
MASTER’S THESIS 2020

Prototyping as a Requirements
Engineering Technique
Franz Lang, Alexander Mjöberg

ISSN 1650-2884
LU-CS-EX: 2020-29

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY





EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-29

Prototyping as a Requirements Engineering
Technique

Franz Lang, Alexander Mjöberg





Prototyping as a Requirements Engineering
Technique

Franz Lang
tfy13fla@student.lu.se

Alexander Mjöberg
dat15amj@student.lu.se

June 22, 2020

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Elizabeth Bjarnason, elizabeth.bjarnason@cs.lth.se
Maria Blomberg, maria.blomberg@telavox.com

Examiner: Björn Regnell, bjorn.regnell@cs.lth.se

mailto:tfy13fla@student.lu.se
mailto:dat15amj@student.lu.se
mailto:Elizabeth.Bjarnason@cs.lth.se
mailto:Maria.Blomberg@telavox.com
mailto:bjorn.regnell@cs.lth.se




Abstract

CONTEXT : Requirements Engineering is an important part of Software de-
velopment. Software development has largely moved towards agile practices and
the field of Requirements Engineering is no exception. However, within Agile
Requirements Engineering much research remains to be done [1]. Prototyping
has been identified by one study as a technique that can solve challenges sur-
rounding Agile Requirements Engineering [2]. As the practical use of prototypes
is not self-evident, prototyping methodology is useful to understand before be-
ing used in an Agile Requirements Engineering context. This begs the question,
what is a meaningful model of prototyping and how can it be applied in an Agile
Requirements Engineering context?

METHOD : We perform a case-study at Telavox, a company seeking to develop
a new product with agile software development methodology. A literature study
is conducted to gather knowledge on prototyping methodology and assemble a
model. An exploratory case study with prototyping activities is conducted to
better understand fidelity in the context of prototyping. Finally we attempt to
provide guidelines for prototyping in an Agile development project and validate
our approach using a focus group.

OUTCOME : We present the Prototyping Aspects Model which breaks down
prototyping into four aspects : Purpose, Strategy, Scope and Review method.
Findings in the exploratory case study indicate that altering these aspects has an
e�ect on the perceived values of the prototype. We produce a set of guidelines
that use prototyping as a means of coordinating the requirements engineering
process in agile development projects.

CONTRIBUTION : The Prototyping Aspects Model can be used to conduct
further research within the field of prototyping. It can also help companies un-
derstand the potential applications of prototyping. The agile prototyping guide-
lines can help researchers and business alike establish valuable use of prototyping
within agile development contexts.

Keywords: MSc, prototyping, requirements engineering



2



Acknowledgements

We would like to thank our supervisor at Telavox, Maria Blomberg, for her unwavering sup-
port throughout this endeavour.

We would also like to thank Professor Elizabeth Bjarnason, without whom this thesis would
be much less interesting and less pleasant to read. Apart from structure and grammar, Eliza-
beth has provided us with insight in the academics of requirements engineering, allowing us
to explore an area of great interest to us.

Thanks also go to Telavox and its employees. Many of whom have assisted us with unrelenting
feedback, energy, and advice over the past months.

3



4



Contents

1 Introduction 9
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13
2.1 Requirements Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Practical use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Case company description . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Product development . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Research Method 19
3.1 Literature study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Goals and boundaries . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Literature search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Validity and relevance . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.4 Synthesis and result . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Designing the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Case study on prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Agile Prototyping Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Guideline construction . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Focus group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5



CONTENTS

4 Prototyping Aspects Model 31
4.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Desirability testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.3 Viability testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.4 Feasibility testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.5 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.6 Usability testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.7 Partial product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.8 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.9 Performance improvement . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Point-based design . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Set-based solution array . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Performance set investigation . . . . . . . . . . . . . . . . . . . . . 40
4.2.4 Flexible design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Visual refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Functional refinement . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Contemporary prototype dimensions . . . . . . . . . . . . . . . . . 43

4.4 Review method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.1 Presentation and use . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.3 Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Model design choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Agile Prototyping Guidelines 47
5.1 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Implementation of Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Result 53
6.1 Literature study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.1 Experiences of Prototype Variants . . . . . . . . . . . . . . . . . . . 55
6.2.2 Quantitative Performance Evaluation of Prototypes . . . . . . . . . 56

6.3 Focus group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.1 Agreement with guidelines . . . . . . . . . . . . . . . . . . . . . . 57
6.3.2 Questioning linear order of steps . . . . . . . . . . . . . . . . . . . 59
6.3.3 Terminology discussed by participants . . . . . . . . . . . . . . . . 59
6.3.4 Unclear results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.5 New ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.6 Disagreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Discussion 63
7.1 Relevant Aspects of Prototyping (RQ1) . . . . . . . . . . . . . . . . . . . . 63
7.2 Output and Learning of Prototyping (RQ2) . . . . . . . . . . . . . . . . . . 65
7.3 Supporting Agile Development (RQ3) . . . . . . . . . . . . . . . . . . . . . 66

6



CONTENTS

7.4 Validity threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4.1 Literature study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4.2 Exploratory case study . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Conclusions 71

References 73

Appendix A Literature selection 79

Appendix B Prototype 1 and 2 85

Appendix C Prototype 3 95

Appendix D Survey 105

Appendix E Talking points focus group 111

Appendix F Focus group transcribed meeting notes 113

7



CONTENTS

8



Chapter 1

Introduction

Software prototyping is a consolidated term for the creation and evaluation of a prototype
that depicts a simplified version of a software product [3]. Prototypes are used to explore
certain aspects of a product throughout the product development process, such as testing the
usability of a mobile application before release [4]. There is a large number of di�erent types
of prototypes as each type is suited for exploring certain aspects. For example, evaluating
physical properties of a flood barrier may necessitate the use of physical materials in a physical
environment while user interaction in a mobile application may only require digital means
[5].

Within requirements engineering, prototyping is used as a technique for understanding what
a product shall accomplish and whether a suggested solution is viable [4]. This begs the
question: What are the fundamental di�erences among prototypes that are built for these
purposes? Research suggests that the attributes of a prototype, such as its resemblance to the
final product, may have an e�ect on the type of feedback one receives [3]. Studies have also
found that the method of evaluation can have an impact on what type of requirements are
perceived [6].

Prototyping is well situated to provide value in the modern software development process,
particularly as this process has grown to become ever more agile [7]. The agile manifesto
values individuals and interactions over processes and tools as well as responding to change over
following a plan [8]. Prototypes have been proven to be valuable in improving communica-
tion [9] and are as per the definition simplified versions of a product that are therefore easily
disposable. These properties make prototyping a valuable asset in agile requirements engi-
neering.

We have set out to shed light onto the area of prototyping. Our goal is to understand what
aspects there are to software prototyping, how these aspects relate to the use of prototyping in

9



1. Introduction

software projects, and how such projects can be supported in their requirements engineering
process. To achieve the goal we conduct three di�erent studies. First a literature study that
maps the area of prototyping. Then an exploratory case study of a software development
project wherein we construct prototype variants and study their perceived values. The last
study is a focus group where individuals with experience in prototyping evaluate a set of
guidelines that are to support them in their requirements engineering process.

The thesis is conducted in collaboration with Telavox, a supplier of cloud based private
branch exchange solutions and collaborative tools. Their ambition is to expand their product
o�ering with Unified Communication as a Service. A product that we use as a basis for our
study. By allowing the use of this material the company receives insight on their use of proto-
typing and potential applications of such techniques in their future projects. The experienced
individuals that assisted in the focus group are part of their user experience team.

1.1 Research Questions
This thesis covers three questions in the domain of prototyping and requirements engineer-
ing. The first question What is a meaningful model for aspects of software prototyping? synthesizes
existing literature to understand the topic of prototyping. Material for this synthesize is col-
lected with a literature study. The second question What e�ect does the scope of a prototype have
on the output and learning in software development? studies whether altering the scope of a pro-
totype has an e�ect on its perceived values. We explore this behaviour with an exploratory
case study wherein advisors at Telavox are presented with three prototype variants. The third
question How can agile development projects be supported in requirements engineering processes con-
cerning prototyping aspects? explores the use of prototyping to support the requirements engi-
neering process in software projects. The exploration and result are evaluated with a focus
group.

RQ1 What is a meaningful model for aspects of software prototyping?
RQ2 What e�ect does the scope of a prototype have on the output and learning in software

development?
RQ3 How can agile development projects be supported in requirements engineering pro-

cesses concerning prototyping aspects?

1.2 Contribution
The thesis has been carried out by two authors; Franz Lang and Alexander Mjöberg. Both
have been involved to some extent in each chapter. However, the larger components re-
quired a driver who prepared, executed, and finalised the chapters. The driver of a chapter
was deemed to have contributed more to their area of responsibility and are therefore noted
below.

Abstract - Alexander
Introduction - Franz
Method - Joint e�ort
Prototyping Aspects Model - Alexander

10



1.3 Structure

Guidelines - Alexander
Results - Joint e�ort
Discussion - Franz
Conclusion - Franz

1.3 Structure
This section aims to provide an understanding of how the vast number of pages in this thesis
work in unison, from the introduction that sets the tone to the conclusion which presents
the outcome.

There are eight major components to this thesis. The Introduction (1) introduces the do-
main of prototyping and what advancements are pursued with this thesis. Background (2)
provides the reader with a basic level of knowledge surrounding the domain at hand. The
third chapter, Research method (3), specifies the details, execution, and analysis of the liter-
ature study, case study, and focus group. The Prototyping Aspects Model (4) is a product of
the aforementioned literature study and it depicts the various aspects of prototyping. The
fifth chapter, Guidelines for Establishing Software Requirements with Prototypes (5), was
evaluated with the focus group and it presents a series of steps with which one can apply
prototyping in the requirements engineering process. The Results (6) presents the informa-
tion from the literature study, case study, and focus group. The seventh chapter, Discussion
(7), puts the results in context with related literature and explores what conclusions can be
drawn. The last chapter, Conclusions (8), presents a consolidation concerning the advance-
ments that were pursued with this thesis and suggestions on areas wherein one can pursue
further advancements.

11



1. Introduction

12



Chapter 2

Background

Requirements Engineering is an integral process of software engineering that ensures align-
ment between the needs and expectations of customers and users for a product. Prototyping
assists in the alignment by enabling users and other stakeholders to explore, or elicit, re-
quirements through a simplified version of the product to be built. Our thesis examines
prototyping and its use in the context of product development at a case company.

2.1 Requirements Engineering
Requirements Engineering joined the modern era in the 1990s, as part of the IEEE standard
and the International Requirements Engineering Conference. It provides a systematic ap-
proach to determine what a product should achieve. Eloquently put, it is the art of balancing
elicitation, specification, prioritisation, and validation of requirements that through various
techniques represent the scope of a product [4].

The four parts of requirements engineering can be likened to the steps that product devel-
opment encompasses, from idea to product. Elicitation is the first stage and assists in estab-
lishing a vision of what the product shall accomplish by finding necessary functionality and
determining valuable stakeholders. Specification provides a framework with which to prop-
erly specify functionality, ensuring testability and implementability. Prioritisation is the act
of determining what functionality shall be built first and what can be delayed. Validation
acts as a final step to confirm that the established material and models are both consistent
and fulfill the needs of the stakeholders. Requirements that proceed through the stages of
product development evolve and mature over time while some disappear altogether. The
coordination of this process is known as Requirements Management.

Representation of requirements engineering in a product development process varies de-

13



2. Background

pending on the model that the process adheres to. Two common models are waterfall and
agile development, of which the former is considered to be a more conservative approach
where requirements are treated in linear fashion [10]. Agile development is an alternative
to the waterfall model and provides an iterative approach wherein requirements are con-
tinuously evaluated as they change and mature [10]. The fusion of agile development with
requirements engineering has seen an increase in attention from academics in recent years
[11], especially in Asia, North America, and Europe.

2.2 Prototyping
Prototyping is the art of creating and evaluating a simple version of a product whose purpose
it is to bring clarity on a specific topic. While being a popular technique for elicitation and
validation in requirements engineering [4], prototypes are prevalent outside this terminology
and are used in many industries by both designers and sales teams to support their cases. The
challenge of creating a prototype remains the same nevermind the terminology; minimise ef-
fort and maximise benefit. To optimise the results one must understand the balance between
practical use and evaluation.

Be it in the form of an interactive application or a drawing on a paper napkin. A prototype
can support a wide range of activities such as communicating ideas, exploring form, and
validating requirements. A prototype can be a small step towards the final product and still
answer many questions without the cost of developing a full system. Prototypes are often
used to involve stakeholders and guide the development e�ort.

2.2.1 Practical use
Requirements engineering suggests the use of prototyping as a technique for elicitation, test-
ing, and validation of usability [4]. Depending on the phase for which a prototype is created, it
will produce two di�erent categories of requirements when used in an experiment; product-
level requirements or design-level requirements. Product-level requirements are used to high-
light the need of a required functionality while design-level requirements present the full
solution of how a given functionality is resolved.

While creating a prototype one must balance numerous parameters to optimise its perfor-
mance for a given phase. Houde et al. made an attempt to consolidate these parameters into
categories that were then linked to a suitable purpose [3]. The resulting model suggested that
all prototypes could fit into one of three categories; look and feel, implementation, and role.
Role implied that a given prototype may be more suitable for investigating what it could
do for a user while prototypes in implementation were more suitable for analysing technical
feasibility.

Proof-of-concept is a type of prototype that is created with a focus on implementation and
provides design-level requirements. Sigmund A. Tronvoll et al. studied an academic-industrial
collaboration, whose goal it was to improve water tightness of flood barriers, from the per-
spective of prototyping [5]. They found that confining a real world problem into a prototype
lead to a trade-o� between six attributes; iteration time, iteration cost, approximation level,

14



2.3 Case company description

user level, result presentation, and experiment flexibility. Focusing on these factors provided
better material for creating design-level requirements.

Tools lend a creator the ability to adjust the level of resemblance of a prototype to the real
product. One such tool is Sketch, a digital tool that simplifies the creation of interactive
prototypes by supplying a set of features that allow you to design views and link them with
transitions. A transition can be initiated with the click of a button, mimicking the type
of interaction produced from a website or mobile application. Prototypes that have been
created with Sketch can be shared as hyperlinks with the use of InVision. While digital tools are
popular in software development there are also benefits with using physical tools such as pen
and paper. Such benefits include the ability to make quick adaptations and communicating
ideas while not requiring a pixel perfect illustration.

2.2.2 Evaluation
Evaluation of a prototype di�ers based on the material with which it is created and the media
in which it is consumed. While a car manufacturer may produce a car in clay that is placed
in an air tunnel to analyse aerodynamics one could also create a digital model of the same car
and expose it to virtual airflow. The approach may initially seem similar but it does have a
significant e�ect on the type of feedback one receives.

Zahra et al. compared di�erent evaluation methodologies and found that they have an im-
pact on the type of feedback received. They found that Silent Paper Prototyping, a category
of prototype where the illusion of functionality is achieved by having a human supply said
functionality, is more e�cient than No Paper Prototyping at capturing non-functional re-
quirements [6]. They also found that Loud Paper Prototyping, a type of evaluation where
participants are allowed to communicate, is superior to Silent Paper Prototyping at captur-
ing and influencing functional requirements.

Software development uses the term fidelity to describe the resemblance of a prototype to
the final product. Fidelity is commonly split into two categories, low and high. Low-fidelity
scenarios address the layout and terminology of applications while high-fidelity prototypes
address the issues of navigation and flow and of matching the design and user models of a
system [12]. One interpretation of low-fidelity prototyping is wireframing, a technique that
focuses on simple illustrations of layouts and placement of information. Research suggests
that prototypes with a high degree of visual refinement increase credibility from potential
customers when used in a sales pitch [13]. As a side e�ect, it found preliminary results suggest-
ing that di�erent variations of prototypes might lead to more requirements being elicited,
but increased resistance to suggesting substantial change.

2.3 Case company description
Telavox o�ers cloudbased Private Branch Exchange (PBX) solutions to simplify the use and
management of telephony for their customers. The company was founded in 2002 as a startup
in telephony and communication with an ambition to create a product that provided a wow-
experience and was easy to use. Their journey has been a successful one, expanding through-

15



2. Background

out Scandinavia and Europe, culminating in 250 employees and more than 250 000 active
users in 2019.

2.3.1 Product
Realising the potential of new markets is what sets a surviving tech company apart from what
was once their equals and brings forth the ability to shape the future of a trade. Software gi-
ants such as Microsoft or Cisco were early in discovering the necessity of communication and
the time has come for Telavox to shape the future by creating a product for Unified Com-
munication as a Service (UCaaS). Leading research and advisory company Gartner defines
UCaaS as a cloud-delivered unified service that supports five communication functions; En-
terprise Telephony, Unified messaging, Instant messaging and presence (personal and team),
Mobility, and Communications-enabled business processes[14].

Telavox consider their solid foundation in telephony and modern approach to software de-
velopment as a strong and unique advantage in their journey to create a product for UCaaS.
The exact definition of what the product shall become is yet to be determined but bits and
pieces are coming together by discussing expectations with customers and analysing competi-
tors. While the company does not adhere to an o�cial requirements engineering process, it
consolidates and communicates functional requirements with prototypes and general state-
ments. The study is undertaken in conjuncture to this endeavour and the prototypes that we
are to create and experiment with will support Telavox in shaping their vision.

Product support is coordinated and provided by their advisors in Malmö. Advisors work
in teams of five that are split according to the customer segments that Telavox focuses on;
Small/home o�ce (SOHO), Small/medium (SME), Enterprise, and Core. The responsibility
of an advisor can be likened to that of a Key Account Manager (KAM) wherein they are
assigned to a number of customers to whom they are the first point of contact. Thanks to this
assignment the advisor and customer can build a mutually beneficial relationship that allows
for a closer collaboration and optimal use of the product o�ering. The day of an advisor is
primarily spent as a first-line operator, responding to emails and calls, and managing back-
o�ce tasks such as invoicing.

2.3.2 Product development
Innovation and improvement of their product is coordinated by their DevOps department
at the o�ce in Malmö. The 90 employees are split into roughly 15 teams that are responsible
for di�erent areas of their o�ering. These areas include, but are not limited to, app devel-
opment for Android and iOS, user experience, and web development. The user experience
team is cross functional and focuses on ensuring a coherent appearance and providing visual
material.

