
MASTER’S THESIS 2020

Data-Driven Feature
Development
Oskar Widmark, Emil Ahlberg

ISSN 1650-2884
LU-CS-EX: 2020-27

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-27

Data-Driven Feature Development

Oskar Widmark, Emil Ahlberg

Data-Driven Feature Development

Oskar Widmark
tpi14owi@student.lu.se

Emil Ahlberg
har12eah@student.lu.se

June 22, 2020

Master’s thesis work carried out at Axis Communications AB.

Supervisors: Ulf Asklund, ulf.asklund@cs.lth.se
Markus Andersson, markus.andersson@axis.com

Examiner: Martin Höst, martin.host@cs.lth.se

mailto:tpi14owi@student.lu.se
mailto:har12eah@student.lu.se
mailto:ulf.asklund@cs.lth.se
mailto:markus.andersson@axis.com
mailto:martin.host@cs.lth.se

Abstract

Data-driven decision making in feature development is the continuous utiliza-
tion of data in the development process, intended to focus development re-
sources e�ciently. This thesis aims to do two things: to find evaluation criteria
that can be used to evaluate features of a mobile application, and to explore the
next step in a data-driven development strategy for an organization by conduct-
ing an A/B test as a proof-of-concept implementation.

A model intended to capture user value and satisfaction solely by processing
collected usage data is constructed using evaluation criteria which show di�erent
patterns in user behavior. To validate this model, user opinions are collected
through surveys. A relative ranking of application features is obtained from the
model, which corresponds to the ranking obtained from the survey data. Using
a larger evaluation data set is suggested to further validate the model.

The proof-of-concept A/B-test is implemented and deployed to live users.
Two implementations of a feature are compared to a control group using the
aforementioned evaluation criteria. When the results are interpreted, the orga-
nization procures additional knowledge of the application and its user base, as
the two implementations perform better than the control group. We conclude
that the A/B-testing framework is a good way of experimenting with new ideas
in a data-driven manner.

Keywords: data-driven decision-making, mobile software development, feature devel-
opment

2

Acknowledgements

We would like to thank AXIS Communications for providing the thesis opportunity. During
the thesis work the Mobile Applications department provided a great work environment
and was very accommodating towards us. The teams at Mobile Applications have been very
helpful and have provided support whenever needed.

Special thanks are extended to:

• Markus Andersson, our supervisor at Axis, who has provided great advice, much-
needed help, and organizational knowledge throughout the thesis work.

• Ulf Asklund, our supervisor at LTH, who through our meetings on a weekly basis has
been invaluable for maintaining a structure of the thesis as a whole and has always
provided helpful counsel when needed.

3

4

Contents

1 Introduction 9
1.1 Purpose and goal . 9
1.2 Research questions . 9
1.3 AXIS Communications . 10
1.4 Contributions . 10
1.5 Ethical considerations . 10

2 Theory 11
2.1 Software development processes . 11

2.1.1 Agile development . 11
2.1.2 Stairway to Heaven . 11
2.1.3 Data-Driven Decision-Making . 13

2.2 Customer orientation and feedback . 13
2.2.1 Di�erent types of overall feedback data 13
2.2.2 Post-deployment/user-interaction data 15

2.3 Creating evaluation criteria . 16
2.4 Testing hypotheses . 16
2.5 Online controlled experiments . 17
2.6 The ”quality in use” concept . 18
2.7 Online and in-product surveys . 18
2.8 Statistical modeling and tests . 19

3 Approach 21

4 Investigation Phase 23
4.1 AXIS Mobile Applications . 23

4.1.1 The client software . 23
4.1.2 Development processes . 24
4.1.3 Current information channels . 24
4.1.4 Current status of data utilization 24

5

CONTENTS

4.1.5 The mobile application business case 25
4.1.6 Comparison to theory . 25
4.1.7 What is missing? . 26

4.2 Tools . 26
4.2.1 Firebase . 27
4.2.2 BigQuery . 27
4.2.3 Data Studio . 28

4.3 Phase summary . 29

5 Development and Analysis Phase 31
5.1 Evaluation criteria . 31

5.1.1 Introduction . 31
5.1.2 Defining the evaluation criteria . 32
5.1.3 Baselines . 32
5.1.4 Platforms . 34
5.1.5 Practical Work . 34
5.1.6 Choosing the features . 35
5.1.7 Our hypothesis . 37

5.2 A/B Testing . 37
5.2.1 The idea . 37
5.2.2 A/B-testing framework . 38
5.2.3 The UX draft . 39
5.2.4 Test design and hypothesis . 41
5.2.5 iOS implementation . 42

6 Evaluation Phase 43
6.1 Evaluation criteria evaluation . 43

6.1.1 Online surveys . 43
6.1.2 Evaluating the results . 45
6.1.3 In-app survey . 47

6.2 A/B test evaluation . 48
6.2.1 Statistical tests . 49

7 Results 51
7.1 Evaluation criteria results . 51

7.1.1 Relevant online survey results . 51
7.1.2 Post-deployment data evaluation criteria 52
7.1.3 Ordering by majority vote . 52

7.2 A/B-test . 55
7.3 In-app survey segmentation . 57

8 Discussion 59
8.1 Evaluation criteria . 59

8.1.1 Detailed comparisons . 59
8.1.2 Assumptions and generalizations 60
8.1.3 Limitations and problems . 60

8.2 In-app survey . 61

6

CONTENTS

8.2.1 Limitations . 61
8.3 A/B-test . 61

8.3.1 Main result . 61
8.3.2 The case for A/B-tests . 62
8.3.3 Method discussion . 62

8.4 Further work . 63
8.4.1 Evaluation criteria . 63
8.4.2 A/B-test . 64

8.5 Revisiting the research questions . 65

9 Conclusion 67

References 69

Appendix A Online survey - Feature descriptions 75

Appendix B Online survey - Questions and answers 81

Appendix C Python script for Welch’s t-test and the χ2 test 97

7

CONTENTS

8

Chapter 1

Introduction

1.1 Purpose and goal
Software development is becoming more and more customer-oriented, where instead of plan-
ning giant projects upfront, companies want to decrease their time to market and ideally de-
liver timely improvements to their product end-users. In competitive market environments,
resources must be spent on what matters to the customer. One immediate consequence this
has to an organization is that new knowledge needs must be met; how does the end-user
think of, use, and perceive the product? The software industry is shifting towards shorter
development cycles, where agile strategies are employed in order to deliver value to the end-
user in an often continuous deployment manner. This provides an even greater incentive for
companies to collect and interpret customer feedback as quickly and accurately as possible.
Direct communication with the end-user is an obvious way of doing this and can be done
through either surveys or talking to lead customers, which should represent the user base
as a whole. This process can however be slow and/or inaccurate. Fortunately, the advent of
usage and performance data collection has led to a quantitative way of evaluating user experi-
ence. The incorporation of usage data into the decision-making process is called Data-Driven
Decision-Making and will be the focus of this thesis.

1.2 Research questions
The research questions of this master thesis were formulated during the first couple weeks
of the thesis work. Since the main interest from AXIS Mobile Applications’ perspective was
to investigate how they could evaluate their features post-deployment data, the scope was
set. They were then written as one general question about how post-deployment data can be
used in feature evaluations, one specific question about feature evaluation criteria, and one
development process-oriented question, since AXIS would want to use potential findings in

9

1. Introduction

practice. The research questions can be viewed below.
(RQ1): How can post-deployment data be used to evaluate the level of success of feature im-
plementations?
(RQ2): What types of evaluation criteria could be used to evaluate features released to the
end-users?
(RQ3): How can the evaluation of implemented features be used in current software devel-
opment processes?

1.3 AXIS Communications
The Swedish company AXIS Communications is a manufacturer of network-oriented se-
curity solutions, such as network cameras for surveillance, with various software solutions
targeting several di�erent types of users. The di�erent mobile application solutions of the
company enable the end-user to use features such as remote viewing surveillance cameras,
receive di�erent notifications, and remotely manage their physical access control by means
of door station calls routed to mobile clients. The Mobile Applications department main-
tains and develops the AXIS mobile applications, which is the department where the thesis
work will take place. This department develops and maintains several mobile applications
for di�erent systems, for both the iOS and Android platforms.

1.4 Contributions
Most practical work has been done in tandem, making use of pair programming and code
reviewing, and no parts of this can be fully attributed to one of us. In some phases, we
focused a bit more on di�erent parts. During the iOS development, E. Ahlberg acted as the
main programmer. The reverse can be said about the SQL coding parts, where O. Widmark
played a key role.

Report-wise, the theory and mapping phase was reworked by both of us multiple times.
In the methodological sections, as well as in the result and discussion, work was split into
Widmark focusing more on the evaluation criteria, while Ahlberg focused on the A/B-test.

1.5 Ethical considerations
This thesis handles data that originates from users of the applications we are investigating,
which can raise concerns about privacy. The usage data collected at AXIS Mobile Appli-
cations contain no personal identifiers and are in accordance with GDPR. Therefore, we
conclude that our usage of this data will not break privacy since no additional personal data
will be collected. This also applies to the in-app surveys, whose data is collected in the same
way as all other usage data. The same can be said about the results from the online surveys.
The responses are anonymous and cannot be traced back to the users who took them.

10

Chapter 2

Theory

2.1 Software development processes
2.1.1 Agile development
Agile development is a software development approach aiming to tackle the problems faced
in traditional software development. Traditionally, the software is developed in sequential
phases, where typically a phase must be finished before moving on to the next step. For ex-
ample, the requirements must be set in stone before beginning to design the product. This
model is known as the waterfall model and refers to how software was developed before agile
methodologies were a thing [28]. This approach leads to a rigid development process, where
real user feedback is delayed, possibly until the project is completed. While the product has
gone through rigorous planning and has well-defined requirements, uncertainty, changing re-
quirements or di�erent interpretations can be detrimental to e�ective software development
[28]. These problems are handled well by the Agile development model. The values defined
in the Agile Software Development Manifesto [5], which are in contrast to the structure of
the waterfall model, are the following:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

2.1.2 Stairway to Heaven
Holmström Olsson et al. [24] present an evolution path in software development strategies
which is followed in most companies, aptly named Stairway to Heaven, where ”heaven” is the
best implementation of Agile development. This is by no means a linear path; some parts

11

2. Theory

of the companies might be further ahead than others. The evolution path is defined by five
steps as seen in Figure 2.1, where the aforementioned traditional development is step A.

Figure 2.1: The ”Stairway to Heaven” [24].

Step B concerns the first implementation of Agile development, where a company adopts
agile practices in the development process. While improvements can be seen immediately,
such as more flexibility concerning requirements and development structure, communica-
tion with the customer takes a long time, i.e. the feedback loop is long since meetings with
customers need to be set up and software updates are sparse. Furthermore, product manage-
ment and system verification are not yet agile. Planned releases that violate agile principles
are still practiced.

Step C is the next step in the evolution: Continuous integration. Here, automated build-
ing and testing of continuous additions of the developers leads to a flexible development
process, where ideas can easily be implemented and evaluated. If continuous integration is
not applied, the work of di�erent developers might diverge, which will lead to great di�cul-
ties trying to merge all the changes [11], draining time, and resources.

Step D is called ”Continuous deployment”, where the increased frequency in deployment
leads to more frequent customer feedback on the current implementation. Being able to
deploy updates at any time brings timely value to the end-users. This will result in more data,
facilitating informed decision making about the product. Incremental changes are easier to
debug, and quick fixes will lead to minimal downtime for users. However, this requires the
end product to be able to receive updates quickly and install them without impacting critical
performance.

In the final step E, deployment becomes more about experimenting with ideas and less
about delivering a final product, using R&D as an experiment system. Here, usage data is col-
lected in great amounts of not just what the customer thinks, but how the customer interacts
with the product.

Implementing these steps works towards solving the di�culties connected to the open-
loop problem [25]. The open-loop problem refers to the problem of slow and ine�cient
use of usage data in the development process. Ideally, a software organization wants quick
and accurate feedback as input in the decision-making process, thereby closing the loop.
Otherwise, product management that does not know what the customer values will conduct
feature development driven by informed opinions (at best) from product management or
developers, which could be biased. This can lead to features being developed that are not
aligned with the customers’ needs, requiring redeveloping and frustration in the development
teams, which in turn wastes resources and thereby impeding progress.

12

2.2 Customer orientation and feedback

2.1.3 Data-Driven Decision-Making
The way to decide which development activities to prioritize, using usage data as an in-
put, is called Data-Driven Decision-Making (DDDM). According to Holmström Olsson and
Bosch in their paper ”From Opinions to Data-Driven Software R&D” [25], the focus of an
experiment system, the final step in the ”Stairway to Heaven”, should be to collect data from
customer usage and feedback, and use it to further improve the product. However, the ex-
perience of developers and managers is not to be cast aside entirely, and decisions should be
”informed rather than driven” [22]. The usage of DDDM has been shown to increase produc-
tivity and profits for companies by up to 6% [8]. However, a bad implementation of DDDM
could even lead to worse decisions than not using it. This could be due to ”bad data”, which
is either poorly processed or unimportant, bad visualizations, or lack of understanding of ei-
ther the data or the relationships contained in the data [18]. Therefore, focusing on collecting
the right data and making a correct analysis is the central part of making DDDM work.

2.2 Customer orientation and feedback
Di�erent information channels and mechanisms of acquiring customer feedback data for
software companies have previously been summarized by Sauvola et al. [29]. A quite preva-
lent feedback mechanism that was identified was that of di�erent manual channels, such as
customer interviews, meetings, and lead customer testing. Meetings with and between in-
ternal stakeholders, sales personnel, product owners, and product management teams were
another identified feedback method commonly utilized. Prioritizing and resourcing with
regards to feature development was found to be challenging and very reliant on product
manager assumptions and opinions, which were not validated until after the product was
released. Also, none of the companies that utilized data collection in the post-deployment
phase had a systematic way to leverage post-deployment data in their respective development
process.

Suonsyrjä et al. have attempted to categorize the knowledge sources that organizations
are using to understand their users into three main categories [32]. The customer contact
knowledge source was defined as the information gained from face-to-face contact and in-
teraction with customers, user-centered information constituted the second source comprised
of feedback such as reviews about the product and support requests, while the third cate-
gory consisted of the organizations own information gathering, such as post-deployment-data
collection [32].

2.2.1 Different types of overall feedback data
Previous work has also tried to categorize distinct types of customer feedback data, com-
ing from all knowledge sources, used in the industry [32]. The identified categories ranged
from time themed data (time of day usage, on what parts in the product are the time spent),
performance-related data (load, stress, and response time measures), amount-of-use metrics
(of features and functionalities) and error-related events (exceptions and error messages).
Di�erent kinds of analyses performed using the listed feedback data types were then distin-
guished by the authors. Value analysis constituted one such category, entailing analysis of

13

2. Theory

features and functionalities (in terms of most and least used) together with an attempted
weighting of the importance of di�erent use cases and functionalities. Another analysis cat-
egory was user problem or pain point focused; this type of analysis aims to locate and under-
stand weak or di�cult areas of the software. Use paths were the third identified category,
where important workflows and crucial paths can be analyzed. The two last categories were
identified as the ’actual use’ and ’user profiling’ categories, where the former analysis type
specifically considers feedback from the end-user (how the product actually is performing,
and how it is used), while the latter refers to the analysis of di�erent groups of users (on either
personal attributes such as age or behavior, or technical attributes such as type of platform
or specific product used). Finally, the authors identified use objectives for using the di�erent
categories of analysis on the distinct feedback metric types, as UX-, actual needs-, resourcing,
and development options-related [32].

