
MASTER’S THESIS 2020

Evaluating a Real-time
Multi-core Processor for
Embedded Streaming
Linus Gudmundsson, Jacob Canbäck

ISSN 1650-2884
LU-CS-EX: 2020-24

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-24

Evaluating a Real-time Multi-core
Processor for Embedded Streaming

Linus Gudmundsson, Jacob Canbäck

Evaluating a Real-time Multi-core
Processor for Embedded Streaming

(A case study on the Patmos architecture)

Linus Gudmundsson
dat15lgu@student.lu.se

Jacob Canbäck
dat15jca@student.lu.se

June 22, 2020

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Jörn W. Janneck, jorn.janneck@cs.lth.se

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:dat15lgu@student.lu.se
mailto:dat15jca@student.lu.se
jorn.janneck@cs.lth.se
mailto:flavius.gruian@cs.lth.se

Abstract

Modern processors provide high performance for just about any average appli-
cation. This is possible as they are optimized for general purpose use. However,
optimizations that improve the average case execution time often result in an
increase of the worst-case execution time (WCET). Furthermore, to determine the
WCET for arbitrary applications on such processors is equivalent to solving the
halting problem, which has been proven to be undecidable. This in turn leads
to WCET analysis programs abstracting from implementation details and ap-
proximating results in order to keep the complexity at a manageable level [29].
In this project we investigate a processor designed for real-time systems, Patmos
[28], and how it functions when used for non time driven applications. Patmos
features a processor array and a network on chip used for transfers. To conduct
the investigation we implemented an actor based streaming application which
performs MPEG-4 decoding. When implementing an actor based application on
a processor array there needs to be some form of mapping between actors and
cores. We explored how this mapping impacted the performance and if this map-
ping could be automated. We found that the most problematic limitation was
the amount of available memory, which led to extensive trimming on the appli-
cation’s memory usage. When this was done it was possible to run the application
on the Patmos platform. The mapping between actors and cores was found to
significantly impact the performance, with some mapping layouts almost dou-
bling the performance. In addition it was possible to automatically compute the
mapping layouts. During this project the Patmos architecture has shown con-
siderable potential and will most likely be beneficial for both real-time and data
driven applications once a stable version of Patmos is released.

Keywords: Patmos, Actors, Streaming Application, Mapping, Memory Optimization,
Embedded Processor Array

2

Acknowledgements

This project was conducted at the Department of Computer Science, Lund University. We
wish to thank Jorn W. Janneck for his invaluable assistance as our supervisor and for pro-
viding us with the necessary hardware, Flavius Gruian for his guidance on all administrative
matters regarding the project, Martin Schoeberl and Eleftherios Kyriakakis from the Patmos
development team for their help whenever we had questions regarding Patmos, and Anders
Bruce for setting up our project workstations.

3

4

Contents

1 Introduction 7
1.1 Patmos Microprocessor . 7

1.1.1 Real-Time . 7
1.1.2 Processor Array . 8

1.2 Application . 9
1.3 Research Goal . 10

1.3.1 Research Questions . 11
1.4 Contributions . 11

1.4.1 Division of Work . 11
1.5 Related Works . 12

2 Background 15
2.1 Streaming Application . 15

2.1.1 MPEG-4 . 15
2.1.2 Encoded Video . 16
2.1.3 Intra-coded Frames . 16
2.1.4 Predicted Frames . 16
2.1.5 Color Space . 17

2.2 Patmos . 17
2.2.1 Memory . 18
2.2.2 Core to Core Communication . 19
2.2.3 Hardware . 19

3 Method 21
3.1 Overall Procedure . 21
3.2 Static Analysis . 22
3.3 Code Generation . 22
3.4 Multi-core Communication in the Application 24
3.5 Layout . 24

3.5.1 MiniZinc Programming . 27

5

CONTENTS

3.6 Benchmarking . 27
3.6.1 Actor Execution Time . 28

4 Implementation 29
4.1 Memory Usage . 29
4.2 FIFO Queues . 30

4.2.1 Algorithm . 30
4.2.2 Cross Core FIFO Queues . 31
4.2.3 Shadow State . 32
4.2.4 Bulk Transfer . 34
4.2.5 Overflow . 34
4.2.6 Initialization . 34
4.2.7 Power of 2 Optimization . 34

5 Results and Discussion 37
5.1 Setup . 37
5.2 Performance Based on Layout . 38
5.3 Actor Execution Times . 42
5.4 Benefits and Drawbacks of Patmos . 45
5.5 Ethical Aspects . 46

6 Conclusions and Future Work 47

References 51

Appendix A Installation 57
A.1 Quartus . 57
A.2 Multi-Core . 58

Appendix B Help Tools 59
B.1 Table Generated From Queue Analysis . 59

Appendix C Project Code 63

6

Chapter 1

Introduction

This chapter introduces the Patmos platform and the streaming application briefly, as well as
describes the main problems we wish the explore in this thesis. It also describes our research
goals and attempts to give the readers an overview of the Patmos platforms unique aspects
and elaborate on why this is interesting.

1.1 Patmos Microprocessor

1.1.1 Real-Time
Today almost all modern processors can handle most generic applications within a reasonable
time-frame. This is a result of being optimized for average case execution time. This lets them
run any application, on average, at a reasonable high speed. These optimizations do however
often have a drawback as they can lead to a degradation of the worst case execution time [17].
Because of this an application’s run time can vary a great deal between executions. While
this is completely fine for an average application, some critical applications, such as plane or
train controllers, cannot a�ord such stalls as they are not allowed to fail even once. For such
applications some processors have been designed to be real-time and worst case execution time
(WCET) analyzable. One of these processors is Patmos, a processor array developed to be
the next big thing in the stale market of real-time systems. Unlike most architectures which
try to minimize the average-case execution time of applications Patmos focuses on exposing
and minimizing the WCET [30]. This makes it a perfect fit for any applications that requires
stability and predictability as there will never be any unexpected exceptions when it comes
to execution time. Calculating WCET in a single core environment is fairly complex, but can
still be achieved with some e�ort [24]. Patmos however takes it a step further and applies
this even to multi-core applications. This is possible because of the way the cores, and the
communication amidst them is designed and regulated.

7

1. Introduction

1.1.2 Processor Array

Patmos is a many-core architecture and is composed of a matrix of cores connected using a
Network-on-Chip (NoC). Each of these cores have their own local resources, see figure 1.1.
The network to the right contains one router per core. Each router is connected with four
other routers as well as one core. The broken arrows form the bi-torus topology. One of the
cores is expanded to the left to show the network interface. The most important of the local
resources is the Scratch-Pad Memory (SPM), as it serves two purposes. The SPM is an ideal
memory and should be used as a fast local storage, allmost like a data cache but with its own
address space. The second job of the SPM is to serve as the transmission and receive bu�er
for message passing between cores, as the NoC can copy data blocks between the SPM of
di�erent cores. To transfer data between cores the sender core programs its Direct Memory
Access (DMA) unit to copy a range of its own SPM to another range in the receivers SPM,
see figure 1.2. This copy operation is asynchronous and the cores can work on unrelated
computations while the transfer happens.

Figure 1.1: NoC routing of a four core configuration of Patmos [2].

8

1.2 Application

src

dstDMA

SPM SPM

Write

Core Core

Receiver

Program

Read

NoC

Sender

Figure 1.2: Patmos message passing.

1.2 Application

The application chosen for this project is a video decoder implemented as a actor system
consisting of 41 actors, see figure 1.3. Each box represent one actor and each arrow at least
one communication link. Queues with the same source and destination are collapsed for
readability, but in actuality each queue has a single producer and a single consumer. Some
actors at the top like parser_parseheaders sends tokens to the majority of actors below. There
are three feedback loops towards the bottom of the figure formed by the actors with the mo-
tion prefix. Other than that the system is strictly feed-forward as all data travels from top to
bottom. This application was chosen as it put many di�erent loads on the system as well as
varies greatly with the input data. Furthermore the application decodes MPEG-4 which was
the first MPEG set of standards to feature reference software [5]. The application was chosen
as it provides a substantial amount of diversity when it comes to actor performance char-
acteristics. Some actors consist of many thousands lines of code while others use less than
hundred lines. Some actors use barely any memory while others use many megabytes and
some perform extensive computational operations such as discrete cosine transforms while
others only rearrange data. The actors using most memory are those that access the frame-
bu�er which stores the previous video frame. Because of this diversity we can utilize more
parts of the Patmos architecture and evaluate if they could be potential bottlenecks. Fur-
thermore the application varies substantially in the communication as the packets being sent
from actor to actor range from single bits to chunks of hundreds of bytes with a rate varying
from once per video frame to once per pixel. The actor system’s topology is largely feed-
forward but there exists a few feedback loops which in turn makes latency and bandwidth a
concern. As the application is a decoder it inflates data causing the bandwidth requirement
to increase towards the end of the pipeline. Another important aspect of this application
is that the processing is input dependent. Di�erent input stress di�erent actors creating a
correlation between the input and any potential bottlenecks.

9

1. Introduction

Figure 1.3: All actors of the streaming application.

1.3 Research Goal
Our goal is to perform a case study on the Patmos platform. More specifically how does
Patmos perform when implementing a data driven application instead of a real-time appli-
cation. The particular type of processor is interesting as it has great potential when it comes
to scalability. In the quest for increased performance the only way forward seems to be im-
proved parallelization [9]. This has lead to new ways of designing hardware, like processor
arrays, that scale better as well as programming models such as actor systems [13]. In order to
fully explore the platform and discovering the benefits and drawbacks relevant to our thesis,
we will be implementing an actor based application. Since each actor is restricted to local

10

1.4 Contributions

computations without the use of any shared memory, the actor system can be parallelized in a
straightforward fashion. As the workload only makes use of message passing to communicate
it is most suitable for an architecture featuring a processor array with a network on chip (NoC)
[25]. Patmos is such an architecture, as can be seen in figure 1.1. As the Patmos architecture
aims to allow the WCET of any application to be completely predictable, the average per-
formance is lowered compared to other average case optimized systems. This design is not
a perfect fit for the streaming application as it is input dependent and therefore di�cult to
predict.

1.3.1 Research Questions
In this study we try to answer the two following questions:
1) What are the benefits and drawbacks to the Patmos platform viewed from the unconven-
tional perspective of implementation of a streaming application?
2) Is it feasible to automatically map an actor system to the Patmos architecture without
loosing performance compared to a manual mapping?

1.4 Contributions
This master’s thesis contributes to:

• Identifying the benefits and drawbacks to the Patmos architecture in the perspective
of implementing a data driven application instead of a time driven application.

• Issues such as disabled NoC and Ethernet was found and then fixed by the the Patmos
team. Also some configuration problems with the SPM size was solved.

• Pipeline for mapping any actor application to the Patmos platform. (easily adapted to
any new application)

• Flexible mapping method using constraint programming that can easily be modified
to account for more hardware limitations.

• Static analysis tools to explore and visualize an actor system as well as live analysis
tools for measuring actor execution time, queue bandwidth and processor utilization
on Patmos.

