
MASTER’S THESIS 2020

Usage pattern recognition for
e�cient pre-caching
Otto Sörnäs, Erik Gralén

ISSN 1650-2884
LU-CS-EX: 2020-25

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-25

Usage pattern recognition for e�cient
pre-caching

Otto Sörnäs, Erik Gralén

Usage pattern recognition for e�cient
pre-caching

Otto Sörnäs
ottosornas@gmail.com

Erik Gralén
egralen@gmail.com

June 22, 2020

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Rasmus Ros, rasmus.ros@cs.lth.se
Jens Argentzell, jens.argentzell@qlik.com

Examiner: Emelie Engström, emelie.engstrom@cs.lth.se

mailto:ottosornas@gmail.com
mailto:egralen@gmail.com
mailto:rasmus.ros@cs.lth.se
mailto:jens.argentzell@qlik.com
mailto:emelie.engstrom@cs.lth.se

Abstract

Programs with many complex background calculations can have long loading
times that frustrates users. One way to solve this problem is by performing all
the necessary calculations before a user actually opens the program. This is called
precaching, and is present in lots of di�erent technology today.

This thesis presents amachine learning-based solution to a precaching-problem,
applied in a cloud-based environment, by training two di�erent sequential neu-
ral networks with labeled data. This approach relies on analyzing log files in
order to concretize a usage pattern on which the neural networks can train. The
networks were thereafter evaluated using a combination of MCC-score, confu-
sion matrices, and an evaluation algorithm specifically written for this thesis.

Based on the results we can conclude that both of the machine learning mod-
els are potential solutions to this problem, albeit with their own strengths and
weaknesses. The two networks di�er in how computationally expensive they are
to train, where the most expensive network also is the one that exhibits the best
results. Nonetheless, the results for both networks are good enough to reduce
the experienced loading time for a user.

Keywords: MSc, Machine learning, neural network, feedforward neural network, tem-
poral convolutional network, TCN, FNN, prefetching, precaching, preloading, cloud

2

Acknowledgements

This master thesis was done at Qlik in Lund. At least until the corona pandemic hit Sweden,
then it was mostly carried out in quarantine. Regardless, we would very much like to thank
the team at Qlik for their friendly reception and help, when needed.

A special thanks to Jens Argentzell and Hampus von Post at Qlik, who not only provided
us with technical knowledge and a never-ending support, but also had the mental energy to
endure meetings with us twice a week for the entirety of the master thesis.

Lastly, a huge thanks to Rasmus Ros, our supervisor at LTH, for your invaluable feedback,
support, and directives.

Thank you all!

3

4

Contents

1 Introduction 7
1.1 Problem Description . 8
1.2 Related Work . 9

2 Theory 13
2.1 Machine Learning . 13
2.2 Time Series Forecasting . 14
2.3 Artificial Neural Networks . 14

2.3.1 Feedforward Neural Networks . 15
2.3.2 Temporal Convolutional Networks 15

2.4 Model training . 17
2.4.1 Autocorrelation . 17
2.4.2 Hyperparameter tuning . 18
2.4.3 Loss functions . 18
2.4.4 Time Series Cross-Validation . 19

2.5 Evaluation . 20
2.5.1 Confusion Matrix . 20
2.5.2 Matthews correlation coe�cient 21

3 Approach 23
3.1 Research Method . 23
3.2 Problem identification and motivation . 24

3.2.1 Model requirements . 24
3.2.2 Data Requirements . 25

3.3 Implementation Method . 25
3.4 Data collection and analysis . 26

3.4.1 Data Preparation . 27
3.4.2 Feature Engineering . 27

3.5 Evaluation and comparison . 29
3.5.1 Data simulation . 30

5

CONTENTS

3.5.2 Model evaluation . 30
3.5.3 Comparison . 31

4 Implementation 33
4.1 Feedforward Neural Network . 33

4.1.1 Implementation . 33
4.1.2 Results and evaluation . 35

4.2 Temporal Convolutional Network . 39
4.2.1 Implementation . 40
4.2.2 Results and evaluation . 41

4.3 Static Rules . 42
4.3.1 Implementation . 44
4.3.2 Results and evaluation . 45

5 Results 49
5.1 Evaluation . 49

5.1.1 FNN . 49
5.1.2 TCN . 50
5.1.3 Static rules . 50

5.2 Comparison . 50

6 Discussion 53
6.1 Results discussion . 53
6.2 Limitations . 54
6.3 Internal and external validity . 55

7 Conclusion 57

References 59

6

Chapter 1

Introduction

Precaching (also called prefetching or preloading) is the notion of fetching information be-
fore the processor requests it. This technology works by analyzing usage patterns of the users,
and make sure applications predicted to soon be launched already have loaded necessary files
to memory beforehand. This reduces loading times and consequently creates a more pleasant
user experience. The software environment subject to this master thesis is the Qlik Sense
environment. This is a web based tool for data visualisation and data analytics. Qlik Sense
indexes relationships in data in a way that allows the user to gain complex insights in the
data. An instance of Qlik Sense has several user-created applications, and opening an ap-
plication requires the server to load all of the data into its RAM and subsequently perform
calculations. For applications with large amounts of data, this step can take a very long time.
However, once the application is loaded, any subsequent users do not have to reload it.

Analyzing the usage pattern of a single user in order to predict which application is
thought to be opened when is a quite established area of expertise. This is actually a technol-
ogy widely used in today’s everyday life, even though wemight not be particularly aware of it.
Most notably it is used in all Windows and Linux machines, through the SysMain (previously
knows as SuperFetch) [29] and preload [12] programs respectively. However, more and more
applications are becoming web based with lots of users. To predict application launches in a
cloud environment with multiple users is not quite as an explored area, and this master thesis
aims to present an easy to implement but yet e�ective solution to this problem via machine
learning.

In order to analyze the usage pattern of the Qlik Sense applications, we have used time
series analysis and time series forecasting. Time series analysis can be described as a way of
trying to understand trends in time series data, and time series forecasting can be described
as making predictions based on the analysis. Two di�erent machine learning models, namely
a Feedforward Neural Network (FNN) and a Temporal Convolutional Network (TCN), will
be implemented in order to carry out the forecasting, and the results will be compared to
each other.

The results show that both of these networks are satisfactory solutions to the aforemen-

7

1. Introduction

tioned problem. FNN is a more lightweight network which is easy to train, albeit it does not
have an outstanding prediction accuracy. TCN, on the other hand, has a higher potential
accuracy, while being harder and more computationally expensive to train. It is therefore
recommended to use FNN where memory constraints are of importance, and TCN when a
high accuracy is preferred.

The report is outlined as follows. Chapter 2 introduces the theoretical background nec-
essary to understand the work done in this thesis. Chapter 3 describes how the theoretical
parts are applied practically, and through which methods. Furthermore, Chapter 4 describes
how the implementation for the di�erent models were carried out, and thereafter presents
some preliminary results. In Chapter 5, the di�erent results summarized, and then compared
to each other. Chapter 6 discusses limitations, internal and external validity, and the imple-
mentation phase. Lastly, final thoughts, a summary of the findings, and suggested future
work is presented in Chapter 7.

1.1 Problem Description
Themajor scope of thismaster thesis is therefore to research, analyze and review howmachine
learning algorithms can be applied in creating an adaptive system that can predict which
applications should be precached, and when. More concretely, the goal is to create a system
which can be applied to any given Qlik Sense instance. By doing this we will also analyze
and get an understanding for how usage patterns of applications are opened and used in a
production environment. In order to reach these goals, the following will be answered:

• How can a machine learning model be used to predict user behavior for precaching
cloud applications?

• How can the performance of the predictive model be evaluated?

• What is a su�cient degree of prediction accuracy to have a real world impact?

• How does the predictive model perform compared to a manually created ruleset?

The Qlik Sense platform is, as previously mentioned, a web based business intelligence
tool which primary goal is to allow a user to gain complex insights in data. This is done
through user created apps, which can contain quite intricate calculations. When a user opens
an application, thus starting a new session, the data is loaded into the server’s memory and
the calculations for that specific app are performed. Most of this information is subsequently
stored in memory for eight hours after session ends. Eight hours is a default settings value,
but it can be changed via the administrator interface. There exists a cloud based version of
Qlik Sense where these settings works di�erently, however this is not the Qlik Sense version
subject to this master thesis. When another user opens the same app during this eight hour
long time frame, the loading time for that app opening is drastically reduced since all the
necessary information is already stored in memory. This app opening initiates a new session,
and the app is instead stored in memory for eight hours after this new sessions ends.

Qlik o�ers the possibility to schedule apps for precaching [27], meaning an app can be
loaded preemptively before the first user of the day accesses it. Currently, this scheduling is
done manually by the users themselves, but by applying an adaptive learning algorithm to the

8

1.2 Related Work

usage pattern of the analytics platform it could be optimized and automated to understand
which applications should be opened and when.

Whenever a new session is started, information is stored as rows in a session log file. Some
of the information stored is the timestamp for when a new sessions was initiated, the length
of the session, which user initiated the session, and which app was opened. A new log file is
created every day, which contains all the session information for the given instance of Qlik
Sense.

These session log files are what is going to be used to generate input data for the machine
learning models in this master thesis. How these logs are parsed and prepared are further
explained in Section 3.4.1. The purpose of the machine learning models is to generate a list
of timestamps where it is explained which apps to precache when. This list of timestamps is
thereafter to be used as input for a test service, provided by Qlik. This test service is able to
act as a scheduler for precaching apps if given the correct input parameters.

Figure 1.1 shows how this cycle works under the hood. A request to open a specific app is
sent to the Qlik Indexing Engine (QIX) Engine. This engine subsequently loads the correct
data, and performs the necessary calculations for that app. Information regarding the current
session is stored in the log storage. The precaching feature developed in this thesis, named
"Pattern Recognition" in the figure, accepts these logs as input. The output, in form of a list
of timestamps, is thereafter sent to the test service. This test service thereafter schedules the
app openings accordingly.

1.2 Related Work
There has been previouswork donewithin the area of event prediction via time series analysis.
Callara and Wira [5] present a probabilistic approach to predict when a user will launch
an application in a cloud environment, and consequently reduce the launching time. This
is however a presentation of a statistical model, and it does not make use of any existing
machine learning models. The theory behind it is something that might particularly useful
though, since they describe how to estimate Probability Density Functions (PDF) and use a
Kernel Density Estimation (KDE) based on periodic patterns of the user’s activity.

The company Uber, for example, is making use of probabilistic time series forecasting to
predict the number of trips during special events, such as big sports event. Zhu et al. [39]
present a Bayesian model of this, and apply it to large-scale time series anomaly detection at
Uber. Laptev et al. [18], also working for Uber, present another solution using long short-
termmemory (LSTM) in order to create an accurate time-series forecast during high variance
segments.

In both Linux and Windows, as previously mentioned, a prediction-based prefetching
scheme is used to store applications in the RAM that are thought to soon be launched by the
user. The program used for Linux is called preload [12], and is using a first-order Markov
prediction model to learn the usage pattern. Song et al. [34] present a usage pattern-based
scheme for prefetching application launches on mobile devices. To predict the next applica-
tion launch, Song et al. [34] proposes aWindow andWeighted Sum-based (WWS) prediction
scheme.

All of these papers give examples for how event prediction can be executed and imple-
mented with the help of machine learning, and will be relevant in one way or the other. Either

9

1. Introduction

Figure 1.1: An overall view of the platform architecture. The pre-
caching feature developed in this thesis is what is called "Pattern
Recognition" in the figure. The output is then fed to the test service,
which schedules the app openings.

10

1.2 Related Work

as a starting point for future research, or by actually providing something that can be directly
included in this master thesis. However, Liao et al. [19] present a paper wherein they develop
several machine learning models in order to precache app openings in a data centre. They
compare their machine learning models to already established rules, and thereafter evaluate
their findings. This is very close to what we are trying to achieve in this thesis. Liao et al.
[19] concludes that their machine learning models outperforms the rules already in place, and
that machine learning based precaching schemes are a good way to optimize performance.