14

2.2 Customer orientation and feedback

2.2.2 Post-deployment/user-interaction data
The collection of knowledge from customer contact and user-centered information is often
slow, as presented in Section 2.1.1, leading to the open-loop problem. If post-deployment
data can be used in place of these sources, the development process can be sped up and the
loop can be closed.

Suonsyrjä et al. have in their article ”Post-Deployment Data: A Recipe for Satisfying
Knowledge Needs in Software Development?” [32] previously studied possible ways that post-
deployment data can be used by software development teams to better understand their end-
users, continuing the work described in 2.2.1. The term post-deployment data refers to the
data gathered after the commercial deployment of a product [32]. Post-deployment data
can be categorized as, for example, performance data, quality data, usage data, or end-user
feedback data. Data collected by tracking the users’ interactions with an application at the
user-interface level is called user-interaction data. Attempts to provide understanding about
what objectives and utilization targets an organization might have and challenges that an
organization might face when utilizing user-interaction data have been conducted [31]. The
resulting analysis and use objectives have been summarized in Table 2.1.

Analysis Objectives Description

Value Analysis

Find out how valuable a feature is.
In addition to total usage,

can also be based on who, from where
and at what time the feature is used.

Pain Point Analysis
Identify possible problem areas for the users.
Problems may relate to system performance

or low usability. Use of timestamps may often be of use.
Use Paths Find out the order of the use of features.

User Profiling

Ways of segmenting the total user population.
Segmentation may occur on technical properties

(platform used), or properties related
to the user (novice or expert).

Use Objectives Description

Informed Feature
Development

Use insight from user-interaction data
to support decision making. Identify
features that may need improvements

and guide new designs.

UX
Similar to Informed Feature Development,

but specifically targeted at the UX.
Resourcing and

Prioritizing
Having estimated the value of a specific feature,

the priority of the backlog could be a�ected.

Requirements
Validation

For example, by looking at the technical prerequisites
of the user base, a minimal viable product

or feature can be determined.

Table 2.1: Summary of analysis objectives and utilization targets
identified for organizations collecting user-interaction data [31].

15

2. Theory

2.3 Creating evaluation criteria
The management of most organizations today would most likely say that they want to be, or
already are, data-driven in their decision making [33]. For any type of organization, there are
also most likely several measurements that would be beneficial to track, for example revenue,
costs, and customer satisfaction [21]. Defining an overall evaluation criterion (OEC), to in-
corporate the weighted average of the di�erent important business sub-metrics could thus be
very valuable when it comes to making decisions on both the managerial and developer level.
Such an OEC should be measurable in the short term (i.e. 2 weeks) but needs to capture long
term value drivers for the organization [21]. Consequently, poorly constructed evaluation
criteria can in some cases seem beneficial in the short term, while they perform terribly in
the long term [21]. For example, hiking prices might drive short term revenue increases, while
the long term outlook of the business actually may worsen. For a search engine, repeat visits
(sessions per user) might thus be a much better measurement than the time a user spends
with the service, which may increase due to ine�cient querying. For example, an OEC for
the Bing search engine is the sessions/user metric [20].

To be able to use usage data in a productive manner, it must be processed in ways that
generate meaningful information for the developers and decision-makers. Generating ade-
quate metrics from observed data constitutes a basis of analysis from which conclusions can
be drawn. Rodden et al. identify a problem in that behavioral usage data is not used in a large
scale way [27]. They present a framework used by Google called ”HEART” which provides a
metric framework for web applications that breaks down the data into five categories: Hap-
piness, Engagement, Adoption, Retention, and Task success. Three of these, engagement,
adoption, and retention, are presented as new ways of evaluating user behavior from usage
data. Engagement concerns the intensity and frequency users interact with an application.
Adoption measures when new users start using the application. Finally, retention keeps track
of users that keep using the application over time. Through having a great amount of post-
deployment data, these metrics can be applied to produce meaningful results to be used in
the decision-making process.

2.4 Testing hypotheses
In order to make data-driven decisions, an idea of what constitutes a successful implementa-
tion should be considered. Rodden et al. [27] suggest that first setting goals, then identifying
what signals can indicate that a goal is fulfilled, and finally predicting how these signals can
be seen in the measured metrics, in this case, the HEART framework metrics. This process
can be seen as a more informal analogy to the statistical hypothesis testing, which is the stan-
dard framework of validating results in most sciences. An example of a model for using a
similar method for testing hypotheses in data-driven decision making is the Build-Measure-
Learn-loop, which is the core idea in the Lean startup model, an implementation of Agile
development [26]. Here, the process can be broken down into the following four steps:

• Plan: Define a hypothesis of what to expect from the product, and make a plan of what
to develop.

16

2.5 Online controlled experiments

• Build: Create a minimal viable product (MVP), which is the least complex working
version of the product, or develop an already existing product.

• Measure: Analyze how the product is holding up to the hypothesis.

• Learn: Depending on the results, there are two ways forward:

– Persevere: If the hypothesis is correct, continue building the product the same
way as before, i.e. jump to the Build step.

– Pivot: If the hypothesis is refuted, change the course of the development by
changing the hypothesis or the way to develop the product, i.e. jump to the Plan
step.

Iterating this process until a satisfactory result is attained ensures that a minimal amount
of development time is wasted.

2.5 Online controlled experiments
Internet-connected software running on clients (websites, mobile applications, and PCs) en-
ables conducting online controlled experiments, or more colloquially called A/B-tests. The
key motivation for running these experiments is the causal relationship that can be derived
from a change in implementation [20]. Running an experiment in a control/treatment man-
ner, potential improvements to the evaluation criteria can oftentimes with a high probability
be associated with the treatment. This methodology has been adopted and embraced by sev-
eral big tech companies, like Amazon, Facebook, Microsoft, Google, and LinkedIn [21].

Utilizing A/B tests allows for experimenting with ideas, which is the core concept of step
E in Figure 2.1, discussed in Section 2.1.2. Normally, the test consists of two variants: Variant
A, which is the default version of the tested feature, and variant B, which is the alternate
version of the feature [21]. In terms of which users to include in the test, di�erent sampling
approaches can be used. The sample can consist of specifically targeted users, be completely
randomized, or simply include the whole user base. The sampled users are evenly distributed
between the intended test groups. The selection could be further augmented by ”triggering”,
meaning only including users that reach a certain state, for example only including users that
perform a specific action. This narrows down the sample to only include users that, for exam-
ple, are concerned with the new feature. Generating data from observations of actual use (by
logging events) is then critical to generate the metrics needed to evaluate the experiment, and
should be added whenever it is possible and economically justifiable [21]. When the results of
an experiment are to be interpreted, relevant metrics should be used. These metrics should
preferably not only work in the short term, but long term business value should be captured
by the criteria. Several pitfalls have previously been described when it comes to interpreting
and evaluating the outcome of experiments [20, 9]. When introducing new features, primacy
and novelty e�ects may be observed. Primacy e�ect refers to the short term decrease in ef-
ficiency that users may experience when the UX changes, while the novelty e�ect describes
the initial increased usage of a new feature when it is investigated. Running an experiment
for more than a week is one way to attempt to mitigate a possible initial e�ect bias.

17

2. Theory

2.6 The ”quality in use” concept
The International Organization for Standardization (ISO) consists of international expert
groups, which produce reports on the current state-of-of-the art consensus on various topics
[6]. The ISO/IEC 25022: Measurement of quality in use [1] includes measures to gauge e�ec-
tiveness, e�ciency, satisfaction, which constitutes parts of the quality in use ISO definition.
These measures can be observed in Table 2.2. The core concepts included in the quality in
use definition, for example satisfaction, might be a bit abstract. The measures of satisfaction
are on the other hand more concrete and thus easier to try to evaluate.

E�ectiveness E�ciency Satisfaction
Tasks completed Task time Overall satisfaction

Objectives achieved Time e�ciency Satisfaction with features
Errors in a task Cost-e�ectiveness Discretionary usage

Tasks with errors Productive time ratio Feature utilisation
Task error intensity Unnecessary actions Proportion of users complaining

Fatigue User trust
Proportion of user complaints

about a particular feature
User pleasure

Physical comfort

Table 2.2: Summary of ISO/IEC 25022 Measurements of quality in
use [1].

2.7 Online and in-product surveys
One way to measure the user experience of an application is to conduct a survey. Asking
the survey respondent, for example the user of a mobile application, about the perceived
satisfaction related to engaging with the app, or a feature of the app, generates user feedback
data, which complements the post-deployment data collected automatically [27]. Online
surveys constitute a cost-e�ective way to conduct surveys, when compared to traditional
alternatives, such as phone surveys or paper surveys [37]. A disadvantage of the online survey
method is the lower response rates when compared to other survey methods [30]. The online
survey can be conducted using di�erent survey mediums, either by sending users an email
with the attached survey, or questions that can be asked in an in-product fashion. In-product
surveys can be presented to the user when the user engages with the product or a feature
of the product. For instance, LinkedIn utilizes both types of surveys in a complementary
way, where email surveys are considered to be better suited for longer surveys [10]. The
quality of a conducted survey can be a�ected by a number of factors, related to the design
of the survey, discrepancies in the target group and the actual population, and errors due to
non-responses [35]. Poorly formulated questions and confusing instructions may cause the
respondent to misinterpret questions and thus unintentionally answer incorrectly, which
suggests that designing the survey should be a conscious e�ort.

18

2.8 Statistical modeling and tests

When rating quality, the Likert scale is a common way to gauge a respondent’s opinion [4].
The Likert scale is usually a five-point bipolar response where ”1” is the least-valued and ”5” is
the most-valued response (see Figure 2.2). The results from a Likert scale question are ordinal
data, which can be ranked, but not be measured in a relative way. For example, the distance
between 1 and 2 is not necessarily the same as the distance between 4 and 5. Therefore,
descriptive statistics such as means and standard deviations are generally not valid, and usage
of medians and ranges are preferred.

Figure 2.2: An example of a Likert scale.

2.8 Statistical modeling and tests
In order to empirically analyze and draw conclusions from generated post-deployment data,
related to an A/B-test, valid statistical reasoning and modelling are needed.

The Poisson distribution plays a vital role in analyzing discrete events occurring over
time, and it is used to empirically treat count data [19]. for example by using A/B-tests.
Assuming that the count (i.e. the number of actions) generated by any user of either of the
test groups is interchangeable with assuming that the count data of all users arrive with equal
probability at any given point in time, i.e. the count data is generated by a Poisson process.
This occurs in a memory-less fashion, meaning that past occurrences do not influence future
ones [19]. This is a reasonable assumption as long as the users do not di�er widely in terms
of usage patterns (for example, the data set does not include bots).

Sampling count data over time can be used to estimate the intensity λ with which events
occur in time, denoted λ̂. A property of the Poisson distribution is that its variance is also
the mean number of events per time unit [19]. When the observed intensity is not too small
(λ > 10), the Poisson distribution approaches normality [7].

The Welch’s t-test is a test for checking if two samples have the same mean, where the
underlying assumption is that both samples are normally distributed. This test is an adapta-
tion of the Student’s t-test, with the modification that the variance of the di�erent samples is
allowed to vary [36]. This test can thus be utilized to test the null hypothesis in terms of sam-
ple averages, using two normally distributed samples. These samples could theoretically be
acquired from observing count data generated by a Poisson process, which under mentioned
circumstances approaches normality.

The χ2 test constitutes one way of analyzing 2x2 contingency tables with a large number
of samples, in regards to the confidence that the null hypothesis can be rejected with when
looking at two di�erent samples [2]. This test can thus, for example, be used to measure
the statistical significance of results with binary outcomes. One example of this could be a
frequency segmentation of the test groups, into categories that either displayed behavior X
or behavior Y. This type of data can easily be used to construct a contingency table, upon
which the test is applicable.

19

2. Theory

20

Chapter 3

Approach

Our thesis will focus on creating evaluation criteria measuring feature success. We will also
propose a new way of conducting feature development called A/B testing.

The thesis work as well as the thesis itself was divided into three phases:

• Investigation Phase

– Identify the client software, from which the usage data is collected

– Get acquainted with the development process within AXIS Mobile Applications

– Investigate how usage data is collected and used

– Understand the business case for Mobile Applications

– Compare the development process to theory and find out if something is missing

– Map out which tools are utilized today in the development process

• Development and Analysis Phase

– Evaluation criteria

– A/B-test

• Evaluation Phase

– Define what will be the foundation for evaluation of our results

– Present our two methods of collecting evaluation data:

* In-app survey
* Online survey

– Present how the evaluation will be conducted

21

3. Approach

22

Chapter 4

Investigation Phase

4.1 AXIS Mobile Applications

4.1.1 The client software
The applications (with related post-deployment data) that this thesis concerns are the mobile
applications named AXIS Companion and AXIS Camera Station (ACS). The core use case
for both of these applications is to enable secure remote video surveillance, streaming video
data from recording devices. The applications are di�erentiated in terms of the intended end-
user; Companion is regarded as a solution aimed at customers with small to medium-sized
systems, while the ACS application is tailored towards customers in need of medium-sized
to large system solutions.

Figure 4.1: The AXIS Companion and the AXIS Camera Station
applications respectively.

23

4. Investigation Phase

4.1.2 Development processes
The Mobile Applications department at AXIS develops software utilizing agile strategies,
inspired by the process frameworks Scrum and Kanban. Additionally, routines and tools are
in place allowing automated testing, continuous integration, and continuous deployment.
Releases are made on at least a weekly basis, and each developer can deploy code to produc-
tion after it has gone through live testing. The development teams are developing features
using the BML-loop. Features are implemented first as a Minimal Viable Feature (MVF), and
then improved upon using both specifications and customer feedback. There exists a per-
ceived weakness in the Learn part of the BML loop, as there is no formal follow-up for when
feedback is collected for a specific feature.

Currently, the decision making concerning feature development is done in the ”product
manager sync” activity, which is a scheduled activity occurring once every other week. For
each application, the meeting held includes the product owner, the engineering manager,
product specialists, the agile team lead, and technical specialists based on the particular basis
of needs. Here, the product owner communicates the interests of customers, while the agile
team lead communicates information concerning the current development.

4.1.3 Current information channels
The AXIS mobile applications department receives user and customer feedback through a
variety of information channels. The product owner aggregates information from discussions
with various stakeholders, sales sta�, technical specialists, and customer support, in order
to establish the best possible understanding of what should be prioritized going forward.
Sales sta� have direct contact with customers, technical specialists interpret and convey the
behavior of the deployed product looking at post-deployment data, and customer support
communicates problems they have gotten reported. In addition to this, app reviews for both
the iOS and Android platforms are collected. For trying new products and features, the use
of lead customers, known as pilot sites or pilot users, are utilized. In-person meetings between
AXIS R&D teams and the pilot users are thus another highly regarded information source
for the company. Furthermore, collected post-deployment data is also used as an information
channel, which is described further in Section 4.1.4.