1.4.1 Division of Work
All of this project has been carried out with both authors present while employing the pair
programming style. However at times when less significant code was to be implemented we
did work in parallel. This led to Linus Gudmundsson being more responsible for the Python
scripts utility and Jacob Canbäck being more responsible for the client program. However
both authors were involved in these steps as well as later corrections and changes were made
together.

When it comes to the report all sections have been rewritten and approved by both au-
thors by making use of color coding for the sections. However Jacob spent more time on the

11

1. Introduction

FIFO sections (sections 4.2 to 4.2.7) while Linus spent more time on the abstract, Constraint
programming and Conclusion sections (sections 3.5, 3.5.1 and 6). However, as the report
nears completion the time spent on these sections has also balanced out as additional edits
are made.

1.5 Related Works
When it comes to related works for this thesis, quite a few works could be considered as
related. Any project which implements a streaming application on an embedded system
could be considered related. But as hundreds of such works exists we will limit ourselves to
listing a few other works we consider to be the closest related to our thesis, as well as the
papers we felt contributed to our thesis.

The most obvious one being the Implementing a streaming application on a processor array
[16] work, which is another, older, thesis which implements the same streaming application
on another embedded processor array. However, other than the actor program being the
same there were not many similarities between theirs and our work. Our thesis separates
itself from this one however as we use a time-driven platform which in turn leads to several
new design choices, and we also research the mapping between the actors and the processor
cores on a whole new level. Since they had none of these aspects in their thesis, and they had
much more memory available to them, their work was not relevant beyond the actor system
provided initially.

Another related work is the Towards a time-predictable dual-issue microprocessor: The Patmos
approach [30] article which is written by the developer of Patmos. This paper discusses several
concepts that Patmos consists of and enlightens the reader to the design choices made when
designing Patmos. This work was mainly used to understand the Patmos platform, as one
would expect from an article explaining the features of Patmos.

The work Realizing e�cient execution of dataflow actors on manycores [10] describes how
necessary it is to make use of manycore architectures and suggests e�cient methods of doing
so by creating actor systems in CAL. This is exactly the kind of actor system we have available
to us in this thesis, as it was even supplied by our supervisor Jorn W. Janneck which is also one
of the authors in that paper. Because of this we could make use of their paper to understand
some of the decisions that were made when creating this actor system and how we could take
advantage of them. This was one of the papers we used as our basis for the heuristics used
when mapping actors to cores.

When it comes to the mapping problem one relevant work is Orchestrating the Execution of
Stream Programs on Multicore Platforms [14]. This work targets the Cell architecture [33] which
is a many-core processor and similar to our work it maps a software actor system to the hard-
ware. However, there are a few di�erences when it comes to the software and hardware. The
actor systems they experimented with was strictly feed-forward as dealing with feed-back
loops was out of the scope of their work. Their hardware also di�ers considerably from ours
as it is an Application Specific Integrated Circuit (ASIC) optimized for throughput as op-
posed to Patmos which is a real-time optimized micro controller implemented on an FPGA.
Another important di�erence in the hardware is the topology as the Cell architecture consist
of one general purpose processor and up to 16 co-processors with 256 KiB of local memory
each for a total of 4 MiB of local memory. This memory is analogous to what we call SPM and

12

1.5 Related Works

they had twice as much of it as we had external memory. This paper did achieve impressive
results as they reached an avarage scalability of 14.7x over using just one of the co-processors
when benchmarking a range of dataflow applications. Another important di�erence to our
work is that they did not make use of constraint programming to solve the mapping problem,
instead they used a solution based on integer linear programming to solve the packing prob-
lem of assigning actors to cores. This seem to have worked fine in their project as additional
constraints such as memory limitations was not an issue as they claim that there is "ample
memory available to hold the intermediate bu�ers" while we had to trim the memory usage
of our application considerable just to make it run.

13

1. Introduction

14

Chapter 2

Background

In this chapter we discuss the theoretical background behind Patmos and the Streaming ap-
plication. We start of by describing the Streaming application as well as MPEG-4 more in
depth and then do the same with the Patmos architecture where we discuss the memory and
hardware.

2.1 Streaming Application
The streaming application was originally a MPEG-4 video decoder implemented in an pro-
gramming language from 2001 called Caltrop actor language (CAL) [8] [7]. This language makes
use of the concept of actors, which was originally introduced by Carl Hewitt as an approach
of modelling intelligence as a society [11], and has since become widely used. The language
was designed to create actor systems where the behaviour of each actor was controlled by a
state machine and communication was performed using First In First Out (FIFO) queues. The
original code was then compiled to C by a CAL to C compiler [34] before being provided to
us. The actor system contains 39 actors communicating using 143 FIFO queues, see figure 1.3.
A source file was provided for each of the actors as well as header files containing bu�er size
and token type for each of the queues. The C code was not executable as is. The FIFO queues
had to be implemented and the API interface defined by macros using the C preprocessor.

2.1.1 MPEG-4
MPEG-4 is a standard which defines the compression of visual data and digital audio. It
was created in 1998 and quickly became a standard used for audio and video coding [21] It
was designated as such by the Moving Picture Experts Group (MPEG). Common uses include
distributed CDs as well as media streaming. In this project we focus only on decoding com-
pressed video as the compression algorithms are very complicated. However, it is essential to
understand how the video is encoded in order to decode it.

15

2. Background

2.1.2 Encoded Video
Video compression standards like MPEG-4 exploit the fact that a few following pictures in a
video is often nearly the same. And even if they change the changes are often motion or just a
few local changes. This makes it possible to represent most pictures as a delta applied to the
previous picture. This delta can use substantially less memory than storing the actual picture
independently. This is why encoding formats like MPEG-4 breaks up the video into two
di�erent types of frames with di�erent memory cost, as explained in the following sections.
This means that the amount of bandwidth and computations needed to decode the streamed
video could have a significant variance over time.

2.1.3 Intra-coded Frames
Intra-coded Frames (I-frame) is the simplest and most memory intensive type of frame in an
encoded video. They store the entire frame independently of other frames but they still
use local compression similar to many popular image formats. There are three cases when I-
frames are needed. The first case is at the beginning of the video as there is no previous frames
to depend on. The second case is when the previous frames are available but the di�erence is
too significant to encode as a delta such as a scene cut. The third case is access points that are
stored at evenly spaced times, perhaps every 20th frames. Access points are needed for a few
reasons. The video stream would be fragile if it had long sequences of delta encoded frames.
One small error could propagate and destroy the video until another I-frame is processed by
the decoder. This is especially important when streaming video over the internet as packets
may be dropped or corrupted. Another important reason to have evenly spaced I-frames is to
make the encoded video able to start playback at any frame index without having to decode
too many delta frames. When starting playback at an arbitrary frame index the latest I-frame
with the same or lower index is located and the decoder starts from there and has to decode
the video until the desired index is reached before the playback can begin. When an I-frame is
processed the bandwidth requirement at the front end of the decoder is substantially higher
than the processing of frames represented as a delta on previous frames.

2.1.4 Predicted Frames
Predicted frames (P-frames) require prior decoding of previous frames. P-frames use less mem-
ory than I-frames and will not stress the front end of the decoder as much. They contain mo-
tion/displacement vectors to describe the changes between the current and previous frame.
Some parts of the previous frame may not have to be changed at all such as a static back-
ground and this can be encoded e�ciently. If some local area change a lot the P-frame can
also contain image data to replace the pixels in that area. If two following frames are nearly
identical the second frame can be represented as a tiny P-frame. This means that the front
end could be mostly idle while there is no motion in a video. The back end of the decoder
will always handle the same load no matter the memory usage of the encoded frames, this
makes it tricky to load balance the various actors.

16

2.2 Patmos

2.1.5 Color Space
The luminance-bandwidth-chrominance (YUV) encoding system encodes color as 3 components
[15]. The Y component represents the luminosity (brightness). The other two components
represents chrominance (color). U represents blue projection and V represents red projection.
YUV encoding was invented to support color on black and white TVs while keeping the gray-
scale/brightness signal for backwards compatibility. The alternative to YUV is the more
modern and frequently used RGB color encoding. But YUV has some advantages when it
comes to compression. Human eyes are a lot better at detecting di�erences in brightness than
detecting di�erences in color [22]. This means that the Y component needs higher precision
than the U and V components, something that is not possible with RGB color encoding. This
is exploited in the video decoder/encoder by using chroma sub-sampling [23], see figure 2.1.
The figure illustrates four di�erent examples of reducing the amount of chrominance stored
in a two by four pixel area.

Figure 2.1: Chroma sub-sampling examples. The color of the video
signal is sampled at a lower frequency than the brightness.

The output of the decoder is not regular RGB image data. It is encoded as YUV and has to
be converted to RGB before the frame can be displayed. As both encoding formats are linear
the conversion can be done by multiplying with a 3x3 matrix, see equation 2.1. The output
of our particular streaming application is not directly observable as images. The image has
to be computed from the 4:2:0 sub-sampled chunks produced by the Merger420 actor. The
chunks consist of a 32x32 pixels of Y followed by 16x16 pixels of U and 16x16 pixels of V . It is
just a larger version of the third row in figure 2.1. This conversion is not part of the decoder
and we implemented it as a post process when visualizing the video.RGB

 =
1 0 1.13983
1 −0.39465 −0.58060
1 2.03211 0

 ·
YUV
 (2.1)

2.2 Patmos
Patmos is a time-predictable platform optimized specifically for the WCET [29] instead of
the average-case execution time. Such systems are an essential part of safety-critical systems
such as transportation controllers that depend on guaranteeing that even the worst case will
still be safe. This means that they need to be able to perform a reliable WCET analysis on
their subsystems. This is where platforms such as Patmos becomes important. They allow the
WCET to be analysed easily and with a high degree of confidence. This in turn results in a

17

2. Background

much lower cost for safety-relevant applications due to both the reduced system complexity
and the faster time-predictable code execution. The developers of Patmos stated in their
article that the mission of the T-CREST project, which Patmos is a part of, was to develop
tools for WCET analysis and building a platform that avoids unexpected delays [27]. But
as stated earlier in the introduction, the real-time aspects are not useful for the streaming
application.

2.2.1 Memory

The memory system used by the Patmos architecture features a large shared memory as well
as a few types of local memories per core. These local memories include a SPM, a data cache
memory, a stack cache memory and a instruction cache memory. This structure shares many
similarities with more common processor architectures, such as the instruction and data
caches for each core, but introduces new aspects such as the stack cache and SPM. Any access
to the external memory goes through a time division multiplexed scheme called a memory
wheel [29]. This leads to each core taking turns to transfer or fetching data in a round-robin
fashion. As a result of this design the Patmos cores are simply unable to interfere with each
others performance unlike most modern multi core processors. The purpose of the stack
cache is to assist the data cache. It works like a window at the top of the stack and is imple-
mented as a ring bu�er. This helps with the WCET analysis as the stack access can be analyzed
independently. The SPM is an ideal memory with two purposes. The first is to store gen-
eral purpose data only accessed locally, which helps to avoid unnecessary access to the slower
main memory. The second purpose is to asynchronously send and receive data packets to
and from other cores through the NoC as explained earlier in the introduction. Unlike most
multi-core processor architectures Patmos has no cache coherency protocol. This avoids sev-
eral problems [3] but leads to the shared main memory being unsuitable for high performance
communication as the data cache has to be invalidated in order to read something another
core has written. Cache misses are especially costly on the Patmos architecture as the main
memory is slow due to time multiplexed access. When accessing the external memory the
data is transferred through the NoC which acts as multiple to one communication to the
memory controller, see figure 2.2. The figure contains four cores at the top and the shared
memory at the bottom. Between them there are two tries of registers. The first tree carrying
signals from the cores to the memory controller features time multiplexers to divide access
over time. The second tree is carrying signals (dotted arrows) from the memory controller to
the cores.

