicts the truth (Preciscion@k) while also delivering useful, diverse, and valu-
able recommendations (Catalog Coverage and Novelty) to the users, that helps them navigate
among more than 20000 di�erent products.

We also consider the loss function, Categorical Cross Entropy described in section 2.2.1,
to be able to compare with previous work on learning curves as in [17, 1].

2.7.1 Precision@k
Most RS delivers more recommended items than just the one considered most likely. It is
common for an RS to recommend 2 − 6 items. A recommendation is considered successful
if any of these likely items are correct compared to which item the user actually watched or
bought. We use a slightly modified version of the definition found in Practical Recommender
Systems by Kim Falk [8], as described by equation 2.9 where reck(i) is defined by equation
2.10 and N is the number of recommendations made when validated on a validation set. The
definition in Practical Recommender Systems varies in the definition of reck(i) where the defi-
nition in equation 2.10 only considers if one of the top k recommendations are relevant. The
definition in the book considers if more than one of the top k recommendations are relevant
recommendations. However, the available dataset in this thesis only allows comparing the
predictions with one true item, as the dataset only contains which item the customer actually
bought next. It is therefore not possible, from the available data, to determine if more than
one of the top k recommendations were relevant.

precision@k =
∑

i∈N reck(i)
N

(2.9)

28

2.8 The importance of recent data when developing Recommender Systems

reck(i) =
{

1 if any of the top k recommendations are correct
0 if none of the top k recommendations are correct (2.10)

2.7.2 Catalog coverage
The Catalog Coverage is the percentage of the available items in the catalog which are actively
being recommended by the RS. A recommender with a high coverage gives the user a more
detailed and nuanced picture of the product space and is, therefore, an indicator of quality
[10]. However, if one only considers Catalog Coverage when evaluating an RS it would be
su�cient to sample random products from the catalog as recommendations to reach 100%,
therefore Catalog Coverage alone is not very useful as a metric. It must be considered together
with other metrics.

In this thesis we use the definition of Catalog Coverage found in equation 2.11 [10]. I is
the total set of items in the product space and I j

L is the list of the top k most likely items
given by the RS for any given recommendation. N is the number of recommendations made
when the RS is validated on a validation set.

Catalog Coverage =

∣∣∣∪ j=1,N I j
L

∣∣∣
|I |

(2.11)

2.7.3 Novelty
Novelty is a metric that tries to capture how di�erent a recommendation is compared to
what the user has previously seen. Since the data analyzed in this thesis does not contain user
identifiers it is impossible to judge if an item has been viewed by the user before. Instead, the
popularity of the item is used as a measurement for novelty, less popular items are therefore
premiered in this metric.

We use the definition of novelty proposed in [3] which uses item popularity to determine
if a recommendation is novel or not. We then measure the average novelty of all recommen-
dations made in a validation set to be able to compare di�erent models, see equation 2.12.
p(i) is the relative popularity of i in the full dataset, which is measured as the sales frequency
of all items normalized between 1 and 0, i.e the most popular item has p(i) = 1. N is the list
of all items that has been recommended by the RS on the validation set.

novelty(N) = −
∑

i∈N log p(i)
|N |

(2.12)

2.8 The importance of recent data when developing
Recommender Systems

Seasonal preferences and an ever-evolving product catalog poses great challenges to RSs, as
older data will become less relevant with time. Products that sell very well during the months
before Christmas in countries where Christmas is celebrated might not be all that popular

29

2. Background

in the following months and colors that sell well in spring and summer might not be equally
popular in autumn.

When a new collection of products is introduced these all experience the Cold start prob-
lem described in section 2.1.3. If these products correspond to a high percentage of the sales,
the model trained on data from a period before they were introduced will produce less accu-
rate recommendations [25].

In [25] and in [42] the authors compare the performance of di�erent matrix factoriza-
tion RS on a dataset with movie ratings. When incorporating time as a factor and putting
more weight on recent data than older they saw a significant increase in prediction accuracy,
confirming the importance of having recent data available to make a recommendation from.
Similar performance gains are achieved in [9] where the authors suggest a version of classical
collaborative filtering where more weight was put on never data points.

30

Chapter 3

Method

There are plenty of hyper-parameters available to optimize in the LSTM, such as how many
LSTM units used in the network, the number of epochs used for training, and so on. These
hyper-parameters have not been optimized in this thesis. It is likely that the peak potential
of the RS is higher than what the results in this thesis show if hyper-parameters would be
optimized correctly, however, due to time constraints this has not been done.

To be able to judge RS performance, we defined the three relevant metrics to consider in
section 2.7. In the following experiments, these metrics have been used.

3.1 Tools and workflow
The LSTM RS has been implemented in Python using Keras running on top of Tensorflow.
Keras is a high-level package for the development of neural networks and deep learning de-
veloped by Google to enable fast experimentation. Tensorflow is an open-source platform
for machine learning, developed and published by Google.

Google Cloud Platform (GCP) has been utilized for all data storage, data processing, and
computation. GCP enables cloud computing and cloud data storage, eliminating the need
for local high power clusters and data centers.

The workflow of all conducted experiments has been the following:

• Extract relevant data from Big Query-database on GCP using SQL.

• Preprocess data to sequences suitable for LSTM training using the data preparation
tool Dataflow on GCP.

• Save training and validation datasets to files in Google Cloud Storage on GCP.

• Train the LSTM model on the relevant data using AI Platform on GCP and save the
trained model to Google Cloud Storage.

31

3. Method

• Validate model performance using the validation dataset and AI Platform for comput-
ing.

• Visualize results using python packages for plotting such as matplotlib and seaborn.

As the three di�erent parts of the thesis all aim to understand how the data selected for
the training of the model a�ects its performance, the variation has been in the selection of
the data. Choosing di�erent amounts of data, from varying markets, from varying periods
and using varying validation datasets.

3.2 Performance as a function of dataset size
To test RQ1 and RQ2, the LSTM RS was trained on di�erent sized datasets from a few
di�erent markets, generating di�erent RS models with identical settings.

The purchase data available from online sales at IKEA is structured market-wise and
therefore one LSTM RS was trained per market, with training data and validation data from
that specific market.

To obtain a better picture of the dynamics of this RS, the experiment was conducted on
data from six markets: Sweden, Canada, Poland, Spain, France and Germany. The markets have
di�erent amounts of data available and there is also a slight di�erence in the product catalog
for each market.

To split the available data from one market into a validation set and 10 training sets, first,
all available data for that specific market was extracted and divided randomly into 11 sets.
One of the sets was selected to be the validation set for that market. Then the 10 remaining
sets were combined to form the 10 training sets of di�erent sizes. This means that the 10%
set is a subset of the 20% set and both the 10% and the 20% sets are subsets of the 30% set
and so on. See figure 3.1

10% VALI
20% VALI

30% VALI
40% VALI

50% VALI
60% VALI

70% VALI
80% VALI

90% VALI
100% VALI

Figure 3.1: The structure of the datasets generated in each of the
di�erent countries. The full training set is the one named 100%,
while all the others are di�erent sized subsets. The same validation
set was used for all models trained on data from one market.

The models that had been trained on the di�erent datasets were then evaluated on the
validation set, using the same validation set for all models within a market and the metrics

32

3.3 Down-sampling on excess data

described in section 2.7. To be able to compare the results with the previous work on the
subject, discussed in section 2.6, an exponential function describing the loss as a function of
the number of data points in the dataset was fitted to the results.