4.1.4 Current status of data utilization
Since the introduction of post-deployment data collection, information extraction has been
conducted at the developer level, where a dashboard of di�erent metrics has been created
using the Data Studio visualization tool (see Section 4.2.3). In most cases, the insight gained
from data analysis is relayed bottom-up, meaning that developers and/or the agile team lead
inform di�erent stakeholders such as the product owner or other divisions of the organization
about what has been observed.

The vast majority of analysis in place is related to the performance and stability category.
Crashes, or app stability, are monitored using a web application. Error rates on certain tasks
and requests made by the application are also tracked, and performance times such as load
times for di�erent core features are well known and monitored by each team within the
department. For example, the Data Studio visualizations can highlight features which crash

24

4.1 AXIS Mobile Applications

often or slow down the application, which need to be urgently taken care of. Additionally,
there exists a visualization tool showing use paths, chronological sequences of events that
users log when using the application.

General feature usage is also displayed, although in a simple way. Currently, it is visualized
in two ways: through treemaps showing usage percentage per event, and bar graphs showing
the most and least used features, in an attempt to distinguish between high and low-value
features. The treemaps are used sparingly by one team, which uses them to decide which
features need to be improved based on comparing actual usage to expected usage.

4.1.5 The mobile application business case
Establishing the business case for the company’s mobile applications is very important for
defining what usage patterns are preferable and what the overall goals should be. Both appli-
cations, Companion and ACS, are free to download and to use for both the Android and the
iOS platforms. The prerequisite for utilizing the application is that the user owns at least one
AXIS device, such as a camera, otherwise, the application o�ers no meaningful functionality.

Since the applications are free and without ads, the business goals for AXIS are di�erent
from most mobile applications. The applications are not directly monetized via the freemium
model (free app, pay for premium functionality), so business cases such as ad revenue and
di�erent variants of sales conversions are not applicable to the department’s particular cir-
cumstance. The mobile applications are instead o�ered as an additional way of interacting
with the devices of the AXIS product portfolio, for example network cameras, and aim to
increase the overall value of the entire product and solutions portfolio to the AXIS end-user.
Trapping the user within the app or o�ering di�erent incentives to increase total app en-
gagement is not desirable according to AXIS, which on the other hand could be preferable in
for example game applications monetized by ads. This puts the user value and satisfaction in
focus. This, along with making sure that performance is good and error-rates are low, can be
directly tied back to the ”quality in use” concept described in Section 2.6, which AXIS uses
as a basis for their goals.

4.1.6 Comparison to theory
In the Stairway of Heaven-model, Figure 2.1, the Mobile Applications department belongs
fully to step D, Continuous Deployment, having a continuous deployment pipeline making
deployment at-will possible. The next step R&D as an Experiment System on the evolution
path, entails the introduction of experimentation with di�erent ideas, in order to learn what
the development should focus on. Reading the department’s internal goal documents, it is
apparent to us that the department is very cognizant of the need to shorten the feedback loop
and implement this in their development process. Usage of performance and stability data to
influence decision processes are already quite refined and indicate that AXIS values data in a
way that can further push them towards using R&D as an Experimentation System. In Table
4.1, we explain how AXIS Mobile Applications fulfill the Analysis Objectives proposed by
Suonsyrjä et al. (see Table 2.1).

25

4. Investigation Phase

Analysis Objectives Summary

Value Analysis
Currently tracked as specific feature usage in relation

to the total user base. The open loop problem is vocalized
by management, but are they prioritizing the right things?

Pain Point Analysis
Error, performance, and stability data is in

many cases automatically monitored and overall well-analyzed.
Use Paths Tools to analyze this are well in place, but are not used much.

User Profiling
Segmentation on technical level (in terms of devices,

mobile platform, etc) is performed. Users are not
currently profiled based on usage behaviour.

Table 4.1: Our analysis of the fulfillment of Analysis Objectives by
AXIS Mobile Applications.

4.1.7 What is missing?
The collection of data and tools for visualization are in place and is used for performance and
error-related data. The successful implementation of a feature is of course partially defined
by how well the application is running when using the feature. However, as mentioned in
Section 4.1.5, user value and satisfaction is central in what constitutes feature success. Hence,
measuring what users value and use may need further investigation and analysis of feature
usage. The feature usage analysis currently only consists of usage percentages, we believe that
there could be more ways to measure feature success.

Moreover, the perceived weakness in the Learn part of the BML loop with lacking hy-
pothesis testing could be improved. This can be done by setting up hypotheses concerning
feature usage, and by seeing how well these are fulfilled, deciding if persevering or pivoting
is the best course of action. Since A/B-tests are not currently conducted, a proof-of-concept
implementation and deployment of such a test would be interesting, in terms of what this
framework could contribute to the department’s learning. The test of a hypothesis concern-
ing implementation variants of a feature and their subsequent performance based on user
behavior would be interesting.

Use paths tools are in place ready for use but not fully utilized yet. Analyzing use paths
could for example open opportunities for finding anomalies in how users navigate to certain
features.

User profiling based on user behavior is also not done yet. The capability of di�erenti-
ating between power users, the average user, and novel app users in terms of user behavior
could potentially lead to new insights.

4.2 Tools
AXIS Mobile Applications use the following tools included in Google Analytics to collect
and analyze event data from their applications.

26

4.2 Tools

4.2.1 Firebase
Firebase is a web-based development platform developed by Firebase Inc. acquired by Google
2014 [34]. It provides a number of cloud-based services for software development connected
to authentication and the collection of application data. Integrating Firebase in an app en-
ables automatic collection of user engagement and app usage data [17]. The data is captured
in an event-wise manner; for example, when a user interacts with the application, the inter-
action is logged as an user_engagement event. By default, certain user properties will be
added to the event, refer to Section 4.2.2 for a detailed overview of the data set. The event
data is continuously uploaded to the Firebase cloud, which through the Firebase web appli-
cation can be viewed and analyzed. Firebase also allows for integration with their cloud data
warehouse BigQuery, which is utilized by the Mobile Applications department. The data
collected by Firebase is thus also continuously funneled to BigQuery (more on BigQuery in
Section 4.2.2).

4.2.2 BigQuery
Google BigQuery is a software-as-a-service that provides web access to Google Dremel, which
is a distributed database querying system that can handle querying large datasets in seconds
[23], and Google Storage, where the data is stored. Querying data is done using standard
SQL.

Data set description
The data sets for the di�erent apps at AXIS Mobile Applications all share certain charac-
teristics. Automatic collection of events are identically across the applications, see Table
4.2.

Event Name Trigger
app_update When the app updates to a new version and launches again.
first_open The first launch after an app installation/re-installation.
os_update When the device OS system is updated.

session_start After a period of inactivity, if user-app interaction exceeds a minimum time.
user_engagement Triggers periodically, when the app is in the foreground.

Table 4.2: Sample of event types automatically collected by Firebase
in Android and iOS apps, described by the complete automatically
collected event list [12].

Events logged to Firebase are contextualized with several additional metric data fields,
allowing for segmented analysis of the usage data. The data intended for analysis is the data
exported to BigQuery. The Firebase-to-BigQuery export schema [13] of logged data describes
the format and fields related to an analytic event. A sample of such information fields can
be directly viewed in Table 4.3. Each event exported to BigQuery is further contextualized
with parameters and user properties, where the details of a few interesting such fields are
presented in Table 4.4.

27

4. Investigation Phase

Field Name Description
app_info.version The version name of the app.

device.mobile_model_name The device model name.
device.operating_system The operating system of the device.

platform The platform of the app.
user_pseudo_id A pseudonymous id for the user (app instance based).

geo.country The country (IP-derived) from where the event was logged.
event_date YYYYMMDD formatted date of when the event was triggered.

event_timestamp The time of logging on the client, in UTC µs.
event_name The name of the event.

Table 4.3: Sample of exported columns defined by the BigQuery Ex-
port schema [13], providing context to the reported usage of the ap-
plications.

Parameter Name Description
firebase_screen_class Denotes the screen class where the event occurred.

ga_session_id A unique identifier identifying the session.
ga_session_number Monotonically increasing ordinal number,

specifying when the event occurred in relation to other events in the session.
User Property Name

first_open_time The time when the user first launched the app (in UTC).

Table 4.4: Sample of automatically logged event parameters and user
properties tied to the analytic events exported to BigQuery [14].

The entries of the data set are logged on an event type format, meaning that data is
logged when an event is triggered in the application. The event is contextualized with several
di�erent parameters, pertaining both to the context of the event and certain characteristics
of the user. The events connected to the features of the application are named according
to an internal name standard of the department. As an example, the video streaming event
is named ax_multiview_stream, where ax marks the event as an AXIS custom event,
multiview denotes an event group (namely events related to the multiview screen of the
application), and stream refers to the actual action performed in the app. These types of
events constitute the basis of the analysis since they hold the information about the users’
engagement with the application features. The granularity of the data set also enables analysis
to be conducted on various aggregation levels. For example, metrics can be derived on user-,
session- and event levels.

4.2.3 Data Studio
Google Data Studio is included in Google Analytics as a tool to easily visualize data in many
di�erent ways with drag-and-drop functionality. It is specifically made with users with little
experience in data analysis tools in mind. BigQuery is directly integrated into Data Studio,
and queries can be specified and sent to receive data which fields can be plotted in various.

Data Studio is already an integral part of Mobile Applications, where it is used to visualize

28

4.3 Phase summary

performance and errors. The data flow from the devices to Data Studio can be seen in Figure
4.2.

Figure 4.2: Data flow illustration of how the usage data is collected
and subsequently visualized in the Data Studio tool.

4.3 Phase summary
Reaching the end of this phase, a couple of topics to pursue further have been identified.
Investigating possible evaluation criteria used for feature assessments, and introducing the
A/B-test methodology to the mobile applications department are from this point selected as
the key tracks forward for the thesis work, with motivations provided below.

Since A/B tests aren’t conducted, a proof-of-concept implementation, deployment, and
subsequent hypothesis testing using collected data would be interesting to direct. A/B-testing
is the main framework enabling the concept of experimenting with ideas, which according
to discussed theory could provide the path forward in an attempt to close the open loop at
the department.

Defining what constitutes favorable feature usage and constructing evaluation criteria
on the feature level, attempting to measure how successful a feature is would be of interest to
the department as well. To evaluate implementations of features on the mobile applications
using post-deployment data, possible and desirable answers extracted from the usage data
must first be considered and defined. What makes a feature successful? Furthermore, what
questions would, when properly answered, provide actionable insights about a feature to the
software development prioritization process? We pose the following three questions which
we think that, when answered, could give valuable feedback and actionable insight:

• Do the users need the feature?
• Do the users find the feature?
• Do the users appreciate the feature, i.e. is it well implemented?

By utilizing available historic data for several di�erent features of the applications, we will
attempt to find usage patterns that will help answer the questions. For example, an unnec-
essary feature could potentially be characterized by users never using it, despite being aware
of the feature’s existence. This could indicate a low value of a feature, and focus could be put
on either improving the feature, just leaving it as is, or removing it entirely. Another case
could be users being unaware of the existence of a feature, and therefore never using it, which
warrants other measures from the organization, such as making it more visible or informing

29

4. Investigation Phase

about it. The recurring use of a feature could potentially indicate that the feature is both well
implemented and needed, although the organization’s domain knowledge might be needed
from case to case to reach a conclusion.

Another identified topic, that from this point in the thesis is considered out-of-scope, is
the segmentation of users on the behavioral level. To accomplish this, unsupervised machine
learning could be tried out, producing user clusters on similar traits. The evaluation of the
accurateness and potential use of this method would be a separate investigation, posing some
di�culties in regards to how the assignment accurateness should be academically evaluated.

Finally, use paths tools are already in place, and we believe that our further e�orts are best
put into investigating A/B-tests and feature evaluation criteria, from this point forward.

30

Chapter 5

Development and Analysis Phase

After the investigation phase of the literature and AXIS mobile applications department,
the next phase of the thesis work can be initiated. The main identified areas of potential im-
provement are researching and implementing evaluation criteria as a measurement of feature
success as well as the conduction of online controlled experiments (A/B tests), using hypoth-
esis testing. The work related to the two di�erent tracks will be presented in two separate
parts in this section.

5.1 Evaluation criteria

5.1.1 Introduction
The purpose of having evaluation criteria on the feature level for the mobile applications de-
partment, would as previously discussed be to try to gauge user value and satisfaction with a
particular feature. This is the established premise, of what determines the overall success of
a feature’s implementation. Translating these goals to the metrics of the HEART framework,
described in Section 2.3, the goal can be expressed as the maximization of H, Happiness.
However, the way happiness data is collected in the HEART framework is by utilizing sur-
veys, not by looking at raw usage data. Usage data is only used in the EAR metrics of the
model, Engagement, Adoption, and Retention. These metrics can be calculated, using the
already collected usage data at the department. An evaluation criterion for features should
in this context then attempt to capture the happiness metric if possible, by only looking at
data. Finding a way to accurately estimate happiness through usage data would constitute
a way to solve the open-loop problem, since having such a metric would lessen the need for
surveys, which are slow and not without overhead.

31

5. Development and Analysis Phase

5.1.2 Defining the evaluation criteria
We propose using the same evaluation criteria for user behavior as defined in the HEART
framework (see Section 2.3): Engagement, Adoption, and Retention. We will break down
engagement in two parts: engagement and usage frequency. Retention is also captured in
usage frequency.

We define adoption as a metric that captures how many users that actually use, or have
adopted, a feature. It measures how many distinct users that have used the feature at least
once for a given time period. For example, with a daily interval, the adoption each day is
the number of distinct users that have used the feature for the first time during the time
period, either for that day or cumulatively. Given a new feature, the adoption shows how
successfully the feature is communicated to the user and answers the question: Do the users
find the feature?

Adoption can also be measured during a later time period on a feature that has been re-
leased for some time. While still measuring real adoption somewhat, captures another aspect
of feature success and answers the question: Do the users need the feature? The reasoning
here is that users that have tried the feature before the given time period but had no need for
it, will not use it again during the time period. This weakens the answer to the first question,
but instead finds another way to measure feature success.

Engagement is a metric that measures in how many distinct sessions a feature has been
used during a time period. For example, with a daily interval, the engagement each day is
the number of distinct users that have used the feature that day. A high engagement should
indicate that the feature is needed and possibly well-implemented.

Finally, we define Usage frequency, which groups distinct users by how many times they
have used a feature in a distinct session over a certain time interval. Visualizing this results
in a histogram where the x-axis represents the number of times a feature is used, and the
y-axis represents the number of users. A high number of users using the feature many times
indicates that the feature is needed and possibly well-implemented, resulting in a heavy-
tailed distribution. We argue for that retention is caught by this metric, since a high repeated
number of sessions where a feature is used by a user indicates that the user uses the feature
over time, and is therefore retained.