18

2.2 Patmos

Figure 2.2: Time division-multiplexed NoC between the cores and
the memory [2].

2.2.2 Core to Core Communication
The primary objective of the on-chip communication between cores is, as expected, to be
time-predictable. The preferred way for the cores to communicate is to use their SPM to
transfer data directly between cores using the NoC. In order to actually make such communi-
cations WCET analyzable the NoC is required to provide individually analyzable end-to-end
connections. These can be implemented either by circuit-switching or by controlling the rate
of the tra�c flows. The NoC communication Patmos uses is implemented with the use of
packet switching and source routing with the topology of a bi-torus [27]. This corresponds
to the core layout being wrapped, for example in a 3x3 layout the bottom 3 cores would
consider the top 3 cores neighbours. Direct memory access (DMA) driven block transfers are
performed between the senders local SPM to the receivers SPM which enables asynchronous
message passing between cores. Such communication between cores is similar to communi-
cating with the external memory in the sense that they both use the NoC and both are time
multiplexed, but the communication between cores is cheaper. This influenced our deci-
sions when designing layouts to the point where we benchmarked how much remote queues
a�ected the overall performance. More details about this can be found in section 5.

2.2.3 Hardware
In order to run the Patmos architecture a Field programmable gate array (FPGA) is needed as
there is no application specific integrated circuit (ASIC) hardware yet. The FPGA used for this

19

2. Background

project is the Altera DE2 [18], see figure 2.3. This model was recommended by the Patmos
team. It comes with a lot of features such as audio, VGA graphics, Ethernet and a lot of
miscellaneous IO such as LED’s and switches. The memory available is 128 MB SDRAM,
2MB SRAM and 8MB FLASH as well as 3888 Kbits of embedded memory that can be used
to implement for example cache memories or SPM. Patmos is able to use only a subset of these
features. The memory system only use the 2MB SRAM for the shared memory and all the per
core memories compete for the same 3888 Kbits of embedded memory modules. The primary
IO devices used by Patmos is a USB for serial communication and the 100 Mb/s Ethernet
port. For the miscellaneous IO Patmos enables the push buttons, some of the LED’s and the
7-segment display. The configuration of Patmos is flexible. The amount of cores, memory
sizes and enabled IO devices can be configured through a hardware config file. The amount of
on chip memory used depends on the configuration. The amount of cache and SPM available
per core decrease when the core count increase. We mainly used 4-core configuration with
default cache sizes and 32KB of SPM per core. We also tried a 8-core configuration but the
memory was only enough for 8KB of SPM per core.

Figure 2.3: Layout of the Altera DE2 Board [1].

20

Chapter 3

Method

In this chapter we describe the methodology used to approach our problems. Section 3.1
describes the general approach used and the following sections fills in these general steps
with more detail.

3.1 Overall Procedure
Our method consisted mainly of taking small steps forward by writing di�erent test programs
and analyze the outcome for any aspects we wished to understand. The first step of the project
was static analysis on a multitude of the applications aspects. This includes plotting the
communication network with actors and queues and finding out the properties of the queues
such as token type and bu�er size. After gathering an appropriate amount of data from our
static analysis we implemented FIFO queues by making use of the preprocessor to inline
di�erent versions of functions in a similar fashion to the C++ templates used in the related
work on the same application [16]. We then added some finishing touches and completed
the x86 version of the streaming application. Then we moved on to Patmos, working on the
provided FPGA. After overcoming some issues with the Patmos build, we had working multi-
core Patmos hardware. Once this was done we learned how the NoC worked and decided on
a direction for our final program. As we wished to have a modifiable layout we decided to
make a small pipeline which built the Patmos program from the provided source code of the
actors and some configuration files. This is when the main bottleneck started to reveal itself.
Because of the applications high memory usage and the small amount of available memory on
the Patmos device, all queue sizes, as well as the framebu�er resolution, had to be drastically
reduced. This required substantial e�ort and reverse engineering, but at last we could fit
the application on the Patmos hardware. Then we needed to upload the video to the Patmos
device. We tried to convert the video into a C file by storing the raw data in an array and
compiled it as part of the application. But once we made most of the actor attributes use SPM
memory we were still unable to fit the entire video in external memory. Thus we decided

21

3. Method

on the more reasonable approach of streaming the video over Ethernet. Luckily the Patmos
team managed to help us make the NoC and Ethernet controller to work concurrently, which
made this a viable solution. We could then finally implement a client application which both
streamed the encoded data to the device as well as received and displayed the decoded data as
a video. At this point the only thing left was to experiment with di�erent ways of mapping
actors to cores.

3.2 Static Analysis
As the streaming application features many thousands lines of code, we required some form
of help tools or programs to analyze the application. In order to conveniently understand and
display the applications current layout and structure several of said help tools were created
by employing static analysis. After analysing such things as queue sizes, packet sizes, data-
flow and the actor layout, we created several Python programs to display the data. The first
Python program generated a data-flow graph which displayed the actor layout amongst the
cores and how they communicate, see figure 3.1. This figure shows each actor as a colored box,
where the color represents the core it resides on, connected to each other by arrows which
represents a FIFO queue. The automatically generated graph is not meant to be readable at
this size, see figure 1.3 for a manually refined version. To prevent this graph from becoming
excessively cluttered we designed two other help programs. These programs displayed a list
of all queues with a more in depth analysis of the communication and an analysis of the SPM
usage respectively. We were able to calculate how much SPM usage an actor would require
by parsing the attributes and bu�ers as these were the only factors which influenced the
SPM used. Example output from the queue analysis, displaying parts of the output from the
program, can be found in appendix B.1.

Figure 3.1: Auto generated graph of the data flow between the actors.

3.3 Code Generation
One of the most common development methods used in this project was code generation.
To enable easy swapping of the actor layout which depicted actors resided on which core, a

22

3.3 Code Generation

configuration file containing the active layout was created. As this was the case large e�orts
went into parsing and modifying all of the actors through Python programs. Eventually this
resulted in two pipelines, one for the x86 implementation and over for the Patmos implemen-
tation. The figure 3.2 demonstrates the x86 pipeline. The pipeline were divided into three
phases, the adaptation phase, the generation phase and the compilation phase. The Adapta-
tion phase only adapted the code by making changes such as removing comments to ease the
parsing and lowering the framebu�er and attribute size. The Generation phase generated
new actor files which made use of our new syntax, such as our FIFO queues. It also generated
an actor updater which was used to call the actors update functions in a round-robin fashion.
Finally the Compilation phase used the standard tools to link and compile the program.

Remove
Comments

Reduce
Framebuffers

Reduce
Attributes

Generate
Actors

Generate
Actor Update

Compile
DecoderActor Files Decoder

Program

Adaption Generation Compilation

Figure 3.2: x86 Pipeline

The Patmos pipeline is similarly shown in figure 3.3. It is also divided into the three
phases but has some di�erences to the x86 pipeline. The Adaptation phase is exactly the
same. It takes the same actor files as input and makes the same changes as the x86 version.
The Generation phase still generates the actors as well as the update scheduler, but now uses
the Patmos syntax. It also makes use of two new programs. The first of these new programs
allocates the attributes, the FIFO writers, the FIFO readers and the FIFO bu�ers in the SPM.
As the SPM can be seen as a range of available addresses per core it was needed to determine
where a variable would be stored. This was done in compile time to make sure it would
not have any negative impacts on the performance. The second program modifies an already
existing controller to conform with the active actor-to-core mapping. This controller handles
the Ethernet IO for the application as well as some general scheduling. The Compilation
phase is now carried out in the Patmos environment instead and make use of the Patmos
commands found in the handbook [28] to compile and upload the program to the FPGA
board.

Furthermore, while it is not a part of the actual pipeline the Patmos implementation
also has a program to map the actors to the cores which can be run beforehand to generate
the file containing these mappings. As this would only need to be run when the hardware
configuration was changed it was not included in the pipeline.

23

3. Method

Remove
Comments

Reduce
Framebuffers

Reduce
Attributes

Generate
Actors

Generate
Actor Update

Compile .ELFActor Files Patmos
Program

Adaption Generation Compilation

Generate
Addresses

Generate
Controller

Figure 3.3: Patmos Pipeline

3.4 Multi-core Communication in the Appli-
cation

As previously stated in section 2.2.2, the DMA message passing is completely asynchronous.
Because of this any application that wants to make use of this message passing is required
to take precautions such as implementing semaphores to prevent the actors from accessing a
protected resource in improper order [4]. In our implementation of the streaming applica-
tion we opted against using locks as these could impact the performance in a noticeable way,
potentially even skewing the results. However we could still avoid having data hazards and
race conditions present in the application. This was possible as the Patmos architecture guar-
antees that messages send with the NoC will arrive in the same order they are transferred.
This is due to the fact that any FIFO queue writer/reader pair will produce the same in and
output messages. As a result of this it was enough to allocate these writer/reader pairs, as well
as the related bu�ers, in the SPM in a strict fashion such that there is no overlapping write or
read addresses. This discovery lead to another issue, namely when to allocate these address
ranges as well as how to spread them out amongst the cores, since the readers and writer
layout amongst the cores directly corresponded to the actor layout. With the intention of
maximizing performance we decided to compute the actor layout and the address allocation
during compilation, as can be seen in the generation phase in figure 3.3.

3.5 Layout
When implementing an actor application on a multi-core platform there must always be
some form of mapping between the actors and the cores. However this mapping can be
done in many di�erent ways. In this project we set out to investigate how this mapping
would impact the performance, so the mapping was made to be as easily configurable as
possible. This was implemented by letting the actor layout be read from a config file during

24

3.5 Layout

compilation. Originally we implemented a manual configuration which divided the actors
amongst 4 cores, containing the parsing, Y, U and V actors respectively, see figure 3.4. In the
figure the color of the boxes represent which core they are assigned to. This was chosen as
we judged the Y,U and V actors respectively to require the same minimum SPM usage. Note
that we say minimum as ideally the Y actors should have more SPM available than the U and
V actors. The Y actors do four times more work but the minimum required SPM usage for
queues is the same as the U and V actor, this was discovered when we were minimizing each
actors memory usage as much as possible. The total SPM available per core was an issue at the
time. Once this was operational, and we had managed to trim SPM usage even more which
allowed for more freedom of movement, we decided to automate the actor placement and
investigate the performance impact from this mapping.

25

3. Method

Figure 3.4: The manual actor layout.

26

3.6 Benchmarking

3.5.1 MiniZinc Programming
In order to automate the actor mapping we had to decide on an implementation and a lan-
guage to use. As we had interest in Constraint Programming (CP) and it seemed to fit the
current problem well, we decided to use CP to build our program. When it comes to con-
straint programming there is no o�cial standard language, and most solvers use their own
modeling language [19]. We decided to use MiniZinc which is a open-source modeling lan-
guage for combinatorial problems. These problems are then in turn solved by a backend
solver [6]. Since we had previous experience with MiniZinc, and because the language allows
one to smoothly adding additional constraints to a program, it seemed like an ideal choice.