3.3 Down-sampling on excess data
To testRQ3, if it is possible to select an optimal subset of the available data to achieve optimal
performance, two di�erent approaches were tested. First, the data were filtered based on
when it was recorded and secondly on the number of purchases in a data point.

As described in section 2.8, it has been known in the industry that more recent data
provides more value when training an RS than older data. By removing older data points
from the datasets, the training sets decrease in size but might be more relevant as the data is
more recent.

Another hypothesis on what data that contains the most valuable information for train-
ing the LSTM RS is that longer sequences of items capture purchase patterns better than the
shorter sequences. Therefore it is reasonable to believe that removing the shortest sequences
might increase performance.

Data was extracted from the French market from a period of 561 days. From these eleven
datasets where created. A validation set containing data gathered during the most recent 51
days. Then datasets containing data from the 51 days previous to the validation set, the 102
days following the validation set, etc. This generated 10 datasets for training, with the largest
containing data gathered during 510 days.

From each of these datasets, shorter sequences were then removed, with a varying mini-
mum allowance being set to 2−7 products in a sequence. This generated in total 70 datasets,
with minimum sequence length from 2−7 items in a purchase and period during which data
was gathered varying from 51 − 510 days.

The LSTM RS was trained on each of these 70 datasets and validated on the validation
set containing the data from the 51 most recent days.

3.4 Up-sampling using data from other markets
To test RQ4, we established the hypothesis that it could be possible to use data from a sec-
ondary market to expand a small dataset from a market where there is a lack of data.

It is reasonable to believe that some markets are more similar than others regarding pur-
chase patterns. Customers in di�erent parts of the world have di�erent preferences, seasons,
and financial situations. To be able to judge what market to use data from, a similarity metric
between markets must be defined.

There are several possible methods of creating similarity metrics between markets. In
this thesis, one possible solution using sequence embeddings is tested.

In previous work, embeddings have been very successful in capturing complex behavior
and patterns from large datasets. In this thesis, a method trying to describe purchase patterns
from the di�erent markets using embeddings is proposed and tested. Similarities between
markets are then described using these embeddings.

33

3. Method

To obtain these embeddings the LSTM RS was trained on a dataset containing data from
all markets available, to obtain a model with no regional dependencies. This model will not
be a su�cient recommender on any market since purchase patterns vary from market to
market. This particular model is not purposed to produce recommendations, as it would be
very inaccurate on all markets, but to produce embeddings comparing the markets.

We use the embeddings layer in the Keras sequential API [12]. This layer was placed
before the LSTM layers in the network architecture as described in section 2.4.1.

When the model had been trained, all layers except for the initial embeddings layer was
removed. The output of the model, when given a purchase sequence, was an embeddings
vector (with length 1280) describing this particular purchase.

To describe a market, embeddings from 850 purchases from that market was created.
Each market was then represented by the centroid [41] of these 850 purchase embeddings.
The similarities between markets were computed by cosine similarity between the market
representations in the embedding space.

When this proposed similarity metric between markets had been obtained it was evalu-
ated and tested. The test has been constructed to imitate a situation where one small market
(A) lacks enough data, where it could be useful to add some data from another, similar market
to reach the amount of data necessary to train a model which reaches su�cient performance
levels.

The test uses datasets for training the model from three di�erent markets, denoted as A,
B and C, where A and B are similar, while A and C are dissimilar.

We selected a validation dataset from A and training datasets from A, B and C. The
training sets from B and C are selected to be equally sized and all purchases were randomly
selected from the available data, to eliminate factors that a�ect performance such as the
dataset size and how recently the data was collected. The set of products that exists in the
three di�erent markets are not completely equal, some products only exist in one market and
some products have di�erent ID:s in di�erent markets. Unfortunately no mapping between
product ID:s on di�erent markets exists. To overcome this the training datasets from B and
C were filtered before training to only contain purchase sequences with product ID:s that
exists in A.

Three LSTM models were then trained on these training data sets and validated on the
validation set from A. If the similarity metric functions as intended, the model trained on
similar data from market B should perform better than the model trained on dissimilar data
from market C when validated on the validation set from A. This test was executed for three
di�erent markets, A, with corresponding similar and dissimilar markets.

34

Chapter 4

Results

In this chapter the results obtained from the experiments presented in chapter 3 are pre-
sented.

4.1 Performance as a function of dataset size
Splitting the datasets into di�erent subsets of the full dataset for the markets Germany, France,
Poland, Spain, Sweden, Canada resulted in datasets of the sizes presented in the table 4.1. The
number of purchases is normalized to avoid disclosing any sensitive business information.
As described in figure 2.7, one purchase generates more than one data point. Due to this, the
number of purchases is not the exact percentage of the full dataset as would be expected. The
number of purchases in the 10% dataset is not exactly 10% of the 100% dataset. This is a
consequence of the datasets being divided based on the number of data points.

Table 4.1: The number of purchases in di�erent datasets from dif-
ferent markets.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Germany 0.098 0.198 0.298 0.398 0.499 0.598 0.700 0.800 0.900 1.000
France 0.040 0.081 0.123 0.165 0.207 0.248 0.289 0.331 0.372 0.413
Poland 0.021 0.044 0.067 0.089 0.112 0.135 0.157 0.180 0.202 0.225
Spain 0.020 0.041 0.063 0.084 0.106 0.127 0.148 0.169 0.190 0.211
Sweden 0.022 0.046 0.070 0.094 0.117 0.141 0.165 0.188 0.212 0.236
Canada 0.028 0.058 0.089 0.119 0.149 0.179 0.209 0.239 0.270 0.300

The loss (categorical cross entropy) for the models trained on the datasets in table 4.1 are
presented in figure 4.1. As expected from [17],a power-law function with loss as a function
of available training data (e(t) ∼ αt−β + γ) could be fitted. These functions are presented in
equation 4.1, where Ci are constants.

35

4. Results

The learning curves show a power-law pattern on the form presented in equation 2.8 as
was expected. This further confirms that there is an irreducible error which the model cannot
overcome. It is, however, possible to further optimize the model for this particular use case
using di�erent hyperparameters, but due to the power-law behavior of the learning curve, a
certain amount of error cannot be avoided.

Number of purchases in dataset

Lo
ss

 o
n

va
lid

at
io

n
se

t

Validation Loss
Sweden
Poland
Spain
Canada
France
Germany

Figure 4.1: The loss (categorical cross entropy) of the final epoch in
training the LSTM plotted as a function of the amount of available
training data. Exponential functions were fitted and plotted to the
results from each market.

Germany 1.03 · t−5.93×10−6
+C1

Sweden 1.96 · t−1.94×10−5
+C2

France 2.09 · t−1.76×10−5
+C3

Spain 1.83 · t−2.39×10−5
+C4

Poland 1.62 · t−2.23×10−5
+C5

Canada 1.64 · t−1.77×10−5
+C6

(4.1)

In figure 4.2 it is clear that as the amount of training data increases, Precision@k also
increases. It is increasing with a logarithmic behavior suggesting that there is a law of di-
minishing returns due to the irreducible error that cannot be surpassed with larger amounts
of training data, this pattern is observable for all studied markets. The di�erence in perfor-
mance between the markets is most likely due to how much the buying patterns vary within
a market. If buying patterns vary more within a market, predicting them will be less trivial.