5.1.3 Baselines
Some features are only relevant for a specific subset of users. For example, the slow-motion
feature can only be reached from the playback state, which is only used when looking at
recorded video clips. This is important to take into account since a feature located deep
within the application could look unsuccessful when putting it in comparison to a shallow
feature reached directly from the home screen. We solve this by looking at the state from
which the feature can be reached. We call this concept baseline. With a baseline, we can get
a percentage of users using a feature by dividing the number of users using the feature with
the number of users that have been in the baseline state, thereby relativizing the data.

Furthermore, the concept is useful for features that have the same baseline in changing
absolute numbers to percentages, creating a more familiar way to compare two metrics.

Moreover, a baseline can reduce the impact of external factors on the metrics. For ex-
ample, a holiday could result in reduced usage, which would impact the absolute feature

32

5.1 Evaluation criteria

usage numbers negatively. However, since the absolute number of baseline usage also goes
down, the negative impact can be nullified by using the baseline. Another example is the
ever-increasing user base of an app. If the user base steadily increases, so will the usage of
all features, and it will look like the feature is becoming more successful over time. With a
baseline, the perceived positive e�ect is nullified, and the metrics can be viewed in a more
objective way. An example of how baselines can eliminate noise can be seen in Figures 5.1
and 5.2.

We implement baselines in di�erent ways for di�erent metrics.

• Adoption: The metric is divided by the baseline adoption at the end of the time period,
measuring daily adoption as a percentage of the final baseline adoption.

• Engagement: The metric is divided by the baseline engagement each day, measuring
daily engagement as a percentage of the baseline engagement for that day.

• Usage frequency: This metrics is not impacted by baselines in the same way as the oth-
ers since it is meant to show the distribution of the way the feature is used. Therefore,
we divide the metric by the total number of distinct users using the feature during the
time period, not impacting the distribution.

Figure 5.1: Absolute engagement (how many distinct sessions a fea-
ture has been used during a time period) for a feature X with the
corresponding baseline engagement, showing how the noise for fea-
ture X can also be seen for its baseline.

33

5. Development and Analysis Phase

Figure 5.2: Relative engagement for feature X utilizing the baseline
concept, showing how the noise in feature X is being cancelled out.

5.1.4 Platforms
The applications are developed separately for iOS and Android. Sometimes, features are not
released simultaneously, which generates uneven comparisons for data across the platforms.
This can manifest as sudden usage surges when a feature is released on the other platform. We
introduce filtering based on either iOS or Android to be able to better sort out the results.

5.1.5 Practical Work
To present a visual representation of our evaluation criteria, we utilize the tools in Data
Studio, using SQL queries to fetch the data from BigQuery. For a feature X, we first find
out the name corresponding to the event logged when it is used. Using this as a parameter
for the SQL query, we can fetch the relevant rows in the SQL tables. If a baseline is used,
the rows containing the baseline event name will be fetched as well. Furthermore, we also
input starting and end dates as parameters to get the time period we prefer, as well as the
platform. We can then manipulate the data fetched to get the rows containing relevant data
for each usage metric. Data Studio can then use the processed data to display it in the format
we prefer.

We present the graphs as bar charts. For adoption and engagement, a breakdown with
a daily granularity is shown over the given time period. Adoption is displayed both as the
daily adoption as well as the cumulative adoption. Usage frequency is displayed in a bar

34

5.1 Evaluation criteria

chart as a histogram (histograms are not yet supported in Data Studio as far as we know).
We are interested in capturing the overall usage pattern in terms of the number of sessions a
user interacts with a feature over a time period. To this end we set a maximum bin number,
putting power-users who use a feature in the same column (or bar). This limits the range of
the X-axis, in order to prevent the graph from being unreadable. The numbers are presented
in either absolute numbers, or in percentages if baselines are used. Leaning on the reasoning
in Section 2.3, the evaluation criteria should be measurable while still capturing long term
business value, hence 14-day time frames could be a reasonable time frame for the graphs.

5.1.6 Choosing the features
Using the metric visualizations available at this point, we looked at the overall patterns of
several features. Both trying capturing user happiness with a feature using raw data, and then
actually confirming this to be the case posed a real challenge. In an attempt to accomplish
this, we chose four features from the application AXIS Companion to test our metric on. The
reason for selecting this application was related to possible ways of evaluating our subsequent
results in a later phase; lead customers, known as ”pilot sites”, were confirmed to be readily
available, for us to ask questions to if needed.

The features chosen to analyze were the following, with accompanying motivation dis-
tilled from talks with developers, using their domain knowledge of the application:

• Event list - A new feature released a month before. For this feature, we were also
provided an in-app survey (see Section 6.1.3).

• Timeline - A feature that is used a lot, and that the developers consider well-implemented.

• Calendar - A less-used feature, which the developers think is less valued.

• HQ - A feature that is well-used, but which the developers think the users have prob-
lems finding/using. However, the high usage frequency might be a symptom of users
having to switch quality a lot, which might deteriorate their satisfaction.

Illustrations of the features along with an accompanying descriptive text (in Swedish) can be
found in Appendix A.

These motivations are quite di�erent, in terms of the impression that the developers have
of the features. Using our visualization tool, we produce the graphs seen in Figures 5.3-5.6.
Looking at these graphs, there seems to exits some inter-feature heterogeneity as well, from
the usage frequency distribution pattern to the percentages of users and sessions interacting
with the features. The feature patterns seem di�erent enough to be able to make a meaningful
comparison later.

35

5. Development and Analysis Phase

Figure 5.3: Data Studio evaluation criteria graphs for the event list
feature.

Figure 5.4: Data Studio evaluation criteria graphs for the timeline
feature.

Figure 5.5: Data Studio evaluation criteria graphs for the calendar
feature.

36

5.2 A/B Testing

Figure 5.6: Data Studio evaluation criteria graphs for the HQ fea-
ture.

5.1.7 Our hypothesis
We propose that high relative values for all the metrics will indicate feature success, namely
that the feature is valued and liked by the end-user. As mentioned before, high adoption
indicates that users find and value the feature, while high engagement and usage frequency
indicate that users value and/or appreciate the feature. However, due to external factors, we
find that it is hard to put a value on a feature based on its metrics. Therefore, we propose
comparing features instead. For example, if feature X has better metrics than feature Y, we
say feature X is more successful than feature Y. For illustrative purposes, compare the overall
appearance of Figure 5.4 and Figure 5.5.

5.2 A/B Testing
The implementation and deployment of an A/B-test are carried out within the scope of this
thesis. The usage data of each user group will then be used as input to the analysis work related
to the previously conceived hypothesis, in an attempt to proof-of-concept the conduction of
A/B-testing to evaluate a defined hypothesis.

5.2.1 The idea
Following talks with our AXIS thesis supervisor, an idea eligible for testing was identified.
The UX-lead had, in cooperation with developers of the ACS application, already created
some early drafts of di�erent ways to inform the end-user about new features. Evaluating
di�erent ideas comparatively to each other (and also to a control group), perfectly matches
the prerequisites needed to conduct an A/B-test, as previously discussed in Section 2.5.

The feature that the end-user should be made aware of in this test is a feature released in
December, about three months before the deployment of the A/B-test. The user base has not
in any way been informed about the existence of the feature. The reason a tutorial is deemed
necessary is that the feature usage is quite low, and the developers think the users have a hard
time finding it.

The feature itself is a slow-motion playback of recorded video clips in the application,
activated by long pressing in the video area. A screenshot of the playback screen of the appli-

37

5. Development and Analysis Phase

Figure 5.7: The playback screen of the iOS version of the AXIS Cam-
era Station application. Long pressing in the video area triggers the
slow-motion playback e�ect.

cation can be viewed in Figure 5.7 The application selected for conducting the experiment
on is the iOS version of the ACS application. The UX-lead has finalized the drafts of the
di�erent ways to inform the user about the slow-motion feature before handing us the reins
in terms of implementing everything needed to deploy the experiment.

5.2.2 A/B-testing framework
The analytics framework used by the mobile application department at AXIS, presented in
Section 4.2, is the Google Analytics service on the Firebase platform. The capabilities of the
platform were further investigated, and it was quickly discovered that it provides support
for conducting A/B-tests. Firebase’s Remote Config permits developers to set the values of
predefined parameters directly in the Firebase web console, which the software application
then fetches, providing the option to change the behavior of the application without hav-
ing to deploy an update [16]. Targeting which users, or how many users receive what value
for the defined parameter, constitutes a way of experimenting with controlled roll-outs of

38

5.2 A/B Testing

new functionality. As such, Firebase enables developers to conduct A/B-tests by using the
Remote Config service [15]. Assigning users to groups, for example, A, B, and control, and
thereafter sending each user a value for the Remote Config parameter corresponding to the
group assignment, which in the application triggers the group-specific behavior, constitutes
the integral parts of an A/B-test. A flow chart of how the assignment of test groups by Fire-
base works can be seen in Figure 5.8. Through logging analytic events tracking user behavior,
evaluation of the A/B test can be analyzed in the Firebase web GUI, and the best feature
(driving the most desired results) can be selected.

Figure 5.8: How A/B tests are distributed by Firebase.

5.2.3 The UX draft
As previously mentioned, the basic idea of the A/B-test is to evaluate which way the end-
user should be informed about a new feature. The UX resources of the department were then
devoted to finalizing a draft, ready for us to implement and deploy to production.

Variant A of the test is at the department know as What’s New. This variant consists of a
dialog listing the new features of the current version of the application, which is presented
when the user starts the application. It is only supposed to be displayed one time; when a
user dismisses the dialog, it should be regarded as read and thus not presented again to avoid
cluttering the user experience with redundant pop-ups. The What’s New dialog has been
used in other applications of the department, but not in ACS, the target application of the
test. The visual presentation logic has already been implemented on the application, but it
has never been used. For reference, the UX draft of the What’s New dialog can be viewed in
Figure 5.9.

Variant B, the second way to inform the end-user about novel features, is an animated
tutorial showcasing how to use the slow-motion feature. While the variant A dialog is dis-
played upon entering the application, variant B is displayed in adjacency to the slow-motion
feature itself. When the user navigates to the video playback screen of the application for the
first time, the animated tutorial launches. For visual reference, see Figure 5.10. To exit the
animation, the user presses the ’Got it’ button, in the upper left corner of the screen. Much

39

5. Development and Analysis Phase

Figure 5.9: The What’s New dialog informing the end-user about a
new feature, representing variant A of the A/B-test.

40

5.2 A/B Testing

Figure 5.10: The slow-motion tutorial animation, visually showcasing
and informing the end-user about the slow-motion feature. This
animated tutorial represents variant B of the A/B-test.

like variant A, the information given by variant B is then considered to be consumed; thus,
the tutorial is only displayed once per user.

5.2.4 Test design and hypothesis
Experiments introducing changes that may deteriorate the user experience may advanta-
geously be conducted on a smaller population of the user base as a form of risk mitigation.
This is not thought to be the case for our A/B-test, instead, it can be considered beneficial
to include a high number of users, in order to potentially generate higher confidence conclu-
sions based on the larger sample. A percentage (the exact percentage of total users is omitted
for business-confidentiality purposes) of the user base of the iOS version of the ACS applica-
tion will be divided evenly across variant A, B, and the control group (which will not receive
any information about the feature).

The main goal of this A/B-test is to find out how information about a feature should
be presented to the end-user. Since the information is a sort of a meta-feature, the event
analyzed will be the ax_playback_slowmotion, which is logged when the slow-motion
feature is activated. Given this circumstance, the adoption metric, as presented in Section
2.3 is believed to be the best metric available that the test should be evaluated on. Does A
or B di�er from the control group or each other, in terms of making the users try out the
feature? As a secondary learning outcome, it would be interesting to learn if any of the test
variants not only makes the users try out the feature to a greater extent but also makes the
user continue to use the feature with higher intensity. The engagement metric, measuring
distinct sessions engaging with a feature, will be used to evaluate this secondary learning goal.

The A variant, consisting of the What’s New dialog, is theorized to potentially drive more

41

5. Development and Analysis Phase

users into the playback view of the application, based upon the fact that the dialog is pre-
sented at the top level of the applications view hierarchy, a view which all users visit. This
could potentially incite users to navigate to the playback view to a greater extent.

The animated tutorial (variant B) is instead shown when the user on its own navigated
into the playback view, positioned further down in the view hierarchy. When asked, most
employees at the department propose that the animated tutorial could result in higher adop-
tion rates, since presenting information about the feature in the vicinity of the feature itself
could increase the chances of users actually attempting to use it.

5.2.5 iOS implementation
The implementation of the A/B-test on the iOS client will be carried out using XCode, an
integrated development environment for developing iOS applications. The primary language
used will be Swift, although some Objective-C code will also be written.

The Remote Config-functionality, fetching, and handling A/B-test group assignment of
the individual app installations will be implemented first. Once this module successfully
communicates with the Firebase platform, the A and B variants will be implemented. Since
the visual framework needed to present variant A to the user has already been implemented
(but never used), all we need to do is to handle presentation logic based on the applications
test group assignment. Visual resources and tech writing is provided by the Mobile Applica-
tions UX-team and tech writers respectively, which we then will insert into the application.
Variant A will then be considered as implemented. Variant B, the animated tutorial, will be
implemented using the Lottie library for iOS [3]. Using this library, the animation designed
by the UX-lead will be easily inserted into the application. Presentation logic based on the
application’s assigned test group (handled by the Remote Config module), will then be added.

For the scope of this master thesis, further technical implementation details of the A/B-
test are omitted.

42

Chapter 6

Evaluation Phase

6.1 Evaluation criteria evaluation
Upon the end of the development and analysis phase, the task of evaluating the validity of
the model and hypotheses remains. Leaning on the HEART framework, conducting surveys
seems to be a good option for determining what the users actually think about the features
in the previous phase. Two di�erent types of survey methods were determined to be our next
step forward, for the purpose of generating data to evaluate our evaluation criteria.

6.1.1 Online surveys
To be able to collect evaluation data, we create an online survey for pilot sites and beta testers.
Lead customers describe real actual users that cooperate with the organization, while the
beta testers consisted of internal axis employees (mobile applications department employees
were excluded). Hence, the respondents were selected as a convenience sample. The survey
concerns the four features described in Section 5.1.6. We first pose a few general questions
to profile the respondents, and then we ask them to estimate their feature usage and their
opinion about the selected features. If they do not use a feature, they are asked why not. The
full results compiled from Google Forms (in Swedish) can be found in Appendix B and a flow
chart describing the structure of the survey can be seen in Figure 6.1.

43

6. Evaluation Phase

Figure 6.1: Flowchart describing the structure of the online survey.

44

6.1 Evaluation criteria evaluation

Feature evaluation
The respondents are first presented with a picture of illustrating the feature with a descriptive
text. From this, the respondent should be able to recognize the feature if they have used it.
If they have, they are then asked how frequently they use the feature. Given that they use
it sometimes, they are then asked to evaluate the feature. We pose two questions to capture
user happiness, where we want to cover both the perceived importance of a feature, value
and the experience of a feature, satisfaction:

We present them with a five-level Likert scale, where 1 corresponds to low value/negative
experience, and 5 corresponds to great value/positive experience.

Given that they do not use the feature, we ask them why. We present the alternatives:

• I do not need it.
• I was not aware of its existence.
• I do not understand how it is used.
• I do not like it.