We restricted the SPM usage for each core to the maximum amount allowed by the hard-
ware, and then made use of constraints to define the relations between the actors on the core
as well as the cores SPM usage. We let the program output an array with one core index per
actor. A Python script was used to generate the data section used by the model. The data
contained information about queue bu�er sizes and which queues were connected to which
actors. We now had a working base model that was capable of creating a functioning layout.
The implementation could also work for other actor based programs. After rigorously test-
ing edge cases to find and eliminate any residual bugs in the model, we moved on to di�erent
solve conditions (a solve condition in MiniZinc can for example be to minimize the total
SPM usage) and heuristics in order to find more relevant layouts. While doing this we fur-
ther expanded the model’s input data with the execution time as well as the generated code
size which we obtained with the help of live analysis.

Eventually we ended up with two heuristic and seven di�erent solve conditions. One of
the heuristics was to force any strongly connected sub-graphs of the actor system to be on
the same core. The other one instead forced actors of similar "depth", which is decided by the
longest path from the serialize actor, which is the first actor to use the input data from the in
actor, to be on the same core. These heuristics were tested on the di�erent solve conditions.
These solve conditions are: Satisfy (no condition), Minimizing the peak execution time of
the cores, Minimizing the total tra�c between cores, Load balancing the tra�c between
cores, Maximizing the tra�c between cores, Balancing SPM usage per core and Minimizing
the code size used on each core. Most of these were chosen to observe how the aspect they
are minimizing, or maximizing, a�ect the system as a whole and how di�erent conditions
impact them. This is discussed deeper in the result section 5.

3.6 Benchmarking
The benchmarking process had two purposes. The first was to evaluate the overall perfor-
mance (frame rate) of di�erent implementations where the actor to core assignment is the
only variable. The other reason was to conduct live analysis to provide data to the MiniZinc
algorithm such as execution times of the actors to enable load balancing optimization based
on feedback. The host application was also briefly benchmarked to see if parallelization of
the actor system scaled on the x86 host computer. Parallelization on the x86 platform was
implemented by using pthreads. As this was made before the Patmos implementation we
tried out several di�erent scheduling and layout methods before eventually settling on the
one which gave the greatest performance, which was to let each actor be on its own thread.

27

3. Method

This is slightly unfair in the comparisons later on as the Patmos version instead had several
actors on a core which it updated in a round robin fashion. However this was also tried on
the x86 platform and had worse performance than giving each actor its own thread. These
results can be found in table 5.7.

3.6.1 Actor Execution Time
The benchmark was done by measuring how many cycles were used to update each actor. An
example pseudo code of how this was actually implemented can be found in listing 1. This
code also describes the round robin style scheduling. The code ran on each core and the actor
array contained the actors assigned to that core. Each actor also had its own cycle counter and
update function. The cycles used by the actor were only counted if its state machine made any
progress (useful computations). The actor update function returns false when the actor can
not make progress due to limited space or token counts in the FIFO queues it interacts with.
This allowed us to measure utilization and actor execution time independently of overall
performance.

1 t = get_cycles()
2 start = t
3 useful_cycles = 0
4 while not done:
5 for a in actors:
6 progress = false
7 while a.update():
8 progress = true
9 delta = get_cycles() - t

10 if progress:
11 useful_cycles += delta
12 a.cycles += delta
13 t += delta
14 total_cycles = get_cycles() - start
15 utilization = useful_cycles / total

Listing 1: Python pseudo code representing how the benchmarking
was done.

28

Chapter 4

Implementation

This chapter describes the implementation details of our solution. It starts of with describ-
ing the memory usage as it is the main driving force behind almost all design choices we
made. The following sections dive deeper into the FIFO queue implementation and why
these design choices were made.

4.1 Memory Usage
The required memory for the original queues and variables was approximately 7 MiB. This
was way too large to fit even on the Patmos processor external memory, not to mention the
scratch pad memory. With the available scratchpad memory being 128 KiB equally divided
amongst 4 cores and the external memory featuring a total of 2 MiB, it became apparent that
we would need to trim the applications memory usage. After some research we found that
the majority of the memory was used by 6 arrays: frameBu�er_n32v0, frameBu�er_n35v0,
frameBu�er_n38v0, buf_n11v0, buf_n18v0 and buf_n25v0 which all related to frame bu�ers.
As their memory usage depended on the maximum supported resolution the support for HD
resolution was dropped in order to fit the application on Patmos. The maximum number
of tiles supported was initially 121x79 tiles each using 768 bytes. With some extra margin
allocated this added up to 6.62 MiB. Fortunately the supported resolution could be changed
by modifying 3 actors: motion_Y_FrameBuf, motion_U_FrameBuf and motion_V_FrameBuf.
Reducing the maximum number of tiles from 121x79 to 22x18, which is enough to decode the
4 smallest videos provided, we were now left with 317 KiB of memory to fit in the scratchpad
memory. At this point we targeted the FIFO bu�er sizes and immediately found much room
for improvement. After decreasing the queue sizes the application was finally small enough
to fit on the Patmos device.

29

4. Implementation

4.2 FIFO Queues

A FIFO queue is a way of transferring data which arrive in the same order it was sent. It is
also one of the, if not the most, important building block of any actor system. The decoder
is no exception as it uses 143 FIFO queues. All of them are single producer single consumer
type queues, which means that there is only one source placing items in the queue as well
as only one reader processing queued items. The actors interacts with the queues using the
operations found in table 4.1. These operations were used in the original actor files but were
not originally implemented.

Table 4.1: FIFO operations used by the actors.

operation description
SPACE get max tokens that can currently be written
WRITE put one token at the end
LOOP_WRITE put N tokens at the end
TOKENS get number of queued tokens
READ read one token at some o�set from front
LOOP_READ read N token at some o�set from front
CONSUME remove N items from the front

4.2.1 Algorithm

A ring bu�er is used to implement the FIFO bu�er which the respective writers and readers
interact with. Ring bu�ers are a simple fixed-size bu�er of length L that wraps around itself
to maintain the illusion of it being end-to-end connected. This is done to enable a design
that assumes the bu�er is infinite as long as some rules are followed. This does however mean
that an array of tokens in the bu�er can be split in two and appearing both at the end and
the start of the bu�er. A read and write index describes the queue state independently of the
bu�er size. Both the read and write indices are initially zero and increase during usage. The
write index W may never overtake the read index R by more than the length of the bu�er L.
This means that all indices in the range between the R and W always map to a unique index
in the ring bu�er. The number of tokens T and the space S in the queue can be computed
from W , R and L. An example state of a FIFO queue can be found in figure 4.1 where tokens
ABCDEF has been sent and the first 3 of them consumed. In this figure the row of squares
and the ring to the right represent the same queue in two di�erent perspectives, the yellow
rectangles contain the read and write indices. Only the red and green boxes are actually stored
in memory. The blue boxes represent consumed tokens. As for how the discussed alforithm
was actually implemented, pseudo code can be found in listing 2 for anyone interested.

30

4.2 FIFO Queues

? ? AFEDCBA B C ...

R = 3 W = 6

D

E

F

R = 3

1
0

2
3

4
5 6

7

W = 6

?

?

A

BC

R = 3

W = 6

L = 8

T = W - R

S = L - T

W >= R

T <= L

T S

L

Consumed Queued Unused Space

Figure 4.1: FIFO queue example.

1 L = 8
2 R = 0
3 W = 0
4 buf = [None] * L
5 def space():
6 return L - (W - R)
7 def write(token):
8 buf[W % L] = token
9 W += 1

10 def tokens():
11 return W - R;
12 def peek(i):
13 token = buf[(R + i) % L]
14 R += 1
15 return token
16 def consume(n):
17 R += n

Listing 2: Python code implementing the core FIFO queue algo-
rithm.

4.2.2 Cross Core FIFO Queues
The design of the FIFO queues is influenced by the hardware design. Communication di-
rectly between di�erent cores can only happen by copying a range of scratchpad memory
from the sender core to another range of scratchpad memory at the receiver core. The gran-
ularity of the transfer is 32 bit blocks and they are written atomically. It is possible to write
but impossible to read other core’s scratchpad memory directly. The copy operation is ini-
tiated by the producer core by programming its DMA unit to copy the memory. The DMA
unit then proceed to copy one token at a time to the receiver memory asynchronously. This

31

4. Implementation

allow the producer and consumer core to do computations while copying. The DMA unit
can only work on one copy operation at a time so it makes sense to send large number of
tokens at the same time and do computation until the DMA unit is no longer busy. Since
the communication is completely asynchronous each FIFO queue can only have one single
producer while keeping the implementation lock less to avoid data race conditions.

4.2.3 Shadow State

The algorithm described in section 4.2.1 works fine when the producer and consumer actor
are located on the same core but there will also be actors on di�erent cores. In a multi-core
setup the ring bu�er is located at the consumer core. The state of the queue is completely
described by W , R and L. L is just a constant but W and R are dynamic. The producer and
consumer located on di�erent cores need access to each others variables. The producer con-
trols W and the consumer controls R. In order to allow the producer to read R it needs a
local shadow of that variable. The same thing applies for the consumer who needs a local
shadow of W . The shadow variables lag behind their counterparts but can still be safely used
in their place as long as everything is done in the correct order. The producer must update
the W shadow at the consumer core after the bu�er at the consumer core has been written
to. The consumer must update the R shadow at the producer core after the tokens have been
consumed. This scheme is similar to how the Transmission control protocol (TCP) works where
the shadow updates are the analog to acknowledge messages moving the transfer window for-
ward [26]. An example of the FIFO protocol can be found in figure 4.2. This figure illustrates
a bulk transfer of 3 tokens including shadow state update. The space between the vertical
lines represent the link between two di�erent cores. The horizontal dotted lines separate the
state over time, time flows from top to bottom. The tilt of the arrows between the vertical
lines illustrates the latency of transferred packets. Yellow squares represent the write index
and purple squares the read index. The rows of squares to the right represent the a ring bu�er
length 4. Blue slots of the bu�er represents pending received tokens, green consumable to-
kens and red unused space. The pseudo code of the modified algorithm with shadow state
can be found in listing 3. The functions are divided in two blocks, the first three are only
accessed by the producer and the last tree are only accessed by the consumer. The function
dma_write can not be defined in Python but are meant to illustrate the programming of the
DMA. Writing data not residing on the same core must be done using this function. Notice
that the write function is split up in loop_write and produce. This enables optimizations
discussed later.

32

4.2 FIFO Queues

Figure 4.2: FIFO protocol example.

1 L = 8 # producer and consumer has its own copy
2 W = 0 # resides on producer core
3 W_shadow = 0 # resides on consumer core
4 R = 0 # resides on consumer core
5 R_shadow = 0 # resides on producer core
6 buf = [None] * L # resides on consumer core
7 def dma_write(dst,src,offset,count)
8 # only accessed by producer:
9 def space():

10 return L - (W - R_shadow)
11 def loop_write(tokens):
12 dma_write(buf,tokens,W % L,len(tokens))
13 W += len(tokens)
14 def produce():
15 dma_write(W_shadow,W,0,1)
16 # only accessed by consumer:
17 def tokens():
18 return W_shadow - R;
19 def peek(i):
20 token = buf[(R + i) % L]
21 R += 1
22 return token
23 def consume(n):
24 dma_write(R_shadow,R,0,1)

Listing 3: Multi-core FIFO queue pseudo Python code.