Telavox adheres to an agile mindset, following scrum methodology. The creation of a new
product is coordinated by a product owner who prioritises and assigns responsibility to ap-
propriate teams. When the product has matured and become ready for development the ap-
propriate teams receive assignments. Assignments are defined in broad terms and are picked
up by team leaders. At this point the strategies di�er slightly but the most common ap-

16



2.3 Case company description

proach is that the team splits the stories into tasks. Tasks are picked up by developers and
implemented together with appropriate tests. Thanks to the separation of environments,
teams and their members can release their contributions continuously. Before a product is
released it is validated with their advisors and customers to ensure that requirements are
met. When the product has become a part of the product portfolio, the product proceeds
into a maintenance phase where product ownership is transferred from the product owner
to a team.

17



2. Background

18



Chapter 3

Research Method

The research was conducted in three phases where each phase relates to one of the research
questions, see Figure 3.1. Phase one consisted of a literature study that provided the material
necessary to produce a model that depicts the aspects of software prototyping. During phase
two we performed an exploratory case study where subjects worked with three prototypes.
Each prototype was treated with specific attributes based on an aspect from the aforemen-
tioned model to measure the e�ect of said aspect on the output and learning. In phase three
we created a set of guidelines that were to support agile development projects in their require-
ments engineering e�orts. The guidelines were created by applying the prototyping aspects
model on the requirements engineering process and validating the result with a focus group
consisting of participants experienced in software prototyping and user experience.

Figure 3.1: Overview of research method where the literature study
feeds aspects into prototyping aspects model. The model is then
used as a foundation for the exploratory case study. Finally the pro-
totyping aspects model is applied with requirements engineering to
create the Agile Prototyping Guidelines.

19



3. Research Method

3.1 Literature study
A literature study was determined to be a suitable approach for exploring the existing knowl-
edge base and collecting the information that is necessary to create a model that depicts the
aspects of software prototyping. The type of literature study conducted was a systematic
mapping study with thematic coding. A systematic mapping study provides categorization
and a summary of research area in a structured approach [15]. Our study adhered to the
four stages of a literature study as defined by the Swedish Agency for Health Technology As-
sessment and Assessment of Social Services (SBU) [16] as depicted in Figure 3.2. These four
stages are Goals and boundaries, Validity and relevance, Literature search, and Synthesis and
result.

Figure 3.2: The process of performing a literature study.

3.1.1 Goals and boundaries
Establishing a premise for the literature study was an iterative process through which we
determined a set of goals and boundaries. A process that had two primary parts, experimental
searches and interviews with subject matter experts.

The experimental search highlighted important pieces of literature on the subject of proto-
typing which we subsequently consolidated into one page essays. Searching for prototype
or prototyping yielded slightly di�erent material of which both sides were determined to be
relevant to our study. The consolidations showed that while articles may contain the relevant
keywords they often used prototyping as a means to and end, not discussing the methodology
nor its dimensions.

We conducted interviews with subject matter experts from Telavox and Lunds Faculty of En-
gineering (LTH). The interviews provided insight on the topic at hand but also showed the
value of widening the scope, from focusing solely on software development to considering
any field of expertise. While the increase in scope brought with it an abundance of empirical
studies that provided little value on theory concerning prototyping, the change did substan-
tially increase the amount of articles.

20



3.1 Literature study

Include prototyping or prototype.
Exclude articles that do not discuss prototyping methodology or prototype dimensions.
Include all fields, not only software engineering.

The experimental searches and interviews shed light on the topic of prototyping but there
was a distinct absence of material discussing the aspects of prototyping. Therefore we de-
cided that our goal with the literature study would be to map the topic of prototyping and
discern the most significant aspects in the form of a model. Boundaries were established in
the form of abstract inclusion and exclusion criteria. The goal and boundaries are presented
below.

Goal map the topic of prototyping.
Goal produce a model depicting significant aspects of prototyping.

3.1.2 Literature search
A literature as per SBU is to be conducted in three phases: test search, main search, and
updated search [16]. Test search and main search were implemented in this literature study
and the time spent on the literature search was split equally between the two. During the test
search we experimented with a variety of search parameters and formulated a search strategy
that was then executed in the main search.

The search results were exported and the data set was pruned during two iterations to reduce
the number of articles that were irrelevant to our literature study. At the end of the main
search the material was collected and stored in a shared area.

Test search
The test search required repeated tweaking and experimentation concerning what and where
to perform the search. What was determined by the keywords and where was defined by the
search engine on which to issue the search. Combining these two parameters yielded a search
query that was optimised for our specific needs of goals and boundaries.

Where was limited by comparing the results of searching for prototype and prototyping. Re-
sults were judged on the amount of entries and the uniqueness of the resulting set of papers.
Two search engines remained after this stage: Lund University Library (LUBSearch) and As-
sociation for Computing Machinery (ACM). The former was selected as it included results
from other search engines such as IEEE Explore and ScienceDirect. The latter was chosen
due to presenting a set of papers that suited the goals and boundaries extremely well.

What was specified with an exploratory and evaluating process that di�ered slightly between
the two search engines. For LUBSearch, a small set of papers matching the inclusion and ex-
clusion criteria were selected. Keywords, as defined by LUBSearch, were then extracted from
each paper and listed in order of the rate of their occurrence. The most common keywords
(Prototyping, Fidelity, Software Prototype, and Agile) were then used as a basis for the search
query. ACM did not provide keywords for papers and therefore we determined it would be
best to issue the search on the existence of prototype or prototyping in the title of papers.
The final combination of search queries was as follows.

21



3. Research Method

ACM [Publication Title : prototyping] OR [Publication Title : prototype]

LUB Prototyping AND (Fidelity OR Software Prototype OR Agile)

Main search

The search queries from the test search were performed on the respective search engines
and the resulting material was combined and subjected to multiple iterations of pruning.
LUBSearch provided an additional set of filters which were used to limit the results to being
peer reviewed and in English before exporting and consolidating the material with ACM.
This produced a total of 4671 search results of which 2713 originated from LUB while the
remaining 1958 entries were from ACM.

Two iterations of pruning, Title review and Abstract review, were performed to produce the
final literature selection as depicted in Figure 3.3. The Title review removed any material that
did not appear to focus on prototyping methodology or the exploration of such. After the
Abstract review only articles that focused on prototyping methodology remained. Studies
that simply used prototyping in a case study were rejected.

Figure 3.3: A funnel detailing the progress from obtaining search
results to pruning with a title review, abstract review and article
skim.

The abstract review could only be partially executed due to multiple articles missing an ab-
stract and therefore we executed a final step of validation in the form of an article skim
that further ensured that result suited our goals and boundaries. Articles were skimmed and
checked against our inclusion and exclusion criteria. This produced a final result of 34 papers.
The result for each stage is shown in Table 3.1.

22



3.2 Designing the model

Table 3.1: Results from each step of the literature search and its val-
idation.

Search Engine Search result Title review Abstract review Article skim

LUB 2713 84 30 20
ACM 1958 62 24 14
Total 4671 146 54 34

Articles were indexed with a number from 1 to 34 where the first 14 were from ACM and the
remainder from LUBSearch. The final article selection along with actual numbering can be
found in Appendix A.

3.1.3 Validity and relevance
While a certain level of validity and relevance was achieved by filtering for peer reviewed lit-
erature and performing an article skim during the Main search, no formal quality assessment
was conducted in the literature study. Kitchenham states that for a systematic mapping study
a quality evaluation is not essential, as the goal of mapping study is to classify and aggregate
research rather than investigate research [17].

3.1.4 Synthesis and result
Analysis of the articles consisted of a preliminary overview of the material followed by a
systematic analysis of the articles by applying thematic coding. The preliminary overview
covered the year in which the material was published and the country from which the article
originated while the thematic coding provided a systematic approach for analysing the ac-
quired material and produce a meaningful model for aspects of software prototyping.

Articles were categorised through thematic coding, a process that was split into three stages:
read, identify categories and categorize. The first stage was to read each article in depth and
write a short summary how it was relevant to our study. In the second stage of synthesizing,
the categories were gradually established. By analyzing papers and using our summaries we
established four categories; Purpose, Strategy, Scope, and Review method. In the final stage
of synthesis all articles were assigned a strong link to one or more of these categories and a
handful of articles were also attributed with weak links in the case that a consolidation had
weak ties to one of the categories.

3.2 Designing the model
The Prototyping Aspects Model was created by building on the categories established in the
literature study thematic coding. The model is presented Chapter 4. Each literature study
category was made into an aspect and was developed by using the articles in the literature
study. The explicit design choices that were made when establishing categories and develop-
ing the framework are explained in Model design choices (see Section 4.5).

23



3. Research Method

3.3 Case study on prototyping
To investigate the e�ects that prototyping aspects in Chapter 4 have on output and learning
in software projects from our second research question we conducted an exploratory case
study. The case study was established in four phases as shown in figure 3.4. During the first
phase we established the goal and what variables shall be treated to bring clarity to the topic.
In the second phase we constructed a standardised process that implemented the aforemen-
tioned variables. The third phase consisted of executing the case study and collect the infor-
mation. Phase number four consisted of analysing the gathered information in accordance
with the goal.

Design Process Data Collection Data analysis

Figure 3.4: The phases of a case study.

Preceding the data collection was a pilot study that served two purposes. First and foremost,
it validated the overall approach of the design and secondly it tested the material that was
going to be used in the sessions. This ensured that instructions were clear and maintained
a su�cient level of detail. The pilot study consisted of three session. Resulting surveys and
recordings were not included in the main experiment.

3.3.1 Design
The case study consisted of sessions where advisors from Telavox explored three prototypes
that were said to depict new functionality of their UCaaS product, a product which is de-
scribed in section 2.3.1. The prototypes were treated with a specific set of prototyping aspects
in mind. Advisors were only made aware of one prototype in order to be able to compare
what the e�ect of an aspect had on the output and learning. Meetings were held in a virtual
environment as physical meetings were not possible.

Chapter 4 depicts four aspects that are to be considered in prototyping. We determined that
the aspect that was to be adjusted in the prototypes had to be easy to di�erentiate, easy to
produce, and yet lead to di�erent results. The aspect that was deemed to fulfill this criteria
was scope. A study by Melin et al. validated our choice of aspect as they found that a change
in visual or functional refinement may render a prototype more suitable for certain occasions
[13]. The procedure for creating the prototypes is further elaborated on in Section 3.3.1.

24



3.3 Case study on prototyping

ScopeScope

Participants

Review method

Process Output and 
learning

Strategy

Purpose

Prototype (1)

Prototype (2)

Prototype (3)

Figure 3.5: The four aspects of prototyping. Scope, purpose, strat-
egy, review method, and participants are independent variables. All
but the first are fixed. These are applied in a process to study the
e�ect on the dependent variable output and learning.

Humans are rather unique and in order to gather correct conclusions it is important to min-
imise the e�ect of such di�erences. While Telavox has a wide variety of positions and em-
ployees we chose their advisors as subjects for this study. They have direct customer contact
and make frequent use of their software. Subjects were asked to enter their experience in
their field of expertise and the amount of years they had worked at Telavox to control for
confounding variables.

Prototypes

Prototype (1), Prototype (2), and Prototype (3) were treated with a set of parameters shown
in figure 4.2 and the definition of scope is further detailed in Section 4.3. These parameters
were (1) high visual - high functional, (2) high visual - low functional, and (3) low visual -
high functional as depicted in Figure 3.6. All prototypes originated from Sketch but required
di�erent adaptations to become suitable for virtual meetings. An overview of each prototype
is shown in Appendices B and C.

25



3. Research Method

Figure 3.6: Visual and functional aspects of prototypes and the cat-
egories of the prototypes that were created.

Prototype (1) was built with the existing material from the pilot study and focused on pro-
viding a high degree of visual quality while enabling a high level of functionality for both
features and interactability with the use of connectors in Sketch. While participants of the
pilot study had Sketch installed and could use the raw file of the prototype, future partici-
pants would not have the software. Therefore we used InVision to create a temporary link
that allowed users to interact with the prototype with their web browser.

Prototype (2) maintained a high degree of visual quality but required a low level of func-
tionality. Prototype (1) was used as a base for Prototype (2) but instead of allowing users to
interact with the prototype through a link, each view was exported as an image and added to
a presentation in Google Slides. Users interacted with the prototype by receiving a link to
the presentation and proceeding through the slides, one by one.

Prototype (3) was the opposite of Prototype (2). While functionality likened that of Prototype
(1), the degree of visual refinement was at a much lower level. A level that can be likened to
that of wireframes. Interaction with the prototype resembled that of Prototype (1) wherein
users received a link and explored the prototype with their web browser.

26



3.3 Case study on prototyping

3.3.2 Process
The sessions were standardised with the assistance of four documents. The first three doc-
uments are Opening Statement, Scenarios and the Survey, the last of which is presented
Appendix D. Opening Statement was read aloud by the authors (us) to explain the struc-
ture of the session for the participant. Scenarios guided the user in using the Prototype while
highlighting new functionality. The Survey consolidated information from the session.

The fourth and last piece of standardised material was a framework of how a meetings were
to be conducted. It received slight adjustments after the pilot study. Most of the changes
related to improving the participants ability to become familiar with the prototype. The
final version of the framework can be seen below.

1. Authors schedule meeting.
2. Authors and Participant join the meeting.
3. Authors read Opening Statement.
4. Participant receives Prototype and Scenarios.
5. Participant initiates screen sharing.
6. Authors initiate screen and audio recording.
7. Participant performs the scenarios one by one while communicating verbally.
8. Upon the completion of the scenarios, the participant receives an additional three

minutes to familiarise themselves with prototype as they deem necessary.
9. Participant fills out survey.

10. Participant is given the opportunity to ask complementary questions.
11. Authors close meeting.

3.3.3 Data collection
All 15 sessions were executed in the span of 11 days. Each session produced one complete
survey answer and one recording that was stored and uploaded to a shared folder. These are
first and second degree techniques of data collection and unison they provided the data upon
which the analysis was built. The recordings were primarily used for a continuous validation
and evaluation of the approach.

The routine by which a session was conducted adhered to the process depicted in Section
3.3.2. Sessions took about 30 minutes, evenly split between the process leading up to the
survey and the following interview. Subjects were invited to a virtual meeting with three
members, one being the subject themselves and the other two being the authors. The latter
began the experiment by reading the Opening Statement. The subject received the Prototype
and the Scenarios after which they shared their screen. Upon seeing the subjects screen, the
authors initiated the screen recording and informed the subject that they could start. The
subject traversed the scenarios, assisted by the authors who confirmed when a scenario had
been fulfilled, which in turn allowed the subject to proceed to the next scenario. Once each
scenario had been completed the subject received the Survey. After completing the survey
the session was completed.

27



3. Research Method

3.3.4 Data analysis
Subjects entered their feedback in a survey created with Google Form which fed information
into a Google Spreadsheet, a tool that resembles Excel by Microsoft. The survey was split into
four segments with di�erent focus which laid the foundation for the qualitative analysis.
Answers from the various segments were treated in di�erent ways depending on the type of
response that was obtained.

The first segment focused on gathering their insights from working with the prototype with
a series of questions that allowed for text based answers. Responses were analysed by creating
a thematic encoding based on the text from each answer. The answers were then connected
to one or more of the resulting categories to analyse and compare their frequency between
di�erent prototypes.

In the second segment we measured the participant’s agreement with a selection of statements
by allowing a rating of one to five, more commonly known as a Likert Scale [18]. A value of
one indicated disagreement with the statement while a five indicated complete agreement.
Thanks to the responses being of numerical nature, the process of analysis was easier than
that of the text based answers. Responses were analysed based on their average and median
score and then compared between di�erent prototypes.

Segment three was of di�erent nature as it was only used to support the analysis of the first
two segments. The primary cause for its creation was to assist Telavox in understanding
the behaviour of their users. While the information did provide additional insight for each
individuals response we conducted no analysis with the acquired information.

The last segment was created to validate the demographic of the case study. There were
two questions in the fourth segment to assist in this process. One regarding the role of the
subject and one surrounding their experience with the area at hand. 14 of the participants
were advisors while one participant had recently been promoted to manager of advisors. An
overview of the years of experience is presented in Figure 3.7.

0-1 1-3 3-5 5-10 10+
0

2

4

6

8

10

3

5

3 3

1N
um

be
ro

fS
ub

je
ct

s(
#)

Figure 3.7: Number of subjects split by their years of experience.

28



3.4 Agile Prototyping Guidelines

3.4 Agile Prototyping Guidelines
We set out to provide recommendations for working with prototypes in agile software projects
to answer our third research question (RQ3). The recommendations was in the form of guide-
lines that were created by applying our findings in the context of requirements engineering
and validating the result with a focus group.

3.4.1 Guideline construction
Guidelines were created with the goal of demonstrating how the main activities of Require-
ments Engineering could be conducted using prototyping. Construction was done by tak-
ing activities from Requirements Engineering and prescribing suitable prototyping activities
based on the knowledge in the Prototyping Aspects Model (see Chapter 4). Of the main activ-
ities that are common in Requirements Engineering (see Section 2.1 for our description), we
proceeded with elicitation, specification, and validation. Each of these activities were then
matched with relevant purposes from the purpose part of the prototyping aspects model. The
matching was accomplished by clarifying the goal of the Requirements Engineering activity
and then judging which prototyping purposes were suitable in fulfilling the goal. Several
suitable purposes were identified for each Requirement Engineering activity. Each Require-
ment Engineering activity was then split into logical steps based on when it made sense to use
several prototyping purposes in parallel. The aspects of Strategy, Scope and Review Method
were then considered and selected for each of the steps. The step were then explained in
text in a manner that made them accessible without having prior knowledge of our model
nor requirements engineering. Each step was iteratively designed and improved. In the final
iterations the results from the case study and focus group were also incorporated into the
guidelines and a small section about incorporating these practices were then also added. The
decision to make the guidelines accessible to any reader was based in the research question
three goal of supporting software development projects in general and not just requirement
engineers.

3.4.2 Focus group
A focus group was conducted to evaluate the guidelines. A focus group is a qualitative method
that is essentially a group interview. Its power lies in establishing a peer-setting where par-
ticipants are more likely to share experiences and perceptions, allowing deep insight into
themes [19].