We believe that these reasons are exhaustive in terms of why a feature currently is not
being used, and answers the questions posed in Section 4.3, but as a safety measure we also
allow free-text reasons as answers.

6.1.2 Evaluating the results
Results
To be able to compare the features in a concrete way, we have to condense our evaluation
criteria graphs into a single number for each usage metric, as seen below.

• Adoption: We divide the number of adopters of the feature at the end of the time
period by the total number of distinct users.

distinct users
total users

= adoption

• Engagement: We divide the number of sessions where the feature has been used by the
total number of sessions.

f eature used sessions
total sessions

= engagement

• Usage frequency: We compute an average of the usage frequency, truncated at the
maximum bin number. We then scale it by the inverse of the maximum bin number to
get a number between zero and one.

45

6. Evaluation Phase

1
bmax

∞∑
k=0

min(k, bmax) · uk = usage f requency

bmax = the maximum bin number, uk = the number of users that have
used the feature k times.

To be able to compare the features as described in Section 5.1.7, we will use majority
voting. We will order the features based on their value for each metric. The placement in
this ordering will then be used for voting, and the features will be ranked for which their
placement has the majority vote (see example in Table 6.1).

Feature X Feature Y Feature Z Ordering
Adoption 0.3 0.5 0.1 Y > X > Z

Engagement 0.7 0.3 0.1 X > Y > Z
Usage frequency 0.6 0.2 0.1 X > Y > Z

Majority vote for placement 1 2 3 X > Y > Z

Table 6.1: Example of majority voting

Survey
Using the survey results, we compute usage metric numbers in a similar way as we did for
our evaluation criteria results.

• Adoption: We divide the number that answered that they used a feature by the total
number of respondents.

• Engagement: We divide the sum of what the respondents answered that they use the
feature each month, by the sum of what the respondents answered that they use the
application each month.

• Usage frequency: We compute the average of what the respondents answered that they
use the feature each month. We then scale it by the inverse of the maximum bin num-
ber.

These three numbers will be used to show how well the respondents of the survey repre-
sent the user base as a whole.

We also compute numbers for value, satisfaction, total value, and total satisfaction for
each feature. For simplicity’s sake, we calculate means for the Likert scales.

• Value: The average of the answers to the question ”What value does feature X have to
you?”

• Satisfaction: The average of the answers to the question ”What is your general experi-
ence of feature X?”

46

6.1 Evaluation criteria evaluation

Looking at the measured value/satisfaction only captures part of the value/satisfaction
aspect for the particular feature. We argue that it also could be important to account for the
value/satisfaction, or rather the lack of it, the feature brings to users that do not use it. For
this purpose, we also look at total value and total satisfaction, by extrapolating the answers
to why respondents don’t use a feature to the value and satisfaction categories.

• I do not need it. =⇒ Low value.
• I was not aware of its existence. =⇒ The feature does not communicate its existence.
=⇒ Full potential value is not reached. =⇒ Low value.

• I do not understand how it is used. =⇒ The overall feature experience is confusing.
=⇒ Low satisfaction.

• I do not like it. =⇒ Low satisfaction.

With this extrapolation, we can create the two final numbers.

• Total value: The average of the answers to the question ”What value does feature X
have to you?”, also including the ”Low value” answers as having a score of 0.

• Total satisfaction: We compute the average of what the users answered that they use
the feature each month, also including the ”Low satisfaction” answers as having a score
of 0.

These four opinion numbers will be used to support or reject the hypotheses we draw
from our results.

6.1.3 In-app survey

Another way to find out what the users actually think of features is to ask them directly in
the application. To investigate a feature using this strategy, an in-app survey will be deployed
for the event list feature. The in-app survey dialog can be seen in Figure 6.2. The dialog is
presented to the user when the event list has been used five times. This should make sure that
the user understands what the event list is used for and that the user is not just accidentally
using the feature. The user can then input a grade between one to five stars (a Likert scale),
indicating the experience the user had when using the feature, or dismiss the survey.

47

6. Evaluation Phase

Figure 6.2: The in-app survey dialog, asking users to rate their expe-
rience using the event list feature.

Finding usage patterns in responses
Given a high number of responses and a diverse opinion of the feature, we will be able to
segment users based on opinion. We will then be able to produce graphs and results and
see if there is a significant di�erence in usage patterns between high raters (4-5 stars) and
low raters (1-2 stars). Furthermore, we will also produce results for those who dismiss the
survey. We will employ the same methods for comparison as in Section 6.1.2. The time period
chosen for results will take place after the final survey response has been collected, to see if
respondents continue using the feature.

6.2 A/B test evaluation
We will not have access to any qualitative evaluation data concerning user value or satisfac-
tion for neither the A/B test or the slow-motion feature itself. We instead make a relative
evaluation regarding the di�erent implementations of the way to inform about this feature.

48

6.2 A/B test evaluation

This evaluation will aim to indicate the best implementation based on the selected evaluation
criteria.

6.2.1 Statistical tests
The statistical reasoning and basis for this part can be reviewed in Section 2.8, where applica-
ble statistical concepts are discussed. We aim to empirically evaluate the conducted A/B-test
using two types of data for the A, B, and control test groups. The statistical power of any
eventual test group deviations will be calculated and presented.

The first type of test uses session-based feature interaction count data as a basis, which
in the case of our metric will correspond to cumulative engagement. The outcome of the
stochastic count variable X is retrieved from the usage data set, which can be expressed as
observing the outcome of a Poisson process:

X ∼ P(λ; t)

where λ denotes the intensity with which events occur, observed during time period t. We
obtain an estimate of λ, denoted λ̂, according to

λ̂ =
1
t

t∑
i=0

xi

where xi represents the observed count outcome at the time i.
Assuming a large enough λ̂, X approaches normality (see Section 2.8),

X ∼ N
(
λ̂,

√
λ̂
)

a two-tailed Welch’s t-test can be used to check the statistical significance of the sample’s
mean deviation. This is achieved by constructing a small Python script (see Appendix C).

The second type of test is based upon the adoption metric. This type of data is binary
(non-adopter or adopter) for each test group, and an outcome can be expressed as observing
the outcome of a binomial distribution. Since the comparisons are made pairwise, and the
data is binary, contingency tables can be produced for each pair, and the statistical signif-
icance of the outcomes can be computed using the χ2 test. The area of interest, from the
evaluation perspective, is the frequency distribution of these values across di�erent groups.
Higher adoption of the feature in one group, which is statistically significant, would indicate
that a test variant is superior in making the users try out a feature.

Three 2x2 contingency tables are produced, using the observed adoption data for respec-
tive groups. Another Python script is used in order to implement this test (see Appendix
C).

49

6. Evaluation Phase

50

Chapter 7

Results

7.1 Evaluation criteria results

7.1.1 Relevant online survey results
For the online survey, 22 users responded out of the 70 potential respondents. The processed
answers from the online survey are shown in Tables 7.1 and 7.2, obtained as described in
Section 6.1.2.

In Table 7.1, the adoption of the features is displayed, as well as the reason for non-
adoption. Important to note here is that all non-adopters did not adopt due to low value
(with the reasoning explained in Section 6.1.2). This results in the total satisfaction score
being the same as the satisfaction score.

Table 7.2 shows the monthly frequency and session count for the di�erent features, as
well as the total session count for the application as a whole. These are used for computing
the engagement and usage frequency metrics for the survey.

The resulting numbers for usage data are shown in Table 7.3, and for respondent opinion
numbers in Table 7.4. For a more detailed summary of the survey answers, a print-out of the
Google Forms summary can be found in Appendix B (in Swedish).

Event list Timeline Calendar HQ
Adopters 12 22 13 13

Non-adopters (Low value) 10 0 9 9
Non-adopters (Low satisfaction) 0 0 0 0

Table 7.1: Online survey respondent adoption of the di�erent fea-
tures, presented alongside an aggregated of non-adoption reasons.

51

7. Results

Event list Timeline Calendar HQ App
1-5 (avg: 3) 6 5 10 5

5-10 (avg: 7.5) 2 6 0 3
>10 (avg: 10) 4 10 3 5

Total Monthly Sessions 63 153 57 87.5 238

Table 7.2: Respondent usage frequency per month for each feature
as well as total monthly sessions for the online survey.

Event list Timeline Calendar HQ
Usage frequency 0.304167 0.370325 0.23085 0.336538

Engagement 0.264706 0.642857 0.239496 0.367647
Adoption 0.545 1 0.591 0.591

Table 7.3: Computed evaluation criteria numbers for the usage met-
rics based on the response data of the online survey.

Event list Timeline Calendar HQ
Value 3.92308 4.63636 3.38462 4.38462

Satisfaction 4.07692 4.09091 3.92308 4.23077
Total value 2.31818 4.63636 2 2.5909

Table 7.4: Computed numbers for the opinion metrics base on the
response data of the online survey.

7.1.2 Post-deployment data evaluation criteria
Due to the limited response rate of Android users, post-deployment data was only collected
from iOS users. The computed evaluation criteria numbers can be viewed in Table 7.5, based
on the usage data presented in Figures 5.3-5.6.

Event list Timeline Calendar HQ
Usage frequency 0.32 0.43 0.14 0.36

Engagement 0.0229 0.2676 0.0081 0.1562
Adoption 0.0526 0.4031 0.0569 0.321

Table 7.5: Computed evaluation criteria numbers for the usage met-
rics, based on collected post-deployment data.

7.1.3 Ordering by majority vote
The majority vote ordering of the features, together with normalized graphs for all results
are presented in Figures 7.1, 7.2 and 7.3. The means of the normalized metrics can be viewed

52

7.1 Evaluation criteria results

in conjunction with a summary of the majority vote ordering in Figure 7.4. We abbreviate
the feature names with their first letter, i.e event list becomes ”E”.

(a) Normalized usage metrics for post-
deployment usage data.

Ordering
Usage frequency T > H > E > C

Engagement T > H > E > C
Adoption T > H > C > E
Results T > H > E > C

(b) Relative feature order-
ing obtained by majority
voting, using usage met-
rics for post-deployment
usage data.

Figure 7.1: Relative feature ordering based on normalized usage met-
rics for post-deployment data.

(a) Normalized usage metrics for online survey
data.

Ordering
Usage frequency T > H > E > C

Engagement T > H > E > C
Adoption T > C = H > E
Results T > H > E > C

(b) Relative feature order-
ing obtained by majority
voting, using usage met-
rics for the online survey
data.

Figure 7.2: Ordering based on normalized usage metrics for the on-
line survey data

53

7. Results

(a) Normalized opinion metrics for the on-
line survey data.

Ordering
Value T > H > E > C

Satisfaction H > T > E > C
Total value T > H > E > C

Results T > H > E > C
(b) Relative feature
ordering obtained by
majority voting, us-
ing opinion metrics
for the online survey
data.

Figure 7.3: Feature ordering based on normalized opinion metrics of
the online survey answers.

(a) Mean normalized metrics

Ordering
Opinion T > H > E > C

Usage - Survey T > H > E > C
Usage - Data T > H > E > C
(b) Final feature
ordering for the post-
deployment feature
usage data, the online
survey usage data and
the online survey opion
metrics.

Figure 7.4: Usage and opinion metrics in contrast to the final or-
dering for each metric type, based on post-deployment and online
survey data.

54

7.2 A/B-test

7.2 A/B-test
This section presents the outcome of the A/B-test itself in terms of our evaluation criteria,
shown in Figure 7.5. Relevant data for calculating the statistical power of the test variants
can be viewed in Table 7.6, for the χ2 test and Welch’s t-test respectively. Statistical tests
were conducted for both the 14 day and 28 day time periods, counted from the release of the
test to the end-user.

(a) The distinct user count
per test variant group, inter-
acting with the slow motion
feature.

(b) The distinct user count
per test variant group visiting
the playback view of the ap-
plication, containing the slow
motion feature.

(c) Accumulated sessions of
the application, containing
at least one slow motion fea-
ture interaction.

(d) Displays the number-of-
session distribution for the
users, in terms of sessions in-
cluding the slow motion fea-
ture interaction.

Figure 7.5: The results of the A/B-test from the 28 days following
the release of the test, in terms of the evaluation criteria.

55

7. Results

χ2 test data
A B C

Adopters14 146 143 88
Non-Adopters14 597 531 614

Total14 743 674 702
Adopters28 237 255 158

Non-Adopters28 794 719 810
Total28 1031 974 968

Welch’s t-test data
A B C

λ14 13.86 14.43 8.0
λ28 13.5 14.0 10.42

Table 7.6: Resulting data extracted for the 14 and 28 day time pe-
riods following the release of the test, constituting the input values
for the χ2 test and Welch’s t-test. Note that the experiment was con-
ducted on a subset of the total user base of the application.

A-B A-C B-C
Welch14 0.69 8.9 · 10−5 3.4 · 10−5

χ2
14 0.51 3.2 · 10−4 2.3 · 10−5

Welch28 0.62 1.6 · 10−3 3.4 · 10−4

χ2
28 0.11 2.3 · 10−4 1.5 · 10−7

Table 7.7: The resulting p-values obtained from the statistical tests
performed on the di�erent test variants, for the 14 day and 28 time
period data.

56

7.3 In-app survey segmentation

7.3 In-app survey segmentation
The results for the in-app survey segmentation can be viewed below. The response count for
the di�erent user groups (based on happiness) is shown in Table 7.8. The relevant evaluation
criteria for the data obtained are presented in graphs in Figure 7.6. The evaluation criteria
numbers are then presented in Table 7.9 and displayed in comparison in a graph in Figure
7.7. The time period chosen for the evaluation criteria is the two weeks after the final answer
of the survey had been collected; 22 April - 5 May.

Count
Happy (4-5 stars) 23
Neutral (3 stars) 1

Unhappy (1-2 stars) 0
Dismiss 55

Table 7.8: In-app survey response counts between April 1 and April
21

Figure 7.6: Data Studio evaluation criteria graphs for relative en-
gagement and relative usage frequency, segmented on happy users
and dismissers.

57

7. Results

Happy Dismiss
Usage frequency 0.577 0.5

Engagement 0.281 0.301

Table 7.9: Computed evaluation criteria numbers for the usage met-
rics, based on collected post-deployment data.

Figure 7.7: Normalized usage metrics for post-deployment usage
data.

58

Chapter 8

Discussion

8.1 Evaluation criteria
If post-deployment data can be used to find feature success, it will result in a faster feed-
back loop, where developers can quickly find which features need further development with-
out having to resort to customer contact, which solves the ”open-loop”-problem. This also
shifts the development process to become fully data-driven, pushing developers to make in-
formed decisions based on data and not opinion. Our ranking system attempts to find a link
between Happiness and Engagement, Adoption, and Retention in the HEART-framework,
where maximizing happiness will maximize feature success, as presented in Section 5.1.1.