33

4. Implementation

4.2.4 Bulk Transfer
When sending one token at a time half of the bandwidth is used to update the W shadow
assuming the tokens are the same size as the counters. This is not necessary for bulk transfer.
If loop_write is called with many tokens as input the bandwidth is better utilized. For large
chunks of tokens this almost reduces the bandwidth requirement by half. The only possible
drawback is that the consumer may have to wait slightly longer. Another important reason
to separate the update of the W shadow variable is that the DMA unit is busy for a while
after calling loop_write. The most e�cient way to send data is to call loop_write with a
large chunk of tokens, do some computation and then call produce. By doing this it is less
likely that the producer core is wasting time waiting for the DMA unit to be available in the
produce function.

4.2.5 Overflow
One concern of this implementation is that the read and write indices overflow and breaks
the algorithm. As the counters use 32-bit unsigned integers this happens when approximately
4 billion tokens have been sent. This correspond to 4 GiB assuming the case where on token is
just one byte. The queue with the highest throughput is logically the last one that transfers the
tiles of the video. In order for it to overflow it would have to saturate the output bandwidth of
the 100 Mb/s Ethernet interface for 327 seconds. The largest of the videos provided produces
a bit-stream of tiles that is just 265 MiB. Since the queues are reset before decoding a video the
overflow problem, while definitely being solvable, will not cause any problem unless much
longer videos are decoded which is not the case in this study.

4.2.6 Initialization
The FIFO implementation for the Patmos platform requires an initialization stage where the
SPM addresses are decided for all components of all queues. The components involve the ring
bu�er, write index and read index for each queues as well as shadows of the indices for queues
between actors assigned to di�erent cores. The allocation of all components can be done in
compile time instead of execution time by defining the addresses statically. We implemented
this as a Python script generate_spm_addresses.py that generates a file, spm_addr.h, contain-
ing the addresses of all components. The file is then used by the C pre-processor. The Python
script does this by reading a configuration file core.cfg that contains the layout assigning
cores to actors and fifo_sizes.txt that contains the queue lengths. It then makes use of one
memory arena allocator per core as the SPM use local address spaces. The only initialization
required at run-time is to make sure that all read and write indices and their shadows are
zero. This was done by simple clearing the entire scratchpad memory.

4.2.7 Power of 2 Optimization
When executing the peek, write and loop_write functions, see listing 2 and 3, The modulo (%)
operation is used. This operation is significantly expensive as it is emulated by multiple in-
structions on the Patmos hardware. This operation would have a execution time comparable

34

4.2 FIFO Queues

to that of a integer division. This obviously is not feasible to do for every token produced and
consumed as the performance impacts would be severe. However this is an issue that has been
a research area a long time and has an elegant solution. The solution is to simply let the ring
bu�er length L be a power of 2. By doing so, the operation can be completed using a single
bit-wise AND instruction with a constant mask [35]: L = 2N =⇒ x mod L = x&(L − 1).

35

4. Implementation

36

Chapter 5

Results and Discussion

This chapter contains figures depicting the result we obtained by implementing the stream-
ing application on Patmos, which is then followed by a small discussion which explains why
these results are significant or interesting as well as our theories as to why we obtained these
results.

5.1 Setup
In the following benchmarks the video akiyo_cif_s.m4v, which was provided alongside the
original actor code, was used for all experiments. It was chosen as it was the smallest video
of the provided videos. It is a video featuring an almost static background with a talking
reporter. To conduct the experiments a host computer running Ubuntu Linux is necessary
as it is the only operating system o�cially supported by Patmos. Three di�erent hardware
configurations of Patmos was synthesized for the FPGA: a standard 4 core version with 32
KiB of SPM per core used for most testing, a 8 core version with 8 KiB per core and a single
core version with 64 KiB SPM. Furthermore, there was one additional subversion of the 4 core
setup which made use of double FIFO queue sizes. Which setup was used for the experiment
is presented alongside the result for clarity in the section below. For the testing process it is
necessary to have the FPGA connected with an Ethernet cable, and a setup script, provided
by the Patmos team, must be run on the host computer to allow the Patmos platform to
connect to the host.

One of our solve conditions makes use of a table of actor execution times to determine
the actor mapping. These execution times were obtained on a completely local single-core
configuration on the Patmos platform with 64 KiB of scratchpad memory. This means that
the NoC is not a�ecting the performance and there is no transfer bottlenecks. See figure 5.4
for the results. The benchmark is a live analysis that depends on the input data. It can be seen
that the actor parser_parseheaders takes many cycles to compute on average. We suspect that
this is due to the gigantic switch statement in the source code as it compiles to approximately

37

5. Results and Discussion

200 KiB of machine instructions, way more than the 4 KiB instruction cache.
The x86 machine had the 4-core CPU Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz.

5.2 Performance Based on Layout
The applications performance can be significantly improved or reduced depending on the
chosen actor layout. This can be seen below in figures 5.1, 5.2 and 5.3 which shows the av-
erage time it took to produce a single frame for the di�erent layouts generated from the
solve conditions (see listing 4) and heuristics on di�erent configurations. Figure 5.1 uses the
standard configuration for this project, which is 4 cores with 32 KiB SPM per core. This con-
figuration is also used in figure 5.3 also uses this configuration but now with double queue
sizes for all FIFO queues, which in turn limits freedom for the constraint solver. As can be
seen from these two figures (figure 5.1 and 5.3), the frame times are far lower for all the solve
conditions when the queue sizes are increased. This means that the applications performance
benefits greatly from the increase in queue size. In this example we only doubled all FIFO
queues but some FIFO queues benefit more than others from the increased size. We discuss
more about this in the future works section 6. In figure 5.2 an 8 core configuration with 8
KiB SPM per core is used. This is the maximum amount of SPM we were able to allocate
for an 8 core configuration. As can be seen the performance drops substantially compared
to the 4-core configuration. This stems from two factors. The first is when increasing the
number of cores, there is also an increase of the slots in the time-multiplexing and the sec-
ond is that the decrease in SPM in turn leads to lower FIFO queue sizes and less freedom
when mapping actors to cores. For this project the lower SPM is by far the greater factor,
but if this was implemented on a platform with an excess of memory we theorize that the
time-multiplexing would become the dominant bottleneck. The tables 5.1, 5.2, 5.3, 5.4, 5.5
and 5.6 shows the amount of idle cycles, the amount of cycles where no progress could be
made. As can be seen these numbers vary greatly with di�erent solve conditions, heuris-
tics and hardware configurations. Furthermore when comparing the idle cycles to the frame
times which is shown in graphs 5.1, 5.2 and 5.3 it becomes clear that the idle time has a huge
impact on performance. The more idle time the less performance. Because of this we would
like to balance the operations as much as possible between the cores. An example of this can
be seen in our depth constrained heuristic. Our depth constrained heuristic cut the actor
system into vertical slices and divided these slices between the cores. This was intended to
make the actors be able to work in parallel as much as possible by cutting any long chains of
dependency between the actors. This heuristic benefited the performance for every layout as
can be seen in figure 5.1, where the yellow bars represent the depth constrained frame time,
the red bars represent the strongly connected sub graph heuristic and the blue bars represent
the original frame times. As mentioned in section 1.1.2 the cores form a bi-torus topology.
This means that you cannot have any number of cores that cannot form a rectangle, such as
prime numbers. For example you could not have two, three or five cores, but you could have
four, six or eight cores.

The single-core configuration of Patmos had a frame time of 1486 ms. Since there were
only one core to map to there were no solve conditions or heuristics applied as they would
not do anything.

38

5.2 Performance Based on Layout

I. Load balancing the actor execution time amongst the cores.

II. Satisfy (no condition).

III. Balancing SPM usage per core.

IV. Minimizing the code size used on each core.

V. Load balancing the tra�c between cores.

VI. Maximizing the tra�c between cores.

VII. Minimizing the total tra�c.

Listing 4: The seven solve conditions. These will be referred to by
their respective roman numeral in the coming figures.

Figure 5.1: Frame Times for a 4 Core build with 32 KiB SPM per
core.

39

5. Results and Discussion

Figure 5.2: Frame Times for a 8 Core build with 8 KiB SPM per core.

Figure 5.3: Frame Times for a 4 Core build with 32 KiB SPM per
core with doubled FIFO queue sizes.

Table 5.1: Table of idle cycles in percentage for a 4 core layout with
no heuristics.

Core Idle time (%) with 4 cores and no heuristics for each solve condition.
Core ID I Manual II III IV V VI VII

1 47.00 70.00 86.00 68.00 20.00 28.00 70.00 55.00
2 38.00 30.00 52.00 77.00 57.00 93.00 91.00 100.00
3 34.00 68.00 20.00 20.00 59.00 47.00 35.00 81.00
4 53.00 13.00 91.00 49.00 79.00 77.00 6.00 21.00

Average idle time 43.00 45.25 62.25 53.50 53.75 61.25 50.50 64.25

40

5.2 Performance Based on Layout

Table 5.2: Table of idle cycles in percentage for a 4 core layout with
the actor sub-graphs forcefully made local.

Core idle time (%) with 4 cores with connected sub-graphs for each solve condition.
Core ID I II III IV V VI VII

1 50.00 62.00 56.00 59.00 27.00 66.00 40.00
2 41.00 76.00 15.00 46.00 93.00 49.00 89.00
3 21.00 11.00 65.00 32.00 76.00 55.00 92.00
4 35.00 82.00 35.00 38.00 45.00 20.00 22.00

Average idle time 36.75 57.75 42.75 43.75 60.25 47.50 60.75

Table 5.3: Table of idle cycles in percentage for a 4 core layout with
the depth constraint heuristic.

Core idle time (%) with 4 cores with each solve condition being depth constrained
Core ID I II III IV V VI VII

1 50.00 83.00 50.00 64.00 33.00 26.00 34.00
2 33.00 69.00 33.00 38.00 89.00 45.00 28.00
3 34.00 32.00 34.00 33.00 32.00 72.00 69.00
4 41.00 22.00 41.00 39.00 66.00 27.00 87.00

Average idle time 39.50 51.50 39.50 43.50 55.00 42.50 54.50

Table 5.4: Table of idle cycles in percentage for a 8 core layout with
no heuristics.

Core idle time (%) with 8 cores and no heuristics for each solve condition.
Core ID I II III IV V VI VII

1 75.00 85.00 87.00 83.00 82.00 83.00 87.00
2 86.00 80.00 87.00 39.00 55.00 36.00 83.00
3 35.00 76.00 10.00 73.00 36.00 73.00 95.00
4 65.00 69.00 72.00 46.00 74.00 89.00 62.00
5 78.00 84.00 81.00 34.00 83.00 40.00 93.00
6 34.00 71.00 90.00 72.00 84.00 86.00 55.00
7 78.00 8.00 86.00 85.00 38.00 20.00 95.00
8 43.00 73.00 49.00 73.00 60.00 76.00 10.00

Average idle time 61.75 68.25 70.25 63.13 64.00 62.88 72.50

41

5. Results and Discussion

Table 5.5: Table of idle cycles in percentage for a 4 core layout with
no heuristics but double FIFO queue sizes.