Participants
Five designers from the user experience team at the company participated in the focus group.
The individuals had slightly di�erent backgrounds and levels of experience in the area. The
participants either had degrees in industrial economics or interaction design, three partici-
pants held master degrees and two held bachelor degrees. Apart from the individuals, both
authors joined the meeting, bringing the total number of participants to seven. Both authors
acted as moderators. One of the participating developers had some limited knowledge about

29



3. Research Method

the prototyping aspects model prior to the focus group. The others had no knowledge con-
cerning the prototyping aspects model and were hence not biased by our own design.

Session
The focus group was conducted as a virtual meeting, due to external circumstances a physical
meeting was not viable. The moderators opened the meeting and presented the prototyping
guidelines (see Chapter 5). The group was then asked to review and discuss each step of the
guidelines. Material was o�ered to participants in terms of potential talking points which can
be found in Appendix E. The talking points consisted of questions relating to the guidelines
for the group to answer. The moderators asked probing questions and suggested when it
was a good time to move on in the discussion, thereby ensuring that the conversations could
be focused and steered in good directions. To provide everyone with an equal opportunity
to talk a sort of speaker list was established. As one talking point was concluded, the next
person on the speaker list got to choose the next talking point and be the first to provide
their thoughts on that talking point. The meeting was recorded.

Analysis
The recorded meeting was transcribed and its results are available in appendix F. The tran-
scription was subjected to qualitative analysis to identify important points regarding the
model. A thematic coding of the points was conducted to allow for an easier presentation of
the results.

30



Chapter 4

Prototyping Aspects Model

This chapter presents a novel approach to prototyping based on four levels of aspects as
depicted in Table 4.1. These aspects represent the underlying methodology of prototyping
activities and supports the reader in understanding and making use of prototypes. The model
provides guidance to traversing through the levels by elaborating on the choices within each
aspect. Each level o�ers a number of decisions that may, or may not, impose restrictions on
succeeding levels. This model was synthesised using the literature study (see Section 3.2) and
its design choices are explained in Design of Framework (see Section 4.5).

31



4. Prototyping Aspects Model

Table 4.1: Depicts the four aspects and their hierarchy.

Prototyping aspect Choices

Purpose
What is the reason for Exploration, Desirability testing
prototyping? Pick one Viability testing, Feasibility testing
or more. Communication, Usability testing

Partial product, Validation
Performance improvement

Strategy
How should we handle Point-based design, Set-based solution array
uncertainty? Pick one. Performance set investigation, Flexible design
Scope
What level of refinement Visual refinement dimension
should be used? Decide Functional refinement dimension
for each dimension.
Review method
How should the prototype User presentation
be evaluated? Decide Proximity to actual conditions
for each dimension. Feedback collection

In the following sections we use terminology that is similar but di�erent in order to stay true
to the source material. Designer and Developer are used interchangeably here as both perform
essentially the same prototyping activities with the distinction that developers might have
additional responsibility for implementing the solution. Similarly users and customers are
somewhat interchangeable with the di�erence a customer pays for the product, either by
buying the product or financing the development project. A customer therefore has more
influence than a typical user.

4.1 Purpose
The prototyping purpose is the reason why the prototype is needed. A large variety of rea-
sons exist to construct a prototype and a single prototype can serve multiple purposes. Serv-
ing multiple purposes corresponds to selecting several purposes below to simultaneously be
served. The purpose of a prototype is determined by external parameters such as the state
and nature of a project. For example, given a project that is in an early stage where resources
are plentiful one may wish to test new concepts using prototyping. At a later stage where
resources are scarce, fine-tuning the current concept with prototyping might be emphasized.
The following chapters present areas of prototyping that were found in the literature.

4.1.1 Exploration
While in the act of creating an exploratory prototype the designer can learn what the product
may become and which design choices are essential when shaping the product. This type of

32



4.1 Purpose

prototype is commonly built for the designer themself and allows for experimentation with
di�erent emergent ideas. Building a prototype for oneself allows you to focus on ideas and
possibilities as it removes the expectations that come with knowing there is an upcoming
presentation of the prototype. An exploration prototype can be shared with others but this
should not be the focus. In summary, exploration prototyping is essentially brainstorming
with prototypes, allowing the designer to generate and organize ideas in a concrete man-
ner.

Lim et al. suggested viewing prototypes as considered filters that can be used to traverse a
design space [20]. It posits that in a design or development process a prototype can discover
problems and explore new solution directions, hence being a generative process. When a
designer tests ideas using a prototype, that individual discovers the important factors of the
design, which leads to new design ideas and design spaces to explore.

Schneider expresses concern with exploratory prototyping [21]. He states in his paper that
many prototypes turn into private toys of developers that are not properly shared with users.
Suddenly only the developers learn from the prototyping activity while users are left out
of the process. As an alternative approach he suggests that prototypes should be used by
developers to prove, falsify, or demonstrate a point.

Dow et al. describe exploration as the process of exploring design spaces and their relative
merits[22]. They say that exploration is necessary as otherwise people often interpret design
problems narrowly and focus on refining those ideas. Furthermore it notes that exploration
can act as a counterbalance to a focus on presenting and validating, activities that may oth-
erwise lead to overinvesting in a single concept. It finds that in terms of exploration, there
are several benefits to creating multiple designs.

Lichter et al. highlight the use of exploratory prototyping for requirement clarification [23].
The use of such prototyping lets developers learn about the utilisation area of the future
system. In this paper the "exploratory" purpose is a combination of exploration, desirability
testing and communication purposes.

4.1.2 Desirability testing
Desirability is the customer perspective on the product. Desirability testing can be done to
investigate what the customer wants and a prototype can help support a conversation about
desirability, gathering ideas and feedback from users. A perspective of Role, Look and feel and
implementation can be used to further break down desirability into constituent parts. “Role”
represents the need and functionality the product serves, Look and feel represents what the
user experience should be, and implementation represents how the product solves the prob-
lem.

Zink et al. present Desirability as one out of three constituent parts in a design solution space
model, the other two being viability and feasibility [24]. It states that desirability is the value
to the customer and likeliness of purchase. Prototyping can be undertaken to test desirability
of the future system.

Various papers briefly mention or allude to desirability prototyping. Some papers state that
Desirability prototyping is done to support decision making by clarifying customer require-

33



4. Prototyping Aspects Model

ments and tasks [9] [25]. Lichter et al. Suggests a geographical di�erence in approaches to
prototyping, stating that the European approach is primarily user-oriented while the North
American approach focuses on getting a working product quickly [23].

Yasar discusses that when deciding what to prototype a perspective can be taken of “Role”,
“Look and feel” and “implementation” [26]. The corresponding questions to ask are What
role will the device/product being developed play in a users life?, How the device/product should look
and feel?, and How should the device/product be implemented?. This can help designers establish
frames and purpose for their prototyping.

4.1.3 Viability testing
Viability is the business perspective on the product. Viability testing with prototypes can
explore if the product is profitable and what costs are attached to it.

Zink et al. present Viability is another part of the three sided solution space model [24].
Viability is the ability of the design to fit within time and budget constraints. The paper
finds that viability is highly complex and is a�ected by many factors, while viability as sys-
tem characteristic is more independent of prototyping goals than other parts of the model.
Ciriello et al. describe Viability testing as a practice to support decision making in projects
[9]. The other articles in the selection did not discuss viability testing.

4.1.4 Feasibility testing
Feasibility is the technical perspective on the product. Feasibility testing with prototypes
explores whether capabilities exist to support the product. If the envisioned product is po-
tentially technically challenging or impossible to construct, feasibility testing allows the pos-
sibilities to be assessed. The product could also have requirements such as needing to operate
at scale or fulfill security requirements, adding additional feasibility considerations.

Zink et al. present Describes feasibility as the final part of the three part solution space model
[24]. It states that feasibility is a measurement of the technical functionality. The paper
finds that feasibility testing had the highest priority in development process experiments
and maintained a high share of invested time regardless of prototyping goals.

A common type of prototype to test feasibility is the Breadboard prototype [20] [23] [9] [25].
Such prototypes are built to investigate technical aspects and are normally not evaluated
by users. This kind of prototype can support system specification and coding during the
development project. In addition to the aforementioned kind, Lichter et al. also states that a
presentation prototype can be built to demonstrate feasibility and help with project acquisition
[23].

Tronvoll et al. state that prototypes built to investigate the suitability of a concept can be
referred to as proof-of-concept prototypes [5]. These prototypes are built to resolve structural
uncertainties and are usually the first prototypes constructed in projects.

Fern et al. mention feasibility testing as something used to evaluate novel technical ap-
proaches via exploratory programming [27]. The authors also state that rapid prototyping
emphasises proof of concept and feasibility studies.

34



4.1 Purpose

4.1.5 Communication
A prototype can communicate possible forms of a product. Designers can use it to make
their vision of the product tangible, allowing them to show instead of tell. This can then be
used for discussion, evaluation, and agreement surrounding the product. Prototypes can be
beneficial to communication with stakeholders but it can also be a means of aligning within
a design team.

Lichter et al. states that a presentation prototype can be used to support the initiation of a
software project [23]. It shows that a future application is feasible and in line with customer
expectations. The authors find that while the presentation prototype can be built in a "quick
and dirty" sense to help with acquisition of projects, there is a risk that customers misun-
derstand the meaning of a prototype and enforce that the early version evolves into the final
system.

Ciriello et al. claims that a key problem in software innovating firms is communicating ideas
purposefully to di�erent audiences and that skilled use of prototypes is required to persuade
and collaborate with stakeholders [9]. They propose a set of practices to combine prototyp-
ing with storytelling to improve communication, increase customer involvement, and pro-
vide better customer satisfaction. They note that prototypes can clarify problems early and
provide basis for discussion and development. For instance, they conclude that prototypes
are useful for requirement elicitation and decision making. They also provide a concrete
basis for communication and enrich coordination between developers and stakeholders. Fi-
nally, they also point out a risk of setting unrealistic expectations when communicating with
prototypes.

Ratcli� claims that users often have fuzzy, incomplete, or inconsistent ideas about their re-
quirements [28]. Prototyping can be used to clarify the objectives and communicate di�erent
paths to the solution. It also states that prototyping fosters an increased sense of cooperation
between developers and users. It suggests a di�erence between early and middle prototyping,
in that middle prototyping moves towards verification.

Multiple articles make shorter mentions of communication as a prototype purpose. Dow et
al. mentions briefly that prototypes anchor group communication [22]. Zainuddin et al. at-
tributes popularity of low-fidelity prototypes for communication to the fact that they can
be realised without programming [29]. Budde et al. says prototypes supports discussions sur-
rounding problems, the clarification of particular questions, or preparation of a particular
decision [25]. The authors also states that prototypes can be supplemented with written sys-
tem specifications for additional communication needs. Fern et al. says that prototypes can
act as a lingua franca, proving a common point of reference for developers and stakeholders
[21].

4.1.6 Usability testing
A prototype can support the evaluation of ideas and improvement of usability. Numerous
frameworks for such evaluation exist and among the usability aspects to be evaluated are
learnability, e�ort to operate, and understandability. Usability is di�erent from desirability
testing as it is not concerned with what the user should be able to do but instead focuses on

35



4. Prototyping Aspects Model

how to make the experience e�cient and enjoyable.

Lim et al. states that prototypes are rarely used for evaluations such as usability testing but
are rather a tool for the designer to explore and learn [20]. They carefully note that evidence
exists that usability testing provides similar results whether the prototype is of low or high
fidelity. Using a case study, the paper finds that di�erent usability issues were discovered
when using di�erent kinds of prototypes such as paper or computer-based. However, as long
as the function was su�ciently simulated in the manifestation, the same usability issues were
discovered.

Hendry et al. performs an experiment focused on usability testing prototyping [30]. The
authors brings paper prototypes to the streets and recruits people for testing. This allowed
the authors to reach user segments otherwise inaccessible for usability testing. It concludes
that evaluating paper prototypes on the street is both possible and useful.

Sefelin et al. explores usability testing in di�erent mediums [31]. It finds that the amount
of suggestions and critiques does not significantly di�er between computer and paper based
prototypes. Users preferred testing with a computer based prototype as it gave them more
freedom to explore the system themselves. Whereas in the paper prototype they needed to
ask the test operator to simulate certain behavior. This leads to the paper reflecting whether
this is significant reason enough for designers to prefer computer-based prototypes and how
large a role the user satisfaction with testing matters.

McCurdy et al. refer to usability testing as collecting usability data via user testing [32]. They
suggest that some usability issues cannot be discovered unless fidelity is su�ciently high.
It approaches prototyping from a perspective of Human-Computer-Interaction (HCI) and
suggests that the traditional definition of prototype fidelity has some shortcomings in terms
of representing the artefact. It suggests mixed fidelity, a combination of low and high fidelity,
as an approach that can allow for usability testing in a more economical manner.

Hakim et al. describe usability testing as finding a user interface that optimises the usefulness
and usability of a solution [33]. The interface should allow the user to carry out the use
cases in a good manner. The prototype could possibly incorporate the ability to capture
various metrics. Usability data to examine could include task completion time and overall
user satisfaction. The paper also notes that the associated instructions, task descriptions, and
data in the prototype can a�ect the results of the testing. Therefore these are also a significant
part of the usability testing.

Zink et al. state usability as one of four prototyping purposes [24]. In this model usability
prototypes create an interaction between the customer and the product. By using such a pro-
totype the developer generates data about the usage of the product. In a practical case study,
usability was the least common prototype purpose. Furthermore prototypes were allowed to
have more than one purpose and usability prototypes were usually combined with another
purpose. Prototypes with a singular purpose of usability were extremely rare. The authors
suggests that the reason could be the ease with which usability can be combined with another
purpose. Usability as a purpose saw an uptick during the last iterations of prototyping.

36



4.1 Purpose

4.1.7 Partial product
A software prototype can be assembled with the goal of evolving into the actual product.
Development can then be performed incrementally and the prototype iterations can have
purposes that di�er from common prototyping. This implies that the prototype is developed
in the programming language that the final product will use. Three common types of partial
product prototypes are alpha, beta, and minimum viable product (mvp).

Schneider notes that some prototypes are built with the purpose of evolving into a final prod-
uct [21]. Such a prototype is called a pilot system and should, in terms of characteristics, have
no real distinction to the final system other than its completeness. Associated documentation
should focus on judging system parts and the priorities for improvement.

Lichter et al. also refers to a prototype intended to become the final product as a "pilot system"
[23]. The authors describes using the pilot system in the application area, starting with a
core that becomes sophisticated with the addition of more features. As time progresses, the
divide between prototype and final system slowly disappears. The work suggests that in such
a development method the pilot system increments should focus on the user priorities.

Bellomo et al. discusses a continuous delivery approach to partial product prototyping [34].
They address two kinds of agile prototyping activities, the first being spikes and tracer bul-
lets. Spikes are timeboxed and typically thrown away after having served their purpose while
tracer bullets are exploratory activities that are kept. Using these activities, the authors de-
scribe a workflow where prototyping gradually implements functionality, using the proto-
types to reduce uncertainty rather than having a separate and extensive requirement speci-
fications. The focus of the paper is to optimise the quality of a prototype before the merge
that occurs at the end of an iteration by comparing the e�ect of di�erent activities.

Fairley et al. discusses several ways of prototyping a partial product under the term iterative
development [35]. Iterative prototyping can be used when evolving a user interface. Agile
development closely involves the user in prototyping activities that can happen several times
in a single day. Incremental build sees developers creating weekly builds of evolving software.
Finally, a spiral model can be used to mitigate risk in evolving software. The paper provides
a "Plan-do-check-act" model for iterations which focuses on the "act". A term described as
the rework conducted after prototyping reviews. The authors categorize di�erent kinds of
rework in terms of corrective, evolutionary, and retrospective and analyse these categories.
The paper also provides guidelines for a health check on projects in terms of recurring rework
to ensure a smooth execution of the continuous partial product prototyping.

To�olon et al. proposes a framework for iterative development that incorporates prototyp-
ing based on software crisis [36]. The software crisis is defined by the complexity and un-
certainty of software engineering and organisational activities around it. It states that these
issues lead to exorbitant maintenance costs, backlogs of up to eight years, project costs and
time overruns, and perhaps most significantly bad quality in the final software product. The
paper defines two kinds of prototypes, informative or operational. Informative prototypes
support exploration, clarification, and overall reduced uncertainty. Operational software are
versions of the future system that have implemented well-documented requirements from
stakeholders and are iteratively evolved. The framework specifies a Problem-Architecture-
Construction-Operation (PACO) model that states how actors should interact with one an-

37



4. Prototyping Aspects Model

other and which activities should take place during the di�erent phases.

Goldman et al. describe a prototype as an incomplete approximation of the final system that,
through iterative evolution, gradually moves towards completeness [37]. It defines three di-
mensions of completeness: system performance, system functionality, and user interface. The
paper then proceeds to discuss the di�erent toolkits useful fro developing these aspects, for
instance Virtual Database Programming (VDP) that allows the simulation of data relation-
ships.

Tronvoll et al. describes product development as a qualified guess for a solution [5]. This guess
will sometimes miss the target due to the complexity and assumptions that have been made,
therefore one should expect to redesign the solution and test it again. These cycles are the
centerpieces of design methodologies design thinking and agile development and are avoided
in methodologies like quality function deployment or total quality management. The paper
proceeds to discuss a number of design approaches that can support a variety of prototyping
purposes, these approaches are covered in the strategy chapter of this paper.

Fern et al. propose a three part prototyping methodology called Tri-Cycle [27]. They state
that the process culminates with an operational (but possibly incomplete) prototyped system
that can either evolve into the deliverable system or be considered a learning exercises (i.e
throw-away prototyping). In the former case the prototype should be evaluated in a "Cus-
tomer acceptance review" and further evolved.

4.1.8 Validation
A prototype can allow a design to be validated. It allows examining whether the require-
ments are adequately satisfied, which might a�ect how the project proceeds. Validation is
essentially asking if we “built the right thing”, and can be done with either internal or ex-
ternal stakeholders. When the prototyping purpose is validation it implies that assumptions
have been made and some form of artefact has been built.

Yasar states that low-fidelity methods are able to validate designs and predict large problems
at a low cost, garnering them popularity [26]. The low cost is attributed to using a whiteboard
drawing or paper prototyping.