Figure 4.3 shows the opposite relationship between Catalog Coverage and the amount of
training data. The Catalog Coverage is very low for the smallest datasets. When reaching a
su�cient amount of training data Catalog Coverage peaks. After this peak, Catalog Coverage
decreases when more training data is added. Similar patterns are observed from all markets.

Figure 4.4 describes the Novelty of the recommendation as a function of the amount of
training data. It is clear that the recommendations are significantly more novel in general
in the French and German markets. These are also the two markets with the largest sets of
available training data. For all markets except Germany, Novelty decreases when the amount

36

4.1 Performance as a function of dataset size

Number of purchases in dataset

Pr
ec

isi
on

@
k

Precision@k on validation set

Sweden
Poland
Spain
Canada
Germany
France

Figure 4.2: Precision@k plotted as a function of available training
data. k = 4 was used at this time.

Number of purchases in dataset

Ca
ta

lo
g

Co
ve

ra
ge

Catalog Coverage
Sweden
Poland
Spain
Canada
France
Germany

Figure 4.3: Catalog Coverage plotted as a function of available train-
ing data.

Number of purchases in dataset

No
ve

lty

Novelty

Sweden
Poland
Spain
Canada
France
Germany

Figure 4.4: Novelty plotted as a function of available training data.

37

4. Results

of training data increases. In the German market, where the Novelty overall is notably higher
than in other markets. The di�erence in Novelty is too small to draw any conclusions about
how it is a�ected by the amount of training data.

4.2 Down-sampling on excess data
The size of the generated datasets when down-sampling using both minimum sequence length
and period of data gathering are presented in table 4.2. At the time of data extraction, data
had been gathered for 561 days, resulting in 10 training sets with the largest containing data
from 510 days and the shortest only 51 days, together with a validation set containing data
from the 51 most recent days. The numbers have been normalized between 1 and 0 to avoid
disclosing any sensitive business information. The dataset with the longest period of data
gathering and allowing the shortest minimum sequence length is the largest of the generated
datasets.

Table 4.2: The number of purchases in each of the generated
datasets, down-sampled both on the minimum sequence length al-
lowed (columns) and the duration during which the data has been
collected (rows). The largest dataset allows sequences as short as 2
products and has data collected during 510 days.

2 3 4 5 6 7
51 0.117 0.093 0.074 0.061 0.051 0.043
102 0.235 0.186 0.150 0.123 0.103 0.087
153 0.356 0.282 0.227 0.188 0.157 0.134
204 0.471 0.375 0.304 0.252 0.212 0.181
255 0.569 0.454 0.368 0.307 0.258 0.220
306 0.670 0.536 0.436 0.363 0.306 0.261
357 0.764 0.611 0.497 0.414 0.349 0.299
408 0.847 0.676 0.549 0.457 0.385 0.329
459 0.931 0.742 0.602 0.502 0.422 0.361
510 1.000 0.742 0.646 0.538 0.452 0.386

The results from down-sampling on minimum sequence length and duration for data
collection are presented in figures 4.5, 4.6 and 4.7. Each metric is plotted both as a function
of the size of the dataset the model was trained on and the minimum sequence length allowed
in that dataset. The datasets with longer periods of data collection are larger, and datasets
containing the shorter sequences as well are also larger. The size of the di�erent datasets can
be viewed in table 4.2. When the duration for data collection has been increased, it has been
done by adding older data to the training dataset. The smallest datasets contain data from
the most recent period before the validation set was collected as described in table 4.2.

In figure 4.5a the Precision@k for the di�erent minimum sequence lengths are presented.
The Precision@k is decreasing when shorter sequences are removed from the training dataset.
The models trained on data from only 51 days of data collection does not achieve the same

38

4.2 Down-sampling on excess data

2 3 4 5 6 7
Minimum sequence length in dataset

Pr
ec

isi
on

@
k

Precision@k on validation set

Days of data gathering: 51
Days of data gathering: 102
Days of data gathering: 153
Days of data gathering: 204
Days of data gathering: 255
Days of data gathering: 306
Days of data gathering: 357
Days of data gathering: 408
Days of data gathering: 459
Days of data gathering: 510

(a) Precision@k plotted as a function of the minimum sequence length used in the
dataset, for di�erent duration of data collection

Number of purchases in dataset

Pr
ec

isi
on

@
k

on
 v

al
id

at
io

n
se

t

Precision@k on validation set

Minimum sequence length: 2
Minimum sequence length: 3
Minimum sequence length: 4
Minimum sequence length: 5
Minimum sequence length: 6
Minimum sequence length: 7

(b) Precision@k plotted as a function of the size of training dataset.

Figure 4.5: Precision@k when down-sampling on minimum se-
quence length and duration of data collection

performance as the others. This is likely due to this dataset being the smallest one, and below
the amount of data required to reach su�cient Precision@k performance. Apart from this,
the other datasets all perform similarly.

In figure 4.5b the Precision@k for the di�erent datasets are presented as a function of the
size of the training dataset. It is possible to conclude that there is an optimal amount of data
since the Precision@k is at first increasing when older data is added and then decreasing after
a peak point. The location of the peak seems to depend on what minimum sequence length is
allowed. When shorter sequences are removed, the Precision@k decreases more rapidly than
in the datasets containing the shorter sequences.

In figure 4.6a the Catalog Coverage for the di�erent minimum sequence lengths is pre-
sented. it is not possible to draw any significant conclusions from this graph since there is
no general pattern for how the Catalog Coverage depends on the minimum sequence length.

39

4. Results

2 3 4 5 6 7
Minimum sequence length in dataset

Ca
ta

lo
g

Co
ve

ra
ge

Coverage on validation set

Days of data gathering: 51
Days of data gathering: 102
Days of data gathering: 153
Days of data gathering: 204
Days of data gathering: 255
Days of data gathering: 306
Days of data gathering: 357
Days of data gathering: 408
Days of data gathering: 459
Days of data gathering: 510

(a) Catalog Coverage plotted as a function of the minimum sequence length used in
the dataset, for di�erent duration of data collection

Number of purchases in dataset

Ca
ta

lo
g

Co
ve

ra
ge

Catalog Coverage on validation set

Minimum Sequence length: 2
Minimum Sequence length: 3
Minimum Sequence length: 4
Minimum Sequence length: 5
Minimum Sequence length: 6
Minimum Sequence length: 7

(b) Catalog Coverage plotted as a function of the size of training
dataset.

Figure 4.6: Catalog Coverage when down-sampling on minimum
sequence length and duration of data collection

The models trained on datasets with 51 days of data collection again performs significantly
worse than the other datasets. Here a clear pattern with decreasing Catalog Coverage is visi-
ble. This is likely due to the dataset becoming too small when filtering out shorter sequences.
This is a similar pattern as to what can be seen in figure 4.3 where the smallest datasets have
a lower Catalog Coverage before there is an initial peak.

In figure 4.6b the Catalog Coverage for the di�erent datasets is presented as a function
of the size of the training dataset. Similar to the results in section 4.1, Catalog Coverage
decreases when the model is trained on more data. It is also clear that datasets where shorter
sequences have been removed, such as the one with minimum sequence length 7, Catalog
Coverage decreases more rapidly than in the datasets containing shorter sequences. This is a
result which is not visible in figure 4.6a, but obvious in figure 4.6b.