The final results for the evaluation criteria, seen in Figure 7.4, show that a pattern emerges
when condensing the evaluation criteria graphs into numbers and comparing them to the
survey results. Through majority voting for each type of metric, we get the same relative or-
dering: Timeline > HQ > Event list > Calendar. This means that the timeline is ordered as the
best feature, HQ the second-best, etc. This ordering confirms the opinions of the developers
concerning the timeline and the calendar, which are ordered as the best and the worst respec-
tively (see Section 5.1.6). Since the ordering is the same for both the usage metrics and the
opinion metrics, we draw the conclusion that our usage metrics could indicate user value and
satisfaction. For example, if feature X has a majority of better evaluation criteria numbers
than feature Y, feature X gives more user value and satisfaction than feature Y. Consequently,
in line with the business goals of AXIS, feature X is then more successful than feature Y.

However, there are many factors impacting our results that make this conclusion quite
weak (see Section 8.1.3 for discussion).

8.1.1 Detailed comparisons
Comparing Figure 7.1 (usage metrics - post-deployment data) and Figure 7.2 (usage metrics
- survey), we find very similar patterns for the metrics, although the intra-metric variance

59

8. Discussion

for the post-deployment data is much bigger. The most interesting observation here is the
discrepancy between the usage frequency and the other evaluation criteria numbers for the
event list, where the usage frequency is relatively high. The event list is a new feature, and has,
as expected, low adoption and engagement. We propose that this indicates that the users that
have started to use the event list appreciate it, since a high usage frequency score indicates
a high relative number of users that use the feature often. Another interesting observation
is that adoption for HQ is comparatively low for the metrics from the survey, tying with
calendar, partially confirming the suspicion of the developers that HQ is hard to find (see
Section 5.1.6). Note that this is not the case for the post-deployment data.

The opinion metrics for value and total value, seen in Figure 7.3, show a clear pattern
similar to the two previous usage metrics. Satisfaction has very little variance due to most
respondents rating their satisfaction as either 4 or 5.

8.1.2 Assumptions and generalizations
The responses from the online surveys are mostly from iOS users (19 out of 22 respondents).
Since the responses from Android users are few and we want as many respondents as possible
for evaluation purposes, we group them together with the iOS users as we assume that they
use the application in the same manner. This means that we only consider the iOS version
of the application and only present usage metrics for post-deployment data for iOS. We
also make some generalizations concerning some of the free-text answers for some of the
questions. For example, a user that answered ”I got the impression that HQ was automatically
on” on the question ”Why do you not use HQ?” was categorized as ”I didn’t know it existed”,
and was interpreted as a ”low-value” answer.

We also use the means of the survey responses for the opinion metrics. As mentioned in
Section 2.7, Likert scales are generally not supposed to be condensed into mean values, since
they do not represent relative data points, and the correct way would be to use medians and
ranges instead. We forego best practice to instead be better able to di�erentiate the opinion
metrics between the di�erent features, giving fewer ties in the ordering.

8.1.3 Limitations and problems
There are several elements that impact our results negatively. The most glaring issue is using
the online survey as a representative sample of the opinions of the whole user base. First of
all, the respondents are very few. Having only 22 respondents, we cannot say that we have
anything near a robust sample. Furthermore, these users are a very specific subset of the user
base, most of them beta-testers employed at AXIS, which for example could provide them
with useful internal information, and having very specific user cases, not representative of the
average user. The low variance of the satisfaction answers makes it hard to draw any sort of
conclusion based on user satisfaction, and the ranking represents primarily user value. Also,
the way we order the result does not take into consideration the great intra-metric di�erence
between the features and could oversimplify findings. For example, the adoption di�erence
between the calendar and the event list is much smaller than the one between the calendar
and HQ.

60

8.2 In-app survey

8.2 In-app survey
Being able to label satisfied users in the collected post-deployment data would be very ben-
eficial in terms of finding feature usage patterns that correspond to feature success. Having
access to these labels, segmentation on satisfied and dissatisfied users could be done, poten-
tially giving valuable information input to the organization.

The segmentation for the in-app survey is done by grouping happy users and users that
dismiss the survey. The evaluation criteria graphs are condensed into evaluation criteria num-
bers for the metrics to investigate if any patterns can be found. Due to problems using base-
lines for adoption, we excluded it for this comparison. However, the metrics found were very
similar, no patterns could be detected, and no ranking could be done.

8.2.1 Limitations
The number of responses is lower than expected. Hoping for a large response number giving
us a good sample of the event list users, only 24 users respond to the survey, and 55 users
dismiss it. Furthermore, there are no users rating their experience as bad (1-2 stars). That
is why we compare dismissers to happy users; it is the only comparison we can make. We
attribute the bias to happy users to the decision to have the survey only be displayed to users
that have used the feature more than five times. This filters users that have used the feature a
few times and not been happy with it. Also, due to implementation details, the counting of
feature usage only started after the in-app survey was deployed. This removes early adopters
that stopped using the feature from the response pool. Of course, the positive responses could
be because of a good implementation of the feature.

8.3 A/B-test
In order to augment and improve the Learn-step of the BML loop, helping AXIS become more
data-driven in their mobile application feature development, a proof-of-concept implemen-
tation and deployment of an experiment was conducted. The experiment itself randomized a
subset of the real end-users on the iOS version of the ACS application, into three equally sized
groups. The users of the di�erent groups received di�erent information about the existence
of the slow-motion feature, for viewing recorded video clips, see Figure 5.9 and Figure 4.1,
representing the A and B variant respectively (the control group received no information).

8.3.1 Main result
The learning outcome, based on the results, is that the users should be informed about new
features, but the better way of informing users could not be distinguished in this test. In
terms of getting the users to try the feature once, as well as producing higher engagement, a
significant di�erence was found across the test group data. Using both the engagement and
adoption metrics as evaluation criteria produced statistically significant results, p < 0.05,
strongly indicating that the A and B variants were preferable to the control group, yielding
both higher adoption rates as well as engagement intensity, see Figure 7.5a, Figure 7.5c and

61

8. Discussion

Table 7.7. However, A and B could not confidently be said to di�er in terms of the adoption
and engagement metrics. The department’s informal ”hunches” regarding the superiority of
the A and B variants, see Section 5.2.4, could not be confirmed by observing the collected
data. The di�erent locations of the information presentations were thought to have side-
e�ects, the dialog of variant A presented at a shallow navigation layer of the application
could potentially drive a higher proportion of its test group population into the playback
view. While this e�ect can be seen in Figure 7.5(b), we investigated further, and found that
variant A had a higher number of users assigned to it for some reason, canceling out any
higher adoption for the baseline. Thus, this hunch is proven to be false. Neither did the
adoption rates of the A and B variants di�er in a statistically significant way.

As was presented in Section 2.5, internet-connected software running on clients is suit-
able for conducting experiments like A/B-tests. The proof-of-concept implementation and
deployment of the A/B-test of this thesis is another example of this. The department can
learn new things about their users and their application using empirical tests, pushing the
organization even further towards in its pursuit of data-driven decision making.

8.3.2 The case for A/B-tests
Inference of causal relationships between software implementations and their estimated re-
spective performance observed using collected post-deployment data is not always a simple
matter, but A/B tests can mitigate most of the confounding factors. The thesis work has in
large parts consisted of trying to figure out what conclusions one can draw from analyzing
feature usage data in particular. When and if a pattern or a deviation from prior patterns
is detected, what can be said about the underlying cause that manifests itself in the data?
A wide array of factors can influence the feature usage data that is collected, sometimes to
the degree that the noise might be indistinguishable from actual information. Patterns may
di�er on the temporal level; usage fluctuates depending on the time of day and day of the
week. Holidays, COVID-19 lockdowns, weather conditions, network infrastructure, power
outages, di�ering technical specifications (for example, device and operating system used)
are all other possible variables to consider, which influences how the end-users usage pattern
manifests itself. Power users and new users probably interact with the application in di�erent
ways, producing yet another variable to factor into the analysis. The A/B-test methodology
tries to mitigate these external factors by assigning users to their respective test groups using
randomization. The external factors’ influence on the collected usage data should hopefully
not di�er across groups, which makes it more likely that the e�ect an intervention actually
had can be established.

8.3.3 Method discussion
Taking a closer look at the resulting slow-motion feature engagement metric, Figure 7.5c, an
interesting observation can be made. Looking at the slope of the test variants, before and after
March 15, a mean reversion of the groups can be observed, where both the A and B variants
result in a steeper engagement curve initially. This appearance can be interpreted in one of
two ways, in terms of what caused it. The first interpretation relies solely on the fact that the
users of the A and B test groups initially were given information about the feature, which in
turn resulted in a higher intensity of sessions interacting with the slow-motion feature.

62

8.4 Further work

However, a measurement error might have been introduced when the test was first re-
leased. Old Firebase framework dependencies in the iOS app build that was released to the
app store resulted in initial erroneous logging of the test group assignments for the individ-
ual users. Instead of logging which group a user belonged to, a null value was found in its
place. A fix for this was released a few days later, which enabled a retroactive mapping of
user groups. However, this might have introduced a smaller measurement error, since some
users never could be mapped this way.

In any way, the engagement metric slope for the di�erent test variants seems to experience
a mean reversion; 14 days after the intervention was deployed no meaningful di�erence in
engagement rates can be spoken of. This means that while users in the A and B groups to a
greater extent tested the feature than control group users, they did not continue to frequently
use the feature. Bluntly put, the slow-motion feature’s value to the users could be limited since
they did not continue to use it. This could be another interesting finding obtained from the
A/B-test.

The statistical modeling for the engagement metric was based upon the assumption of
the session count data being modeled as a Poisson process. An underlying assumption for
a process having a Poisson distribution is that the intensity remains constant, it should be
time-invariant. This may in practice not be entirely true, as we observed shifts in intensity
manifested as mean reversions, after about 14 days after the test was released.

A final note about the statistical significance levels of the Welch14 test related to the
control group should be made, found in Table 7.7. This value was obtained using the 14 day
intensity λC = 8.0, as given in Table 7.6. In the theory chapter, Section 2.8, this value was
required to be greater than 10 in order for the Poisson distribution to be normally approxi-
mated. This makes the underlying model less accurate, as the resulting Poisson distribution
is not ”as normally distributed” as we want it to be. However, the 28-day intensity values
fulfill all prerequisites.

8.4 Further work
8.4.1 Evaluation criteria
Given that the conclusion for the evaluation criteria holds, a ranking representing user value
could be produced using post-deployment data. This could be applied to all features, giv-
ing rise to a ranking system where the low ranking features could be identified and further
investigated why they rank so poorly.

It is not easy to directly measure user value and satisfaction, using only post-deployment
data as input. Several external factors could result in the wrong conclusions drawn. For
example, an important feature not working 75% of the time will result in high usage, and
our ranking will indicate that it is properly implemented when that is not being the case.
Additionally, while the features chosen for the results could be compared well without using
a baseline, it is important to consider using one when making comparisons between shallowly
and deeply located features, in terms of their placement in the applications view hierarchy.

To be able to validate our model and conclusions, which would motivate its integration
into the development process, we propose deploying more surveys directed at the actual users
of the application, either as more extensive in-app surveys or as online surveys. Being certain

63

8. Discussion

that the model in fact captures user value and satisfaction, would enable quick and cheap
feedback, closing the loop.

Nevertheless, the analysis of post-deployment usage data using adoption, engagement,
and retention is important in itself. It shows usage patterns for di�erent features and could
be used to identify anomalies in behavior. It is a cornerstone in the analysis in A/B-tests,
where the minimization of external factors impacting the results will result in robust metrics
for deciding which variant is the best. It can also be an important factor in a hypothesis-
driven decision making process. It could be used to answer questions, which in turn will
produce hypotheses, such as ”What percentage of adoption do we expect after two weeks?”,
”What should be the average daily engagement when the feature is properly implemented?”
and ”What kind of usage frequency pattern will this feature produce?”. Also, comparisons
with other features using historical data could also be done, answering questions such as
”Should feature X have better usage patterns than feature Y given the same time period after
release?”.

Furthermore, in-app surveys could be directed at users with a certain usage pattern. For
example, users that stop using a feature X after some number of times could be targeted with
a survey asking ”Why did you stop using feature X?”, or high-frequency users could be asked:
”Is feature X working properly?”. This information can then be used in the development
process to find if strange patterns for a certain feature point to a problem, or to show reasons
for usage patterns for certain segments in the user base.

All in all, while a link between feature success and our evaluation criteria would be a
golden opportunity to make feature development fully data-driven, we cannot currently
make a case for the existence of such a link. Due to all the external factors impacting dif-
ferent features in various ways, we find it hard to argue for a catch-all way to measure user
value and satisfaction from any analysis of usage data. It might work for a case-to-case basis,
but the loss in automation will lessen the positive impact in the development process, since
decisions continuously need to be made in what ways external factors a�ect the analysis. For
measuring user happiness, it is probably better to depend on the state-of-the-art way of ask-
ing questions to users, preferably by utilizing online surveys and in-app surveys. Another
promising alternative as well is data mining app reviews.

8.4.2 A/B-test
A/B tests conducted by a smaller development organization might di�er from how tech gi-
ants like Google or Microsoft utilize the methodology. Development resources must be chan-
neled toward development activities generating the greatest user value, and conducting ex-
tensive A/B-tests does not come without overhead in development time and resources. The
most resource-e�ective way would probably be to conduct A/B tests, where one of the vari-
ants was seen as the control. This would minimize development overhead, but delay the
potentially ”new” version to part of the user base. Another strategy could be to deploy risky
changes to smaller sets of the total user base, closely monitoring key metrics to prevent qual-
ity deterioration.

The way forward concerning the continued conduction of A/B-tests is highly connected
to the general process of evaluating features and the success of feature implementations. The
A/B-test methodology aims at finding superior implementation variants and selecting the
most appropriate one going forward. The evaluation metric then quickly becomes key in

64

8.5 Revisiting the research questions

making the better decision on which variant to proceed with. In our case, the adoption
metric was easily identified as the key metric to evaluate the test variants. However, the
information feature can be regarded as somewhat of a meta-feature, informing about the real
functionality provided by the slow-motion feature. It would have been interesting to test
two di�erent implementations of a feature itself. Perhaps the HQ feature could have been
tested, where the di�erent test groups were assigned di�erent video stream quality values.
Choosing a good metric to evaluate this test might not have been as obvious, giving us more
of an analysis.

To be able to utilize the A/B test fully, it is important to embrace the hypothesis-driven
decision making presented in for example the BML-loop. With A/B-testing, it is very easy to
see what di�erences there are after releasing the variant and reducing opacity in the devel-
opment process.

The test was conducted on the iOS version of the ACS application. Results from an
Android version of the application would have been interesting to compare with as well,
which is something that could be attempted in the future.

8.5 Revisiting the research questions
To summarize our findings and discuss our answers to the previously formulated research
questions, each research question is discussed separately in the bullet list below.

• RQ1: How can post-deployment data be used to evaluate the level of success of feature
implementations?

Several ways of using post-deployment data for evaluating feature success were inves-
tigated. We identified several use- and analysis objectives of post-deployment data
already in place at the Mobile Applications department, such as the usage of data in
tracking app stability and performance. Value-, pain point-, use path-, and user profil-
ing analysis were identified as di�erent ways of utilizing the collected data. The thesis
was focused on the value analysis area. Novel methods to the department were then
investigated and introduced: the A/B-test and the feature usage evaluation criteria.

• RQ2: What types of evaluation criteria could be used to evaluate features released to
the end-users?