Raja discusses requirements prototyping [38]. Requirement prototyping helps requirement
engineers to discover and understand the customer requirements, allowing for the customer
to be involved with requirements validation. They suggest two kinds of prototyping to sup-
port such validation. Throwaway prototyping can be used to resolve unclear requirements
while evolutionary prototyping is based on implementation of agreed requirements. These
processes help with visualizing the requirements, possibly providing customers with a clearer
view of requirements than a requirement specification document can. Finally, Evolutionary
prototypes can also be used during system testing to provide consistency into the final prod-
uct.

Bellomo et al. described the use of prototyping in one company [34]. Minimal prototyping
was encouraged, only prototyping with su�cient depth and breadth to validate the desired
concept. This is in line with the thought that unjustified early planning and precision in
requirements is counter-productive.

38



4.2 Strategy

Ciriello et al. Says prototyping is a way to find out what works or not [9]. The existence of
prototypes is justified by their ability create knowledge about solutions and problems. The
authors state that the outcome of such a process can be an minimum viable product (MVP)
containing just the essential features along with validated learning. They also refer to a quote
stating "The whole idea is only sketch until you build a prototype and validate with someone
who has business knowledge. Unless you create something tangible, you never get to the next
level." The authors also state that while a prototype can support the activity, it can not alone
validate the requirements.

Fairley et al. advocate a more continuous approach [26]. Development is done iteratively
and as capabilities are added they also validate those capabilities, reworking if necessary.
Iterative development can take di�erent shapes, for instance iterative prototyping or agile
development. In agile development the customer is closely involved and prototypical reviews
might occur several times daily. The authors suggest that validation should can lead to either
too much or too little rework, both of which can be indicative of issues in the process. They
provide some reasoning that a suitable amount of rework could lie between 10-20 % of the
development e�ort.

4.1.9 Performance improvement
Performance can be of varying importance depending on the type of system. If performance
is good it can be a competitive advantage for the product, and if performance is poor it might
create issues. The system might have long response-times or become unstable when handling
a certain quantity of data. Prototyping can then be undertaken to keep all other aspects of
the product the same, while making changes to try and improve the performance.

Kordon states rapid prototyping is used to improve e�ciency of the code [39]. The code is
run on hardware with very limited amounts of resources, hence the code must be as e�cient
as possible. Prototyping is done in either a throw-away approach focused on a subset of
requirements or in an evolutionary approach. In this type of prototyping, it is also important
to keep overhead from measuring execution to a minimum, as it can interfere with providing
an accurate measurement.

4.2 Strategy
The prototyping strategy determines how resources and design decisions are organised in
order to manage uncertainty. There are four strategies to consider when undertaking proto-
typing [5]. The approach to design is dictated by the strategy and in some strategies multiple
designs are pursued. The strategies are described in further detail below.

39



4. Prototyping Aspects Model

Figure 4.1: Visual representation of the four strategies and their de-
sign approach.

4.2.1 Point-based design
Resources are focused on achieving a high degree of confidence in one single design. Design
choices are considered carefully before being cemented in the design. If the design appears to
be missing its target it might be necessary to discard the design and redo the process.

4.2.2 Set-based solution array
In a set-based solution array several potential designs are pursued simultaneously. Design
decisions are managed by diverging into two separate design tracks. Potential designs can be
merged either continuously or during stage-wise iterations.

4.2.3 Performance set investigation
Performance set investigation converges on one design by applying a systematic performance
evaluation. Decisions surrounding design are postponed until they can be validated and when
encountering several alternatives only the most promising one is pursued. The number of
design decisions to be investigated simultaneously is kept to a minimum in order to minimise
cross-contamination.

Design decisions are judged with performance evaluation which slightly changes the nature
in which questions are asked but provides a more complete understanding of the design. This
form of evaluation treats performance as a range rather than a binary can or cannot. Due to the
nature of having a range as an answer one must inquire on additional performance factors.
For instance, instead of asking whether a design for a word processor allows saving one can
investigate the average amount of time it takes to perform a save. Additional performance
factors could be that a certain design is more e�cient at saving but drastically increases the
size of the save file. The design gradually converges as the number of additional performance
factors increases.

4.2.4 Flexible design
In a flexible design strategy the solution is based on making best-guesses and making it easy
to perform changes as the work progresses. The design is iterated and evaluated, changing

40



4.3 Scope

direction when required. Thanks to its modular approach it is suitable for iterative product
development.

4.3 Scope
Scope is the extent to which the prototype is made to look and act like the real product.
The prototyping scope can be described in terms of visual and functional refinement. These
two dimensions represent the fundamental essence of a prototype. Though related to some
degree as one can not represent functionality without visuals, these dimensions are two dif-
ferent sides of the prototypes. The dimensions can be refined to varying degrees and can be
represented as a 2D-space as depicted in Figure 4.2.

Figure 4.2: Depicts the functional and visual fidelity as prototype
scope.

There are many di�erent ways to assemble a software prototype, which lend themselves dif-
ferently well to achieving these degrees of refinement. These dimensions possess some com-
plexity and can be further explored.

4.3.1 Visual refinement
Comparing the looks of a prototype with ones perception of what the final product is to
achieve yields an estimation of similarity called visual refinement. It encompasses aesthetics
such as colours, layout, and fonts but also user interface elements such as icons and but-
tons.

41



4. Prototyping Aspects Model

4.3.2 Functional refinement
Functional refinement states the same comparison as in visual refinement but with a focus
on the behaviour of the system. There are four di�erent aspects to functional refinement.
These aspects can be likened to properties with some degree of hierarchy.

Data richness

Interactivity

Functional Depth

Functional Width

High

Functional 
refinement

Low

Figure 4.3: A breakdown of the four stages in functional refinement.

Specifying functionality can be described as a process that traverses four stages, from the idea
of what a product shall achieve to what data is necessary to reflect real world usage. The first
stage is functional width where one decides what needs should be addressed by the system
and what functions are required to address the needs. Each functionality is then divided into
its constituent parts in the form of functional depth. The third step is to establish the user’s
connection to the system, also known as interactivity. This is best accomplished by answer-
ing how do users access a function? and what feedback does the system provide?. Data richness is
the final step of functional refinement and concerns the data richness of the prototype. The
prototype might require a certain level of data richness in order to accurately simulate nor-
mal use. Additionally, certain issues might only be discovered if the data su�ciently diverse.
A low-functional refinement prototype has limited functional breadth and depth, perhaps
only hinting at some functionality by showing a non-working buttons. A mid-functional
refinement has a higher degree of functional width, depth and possibly some degree of inter-
activity. A high-functional refinement prototype has a high degree of functional width and
depth and some degree of interactivity and data richness.

42



4.4 Review method

4.3.3 Contemporary prototype dimensions
Traditional literature discusses the dimensions of software prototypes in terms of fidelity. A
term used to describe how much resemblance there is between the prototype and the final
product. Low-fidelity indicates significant di�erence while high-fidelity can be 9/10’ths of a
complete product.

Advances in software that aid in the creation of prototypes has lead to a gap concerning
terminology. Modern prototypes can have a high degree of visual refinement and low degree
of functional refinement while still being referred to as a high-fidelity prototype. It is evident
that for some low-fidelity is synonymous with paper-based prototyping and high-fidelity is
synonymous with any computer-based prototyping.

In recent literature the term mixed-fidelity has emerged as an alternative to low and high
fidelity. It bridges the aforementioned gap and is used to describe a prototype that is low in
one and high in another dimension of refinement, be it visual or functional. The introduc-
tion of this term acknowledges that low and high fidelity are insu�cient at describing the
complexity of a prototype but ambiguity remains on what kind of refinement exists.

4.4 Review method
Review method is the manner in which the prototype is evaluated. It covers three areas; the
way in which a presentation is conducted, the environment in which the prototype is used,
and finally the potential division of the prototyping process into iterations.

4.4.1 Presentation and use
There are four di�erent ways in which a presentation can be conducted.

• Demonstration A presenter shows the prototype, either by operating it live or using prepared
media such as video or photos.

• Scenario testing The user operates the prototype and is given instructions by the presenter on
what to do. The steps required to perform the instructions may be implicit or explicit.

• Free testing The user is allowed to explore the prototype and is given a minimal amount of
instructions.

• No user presentation The review might be entirely a technical evaluation where performance
is measured and no user feedback is required.

4.4.2 Setting
A setting is judged based on its similarity to the conditions in which the final product will be
used. This reduces the risk of false pretenses and has a potential of highlighting requirements
that are specific to the setting. A few things should be considered

43



4. Prototyping Aspects Model

• Environment A lab environment o�ers a controlled setting and operational convenience. How-
ever, it might mean that the prototype is tested in an environment that is di�erent from where
it will be used. For instance, a prototype for a system intended to be used in a loud environment
produce other feedback in a quiet lab environment than its natural habitat.

• Representation Depending on how reviews are conducted some future users might become
underrepresented in design. Feedback about desirable properties of the system might not be
captured if stakeholder participation is lacking. Conversely, a user experience engineer might
be better trained to discover usability.

4.4.3 Iterations
Development of a prototype can be split over several iterations. Such a process can feature
cyclical repetition of activities such as plan, build, test, and evaluate. When deciding about
iterations there are some facets to consider.

• Length of iterations The length of an iteration can have an impact on design. Jaskiewicz et
al. found that multiple short iterations lead to a diverse but superficial set of design solutions
[40]. In contrast longer and fewer iterations promoted larger focus on certain aspects.

• Iteration purposes Each iteration can come with a di�erent set of objectives and purposes.
Focus and development can then be directed towards certain purposes, possibly simplifying the
process.

• Concurrency Several design paths can be pursued simultaneously in an iteration. This can lead
to more diverse functionality in the final design but can also result in contradictions between
prototypes that make the merger of design paths di�cult or even impossible [40].

4.5 Model design choices
The design of the framework was based on the literature selection and the categories that
were found with thematic coding. Purpose and scope were the most common dimensions
throughout all articles and were therefore easily identified. Scope is typically, but not al-
ways, referred to as fidelity. The term scope is however more encompassing and was therefore
deemed to be more appropriate than fidelity.

Two additional aspects were discovered and added to the framework. The first was strategy
which describes how resources and uncertainty is handled during prototyping [5]. The second
aspect was review method which describes how the prototype is tested and how knowledge
is extracted from it. The latter received much attention as multiple papers discussed the
practical application of various methodologies.

Aspects were developed individually. We decided to use [24] as our starting point for proto-
typing purposes as the paper o�ered the most comprehensive view of prototyping purposes.
The rest of the literature was then scanned for additional purposes that did not overlap with
the already defined ones. The aspect of prototyping strategy was only described thoroughly
by a single paper, thus it was used for describing this aspect [5]. The aspect of scope was dis-
cussed in several papers. The most sophisticated model was o�ered by McCurdy et al. which

44



4.5 Model design choices

described five dimensions of prototypes[32]. A compromise was made, the common func-
tional/visual fidelity model was used but with the five dimensions integrated as parts. As for
the final aspect review method, a combination of di�erent papers were used to characterise
this aspect.

45



4. Prototyping Aspects Model

46



Chapter 5

Agile Prototyping Guidelines

5.1 Guidelines
These guidelines recommend how prototyping can be used in a software development project
to conduct Requirement Engineering Activities. The guidelines consist of five steps that
should be undertaken in the development process. The five steps demonstrate how pro-
totyping can support requirements engineering in software development by establishing a
blueprint for the system that should be built and agreement around that blueprint. During
these steps prototypes serve as a system specification. The three main activities of Require-
ments engineering that are addressed in this step is elicitation, specification, and validation.
The intended user of these guidelines is the specification architect. By specification architect
we refer to someone driving the development, this could be a requirements engineer, devel-
oper, manager, product owner, consultant, or designer and could be more than one person.
An overview of these guidelines is presented in figure 5.1

The pre-requisites for applying the guidelines is that there exists a primitive outlining of
that project that depicts what type of software system should be conceived and who the
stakeholders are. The intended type of system can be vague but should at least state whether
it is an invoice handler, fitness tracker, or something else that is being developed. As for
stakeholders we presume some future users are identified and available as well as a customer
responsible representative referred to as customer for brevity.

Steps can be undertaken in a di�erent order than presented depending on what the the cur-
rent project needs are. As with many agile development projects the steps may be performed
in cycles. We also add that project context can make certain steps more or less necessary.
For instance proximity to a deciding stakeholder during specification might reduce the need
for a formal validation as prescribed in the fifth step. Stakeholders without proximity might

47



5. Agile Prototyping Guidelines

need to be included during various steps of the development.

Concept exploration
Make prototypes just to explore ideas and discover what the 
system specification design space is. Find out what some possible 
problems and solutions are. Test several divergent prototype 
concepts. Use low-cost methods such as paper prototyping. Focus 
on your own learning, sharing with others is optional at this stage. 

Discover customer needs

Create one or more low-fidelity prototypes that represent some 
possible system concepts. Focus on representing the role of the 
systems. Present to user and create discussions that lead to a better 
understanding of the customer’s needs and desires. 

Devise design suggestion
Formulate a more concrete system specification suggestion using 
prototypes. Focus on a single low-fidelity design and try to find 
implementation ideas that serves the customer’s needs best. If 
working in a team of specification architects, use prototypes to 
communicate and reach consensus about the best prototype ideas.

Test and improve
Create low-fidelity prototypes to represent the implementation 
suggestion. Have users test the prototype and focus on gathering 
feedback. Potentially supplement the prototype with additional 
information. Perform several iterations to improve the planned 
form and function. Conclude when a good system specification  
intent exists

Confirm design
Create a prototype that is at a higher level of fidelity, especially in 
terms of functionality. Use the prototype to communicate with 
customer and reach agreement as to what should be built. If done 
in the actual future environment, this prototype can serve as an 
MVP for the system and evolve into a complete system.

1.

2.

3.

4.

5.

Figure 5.1: Summary of the 5 guideline steps

Step 1: Concept exploration
In this step the specification architects should use exploratory prototyping to take the first
steps in the development process. This kind of prototyping lets the specification architects
explore a design space and in this parallel discover both problems and possible solution di-
rections [20]. By doing so the specification architects learn what the product can become
and what the essential design choices could be. The specification architects do not need to
share the prototypes with the users at this point but can rather focus on their own learning
as each prototype that is tested can lead to new system specification ideas and design spaces
to explore [20].

Low fidelity methods, such as paper prototyping, are recommended as they can be used to
explore specification aspects at a low cost while being able to predict large problems [40]. In
essence, even a few quick sketches on paper can allow for experimenting with ideas. Several
prototypes with di�erent concepts should be created to explore a variety of ideas as this can
lead to more a divergent set of ideas and a better end-product [22]. Concepts can then be
integrated and merged as the work progresses [24]. This step can be concluded once specifi-
cation architects have some ideas about design space and possible rudimentary concepts for
the product.

Purpose Exploration

48



5.1 Guidelines

Strategy Set-based solution array
Scope Low-visual, Low-functional
Review method Any
Requirements Engineering activity Elicitation

Step 2: Discover customer needs
Specification architects can use prototypes to support discussions about the future system.
In this step, prototyping is done with a focus of what role the product will play in the users
life, thereby establishing the concept frames [26]. Low-fidelity prototyping is viable as the
prototyping scope only needs to be high enough to represent the role and concept of the
system. As the conversations about desirability progresses the user tasks are elucidated [9][25].
Desirability will become clearer and the value to the customer is also better understood by the
specification architects [24].

Multiple paths should be examined if possible, either by creating multiple kinds of prototypes
or taking a flexible and modular approach. This allows several design spaces and their relative
merits to be explored [22]. By sharing prototypes with users the specification architects can
prove, disprove, and demonstrate various points [21]. Particularly points from the previous
step of these guidelines can be important to review. This step can be concluded once the
customer needs and the functionality required has been established.

Purpose Desirability (Role), Exploration
Strategy Set-based solution array, Flexible design
Scope Low-visual, Low-functional
Review method Any
Requirements Engineering activity Elicitation

Step 3: Devise design suggestion
In this step specification architects should use prototyping to carve out a design for the fu-
ture system. Specification architects can expand the desirability perspective to include the
implementation of the system, i.e how the system should be designed to best provide value to
users [26]. The design is formulated by creating a prototype that fits with the discoveries in
the previous step.

To provide a clear direction the focus should shift towards a single design, converging pre-
vious design options. Formulating the design is also a useful way of communicating and
aligning within the specification architect team. Group communication is anchored through
prototypes supporting discussions surrounding problems and clarification of particular ques-
tions [25]. This step can be concluded once the specification architects agree on a specifica-
tion suggestion.

Purpose Desirability (Role, Implementation), Communication
Strategy Point-based
Scope Low-visual, Low-functional
Review method Any
Requirements Engineering activity Specification

49



5. Agile Prototyping Guidelines

Step 4: Test and improve
Specification architects should use prototypes to test their suggested concepts. In this step,
users test the prototype and provide feedback on the Implementation of the system and whether
it is well suited to the system’s intended role. Simultaneously the prototype is iteratively im-
proved with the help of the feedback. The prototype is used as a specification as well as a
communication tool, providing a common reference point for them and the users while gath-
ering useful feedback [21]. Prototyping at this point can also be used to clarify objectives and
di�erent paths to solutions, allowing a shared vision to emerge between the groups. [28] Low
fidelity methods can be used as the concept is in focus, however the prototype can be supple-
mented with additional information like a written system specification if required for further
communication needs [25]. A flexible design approach is preferable as many changes might
be required while user feedback is collected. This step can be concluded when specification
architects are content with the amount of feedback collected.

Purpose Desirability (Implementation), Communication
Strategy Flexible design
Scope Low-visual, Low-functional
Review method Any
Requirements Engineering activity Specification

Step 5: Confirm design
In the final step the specification architects should use prototypes to formally confirm spec-
ification with the customer. Customers can validate either a throw-away prototype or an
evolutionary prototype. [38] The first type is used as reference when building the actual sys-
tem while the other one is gradually evolved into the final system. If the latter approach
is chosen, the prototype produced is typically called a Minimum Viable Product (MVP) or
Pilot System. The goal of this step is to achieve high confidence in a single prototype and
reach agreement on what should be built. To properly simulate the final system a mid or high
level of functionality must be implemented, in the process of doing so issues and inconsis-
tencies might be revealed. The step is concluded when the customer accepts the prototype
as specification and implementation commences.