40

4.2 Down-sampling on excess data

2 3 4 5 6 7
Minimum sequence length in dataset

No
ve

lty

Novelty on validation set

Days of data gathering: 51
Days of data gathering: 102
Days of data gathering: 153
Days of data gathering: 204
Days of data gathering: 255
Days of data gathering: 306
Days of data gathering: 357
Days of data gathering: 408
Days of data gathering: 459
Days of data gathering: 510

(a) Novelty plotted as a function of the minimum sequence length used in the dataset,
for di�erent duration of data collection

Number of purchases in dataset

No
ve

lty

Novelty on validation set

Minimum Sequence length: 2
Minimum Sequence length: 3
Minimum Sequence length: 4
Minimum Sequence length: 5
Minimum Sequence length: 6
Minimum Sequence length: 7

(b) Novelty plotted as a function of the size of the training dataset.

Figure 4.7: Novelty when down-sampling on minimum sequence
length and duration of data collection

In figure 4.7a the Novelty for the di�erent minimum sequence lengths are presented.
From the graph, it can be interpreted, the novelty is increasing when shorter sequences are
removed from the training dataset. Removing the shorter sequences makes the recommen-
dations more novel, meaning that less popular products are recommended to a higher extent.
The line describing the dataset with 102 days of data gathering has higher novelty than the
other lines, most likely due to the same reason as to why the second smallest datasets in
figure 4.3 have the highest Catalog Coverage. First, the model has too little data to make
recommendations for the entire catalog and only recommend items that occur more often.
When more data is added the model reaches a point where it can perform recommendation
for most items in the catalog. Then, when adding even more data the model gradually learns
to recommend the most popular items to a higher extent as these are more accurate, but as a
consequence, novelty decreases.

41

4. Results

In figure 4.7b the Novelty for the di�erent datasets are presented as a function of the size
of the training dataset. From the graph, it can be interpreted, the novelty is decreasing when
adding more and older data to the dataset. This means that models trained on larger datasets,
containing data gathered for a longer duration to a greater extent recommend the most pop-
ular products, while the datasets containing data from shorter periods tend to recommend
less popular items to a higher extent.

4.3 Up-sampling using data from other markets
Figure 4.8 contains the computed similarities between markets using the sequence embed-
ding method. It is possible to interpret a correlation between geography and the computed
similarities, examples of this being that the most similar countries to Germany are Austria
and Netherlands, while the most similar countries to China are South Korea and Japan. It is
also possible to see a pattern in European countries is similar to each other while dissimilar
to Asian countries.

Some examples contradict the geographical correlation. An example of this is that the
two most similar countries to Canada are France and Switzerland, while the neighboring
country, US, only achieves 69% similarity. Another example of this is the similarity between
Poland and Spain, which is 92%, while the similarity between the neighbors Poland and
Germany is 45%.

Ger
m

an
y

Ja
pa

n

Ne
th

er
la

nd
s

So
ut

h
Ko

re
a

Au
st

ria

Fr
an

ce

Po
la

nd

Ita
ly

Sw
itz

er
la

nd
Ca

na
da

US Ru
ss

ia

UK Sp
ai

n

Sw
ed

en

Ch
in

a

Germany 31,2% 88,5% 26,5% 90,0% 72,5% 45,3% 62,8% 82,2% 66,7% 67,7% 25,2% 77,4% 58,0% 64,7% 24,6%
Japan 31,2% 25,8% 88,3% 31,6% 38,9% 27,5% 32,3% 32,5% 43,1% 45,2% 70,2% 25,5% 30,5% 34,8% 84,0%
Netherlands 88,5% 25,8% 27,1% 86,8% 78,6% 52,0% 60,4% 81,3% 74,7% 58,5% 27,7% 69,5% 57,7% 68,5% 25,0%
South Korea 26,5% 88,3% 27,1% 23,0% 31,9% 15,7% 17,8% 22,2% 43,1% 42,3% 76,2% 21,8% 19,6% 31,3% 92,4%
Austria 90,0% 31,6% 86,8% 23,0% 86,5% 66,4% 70,7% 93,1% 79,8% 65,3% 25,4% 84,3% 75,1% 77,3% 20,0%
France 72,5% 38,9% 78,6% 31,9% 86,5% 79,3% 69,9% 85,6% 82,3% 60,9% 40,9% 72,5% 81,1% 83,8% 26,0%
Poland 45,3% 27,5% 52,0% 15,7% 66,4% 79,3% 83,0% 76,3% 72,5% 56,9% 22,2% 69,4% 92,0% 77,8% 10,9%
Italy 62,8% 32,3% 60,4% 17,8% 70,7% 69,9% 83,0% 83,1% 62,8% 58,0% 16,9% 69,1% 85,3% 74,8% 14,0%
Switzerland 82,2% 32,5% 81,3% 22,2% 93,1% 85,6% 76,3% 83,1% 81,6% 64,8% 26,1% 84,6% 85,2% 83,0% 22,7%
Canada 66,7% 43,1% 74,7% 43,1% 79,8% 82,3% 72,5% 62,8% 81,6% 69,6% 46,1% 77,9% 77,8% 80,6% 41,5%
US 67,7% 45,2% 58,5% 42,3% 65,3% 60,9% 56,9% 58,0% 64,8% 69,6% 38,6% 74,2% 61,2% 59,4% 42,0%
Russia 25,2% 70,2% 27,7% 76,2% 25,4% 40,9% 22,2% 16,9% 26,1% 46,1% 38,6% 12,7% 18,0% 44,2% 67,5%
UK 77,4% 25,5% 69,5% 21,8% 84,3% 72,5% 69,4% 69,1% 84,6% 77,9% 74,2% 12,7% 84,5% 67,5% 22,2%
Spain 58,0% 30,5% 57,7% 19,6% 75,1% 81,1% 92,0% 85,3% 85,2% 77,8% 61,2% 18,0% 84,5% 80,6% 18,1%
Sweden 64,7% 34,8% 68,5% 31,3% 77,3% 83,8% 77,8% 74,8% 83,0% 80,6% 59,4% 44,2% 67,5% 80,6% 27,3%
China 24,6% 84,0% 25,0% 92,4% 20,0% 26,0% 10,9% 14,0% 22,7% 41,5% 42,0% 67,5% 22,2% 18,1% 27,3%

Figure 4.8: Similarities between markets obtained from cosine sim-
ilarity on market embeddings.

To test the similarity metric, using the method described in 3.4, three suitable markets
were selected. These three markets and the similar and dissimilar secondary markets that
were selected are presented in table 4.3 where the corresponding similarities also are pre-
sented.

First, analysing the achieved Precision@k when validation models trained on data from
the similar (B) and dissimilar markets (C) using validation data from the market (A). The
results are presented in figure 4.9.

As a baseline, the result from section 4.1, when a model was trained on data from the
same market as it is then validated on has been plotted. This is to be able to judge how well

42

4.3 Up-sampling using data from other markets

Table 4.3: The combinations of markets selected for testing the sim-
ilarity metric between markets.

Market to test on (A) Similar market (B) Disimilar market (C)
Sweden France (85%) Germany (65%)
Poland Spain (92%) Germany (45%)
Germany Netherlands (89%) Spain (58%)

the models with data from one market and then validated on another perform, compared to
using data from the same market where it was validated.

Number of purchases in dataset

Pr
ec

isi
on

@
k

Precision@k

Sweden
France 85% similarity
Germany 65% similarity

(a) Performance of three models, trained on
datasets from Germany, France and Sweden, all
tested on a validation dataset from Sweden.