11

1. Introduction

12

Chapter 2

Theory

In order to give the reader a basic understanding of the methodology used in this master
thesis, the theory behind the methods will be presented in this chapter. First, machine learn-
ing and time series forecasting as research fields are introduced. The two di�erent machine
learning models used in this master thesis project are thereafter introduced and explained.
Lastly, the di�erent techniques and methods used to tune the models’ parameters and then
evaluate the results are explained. These methods are subsequently used in Chapter 4, and
are therein thoroughly explained from a practical point of view.

2.1 Machine Learning
Machine learning originated over 50 years ago as a subdiscipline to the Computer Science
and Statistics fields. In present times the methodology is mainly used to analyze data in order
to uncover data patterns. These patterns then serves as a basis for decisions, or are used in
order to predict future data [22]. Machine learning is used today in very varied technologies,
for example speech recognition, stock market predictions and computer vision. There are
mainly three di�erent types of machine learning in use: reinforcement learning, supervised
learning and unsupervised learning. In this project, however, only supervised learning will
be used.

Supervised learning, or predictive learning, tasks the agent with learning the mapping
from x to y, given a training set made of pairs (xi, yi). Usually, a part of the training set is set
aside in order to evaluate the predictive performance on test examples. In other words, the
output data is known from the beginning, and the agent is used to identify the connections
between input (x) and output (y) [6]. Supervised learning is mainly used for either classifica-
tion of data, or for regression. The problem in this thesis is a classification problem, which
is why supervised learning is used.

13

2. Theory

2.2 Time Series Forecasting
A time series is a time-oriented or chronological sequence of observations of a variable [23],
where the variable typically is collected at equally spaced time periods. A classic example of
a time series would be a diagram showing how the stock market prices changes over time.
This is also a scenario where one might want to forecast the time series, i.e predict how the
future stock market development will look like.

In order to create an accurate prediction of how future time series development will
look like, a time series analysis need to be conducted. The data is broken down into smaller
constituents, and an e�ort is made in order to spot visible underlying patterns and data
trends. This is a large and vital part of the forecasting process, since it is here the important
features and data relationships are identified [23]. How this was conducted in this master
thesis project is more thoroughly described in Section 3.4.

Quantitative forecasting techniques uses historical time series data together with a fore-
casting model. This model then uses the data together with the previously identified patterns
and data relationships to find statistical relationships between previous and current values
of the variable. These patterns and relationships are subsequently used to extrapolate past
and current behaviour into the future [23]. Machine learning models can advantageously be
used for this purpose.

2.3 Artificial Neural Networks
Machine learning as a whole is made up of large di�erent families of di�erent machine learn-
ing models. One of the most common model to use when it comes to classification problems
is the artificial neural network (ANN). The name is derived from the fact that the ANN is
vaguely inspired by the biological neural networks that exists in brains [20]. AnANN consists
of, as the name implies, a network of artificial neurons. These so called neurons are nothing
more but computational nodes, which collectively learn from the input in order to optimise
its final output [24]. How a single artificial neuron is constructed is shown in Figure 2.1. As
can be seen in this figure, a neuron consists of three main components: weights, a bias, and
an activation function. These three components can be described as follows:

• Weights. An artificial neuron receives a set of inputs (x1, x2, x3) and multiplies each in-
put with a corresponding weight (w1,w2,w3). The weight can be explained as showing
the strength of a particular node, that is to say how much that node actually a�ects
the output value.

• Bias. Biases in neural networks are extra neurons added to each layer, which store
the value of 1. These bias neurons also have weights attached to them. This makes it
possible to move or “translate” the activation function left or right on the graph.

• Activation function. The weighted inputs and a bias b is then summed and an activation
function is applied to the sum. The purpose of the activation function is to convert an
input signal of a node to an output signal. The activation function can be chosen to
be any function such as a linear, binary, or sigmoid activation function, depending on
what format you want the output data to be in.

14

2.3 Artificial Neural Networks

x2 w2 Σ f

Activation
Function

y
Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.1: An overview for an Artificial Neuron. The input data, x,
is multiplied with a respective weight, w. Everything is summed up
together with a bias, and then an activation function is applied to
data in order to create an output, denoted y.

An artificial neuron’s output can then be used as input to one or more other artificial
neurons. These neurons together make up a neural network, and make up the basis for many
di�erent machine learning models.

2.3.1 Feedforward Neural Networks
Depending on how the neurons in an ANN are structured, one can design di�erent neural
networks for di�erent purposes. One of the most common, and perhaps also one of the most
simple ways of organizing these artificial neurons is the feedforward neural network (FNN).
This network consists of several sequential layers, which in turn consists of several artificial
neurons. As shown in Figure 2.2, an FNN consists of at least three layers: an input layer, an
output layer, and any number of hidden layers. Having multiple hidden layers stacked upon
each-other is commonly called deep learning [24]. The reason why this network is one of two
chosen networks for this thesis is due to fact that it is an established way of solving this type
of classification problems. It should therefore be able to function as a type of baseline.

Another important point to note here is that each of the hidden layers can have a di�erent
activation function. Choice of the activation function to be used depends on the problem in
question and the type of data being used. For a neural network to make accurate predictions,
each of the neurons needs its weights fine tuned at every layer. Tweaking the weights in
order to achieve more accurate results is what is more commonly known as the "learning"
part in machine learning. The algorithm through which they tune the weights is called back
propagation, and is further covered in Section 2.4.3.

In an FNN, each neuron’s input is the output from every neuron in the previous layer,
except for neurons in the input layer which receive input variables directly.

2.3.2 Temporal Convolutional Networks
Up until quite recently, deep learning practitioners have used recurrent neural networks
(RNN) as the default approach for sequencemodeling (or time series forecasting) [1]. The rea-

15

2. Theory

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
Layer

Output
Layer

Figure 2.2: An overview over a simple simple Feedforward Neural
Network. Each layer consists of several artificial neurons. Each neu-
ron transmits its output to the next layers. After the signal has tra-
versed all layers, an output is generated.

son why RNNs are considered good at especially sequence modeling is partly due to the fact
that they can take inputs of variable length, and also because they have cells which functions
as a memory [9]; they can consequently remember and learn from previous inputs because
of this [21]. Examples of popular RNNs for sequence modeling would be the Long Short-
TermMemory (LSTM) [31] and Gated Recurring Units (GRU) [9]. However, in 2016, Google
DeepMind published a paper called "Pixel Recurrent Neural Network" [36] wherein the au-
thors showed that it is instead possible to use a Convolutional Neural Network (CNN) as a
sequence model (instead of an RNN), while still achieving high prediction accuracy.

CNNs can be described as an extension of the Feed-ForwardNeural Network, where some
of the hidden layers are convolutional layers [10]. Generally speaking, CNNs are hierarchical
and RNNs sequential architectures [38], and this is one of the major reasons as to why anyone
would want to use a CNN as a sequence model instead of an RNN. Because unlike in RNNs
where the predictions for later timesteps must wait for their predecessors to complete, con-
volutions can be done in parallel since the same filter is used in each layer [1]. Networks using
a CNN as sequence model are more commonly known as Temporal Convolutional Networks
(TCN). Facebook also released their own TCN in 2017, called Fairseq [25], and claims it runs
nine times faster than their RNN benchmark.

Bai et al. [1] conducted an empirical evaluation of TCNs in 2018, and the authors note
that TCN have two distinguishing characteristics:

1. The convolutions in the architecture are causal, meaning that there is no information
“leakage” from future to past.

2. The architecture can take a sequence of any length and map it to an output sequence
of the same length, just as with an RNN.

Their evaluation consists of a series of benchmark competitions of TCNs versus RNNs,
LSTMs and GRUs. This is done on eleven tasks that have been commonly used to bench-
mark the performance of di�erent RNNs. Their result is that TCNs are not only faster, but

16

2.4 Model training

they also produce greater accuracy in nine cases (and tied in one) [1]. They end the evaluation
by presenting the reader with a list of advantages of TCNs [1]:

• Since convolutions can be done in parallel in TCN, a long input sequence can be pro-
cessed as a whole in TCN, instead of sequentially as in RNN. This speeds up the train-
ing process quite a bit by shortening both the training and evaluation cycles.

• TCNs o�er more flexibility in changing its receptive field size, principally by stacking
more convolutional layers, using larger dilation factors, or increasing filter size. This
o�ers better control of the model’s memory size.

• TCNs have stable gradients, whichmeans they avoid the problemof exploding/vanishing
gradients, which is a major issue for RNNs. Since the gradients control how much the
network learns during training, if the gradients are very small or zero, then little to
no training can take place, leading to poor predictive performance. This is called the
vanishing gradient problem. The opposite is true for exploding gradients, when large
error gradients accumulate and result in very large updates to neural network model
weights during training.

• Compared to RNNs, especially in the case of a long input sequence, TCNs have a very
low memory requirement for training.

According to the authors [1], there is one notable disadvantage to using TCNs that might
have an impact on this master thesis: TCNs might require more memory during evaluation.
This will be further explored and examined in Section 4.2.1.

2.4 Model training
Training a machine learning model consists of several steps. Firstly, it is required to identify
if the data is usable at all. If it is indeed usable, it is thereafter possible to identify the hy-
perparameters that yield the best result with respect to the task and setup. Lastly, it is time
to actually train the machine learning model. The theory behind these di�erent steps are
explained in this section.

2.4.1 Autocorrelation
In order to train a model on a dataset, you need to first figure out if there exists a pattern
in the data (that the data is non-random), and where this pattern exhibits its strongest cor-
relations. If the data is close to being random, it is neigh impossible to predict future data
sequences. To figure this out, something called the autocorrelation function can be used. The
autocorrelation function [3] is mainly used for two reasons:

1. To detect non-randomness in data.

2. To identify an appropriate time series model if the data are not random.

17

2. Theory

If there exists a set of observations Y1,Y2, ...,YN at times X1, X2, ..., XN (where the time
between the observations are assumed to be equal) the autocorrelation can be calculated as
follows:

rk =

∑N−k
i=1 (Yi − Y)(Yi+k − Y)∑N

i=1(Yi − Y)2
(2.1)

The autocorrelation is not the correlation between two variables, it is the correlation
between two values of the same variable at times Xi and Xi+k [3]. The value of k is the time
gap being considered, and it is called the lag. A lag 1 autocorrelation, i.e when k = 1, is the
correlation between values that are one time period apart. So generally speaking, the lag k is
the correlation between values that are k time periods apart. When this is used to identify an
appropriate time series model, the autocorrelations are usually plotted for many lags. If the
observations are random, the autocorrelations should be near zero for practically all time-lag
separations. If non-random, one or more of the autocorrelations will be significantly non-
zero. The higher the value of a lag, the higher the correlation between the time periods. This
can advantageously be used to identify which lags to use when training a machine learning
model to forecast a time series.

Uncorrelated, however, does not necessarily mean the data is random. Data that does
not show significant autocorrelation can still exhibit non-randomness in other ways; auto-
correlation is just one way of measuring randomness. Though, checking for autocorrelation
is typically a su�cient test of randomness when validating a model.

2.4.2 Hyperparameter tuning
For neural networks, there are many parameters that are adjustable which can a�ect on the
resulting performance of the network. Some of the parameters that can be adjusted include
number of layers, number of neurons in each layer, the activation functions, learning rate, and
number of epochs. Considering all of the hyperparameters, the number of possible combina-
tions is incredibly large. Since there exist no closed-form solution to choose hyperparameters,
the only approach is to use a trial-and-error approach [33]. Luckily enough, there exists open
source libraries that automates this process and finds the optimal combinations of parameters
for you. The parameter optimization used in this master thesis was the Bayesian optimization
from Scikit-Optimize [15], a sequential model-based optimization built on Scikit-Learn.

The results from this optimization algorithm was subsequently used for choosing the
parameters when implementing the models, as described in Section 4.1.1 and Section 4.2.1
respectively.

2.4.3 Loss functions
In neural networks, the individual weights and biases are estimated through training, mean-
ing that they can be adjusted so that the network provides accurate answers [23]. To evaluate
the performance of a neural network, a loss function is typically used. Broadly speaking, loss
functions can be classified into two major categories depending on the type of learning task
we are dealing with: regression- and classification losses. In classification, we are trying to
predict an output based on a set of finite categorical values. Regression, on the other hand,

18

2.4 Model training

deals with predicting a continuous value - for example forecasting a numerical quantity. The
goal of training a network is to adjust the trainable parameters such that the loss function is
minimized.