Core idle time (%) with 4 cores with double FIFO queue sizes and no heuristics for each solve condition
Core ID I II III IV V VI VII

1 42.00 56.00 69.00 19.00 61.00 51.00 61.00
2 16.00 10.00 58.00 48.00 8.00 44.00 53.00
3 45.00 33.00 65.00 19.00 42.00 18.00 19.00
4 13.00 40.00 6.00 10.00 21.00 8.00 11.00

Average idle time 29.00 34.75 49.50 24.00 30.25 30.25 36.00

Table 5.6: Table of idle cycles in percentage for a 4 core layout with
the actor sub-graphs forcefully made local and the FIFO queue sizes
doubled.

Core idle time (%) with 4 cores with double FIFO queue sizes and connected sub-graphs for each solve condition
Core ID I II III IV V VI VII

1 29.00 6.00 23.00 25.00 25.00 70.00 61.00
2 8.00 47.00 42.00 13.00 11.00 5.00 16.00
3 35.00 45.00 15.00 38.00 37.00 68.00 22.00
4 11.00 15.00 63.00 58.00 57.00 43.00 15.00

Average idle time 20.75 28.25 35.75 33.50 32.50 46.50 28.50

5.3 Actor Execution Times

Below in figures 5.4 and 5.5 the actor execution time for the single-core Patmos and x86
implementation respectively are shown. In these images it is shown that parser_parseheaders
is the heaviest actor on Patmos while it instead is the out actor on the x86 implementation.
We theorize that the parser_parseheaders actor has such a long execution time on the Patmos
solution since the code size is too large to fit in the instruction cache. However as we do not
know how to show the cache performance numbers for a run we cannot prove this. As the
actor access data in an almost sporadic order this leads to that almost every call become a
cache miss which force the actor to access the slower external memory. On the x86 solution
a much larger part of this actor fits inside the instruction cache without any issues thanks
to the high amount of available resources. The x86 platform also features branch prediction
[31] that could likely help as well. The out actor takes up considerable more time on x86 than
on Patmos as it writes a bit-stream to an actual file, while Patmos makes use of Ethernet to
stream it back to the host instead. The speed of the x86 CPU compared to its hard-drive is
much larger than the relative speed of a Patmos core compared to the Ethernet. We could
have converted the x86 solution to use the Ethernet for the IO instead to make the tests more
fair.

42

5.3 Actor Execution Times

Figure 5.4: Actor execution times on the Patmos platform.

43

5. Results and Discussion

Figure 5.5: Actor execution times on a x86 platform.

44

5.4 Benefits and Drawbacks of Patmos

Table 5.7: Table displaying the di�erence in execution time in sec-
onds between the single-core and multi-core x86 program. As there
is interference from the OS 5 executions were made and averaged.

Total execution time (s) of the x86 streaming application
Execution ID Single-Core Multi-Core

1 0.332 1.660
2 0.300 1.856
3 0.324 1.688
4 0.328 1.792
5 0.304 1.760

Average: 0.3176 1.7512

5.4 Benefits and Drawbacks of Patmos
The Patmos architecture featured a few benefits over x86 when it came to the streaming ap-
plication. The main advantage is the impressive scalability of 344% when comparing the best
results for a single core and a 4 core solution, see the lowest bar in figure 5.3 (432 ms) and
compare this with the average frame time of 1486 ms for the single core solution. This is
in stark contrast to the scalability of x86 for this particular application, see table 5.7, which
shows a degradation by a factor higher than 5. As stated in section 3.6 the multi-core x86
solution features one pthread per actor and the FIFO queues use atomic variables. This is
not a good implementation on x86 as it does not account for various cache coherency prob-
lems [3] such as false sharing [32] and cache line alignment [20]. Swapping this over to the
other version of having one pthread per core and letting the actors be updated in a round-
robin fashion would be more fair, but as this was tried earlier on and found to perform even
worse than having one pthread per actor, we decided not to as we only needed to show that
the x86 platform su�ered a performance degradation. Not having to worry about problems
such as cache-coherence is another benefit of Patmos as far as actor based applications are
concerned. The Patmos platform also benefited from the lack of an operating system, which
would normally be interfering with the performance of the application. As a result of this
all executions had a high degree of stability and rarely fluctuated between executions. This
resulted in faster benchmarking as a single run was su�cient to evaluate the performance of
a solution.

The drawbacks imposed by the Patmos architecture consisted of the lack of memory,
the time-multiplexed access to the main memory and the lack of a receive bu�er for the
Ethernet. Patmos featuring 128 KiB of scratchpad memory and 2 MiB of external memory
was completely incapable of running the original application, which at the time used 7 MiB of
memory. As any access to the NoC was time multiplexed we had to create a balance between
the communication division and the amount of cores, as all cores had to communicate on
an even level in order to maintain performance. The memory limitations can not be blamed
on Patmos as there is a hard limit on the available memory modules on the FPGA. Some of
these drawbacks were a result of the unorthodox application chosen as it could not make any
use of the WCET optimizations Patmos specializes in. The rest of the drawbacks, such as
the lack of a receive bu�er for the Ethernet may in the future be corrected since. Patmos is
still a work in progress. Because of this some features were mutually exclusive, like the NoC
and properly implemented Ethernet. Fortunately we could work around this as we received
major help from the Patmos development team.

45

5. Results and Discussion

5.5 Ethical Aspects
Real-time optimized micro processors play a very important roll in today’s society. They
make sure that planes stay in the air and are responsible for many important parts of our
infrastructure such as tra�c lights and railways. Needless to say a failure of these processors
could be devastating. In this thesis we have mentioned how safety-critical applications make
use of platforms such as Patmos. However, when designing such an application for Patmos
it is necessary to remember that the average case execution time, while being stable, is not
guaranteed to always have the same execution time. It is therefore necessary to design a safety-
critical application to make use of the worst case execution time instead. If a programmer
implementing a safety-critical application was unaware of this they would end up making an
application that was guaranteed to fail.

46

Chapter 6

Conclusions and Future Work

In this thesis we have investigated the benefits and drawbacks of implementing a streaming
application on a Patmos processor. Now we can make use of the data collected and draw
some conclusions. This is what we will be doing in this chapter. We start of by answering
our research questions and then move on to future work. When we started this project we
wanted to answer two research questions, but couldn’t as we did not have the necessary data.
However, now that we have access to the results presented in this report we can finally answer
those questions. To answer our first research question, What are the benefits and drawbacks
to the Patmos platform viewed from the unconventional perspective of implementation of a streaming
application?, we can summarize the discussion presented in section 5.4. The most prominent
benefit is the scalability provided by the Patmos platform. Achieving over three times the
performance when switching from single-core to four core configurations. As can be seen in
figure 5.3 the best performing four-core solution had a frame-time of 432 ms while the single
core version had a frame-time of 1486 as presented in section 5.2. Comparing this to the
x86 version which saw a performance degradation when swapping to a four core solution,
going from a single-core execution time of 0.3176 s to a four-core execution time of 1.7512
s. Comparing the actual execution time of the Patmos implementation to the x86 version is
not relevant as Patmos is running on an FPGA with severely limited resources while the x86
version is implemented on a computer with many times the resources. Furthermore, the x86
versions multi-core was implemented slightly di�erent from the Patmos version as discussed
in section 5.4. However, as the only relevant information to obtain here is that the x86 ver-
sion had a degradation in performance when swapping to the multi-core implementation,
this is not an issue. The second benefit to the Patmos platform was its stability. Since the
platform is optimized to make the WCET analyzable it has also, as a side e�ect of these op-
timizations, made the average case execution time very stable. Combining this with having
no interference from an operating system or background applications, all the Patmos execu-
tions would have almost the same frame time, varying only with a few ms. Because of this we
could obtain a good average value in only a few iterations of a benchmark. The drawbacks
imposed by the Patmos architecture were: the lack of memory, the time-multiplexed access

47

6. Conclusions and Future Work

to the main memory and the lack of a receive bu�er for the Ethernet. The lack of memory
is always an issue in embedded systems, and can only be fixed by upgrading the hardware.
The lack of a receive bu�er for the Ethernet has also been fixed in the newer version of Pat-
mos, but as of writing this report there were no stable versions that featured the bu�er as
well as a functioning NoC. The time-multiplexed access to the main memory, as well as the
communication between cores, were small factors in this project. However, if the issue with
the lack of memory was fixed, by for example upgrading the FPGA board to one with much
more memory, this would become the main bottleneck.

When it comes to the mapping problem, the most obvious conclusions we can draw from
the results is that the actor layout, or the mapping between actors and cores, have a significant
performance impact, increasing it by over 50% at times, as can be seen in figure 5.1. To
answer our second research questions, Is it feasible to automatically map an actor system to the
Patmos architecture without loosing performance compared to a manual mapping?, it was possible to
automatically map an actor system to the Patmos architecture. This can be seen from figure
5.1 as the manual layout actually performed worse than some of the automatic mappings,
so we actually had a performance increase by letting the mapping be done automatically.
Furthermore, the automatic mapping could easily compute solutions to even harder packing
problems, such as with the increased queue sizes or with more cores, while making a manual
mapping for these configurations can take several hours. The most successful algorithm we
found for the layout was to load balance the individual actors execution time spread out
amongst the cores. We also found that improving on the model by adding in heuristics such as
constraining all members of strongly connected sub-graphs to be on the same core improved
the performance further, as can be seen by comparing the values in figure 5.1. The automated
solution even beat our best e�ort manual layout.

When it comes to future work, all optimizations ideas has not yet been tested. We theorize
that perhaps a better performing solution could be created by performing live analysis of the
queues to obtain the variances of their read and write rate. And then make use of this data
with a new constraint program to dimension the queues to minimize stalls caused by queues
being full or empty for extended duration’s of time and letting queues with large variance in
the write or read rate be larger. The advantage of longer queues is obvious when comparing
figure 5.1 and figure 5.3.

Furthermore, there are still a lot of room for improvements and optimizations. We sim-
plified our FIFO queues to only work with 32-bit tokens to save time and e�ort as the transfer
granularity was 32-bit words. However as most FIFO queues only needs 16-bit integers, bytes
or only bit tokens this could certainly be improved upon by implementing dedicated solu-
tions for these queues. We theorize that this would translate to a significant performance
increase as it would let the queue sizes be further increased, and again, as can be seen by
comparing figure 5.1 to figure 5.3 larger queue sizes tend to increase performance. Another
optimization that was discussed but never implemented was the deferred update of the writer
shadow state when doing bulk transfers. In our current solution the actors can’t do compu-
tations while the DMA is working and there is also a few ine�ciencies when sending data
from an actor attribute as the data is first copied to a staging bu�er before the actual transfer
can begin. This should not be necessary as the actors attributes are often already located in
the SPM and can serve as the transfer source immediately.