The quality in use definition described in theory lists various measures of the e�ective-
ness, e�ciency, and satisfaction concepts that features potentially could be evaluated
on. The circumstance under which the thesis work was carried out resulted in a focus
on the satisfaction concept of this definition. The reason for this focus pertained to
the department’s current data utilization being heavily geared towards the e�ective-
ness and e�ciency measures already, making the satisfaction concept most valuable
to investigate. For the department, we found that evaluation criteria capturing user
value and satisfaction based on user-feature interaction data could be used as a new
way of evaluating features. For this purpose, the evaluation criteria used for post-
deployment data in the HEART framework: Engagement, Adoption, and Retention
was investigated. Both the adoption and engagement criteria were also found to work
in an A/B-test context, for testing hypotheses regarding di�erent implementations of
a feature.

65

8. Discussion

• RQ3: How can the evaluation of implemented features be used in current software
development processes?

Using a model capturing user value and satisfaction solely using post-deployment data
is incentivized in two ways; the high speed paired with the relatively low cost of ob-
taining continuous feedback. Depending on the organization’s trust in the evaluation
criteria, it could be used either as a quick feature screening tool, identifying potential
candidate features requiring further investigation, or it could be used as the standard
tool that feature implementations are bench-marked against. Further investigation
methods could entail consulting feature experts with the specific domain knowledge
for additional insight, or conducting surveys on parts of the user base to obtain user
opinions. A/B-testing as a way of evaluating feature variants is a good tool, and it can
become a central part of the BML-loop by bringing forth an easy way of posing rela-
tive hypotheses, utilizing the evaluation criteria we developed. The way A/B-tests can
be used in practice can be tailored according to context, feature improvements could
be tested against the old feature, di�erent variants could be tested simultaneously, to
evaluate the continuous improvements and additions made to an application.

66

Chapter 9

Conclusion

Satisfying organizational knowledge needs for e�ective feature development is an important
aspect to consider, especially for customer-oriented software companies. Knowing how the
end-user interacts with and think of an application can provide a basis for decision making
and planning activities related to further development. To this end, customer data needs to
be collected and analyzed, results must then subsequently be interpreted, in order to close
the feature feedback loop. Using post-deployment data as an information channel consti-
tutes a quick way of learning how well the application performs in production. Collecting
performance-, error-, or usage related data enables for rapid feedback, making quick pivoting
of development e�orts possible. The informed feature development process consequently
benefits from ways of evaluating features according to the specific organization’s business
goals. For this purpose, consciously defining evaluation criteria capturing long term value
drivers for an organization that still are measurable in the short term becomes a crucial ac-
tivity.

For mobile applications not directly monetized in the application itself, alternative value
drivers must be identified. Providing an exemplary user experience and features that are
of high value to the users can constitute one such organizational business value target. In
light of this, being able to capture user happiness and the knowledge of what features the
users value by processing collected usage data becomes very attractive. One of the original
motivations for the thesis work was to create such feature evaluation criteria. Capturing
end-user satisfaction with a feature by utilizing collected usage data can be attempted, but
is not without complications in practice. Noise and overall stochasticity of collected data,
produced by a wide array of underlying causes, pose real challenges in this regard. While
it could be possible to construct such evaluation criteria, a surefire way used in industry to
measure user satisfaction is to conduct surveys, asking users for their opinions directly.

A relative ranking of four features of a mobile application was obtained in terms of user
opinions collected using surveys. Using only post-deployment data, the same ranking could
be found. This indicates that by only processing post-deployment data, users’ opinions about
the feature could be captured to some extent. To further investigate and validate this find-

67

9. Conclusion

ing for our context, further surveys should be conducted in order to expand the evaluation
data basis beyond what was accumulated during this thesis. Surveys are on their own also a
potential way of evaluating features for this category of business targets. However, the spe-
cific target audience of the user base should be considered; can the survey e�ort be directed
intelligently to specific parts of the user base?

Informed feature development can also be administered by experimenting with new ideas,
deciding whether to pivot or persevere based on what can be observed in the collected post-
deployment data. Introducing a novel software development strategy to the department in
the form of the A/B-test methodology, new things about a mobile application and its user
base was learned. By conducting a proof-of-concept A/B-test, including A and B variant im-
plementations, hypothesis formulation and, live deployment to production and, subsequent
analysis of post-deployment data, this methodology was proven e�ective in its capabilities
to test experiment with new ideas, empirically drawing conclusions based on data. The uti-
lization of A/B-tests helps establish a causal relationship about implementations and their
e�ect, making the data that the decision making is to be made upon more reliable. Conduct-
ing A/B-test in the smaller development team setting in a large scale way can possibly pose
challenges on its own since development resources are limited and need to be directed e�-
ciently. The best way forward to leverage this strategy into the development process should
be investigated further or be determined on a case-to-case basis.

68

References

[1] ISO/IEC JTC 1/SC 7. Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) - Measurement of quality in use. Standard
ISO/IEC FDIS 25022:2016, International Organization for Standardization, 2016.

[2] Alan Agresti. Categorical data analysis, volume 482 of A Wiley-Interscience publication.
John Wiley & Sons, New York [u.a.], 2 edition, 2003.

[3] Airbnb. iOS Lottie Docs. http://airbnb.io/lottie/#/ios. [Online; accessed
24-April-2020].

[4] I Elaine Allen and Christopher A Seaman. Likert scales and data analyses. Quality
progress, 40(7):64–65, 2007.

[5] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Je�ries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Je� Sutherland, and Dave
Thomas. Manifesto for agile software development, 2001.

[6] Nigel Bevan, Jim Carter, Jonathan Earthy, Thomas Geis, and Susan Harker. New iso
standards for usability, usability reports and usability measures. In HCI 2016: Human-
Computer Interaction. Theory, Design, Development and Practice, volume 9731, pages 268–
278, 07 2016.

[7] George E. P. Box, J. Stuart Hunter, and William Gordon Hunter. Statistics for experi-
menters : design, innovation and discovery. Wiley series in probability and statistics. Wiley-
Interscience, 2005.

[8] Erik Brynjolfsson, Lorin M. Hitt, and Heekyung H. Kim. Strength in numbers: How
does data-driven decisionmaking a�ect firm performance? SSRN eLibrary, 2011.

[9] Pavel Dmitriev, Somit Gupta, Dong Woo Kim, and Garnet Vaz. A dirty dozen: twelve
common metric interpretation pitfalls in online controlled experiments. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1427–1436, 2017.

69

http://airbnb.io/lottie/#/ios

REFERENCES

[10] Weitao Duan, Qian Wang, Rogier Verhulst, and Ya Xu. Scalable online survey frame-
work: from sampling to analysis. arXiv preprint arXiv:1906.10082, 2019.

[11] Paul M. Duvall, Steve Matyas, and Andrew Glover. Continuous integration : improving
software quality and reducing risk. Addison-Wesley signature series. Addison-Wesley, 2007.

[12] Firebase Help. Automatically collected events. https://support.google.com/
firebase/answer/6317485, 2020. [Online; accessed 13-March-2020].

[13] Firebase Help. BigQuery Export schema. https://support.google.com/
firebase/answer/7029846?hl=en, 2020. [Online; accessed 13-March-2020].

[14] Firebase Help. Event and parameter details (Google Analytics for Firebase).
https://support.google.com/firebase/answer/7061705?hl=en&ref_
topic=7029512, 2020. [Online; accessed 13-March-2020].

[15] Google Developers. Firebase A/B Testing. https://firebase.google.com/docs/
ab-testing, 2020. [Online; accessed 13-March-2020].

[16] Google Developers. Firebase Remote Config. https://firebase.google.com/
docs/remote-config, 2020. [Online; accessed 13-March-2020].

[17] Google Developers. Google Analytics. https://firebase.google.com/docs/
analytics/, 2020. [Online; accessed 13-March-2020].

[18] Marijn Janssen, Haiko van der Voort, and Agung Wahyudi. Factors influencing big data
decision-making quality. Journal of Business Research, 70:338 – 345, 2017.

[19] N.L. Johnson, A.W. Kemp, and S. Kotz. Univariate Discrete Distributions. Wiley Series in
Probability and Statistics. Wiley, 2005.

[20] Ron Kohavi, Alex Deng, Brian Frasca, Roger Longbotham, Toby Walker, and Ya Xu.
Trustworthy online controlled experiments: Five puzzling outcomes explained. In Pro-
ceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 786–794, 2012.

[21] Ron Kohavi and Roger Longbotham. Online Controlled Experiments and A/B Testing, pages
922–929. Springer US, Boston, MA, 2017.

[22] Christoph Matthies and Guenter Hesse. Towards using data to inform decisions in
agile software development: Views of available data. Proceedings of the 14th International
Conference on Software Technologies, 2019.

[23] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geo�rey Romer, Shiva Shivakumar,
Matt Tolton, and Theo Vassilakis. Dremel: Interactive analysis of web-scale datasets.
Proc. VLDB Endow., 3(1–2):330–339, September 2010.

[24] H.H. Olsson, H. Alahyari, and J. Bosch. Climbing the "stairway to heaven" – a mulitiple-
case study exploring barriers in the transition from agile development towards con-
tinuous deployment of software. 2012 38th Euromicro Conference on Software Engineering
and Advanced Applications, Software Engineering and Advanced Applications (SEAA), 2012

70

https://support.google.com/firebase/answer/6317485
https://support.google.com/firebase/answer/6317485
https://support.google.com/firebase/answer/7029846?hl=en
https://support.google.com/firebase/answer/7029846?hl=en
https://support.google.com/firebase/answer/7061705?hl=en&ref_topic=7029512
https://support.google.com/firebase/answer/7061705?hl=en&ref_topic=7029512
https://firebase.google.com/docs/ab-testing
https://firebase.google.com/docs/ab-testing
https://firebase.google.com/docs/remote-config
https://firebase.google.com/docs/remote-config
https://firebase.google.com/docs/analytics/
https://firebase.google.com/docs/analytics/

REFERENCES

38th EUROMICRO Conference on, Software Engineering and Advanced Applications, Euromi-
cro Conference on, pages 392 – 399, 2012.

[25] H.H. Olsson and J. Bosch. From opinions to data-driven software r&d: A multi-case
study on how to close the ’open loop’ problem. 2014 40th EUROMICRO Conference on
Software Engineering and Advanced Applications, Software Engineering and Advanced Appli-
cations (SEAA), 2014 40th EUROMICRO Conference on, Software Engineering and Advanced
Applications (SEAA), 2013 39th EUROMICRO Conference on, pages 9 – 16, 2014.

[26] Eric Ries. The lean startup: How constant innovation creates radically successful businesses.
Portfolio Penguin, London; New York, 2011.

[27] Kerry Rodden, Hilary Hutchinson, and Xin Fu. Measuring the user experience on a
large scale: User-centered metrics for web applications. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’10, page 2395–2398, New York,
NY, USA, 2010. Association for Computing Machinery.

[28] Walker W. Royce. Managing the development of large software systems: concepts and
techniques. Proc. IEEE WESTCON, Los Angeles, pages 1–9, August 1970. Reprinted in
Proceedings of the Ninth International Conference on Software Engineering, March 1987,
pp. 328–338.

[29] T. Sauvola, L.E. Lwakatare, T. Karvonen, P. Kuvaja, H.H. Olsson, J. Bosch, and M. Oivo.
Towards customer-centric software development: A multiple-case study. 2015 41st Eu-
romicro Conference on Software Engineering and Advanced Applications (SEAA), 2015.

[30] Martha Sinclair, Joanne Otoole, Manori Malawaraarachchi, and Karin Leder. Compar-
ison of response rates and cost-e�ectiveness for a community-based survey: Postal, in-
ternet and telephone modes with generic or personalised recruitment approaches. BMC
medical research methodology, 12:132, 08 2012.

[31] S. Suonsyrja, O. Sievi-Korte, K. Systa, T. Kilamo, T. Mikkonen, T. Bures, and L. Angelis.
Objectives and challenges of the utilization of user-interaction data in software devel-
opment. 2018 44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), 2018.

[32] Sampo Suonsyrja, Laura Hokkanen, Henri Terho, Kari Systa, and Tommi Mikkonen.
Post-deployment data: A recipe for satisfying knowledge needs in software develop-
ment?. 2016 Joint Conference of the International Workshop on Software Measurement and the
International Conference on Software Process and Product Measurement (IWSM-MENSURA),
Software Measurement and the International Conference on Software Process and Product Mea-
surement (IWSM-MENSURA), 2016 Joint Conference of the International Workshop on, IWSM-
MENSURA, pages 139 – 147, 2016.

[33] Richard Berntsson Svensson, Robert Feldt, and Richard Torkar. The unfulfilled poten-
tial of data-driven decision making in agile software development. In Philippe Kruchten,
Steven Fraser, and François Coallier, editors, Agile Processes in Software Engineering and
Extreme Programming, pages 69–85, Cham, 2019. Springer International Publishing.

71

REFERENCES

[34] James Tamplin. Firebase is joining google! https://techcrunch.com/2014/10/
21/google-acquires-firebase-to-help-developers-build-better-realtime-apps/,
10 2014. [Online; accessed 13-March-2020].

[35] Vera Toepoel. Doing Surveys Online. SAGE Publications, Inc., 55 City Road, London, 1
edition, Jun 2016.

[36] B. L. Welch. The generalization of ‘Student’s’ problem when several di�erent population
variances are involved. Biometrika, 34(1-2):28–35, 01 1947.

[37] Kevin B. Wright. Researching Internet-Based Populations: Advantages and Disadvan-
tages of Online Survey Research, Online Questionnaire Authoring Software Packages,
and Web Survey Services. Journal of Computer-Mediated Communication, 10(3), 07 2017.
JCMC1034.

72

https://techcrunch.com/2014/10/21/google-acquires-firebase-to-help-developers-build-better-realtime-apps/
https://techcrunch.com/2014/10/21/google-acquires-firebase-to-help-developers-build-better-realtime-apps/

Appendices

73

Appendix A

Online survey - Feature descriptions

75

A. Online survey - Feature descriptions

Figure A.1: Screenshots and description of the event list feature of
the AXIS Companion application.

76

Figure A.2: Screenshots and description of the timeline feature of
the AXIS Companion application.

77

A. Online survey - Feature descriptions

Figure A.3: Screenshots and description of the playback calendar
feature of the AXIS Companion application.

78

Figure A.4: Screenshots and description of the video quality selec-
tion (HQ) feature of the AXIS Companion application.

79

A. Online survey - Feature descriptions

80

Appendix B

Online survey - Questions and answers

81

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 1/14

Generella Frågor

Är du anställd på Axis?

22 svar

Vilken plattform använder du Companion på?

22 svar

Undersökning av Axis Companions
mobilapp-användning
22 svar

Publicera analyser

Ja
Nej

13,6%

86,4%

Android
Apple/iOS
Båda

13,6%

13,6%

72,7%

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 2/14

Hur van vid att använda mobilappar skulle du säga att du är?

22 svar

Hur länge har du använt mobilappen för Companion?

22 svar

Hur ofta använder du mobilappen för Companion?