Often a procedure known as backpropagation is used together with a loss function to
estimate the neural network’s parameters [23]. When a feed-forward neural network accepts
an input x and produces an output y, information flows forwards through the network and
produces a cost, generated from the loss function [2]. This is called forward propagation, and
the backpropagation algorithm allows the cost to flow backwards through the network in
order to compute the gradient of the loss function [13]. Backpropagation refers only to the
method for computing the gradient, while another algorithm (such as the stochastic gradient
descent [2]) is used to adjust the trainable parameters using the gradient. The function used
to adjust the weights is called an optimization algorithm [28].

2.4.4 Time Series Cross-Validation
Historically, the data used for training a machine learning model has been split into three
parts: a training, test, and validation set. The model learns from the training data set and
is then evaluated against the validation data set. The model’s parameters are subsequently
adjusted according to how well the model performed on the validation set, and the model
in its entirety is finally evaluated against the test data to see how well the final model is
performing. There are other ways of calculating an unbiased estimate ofmodel skill on unseen
data. One popular example is to use cross-validation to tune model hyperparameters instead
of a separate validation dataset.

Cross-validation is a model validation technique for asserting how well a machine learn-
ing model will adapt to independent data. This is used in order to understand how accurate
the model’s predictions will be in practice. A very common approach to cross-validating
predictive machine learning models is divide the data into k number of chunks. Of the k
number of chunks (or folds), one is separately saved as a validation set of data, and the re-
maining k − 1 number of folds are used to train the model. The training is then repeated k
number of times, where every fold is used as a validation set once. This approach is called
k-Fold Cross-Validation. The k number of results can then be averaged which equals to the
final result, revealing how the model is performing.

The issue with k-Fold Cross-Validation is that you have to assume that there is no re-
lationship between the observations, i.e. each observation is independent. This is not the
case with time series data, where the temporal order in which values were observed is impor-
tant. To remedy this, a procedure sometimes known as "evaluation on a rolling forecasting
origin" [16], or "rolling cross-validation", can be used. The data is once again divided into k
number of chunks, where the first chunks are used to forecast later data points. The same
forecasted data points are then included as part of the next training dataset and subsequent
data points are forecasted. The average accuracies of the test folds are then computed in or-
der to evaluate the model’s performance. This could be viewed as a k-Fold Cross-Validation
where the training happens for k consecutive time folds. The Figure 2.3 illustrates how the
rolling cross-validation works.

The result from each iteration of the cross-validation can then be used to tune the pa-
rameters of the model in order to boost its performance.

19

2. Theory

Data

Training Test

Training Test

Training Test

Figure 2.3: An overview for how time series cross-validation works.
The original data set is divided into a training and test set. The test
set is then included in the new training set, and this continues until
all data is traversed.

2.5 Evaluation
An important finalizing step of the machine learning process is to evaluate the results gained
in a su�cient manner. Two di�erent evaluation techniques were utilized during this master
thesis; the confusion matrix, which is used as a visualization of the result, and the Matthews
correlation coe�cient, which generates a numerical values in order to approximate themodel’s
prediction accuracy. In this section, the theory behind these twomethods used for evaluation
are explained.

2.5.1 Confusion Matrix
The problem in this master thesis was approached as being a binary classification problem.
This means that the prediction done by the machine learning model only can take one of
two values. It either predicts that a user is about to open the given application during the
upcoming hour, or it predicts that a user will not open the application. This results in four
di�erent outcomes:

• Actual positives that are correctly predicted positives are called true positives (TP). I.e.
when the model correctly predicts an application is about to be opened.

• Actual positives that are wrongly predicted negatives are called false negatives (FN).
I.e. when the model misses to predict when a user opens an app.

• Actual negatives that are correctly predicted negatives are called true negatives (TN).
I.e. when the model correctly predicts that no user is going to open the app in the
upcoming hour.

20

2.5 Evaluation

• Actual negatives that are wrongly predicted positives are called false positives (FP). I.e.
when the model wrongfully predicts a user to open the app.

ac
tu
al

va
lu
e

Prediction outcome

p n total

p′ True
Positive

False
Negative P′

n′ False
Positive

True
Negative N′

total P N

Figure 2.4: An example of a generalized confusion matrix for bi-
nary classification. The top left and bottom right quadrants are the
wanted results, i.e. when the model predicts correctly. The top right
and bottom left quadrant represents when the model fails its classi-
fication.

All the outcomes can subsequently be summarized in what is called a confusion matrix
[8], and a generalized confusion matrix is shown in Figure 2.4. This can advantageously be
used to gain a visual overview regarding how well the model is performing.

2.5.2 Matthews correlation coefficient
More often than not, it is desirable to calculate a numerical value based on the confusion
matrix in order to evaluate how well the model actually performed. Many researchers con-
sider computing the accuracy as a reasonable performance metric [8]. Accuracy represents
the ratio between the correctly predicted instances and all the instances in the dataset, and
can be calculated as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(2.2)

This is indeed a good estimation of the model performance, assuming there is a balanced
dataset. However, when the dataset is unbalanced, i.e. a dataset in which one class is over-
represented with respect to the others, accuracy cannot be considered a reliable measure
anymore [8]. This is due to the calculation providing an overoptimistic estimation of the
classifier ability on the majority class.

As described in section 3.4.1, the data used in this master thesis had to be upsampled in
order to create a continuous time series. This means that a vast majority of the data points in
the dataset are zeroes, i.e. signaling that the app is not open. An e�ective solution overcoming
the class imbalance issue comes from the Matthews correlation coe�cient (MCC), a special

21

2. Theory

case of the φ phi coe�cient [8]. MCC takes into account the ratio of the confusion matrix
size, and can correctly inform whether or not the prediction evaluation is going well or not
[7]. MCC can be calculated the following way:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2.3)

This function returns a number between −1 and 1, where a 1 is a perfect classifier, and
−1 is a perfect inverted classifier, meaning the model got every single prediction wrong. A 0
represents random guesses, which means a good classifier would preferably score in the close
proximity to a positive 1.

However, if one of the rows (or columns) in the confusionmatrix (in Figure 2.4) consists of
zeroes, the MCCwould be undefined. For example, if the obtained values from the confusion
matrix would be TP = 37, FP = 18; TN = 0, FN = 0, the denominator in Equation 2.3
would be 0. This might be a problem if the dataset is small and unbalanced.

22

Chapter 3

Approach

This chapter aims to explain the practical applications of the theory described previously in
Chapter 2. Firstly, the general work process and research method are explained. The actions
taken in every step of the research method are then explained, and linked together with the
subsequent sections where these actions are described more in-depth. The general approach
when implementing the di�erent models is presented; from data collection and analysis to
feature engineering. Lastly, the classification of the output, the model evaluation, and the
model comparison are explained.

3.1 Research Method
This master thesis project aims to use design science as a general research method. Design
science research (DSR) is an approach to performing research which aims to develop general
design knowledge in a specific field [11]. Iivari et al. [17] notes that there is no widely accepted
definition of DSR. However, their take on it, which we accept, is that DSR can be described
as [17]:

"a research activity that invents or builds new, innovative artifacts for solving
problems or achieving improvements, i.e. DSR creates new means for achieving
some general (unsituated) goal, as its major research contributions."

Iivari et al. also concludes that DSR is more of a research paradigm, within which one can
use di�erent research methods [17]. More concretely, Pe�ers et al. [26] divides DSR into six
distinct activities, which should in some way be included in a DSR process. These six steps
correspond to how the thesis has been carried out:

1. Problem identification and motivation: Define the research problem and justifying the
value of a solution. This is described in Section 3.2.

23

3. Approach

2. Define the objectives for a solution: The objectives can be either quantitative or qualita-
tive, however the objectives should be derived from the problem specification. The
objectives for this master thesis were derived in conjunction with Qlik. The results
from this is described in Section 1.1.

3. Design and development: How the design and development of the two machine learning
models underwent is described in Section 3.3.

4. Demonstration: For each of the two machine learning models, preliminary results and
usage of the implementations are described. This is done in Chapter 4.

5. Evaluation: The evaluation and comparison process is described in Section 3.5. The
results from the subsequent evaluations are presented during the implementation de-
scription for each of the models in Chapter 4. The evaluations are thereafter presented
as a whole and compared to each other in Chapter 5.

6. Communication: Communicate the usefulness and e�ectiveness of the artifact to other
researchers and practicing professionals.

While Pe�ers et al. [26] notes that there is no need for a researcher to go through these
steps in sequential order (one can instead start at almost any step and move outwards), we
have in this thesis opted to do most of the steps in order. This thesis began with defining the
objectives, and formulating a problem description. The data used in this thesis was thereafter
processed, and the models implemented. Lastly, the models were evaluated. Based on the
evaluation results, the models were re-implemented in order to tune the parameters and
achieve an even better result. This iterative process is described more in-depth in Section
3.3.

3.2 Problem identification and motivation
This section corresponds to the first step of the design science process, as described in Section
3.1. First the model requirements will be described. This is basically the end goal; what we
want our models to achieve. Thereafter, data requirements will be described. This is a brief
description of the data used in this thesis, and the information it contains.

3.2.1 Model requirements
Since a pre-loaded application takes up memory space, it is of utmost importance to mini-
mize the time an application is pre-loaded before being used the first time, all while not being
pre-loaded too late or without being used at all. The implemented model therefore has to
first and foremost identify if there exists a definable usage pattern for the given application,
and thereafter concretize this pattern in order to be able to determine when the application
should be pre-loaded. Trying to pre-load an application while it is already stored in memory
does little to nothing besides bumping the CPU-usage a bit, which means opening an appli-
cation already stored in memory is a non-wanted behaviour. The model consequently has to
also be able to identify when an application is already opened, and opt to not pre-load it if so.

24

3.3 Implementation Method

To realize these requirements, the model could be designed from two di�erent approaches,
each with their pros and cons:

• View the pre-loading as being an extension to an application, where the user could
decide to activate and deactivate the feature at will. Given that there exists enough
data for the given app, and that there actually exists a usage pattern, the model could
be quite simple while still generating accurate results. Granted, having an individually
trained machine learning model for every application might not be feasible storage
wise.

• Implement a generalized machine learning model that analyzes all applications at once
and produces a single homogeneous usage pattern. This would solve the possible stor-
age problem, but the model would be much harder to develop, if doable at all. It would
require a very thorough data analysis and a model that would be quite complex.

3.2.2 Data Requirements
Machine learning is, as previously stated, based on analyzing data in order to find patterns
within it. This means that there is usually a need for a quite large amount of data to analyze,
or in other words, a lot of data to train on. If this training set of data is not su�ciently large,
there is an elevated risk of the model overfitting. Overfitting is when the model learns from
the noise of the deviating data instead of the data signal itself [14]. Broadly speaking, the
machine learning model becomes more accurate the more data it can train on.

The dataset used in this master thesis is provided by Qlik, and comes from their R&D
department’s production environment. It is provided in the form of system and session logs,
and contain information about every new session a user starts. For example, a selection of
information every row in the log files contains would be a timestamp for the session length,
the session start time, and the name and ID of the application opened by the user. The logs
used for this master thesis spans from the middle of October to present, resulting in about
six months worth of data.

However, not all data in the log files could be used. The relevant data had to be parsed
from the log files, and then restructured into a format that could be used for the purpose of
training machine learning models. This meant that a lot of the time at the start of this thesis
was allocated to creating a functioning data management infrastructure.

3.3 Implementation Method
The forecasting process byMontogomey et al. [23], was usedwhen implementing themachine
learningmodels and predicting application launches. This is a generalizedmodel for machine
learning implementation with a heavy focus on data analysis. The first five steps of the seven
step long process can be seen in Figure 3.1. The last two steps were cut out since they involve
launching and validating the model in a production environment, which we will not be doing
in this master thesis project.