Purpose Communication, Partial product, Validation
Strategy Point-based
Scope Low/mid-visual, Mid/high-functional
Review method Any
Requirements Engineering activity Validation

5.2 Implementation of Guidelines
Companies wishing to implement these guidelines should start by considering who should be
represented as stakeholders. The focus-group indicated that the composition of stakeholders
has an impact on the execution of the di�erent steps. One should consider if all the right
people are involved to successfully execute all the steps. Next one should consider if certain
steps should be merged or possibly iteratively repeated depending on the nature of the project

50



5.2 Implementation of Guidelines

and company. In the final step of implementation the processes and tools to be used should
be decided on. We recommend that practitioners start of simple and then gradually adjust
the process so that it becomes a good fit.

51



5. Agile Prototyping Guidelines

52



Chapter 6

Result

Our work has produced two theoretical frameworks to advance the area of prototyping. The
Prototyping Aspects Model presented in Chapter 4 and the Agile Prototyping Guidelines
presented in Chapter 5. The former provides an insight on the topic of prototyping and the
latter presents guidelines for applying prototyping in the requirements engineering process
to support agile software development.

In this chapter we present three intermediate results used in designing and validating the
aforementioned model and guidelines. The first result originates from the literature study
and concerns a demographic overview of the underlying systematic literature study. Findings
from the exploratory case study represent the second result and provide an insight on the
e�ect of altering the aspect of prototyping scope and the impact on the output and learning
in software development. The focus group was the last result and was conducted in order
to validate a set guidelines that are to support agile development projects and its results are
presented here.

6.1 Literature study
The literature study provided a structural approach for identifying a set of articles that laid
the foundation for the Prototyping Aspects Model presented in Chapter 4. This section
provides an overview of how the articles relate to the aspects of the model and presents the
demographics of the set of articles regarding publication date and country of origin. The
literature study is further described in Section 3.1 while the model can be found in Chapter
4.

The four aspects of the Prototyping Aspects Model were identified by analysing the articles
of the literature study. Table 6.1 specifies how each article contributed to the aspects. Some

53



6. Result

articles covered multiple aspects and therefore occur more than once while a handful have
been marked with parentheses due to only

Table 6.1: Overview of the articles that were used to create the as-
pects of the prototyping aspects model.

Category Articles
Purpose 1, 3, 4, 6, 11, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 (18)
Strategy 8, 12, 22, 23, 30
Scope 2, 4, 7, 9, 13, 14, 16, 18, 19, 21, 28 (1,30)
Review method 4, 5, 10, 15, 17, 20, 21, 23, 25, 28 (16, 30, 31)

The articles in our final set were published in the years from 1988 to 2018. Figure 6.1 presents
this by clustering the articles in sections of four years to balance the level of detail with the
legibility of the graph. Except for a dip in 1998-2002 for which we cannot find a reasonable
explanation, the results are spread out evenly with a slight increase in recent years.

1988-1992

1993-1997

1998-2002

2003-2007

2008-2012

2013-2018
0

2

4

6

8

10

5 5

1

6

8
9

N
um

be
ro

fA
rt

ic
le

s(
#)

Figure 6.1: Number of articles split by group of years.

The country of origin was determined by looking at the primary author of each article and
grouping the countries by continent. The result of this is shown in Figure 6.2.

54



6.2 Case study

4Asia

14North America

16Europe

0 5 10 15 20
Number of Articles (#)

Figure 6.2: Number of articles split by origin.

6.2 Case study
We performed an exploratory case study to investigate the aspects of the Prototyping As-
pects Model (see Chapter 4) and its relation to the outcome and learning within a software
project. The study consisted of 15 sessions during which subjects were exposed to one of three
prototypes after which they filled out a survey. All 15 employees were employed as advisors,
a role which is described in section 2.3.1. A reminder of the di�erences between the proto-
types is provided below and a detailed description of each prototype can be found in Section
3.3.1.

Prototype (1) High visual - high functional
Prototype (2) High visual - low functional
Prototype (3) Low visual - high functional

6.2.1 Experiences of Prototype Variants
To procure an image of what areas subjects discussed during their session we applied thematic
coding on the first segment of the survey and on notes from the interviews. The thematic
coding highlighted three areas that could be of interest when optimising output and learning
with prototyping in a software project; visual, functional, conceptual. A consolidation of the
result is presented in table 6.2 and a detailed insight is provided thereafter.

Table 6.2: Overview of participants perception of the di�erent pro-
totype variants.

Question Prototype (1) Prototype (2) Prototype (3)
What was good? visual, conceptual visual, conceptual conceptual, functional
What was bad? visual visual visual
How could you visual, functional visual, functional -
improve the system?

Subjects that experienced Prototype (1) and Prototype (2) discussed the visual and concep-
tual attributes when being posed with the question What was good?. Visual comments often
referred to the interface with statements such as Clean interface and Nice interface. Comments

55



6. Result

that referred to conceptual attributes hinted at the overall look and feel of the prototype and
how well this would fit with the current product o�ering. Examples of responses include The
overall design was great, Easy to find functionality since it is logically divided, and This feels like the
logical next step for the product.

Subjects that had worked with Prototype (3) were prone to discuss conceptual and functional
attributes when being asked what they perceived to be good. The former resembled the feed-
back that subjects had given with Prototype (1) and Prototype (2) but the amount of feedback
on functional attributes was higher than with those prototypes. This feedback consisted of
comments that discussed in detail how something should work, such as It is good to see which
channels you are active in and GOOD to be able to edit the interface to my liking as with the dots in
that slide.

The length of responses varied significantly when subjects were asked to highlight what they
perceived to be bad with the prototype they had been shown. A majority of the answers
were short statements, resembling Not much at all or I did not think anything was bad, while a
handful were elaborate with multiple paragraphs that covered all three areas. The number
of comments that could be linked to visual attributes were slightly higher than for concep-
tual and functional but a vast majority of the comments were variations of The icon for issue
management was unclear or A lifebuoy is not a good icon for issue management.

When asked how one may improve the system, subjects that worked with Prototype (1) and
Prototype (2) provided feedback on visual and functional attributes. Comments included
Change the icon for issue management and See emails from customers in the system. While subjects
that had worked with Prototype (3) did provide a handful of comments regarding visual
attributes there was such a large gap between these and those of Prototype (1) and Prototype
(2) that we felt it unfair to highlight any area at all.

6.2.2 Quantitative Performance Evaluation of Proto-
types

The second segment of the survey provided quantitative data to evaluate and compare the
performance of each prototype. To obtain this data, we posed five questions to which subjects
responded with a Likert scale.

Table 6.3 contains the complete collection of responses. Values are displayed in ascending
order meaning that they do not necessarily stem from one and the same session. Each com-
bination of question and prototype has received five responses leading to a total number of
75 values.

56



6.3 Focus group

Table 6.3: Results from the statements in the second segment of the
survey. The values are shown for each combination of question and
prototype.

Question Prototype (1) Prototype (2) Prototype (3)
(A) It was easy to grasp what 3, 4, 4, 5, 5 4, 4, 4, 4, 4 3, 4, 5, 5, 5
functionality the system will have.
(B) It was easy to grasp how 2, 4, 4, 5, 5 3, 3, 4, 5, 5 2, 4, 4, 5, 5
the functionality will work.
(C) It was easy to grasp how 3, 4, 4, 5, 5 4, 4, 5, 5, 5 2, 2, 3, 4, 5
the system will look.
(D) It would feel di�cult to suggest 1, 1, 1, 2, 3 1, 1, 2, 3, 3 2, 2, 2, 4, 4
large changes in the system.
(E) It was easy to imagine alternative 2, 3, 3, 3, 5 2, 3, 4, 4, 4 1, 1, 3, 3, 4
ways the system could be designed.

Substance for the evaluation and comparison was created by calculating the average, median,
and variance of each combination of question and prototype. The results of these calculations
are presented in Table 6.4.

Table 6.4: Average, median, and variance of each prototype in the
second segment of the survey. The values are based on the figures
presented in Table 6.3 and are shown for each combination of ques-
tion and prototype.

Prototype (1) Prototype (2) Prototype (3)
Avg. Med. Var. Avg. Med. Var. Avg. Med. Var.

A 4.2 4 0.7 4.0 4 0.0 4.4 5 0.8
B 4.0 4 1.5 4.0 4 1.0 4.0 4 1.5
C 4.2 4 0.7 4.6 5 0.3 3.2 3 1.7
D 1.6 1 0.8 2.0 2 1.0 2.8 2 1.2
E 3.2 3 1.2 3.4 4 0.8 2.4 3 1.8

6.3 Focus group
The focus group acted as an evaluation and validation of the Agile Prototyping Guidelines
(see Chapter 5). Participants expressed their opinions surrounding the guidelines in their
current form, how it suited their work style, and elaborated on possible ideas for how to im-
prove the guidelines. This section presents the qualitative results of the transcribed material
from the recording of the interview.

6.3.1 Agreement with guidelines
Several statements were identified which agreed with the guidelines presented. The par-
ticipants said these guidelines are a pretty good match with their method of working and

57



6. Result

confirmed that it is a good way of working. When stating this one of these participants also
added that she believes the guidelines match a typical design process rather well and did not
add much new. Another of these participants added that a good thing about the model is
that goals are made clear for each step. Particularly step 1 and 2 had support expressed dur-
ing the focus group. Regarding step 3 and 4 a similar but slightly di�erent was advocated by
the company which is elaborated on in Section 6.3.2. Step 5 was not seen as less applicable
for Telavox and is discussed in Section 6.3.6. In this section we present some statements that
were found to be in agreement with various specific parts of the guidelines.

One participant stated the importance of creating several prototyping variants to not get
stuck in a single solution early, agreeing with step one and two that multiple concepts should
be tested in an early stage. Telavox uses low fidelity methods to create the variants at this
stage, typically either paper sketches or a tool called Invision.

When asked if she usually shows her first drawings of a potential system, a participant re-
sponded that she tends to not do so. However, she finds that having a discussion with users
can be di�cult without having anything to show. She added that she believes it is important
to create several prototype variants to consider a variety of directions. She said that present-
ing these prototyping variants to users makes it easier for them to give feedback about which
direction for the system is best. In step two of our guidelines it is recommended that several
di�erent low-scope prototyping variants are presented to users, which can be supported by
the comment of the participant that this helps user express which direction for the system
that they believe in.

Whilst discussing step two of the guidelines and specifically elicitation of requirements a par-
ticipant said that it is generally easy to get feedback on what is good but hard to get feedback
on what is bad when presenting prototypes to others. He added that it is important to struc-
ture the test in order to get feedback on the right things when a prototype is being presented
to a user. Another participant added that at this stage of project they usually work with
wire-frames and avoid pixel-perfect prototypes. He said that this can be a helpful approach
in acquiring the particular feedback they are seeking, implying that prototype feedback on
functionality is desirable over feedback on visual style at this point. This statement is in line
with the guideline recommendation of working in low-visual prototyping scope during step
2.

One participant first said that he does not think prototypes should come into play during
a typical step 2, i.e. the first meetings with a user. However after some consideration he
said that prototypes are beneficial at this point in loosely defined projects. He stated that in
these kinds of projects the prototypes can help create discussion surrounding the desires of
the future system. In a recent project they had shown sketches which helped both designers
and users understand what they were discussing and assisted in framing what the role of
the system was. In the guidelines we recommend that during step 2 prototypes are used to
support conversation about the role of the future system (desirability testing) with users.

A participant brought up the topic of what questions you are asking a user or customer
proxy. He said that if you ask things like how should we design this page? then you get faulty
answers. Instead he recommends trying to figure out what the problem that the future system
shall solve is through asking solution-agnostic questions. He implied that a prototype can be
employed for this purpose. This is in accordance with the second step of our guidelines where

58



6.3 Focus group

we recommend prototyping to support a discussion focused on the problem to solve the (role)
of the future system rather than how it is solved.

6.3.2 Questioning linear order of steps
Some of the focus group discussions concerned that carrying out the steps in linear order
might not be feasible nor desirable. As a result of this the guidelines were adjusted to state
that steps can be repeated and the order of steps can be rearranged to suit current project
needs. Relevant points to this are presented below.

One participant asked whether moving backwards in the model was possible. She presented
a theoretical scenario in which a system specification fails during the validation step (step
5) for not presenting a su�ciently strong business case. She then inquired whether it was
possible to move back to a previous step or one would have to redo the entire guidelines
process. This demonstrated a need for moving backwards and repeating steps.

The participants explained that they often return to step 3. The team use each other as
sounding boards to discuss ideas. They will then explore these ideas on their own and might
proceed to develop or update a prototype that a user or other designer then tests (step 4).
Once they have gathered that feedback they return to step 3, discussing the next iteration
with the design team. This sequence is repeated several times over a specification process.
They added that often the same people are involved several times throughout the process
when trying to come up with a concrete system design, meaning for them step 3 and 4 is
more intertwined than the guidelines.

A participant also informed us that they have implemented a process of weekly feedback
meetings. In the meetings the team shares prototypes that are between 10-70 percent com-
plete. During these meetings they bounce ideas of each other and review each other’s work
(Step 3 and 4). Between meetings they work on improving their prototype. This demonstrates
a cyclical repetition of steps that can be useful.

6.3.3 Terminology discussed by participants
Some discussion was held surrounding terminology in the guidelines. It was considered
whether some terminology should be changed surrounding the guidelines or if a terminol-
ogy chapter should be introduced, but ultimately it was not deemed necessary. Points are
presented below.

One participant said he does not consider paper sketches a form of prototype and added that
for him a prototype is something interactive that you can test out and really use to get a feel
for the final system. Most literature on the topic does however consider paper sketches to
be a form of prototyping (paper prototyping) including this paper, hence no changes were
made.

Another participant built on this by stating that prototyping can mean di�erent things and
that the same is true for testing and customer needs. She did not o�er her own definition on
these things but rather pointed out that they can be di�cult things to interpret and that it
is a potential area of improvement for the guidelines. The definition of prototyping o�ered

59



6. Result

in this paper (see Section 2.2) allows for a very broad interpretation of what prototyping is
in order to cover these di�erent types of prototypes. In regards to testing and customer needs
these changes would require the guidelines to take a step become much more of a concrete
method rather than guidelines, hence were not addressed.

6.3.4 Unclear results
In some instances participants expressed conflicting views on parts of the guidelines. These
points are presented below.

One point of discussion during the focus group were if any prototypes should be used at all
during step 1 and 2. One participant said they rarely make prototypes during early phases
such as step one or two with the reasoning that it is time consuming and is di�cult. He
advocated spending the time on understanding the task instead through interviews of stake-
holders and other types of analysis. Another participant disagreed and stated that prototyp-
ing at this time can be useful. She stated, that for her, sketching is a way of understanding
the problem. Yet another participant agreed with the sketching approach and said he often
produces a small requirement list for himself before starting to sketch.

While discussing step 3, one participant said they do not think prototypes can be used with
the purpose of specifying but should instead be used to communicate. Another participant
disagreed and stated he sometimes creates prototypes for himself to get an overview of what
the system should contain, essentially working as specification. In step three it is advisable
that prototypes start being used as specifications.

During discussion of step 4 it was discussed whether users that test the prototype could pro-
vide solution to problems. When participants were asked whether they ever use prototypes
to throw problems out in front of other people in an attempt to solve an issue they gave two
di�erent answers. One participant said they sometimes involve users to solve problems while
another participant preferred to solve them privately. Step 4 of the guidelines advocates the
approach of involving users and suggests an iterative approach to testing and improving the
system by having users test the prototype.

6.3.5 New ideas
Some new ideas concerning prototyping surfaced during the focus group. While not a good
fit for the structure guidelines, they are still interesting to present. The points are presented
below.

When asked for other ways to brainstorm and generate ideas about potential system design,
one participant provided an interesting answer. In the case that the prototyping task requires
one to find a good structure for an information hierarchy, such as a menu, the participant
sometimes uses bullet lists to start exploring di�erent structures. He added that bullet lists
can be good for a lot of things but did not provide additional examples. This demonstrates
that bullet lists can sometime work as a prototype for organising information.

When discussing the elicitation of needs from a user, such as during step 2, one participant
explained how she typically goes about it. She stated that even though she might have an

60



6.3 Focus group

interactive prototype, she first discusses their expectation on how something should work
and what it should look like visually. After she has gathered a good understanding about the
problem and the user desires she then presents her prototype to discuss whether it ticks all the
boxes that they previously discussed. The participant said she finds this useful to understand
the current solution and problems surrounding it. This suggests that as part of the review
method, one can consider showing the prototype after an interview has been conducted to
avoid priming the user towards the new system concept before understanding problems with
the current one.

When asked about how new system designs are tested, one participant shared that while
they sometimes have the CEO approve new system concepts, they often test functionality by
gradually rolling it out in beta test with users. This demonstrates that instead of getting for-
mal approval from a stakeholder, validation (step 5) can be conducted through beta-testing.
Doing so could potentially be a beneficial alternative.

When asked what people should be involved during step 4, one participant talked about
involving developers. She said that as she does not write code but merely produces the speci-
fication for what should be implemented she finds it important to include developers during
the process. Her goal is to find out which design solution is easiest to implement. She ex-
plained that she might have three di�erent options of how something can be implemented
where one option might require two weeks of development e�ort while another can let you
reuse an already existing component. This shows that in steps 3-5 one could potentially add
Viability testing as an additional purpose to find out how much time and resources a certain
design path will require.

6.3.6 Disagreement
Some disagreement was expressed with the guidelines. We report on these points below.

When discussing the third step, one participant disagreed with creating a prototype at this
point. He stated that once you start constructing a prototype you might find it di�cult to go
backwards and consider other design option. He postpones prototyping as long as possible
as otherwise several requests might show up to add additional things to the system which are
challenging to fit into the emerging system specification concept. He said that to fit those
things in you need to compromise and sometimes reset, which is a di�cult process. This can
be viewed as in disagreement with all steps.

When asked about step 5 and how they go about getting approval for a suggested system
specification, one participant stated that they typically do not need to conduct this step in
the suggested manner. He explained that the lead designer in the design team holds a fair bit
of influence at the company. It is therefore rare that anyone would disagree if he has approved
a design and his approval is usually given implicitly as he is involved throughout the design
process. This demonstrates that depending on proximity from the specification architect to
important stakeholders the steps might look di�erent and step five might be unnecessary
altogether.

61



6. Result

62



Chapter 7

Discussion

We will now discuss prototyping in the context software development, what e�ects it may
have, and how prototyping can be used to support the requirements engineering process.
The foundation for this discussion stems from three research activities. A literature study
that maps the area of prototyping. An exploratory case study that investigates the e�ect
of prototyping on output and learning in software development. A focus group that evalu-
ates prototyping as an aid in the requirements engineering process. We draw conclusions by
discussing the results from these activities and how they relate to the existing literature on
prototyping and requirements engineering.