Number of purchases in dataset

Pr
ec

isi
on

@
k

Precision@k
Poland
Spain 92% similarity
Germany 45% similarity

(b) Performance of three models, trained on
datasets from Spain, Germany and Poland, all
tested on a validation dataset from Poland.

Number of purchases in dataset

Pr
ec

isi
on

@
k

Precision@k

Germany
Netherlands 89% similarity
Spain 58% similarity

(c) Performance of three models, trained on
datasets from Spain, Netherlands and Germany,
all tested on a validation dataset from Germany.

Figure 4.9: Precision@k plotted as a function of dataset size when
testing how well models trained on data from a secondary market
performs on a local validation dataset.

In figure 4.9b and 4.9c the models trained on data from more similar markets according
to the suggested similarity metric achieves higher Precision@k than the models trained on
data from a dissimilar market as was predicted by the proposed similarity metric. However,
in figure 4.9a the model trained on data from the dissimilar market achieves a slightly higher
Precision@k than the model trained on data from the similar market.

43

4. Results

It is worth noting that there is a significant di�erence in achieved Precision@k between
the baseline and the models trained on data from other markets, for all examples in figure
4.9. The exception is the case when data from the Netherlands has been used to train a model
which has been validated on data from Germany, where Precision@k levels are very similar.

In all three examples in figure 4.9 there is a significant di�erence in the Precision@k levels
between the two markets, confirming that from what market the training data is extracted
is important.

Number of purchases in dataset

ca
ta

lo
g

Co
ve

ra
ge

Catalog Coverage

Sweden
France 85% similarity
Germany 65% similarity

(a) Performance of three models, trained on
datasets from Germany, France and Sweden, all
tested on a validation dataset from Sweden.

Number of purchases in dataset

Ca
ta

lo
g

Co
ve

ra
ge

Catalog Coverage

Poland
Spain 92% similarity
Germany 45% similarity

(b) Performance of three models, trained on
datasets from Spain, Germany and Poland, all
tested on a validation dataset from Poland.

Number of purchases in dataset

Ca
ta

lo
g

Co
ve

ra
ge

Catalog Coverage

Germany
Netherlands 89% similarity
Spain 58% similarity

(c) Performance of three models, trained on
datasets from Spain, Netherlands and Germany,
all tested on a validation dataset from Germany

Figure 4.10: Catalog Coverage plotted as a function of dataset size
when testing how well models trained on data from a separate mar-
ket performs on a local validation dataset.

In figure 4.10 the resulting Catalog Coverage from the experiments is presented. Over-
all, the Catalog Coverage is unquestionably lower than what a model trained on data from
the same market as to where the validation data originates from achieves. Most likely this is
a consequence of the set of products available on each market varies. Therefore the model
trained on data from another market will not be able to recommend products that only ex-
ist in the market where the validation is done as the training dataset did not include these
products, while the model trained on data from the same market as to where the validation
data originates from includes all products available on that market.

44

4.3 Up-sampling using data from other markets

There is no significant di�erence in Catalog Coverage to be seen in between the models
trained on data from similar or dissimilar markets.

Number of purchases in dataset

No
ve

lty

Novelty
Sweden
France 85% similarity
Germany 65% similarity

(a) Performance of three models, trained on
datasets from Germany, France and Sweden, all
tested on a validation dataset from Sweden.

Number of purchases in dataset

No
ve

lty

Poland
Spain 92% similarity
Germany 45% similarity

(b) Performance of three models, trained on
datasets from Spain, Germany and Poland, all
tested on a validation dataset from Poland.

Number of purchases in dataset

No
ve

lty

Novelty

Germany
Netherlands 89% similarity
Spain 58% similarity

(c) Performance of three models, trained on
datasets from Spain, Netherlands and Germany,
all tested on a validation dataset from Germany

Figure 4.11: Novelty plotted as a function of dataset size when test-
ing how well models trained on data from a separate market per-
forms on a local validation dataset.

In figure 4.11 the Novelty plots from the experiments are presented. There is no clear
pattern to be found regarding if the model trained on data from a similar or dissimilar market
performs better or worse compared to the baseline.

The plots all indicate that Novelty increases when a larger dataset from another market
has been used to train the model, which di�ers from the results in section 4.1 when the model
has been trained and validated on data from the same market. In those cases (figures 4.4 and
4.7) the Novelty tends to decrease when the size of the training dataset has been increased.
Since Novelty indicates how well the RS recommends less popular items, this result could be
an indication of that the most popular items di�er between markets. When using a model
trained on a large dataset from Germany it will according to our earlier results recommend
the most popular items from Germany, which is considered a less novel recommendation. If
these items that are popular in Germany are less popular in Poland, those recommendations
will be considered more novel, in the Polish market.

45

4. Results

46

Chapter 5

Discussion

In this section, we discuss the results presented in the previous section regarding the three
main experiments.

5.1 Performance as a function of dataset size
The results in this experiment confirm that there is an irreducible error that the model cannot
overcome. The precision achieved in this thesis can, however, most likely be reduced using
tuning of the model and hyperparameter optimization. As a consequence of this there is also
a maximum level of accuracy and Precision@k that can be achieved.

High scores in Catalog Coverage, Novelty, and Precision@k are desirable, and there seems
to be a trade-o� between the more traditional accuracy metrics such as Precision@k and the
diversity metrics such as Novelty and Catalog Coverage. This is to be expected due to the long
tail distribution in sales, as the most accurate recommender converges to only recommend
the few very popular products, leaving the less popular products out and therefore decreasing
the Catalog Coverage.

Precision@k and similar accuracy metrics cannot be the only metric considered when de-
signing an RS as it only describes how well the model was able to predict what the customers
in the dataset bought without the influence of an RS. Since a good RS shows the customer
something he or she was not aware of but might be interested in, it is not desirable to only
mimic current customer behavior. Instead, Novelty and Catalog Coverage, or other similar
metrics, must also be considered to be able to include the less obvious recommendations,
the ones that customers would not have found themselves. If only Precision@k would be
considered, the results in this test indicate that more data is always better.However, since
the performance gained per added data point is decreasing it might not be necessary to keep
adding data as the improvements with ever-increasing datasets are negligible. The decreas-
ing learning per added datapoint is expected due to the power-law behavior of the learning
curves and the law of diminishing returns.

47

5. Discussion

Instead, if only Catalog Coverage and Novelty would be considered, the optimal dataset
size to use when training this model would be significantly smaller than if only Precision@k
would be considered. However, at the optimal amount of training data for Catalog Coverage
and Novelty, Precision@k has not reached near its maximum level. If taken to the extreme,
the highest Catalog Coverage and Novelty would be achieved with a recommender sampling
random products from the catalog without considering any data, however, those recommen-
dations will in most cases be useless to the customer.

There is an apparent trade-o� between the metrics, and as a consequence, each designer of
an RS needs to choose what to prioritize. These results are consistent with previous research
such as in [10, 30, 43]. The more accurate but obvious, or the less obvious, and accurate
but more novel RS. If a company needs to sell more of less popular products a more novel
RS is desirable. If the product catalog is less known, and even the most popular products
are unknown to the average customer a more accuracy focused RS could be better, as even
recommendations for very popular products will be novel and providing new information
for the customer.