As previously mentioned in Section 3.1, DSR can be viewed as a research paradigm,
wherein you can use other researchmethods. The forecasting process described in this section
is one of these methods, and has in its entirety been used during the design and development

25

3. Approach

step of DSR in this master thesis. This means that while some of the steps in DSR and the
forecasting process might display some similarities, or even share the same name, they refer
to di�erent things. The following text therefore aims to explain the steps in the forecasting
process more in-depth, and to investigate the di�erentiations from DSR.

Problem
definition

Data
collection

Data
analysis

Model
selection
and fitting

Model
validation

Figure 3.1: The parts of the forecasting process, as described by
Montgomery et al. [23], which is going to be used in this thesis.

The problem definition step of the forecasting process refers to a more specialized ap-
proached than in DSR. This step more or less intends to create a framework on which you
can base the machine learning model implementation. Questions to be answered are among
others:

• What problem is this model trying to solve?

• What are the input and output parameters of the model going to be?

This was conducted the same way for both machine learning models used in this master
thesis, and is explained in the introductory part of each model in Chapter 4. The data was
also collected the sameway for bothmodels, and the way this was done is described in Section
3.4.1.

Data analysis, feature extraction, and model fitting is a cyclic process where each iter-
ation of a trained model is evaluated. The first steps, data analysis and feature extraction,
are explained in Section 3.4.2. The evaluation is done after the model validation, and con-
stitutes the last step in the forecasting process. Time series cross-validation was used for for
the validation, and is described in Section 2.4.4. The results from the cross-validation was
subsequently evaluated, and the techniques used for the evaluation are described in greater
detail in Section 3.5.

Based on this model validation, the features used to train the model might be changed.
Identifying which data to use as features when training a machine learning model is a large
and time consuming part of the process.

3.4 Data collection and analysis
Data collection and analysis is a very large, time consuming, and important part of the process
when implementing amachine learningmodel. It is preparatoryworkwhich later acts as basis
for model training. This part of the process is a cornerstone of the Design and development
step in DSR, as described in Section 3.1.

26

3.4 Data collection and analysis

3.4.1 Data Preparation
The data used in this project originates from a Qlik Sense instance used internally by Qlik.
This instance generates several types of log-files where the most relevant log-files were the
session logs. These logs provided timestamps on when users connected to specific applica-
tions and some general information about the session. When analysing the logs, it was found
that there existed several bot accounts performing scheduled activities. It was consequently
decided to remove all log entries belonging to these accounts in order to only train the model
on human activities.

Since this master thesis aims to analyze the usage patterns of apps, the apps without a
su�cient level of usage (or where the usage did not exhibit a clear pattern) were consequently
filtered out. This was done by counting the number of log entries for each app, combined
with analyzing the autocorrelations to ensure the usage pattern was non-random.

It is very important, but also very hard, to identify relevant history for the variables that
are to be forecast. Often information collection and storage changes over time, and not all
historical data are useful for the current problem. It is not rare to also encounter missing
values of some values, or other data-related problems that may have occurred in the past.
One example of this would be the fact that log entries only was created when a user started
a new session, meaning that there was no data for whenever a user was not connected to
the Qlik Sense instance. In order to create a continuous time series, the log files had to be
upsampled. It was decided to create an binary hourly time series from the logs, where a 1
meant the app was opened during the given our, and 0 meant it was not.

3.4.2 Feature Engineering
The selection and construction of features is an important step since these features will be the
input to the models. Therefore it is important to choose relevant data sources and transform
them into formats which are appropriate for machine learning.

Visual Inspection

The data was visually inspected in order to find recognizable patterns, such as trends, sea-
sonality, or other cyclical components. In Figure 3.2 the usage pattern for a single app over
two weeks is visualized. The y-axis shows how many concurrent sessions are opened, and the
x-axis displays the hours of the day with delimiters for when a new day begins.

Due to the relatively short time span the total data covered (just over six months), it was
impossible to detect any longer seasonal trends. You would at least need a couple of year’s
worth of data in order to analyze how the usage pattern changes between for example winter
and summer - the data used for this master thesis covered less than one year’s worth of app
usage. However, shorter trends, such as weekly or bi-daily, could be identified for some apps.
Which days had a more prominent usage than other di�ered between the applications. A us-
age pattern constant for more or less all apps was the fact that usage was basically nonexistent
during weekends.

27

3. Approach

Cyclic Features
One of the key features derived from the data was a corresponding timestamp to every log
entry. The information in these timestamps were subsequently broken down into di�erent
features used for fitting themodel, such as the hour when an appwas opened, which day of the
week it was opened, andwhich day of themonth it was opened. These are examples of cyclical
ordinal features, and they have to be represented in a way which respects their cyclicity. For
example, when using an hour as a feature, there is a very real problem with representing the
hour with an integer. Even though the hours 0 and 23 are close to each other in real life, they
would be very far away from each other when represented on a linear timeline. To remedy
this, these features were evenly mapped onto the unit circle and represented by Cartesian
coordinates. This means that values at the beginning and end of a cycle, such as the hours 0
and 23 in the hour of the day cycle, are treated as being close to each other.

A visualization of this can be viewed in Figure 3.3. The hour 12 would therefore be rep-
resented by two features; one for the x-axis and one for the y-axis. The day of the week and
day of the month was also changed into being represented by Cartesian coordinates.

Lagged Features
A lagged variable is a variable which has its value coming from an earlier point in time, and
these variables can be used as features when training a model. Choosing which time lags are

Mon Mon Mon
0

1

2

3

4

5

6

7

Sun Tue Wed Thu Fri Sat Sun Tue Wed Thu Fri Sat Sun Tue

Day of Week

C
on
cu
rr
en
tS

es
si
on
s

Figure 3.2: The visualized usage pattern over two weeks for one ex-
ample app. The y-axis shows the number of concurrent sessions at
a given time. It is worth noting that there are no recorded session
during the weekends for these two weeks.

28

3.5 Evaluation and comparison

to be used is important since di�erent lags will exhibit di�erent strengths of correlation.
However, this can be done with the autocorrelation function, which is described in detail in
Section 2.4.1.

Amodel can have several lagged features, eachwith a di�erent time di�erence. By analysing
the usage pattern’s autocorrelation, it is possible to either manually or automatically choose
the most relevant time lags. An example of an autocorrelation plot for one of the apps is
shown in Figure 3.4. The y-axis shows the numerical autocorrelation value, and the x-axis
displays the lag in hours. What can be seen in this particular graph, and was also a recurring
pattern in several other apps, are the spikes in autocorrelation at and around the lags 24 and
48. Another spike that often occurred was at lag 168, which is how many hours there are
in one week. What this means is that a sessions for this particular app often was initiated
around the same time every day. However, di�erent apps showed di�erent autocorrelation
patterns, which meant it was of utmost importance to actually make use of the autocorrela-
tion function in order to identify the correct time lag for the specific app.

3.5 Evaluation and comparison
Achieving results with a machine learning model is only half of the work. The second part
is to actually understand what the results are saying. Hence, it is very important to evaluate
the model in a su�cient manner. Since this thesis aims to also compare machine learning
models, it is also of interest to identify comparable variables, and then design a satisfactory

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1

−0.5

0

0.5

1

0

1

2

3

4
567

8

9

10

11

12

13

14

15

16
17 18 19

20

21

22

23

x-value

y-
va
lu
e

Figure 3.3: The representation of the hours of the day using Carte-
sian coordinates, when mapped onto the unit circle. Here it can
clearly be seen how the hours 00:00 and 23:00 are represented as
being close to each other.

29

3. Approach

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

Figure 3.4: A plot for an autocorrelation for 50 time lags for one
example app. There are notable spikes around lags 24 and 48. This
means that the app is opened about the same time everyday.

way to execute this comparison.

3.5.1 Data simulation
A prediction simulation was conducted in order to imitate how the machine learning would
perform in a more real environment. How this simulation works is by predicting the prob-
ability for a user opening an app not only for the given hour, but also for each and every of
the seven upcoming hours. These eight probabilities are subsequently stored as a row in a
matrix. This process is repeated for every hour in the validation set.

The reason as to why eight hours was chosen as the number of hours to calculate a prob-
ability over is because, as previously mentioned, this is the time an application is stored in
memory.

3.5.2 Model evaluation
To actually make sense of the prediction simulation, an evaluation script was written. This
script compares the model predictions to validation data. It does so by summarizing all the
values in a row from the probability matrix, and compares this to a previously set threshold.
If the accumulated probability is higher than the threshold, the model tries to open the app.
The evaluation script then returns what is assumed to be the most relevant features and
results during validation:

• The number of correct predictions. Correct predictions, in this context, simply means
whenever the model correctly predicted a user to open the app within the coming
eight hours, which is for how long an app stays in memory.

30

3.5 Evaluation and comparison

• Late openings. Sometimes the model did predict a correct usage, however it was too late
and tried to load the app after it had already been opened.

• Completely missed app openings. The times when a user opened the app and the model
did not, during the entire time the app was loaded in memory, try to precache it.

• When the model wrongfully preloads an app. Despite no user opening the app during the
upcoming hours, the model still tried to precache the app.

• How long time a correctly precached app was stored in memory. An average of the time
before a user actually tried to open an app after it had been precached.

These outputs are subsequently used in di�erent ways in order to concretize and evaluate
the model’s performance. As described in Section 2.5.1, the first four of these outputs can be
visualized in a confusion matrix in order to get a general understanding of how the model
performed. The MCC-score, described in Section 2.5.2, can be used to generate a numerical
value between −1 and 1 which approximates how well the model is performing. MCC takes
into account all four values in the confusion matrix, and a high value (close to 1) means that
both classes are predicted well, even if the classes are very unbalanced. The confusion matrix
and MCC-score for both models are described in Sections 4.1.1 and 4.2.1 respectively.

3.5.3 Comparison
In order to do a fair evaluation and comparison of the two di�erent machine learning mod-
els, several metrics will be weighted together. The Matthews correlation coe�cient will, of
course, be used to get an understanding of the models’ accuracies. However, the accuracy
alone is not a su�cient metric to evaluate a model on. Due to the cost of precaching an app,
the false positive result in the confusion matrix is the worst predictive outcome a model can
generate. This would result in an app taking up unnecessary memory space without a user
ever trying to access it. When comparing the models to each other, this outcome therefore
outweighs the others, and it is of highest priority to minimize it.

The actual memory usage, both during training and during prediction, is also of interest.
A more light weight model is most often preferred, assuming the accuracy is su�cient. This
correlates directly with training time - the lower the better. It might be unfeasible to use a
model if it takes over one hour to actually fit the model. All of these features will be consid-
ered when comparing the models, and they will thereafter act as a basis when motivating the
use of one model.

31

3. Approach

32

Chapter 4

Implementation

This chapter aims to describe the process of implementing and evaluating the two di�er-
ent machine learning models used for this master thesis, and also the implementation and
evaluation of the static rules simulation. Each section starts with an introduction, where the
planning phase of the implementation is described. How the implementation was carried
out is subsequently described in the subsection thereafter. Lastly, preliminary results are pre-
sented, evaluated and discussed. Both models predict the usage pattern of the same app in
order to make the evaluations fair, however a general evaluation for the rest of the apps will
also be described.

4.1 Feedforward Neural Network
One of the most prominent advantages of FNN is the fact that it is rather easy to implement,
has a widespread support in plenty open source libraries, and it has been proven to work
many times over when it comes to supervised learning. The problem is that Feedforward
Neural Networks are generally used for supervised learning with data that is non-sequential.
In order to use FNNs for time-series forecasting, it is possible to use features that describe
the current state at time T , which the network will use to predict the state at time T + 1.

Several combinations of features where tested in order to see which specific setup gen-
erated the results with the highest accuracy. All of these setups were evaluated by using the
MCC, and the results are presented in Section 4.1.2.

4.1.1 Implementation
Features
The data available from the log files presented two important feature categories: usage infor-
mation and timestamps. From these two categories, it is possible to derive many combina-

33

4. Implementation

tions of features that are relevant for detecting trends. From the timestamps, several features
were created. The cyclic values used as features were the hours of the day and the day of week.
These were described using a cyclic transformation, as described in Section 3.4.2.