All in all we can safely conclude that the Patmos platform shows significant potential
alongside a helpful and dedicated development team. We have no doubts that Patmos will be

48

a great fit for any application that require scalability and predictability, once a stable version
is released.

49

6. Conclusions and Future Work

50

References

[1] Altera de2-115 development and education board. Taken 2020-05-18.

[2] Patmos a time-predictable processor for real-time systems. Taken 2020-01-22.

[3] James K Archibald. The cache coherence problem in shared-memory multiprocessors. PhD
thesis, 1987.

[4] Russell Atkinson and Carl Hewitt. Synchronization in actor systems. In Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages
267–280, 1977.

[5] Bhattacharyya, Shuvra S, Eker, Johan, Janneck, Jörn W, Lucarz, Christophe, Mattavelli,
Marco, Raulet, and Mickaël. Overview of the mpeg reconfigurable video coding frame-
work. Journal of Signal Processing Systems, 63(2):251–263, 2011.

[6] Gustav Björdal, Jean-Noël Monette, Pierre Flener, and Justin Pearson. A constraint-
based local search backend for minizinc. Constraints, 20(3):325–345, 2015.

[7] Johan Eker and J Janneck. Cal language report: Specification of the cal actor language,
2003.

[8] Johan Eker and Jörn W Janneck. An introduction to the caltrop actor language, 2001.

[9] Terry J Fountain. Processor arrays: Architecture and applications. 1987.

[10] Essayas Gebrewahid, Mingkun Yang, Gustav Cedersjö, Zain Ul Abdin, Veronica Gaspes,
Jörn W Janneck, and Bertil Svensson. Realizing e�cient execution of dataflow actors
on manycores. In 2014 12th IEEE International Conference on Embedded and Ubiquitous
Computing, pages 321–328. IEEE, 2014.

[11] Carl Hewitt. Viewing control structures as patterns of passing messages. Artificial intel-
ligence, 8(3):323–364, 1977.

[12] Intel. Quartus prime lite edition, 10 2019. Taken 2020-03-05.

51

REFERENCES

[13] Wooyoung Kim. ThAL: An actor system for e�cient and scalable concurrent computing. PhD
thesis, University of Illinois at Urbana-Champaign, 1997.

[14] Manjunath Kudlur and Scott Mahlke. Orchestrating the execution of stream programs
on multicore platforms. ACM SIGPLAN Notices, 43(6):114–124, 2008.

[15] Ming-Huang Kuo. Method for processing an image using di�erence wavelet, January 13
2005. US Patent App. 10/604,265.

[16] Jerry Lindström and Stefan Nannesson. Implementing a streaming application on a
processor array, June 2015. Taken 2020-01-22.

[17] Paul Lokuciejewski, Sascha Plazar, Heiko Falk, Peter Marwedel, and Lothar Thiele.
Approximating pareto optimal compiler optimization sequences—a trade-o� between
wcet, acet and code size. Software: Practice and Experience, 41(12):1437–1458, 2011.

[18] User Manual. Altera de2 board. Altera Corporation, 72, 2006.

[19] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck,
and Guido Tack. Minizinc: Towards a standard cp modelling language. In International
Conference on Principles and Practice of Constraint Programming, pages 529–543. Springer,
2007.

[20] P Ranjan Panda, Hiroshi Nakamura, Nikil D Dutt, and Alexandru Nicolau. A data
alignment technique for improving cache performance. In Proceedings International Con-
ference on Computer Design VLSI in Computers and Processors, pages 587–592. IEEE, 1997.

[21] Fernando CN Pereira, Fernando Manuel Bernardo Pereira, Fernando C Pereira, Fer-
nando Pereira, and Touradj Ebrahimi. The MPEG-4 book. Prentice Hall Professional,
2002.

[22] Michal Podpora, Grzegorz Pawel Korbas, and Aleksandra Kawala-Janik. Yuv vs rgb-
choosing a color space for human-machine interaction. FedCSIS Position Papers, 18:29–
34, 2014.

[23] Charles Poynton. Chroma subsampling notation. Retrieved June, 19:2004, 2002.

[24] Peter Puschner and Alan Burns. A review of worst-case execution-time analyses. REAL
TIME SYSTEMS-AVENEI NJ-, 18(2/3):115–128, 2000.

[25] James A Ross, David A Richie, Song J Park, and Dale R Shires. Parallel programming
model for the epiphany many-core coprocessor using threaded mpi. Microprocessors and
Microsystems, 43:95–103, 2016.

[26] Sergio Scaglia. The Embedded Internet: TCP/IP Basics, Implementation and Applications.
Addison-Wesley Professional, 2007.

[27] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Ra�aele Capasso,
Jamie Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann, Ste-
fan Hepp, Benedikt Huber, Alexander Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui
Li, Daniel Prokesch, Wolfgang Pu�tsch, Peter Puschner, André Rocha, Cláudio Silva,

52

REFERENCES

Jens Sparsø, and Alessandro Tocchi. T-CREST: Time-predictable multi-core architec-
ture for embedded systems. Journal of Systems Architecture, 61(9):449–471, 2015.

[28] Martin Schoeberl, Florian Brandner, Stefan Hepp, Wolfgang Pu�tsch, and Daniel
Prokesch. Patmos reference handbook. Technical University of Denmark, Tech. Rep, 2014.

[29] Martin Schoeberl, Wolfgang Pu�tsch, Stefan Hepp, Benedikt Huber, and Daniel
Prokesch. Patmos: A time-predictable microprocessor. Real-Time Systems, 54(2):389–
423, 2018.

[30] Martin Schoeberl, Pascal Schleuniger, Wolfgang Pu�tsch, Florian Brandner, Chris-
tian W Probst, Sven Karlsson, and Tommy Thorn. Towards a time-predictable dual-
issue microprocessor: The patmos approach. In Workshop on Bringing Theory to Practice:
Predictability and Performance in Embedded Systems, pages 11–21. OASICS, 2011.

[31] James E Smith. A study of branch prediction strategies. In 25 years of the international
symposia on Computer architecture (selected papers), pages 202–215, 1998.

[32] Josep Torrellas, HS Lam, and John L. Hennessy. False sharing and spatial locality in
multiprocessor caches. IEEE Transactions on Computers, 43(6):651–663, 1994.

[33] David Wang. Isscc 2005: The cell microprocessor. Real World Technologies, Feb, 2005.

[34] Matthieu Wipliez, Ghislain Roquier, and Jean-François Nezan. Software code genera-
tion for the rvc-cal language. Journal of Signal Processing Systems, 63(2):203–213, 2011.

[35] Marco Ziccardi. Modulo and division vs bitwise operations, 5 2015. Taken 2020-04-08.

53

REFERENCES

54

Appendices

55

Appendix A

Installation

Patmos is a fairly large system which not unlike most systems have its own fair share of de-
pendencies. Before there is any chance of getting Patmos running it is important to install
all of them. If you are on an Ubuntu operating system you can follow these commands which
have been taken from the Patmos reference handbook section 6 [28]. Firstly we recommend
downloading Quartus from the Intel download page [12] and letting the download go in the
background as it can take quite a while with a slower internet, see the Quartus section below
for more detail. When it comes to actual commands we start of by enabling the sbt download
distribution:

echo "deb https :// dl. bintray .com/sbt/debian /" | sudo
tee -a \

/etc/apt/ sources .list.d/sbt.list sudo apt -key adv --
keyserver hkp :// keyserver .ubuntu.com :80 \

--recv 2 EE0EA64E40A89B84B2DF73499E82A75642AC823
sudo apt -get update

After which we can install the necessary tools, minus quartus, with:

sudo apt -get install git default -jdk gitk cmake make g++
texinfo flex bison \

subversion libelf -dev graphviz libboost -dev libboost -
program -options -dev \

ruby -full liblpsolve55 -dev python zlib1g -dev gtkwave
gtkterm scala sbt

A.1 Quartus
As Intel acquired Altera who owned Quartus, there is some confusion regarding which ver-
sion of Quartus to acquire. You want to get the Quartus Prime Lite Edition which can be

57

A. Installation

found at the Intel download page[12] and not the web version. This is because of a name
change that happened when Intel took over. After that all the other steps can be found in
section 6.3 Quartus on Linux in the handbook [28].

A.2 Multi-Core
As of this report being written there are a lot of issues with the multi-core aspect on the
Patmos master. These issues stem from an ongoing transfer from chisel 2 to chisel 3. To avoid
these we need to checkout an older revision of the platform in order to get it working. To do
so navigate to the Patmos directory (t-crest/patmos) and use the command:

git checkout baaa205c7d5c951613394105b57531f2a0c0d9ea

After that you can edit the configuration file for your fpga (for example the altde2-115 config
file is t-crestpatmos/hardwareconfig/altde2-115.xml) to turn on multicore as shown in section
1.2.8 of the reference handbook [28]. There are actually even more useful configurations that
be edited in the default.xml file in the same path, such as the DSPM size which is a measly
2kb by default.

58

Appendix B

Help Tools

B.1 Table Generated From Queue Analysis

sending actor Packet
Count
In

Packet
Count
Out

receiver

parser_parseheaders 1 1 parser_mvrecon
parser_parseheaders 1 1 parser_blkexp
parser_parseheaders 1 1 parser_blkexp
parser_parseheaders 1 1 parser_blkexp
parser_mvseq 1 1 parser_mvrecon
parser_blkexp 1 64 parser_splitter_420_B
parser_mvrecon 1 2 parser_splitter_MV
parser_parseheaders 1 1 parser_mvrecon
parser_parseheaders 1 1 parser_mvseq
parser_parseheaders 1 1 parser_mvrecon
parser_parseheaders 1 1 parser_splitter_420_B
parser_parseheaders 1 1 parser_splitter_BTYPE
parser_parseheaders 1 1 parser_mvseq
parser_parseheaders 1 1 parser_splitter_MV
parser_parseheaders 1 1 parser_mvrecon
parser_parseheaders 1 1 parser_splitter_BTYPE
parser_parseheaders 1 1 parser_splitter_BTYPE
parser_parseheaders 1 1 parser_mvseq
parser_parseheaders 1 1 parser_mvrecon
parser_parseheaders 1 1 parser_splitter_BTYPE
parser_parseheaders 1 1 parser_mvseq
parser_parseheaders 1 1 parser_splitter_420_B
parser_parseheaders 1 1 parser_mvrecon
parser_parseheaders 1 1 parser_splitter_BTYPE