7.1 Relevant Aspects of Prototyping (RQ1)
The Prototyping Aspects Model (see Chapter 4) depicts four aspects of prototyping; purpose,
strategy, scope, and review method. This section discusses the relevance and completeness of
each aspect, highlights an alternative aspect, and provides an evaluation of the model in its
entirety.

Purpose is the first aspect of the Prototyping Aspects Model and it consists of nine categories
of reasons for creating a prototype. The aspect was mentioned in 18 out of the 34 articles
of the literature study (see Table 6.1) but it was often a byproduct from discussing other
areas of prototyping. This is a strong indication that it is an important aspect of prototyping
with many facets to consider. In comparison, Lausen introduces three reasons for the use
of prototypes in requirements engineering [4]. All of these are covered in the categories of
the aspect (see Sections 4.1.1, 4.1.6, and 4.1.8). We assess that the model provides a high level
of completeness of the aspect as it covers the elements of requirements engineering and has
strong ties to related literature.

63



7. Discussion

Strategy determines the organisation of resources and design decisions to manage uncertainty.
It was the least common aspect in the literature study and was only covered in detail in a study
by Sigmund A. et al. [5]. Our assessment of strategy is that it has a low to moderate level of
completeness, primarily based on the work by Sigmund A. et al. While it is the aspect that
has the lowest representation in our literature study we believe the number of results indicate
that it is a valid concern in prototyping.

Scope is the level of completeness in a prototyping activity. The foundation of this aspect
stems from the literature study and an additional layer was added with the exploratory case
study. Among the articles from the literature study, some describe scope with the term fidelity
(see Section 4.3.3) while others highlight that fidelity provides an insu�cient level of detail.
Michael McCurdy et al. present a comprehensive overview of a proposed continuation of
fidelity that would manage the insu�cient level of detail [32]. We use this as an inspiration
for Sections 4.3.1 and 4.3.2. We depict scope as a balance of visual and functional refinement
to describe the entire process of a prototyping activity. This definition was evaluated in the
exploratory case study. It is our belief that scope has as high level of completeness in the model,
the only point of contention being the level of detail of visual refinement in Section 4.3.1. We
see the amount of literature on the topic and the results from the exploratory case study as a
confirmation that scope is an integral part of prototyping.

Review method covers the manner in which a prototype is evaluated. The model presents
the aspect as having three subcategories of which all were identified through the literature
study. Jaskiewicz et al. discuss the e�ect of iterations on the output and learning [34]. Our
assessment is that the model presents the aspect with an acceptable level of completeness,
primarily due to the solid foundation in the literature study. We are unable to assign a higher
level since we found literature outside the literature study that turned out to be of high
relevance to the topic. Among those is an article by Zahra et al. who compared the output
and learning from evaluating paper prototypes in di�erent manner [6]. While the study by
Zahra et al. puts the completeness in question we believe it is a validation of review method
being an integral part of prototyping.

What to include and exclude in the Prototyping Aspects Model (see Section 4) has been
a continuous topic of debate, both among the authors but also during the focus group. We
determined that the model must have a clear focus but also remain within certain boundaries.
One cause for debate was whether to include an aspect concerning the choice of media such as
paper based or software based prototypes. We determined that the academic material on the
topic was not su�cient to draw any conclusions and that one should choose whatever is easier
to use. Another cause for debate was the inclusion of a business perspective. The aspect would
discuss areas such as how to balance budget constraints or how to evaluate the commercial
viability of a product. This was also brought up during the focus group where participants
were more inclined to discuss the business perspective of their products. We incorporated
some of these elements in strategy (see Section 4.2) and otherwise remain steadfast that the
boundaries of the model are clear with its current selection of aspects.

The literature study is the foundation of the Prototyping Aspects Model (see Chapter 4) and
a valid demographic is therefore an indication of the model’s completeness. Our analysis of
the demographic of the literature study covers two areas; the year in which an article was
published and the country from which its authors originated. It is evident that the distribu-

64



7.2 Output and Learning of Prototyping (RQ2)

tion over the past 20 years has remained steadfast with a slight uptick in recent years. This
matches the general notion that there has been an increasing interest in agile requirements
engineering. The geographical distribution has clear signs of bias towards North America and
Europe. However this result is aligned with other research on the topic of agile requirements
engineering. It is our belief that this model is an accurate representation of the aspects of pro-
totyping and provides a solid foundation for understanding the area of prototyping.

7.2 Output and Learning of Prototyping (RQ2)
In the exploratory case study we used the scope of the Prototyping Aspects Model (see Chap-
ter 4) to create three prototype variants. These were shown to subjects and measured on their
output and learning. This section discusses and compares the e�ects of altering the scope of
a prototype and the e�ect that such alterations have on the output and learning in software
development.

Prototype (1) had the same level of visual refinement as Prototype (2) and the same level
of functional refinement as Prototype (3). While the balance in refinement was expected
to produce balanced feedback the results of Prototype (1) were almost identical to those
of Prototype (2), both having a strong inclination towards visual attributes. Zahra et al.
conducted a similar experiment where they compared di�erent evaluation techniques using
one prototype resulting in the capture of di�erent requirements [6]. This contradicts our
findings since we used prototypes that were visually the same and only di�ered in how they
were evaluated but captured the same requirements. We believe that there are two possible
explanations for the unexpected result. Either the added functionality did not achieve enough
di�erence or the evaluation of Prototype (2) accidentally gave it a higher level of functionality
than intended. Based on the inconsistencies highlighted in this paragraph we have chosen to
exclude Prototype (1) from the remainder of this section.

Prototype (2) and Prototype (3) were polar opposites as the former was treated with a high
level of visual refinement and the latter with a high level of functional refinement. These
di�erences appear to have had an e�ect on the perceived attributes of the prototypes. Sub-
jects that experienced Prototype (2) perceived visual and conceptual attributes (see Table 6.2)
and stated they had a good understanding of what the software would look like (see Table
6.4). Prototype (3) received less feedback on visual attributes, and was worse at communi-
cating what the system would look like. However, subjects that had experienced Prototype
(3) were more inclined to comment on functional attributes than those that had experienced
Prototype (2). Prototype (3) was also better than Prototype (2) at communicating what func-
tionality the software would have and how said functionality would be implemented. We
assess that an increased level of visual or functional refinement will produce more feedback
on whatever attribute is in focus as evident by the perceived attributes of Prototype (2) and
Prototype (3). We also believe that a variation in scope has an e�ect on the prototype’s ability
to communicate certain areas of the final product.

Prototype variants were evaluated with the same set of three questions and thematic coding
of responses produced three categories; visual, functional, and conceptual. The first two cate-
gories were anticipated as they were essential for altering the prototypes but conceptual was
an unexpected addition. Conceptual comments were common across all prototype variants

65



7. Discussion

whether the level of visual or functional refinement was low or high. We believe that this
stems from the fact that subjects were overall familiar with the software that was illustrated
in the prototypes. This familiarity may have lead to subjects judging the prototypes based
on their suitability in the software as a whole and not on the individual solutions they pre-
sented. Therefore producing less comments on functional attributes. We believe that all three
categories of feedback are important for evaluating a prototype and that further research is
needed to understand conceptual feedback and how it relates to the other categories.

The exploratory case study shows that the visual and functional refinement of a prototype has
an e�ect on its output and learning. This means that there exists a combination of attributes
that will produce the optimal feedback for a given topic of interest. Among the feedback for a
topic of interest are comments surrounding visual, functional, and conceptual attributes. The
process for finding a combination is undoubtedly complicated, as is evident from Prototype
(1), but we believe that Prototype (2) and Prototype (3) show that it can be done.

7.3 Supporting Agile Development (RQ3)
The Agile Prototyping Guidelines (see Chapter 5) presents a five step process for establishing
software requirements with prototypes. The steps have strong ties to the Prototyping Aspects
Model (see Chapter 4) and the area of requirements engineering as described by Lausen [4].
This section discusses each step in separate by relating our findings with existing literature
followed by an evaluation of the guidelines in their entirety.

Step 1 is an exploratory phase in which to understand what the product shall encompass. In
many ways step 1 resembles the phase of elicitation in requirements engineering[4]. A notable
di�erence between the approach of Lausen and ours is that we present step 1 with a set of
boundaries to encompass the act of prototyping itself. The evaluation of our guidelines high-
light that concept exploration is an essential part of product development, a statement that
is reiterated by the focus group. Exploration is a category of purpose and was a thoroughly
discussed topic in the Prototyping Aspects Model. The weakest link among the boundaries
for this step is the review method. Participants of the focus group highlighted that they eval-
uated exploratory prototypes in very di�erent manner. We believe that step 1 is a valuable
asset in the guidelines but that further research is needed to understand the implications and
boundaries for review method.

Step 2 concerns the use of prototyping to understand the relation between product and cus-
tomer needs. Lausen includes this in his definition of elicitation in requirements engineering
[4]. We suggest splitting elicitation into step 1 and step 2 to tackle the di�erentiation between
exploratory and desirability prototyping, a di�erence that is described in the Prototyping
Aspects Model. The focus group suggested that a split was appropriate as the di�culties
of finding a solution lay not the solutions themselves but in understanding the needs of the
customer. They also supported the choice of strategy and scope but again presented a large
variety of alternatives for review methods. Our assessment is that the introduction step 2
in the guidelines adds value to the process but that, as in the previous step, review method
requires additional research.

Step 3 presents a first step towards specifying the boundaries within which the product shall

66



7.3 Supporting Agile Development (RQ3)

exist. Lausen suggests the use of requirements to accomplish this and states that require-
ments can have di�erent styles such as text, diagrams, or tables [4]. This step also bears some
resemblance to the use of prototyping in user-testing as suggested by Lausen [4]. We believe
that the primary concern in this phase is not to specify perfect requirements but to create a
uniform vision of the product. Prototyping allows for a vague definition of requirements and
the prototype can act as a basis for internal and external discussions in group environments.
The focus group confirmed that the goal of this step should be communication and not speci-
fication as communication is a daunting task in business where work is conducted in groups.
Furthermore they highlighted that this is a step that is often revisited during the product
development process and that it therefore must be quick and easy to grasp. We believe that
the overall feedback on this step shows that communication is an integral part of product
development which therefore solidifies the position of step 3 as part of the guidelines.

Step 4 aims to solidify the boundaries of a product in the form of a specification and is a
continuation of step 3. Lausen presents a selection of eight criteria that a good specifica-
tion should adhere to [4]. While a prototype may be easy to modify and present traceable
changes it cannot encompass all eight criteria. We believe that this selection of criteria is
too strict and requires adaption to fit in agile requirements engineering. To accomplish this,
we propose the use of prototyping within the boundaries that step 4 establishes. Partici-
pants of the focus group had experience from enterprise business and highlighted that such
a specification would be unsuitable in that environment. Telavox is not considered to be
an enterprise business and does not have a continuous documentation of their requirements
other than prototypes. The results from the focus group are therefore inconclusive as they
argue for both sides. We believe there is a niche where prototyping can be used as a means of
specification but that it requires further research to identify the niche.

Step 5 confirms the design of the product and should be used to formally confirm the speci-
fication with the customer. The use of prototyping as a means for validation is an element of
requirements engineering [4]. Whereas Lausen suggests the use of prototypes as a means for
validating individual requirements, we propose that prototyping can encompass a specifica-
tion. Our approach puts more emphasis on the importance of the prototype as it can also act
as a basis for communication or a partial product. Participants of the focus group stated that
the confirmation of designs was a rather simple process for them, the root cause being that
they involved lead designers throughout the product development process. They did however
have experience di�culties in communicating with the development team who implement
the designs that are confirmed. This highlights a weakness that we believe to be typical for
any model as contextual circumstances can lead to significant changes in the process. It is
debatable whether a model should conform to all contextual circumstances or present a gen-
eralised approach with which users can determine by themselves what adjustments they want
to make. We believe that a general approach is better for the guidelines since the contextual
circumstances are vast. We further conclude that the strong ties to Lausen’s work and expe-
riences from the focus group validate the existence of step 5 in the guidelines.

The use of prototyping is not an unforeseen occurrence in requirements engineering. Steps
1, 2, and 5 of the guidelines resemble the use of prototyping as described by Lausen [4]. Pri-
oritisation was excluded as we did not see a clear fit with the guidelines. We present these
guidelines as a means of assisting requirements engineering in software development and
have received an overall positive response. The focus group that evaluated the guidelines

67



7. Discussion

stated that the guidelines shared many similarities with their own process, a process that has
been proven to be e�ective. Participants questioned whether specifications could properly
specify requirements as is necessary in enterprise businesses. We therefore believe that the
guidelines in their current form are more suitable for companies with simple products, such
as software applications, instead of complex products, such as cars that must follow rules and
regulations. The focus group highlighted the use of many review methods but provided no
clear answer as to what review method is suitable at what point. We believe that this is a
topic that requires further assessment. Our conclusive assessment of the guidelines is that
they pose can be a possible addition in the requirements engineering process to assist agile
software development.

7.4 Validity threats
The use of three research methods throughout this study implies a wide variety of threats to
the validity of each individual method but also the result as a whole. Throughout the research,
these threats have been noted and minimised to procure the best possible information for the
result and discussion.

The transferablity of results concerns the extent to which results are accurate in other con-
texts. The prototyping aspects model was constructed using the combined set of published
papers and should therefore have good transferability as a whole. However some statements
in the prototyping aspect model refer to a single paper in which transferability might be lim-
ited, hence some statements might have limited transferability. In regards to the exploratory
case study results, a higher risk of low transferability exist due to the nature of the study. All
subjects worked at the company in the same role and tested the same product which both
reduces external variation as well as transferability. The guidelines were described in a more
general and purpose oriented way to allow them to be implemented in a variety of contexts.
Whether they are a beneficial way of working is harder to judge as we can only state that a
similar process is beneficial at Telavox. Therefore guidelines are believed to have good trans-
ferability in terms of being used, but unknown transferability in terms of the results from
using them.

7.4.1 Literature study
Literature studies must cover the demographic of the topic that they portray, a concern that
is tackled in the previous section, but also balance a wide variety of parameters during the
search and provide a streamlined process for pruning irrelevant information. Considerable
e�ort was put into producing a good process for the search itself and it is possible that there
were further tweaks which could have produced a better search query or yield more relevant
articles.

An initial search on the keywords prototype and prototyping returned 10 to 500 000 results.
Such a large number of articles was impossible to manage and required a careful selection
of parameters to retain important material while removing that which was irrelevant. The
process and reasoning behind the choice of parameters is elaborated on in Section 3.1.2.

68



7.4 Validity threats

The search filter for ACM had been set to only include peer-reviewed papers, o�ering a de-
gree quality assurance outside of the project. However, our initial process was not adequate
for the number of articles without abstracts and the di�erence in search method between
LUB and ACM yielded slightly di�erent results. To resolve both these issues we skimmed ev-
ery article, resolving the absence of abstracts and aligning our approach one final time.

Title and abstract review work was evenly split between authors and is a potential source of
bias. Maintaining a consistent evaluation of titles and abstracts throughout each review was
of utmost importance for the quality of the study. To ensure a continuous level we established
two separate guidelines that were to be followed for the reviews. We evaluated whether or
not we followed these guidelines by reviewing each others results of the first 100 titles and
10 abstracts.

The addition of snowballing after producing the final set of articles was considered in or-
der to obtain more material. A brief test of the strategy produced good results and as the
Prototyping Aspects Model (see Chapter 4) provides a foundation for the entire thesis, more
information or a lack thereof could have a cascading e�ect of validity. We ultimately chose
not to pursue this addition as time was of essence.

7.4.2 Exploratory case study
The design of a case study establishes a set of independent variables, of which a limited
amount is treated, to study the e�ect on the dependent variable. Such a setup reduces validity
threats but by no means eliminates them entirely. In our study the major points of concern
were how we communicated with subjects during sessions, how we created prototypes, and
whether the demographic would be su�cient to portray a valid image.

To reduce the risk of communication having an e�ect during sessions we adhered created a
welcoming letter that introduced the topic and created a structure for the overall meeting.
These instructions were followed by point. Recordings of the interviews also assisted in a
continuous validation and evaluation of our technique.

Creating prototypes on your own leads to an inherent risk of the creator having an e�ect
on the outcome of the study. A risk that can be significantly reduced by performing multi-
ple iterations of a given experiment, providing an added benefit of additional data points.
Additional data points enabled us to eliminate (or question) potential variance.

The average session with subjects that viewed Prototype (3) was about 20 percent longer than
of those who viewed Prototype (1) or Prototype (2). Subjects experienced di�culties with
performing the scenarios that were too guide them through the prototype and we therefore
occasionally had to assist them in proceeding.

69



7. Discussion

70



Chapter 8

Conclusions

We have studied the topic of prototyping, its e�ect on software development, and its ability
to assist in the requirements engineering process. This chapter presents the context of this
study, what advances we set out to achieve, our fulfilment of these achievements, and their
implication on the topic of the study.

Requirements Engineering (RE) provides a systematic approach to determine what a product
should achieve. The software industry found that the systematic approach of RE was incom-
patible with their agile development strategies, leading to the creation of an agile version of
RE known as Agile Requirements Engineering (ARE). Prototyping is a popular technique
used in both RE and ARE to understand what a product shall accomplish and whether a sug-
gested solution is viable [4]. The description of prototyping in RE is brief at best and fails to
describe how a prototype can suit both the elicitation and validation of requirements. Con-
sidering these are di�erent stages of an RE process it is reasonable to wonder, what are the
aspects of prototyping?

We identified three areas in the domain of prototyping and requirements engineering to
address. What is a meaningful model for aspects in software prototyping? addresses the issue of
literature on the topic of prototyping being vast and covering anything from the development
of bookcases to mobile applications (RQ1). What e�ect does the scope of a prototype have on the
output and learning in software development? addresses the issue that prototyping is for di�erent
contexts but it is unclear how a prototype is adapted to suit these contexts (RQ2). How can
agile development projects be supported in requirements engineering processes concerning prototyping
aspects? addresses how prototyping could be used to assist software development projects in
their requirements engineering process.

The Prototyping Aspects Model (see chapter 4) portrays prototyping as having four aspects;
purpose, strategy, scope, and review method. We conclude that the model portrays the four most

71



8. Conclusions

important aspects of software prototyping and that each aspect is at a respectable level of
completeness (RQ1).