Historic usage data was also used as features. A couple of lagged values were automatically
selected through using autocorrelation values. Besides this, both a rolling and an expanding
mean value were also used as features. The rolling mean value is the overall mean for the given
timestamp, while an expanding mean is the mean hitherto calculated in the training process.
Lastly, the usage activity for the last 24 and 48 hours were used as two di�erent features.

Hyperparameter Tuning
The optimization algorithm described in Section 2.4.2 was used. It chose and tuned several
parameters for the model. The parameters involved and their search space were:

• Loss function (Binary cross entropy, mean square error)

• Activation function (Softmax, tanh, sigmoid)

• Number of hidden layers (0-6)

• Number of neurons in each layer (1-32)

• Learning rate (10-6 - 10)

• Dropout rate (0.0 - 0.3)

The loss and activation function choice consisted of trying out several di�erent functions,
and then opting for the one that yielded the best result. These two functions are therefore
described in the following subsections.

Activation function
The activation function is used to transform the input data of a neuron into an output signal.
There are a number of common activation functions in use with artificial neural networks,
and the sigmoid function is one of the most used activation functions [32].

The shape of the sigmoid function is that of an S, which can be seen in Figure 4.1. This
function will only produce positive numbers between 0 and 1, which makes it the most useful
for training data that is also between 0 and 1 [32]. Since the input data used for this master
thesis was converted into to a binary string of 1’s and 0’s, it does seem reasonable that the
sigmoid function was deemed the best alternative by the parameter optimizer.

Loss function
The loss function ultimately chosen by the optimization algorithm was the Mean Squared
Error (MSE) loss function. This is a common loss function which calculates the mean squared
error between themodel’s predicted value y, and the actual target x [37], and can be calculated
the following way:

MSE(y, t) = 1
N

N∑
i=1

(yi − ti)2. (4.1)

34

4.1 Feedforward Neural Network

The mean squared error is subsequently passed backwards through the network via back-
propagation, as described in Section 2.4.3, and the nodes’ weights are updated accordingly.

The MSE has several features desirable for optimization and statistics [37]. First of all, it
is very simple. It is inexpensive to compute, and it is also memoryless - meaning that theMSE
can be evaluated at each sample, independent of other samples. Lastly, the MSE currently is,
and has historically been, widely used. This saves time and e�ort when implementing, but it
is also reassuring knowing that its e�ectiveness already has been established.

4.1.2 Results and evaluation

Output Data

The model’s output data needs to be usable when deciding when to load an application. As
described in Section 1.1, the requested information should be output in the format in a list of
label points, dictating when certain applications should be loaded. This list is subsequently
used as input in the scheduling task provided by Qlik. This means that, roughly speaking,
the model is to predict a value for the next time-step. This value should express whether or
not the application will be used in the next time-step, in either a binary or numerical format.

When deciding whether or not to load an application, the most important factor to pre-
dict is whether or not a user will open the application soon. Since the app is stored inmemory
for eight hours after a session ends, it is of no interest to predict the degree of usage. More
often than not, only the first user that opens an app will be the one who benefits from the
precache.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

Figure 4.1: A plot of a sigmoid function. As can be seen, the func-
tion assumes all values between 0 and 1. This is a commonly used
activation function when it comes to binary classification problems.

35

4. Implementation

Evaluation on a single app
Di�erent combinations of features were tested in order to identify which setup yielded the
highest prediction accuracy. The results were evaluated using MCC, as described in Section
2.5.2, and a comparison between the di�erent setups can be viewed in Figure 4.1. The high-
est performing combination of features, according to this comparison, is when using every
feature except for the cyclic values.

Table 4.1: The di�erent MCC-scores for the FFN when using di�er-
ent feature combinations. Except from when refraining using means
as a feature, all the di�erent setups performed reasonably well.

Features used MCC Score

All features 0.73
No lags 0.72
No cyclic features 0.76
No means 0.63
No past activities 0.67

Figure 4.2 shows the results from training a simple FNN using the highest performing
combination of features, and then simulating it. The data shown here is for two weeks. The
yellow line shows the binary input data and displays when a user starts and ends a session; a 1
is an ongoing session and 0means no session is ongoing. The blue line shows the accumulated
probability of a user opening an app sometime during the upcoming hours, as explained
in section 3.5.1. The vertical dotted lines represents precaching attempts; a green dotted
line means it was successful in precaching, and a red dotted line means a failure. The green
background is used to display when an app is stored in memory; a white background means
it is currently not stored in memory.

This graph displays just two weeks of the validation data in order to make it easier to
study, but there are still some conclusions that can be be drawn. First and foremost, the
missed precache was on a Sunday. This is not exactly surprising, seeing how there usually are
no openings during weekends, and the overall probability (based on previous lags) therefore
is quite low. As discussed in section 2.5.1, the worst case scenario is when the model would
try to open an app without a user ever using it. That is why it is preferred to actually miss
the weekend openings, instead of having it preloading apps on weekends. Overall, the model
does seem to what it is supposed to.

In order to get amore graphical overview of themodel’s performance, the results were also
visualized in a confusion matrix, which can be seen in Figure 4.3. What can be determined
from this is the fact that the model did not try to unnecessarily precache an app a single time.
This yields an MCC-score of 0.76 which is a good score. What has to be noted is the fact that
the app being evaluated here is one of those that had a particularly high usage, which means
that it might allow for a higher MCC-score than it would generally score.

Generalised evaluation
In order to get a general understanding of how well the trained model adapts to new apps, it
was evaluated against the eleven most used apps in the Qlik Sense instance used for this mas-

36

4.1 Feedforward Neural Network

Figure 4.2: A visualization of the simulation of an FNN. This is just
an excerpt of twoweeks from the entire validation. The green dotted
lines represent successful precaches.

35 12

0 47

Predicted True Predicted Negative

Tr
ue

N
eg
.

Tr
ue

Po
s.

Figure 4.3: The confusion matrix for the simulation of the FNN.
In the bottom left and bottom right quadrants are the number of
correct predictions. In the top right and bottom left are the failed
predictions.

37

4. Implementation

A
pp

nr
. 1

A
pp

nr
. 2

A
pp

nr
. 3

A
pp

nr
. 4

A
pp

nr
. 5

A
pp

nr
. 6

A
pp

nr
. 7

A
pp

nr
. 8

A
pp

nr
. 9

A
pp

nr
. 1
0

A
pp

nr
. 1
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
M
C
C
-s
co
re

Figure 4.4: All the individual MCC-scores for the di�erent apps.
The y-axis represents the MCC-score. The x-axis represents which
app is being evaluated.

ter thesis. The complete and more detailed evaluation results can be found in Table 4.2. The
individual MCC-score for each and every one of the di�erent apps are visualized in Figure
4.4. What can easily be observed is the fact that the last four apps yielded an underwhelming
0 in MCC-score. Whenever the two diagonals in a confusion matrix are symmetrical, i.e the
product of the values in each respective diagonal are equal, the nominator (and consequently
the result) in the MCC-equation becomes 0. This happens, for example, when both the TP
and TN (Success and Fail in Table 4.2) are 0, and is explained more thoroughly in Section
2.5.2. When looking at the evaluation results in Table 4.2, it can be seen that the FNN almost
never tries to preload the last four apps. This is due to the very scarce usage pattern of these
apps. The consequence of this is that the model’s accumulated probability of a user soon
opening an app almost never goes above the limit threshold to precache an app at a given
timestamp; there simply is not enough data to base the assumption on. This is further de-
scribed in Section 3.5. This also results in the nominator in theMCC-equation, and therefore
also the MCC-score, being 0 for these four apps.

The accumulated confusion matrix, which can be seen in Figure 4.5, does however show
some more positive figures. The square in the bottom left is the worst case, i.e the result to
minimize. As can be seen, it is indeed very low, which is a very promising result. However,
the number of missed precaches, i.e where the model tries to precache an app after it had
already been opened, is almost as large as the successful precaches. A vast majority of these,
however, come from the apps with below 0.4 inMCC-score; 88 out of 117 failed precaches are
from these seven apps. This can most likely be accredited to the fact that the limit threshold

38

4.2 Temporal Convolutional Network

Table 4.2: The evaluation results for FNN. The di�erent columns
are the outcome from the evaluation algorithm used, and is further
described in Section 3.5.2.

MCC Success Fail Unnecessary No activity Time in cache (hours)
App nr. 1 0.79 44 13 0 57 1.07
App nr. 2 0.73 32 6 6 47 1.03
App nr. 3 0.36 13 19 4 37 2.0
App nr. 4 0.26 6 32 1 52 3.25
App nr. 5 0.49 21 13 8 47 1.82
App nr. 6 0.32 7 21 1 31 1.25
App nr. 7 0.0 0 7 0 45 N/A
App nr. 8 0.0 0 0 0 129 N/A
App nr. 9 0.0 0 8 0 9 N/A
App nr. 10 0.0 0 0 0 13 N/A
App nr. 11 0.0 0 1 0 94 N/A

to precache an app is deliberately set a bit high. This is done in order to assume a more
pessimistic approach to precaching and consequently minimize the number of unnecessary
precaches. If the model was to be re-simulated with a lower threshold, the number of failed
precaches would be lowered, while both the number of successful and unnecessary precaches
would increase due to the more optimistic approach to precaching.

This pessimistic approach can also be viewed in how long the apps are loaded in the cache
before a user opens the app. Since the data used to train the models was sampled to hours,
the shortest amount of time an app can spend in cache is one hour. One hour in cache means
that the app was precached the timestamp before a user opened the app, due to how the
simulation is coded. Looking at Table 4.2, it can be noted that the time spent in cache is
overall very low; most often closer to one hour.

The approach taken when training the FNN therefore results in the model trying to pre-
cache an app as close to a real opening as possible. This has the deliberate consequence that
there exists an overrepresentation of failed precaches due to the pre-established model re-
quirements, where it is preferable to miss precaches in order to minimize the number of
unnecessary precaches.

4.2 Temporal Convolutional Network
In comparison to FNN, the TCN is relatively new and therefore lack any o�cial implemen-
tation in the most popular machine learning libraries such as Tensorflow, Keras and PyTorch.
Therefore, it was decided to use a third-party implementation by Philippe Rémy that is im-
plemented using Keras [30]. The main practical di�erence when using a TCN instead of an
FNN is that the data input and outputs are sequences of data. Whereas an FNN might have
an input of a single hour’s features, a TCN can have an input of a sequence of several hours,
each with their own features.

39

4. Implementation

126 117

23 556

Predicted True Predicted Negative

Tr
ue

N
eg
.

Tr
ue

Po
s.

Figure 4.5: The accumulated confusion matrix for all evaluations
when using an FNN. This is basically every result from Table 4.2
summed together in a confusion matrix in order to produce a result
more easy to understand.

4.2.1 Implementation
Data
Whereas the FNN had features describing a single time point, a TCN can handle a sequence
of time points, each with their own features. The number of inputs to the TCN is therefore
the number of features per time point multiplied with the sequence length. Thus, some
features (such as lagged values) used in the FNN might not be as useful in a TCN since this
information is captured in the sequence instead.

Similarly to the TCN’s input, the output is also a sequence. However, this output can
also be a sequence of length one, meaning that the network can be used to predict only a
single value. For this problem domain, there are two possible approaches in terms of output
data. The first approach is to train a network that can predict usage for several coming hours.
The second approach is to predict only one hour ahead by having a single output value. This
model can then be used to predict several hours ahead by iteratively use the model’s output
to create a new input.

Hyperparameter Tuning
The hyperparameters of the TCN model was tuned using the method described in Section
2.4.2. Compared to the FNNmodel, the TCNmodel had a higher amount of hyperparameters
to tune and generally took longer to train. This resulted in the hyperparameter tuning step
taking considerably longer time for this model. The parameters subject to automatic tuning
are listed below along with the search space.

• Loss function (Binary crossentropy, mean squared error)

• Activation function (Softmax, tanh, sigmoid)

40

4.2 Temporal Convolutional Network

• Number of filters (4 - 32)

• Size of kernel (1 - 16)

• Number of dilations (5 - 16)

• Number of stacks (1 - 3)

• Dropout rate (0.0 - 0.3)

• Sequence length (48, 168)

Both the loss and activation function chosen by the hyperparameter optimizer were the
same as for the FNN, i.e. the mean squared error (MSE) as a loss function, and the sigmoid
function as an activation function. Both of these functions are, as previously stated, some
of the most common functions within their respective areas. That they are flexible enough
to be applicable for two di�erent models but for the same problem scope is therefore not
especially surprising.