It is however clear that adding more data does not unambiguously improve performance.
Depending on whats prioritized for that specific implementation an optimal size of a dataset
can be found.

5.2 Down-sampling excess data

5.2.1 Down-sampling by removing shorter sequences
When down-sampling by removing shorter sequences and thereby making the dataset smaller,
Novelty increased, Precision@k decreased but Catalog Coverage remained unchanged.

The Novelty increasing could potentially be due to these short sequences to a higher
extent contains popular products, while the longer sequences contain some popular prod-
ucts but also some less popular complementary products. As a consequence of removing the
shorter sequences, these less popular complementary products will become more prominent
in the dataset. When the less popular products are more prominent in the training dataset,
they will occur more often in the recommendations. This indicates that the long tail sales
distribution is even more notable among the purchases containing few products.

Interestingly, Catalog Coverage was unchanged when the shorter sequences were re-
moved, i.e the size of the training dataset decreased. This contradicts the results from section
5.1. Building on the reasoning behind why Novelty increased, one possible reason for this
could be that the shorter purchases, in general, contain the most popular products. When
removing these sequences, the most popular products are likely still very prominent in the
dataset even if less prominent than if the shorter sequences were kept, which means that they
still occur frequently. The RS will therefore still recommend these items, but not as often
as if the shorter purchases were present in the dataset. While the less popular items become
more prominent in the dataset, it is when these items occur too seldom be recommended
Catalog Coverage decreases. This could explain why the Catalog Coverage is constant while
novelty increases, all products are still present in a number large enough to be included in
the recommendations by the RS.

The Precision@k decreasing when removing the shorter sequences is then a consequence

48

5.3 Up-sampling using data from other markets

of the novelty increasing. The most popular products are recommended to a lesser extent in
favor of the less popular products. These less popular products are likely less accurate, and
thereby Precision@k decreases. The decrease could also be explained in part by the datasets
being smaller, and as seen in the previous experiment this should lead to a decrease in Pre-
cision@k. It is not possible to tell, from this experiment, which of these e�ects that are the
greatest cause for the decrease.

5.2.2 Down-sampling by removing older datapoints
When removing older data from the dataset and thereby decreasing the size of the dataset
the Catalog Coverage and the Novelty increased. This is likely due to the datasets being
smaller, which is a pattern that can also be seen in the previous experiment. These results
are comparable due to the distribution of products present in these datasets being equal or
very similar to the distribution in datasets in the previous experiment. Another explanation
for the Novelty increasing when removing older data is that seasonal items might be more
prominent in datasets gathered during a shorter period. These would be considered more
novel as they might not be very popular if one is considering the sales during the full year,
but during a short period, they might be very popular. If this period is prominent in the
dataset, these seasonal items will be recommended to a higher extent and thereby increasing
novelty.

Precision@k increases at first when adding older data, until the Precision@k peaks and
starts to decrease when more data is added. This result is di�erent from the results in the first
experiment where Precision@k was increased for larger datasets. This implies that older data
is less accurate for making up to date recommendations and that the buying pattern changes
with time. This might be explained by the fact that the product catalog changes regularly
when some products are removed and some new introduced, but also that preferences might
vary with season, e.g red might be a more popular color in countries celebrating Christmas
in the months of November and December than the other months.

All metrics considered in this thesis decrease when adding older data, if the previous
amount of data was enough to reach the peak in performance, which confirms the hypothesis
that recent data is important when training RSs.

5.3 Up-sampling using data from other markets
The proposed similarity metric shows some promising results in the sense that it captures
geographical patterns. Neighboring countries having a similar taste for interior design and
similar financial situations are prejudice one might have, which to some extent is being con-
firmed by this similarity metric created from market embeddings.

When testing this metric by training an RS model on data from one market and vali-
dating it on another the achieved Precision@k is higher on the market deemed similar by
the similarity metric in two of the three cases. The RS model achieved spectacular results
when using data from the Netherlands, validated on data from Germany, achieving almost
as high Precision@k as if data from Germany had been used for training. In all cases there
is a significant di�erence in achieved Precision@k between the models trained on data from
secondary markets, indicating that it is of great importance which market the data is selected

49

5. Discussion

from. In all cases using data from the same market for training and validation produces the
best results.

The results regarding novelty are ambiguous, and it is di�cult to draw any conclusions
of significance here. A possible explanation could be that products which are very popular
in one country could be less popular in another, therefore being considered as more novel
recommendations. This could explain why the novelty is higher in some cases when data from
a secondary market has been used, but the di�erence is not large enough to be significant.

The Catalog Coverage is lower when models trained on data from a secondary market is
analyzed. This is an argument against using data from secondary markets since the product
catalogs in all countries are slightly di�erent. The items that do not exist in the market where
the training dataset is taken from will never occur in the recommendations. However, in a
situation where there is a lack of data from one market, the small amount of data available
would be used in firsthand and then complemented with data from a similar market. This
would make the Catalog Coverage better than in the test case presented in this thesis where
only data from another market was used, instead of complementing another dataset.

The results, therefore, indicate that it is possible to use data from another market if there
is a lack of data on some market, and it is of great importance which market the data is taken
from. However, it is not possible from these experiments only to determine if this similarity
metric is a su�cient method for selecting which market to use data from as our results are
equivocal. Further evaluating this is left as a question for future research.

50

Chapter 6

Summary

6.1 Conclusions
In this section, the conclusions regarding all research questions in this thesis are presented.

RQ1: How is the performance of this particular RS affected by the amount
of available training data?
Performance in this thesis has been defined as a combination of three main metrics: Cat-
alog Coverage, Precision@k, and Novelty. Precision@k increases as a logarithmic function
of dataset size, meaning that the information gained by each added data point is decreasing.
When the dataset size is increasing Precision@k asymptotically approaches a theoretical limit
due to the irreducible error in the prediction.

Catalog Coverage and Novelty decreases as a function of dataset size, as this particular RS
learns to recommend the most popular products to a high extent, while not recommending
the less popular items.

RQ2: Is there an optimal amount of training data which gives the best
overall RS performance?
There is an apparent trade-o� between accuracy focused metrics such as Precision@k and
diversity-focused metrics such as Catalog Coverage and Novelty. Hence, an optimal amount
of data for training the RS can be defined if one’s notion of optimal is clearly defined. De-
pending on what is prioritized when an RS is designed, the optimal amount of data varies.
In this case, if accuracy and Precision@k are of high importance more data is better, but if
Catalog Coverage and Novelty are important less data could be used without sacrificing too
much accuracy and Precision@k. In summary, there is an optimal amount of training data to

51

6. Summary

be used to achieve the best overall performance, but it’s necessary to have a clear definition
of performance.

RQ3: Is it possible to select a more relevant subset of this data to achieve
even better performance?
If there is an excess of data, the results in section 4.2 suggest that removing older data im-
proves Precision@k, Catalog Coverage, and Novelty. The results also imply that removing the
shortest purchase sequences from the dataset increases Novelty while sacrificing some Preci-
sion@k. As discussed earlier, what to prioritize in this case is a question for the designer of
the RS. It is however clear that more recent data is better, and if the data available is enough
to reach su�cient levels of Precision@k, it is beneficial to remove the oldest data points in
the dataset.

RQ4: Is it possible to complement the data using data from a secondary
market?
The results in section 4.3 show that it is possible to use data from a secondary market. How-
ever, what market the data is selected from is of great importance. The performance depends
on what market the data was taken from and varies greatly. In none of our experiments the
models trained on data from another market were able to perform better or as well as a model
trained on data from the same market as it was validated on.