The scope in prototyping encompasses among other things visual refinement and functional
refinement. We conclude that an alteration of the scope in prototyping can both steer feedback
towards visual or functional attributes and alter a prototype’s ability to communicate some
of its areas (RQ2).

The Agile Prototyping Guidelines (see Chapter 5) presents five steps; concept exploration, dis-
cover customer needs, devise design suggestion, test and improve, and Confirm design. We conclude
that the guidelines encompass the necessities of a requirements engineering process using
aspects of prototyping and that they present a possible approach for supporting agile devel-
opment projects in non-enterprise-businesses (RQ3).

Requirements engineering and prototyping are a common occurrence across industries. We
believe that the advancements of this study can pose a valuable addition in both industry and
science. Industry is concerned with optimisation and the ability to alter the scope in pro-
totyping to steer feedback towards certain attributes can reduce prototyping costs and im-
prove prototyping feedback. For non-enterprise-businesses with agile development projects
the guidelines can assist in establishing a requirements engineering process which could im-
prove requirements management and documentation. Science may find the consolidation of
the prototyping domain and guidelines to be of interest as it could prove to be a valuable
asset in agile requirements engineering.

Prototyping is by no means uncharted territory and the advances of this study are but a
small step towards understanding its capabilities in product development. The Prototyping
Aspects Model is a step towards depicting the aspects of prototyping but its aspects and the
model as a whole require further research to confirm their validity. Strategy was the least
complete aspect and should be further studied to understand its full implications. Scope was
the most complete aspect but the exploratory case study highlighted that we do not fully
understand the relation between refinement and feedback. The same relation is relevant for
the review method where we received results that contradicted a previous study but could not
identify the cause. Review method requires further attention to raise its level of completeness
as we found numerous studies that were not caught in the literature study but definitely
concerned the aspect. We found that the guidelines might be a valid approach to implement a
requirements engineering process in agile development projects but our method of evaluation
was limited to a focus group. The guidelines and their relation to the model can be further
investigated, especially the review method for steps 1 and 2. In consolidation, an empirical
study that focuses on any of the parts of this study would shed light on its strengths and
weaknesses while drastically increasing the reliability of each part.

72



References

[1] Karina Curcio, Tiago Navarro, Andreia Malucelli, and Sheila Reinehr. Requirements
engineering: A systematic mapping study in agile software development. Journal of Sys-
tems and Software, 139:32 – 50, 2018.

[2] Marja Kapyaho and Marjo Kauppinen. Agile requirements engineering with prototyp-
ing: A case study. 2015 IEEE 23rd International Requirements Engineering Conference (RE),
page 334, 2015.

[3] Stephanie Houde and Charles Hill. What do prototypes prototype? 2, 12 1997.

[4] Soren Lauesen. Software requirements : styles and techniques. Addison-Wesley, 2002.

[5] Sigmund A. Tronvoll, Christer W. Elverum, and Torgeir Welo. Prototype experiments:
Strategies and trade-o�s. Procedia CIRP, 60(Complex Systems Engineering and Develop-
ment Proceedings of the 27th CIRP Design Conference Cranfield University, UK 10th
- 12th May 2017):554 – 559, 2017.

[6] C. Lo T. Lan E. Frroku Z. Shakeri Hossein Abad, S. Moazzam and H. Kim. Loud and
interactive paper prototyping in requirements elicitation: What is it good for? 2018
IEEE 7th International Workshop on Empirical Requirements Engineering (EmpiRE), Empiri-
cal Requirements Engineering (EmpiRE), 2018 IEEE 7th International Workshop on, EMPIRE,
2018. http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?
tp=&arnumber=8501347&isnumber=8501338.

[7] Rashina Hoda, Norsaremah Salleh, and John Grundy. The rise and evolution of agile
software development. IEEE Software, Software, IEEE, IEEE Softw, 35(5):58 – 63, 2018.

[8] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Je�ries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Je� Sutherland, and Dave
Thomas. Manifesto for agile software development, 2001.

73

http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=&arnumber=8501347&isnumber=8501338
http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=&arnumber=8501347&isnumber=8501338


REFERENCES

[9] R.F. Ciriello, A. Richter, and G. Schwabe. When prototyping meets storytelling: Prac-
tices and malpractices in innovating software firms. 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP), Soft-
ware Engineering: Software Engineering in Practice Track (ICSE-SEIP), 2017 IEEE/ACM 39th
International Conference on, ICSE-SEIP, pages 163 – 172, 2017.

[10] Maria Alexandra Maassen. Product development models in the IT sector-From Waterfall to
Agile Project Management Models in the case of AVIRA SOFT SRL. Sciendo, 5 2018.

[11] Irum Inayat, Siti Salwah Salim, Sabrina Marczak, Maya Daneva, and Shahaboddin
Shamshirband. A systematic literature review on agile requirements engineering prac-
tices and challenges. Computers in Human Behavior, 12 2014.

[12] Jim Rudd, Ken Stern, and Scott Isensee. Low vs. high-fidelity prototyping debate. In-
teractions, 3(1):76–85, January 1996.

[13] Melin Wenström P. Abrahamsson L. Användning av prototyper som verktyg för
kravhantering i agil mjukvaruutveckling, 2018. http://urn.kb.se/resolve?urn=
urn:nbn:se:liu:diva-150528.

[14] Gartner. Gartner glossary - u - unified communications as a service (ucaas).

[15] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic map-
ping studies in software engineering. In Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering, EASE’08, page 68–77. BCS Learning &
Development Ltd., 2008.

[16] SBU. Utvärdering av metoder i hälso- och sjukvården och insatser i socialtjänsten: en handbok.
Stockholm: Statens Beredning för Medicinsk Utvärdering (SBU), 3 2017.

[17] Barbara Kitchenham, David Budgen, and Pearl Brereton. The value of mapping studies–
a participant-observer case study. Proceedings of the 14th International Conference on Eval-
uation and Assessment in Software Engineering, 01 2010.

[18] Rensis Likert. A technique for the measurement of attitudes. Archives of psychology, 1932.

[19] Bella Martin and Bruce M. Hanington. Universal methods of design : 100 ways to research
complex problems, develop innovative ideas, and design e�ective solutions. Rockport Publish-
ers, 2012.

[20] Youn-Kyung Lim, Erik Stolterman, and Josh Tenenberg. The anatomy of prototypes:
Prototypes as filters, prototypes as manifestations of design ideas. ACM Trans. Comput.-
Hum. Interact., 15(2), July 2008.

[21] Kurt Schneider. Prototypes as assets, not toys: Why and how to extract knowledge from
prototypes. In Proceedings of the 18th International Conference on Software Engineering, ICSE
’96, page 522–531, USA, 1996. IEEE Computer Society.

[22] Steven Dow, Julie Fortuna, Dan Schwartz, Beth Altringer, Daniel Schwartz, and Scott
Klemmer. Prototyping dynamics: Sharing multiple designs improves exploration, group
rapport, and results. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’11, page 2807–2816, New York, NY, USA, 2011. Association for
Computing Machinery.

74

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150528
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150528


REFERENCES

[23] Horst Lichter, Matthias Schneider-Hufschmidt, and Heinz Züllighoven. Prototyping in
industrial software projects—bridging the gap between theory and practice. In Proceed-
ings of the 15th International Conference on Software Engineering, ICSE ’93, page 221–229,
Washington, DC, USA, 1993. IEEE Computer Society Press.

[24] Lukas Zink, Rafael Hostetter, Annette Isabel Bohmer, Udo Lindemann, and Alois
Knoll. The use of prototypes within agile product development explorative case study
of a makeathon. 2017 International Conference on Engineering, Technology and Innovation
(ICE/ITMC), Engineering, Technology and Innovation (ICE/ITMC), 2017 International Confer-
ence on, pages 68 – 77, 2017.

[25] R. Budde and H. Zullighoven. Prototyping revisited. COMPEURO’90: Proceedings of the
1990 IEEE International Conference on Computer Systems and Software Engineering @ Systems
Engineering Aspects of Complex Computerized Systems, CompEuro ’90. Proceedings of the 1990
IEEE International Conference on Computer Systems and Software Engineering, pages 418 –
427, 1990.

[26] Ansar-Ul-Haque Yasar. Enhancing experience prototyping by the help of mixed-fidelity
prototypes. In Proceedings of the 4th International Conference on Mobile Technology, Appli-
cations, and Systems and the 1st International Symposium on Computer Human Interaction in
Mobile Technology, Mobility ’07, page 468–473, New York, NY, USA, 2007. Association
for Computing Machinery.

[27] D.A. Fern and S.E. Donaldson. Tri-cycle: a prototype methodology for advanced soft-
ware development. [1989] Proceedings of the Twenty-Second Annual Hawaii International
Conference on System Sciences. Volume II: Software Track, System Sciences, 1989. Vol.II: Soft-
ware Track, Proceedings of the Twenty-Second Annual Hawaii International Conference on,
2:377, 1989.

[28] B. Ratcli�. Early and not-so-early prototyping-rationale and tool support. Proceedings
COMPSAC 88: The Twelfth Annual International Computer Software & Applications Con-
ference, Computer Software and Applications Conference, 1988. COMPSAC 88. Proceedings.,
Twelfth International, pages 127 – 134, 1988.

[29] F.B. Zainuddin and Liu Shaoying. An approach to low-fidelity prototyping based on sofl
informal specification. 2012 19th Asia-Pacific Software Engineering Conference, Software En-
gineering Conference (APSEC), 2012 19th Asia-Pacific, Asia-Pacific Software Engineering Con-
ference, 1:654 – 663, 2012.

[30] David G. Hendry, Sara Mackenzie, Ann Kurth, Freya Spielberg, and Jim Larkin. Evalu-
ating paper prototypes on the street. In CHI ’05 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’05, page 1447–1450, New York, NY, USA, 2005. Association
for Computing Machinery.

[31] Reinhard Sefelin, Manfred Tscheligi, and Verena Giller. Paper prototyping - what is it
good for? a comparison of paper- and computer-based low-fidelity prototyping. In CHI
’03 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’03, page 778–779,
New York, NY, USA, 2003. Association for Computing Machinery.

[32] Michael McCurdy, Christopher Connors, Guy Pyrzak, Bob Kanefsky, and Alonso Vera.
Breaking the fidelity barrier: An examination of our current characterization of proto-

75



REFERENCES

types and an example of a mixed-fidelity success. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’06, page 1233–1242, New York, NY, USA,
2006. Association for Computing Machinery.

[33] J. Hakim and T. Spitzer. E�ective prototyping for usability. 18th Annual Conference
on Computer Documentation. ipcc sigdoc 2000. Technology and Teamwork. Proceedings. IEEE
Professional Communication Society International Professional Communication Conference an,
Professional Communication Conference, 2000. Proceedings of 2000 Joint IEEE International
and 18th Annual Conference on Computer Documentation (IPCC/SIGDOC 2000), pages 47 –
54, 2000.

[34] S. Bellomo, R.L. Nord, and I. Ozkaya. Elaboration on an integrated architecture and
requirement practice: Prototyping with quality attribute focus. 2013 2nd International
Workshop on the Twin Peaks of Requirements and Architecture (TwinPeaks), Twin Peaks of Re-
quirements and Architecture (TwinPeaks), 2013 2nd International Workshop on the, pages 8 –
13, 2013.

[35] R.E. Fairley and M.J. Willshire. Iterative rework: the good, the bad, and the ugly. Com-
puter, 38(9):34 – 41, 2005.

[36] C. To�olon and S. Dakhli. An iterative meta-lifecycle for software development, evo-
lution and maintenance. 2008 The Third International Conference on Software Engineering
Advances, Software Engineering Advances, 2008. ICSEA ’08. The Third International Confer-
ence on, pages 284 – 289, 2008.

[37] N. Goldman and K. Narayanaswamy. Software evolution through iterative prototyping.
International Conference on Software Engineering, Software Engineering, 1992. International
Conference on, pages 158 – 172, 1992.

[38] U.A. Raja. Empirical studies of requirements validation techniques. 2009 2nd Interna-
tional Conference on Computer, Control and Communication, Computer, Control and Commu-
nication, 2009. IC4 2009. 2nd International Conference on, pages 1 – 9, 2009.

[39] F. Kordon. Proposal for a generic prototyping approach. ETFA ’94. 1994 IEEE Symposium
on Emerging Technologies and Factory Automation. (SEIKEN) Symposium) -Novel Disciplines
for the Next Century- Proceedings, Emerging Technologies and Factory Automation, 1994. ETFA
’94., IEEE Symposium on, pages 396 – 403, 1994.

[40] Tomasz Jaskiewicz and Aadjan van der Helm. Unlocking the interactive o�ce: Concur-
rent prototyping approach. In Proceedings of the 2018 Designing Interactive Systems Con-
ference, DIS ’18, page 547–558, New York, NY, USA, 2018. Association for Computing
Machinery.

76



Appendices

77





Appendix A

Literature selection

79



Literature selection references

[�] T. Arano, C.K. Chang, P. Mongkolwat, Y. Liu, and X. Shu. An object-oriented pro-
totyping approach to system development. Proceedings of ���� IEEE ��th International
Computer Software and Applications Conference COMPSAC ’��, Computer Software and Ap-
plications Conference, ����. COMPSAC ��. Proceedings., Seventeenth Annual International,
pages �� – ��, ����.

[�] S. Bellomo, R.L. Nord, and I. Ozkaya. Elaboration on an integrated architecture and
requirement practice: Prototyping with quality attribute focus. ���� �nd International
Workshop on the Twin Peaks of Requirements and Architecture (TwinPeaks), Twin Peaks of Re-
quirements and Architecture (TwinPeaks), ���� �nd International Workshop on the, pages � –
��, ����.

[�] Pascal Bruegger, Denis Lalanne, Agnes Lisowska, and Béat Hirsbrunner. Tools for de-
signing and prototyping activity-based pervasive applications. In Proceedings of the �th
International Conference on Advances in Mobile Computing and Multimedia, MoMM ’��, page
���–���, New York, NY, USA, ����. Association for Computing Machinery.

[�] R. Budde and H. Zullighoven. Prototyping revisited. COMPEURO’��: Proceedings of the
���� IEEE International Conference on Computer Systems and Software Engineering @ Systems
Engineering Aspects of Complex Computerized Systems, CompEuro ’��. Proceedings of the ����
IEEE International Conference on Computer Systems and Software Engineering, pages ��� –
���, ����.

[�] F. Cafer and S. Misra. A cognitive requirement speci�cation model. ���� ��th Interna-
tional Symposium on Computer and Information Sciences, Computer and Information Sciences,
����. ISCIS ����. ��th International Symposium on, pages ��� – ���, ����.

[�] Chen Chen, A. Porter, and J. Purtilo. Tool support for tailored software prototyping.
Proceedings of �rd Symposium on Assessments of Quality Software Development Tools, Assess-
ment of Quality Software Development Tools, ����, Proceedings., Third Symposium on, pages
��� – ���, ����.



LITERATURE SELECTION REFERENCES

[�] R.F. Ciriello, A. Richter, and G. Schwabe. When prototyping meets storytelling: Prac-
tices and malpractices in innovating software �rms. ���� IEEE/ACM ��th International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP), Soft-
ware Engineering: Software Engineering in Practice Track (ICSE-SEIP), ���� IEEE/ACM ��th
International Conference on, ICSE-SEIP, pages ��� – ���, ����.

[�] Jan Derboven, Dries De Roeck, Mathijs Verstraete, David Geerts, Jan Schneider-Barnes,
and Kris Luyten. Comparing user interaction with low and high �delity prototypes of
tabletop surfaces. In Proceedings of the �th Nordic Conference on Human-Computer Inter-
action: Extending Boundaries, NordiCHI ’��, page ���–���, New York, NY, USA, ����.
Association for Computing Machinery.

[�] Steven Dow, Julie Fortuna, Dan Schwartz, Beth Altringer, Daniel Schwartz, and Scott
Klemmer. Prototyping dynamics: Sharing multiple designs improves exploration, group
rapport, and results. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’��, page ����–����, New York, NY, USA, ����. Association for
Computing Machinery.

[��] R.E. Fairley and M.J. Willshire. Iterative rework: the good, the bad, and the ugly. Com-
puter, ��(�):�� – ��, ����.

[��] D.A. Fern and S.E. Donaldson. Tri-cycle: a prototype methodology for advanced soft-
ware development. [����] Proceedings of the Twenty-Second Annual Hawaii International
Conference on System Sciences. Volume II: Software Track, System Sciences, ����. Vol.II: Soft-
ware Track, Proceedings of the Twenty-Second Annual Hawaii International Conference on,
�:���, ����.

[��] N. Goldman and K. Narayanaswamy. Software evolution through iterative prototyping.
International Conference on Software Engineering, Software Engineering, ����. International
Conference on, pages ��� – ���, ����.

[��] Catherine Grevet and Eric Gilbert. Piggyback prototyping: Using existing, large-scale
social computing systems to prototype new ones. In Proceedings of the ��rd Annual ACM
Conference on Human Factors in Computing Systems, CHI ’��, page ����–����, New York,
NY, USA, ����. Association for Computing Machinery.

[��] J. Hakim and T. Spitzer. E�ective prototyping for usability. ��th Annual Conference
on Computer Documentation. ipcc sigdoc ����. Technology and Teamwork. Proceedings. IEEE
Professional Communication Society International Professional Communication Conference an,
Professional Communication Conference, ����. Proceedings of ���� Joint IEEE International
and ��th Annual Conference on Computer Documentation (IPCC/SIGDOC ����), pages �� –
��, ����.

[��] K.G. Heisler, W.T. Tsai, and C.V. Ramamoorthy. Integrating the role of requirements
speci�cation into the process of prototyping: the protospec. [����] Proceedings of the
Twenty-Second Annual Hawaii International Conference on System Sciences. Volume II: Soft-
ware Track, System Sciences, ����. Vol.II: Software Track, Proceedings of the Twenty-Second
Annual Hawaii International Conference on, �:���, ����.

[��] David G. Hendry, Sara Mackenzie, Ann Kurth, Freya Spielberg, and Jim Larkin. Evalu-
ating paper prototypes on the street. In CHI ’�� Extended Abstracts on Human Factors in



LITERATURE SELECTION REFERENCES

Computing Systems, CHI EA ’��, page ����–����, New York, NY, USA, ����. Association
for Computing Machinery.