4.2.2 Results and evaluation
Evaluation on a single app
Just as with the FNN, di�erent combinations of features were evaluated in order to identify
which setup yielded the best result. The results from this comparison can be viewed in Table
4.3. Once again, just as with the FNN, is the best performing combination of features when
using every feature except for the cyclic values.

Table 4.3: The di�erentMCC-scores for the TCNwhen using di�er-
ent feature combinations. The results have some obvious highs, and
some obvious lows, where using every feature except for the cyclic
features are the best performing feature combination.

Features used MCC Score

All features 0.73
No lags 0.58
No cyclic features 0.75
No means 0.69
No past activities 0.70

The results were also visualized in a confusion matrix, as can be seen in Figure 4.6. The
model successfully manages to precache a majority of app openings, while at the same time
not preloading an app unnecessarily one single time. This results in an MCC-score of 0.75,
which indicates that the classifier is performing well.

41

4. Implementation

16 9

0 30

Predicted True Predicted Negative

Tr
ue

N
eg
.

Tr
ue

Po
s.

Figure 4.6: The confusion matrix for the simulation of the TCN.
In the bottom left and bottom right quadrants are the number of
correct predictions. In the top right and bottom left are the failed
predictions.

Generalised evaluation
The MCC-scores, when looking at the performance for the di�erent apps in Figure 4.7, are
overall looking to be either very high or very low. The evaluation for the last four apps once
again yield a 0 in MCC-score. This can most likely be accredited to an overall low usage for
these specific apps.

The results are described in more detail in Table 4.4, and are summarized in a confusion
matrix, Figure 4.8. What can be viewed here is that the number of unnecessary precaches,
which is supposed to beminimized, almost equals the number of failed precaches in numbers.
While this is alarming by itself, almost half of all the unnecessary precaches, 48%, comes from
the apps that scored an MCC-score below 0.2.

Studying the detailed evaluation results closer, it can noted that with two exceptions
(the apps scoring below 0.2 in MCC-score), the TCN did actually yield a higher amount of
unnecessary precaches than failed precaches. This might be due to the limit threshold when
simulating being set too low.

As a final note it is worth mentioning that the time in cache is very low. As previously
stated, the shortest amount of time an app can spend in cache is one hour. Seeing therefore
how every app, including those below 0.2 in MCC-score, are stored in cache below two hours
is impressive.

4.3 Static Rules
The static rules are app openings manually scheduled by an administrator, as described in
Section 1.1. These rules would most likely be di�erent for each of the apps in a Qlik Sense in-
stance due to di�erent usage patterns. This is assuming the static rules are at all implemented,
since scheduling app openings is an optional setting which not everyone uses. Considering
how much time and e�ort one could devote to optimizing the manually scheduled preloads,

42

4.3 Static Rules

A
pp

nr
. 1

A
pp

nr
. 2

A
pp

nr
. 3

A
pp

nr
. 4

A
pp

nr
. 5

A
pp

nr
. 6

A
pp

nr
. 7

A
pp

nr
. 8

A
pp

nr
. 9

A
pp

nr
. 1
0

A
pp

nr
. 1
1

0

0.2

0.4

0.6

0.8

M
C
C
-s
co
re

Figure 4.7: The MCC for all apps when using the TCN. The y-axis
represents the MCC-score. The x-axis represents which app is being
evaluated.

Table 4.4: The evaluation results for the TCN. The di�erent
columns are the outcome from the evaluation algorithm used, and is
further described in Section 3.5.2.

MCC Success Fail Unnecessary No activity Time in cache (hours)
App nr. 1 0.70 16 9 0 30 1.81
App nr. 2 0.68 12 0 8 27 1.58
App nr. 3 0.16 6 7 11 27 1.17
App nr. 4 0.19 5 13 4 27 1.60
App nr. 5 0.82 11 0 3 19 1.00
App nr. 6 0.74 14 1 5 26 1.14
App nr. 7 0.00 0 2 0 16 N/A
App nr. 8 0.00 0 0 0 1 N/A
App nr. 9 0.00 0 0 0 1 N/A
App nr. 10 0.00 0 0 0 1 N/A
App nr. 112 0.00 0 0 0 1 N/A

43

4. Implementation

it is impossible to say what degree of accuracy to aim for when simulating these static rules.
The purpose of this implementation, which is one of the most simplistic approaches pos-

sible, is to compare it to the other two machine learning models. This is done to get a more
thorough understanding of how well the two machine learning models are performing when
put into perspective. The assumption made when simulating the static rules is therefore that
every app is scheduled to open the same time of the day, every workday of the week. While
this might not be an entirely truthful representation of how the rules are actually decided
upon in a production environment, it was the most reasonable assumption to make with
regards for the time constraints of the master thesis.

4.3.1 Implementation
In order to produce usable results for themaster thesis, a generator for static rules was created.
This program had three input parameters: the data for the app currently being evaluated,
the timestamp for when openings were to be scheduled, and the length of the validation data
chunk. The same app data was used for preliminary evaluation for the both machine learning
models, and also this static rules simulation. This meant that even though the output from
this generator was nothing but a list of timestamps for when the app were to be scheduled,
it had to be of the same length as the validation data used for the other two models in order
to be comparable.

The output data was subsequently evaluated through the evaluation script, as described in
Section 3.5, and thereafter visualized. Since there was no parameter optimization or feature
engineering of any sort, it was very fast to try and evaluate di�erent timestamps for the app
openings. This trial and error-approach was also automated in order to more easily be able to
adapt the rules to new apps. What is being presented in the following subsection is therefore
the timestamp which yielded the best MCC-score.

64 32

31 174

Predicted True Predicted Negative

Tr
ue

N
eg
.

Tr
ue

Po
s.

Figure 4.8: The accumulated confusion matrix when using TCN as
a model. This is basically every result from Table 4.4 summed to-
gether in a confusion matrix in order to produce a result more easy
to understand.

44

4.3 Static Rules

4.3.2 Results and evaluation
Evaluation on a single app
The best result gained was when the app openings were scheduled to be executed at five
o’clock in the morning. This seemed to be a optimal spot for when it caught most of the
early openings, but at the same time also caught most of the late morning openings. Figure
4.9 visualizes a two week span for when the scheduled openings were evaluated. As can be
seen, the opening on a Sunday is missed. This is to be expected, since the scheduling is only
for workdays, i.e Monday up to and including Friday. As opposed to the other simulation
visualizations, this graph only shows the binary usage pattern together with app openings.
This is because of the scheduling not actually having an accumulated probability; it simply
opens the app the same time every day regardless of the circumstances.

Figure 4.9: The visualization of the simulation for the static rules.
Once again, this is merely an excerpt of two weeks from the entire
validation data set. The precaches are hard coded as timestamps
when programmed as static rules, this is the reason why there is no
blue line visualizing the model’s predicted probability of there being
an opening.

All in all, the static rules did perform better than expected. Looking at the confusion
matrix in Figure 4.10, it managed to successfully preload an app 26 times, while missing 19
openings. Even though the app was opened twice without a user ever accessing it, it is not

45

4. Implementation

unreasonable to assume that this would have happened during days with low usage frequency.
An openingwouldmost likely be scheduled only during dayswith knownhigh usage, meaning
it is not guaranteed these kinds of misses would occur in a production environment. What
this results in is anMCC-score of 0.61, which is still quite high in the positive result spectrum.
However, it has to be noted that the average time in cache before the first opening was 2.97
hours, which is quite high.

26 19

2 46

Predicted True Predicted Negative

Tr
ue

N
eg
.

Tr
ue

Po
s.

Figure 4.10: The confusion matrix for static rules for a given app.
In the bottom left and bottom right quadrants are the number of
correct predictions. In the top right and bottom left are the failed
predictions.

Generalised evaluation
The MCC-scores for the static rules seem to be quite scattered while also ignoring the usage
amount, when studying the graph in Figure 4.11. What may be most surprising is how high
the static rules actually manages to score on some of the apps, with a maximum MCC-score
of 0.85 when applied to App number 5. This is mostly like due to a quite constant and
predictable usage pattern, where the app is opened at approximately the same time every
day.

Looking at the accumulated confusion matrix in Figure 4.12, it can be noted that it is
pretty much the opposite of the generalised results from FNN. The static results actually
have fewer failed precaches, but at the cost of more unnecessary precaches. This is not a
particularly wanted behaviour since the unnecessary precaches are what is meant to be min-
imized.

The Table 4.5 gives some more detailed information about the evaluation results. What
can be noted here is that almost all apps have the result from the evaluation spread out in all
four columns; this results in a non-zero nominator in the MCC-equation (Equation 2.3) and
consequently in the MCC-score not being 0. A non-zero MCC-score in this context does not
mean that static rules is necessarily a better approach, it just means static rules generates a
larger amount of precaches.

These quite scatteredMCC-results further proves that in order to utilize these static rules
in an e�cient manner, rigid manual usage pattern analysis has to be conducted in order to

46

4.3 Static Rules

A
pp

nr
. 1

A
pp

nr
. 2

A
pp

nr
. 3

A
pp

nr
. 4

A
pp

nr
. 5

A
pp

nr
. 6

A
pp

nr
. 7

A
pp

nr
. 8

A
pp

nr
. 9

A
pp

nr
. 1
0

A
pp

nr
. 1
1

0

0.2

0.4

0.6

0.8
M
C
C
-s
co
re

Figure 4.11: The MCC when implementing static rules for the dif-
ferent apps. The y-axis represents the MCC-score. The x-axis rep-
resents which app is being evaluated.

identify the best time to preload an app every weekday. This can most likely be linked to the
fact that few of the apps exhibit a constant similar behaviour every weekday, which can be
seen in the large amount of unnecessary precaches.

47

4. Implementation

172 72

189 460

Predicted True Predicted Negative

Tr
ue

N
eg
.

Tr
ue

Po
s.

Figure 4.12: The accumulated confusionmatrix for all apps when us-
ing static rules. This is basically every result from Table 4.5 summed
together in a confusionmatrix in order to produce a result more easy
to understand.

Table 4.5: The evaluation results for static rules. The di�erent
columns are the outcome from the evaluation algorithm used, and is
further described in Section 3.5.2.

MCC Success Fail Unnecessary No activity Time in cache (hours)
App nr. 1 0.61 36 22 3 60 2.97
App nr. 2 0.69 34 4 12 52 2.79
App nr. 3 0.29 19 13 23 58 5.26
App nr. 4 0.42 24 14 14 52 4.71
App nr. 5 0.85 32 2 4 44 2.97
App nr. 6 0.27 17 11 24 54 4.47
App nr. 7 0.069 4 3 41 53 6.0
App nr. 8 0.0 0 0 31 33 N/A
App nr. 9 0.34 5 3 5 14 3.2
App nr. 10 0.0 0 0 1 2 N/A
App nr. 11 0.13 1 0 31 38 6.0

48

Chapter 5

Results

This chapter aims to go through the results gained in the previous chapter. Firstly, a sum-
mary of the results for each model will be presented, followed by a short discussion. These
summaries will thereafter be compared to each other in the following section. Based on this
comparison, a couple of di�erent conclusions can be drawn.

5.1 Evaluation
This section presents a summary of the results gained from each respective model, and from
the static rules. A brief discussion follows the results, where potential causes for the results
are contemplated. It is also discussed whether or not the model actually performed well,
when compared to the model requirement stated earlier in the thesis.

5.1.1 FNN
The overall result of the evaluation for FNN is that the FNN is a rather lightweight neural
network that is easy and fast to train (the FNN only took 47.4 ± 11.1 seconds to train), while
still yielding a quite high prediction accuracy. The full results for the training times can be
viewed in Table 1 in the appendix. It rarely precaches an app unnecessarily, but rather prefers
to either wait and do nothing, or tries to precache the app too late. However, it does not fare
well when an app exhibits a low usage or a more complex usage pattern. As can be seen in
Table 4.2, it does miss a lot of app openings while the amount of usage is still quite high
(specifically app number 3, 4, and 6).