59

B. Help Tools

serialize 1 1 parser_parseheaders
texture_Y_DCsplit 63 1 texture_Y_IS
texture_Y_IS 1 1 texture_Y_IAP
texture_Y_IAP 1 63 texture_Y_IQ
texture_Y_IQ 1, 63 64 texture_Y_idct2d
texture_Y_DCRecontruction_addressing 1 1 texture_Y_DCRecontruction_invpred
texture_Y_DCRecontruction_addressing 1 1 texture_Y_DCRecontruction_invpred
texture_Y_DCRecontruction_addressing 1 1 texture_Y_DCRecontruction_invpred
texture_Y_DCRecontruction_invpred 1 1 texture_Y_IQ
texture_Y_DCRecontruction_invpred 1 1 texture_Y_IQ
texture_Y_DCRecontruction_invpred 1 1 texture_Y_IAP
texture_Y_DCRecontruction_invpred 1 1 texture_Y_IAP
texture_Y_DCRecontruction_invpred 1 1 texture_Y_IS
texture_Y_DCRecontruction_invpred 1 1 texture_Y_idct2d
texture_Y_DCRecontruction_invpred 1 1 texture_Y_IAP
texture_Y_DCRecontruction_invpred 1 1 texture_Y_IAP
texture_Y_DCsplit 1 1 texture_Y_DCRecontruction_invpred
parser_splitter_420_B 64 64 texture_Y_DCsplit
parser_splitter_BTYPE 1 1 texture_Y_DCRecontruction_invpred
parser_parseheaders 1 1 texture_Y_DCRecontruction_addressing
parser_parseheaders 1 1 texture_Y_DCRecontruction_invpred
parser_splitter_BTYPE 1 1 texture_Y_DCRecontruction_invpred
parser_splitter_BTYPE 1 1 texture_Y_DCRecontruction_invpred
parser_splitter_BTYPE 1 1 texture_Y_DCRecontruction_addressing
parser_splitter_BTYPE 1 1 texture_Y_DCRecontruction_invpred
texture_U_DCsplit 63 1 texture_U_IS
texture_U_IS 1 1 texture_U_IAP
texture_U_IAP 1 63 texture_U_IQ
texture_U_IQ 1, 63 64 texture_U_idct2d
texture_U_DCRecontruction_addressing 1 1 texture_U_DCRecontruction_invpred
texture_U_DCRecontruction_addressing 1 1 texture_U_DCRecontruction_invpred
texture_U_DCRecontruction_addressing 1 1 texture_U_DCRecontruction_invpred
texture_U_DCRecontruction_invpred 1 1 texture_U_idct2d
texture_U_DCRecontruction_invpred 1 1 texture_U_IQ
texture_U_DCRecontruction_invpred 1 1 texture_U_IQ
texture_U_DCRecontruction_invpred 1 1 texture_U_IAP
texture_U_DCRecontruction_invpred 1 1 texture_U_IAP
texture_U_DCRecontruction_invpred 1 1 texture_U_IS
texture_U_DCRecontruction_invpred 1 1 texture_U_IAP
texture_U_DCRecontruction_invpred 1 1 texture_U_IAP
texture_U_DCsplit 1 1 texture_U_DCRecontruction_invpred
parser_splitter_420_B 64 64 texture_U_DCsplit
parser_splitter_BTYPE 1 1 texture_U_DCRecontruction_invpred
parser_parseheaders 1 1 texture_U_DCRecontruction_addressing
parser_parseheaders 1 1 texture_U_DCRecontruction_invpred
parser_splitter_BTYPE 1 1 texture_U_DCRecontruction_invpred
parser_splitter_BTYPE 1 1 texture_U_DCRecontruction_invpred
parser_splitter_BTYPE 1 1 texture_U_DCRecontruction_addressing
parser_splitter_BTYPE 1 1 texture_U_DCRecontruction_invpred

60

B.1 Table Generated From Queue Analysis

texture_V_DCsplit 63 1 texture_V_IS
texture_V_IS 1 1 texture_V_IAP
texture_V_IAP 1 63 texture_V_IQ
texture_V_IQ 1, 63 64 texture_V_idct2d
texture_V_DCRecontruction_addressing 1 1 texture_V_DCRecontruction_invpred
texture_V_DCRecontruction_addressing 1 1 texture_V_DCRecontruction_invpred
texture_V_DCRecontruction_addressing 1 1 texture_V_DCRecontruction_invpred
texture_V_DCRecontruction_invpred 1 1 texture_V_idct2d
texture_V_DCRecontruction_invpred 1 1 texture_V_IQ
texture_V_DCRecontruction_invpred 1 1 texture_V_IQ
texture_V_DCRecontruction_invpred 1 1 texture_V_IAP
texture_V_DCRecontruction_invpred 1 1 texture_V_IAP
texture_V_DCRecontruction_invpred 1 1 texture_V_IS
texture_V_DCRecontruction_invpred 1 1 texture_V_IAP
texture_V_DCRecontruction_invpred 1 1 texture_V_IAP
texture_V_DCsplit 1 1 texture_V_DCRecontruction_invpred
parser_splitter_420_B 64 64 texture_V_DCsplit
parser_splitter_BTYPE 1 1 texture_V_DCRecontruction_invpred
parser_parseheaders 1 1 texture_V_DCRecontruction_addressing
parser_parseheaders 1 1 texture_V_DCRecontruction_invpred
parser_splitter_BTYPE 1 1 texture_V_DCRecontruction_invpred
parser_splitter_BTYPE 1 1 texture_V_DCRecontruction_invpred
parser_splitter_BTYPE 1 1 texture_V_DCRecontruction_addressing
parser_splitter_BTYPE 1 1 texture_V_DCRecontruction_invpred
motion_Y_interpolation 1 64 motion_Y_add
motion_Y_FrameBu� 81 1 motion_Y_interpolation
motion_Y_FrameBu� 1 1 motion_Y_interpolation
motion_Y_add 64 64 motion_Y_FrameBu�
motion_Y_add 64 256 Merger420
parser_splitter_MV 2 1 motion_Y_FrameBu�
parser_parseheaders 1 1 motion_Y_FrameBu�
parser_parseheaders 1 1 motion_Y_FrameBu�
parser_parseheaders 1 1 motion_Y_FrameBu�
parser_splitter_BTYPE 1 1 motion_Y_add
parser_splitter_BTYPE 1 1 motion_Y_FrameBu�
parser_splitter_BTYPE 1 1 motion_Y_add
parser_splitter_BTYPE 1 1 motion_Y_FrameBu�
texture_Y_idct2d 64 64 motion_Y_add
motion_U_interpolation 1 64 motion_U_add
motion_U_FrameBu� 81 1 motion_U_interpolation
motion_U_FrameBu� 1 1 motion_U_interpolation
motion_U_add 64 64 motion_U_FrameBu�
motion_U_add 64 64 Merger420
parser_splitter_MV 2 1 motion_U_FrameBu�
parser_parseheaders 1 1 motion_U_FrameBu�
parser_parseheaders 1 1 motion_U_FrameBu�
parser_parseheaders 1 1 motion_U_FrameBu�
parser_splitter_BTYPE 1 1 motion_U_add
parser_splitter_BTYPE 1 1 motion_U_FrameBu�

61

B. Help Tools

parser_splitter_BTYPE 1 1 motion_U_add
parser_splitter_BTYPE 1 1 motion_U_FrameBu�
texture_U_idct2d 64 64 motion_U_add
motion_V_interpolation 1 64 motion_V_add
motion_V_FrameBu� 81 1 motion_V_interpolation
motion_V_FrameBu� 1 1 motion_V_interpolation
motion_V_add 64 64 motion_V_FrameBu�
motion_V_add 64 64 Merger420
parser_splitter_MV 2 1 motion_V_FrameBu�
parser_parseheaders 1 1 motion_V_FrameBu�
parser_parseheaders 1 1 motion_V_FrameBu�
parser_parseheaders 1 1 motion_V_FrameBu�
parser_splitter_BTYPE 1 1 motion_V_add
parser_splitter_BTYPE 1 1 motion_V_FrameBu�
parser_splitter_BTYPE 1 1 motion_V_add
parser_splitter_BTYPE 1 1 motion_V_FrameBu�
texture_V_idct2d 64 64 motion_V_add
Merger420 256,

64
set() out

parser_parseheaders 1 set() out
parser_parseheaders 1 set() out
in set() 1 serialize

62

Appendix C

Project Code

The project will be provided on request to anyone interested.

63

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-15

EXAMENSARBETE Evaluating a Real-time Multi-core Processor for Embedded Streaming
STUDENTER Linus Gudmundsson, Jacob Canbäck
HANDLEDARE Jörn W. Janneck (LTH)
EXAMINATOR Flavius Gruian (LTH)

Exploring a time-driven platform with
the help of a data-driven application

POPULÄRVETENSKAPLIG SAMMANFATTNING Linus Gudmundsson, Jacob Canbäck

Processors designed to be time-driven and allow for worst case execution time analysis
are a common thing in safety-critical systems. But what happens when a data-driven
application, in this project a streaming application, is implemented on such a platform?
In this project we will answer this question.

Today’s modern processors are able to run just
about any application with significant perfor-
mance. But how is this possible? With so many
different types of applications in existence, how
can a single processor be compatible with all of
them while also maintaining high performance? It
is because the processor is designed and optimized
for such general purpose use.
However, such optimizations are often not with-

out the drawback of increasing the Worst Case
Execution Time (WCET). Most of the time the
impact from this is not noticeable, but once in a
blue moon something goes wrong and even simple
applications can take very long to complete. Fur-
thermore, determining the WCET for an applica-
tion on such general purpose processors can be a
nightmare when it comes to complexity. This is
where Patmos, a processor array designed for real-
time systems to make it as easy as possible to cal-
culate the WCET comes in. There is no question
that such processors are necessary when it comes
to safety-critical applications that simply are not
allowed to fail, such as train controllers. But how
does such a platform handle non time-driven or
safety-critical applications?
In this project we tested this by implementing

a data-driven streaming application. This stream-

ing application is made up of an actor system,
which creates a need to map these actors to the
processor cores in some fashion. We further ex-
plored how much this mapping affected the appli-
cation performance and if it was possible to auto-
matically create the mapping without significantly
dropping the performance.
This application was translated to a Patmos ap-

plication by making use of a pipeline of Python
programs we created. The biggest hindrance to
the translation was the memory limits on the
FPGA which Patmos ran on. As the applica-
tion originally required far more memory than was
available, we had to extensively reduce the mem-
ory usage. The mapping from actors to cores was
done by modelling the problem in MiniZinc and
letting the solvers determine a layout.
The results show that the application was able

to run on Patmos without any major issues. When
it came to scalability Patmos even beat the x86
platform as the parallel version of the applica-
tion performed far better than the single-core ver-
sion, while the opposite was seen on the x86 plat-
form. Furthermore the results clearly displayed
that there is a significant performance gain from
optimizing the actor to core mapping, as the per-
formance almost doubled between some layouts.

	Introduction
	Patmos Microprocessor
	Real-Time
	Processor Array

	Application
	Research Goal
	Research Questions

	Contributions
	Division of Work

	Related Works

	Background
	Streaming Application
	MPEG-4
	Encoded Video
	Intra-coded Frames
	Predicted Frames
	Color Space

	Patmos
	Memory
	Core to Core Communication
	Hardware

	Method
	Overall Procedure
	Static Analysis
	Code Generation
	Multi-core Communication in the Application
	Layout
	MiniZinc Programming

	Benchmarking
	Actor Execution Time

	Implementation
	Memory Usage
	FIFO Queues
	Algorithm
	Cross Core FIFO Queues
	Shadow State
	Bulk Transfer
	Overflow
	Initialization
	Power of 2 Optimization

	Results and Discussion
	Setup
	Performance Based on Layout
	Actor Execution Times
	Benefits and Drawbacks of Patmos
	Ethical Aspects

	Conclusions and Future Work
	References
	Appendix Installation
	Quartus
	Multi-Core

	Appendix Help Tools
	Table Generated From Queue Analysis

	Appendix Project Code