To decide what market to select data from, a similarity metric between markets was
developed using deep learning embeddings. This metric showed some promise, but more
research is needed on the topic.

6.2 Future Work
In this section, a few future areas of research to build on the results from this thesis are
presented.

6.2.1 Online evaluation
O�ine evaluation of RSs, as conducted in this thesis, only measures the performance of an
RS on a dataset of data from prerecorded sessions where customers browsed the website
without the RS. How a customer would act if the RS was present cannot fully be concluded
from the o�ine evaluation. To build on the results from this thesis, online evaluation, and
A/B testing of RS performance as a function of the training data should be considered.

6.2.2 Biases introduced when customers opt-out of data col-
lection

Giving customers the option to opt-out from personalized content and data tracking could
introduce some biases in the dataset. For example, if young customers opt-out to a higher

52

6.2 Future Work

extent than older customers, products that are often bought by young customers will be less
prominent in the dataset. Which biases that might be introduced and how to handle these is
a question for future research.

6.2.3 Further research on a Similarity metric between markets
The work in this thesis could not draw any significant conclusions about whether the pro-
posed similarity metric between markets functioned as intended. More research is needed
in this area. Several other techniques could potentially be well suited for the task, such as
Doc2Vec and Meta-Prod2Vec.

53

6. Summary

54

References

[1] Shun-ichi Amari. A universal theorem on learning curves. Neural Networks, 6:161–166,
12 1993.

[2] James Bennett and Stan Lanning. The netflix prize. 2007.

[3] Pablo Castells, Saúl Vargas, and Jun Wang. Novelty and diversity metrics for recom-
mender systems: Choice, discovery and relevance. Proceedings of International Workshop
on Diversity in Document Retrieval (DDR), 01 2011.

[4] Òscar Celma. The Long Tail in Recommender Systems, pages 87–107. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[5] Kyunghyun Cho. Introduction to neural machine trans-
lation with gpus. https://devblogs.nvidia.com/
introduction-neural-machine-translation-with-gpus/. Visited on
2020-04-27.

[6] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. Are we really mak-
ing much progress? A worrying analysis of recent neural recommendation approaches.
CoRR, abs/1907.06902, 2019.

[7] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma,
Charles Sugnet, Mark Ulrich, and Jure Leskovec. Pixie: A system for recommending 3+
billion items to 200+ million users in real-time. In Proceedings of the 2018 World Wide Web
Conference, WWW ’18, page 1775–1784, Republic and Canton of Geneva, CHE, 2018.
International World Wide Web Conferences Steering Committee.

[8] Kim Falk. Practical Recommender Systems. Manning Publications, 2019.

[9] Ibtissem Gasmi, Hassina Seridi-Bouchelaghem, Hocine Labar, and Abdel Karim Baareh.
Collaborative filtering recommendation based on dynamic changes of user interest. In-
telligent Decision Technologies, 9:271–281, 09 2015.

55

https://devblogs.nvidia.com/introduction-neural-machine-translation-with-gpus/
https://devblogs.nvidia.com/introduction-neural-machine-translation-with-gpus/

REFERENCES

[10] Mouzhi Ge, Carla Delgado, and Dietmar Jannach. Beyond accuracy: Evaluating rec-
ommender systems by coverage and serendipity. RecSys’10 - Proceedings of the 4th ACM
Conference on Recommender Systems, pages 257–260, 01 2010.

[11] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using collaborative
filtering to weave an information tapestry. Commun. ACM, 35(12):61–70, December 1992.

[12] Google. Keras embeddings layer. https://keras.io/layers/embeddings/. Vis-
ited on 2020-04-27.

[13] Google. Keras losses. https://keras.io/api/losses/, note = Visited on 2020-06-
11.

[14] Google. Measuring similarity from embeddings. https://developers.google.
com/machine-learning/clustering/similarity/measuring-similarity.
Visited on 2020-04-27.

[15] Ingka Group. Ingka group launches data promise to customers. https://www.
ingka.com/news/ingka-group-launches-data-promise-to-customers/, 01
2020. Visited on 2020-03-17.

[16] Asela Gunawardana and Guy Shani. Evaluating recommender systems, pages 265–308.
Springer, 01 2011.

[17] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory F. Diamos, Heewoo Jun, Has-
san Kianinejad, Md. Mostofa Ali Patwarym, Yang Yang, and Yanqi Zhou. Deep learning
scaling is predictable, empirically. CoRR, abs/1712.00409, 2017.

[18] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-
based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939,
2015.

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9:1735–80, 12 1997.

[20] Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf.
Syst., 22(1):89–115, January 2004.

[21] Se Won Jang, Simon Kim, and JeongWoo Ha. Graph-based recommendation systems :
Comparison analysis between traditional clustering techniques and neural embedding.
2017.

[22] Daniel Johnsson. Composing music with recurrent neu-
ral networks. http://www.hexahedria.com/2015/08/03/
composing-music-with-recurrent-neural-networks/. Visited on 2020-
04-27.

[23] Andrej Karpathy. The unreasonable e�ectiveness of recurrent neural networks. http:
//karpathy.github.io/2015/05/21/rnn-effectiveness/. Visited on 2020-
04-27.

56

https://keras.io/layers/embeddings/
https://keras.io/api/losses/
https://developers.google.com/machine-learning/clustering/similarity/measuring-similarity
https://developers.google.com/machine-learning/clustering/similarity/measuring-similarity
https://www.ingka.com/news/ingka-group-launches-data-promise-to-customers/
https://www.ingka.com/news/ingka-group-launches-data-promise-to-customers/
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

REFERENCES

[24] Andrej Karpathy. Cs231n: Convolutional neural networks for visual recognition.
https://colah.github.io/posts/2015-08-Understanding-LSTMs/, 08 2015.
Visited on 2020-03-31.

[25] Yehuda Koren and Robert Bell. Advances in Collaborative Filtering, pages 145–186.
Springer US, Boston, MA, 2011.

[26] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and docu-
ments. CoRR, abs/1405.4053, 2014.

[27] G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item collab-
orative filtering. IEEE Internet Computing, 7(1):76–80, 2003.

[28] Ian MacKenzie, Chris Meyer, and Steve Noble. How retailers can keep up with
consumers. https://www.mckinsey.com/industries/retail/our-insights/
how-retailers-can-keep-up-with-consumers. Visited on 2020-04-27.

[29] Benjamin Marlin. Modeling user rating profiles for collaborative filtering. In Proceedings
of the 16th International Conference on Neural Information Processing Systems, NIPS’03, page
627–634, Cambridge, MA, USA, 2003. MIT Press.

[30] Sean McNee, John Riedl, and Joseph Konstan. Being accurate is not enough: How
accuracy metrics have hurt recommender systems. CHI ’06 Extended Abstracts, pages
1097–1101, 04 2006.

[31] Prem Melville and Vikas Sindhwani. Recommender systems. In Claude JSammut and
Geo�rey I. Webb, editors, Encyclopedia of Machine Learning, chapter 00338. Springer,
New York, 2017.

[32] Tomas Mikolov, Kai Chen, Greg S. Corrado, and Je�rey Dean. E�cient estimation of
word representations in vector space, 2013.

[33] Christopher Olah. Understanding lstm networks. http://cs231n.github.io/
neural-networks-1/. Visited on 2020-03-31.