Regardless, considering how fast and painless it is to optimize and train this model it is
still a very well performing network. The apps that do become precached are done so quite
close to the actual app opening, which is a wanted behaviour.

49

5. Results

5.1.2 TCN
TCN took a long time to optimize and train (the TCN took 229.8 ± 36.2 seconds to train),
and it was quite taxing on the hardware while training. The full results for the training times
can be viewed in Table 2 in the appendix. This is simply a sophisticated and quite heavy
network, which might be built for more complex problems than the one at hand. This is
especially true when considering the relatively short time span the data stretches over; the
complexity and robustness of the model might be better suited for longer time series.

When studying the detailed evaluation results in Table 4.4 it can be noted that TCN’s
results did seem to a bit of hit-or-miss, regardless of usage amount. However when it did
perform well, it did so exceptionally. This might be because of TCN being more sensitive to
hyperparameter optimization than FNN, or maybe it is harder to create a generalized model
based on this network.

5.1.3 Static rules
The static rules evaluated in this master thesis did perform better than expected, while still
not performing especially well. Looking at Table 4.5 it can be noted that the relatively high
MCC-scores can be accredited to the fact that the static rules simply precaches very often.
This, combined with a bit of luck, results in good results.

The results are the worst when the actual app usage is low, since it keeps precaching apps
even though no one is using them, and the best when app usage is high. This comes as no
surprise, but it should be reiterated that these manual rules in a production environment
are preceded by a (hopefully) rigid usage pattern analysis. This makes the rules used in this
master thesis look a bit extra static.

5.2 Comparison
All in all, the three approaches each have their own advantages and weaknesses. FNN, to
begin with, does excel compared to the other two approaches when used together with an
app that exhibits a medium to high usage frequency, a quite clear usage pattern, and when it is
not required to have an extraordinarily high prediction accuracy. This is due to the fact that
the FNN, the way implemented in this master thesis, prefers to deliberately fail precaches
in order to minimize the number or unnecessary precaches. Coupled with the fact that the
FNN is faster to train and overall more lightweight compared to the TCN gives the FNN the
clear advantage when optimizing memory usage and computing capacity is a priority rather
than pure precaching accuracy.

The TCN, on the other hand, has a better prediction accuracy, but at the cost of more
unnecessary precaches. It is also harder and more computationally expensive to optimize
and train. TCN therefore exceeds when an app exists that exhibit a medium to high usage
frequency, and achieving a high prediction accuracy is what is sought after.

The static rules is a fully viable option compared to the other two models. A manual rule
set overshadows both of the machine learning models when it comes to an app with a very
low usage frequency with a given pattern, but it is of utmost importance to precache the few
openings that exists. For example, if an app is only opened the first Monday every month, it

50

5.2 Comparison

would take the two machine learning models at least over a year’s worth of data to recognize
this pattern. A manual rule set, however, could be put in place while still achieving a good
score. Outside of this usage scenario, i.e. when the app exhibits a natural usage pattern, the
static rules are very hard to tune in order to match the prediction accuracy of the machine
learning models. That is not to say it is impossible though; if the manual usage pattern
analysis is thorough enough it may very well be feasible to match or even perform better
than the machine learning models. The question that arises at that point is if it is worth
dedicating all that time to manually create a tailored rule set when using machine learning
is an option.

51

5. Results

52

Chapter 6

Discussion

The discussion in this chapter is divided into three parts. First is a brief overall discussion
regarding things that might have a�ected the results. Areas discussed are the implementation
process, the generalization of themodels and the feature extraction. Secondly, the limitations
are discussed. This is things that might have a�ected or influenced the interpretation of the
outcome. Lastly, the internal and external validity of the study is discussed.

6.1 Results discussion
The implementation process for the TCNand FNNwere very similar in numerous aspects, es-
pecially in the steps taken to produce a model. A major distinction, however, is that FNN is a
well establishedmodel while TCN is comparatively new. Consequently, FNN is more accessi-
ble due to the higher number of o�cial platform implementations, publications, community
support, and documentation. As mentioned previously, the TCN used was implemented by
an individual and it may therefore lack the same level of quality compared to a hypothetical
o�cial Keras TCN. Due to limited time, a rigorous analysis and evaluation of the TCN im-
plementation was not done so there might exist flaws in the TCN used. Furthermore, future
implementations of a TCN may provide better results in this application.

Another important point to take into consideration is the features used as they can evi-
dently impact the performance of the model greatly. A few features were implemented and
tested but there are many that could have been used. Some features may even negatively
impact the results, such as the cyclic features. While it is entirely possible to spend more
time attempting to create new features, this would require many iterations of optimizing the
new models and testing them. Similarly to the hyperparameter optimization and the ma-
chine learning field in general, it is possible to improve performance by utilizing more time
and resources. However, due to diminishing returns it may no longer be feasible to continue
improvement.

The di�erent models’ inability to generalize well to other applications suggests that some

53

6. Discussion

optimization needs to be performed for each application. In this case, an FNN is ideal due
to its ability to produce su�cient results with limited time and resources. The poor general-
ization may be a result of certain applications having a higher degree of randomness, or the
features used may not su�ciently capture the user trends.

6.2 Limitations
The work in this thesis is based on analyzing and testing data fromQlik’s Research and devel-
opment (R&D) department’s production environment. The data is extracted from log files,
and stretches over a time span from October up to and including April. While examining
these log files, it was discovered that a vast majority of the data was unusable; the raw data
consisted of a large amount of di�erent apps, with very few initiated sessions each. Thus, just
over 99% of the apps had to be removed when parsing the raw data in order to only retain the
apps with a su�cient amount of session starts. It was not a copious amount of data left after
this purge, and the apps left with the least amount of sessions were borderline cases regarding
if the machine learning models could actually learn from the very sparse usage pattern.

When working with time series, the underlying data relationships working as basis for
decision making may very well change drastically over time. This phenomenon is known
as concept drift [35], and is a well known problem within the machine learning field. This
is something that happened with the app used as benchmark testing in the results sections;
the underlying functionality of the app, and consequently the usage pattern, was changed
over night, thus invalidating the previous data analysis done on this specific app. As a con-
sequence, it was decided upon stopping the extraction of the logs and instead settle for the
data accumulated up to that point. This resulted in the loss of about a month’s worth of logs.
However, in order to not let the predictive accuracy deteriorate over time, concept drift is
something that always has to be worked around in a real production environment.

Another limitation in this application of machine learning is that the MCC-score does
not su�ciently encapsulate the business requirements in the sense that it does not take into
consider the trade-o�s between caching costs, time saved, and similar factors. An important
limitation to using the MCC-score is that it does not provide any insight into the trade-o�
between unnecessary openings and failing to precache. This means that comparing mod-
els using only the MCC-score does not accurately compare the di�erent models’ ability to
precache according to the business requirements.

Furthermore, the data is to some degree random which means that it is impossible to
accurately predict the usage. This may in some cases result in some models being tuned
to maximize the MCC-score according to the random data and the model therefore not per-
forming optimally if it would be used to predict a data set with a lower degree of randomness.
This limitation is not caused by the choice of using the MCC-score, but rather the fact that
the data has a degree of chaotic randomness that makes it di�cult to separate usages that are
predictable from those that are unpredictable.

A very important factor when optimizing machine learning models is the amount of pro-
cessing power available. Since training neural networks is quite computationally expensive,
and there exist many possible combinations of hyperparameters, the results can oftentimes
be limited by the available processing power. This was especially true for the TCN on ac-
count of the relatively long training times and large number of hyperparameters. Due to the

54

6.3 Internal and external validity

limited time and hardware, the hyperparameters chosen might not be optimal even though
it was the best combination available in the search space.

6.3 Internal and external validity
Internal and external validity are two standards of rigor when it comes to research [4]. The
internal validity is the question whether or not the observed results are actually caused by the
conducted experiments rather than an external influence (or just plain randomness). This
is a very important part of scientific studies since internal validity depends largely on the
procedures and how well the study is performed. However, while rigorous research methods
can ensure internal validity, external validity, on the other hand, may be limited by these
methods. External validity is namely the degree to which results of the experiment would
generalize to contexts other than those of the experimental conditions. So while internal
validity relates to how well a study is conducted (its structure), external validity relates to
how applicable the findings are to the real world.

The approach with using cross validation within this master thesis ensures a certain level
of internal validity. The results were evaluated using MCC after every training iteration,
and it could subsequently be observed that the model became more accurate through train-
ing. Besides this, the hyperparameters were optimized in order to identify the combination
which generated the highest prediction accuracy. This means that di�erent parameter se-
tups generated di�erent results. When comparing to the static rules in place, it could also
be observed that the machine learning models generally produced a higher accuracy. Lastly,
di�erent combinations of features were evaluated, and it was also observed here that di�er-
ent combinations yielded di�erent results. From this the conclusion can be drawn that the
models actually improved their prediction accuracy from the feature extraction, training, and
hyperparameter optimization. This, in turn, shows that the results from the evaluations are
not random, but are indeed influenced by the model setup and chosen features.

The purpose of the models trained in this master thesis is that they are supposed to be
used as a precaching feature, or extension, for a given instance of Qlik Sense. This means that
the models have to be generalisable, i.e exhibit a high external validity. The hyperparameter
optimization done in this master thesis is relatively generalised, which means the parameter
setup chosen in the end were those that performed rather well on several apps. In order
to examine this closer, an evaluation over all apps were conducted. This showed that the
models trained were able to adapt to di�erent apps while still performing rather well. In
order to achieve the highest possible result, however, it would be preferable to optimize the
hyperparameters for each individual app.

Regardless, the approach taken during this master thesis, both during implementation
and evaluation, is also applicable to software environments outside that of Qlik. This is
provided that the input data consists of log files. The evaluation conducted, however, is a
general approach for binary classification problems within supervised machine learning.

55

6. Discussion

56

Chapter 7

Conclusion

It has been shown in this master thesis that it is indeed possible to create a machine learning
model that can predict user behaviour in order to prefetch cloud applications. This has been
done through implementing two di�erent networks: a feedforward recurrent network (FNN)
and a temporal convolutional network (TCN). These two networks have subsequently been
compared to each other. The results from the evaluation can bee seen in Sections 4.1.2 and
4.2.2, together with Tables 4.2 and 4.4 in the appendix. This shows that the the two networks’
prediction accuracy is good, albeit not optimal. This mostly applies to apps with a rather high
amount of usage; both of the networks struggle to predict accurately when they had little data
to train on.

However, what degree of prediction accuracy to aim for depends on how important the
precaches actually are. Generally speaking, according to the results in this master thesis, a
higher prediction accuracy comes with a higher memory and computational cost. If a high
prediction accurcacy is preferable regardless of memory constraints, then a TCN would be
the network that performs the best. If a more lightweight approach is sought after, then an
FNN would be the best approach. The comparison also shows that the machine learning
models overall outperformed the static rules when they actually had enough data to train on,
but that static rules are preferable when dealing with a very low usage frequency with a given
pattern.

To increase the accuracy of the models, an automatic optimization algorithm has been
utilized in order to identify which setup of hyperparameters yields the best result for the two
respective models. Di�erent combinations of features were also tested to in order to find the
highest performing feature combination. In Tables 4.1 and 4.3 the di�erent tested feature
combinations and the corresponding MCC-score can be viewed.

None of the approaches seem to be completely generalisable when considered the ap-
proach taken in this master thesis. It would therefore be recommended to use a model as
feature toggle where the model is optimized and tailored for a specific app. Both regarding
hyperparameters and feature combination.

There is still major work to implement this is in production at Qlik. There will most

57

7. Conclusion

likely be technical challenges in the integration, andmodel improvements would be necessary.
However, we are hopeful that our work will be of use reduce computation costs in cloud
infrastructure.

Future work
In this master thesis only two types of neural networks have been implemented: FNN and
TCN. Asmentioned in Section 2.3.2, it is actually the recurrent neural network (RNN) which
has been used as the default approach for sequence modeling. It would be highly interesting
to see how an RNN would fare compared to the TCN and FNN in this regard.