22 svar

1 2 3 4 5
0

5

10

15

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)
3 (13,6 %)

4 (18,2 %)

15 (68,2 %)

Mer än 12 månader
6-12 månader
3-6 månader
1-3 månader
Jag är en ny användare av
appen

13,6%

22,7%

59,1%

Färre än en gång i månaden
1-3 gånger i månaden
1-3 gånger i veckan
Fler än 4 gånger i veckan

13,6%

50%

31,8%

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 3/14

Eventlista (användning)

Har du använt eventlistan?

22 svar

Eventlista (frekvens)

Ungefär hur ofta använder du eventlistan per månad?

14 svar

Eventlista (utvärdering)

Ja
Nej36,4%

63,6%

0
1-5
5-10
Mer än 10 gånger
Har bara sett på den. Det är
notifieringar jag använder.
Varje dag. I princip varje
morgon för att kolla nattens
händelser

7,1%

7,1%

21,4%

14,3%

42,9%

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 4/14

Vilket värde har eventlistan för din användning av Companion?
(omformulera)

13 svar

Vad är din generella upplevelse av eventlistan?

13 svar

1 2 3 4 5
0

2

4

6

1 (7,7 %)

2 (15,4 %)

0 (0 %)0 (0 %)0 (0 %)

4 (30,8 %)

6 (46,2 %)

1 2 3 4 5
0

2

4

6

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

4 (30,8 %) 4 (30,8 %)

5 (38,5 %)

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 5/14

Övriga synpunkter på eventlistan? (valfritt)

5 svar

Kanske är en bug, men när jag trycker på ett event börjar videon spela ca 15sek innan
eventet triggas.

Förenklar att hitta i videon, men borde kunna användas för fler typer av event än VMD

Ett smidigare och snabbare sätt att hitta till händelser/inspelningar än att bläddra bland
recordings.

Man skulle kunna sortera den efter kamera, inte bara kronologisk

Använder det framförallt när jag är på semester.

Eventlista (ej använd)

Varför använder du inte eventlistan?

9 svar

Tidslinje (användning)

Jag behöver den inte.
Jag visste inte att den fanns.
Jag förstår inte hur den ska
användas.
Jag gillar den inte.
I haven't had time to play!
Behövs bara när man postum…
Kör Axis Object Analytics för r…
Jag har inte behövt den ännu
hittar den inte!

11,1%

11,1%
11,1%

11,1%

11,1%

11,1%
33,3%

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 6/14

Har du använt tidslinjen?

22 svar

Tidslinje (frekvens)

Ungefär hur ofta använder du tidslinjen per månad?

22 svar

Tidslinje (utvärdering)

Ja
Nej

100%

0
1-5
5-10
Mer än 10 gånger
Varje dag

40,9%

27,3%
27,3%

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 7/14

Vilket värde har tidslinjen för dig?

22 svar

Vad är din generella upplevelse av tidslinjen?

22 svar

1 2 3 4 5
0

5

10

15

20

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)
2 (9,1 %)

4 (18,2 %)

16 (72,7 %)

1 2 3 4 5
0,0

2,5

5,0

7,5

10,0

0 (0 %)0 (0 %)0 (0 %)
1 (4,5 %)

5 (22,7 %)

7 (31,8 %)

9 (40,9 %)

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 8/14

Övriga synpunkter på tidslinjen? (valfritt)

8 svar

Tidslinje (ej använd)

Varför använder du inte tidslinjen?

0 svar

Det finns ännu inga svar på den här frågan.

Kalender (användning)

Kanske en bug, men jag tycker att när jag väljer en tidspunkt att spela så hoppar
videon bakåt i tiden allt från 1-20sek och börjar spela därifrån.

Jag har vid upprepade tillfällen haft problem med att appen inte går till den tid som jag
klickar på i tidslinjen. Buggen är rapporterad, men problemet finns fortfarande kvar.

It often seems to bug out when scrubbing between multiple recordings

Enkel att använda. Lite långsamt att accessa video

Blir lite buggig att starta klipp ibland då jag spelar in video via ett annat event än det
VMD event som companion skapar på din kamera.

Skulle vilja ha fler färger beroende på vad som triggat event (Continouos, Motion
triggered VMD, andra triggade event från ACAPS (AOA), etc

Superanvändbart

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 9/14

Har du använt kalendern?

22 svar

Kalender (frekvens)

Ungefär hur ofta använder du kalendern per månad?

13 svar

Kalender (utvärdering)

Ja
Nej40,9%

59,1%

0
1-5
5-10
Mer än 10 gånger
Har bara använt någon enstaka
gång för att titta på klipp från
speciell dag.

7,7%

23,1%

69,2%

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 10/14

Vilket värde har kalendern för dig?

13 svar

Vad är din generella upplevelse av kalendern?

13 svar

Övriga synpunkter på kalendern? (valfritt)

2 svar

Inga generella förbättringsförslag

Egentligen är det en värdefull funktionalitet när det väl behövs, jag har bara inte haft
behovet så ofta.

Kalender (ej använd)

1 2 3 4 5
0

1

2

3

4

1 (7,7 %)

2 (15,4 %)

4 (30,8 %)

3 (23,1 %) 3 (23,1 %)

1 2 3 4 5
0

2

4

6

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

5 (38,5 %)

4 (30,8 %) 4 (30,8 %)

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 11/14

Varför använder du inte kalendern?

9 svar

HQ (användning)

Har du använt HQ?

22 svar

HQ (frekvens)

Jag behöver den inte.
Jag visste inte att den fanns.
Jag förstår inte hur den ska
användas.
Jag gillar den inte.

66,7%

33,3%

Ja
Nej

27,3%

72,7%

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 12/14

Ungefär hur ofta använder du HQ per månad?

16 svar

HQ (utvärdering)

Vilket värde har HQ för dig?

13 svar

0
1-5
5-10
Mer än 10 gånger
Har alltid igång HQ. Är
videokvalitetsonanist så allt
med lagg och låg upplösning
går bort.18,8%

25%

18,8%

31,3%

1 2 3 4 5
0

2

4

6

8

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)
2 (15,4 %)

4 (30,8 %)

7 (53,8 %)

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 13/14

Vad är din generella upplevelse av HQ?

13 svar

Övriga synpunkter på HQ? (valfritt)

5 svar

tar ibland lång tid att "ladda om" videon från låg till hög kvalite (men det kan man inte
lasta appen för)

Jag tror funktionen kan vara svår att hitta för användare.

Använder sällan low quality stream

Har problem att leverera baserat på uppkopplingshastighet. Dvs ska du kolla en 4k
inspelning via mobilnät och du har överbelastat nät eller dålig täckning så laggar
filmerna rätt friskt. Borde bli bättre på att buffra innan filmerna spelas upp.

Lätt att glömma att man har HQ disablad. Kanske ha olika färger för icke HQ och HQ?

HQ (ej använd)

1 2 3 4 5
0,0

2,5

5,0

7,5

10,0

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

10 (76,9 %)

3 (23,1 %)

2020-05-14 Undersökning av Axis Companions mobilapp-användning

https://docs.google.com/forms/d/1uHVFy08LRwj4HoQBQGwTbut2n0a30QD6COjyYkd1x2E/viewanalytics 14/14

Varför använder du inte HQ?

9 svar

Det här innehållet har varken skapats eller godkänts av Google. Anmäl otillåten användning - Användarvillkor -
Sekretesspolicy

Jag behöver den inte.
Jag visste inte att den fanns.
Jag förstår inte hur den ska
användas.
Jag gillar den inte.
Jag hade fått för mig att det
automatiskt var HQ

11,1%

44,4%

44,4%

 Formulär

B. Online survey - Questions and answers

96

Appendix C

Python script for Welch’s t-test and the χ2

test

i m p o r t numpy a s np
from math i m p o r t s q r t
i m p o r t s c i p y a s sp
i m p o r t s c i p y . s t a t s
i m p o r t i t e r t o o l s

#
We l c h ’ s t− t e s t f o r c u m u l a t i v e e n g a g e m e n t

d e f w e l c h P a r a m s (l a , lb , na , nb) :
va , vb = na − 1 , nb − 1
t = (l a − l b) / s q r t (l a / na + l b / nb)
v = (l a / na + l b / nb) * * 2 / \

(l a **2 / (na **2 * va) + l b **2 / (nb **2 * vb))
r e t u r n t , v

1 4 d a y s
l a m b d a _ a = 1 3 . 8 6
lambda_b = 1 4 . 4 3
l a m b d a _ c = 8 . 0
n = 14

28 d a y s
l am b d a _ a = 1 3 . 5
l am b d a _ b = 1 4 . 0
l a m b d a _ c = 1 0 . 4 2
n = 28

f o r (l a b e l , l ambda_1 , l a m b d a _ 2) i n [(’A/ B ’ , l ambda_a , l ambda_b) ,
(’A/C ’ , l ambda_a , l a m b d a _ c) ,
(’ B /C ’ , lambda_b , l a m b d a _ c)] :

97

C. Python script for Welch’s t-test and the χ2 test

t , v = w e l c h P a r a m s (l ambda_1 , l ambda_2 , n , n)
p = 2 * sp . s t a t s . t . c d f (− a b s (t) , v)

p r i n t ()
p r i n t (’ Welch \ ’ s t− t e s t f o r : ’ , l a b e l)
p r i n t (’ t : ’ , t , ’ v : ’ , v)
p r i n t (’ p− v a l u e : ’ , p)
p r i n t (s t r (’− ’ * 1 0))

#

#
C h i 2 t e s t f o r c u m u l a t i v e a d o p t i o n

1 4 d a y s
a = [1 4 6 , 5 9 7]
b = [1 4 3 , 5 3 1]
c = [8 8 , 6 1 4]

28 d a y s
a = [2 3 7 , 7 9 4]
b = [2 5 5 , 7 1 9]
c = [1 5 8 , 8 1 0]

ab = [a , b]
a c = [a , c]
bc = [b , c]

f o r (l a b e l , m) i n [(’A/ B ’ , ab) , (’A/C ’ , a c) , (’ B /C ’ , bc)] :
_ , p , _ , _ = sp . s t a t s . c h i 2 _ c o n t i n g e n c y (m)

p r i n t ()
p r i n t (’ Chi2 t e s t f o r : ’ , l a b e l)
p r i n t (’ p− v a l u e : ’ , p)
p r i n t (s t r (’− ’ * 1 0))

#

98

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-11

EXAMENSARBETE Data-Driven Feature Development
Using user-interaction data for feature evaluation
STUDENTER Emil Ahlberg, Oskar Widmark
HANDLEDARE Ulf Asklund (LTH), Markus Andersson (AXIS Communications)
EXAMINATOR Martin Höst (LTH)

Datadriven featureutveckling

POPULÄRVETENSKAPLIG SAMMANFATTNING Emil Ahlberg, Oskar Widmark

Mobilappar bör utvecklas för att möta användarnas behov och önskemål. Insamlad
användningsdata kan utnyttjas för att lära sig mer om sin användare, vilket kan vägas
in i framtida utvecklingsprioriteringar. Arbetet utforskar A/B-test som metod samt
framtagande av utvärderingskriterier för att indikera användarvärde i detta syfte.

Att använda insamlad användningsdata för att
förbättra en app är en mycket tilltalande strategi i
en värld där fler och fler processer blir datadrivna.
A/B-test är ett koncept där olika varianter av
en feature slumpvis tilldelas olika appanvändare
vilket utgör ett bra sätt att experimentera med
nya idéer. Genom att testa olika varianter på
sin användarbas kan en organisations hypoteser
kring olika implementationsförslag utvärderas or-
dentligt. Ett enkelt experiment skulle kunna un-
dersöka antal klick på en knapp som användare
generarar då knappen för olika användargruppen
ges olika färg. Genom att titta på ett antal
generella utvärderingskriterier, till exempel hur
många distinkta användare som faktiskt använder
en knapp eller hur ofta en knapp används, kan en
knapp-feature bedömas utifrån insamlad data.

Vi genomför ett A/B-test för en mobilapp för
att undersöka effekten av att informera användare
om nya features på två olika sätt jämfört med att
inte gå ut med någon information alls.

Resultatet för A/B-testet visar tydligt att fler
användare provar en feature då information ges.
Vilken variant av informationsdelning som är att
föredra kunde inte med urskiljas på ett statistiskt
signifikant sätt.
För appar vilka främst har nöjda användare som

mål är det värdefullt om målets uppfyllandegrad
kan fångas i liknande utvärderingskriterier. Fea-
tures skulle isåfall kunna utvärderas snabbt och
resurseffektivt. I vårt arbete rankar vi använ-
darens sammanvägda behov och upplevelse av en
feature med enbart användningsdata. Vi samlar
även in användares åsikter kring utvalda appfea-
tures för att svara på om kundnöjdhet är en egen-
skap som kan bedömas utifrån insamlad data.
Utifrån inkomna svar på enkäter gällande

användares åsikter kring olika features erhölls
samma featurerankning som vi genererat utifrån
att bara titta på användningsdata. Detta indik-
erar att kundnöjdhet kan uppskattas genom att
titta på användningsdata, men större utvärdering-
sunderlag bör samlas in för att ytterligare styrka
denna slutsats.
Analys av användningsdata parat med A/B-test

är ett bra sätt att lära sig mer om en app och dess
användare. Om kundnöjdhet verkligen fångas av
vår modell kan apputveckling i framtiden göras
mer datadrivet.

	Introduction
	Purpose and goal
	Research questions
	AXIS Communications
	Contributions
	Ethical considerations

	Theory
	Software development processes
	Agile development
	Stairway to Heaven
	Data-Driven Decision-Making

	Customer orientation and feedback
	Different types of overall feedback data
	Post-deployment/user-interaction data

	Creating evaluation criteria
	Testing hypotheses
	Online controlled experiments
	The ''quality in use'' concept
	Online and in-product surveys
	Statistical modeling and tests

	Approach
	Investigation Phase
	AXIS Mobile Applications
	The client software
	Development processes
	Current information channels
	Current status of data utilization
	The mobile application business case
	Comparison to theory
	What is missing?

	Tools
	Firebase
	BigQuery
	Data Studio

	Phase summary

	Development and Analysis Phase
	Evaluation criteria
	Introduction
	Defining the evaluation criteria
	Baselines
	Platforms
	Practical Work
	Choosing the features
	Our hypothesis

	A/B Testing
	The idea
	A/B-testing framework
	The UX draft
	Test design and hypothesis
	iOS implementation

	Evaluation Phase
	Evaluation criteria evaluation
	Online surveys
	Evaluating the results
	In-app survey

	A/B test evaluation
	Statistical tests

	Results
	Evaluation criteria results
	Relevant online survey results
	Post-deployment data evaluation criteria
	Ordering by majority vote

	A/B-test
	In-app survey segmentation

	Discussion
	Evaluation criteria
	Detailed comparisons
	Assumptions and generalizations
	Limitations and problems

	In-app survey
	Limitations

	A/B-test
	Main result
	The case for A/B-tests
	Method discussion

	Further work
	Evaluation criteria
	A/B-test

	Revisiting the research questions

	Conclusion
	References
	Appendix Online survey - Feature descriptions
	Appendix Online survey - Questions and answers
	Appendix Python script for Welch's t-test and the 2 test
	Tom sida