[34] Je�rey Pennington, Richard Socher, and Christoper Manning. Glove: Global vectors
for word representation. volume 14, pages 1532–1543, 01 2014.

[35] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.
Grouplens: An open architecture for collaborative filtering of netnews. pages 175–186,
1994.

[36] Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender systems: introduction
and challenges. In Recommender systems handbook, pages 1–34. Springer, 2015.

[37] Ruslan Salakhutdinov, Andriy Mnih, and Geo�rey Hinton. Restricted boltzmann ma-
chines for collaborative filtering. In Proceedings of the 24th International Conference on
Machine Learning, ICML ’07, page 791–798, New York, NY, USA, 2007. Association for
Computing Machinery.

57

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

REFERENCES

[38] Daniela Sanchez Santolay. Using recurrent neural networks to predict customer behav-
ior from interaction data. University of Amsterdam, 06 2017.

[39] Stuart A. Thompson and Charlie Warzel. Twelve million phones, one dataset, zero
privacy. The New York Times, Dec 2019.

[40] Flavian Vasile, Elena Smirnova, and Alexis Conneau. Meta-prod2vec - product embed-
dings using side-information for recommendation. CoRR, abs/1607.07326, 2016.

[41] WolframMathWorld. Geometric centroid. https://mathworld.wolfram.com/
GeometricCentroid.html. Visited on 2020-05-14.

[42] Liang Xiang and Qing Yang. Time-dependent models in collaborative filtering based
recommender system. In Proceedings of the 2009 IEEE/WIC/ACM International Joint Con-
ference on Web Intelligence and Intelligent Agent Technology - Volume 01, WI-IAT ’09, page
450–457, USA, 2009. IEEE Computer Society.

[43] T. Zhou, Z. Kuscsik, J.G. Liu, M. Medo, J.R. Wakeling, and Y.C. Zhang. Solving the ap-
parent diversity-accuracy dilemma of recommender systems. Proceedings of the National
Academy of Sciences, 107(10):4511–4515, 2010.

[44] Andrej Zwitter. Big data ethics. Big Data & Society, 1(2):2053951714559253, 2014.

58

https://mathworld.wolfram.com/GeometricCentroid.html
https://mathworld.wolfram.com/GeometricCentroid.html

Appendices

59

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-08
EXAMENSARBETE Data Optimization for a Deep Learning Recommender System
STUDENT Gustav Hertz
HANDLEDARE Patrik Persson (LTH), Emil Joergensen (IKEA)
EXAMINATOR Flavius Gruian (LTH)

Användardatans påverkan på ett
rekommendationssystem

POPULÄRVETENSKAPLIG SAMMANFATTNING Gustav Hertz

Användardata krävs för att bygga personliga rekommendationssystem. I detta arbete har jag under-
sökt hur mängden data påverkar rekommendationsystemets prestanda, samt hur data bör väljas då
det finns ett överflöd eller underskott av data för träning av rekommendationssystemet.

Rekommendationssystem är algoritmer som föres-
lår innehåll för användare, främst på internet.
Systemen är generellt utformade för att ge en
personligt anpassad användarupplevelse genom
att rekommendera innehåll som det är sannolikt
att användaren kommer att uppskatta. Inom
näthandel på IKEA används ett rekommendation-
ssystem som bygger på ett Long-Short TermMem-
ory deep learning nätverk. Denna modell använ-
der sig av en sekvens av produkter som använ-
daren har lagt i varukorgen för att förutsäga vilka
produkter som är mest sannolika nästa inköp.
Dessa produkter är sedan rekommenderade till an-
vändaren.
Vilka produkter som är sannolika som nästa inköp
baseras på stora mängder av data om tidigare an-
vändares köp. IKEA vill erbjuda användare valet
om de vill att deras data ska lagras och använ-
das. Det kommer att leda till en minskad insam-
ling av data för träning av rekommendationssys-
temen. I detta arbete har jag undersökt hur min-
skad insamling av data påverkar rekommendation-
ssystemets kvalitet.
Kvalitet definieras här som en kombination av
träffsäkerhet i rekommendationerna, hur stor del
av produktkatalogen som rekommenderas samt
till vilken grad systemet rekommenderar produk-
ter som inte tillhör storsäljarna. Det är önskvärt
att rekommendera stora delar av produktkatalo-
gen samt produkter som inte tillhör storsäljarna
för att skapa rekommendationer som användarna
inte hade hittat själva men som ändå är värde-
fulla. Rekommendationsssystem som endast rek-

ommenderar de mest sålda produkterna tillför inte
så mycket värde för användarna.
Undersökningarna visar att mer data inte är en-
sidigt positivt för rekommendationerna. Mer data
ledde till att en mindre andel av produktkatalo-
gen rekommenderades och att storsäljarna rekom-
menderades i högre utsträckning. Träffsäkerheten
ökar visserligen med större mängder data, men
förbättringen per tillagd datapunkt är avtagande.
Som en följd av att mer data inte entydigt är av
godo undersöktes hur den mest relevanta mäng-
den data kan väljas då det finns tillgång till mer
data än nödvändigt. Undersökningen visade att
när rekommendationssystemet tränades på äldre
data så presterade det betydligt sämre. För att
träna modellen bör alltså den senast tillgängliga
data väljas, i tillräckligt stor mängd för att nå till-
fredställande träffsäkerhetsnivåer.
Slutligen undersöktes det om det är möjligt att
komplettera dataset från små marknader med
data från andra marknader. Undersökningen
visade att data från sekundära marknader funger-
ade för att träna rekommendationsystemet på
marknader som saknar tillräckliga mängder data.
Vilken marknad data togs från spelade stor roll för
kvalitén på rekommendationerna, detta då köp-
beteenden skiljer sig olika mycket mellan länder.
Ett mått för att mäta likheter i köpbeteende mel-
lan marknader utvecklades och visade lovande ten-
denser i att kunna förutsäga vilka marknader som
hade liknande köpbeteenden, men ytterligare un-
dersökningar krävs på området.

	Introduction
	Research Questions
	Contributions
	Related Work
	Recommender Systems
	Evaluating a Recommender System
	Learning curves in deep learning
	Embeddings
	Data ethics

	Background
	Recommender Systems
	Collaborative-filtering methods
	Sparsity and the Long tail
	The Cold-start problem

	Neural networks
	Loss function - Categorical Cross Entropy

	Recurrent neural networks and LSTMs
	The LSTM as a Recommender System
	The existing IKEA implementation

	Embeddings
	Vector representations of anything
	Calculating similarities between vectors
	Word embeddings

	Learning Curves in Deep Learning
	Metrics for evaluating the performance of a Recommender System
	Precision@k
	Catalog coverage
	Novelty

	The importance of recent data when developing Recommender Systems

	Method
	Tools and workflow
	Performance as a function of dataset size
	Down-sampling on excess data
	Up-sampling using data from other markets

	Results
	Performance as a function of dataset size
	Down-sampling on excess data
	Up-sampling using data from other markets

	Discussion
	Performance as a function of dataset size
	Down-sampling excess data
	Down-sampling by removing shorter sequences
	Down-sampling by removing older datapoints

	Up-sampling using data from other markets

	Summary
	Conclusions
	Future Work
	Online evaluation
	Biases introduced when customers opt-out of data collection
	Further research on a Similarity metric between markets

	References