A di�erent way of acquiring data might also be worth looking into. This master thesis
has scraped locally created log files in order to create a trainable dataset. Locally stored log
files have the unfortunate disadvantage of sometimes being deleted in order to create more
space, if memory is a critical constraint. Some kind of remote logging, where the information
is stored on Qlik’s end instead might therefore be of interest.

Increasing the size of the data set is another straightforward way to improve the result.
It has been a relatively small dataset used in this master thesis, especially when divided into
every individual app. To actually collect data for a longer period of time before trying to
train a machine learning model might yield better results.

58

References

[1] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of
generic convolutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271, 2018.

[2] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceed-
ings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[3] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[4] Robert O Briggs and Gerhard Schwabe. On expanding the scope of design science in is
research. In International conference on design science research in information systems, pages
92–106. Springer, 2011.

[5] Matias Callara and Patrice Wira. A probabilistic learning approach for predicting ap-
plication launches in cloud computing architectures. In 2019 IEEE/SICE International
Symposium on System Integration (SII), pages 584–589. IEEE, 2019.

[6] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learn-
ing (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks,
20(3):542–542, 2009.

[7] Davide Chicco. Ten quick tips for machine learning in computational biology. BioData
mining, 10(1):35, 2017.

[8] Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation coef-
ficient (mcc) over f1 score and accuracy in binary classification evaluation. BMC genomics,
21(1):6, 2020.

[9] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

59

REFERENCES

[10] Dan Claudiu Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and Jür-
gen Schmidhuber. Flexible, high performance convolutional neural networks for image
classification. In Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

[11] Emelie Engström, Margaret-Anne Storey, Per Runeson, Martin Höst, and Maria Teresa
Baldassarre. A review of software engineering research from a design science perspective.
arXiv preprint arXiv:1904.12742, 2019.

[12] Behdad Esfahbod. Preload — an adaptive prefetching daemon. 2006.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[14] Douglas M Hawkins. The problem of overfitting. Journal of chemical information and
computer sciences, 44(1):1–12, 2004.

[15] Tim Head, MechCoder, Gilles Louppe, Iaroslav Shcherbatyi, fcharras, Zé Vinícius, cm-
malone, Christopher Schröder, nel215, Nuno Campos, Todd Young, Stefano Cereda,
Thomas Fan, rene rex, Kejia (KJ) Shi, Justus Schwabedal, carlosdanielcsantos, Hvass-
Labs, Mikhail Pak, SoManyUsernamesTaken, Fred Callaway, Loïc Estève, Lilian Besson,
Mehdi Cherti, Karlson Pfannschmidt, Fabian Linzberger, Christophe Cauet, Anna Gut,
AndreasMueller, andAlexander Fabisch. scikit-optimize/scikit-optimize: v0.5.2, March
2018.

[16] Rob J Hyndman. Measuring forecast accuracy. Business forecasting: Practical problems and
solutions, pages 177–183, 2014.

[17] Juhani Iivari and JohnRVenable. Action research and design science research-seemingly
similar but decisively dissimilar. 2009.

[18] Nikolay Laptev, Jason Yosinski, Li Erran Li, and Slawek Smyl. Time-series extreme event
forecasting with neural networks at uber. In International Conference on Machine Learning,
volume 34, pages 1–5, 2017.

[19] Shih-wei Liao, Tzu-Han Hung, Donald Nguyen, Chinyen Chou, Chiaheng Tu, and
Hucheng Zhou. Machine learning-based prefetch optimization for data center applica-
tions. In Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, pages 1–10, 2009.

[20] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[21] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur.
Recurrent neural network based language model. In Eleventh annual conference of the
international speech communication association, 2010.

[22] Tom Michael Mitchell. The discipline of machine learning, volume 9. Carnegie Mellon
University, School of Computer Science, Machine Learning . . . , 2006.

[23] Douglas CMontgomery, Cheryl L Jennings, andMurat Kulahci. Introduction to time series
analysis and forecasting. John Wiley & Sons, 2015.

60

REFERENCES

[24] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks.
ArXiv e-prints, 11 2015.

[25] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David
Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling.
In Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

[26] Ken Pe�ers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. A design
science research methodology for information systems research. Journal of management
information systems, 24(3):45–77, 2007.

[27] Qlik Solutions. Pre-caching using the Qlik Sense Scalability Tools (.NET
SDK). https://community.qlik.com/t5/Qlik-Scalability/
Pre-caching-using-the-Qlik-Sense-Scalability-Tools-NET-SDK/
gpm-p/1477822, 2016. [Online: accessed 25- May- 2020].

[28] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[29] Mark Russinovich. Inside the windows vista kernel: Part 3. Microsoft TechNet Magazine,
2007.

[30] Philippe Rémy. Keras-tcn. https://github.com/philipperemy/keras-tcn/,
2018.

[31] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory based
recurrent neural network architectures for large vocabulary speech recognition. arXiv
preprint arXiv:1402.1128, 2014.

[32] P Sibi, S Allwyn Jones, and P Siddarth. Analysis of di�erent activation functions using
back propagation neural networks. Journal of Theoretical and Applied Information Technol-
ogy, 47(3):1264–1268, 2013.

[33] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in neural information processing systems, pages
2951–2959, 2012.

[34] Hokwon Song, Changwoo Min, Jeehong Kim, and Young Ik Eom. Usage pattern-based
prefetching: quick application launch on mobile devices. In International Conference on
Computational Science and Its Applications, pages 227–237. Springer, 2012.

[35] Alexey Tsymbal. The problem of concept drift: definitions and related work. Computer
Science Department, Trinity College Dublin, 106(2):58, 2004.

[36] Aäron van denOord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. CoRR, abs/1601.06759, 2016.

[37] Zhou Wang and Alan C Bovik. Mean squared error: Love it or leave it? a new look at
signal fidelity measures. IEEE signal processing magazine, 26(1):98–117, 2009.

61

https://community.qlik.com/t5/Qlik-Scalability/Pre-caching-using-the-Qlik-Sense-Scalability-Tools-NET-SDK/gpm-p/1477822
https://community.qlik.com/t5/Qlik-Scalability/Pre-caching-using-the-Qlik-Sense-Scalability-Tools-NET-SDK/gpm-p/1477822
https://community.qlik.com/t5/Qlik-Scalability/Pre-caching-using-the-Qlik-Sense-Scalability-Tools-NET-SDK/gpm-p/1477822
https://github.com/philipperemy/keras-tcn/

REFERENCES

[38] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Comparative study of
CNN and RNN for natural language processing. CoRR, abs/1702.01923, 2017.

[39] Lingxue Zhu and Nikolay Laptev. Deep and confident prediction for time series at uber.
In 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pages 103–110.
IEEE, 2017.

62

Appendices

63

Table 1: Training time for 25 FNNs.

Network Training Time (s)
FNN-0 59.70
FNN-1 56.16
FNN-2 43.72
FNN-3 31.50
FNN-4 40.96
FNN-5 40.78
FNN-6 37.91
FNN-7 45.68
FNN-8 27.93
FNN-9 66.67
FNN-10 37.76
FNN-11 35.60
FNN-12 42.14
FNN-13 49.31
FNN-14 50.06
FNN-15 56.94
FNN-16 33.64
FNN-17 40.69
FNN-18 71.45
FNN-19 62.22
FNN-20 47.97
FNN-21 42.54
FNN-22 46.84
FNN-23 56.08
FNN-24 60.98

Table 2: Training time for 25 TCNs.

Network Training Time (s)
TCN-0 205.78
TCN-1 205.50
TCN-2 209.29
TCN-3 210.67
TCN-4 192.26
TCN-5 162.44
TCN-6 210.34
TCN-7 179.12
TCN-8 223.55
TCN-9 225.59
TCN-10 203.52
TCN-11 198.07
TCN-12 193.12
TCN-13 238.68
TCN-14 249.54
TCN-15 253.31
TCN-16 249.40
TCN-17 264.71
TCN-18 218.86
TCN-19 269.79
TCN-20 282.67
TCN-21 234.37
TCN-22 298.57
TCN-23 257.24
TCN-24 308.71

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-11

EXAMENSARBETE Usage pattern recognition for efficient pre-caching
STUDENTER Otto Sörnäs, Erik Gralén
HANDLEDARE Rasmus Ros (LTH)
EXAMINATOR Emelie Engström (LTH)

Förhämtning av appar i molnmiljö

POPULÄRVETENSKAPLIG SAMMANFATTNING Otto Sörnäs, Erik Gralén

När en app använder sig av många komplicerade beräkningar kan den från en använ-
dares håll upplevas som långsam och trög. Skulle det därför vara möjligt att använda
sig av neurala nätverk, en typ av maskininlärning, för att förutspå när en användare
tänker öppna en app, och utföra beräkningarna i förväg?

Neurala nätverk, om man applicerar dem på
tidsserier, lär sig av historisk data för att gissa
sig till hur framtiden kommer att se ut. Inom
börshandel, till exempel, så motsvarar detta att
man låter ett neuralt nätverk kolla på hur en
aktiekurs förändrats under tidsperioden oktober-
april. Nätverket lär sig därefter vad det är för un-
derliggande samband i datan som påverkar aktien.
Denna kunskap kan nätverket sedan använda för
att förutspå hur aktien kommer att utvecklas i
mars månad, som den ännu inte har sett.
Denna typ av problem, som kallas för

tidsserieprediktion, kan appliceras på många olika
områden. I så gott som alla dagens datorer, till
exempel, nyttjas en teknik där man i förebyggande
syfte förbereder en app en stund innan en använ-
dare faktiskt försöker öppna den. Detta görs för
att minska den upplevda uppstartstiden. Denna
teknik är inbyggd i såväl Windows som Mac och
smartphones. Det som är beslutsgrundande för
när en specifik app ska öppnas är alltsom oftast
någon form av maskininlärning. Detta examen-
sarbete har tillämpat två olika neurala nätverk på
just detta problem; att identifiera och lära sig ett
användarmönster för att kunna öppna en app åt en
användare, innan användaren själv försöker öppna
appen. De två nätverken har därefter utvärderats,
och sedan jämförts mot varandra.

Alla typer av tidsserieprediktion börjar med ett
moment som kallas tidsserieanalys. Detta går i
det stora hela ut på att man manuellt studerar
datan och försöker hitta underliggande mönster
som kanske kan hjälpa det neurala nätverket att
bli bättre på att prediktera. Tidsbaserade trender
i datan är ofta något man försöker hitta. Typiskt
för användarmönster i exempelvis kontorsmiljö är
att det är högt tryck på måndagsmorgonen, lågt
tryck på fredagseftermiddagar, och ingen använd-
ning alls på helger.

Resultatet i det här examensarbetet visar att
de båda olika neurala nätverken är fullgoda alter-
nativ när det gäller att förutspå när en användare
kommer att öppna en app. Det ena nätverket hade
lite sämre exakthet när det gällde prediktering,
men den var mycket lättare att träna och tog upp
mindre utrymme i minnet. Nätverk nummer två
hade istället en högre exakthet, men tog mycket
längre tid att träna och tog upp mer plats.

	Introduction
	Problem Description
	Related Work

	Theory
	Machine Learning
	Time Series Forecasting
	Artificial Neural Networks
	Feedforward Neural Networks
	Temporal Convolutional Networks

	Model training
	Autocorrelation
	Hyperparameter tuning
	Loss functions
	Time Series Cross-Validation

	Evaluation
	Confusion Matrix
	Matthews correlation coefficient

	Approach
	Research Method
	Problem identification and motivation
	Model requirements
	Data Requirements

	Implementation Method
	Data collection and analysis
	Data Preparation
	Feature Engineering

	Evaluation and comparison
	Data simulation
	Model evaluation
	Comparison

	Implementation
	Feedforward Neural Network
	Implementation
	Results and evaluation

	Temporal Convolutional Network
	Implementation
	Results and evaluation

	Static Rules
	Implementation
	Results and evaluation

	Results
	Evaluation
	FNN
	TCN
	Static rules

	Comparison

	Discussion
	Results discussion
	Limitations
	Internal and external validity

	Conclusion
	References