[��] Rong Huigui, Zhou Ning, Jin Min, and Wu Jiaxin. Research on service-oriented frame-
work of interface prototype driven development. ���� International Conference on Com-
puter Science and Software Engineering, Computer Science and Software Engineering, ���� In-
ternational Conference on, �:��� – ���, ����.

[��] Tomasz Jaskiewicz and Aadjan van der Helm. Unlocking the interactive o�ce: Concur-
rent prototyping approach. In Proceedings of the ���� Designing Interactive Systems Con-
ference, DIS ’��, page ���–���, New York, NY, USA, ����. Association for Computing
Machinery.

[��] F. Kordon. Proposal for a generic prototyping approach. ETFA ’��. ���� IEEE Symposium
on Emerging Technologies and Factory Automation. (SEIKEN) Symposium) -Novel Disciplines
for the Next Century- Proceedings, Emerging Technologies and Factory Automation, ����. ETFA
’��., IEEE Symposium on, pages ��� – ���, ����.

[��] Horst Lichter, Matthias Schneider-Hufschmidt, and Heinz Züllighoven. Prototyping in
industrial software projects—bridging the gap between theory and practice. In Proceed-
ings of the ��th International Conference on Software Engineering, ICSE ’��, page ���–���,
Washington, DC, USA, ����. IEEE Computer Society Press.

[��] Youn-Kyung Lim, Erik Stolterman, and Josh Tenenberg. The anatomy of prototypes:
Prototypes as �lters, prototypes as manifestations of design ideas. ACM Trans. Comput.-
Hum. Interact., ��(�), July ����.

[��] Linchuan Liu and Peter Khooshabeh. Paper or interactive? a study of prototyping tech-
niques for ubiquitous computing environments. In CHI ’�� Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’��, page ����–����, New York, NY, USA, ����.
Association for Computing Machinery.

[��] Michael McCurdy, Christopher Connors, Guy Pyrzak, Bob Kanefsky, and Alonso Vera.
Breaking the �delity barrier: An examination of our current characterization of proto-
types and an example of a mixed-�delity success. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’��, page ����–����, New York, NY, USA,
����. Association for Computing Machinery.

[��] Abdul Rahman, Abdel Razek, and Christian van Husen. Innovation by service pro-
totyping design dimensions and attributes, key design aspects, and toolbox. ���� In-
ternational Conference on Engineering, Technology and Innovation (ICE/ITMC), Engineering,
Technology and Innovation (ICE/ITMC), ���� International Conference on, pages ��� – ���,
����.

[��] U.A. Raja. Empirical studies of requirements validation techniques. ���� �nd Interna-
tional Conference on Computer, Control and Communication, Computer, Control and Commu-
nication, ����. IC� ����. �nd International Conference on, pages � – �, ����.

[��] B. Ratcli�. Early and not-so-early prototyping-rationale and tool support. Proceedings
COMPSAC ��: The Twelfth Annual International Computer Software & Applications Con-



LITERATURE SELECTION REFERENCES

ference, Computer Software and Applications Conference, ����. COMPSAC ��. Proceedings.,
Twelfth International, pages ��� – ���, ����.

[��] Kurt Schneider. Prototypes as assets, not toys: Why and how to extract knowledge from
prototypes. In Proceedings of the ��th International Conference on Software Engineering, ICSE
’��, page ���–���, USA, ����. IEEE Computer Society.

[��] Reinhard Sefelin, Manfred Tscheligi, and Verena Giller. Paper prototyping - what is it
good for? a comparison of paper- and computer-based low-�delity prototyping. In CHI
’�� Extended Abstracts on Human Factors in Computing Systems, CHI EA ’��, page ���–���,
New York, NY, USA, ����. Association for Computing Machinery.

[��] C. To�olon and S. Dakhli. An iterative meta-lifecycle for software development, evo-
lution and maintenance. ���� The Third International Conference on Software Engineering
Advances, Software Engineering Advances, ����. ICSEA ’��. The Third International Confer-
ence on, pages ��� – ���, ����.

[��] Sigmund A. Tronvoll, Christer W. Elverum, and Torgeir Welo. Prototype experiments:
Strategies and trade-o�s. Procedia CIRP, ��(Complex Systems Engineering and Develop-
ment Proceedings of the ��th CIRP Design Conference Cran�eld University, UK ��th
- ��th May ����):��� – ���, ����.

[��] Mikael Wiberg and Erik Stolterman. What makes a prototype novel? a knowledge
contribution concern for interaction design research. In Proceedings of the �th Nordic
Conference on Human-Computer Interaction: Fun, Fast, Foundational, NordiCHI ’��, page
���–���, New York, NY, USA, ����. Association for Computing Machinery.

[��] Ansar-Ul-Haque Yasar. Enhancing experience prototyping by the help of mixed-�delity
prototypes. In Proceedings of the �th International Conference on Mobile Technology, Appli-
cations, and Systems and the �st International Symposium on Computer Human Interaction in
Mobile Technology, Mobility ’��, page ���–���, New York, NY, USA, ����. Association
for Computing Machinery.

[��] F.B. Zainuddin and Liu Shaoying. An approach to low-�delity prototyping based on so�
informal speci�cation. ���� ��th Asia-Pacific Software Engineering Conference, Software En-
gineering Conference (APSEC), ���� ��th Asia-Pacific, Asia-Pacific Software Engineering Con-
ference, �:��� – ���, ����.



A. Literature selection

84



Appendix B

Prototype 1 and 2

85



Call Support
Open | Logged in: 3

4

FB Support UX
Open | Logged in: 3

1

Huntgroups

Services

Search / call

Members 5/10 logged in

Logged in

Open untill 17:30

50%
1 MIn

Service Level

50%
1 MIn

Service Level

Yesterday

Search / callChannels (2)



NewNew

Search / callChannels (2)

Loren Ipsum kalabil hej hoj loviosaMagnus:

Magnus#345112

Turnip greens yarrow ricebean rutabaga?You:

Franz#345678

Turnip greens yarrow ricebean rutabaga?Visitor: 

Franz#234567

UX ärenden

Turnip greens yarrow ricebean rutabaga?You:

Magnus#345678

Turnip greens yarrow ricebean rutabaga?Visitor: 

Magnus
1

#234567

1
Mina ärenden



NewNew

Loren Ipsum kalabil hej hoj loviosaMagnus:

Magnus#345112

Turnip greens yarrow ricebean rutabaga?You:

Franz#345678

Turnip greens yarrow ricebean rutabaga?Visitor: 

Franz#234567

UX ärenden

Turnip greens yarrow ricebean rutabaga?You:

Magnus#345678

Turnip greens yarrow ricebean rutabaga?Visitor: 

Magnus
1

#234567

1
Mina ärenden

Search / call

Advisor SME Phone

Advisor SME Chat

Channels (2)



NewNew

Loren Ipsum kalabil hej hoj loviosaMagnus:

Magnus#345112

Turnip greens yarrow ricebean rutabaga?You:

Franz#345678

Turnip greens yarrow ricebean rutabaga?Visitor: 

Franz
1

#234567

UX ärenden

Turnip greens yarrow ricebean rutabaga?You:

Magnus#345678

Turnip greens yarrow ricebean rutabaga?Visitor: 

Magnus
1

#234567

1
Mina ärenden

Search / call

Advisor SME Phone

Advisor SME Chat

Channels (2)



NewNew

Loren Ipsum kalabil hej hoj loviosaMagnus:

Magnus#345112

Turnip greens yarrow ricebean rutabaga?You:

Franz#345678

Turnip greens yarrow ricebean rutabaga?Visitor: 

Franz#234567

UX ärenden

Turnip greens yarrow ricebean rutabaga?You:

Magnus#345678

Turnip greens yarrow ricebean rutabaga?Visitor: 

Magnus
1

#234567

1
Mina ärenden

Search / call

Advisor SME Phone

Advisor SME Chat

Channels (2)



Thank you! We will need 10 accounts.

07:55AMMagnus

Absolutely. This requires additional coordination and 
I will create a separate issue for the matter.

07:55AMMattias

Thank you so much! This fixed my problem. By the 
way, could we create a new department? We are 
expanding to Germany.

07:55AMMagnus

Hi Magnus,

You can find information on this matter at this link: 
https://help.telavox.com/how-to-create-a-user.

10:45AMMattias

Hey,

How would I go about adding a new user?

07:55AMMagnus

Communication

Last action 20.04.2020

The ticket is closed

Mattias works with this ticket

NewNew#234567

Search / callChannels (2)



Thank you! We will need 10 accounts.

07:55AMMagnus

Absolutely. This requires additional coordination and 
I will create a separate issue for the matter.

07:55AMMattias

Thank you so much! This fixed my problem. By the 
way, could we create a new department? We are 
expanding to Germany.

07:55AMMagnus

Hi Magnus,

You can find information on this matter at this link: 
https://help.telavox.com/how-to-create-a-user.

10:45AMMattias

Hey,

How would I go about adding a new user?

07:55AMMagnus

Communication

Last action 20.04.2020

The ticket is closed

Mattias works with this ticket

Create ticketCreate ticket

Advanced searchAdvanced search

#234567

Search / callChannels (2)



Thank you! We will need 10 accounts.

07:55AMMagnus

Enter response here …

.Mattias

Communication

Last action 20.04.2020

The ticket is active

Mattias works with this ticket

NewNew#234567 #112211

Search / callChannels (2)



Thank you! We will need 10 accounts.

07:55AMMagnus

Absolutely. This requires additional coordination and 
I will create a separate issue for the matter.

07:55AMMagnus

Thank you so much! This fixed my problem. By the 
way, could we create a new department? We are 
expanding to Germany.

07:55AMMagnus

Hi Magnus,

You can find information on this matter at this link: 
https://help.telavox.com/how-to-create-a-user.

10:45AMMattias

Hey,

How would I go about adding a new user?

07:55AMMagnus

Communication

Last action 20.04.2020

The ticket is closed

Mattias works with this ticket

Search / callChannels (2)

NewNew#234567 #112211



Appendix C

Prototype 3

95



nameticket x

nameticket y

nameticket x

list of tickets

nameticket 2

nameticket 1
1

1
list of tickets

Newticket tabs and actions

Search / callChannels xmenu bar



nameticket x

nameticket y

nameticket x

list of tickets

nameticket 2

nameticket 1
1

1
list of tickets

Newticket tabs and actions

Search / call

channel

channel

Channels xmenu bar



nameticket x

nameticket y

nameticket x

list of tickets

nameticket 2

nameticket 1
1

1
list of tickets

Newticket tabs and actions

Search / call

channel

channel

Channels xmenu bar



nameticket x

nameticket y

nameticket x

list of tickets

nameticket 2

nameticket 1
1

1
list of tickets

Newticket tabs and actions

Search / call

channel

channel

Channels xmenu bar



nameticket x

nameticket y

nameticket x

list of tickets

nameticket 2

nameticket 1
1

1
list of tickets

Newticket tabs and actions

Search / callChannels xmenu bar



timeauthor

timeauthor

timeauthor

timeauthor

07:55AMauthor

Header

Possible settings here

Possible settings here

Possible settings here

Search / callChannels xmenu bar

Newticket tabs and actions



timeauthor

timeauthor

timeauthor

timeauthor

07:55AMauthor

Header

Possible settings here

Possible settings here

Possible settings here

Create ticket

Advanced search

ticket tabs and actions

Search / callChannels xmenu bar



timeauthor

timeauthor

07:55AMauthor

Header

Possible settings here

Possible settings here

Possible settings here

Newticket tabs and actions

Search / callChannels xmenu bar



C. Prototype 3

104



Appendix D

Survey

105



22/04/2020 Prototypenkät

https://docs.google.com/forms/d/1L0_WErwowCgh2Ma1oTwZO7Pfkn0LXsgg7cS5o3s61go/edit 1/4

Skip to question 1Skip to question 1

Frågor om
prototypen

Nedan följer några frågor om prototypen. Skriv ner det du kommer att tänka på, stort 
som litet. Du kan skriva ditt svar som löptext eller punktlista. 

1.

2.

3.

Prototypenkät
Den här enkäten består av 14 frågor, varav 6 är textsvar och 8 är kryssfrågor. På början av 
varje sida står instruktioner. Ställ gärna frågor närsomhelst om något är oklart. Tack för din 
medverkan!
*Required

Vad var bra?

Vad var dåligt?

Hur kan man förbättra systemet?



22/04/2020 Prototypenkät

https://docs.google.com/forms/d/1L0_WErwowCgh2Ma1oTwZO7Pfkn0LXsgg7cS5o3s61go/edit 2/4

Påståenden om
prototypen

Kryssa för det alternativet som bäst stämmer överens med din 
upplevelse

4.

Mark only one oval.

Instämmer inte alls

1 2 3 4 5

Instämmer helt

5.

Mark only one oval.

Instämmer inte alls

1 2 3 4 5

Instämmer helt

6.

Mark only one oval.

Instämmer inte alls

1 2 3 4 5

Instämmer helt

7.

Mark only one oval.

Instämmer inte alls

1 2 3 4 5

Instämmer helt

Det var enkelt att bilda en uppfattning om vilka funktioner systemet kommer att
ha *

Det var enkelt att bilda en uppfattning hur funktionerna kommer att fungera *

Det var enkelt att bilda en uppfattning om hur system kommer att se ut *

Det hade känts jobbigt att föreslå stora ändringar på systemet *



22/04/2020 Prototypenkät

https://docs.google.com/forms/d/1L0_WErwowCgh2Ma1oTwZO7Pfkn0LXsgg7cS5o3s61go/edit 3/4

8.

Mark only one oval.

Instämmer inte alls

1 2 3 4 5

Instämmer helt

Upplevelse som
Telavoxkund

Föreställ dig nu att du vore att du är en kund till Telavox och vill använda det 
här systemet för att hantera din kundtjänst.

9.

10.

11.

Det var enkelt att föreställa sig andra sätt systemet hade kunnat vara designat *

Finns det några behov som inte täcks av systemet? Vilka?

Vilka är dom viktigaste behoven du har i ett sånt här system? Uppfylls dom?

Finns det saker i systemet du hade varit tveksam till? Vad?



22/04/2020 Prototypenkät

https://docs.google.com/forms/d/1L0_WErwowCgh2Ma1oTwZO7Pfkn0LXsgg7cS5o3s61go/edit 4/4

12.

Mark only one oval.

Passar inte in

1 2 3 4 5

Passar in

Din bakgrund
Vi är nyfikna på din bakgrund och erfarenhet inom ditt område.

13.

Mark only one oval.

0-1 år

1-3 år

3-5 år

5-10 år

10+ år

14.

Mark only one oval.

Other:

Advisor

Developer

Sales

This content is neither created nor endorsed by Google.

Hur väl tycker du produkten passar i Telavoxs profil?

Hur många år har du arbetat inom ditt område?

Jag är anställd som

 Forms



D. Survey

110



Appendix E

Talking points focus group

111



Generella diskussionfrågor för alla steg 
 

● Vad är det ett bra/dåligt resultat i detta steget? 
● Hur når man bra resultat i detta steg? 
● Vad är tydligt/otydligt med det här steget? 
● Vad behöver man ha för kunskap för att detta steget ska bli bra? 
● Vilka personer borde vara inblandade i detta steget för att det ska bli bra? 

 

Diskussionsfrågor specifika för olika steg 
Steg 1 

● Vilka är dom bästa sätten att brainstorma ideér till ett nytt system? För/nackdelar ? 
● Vilka för/nackdelar finns det med att designern inte funderat på designmöjligheter innan 

dom pratar med en kund om ett framtida system? 
 
Steg 2 

● I det här steget kan en enkel papperskiss vara ett hjälpmedel. Vad kan man lära sig från 
diskussioner om sådana skisser? Vad kan man inte lära sig med dom? 

● Några artiklar påstår att det ofta upplevs som jobbigt att presentera prototyper tidigt i en 
designprocess för diskussion, håller ni med och vad ser ni för nackdelar/fördelar med 
det? 

 
Steg 3 

● Krav finns i både traditionella och agila mjukvaruprojekt, men hanteras olika. I traditionell 
kravhantering dokumenteras krav i en Software Requirement Specification (SRS), ofta 
en excel-lista. Upplever ni att det ibland finns behovet av ett sånt dokument i agila 
projekt? Hur löser man det? 

● När man som designer försöker skapa sig själv en bild av hur implementationen ska se 
ut, vad är bästa sättet att dokumentera sina tankar? 

Steg 4 
● Hur tidigt bör man testa sin prototyp?  

Steg 5 
● När behöver man genomföra en mer formell utvärdering av sin design?  
● Vad skiljer sig på att utföra en mer formell utvärdering och på att ha en kollega till att 

testa? 



Appendix F

Focus group transcribed meeting notes

113



Transcription 

Participants 
P1 - Participant 1 (Anonymized)  
P2 - Participant 2 (Anonymized) 
P3 - Participant 3 (Anonymized) 
P4 - Participant 4 (Anonymized) 
P5 - Participant 5 (Anonymized) 
A - Alexander (Moderator) 
F - Franz (Moderator) 
 
 

INTRODUCTORY TALK 
1. A: Before we start we’d like to ask for your permission to record this session. We will 

then transcribe that recording, we will not use your names or anything and we could 
possibly anonymize as required to not point towards any specific company or so. Is that 
okay with everyone? 

2. Participants: yes that’s okay 
3. P3 yes, as long as I can ramble as much as possible 
4. A haha, yes that’s totally okay. F can you tell me when the recording is up and running? 
5. F it is now started! 
6. P4 Is the thought that we should all answer these questions individually? 
7. A Ah, no my thought was that we could carry a group discussion surrounding the 

questions, but obviously one by one. You do not need to answer all the questions. Look 
at the suggestion questions as a buffet from which you can pick the most interesting 
topics. If you come up with something more interesting to bring up that’s not covered by 
the questions feel free to bring that up. My thought is that we will use a speaker list to 
help. I have P1 at the top of the speaker list. My thought is that she can pick one of the 
questions to discuss for the first step. She can also choose to speak freely and then 
everybody can chime in and add their thoughts 

8. P3 I have a question surrounding the steps first. Is the thought behind this that you can 
go from step five back to step one, like if you realise the idea is not good enough from a 
business perspective, do you need to go all the way back or can you iterate between the 
steps? 

9. A we imagine that you can go backwards , maybe something wasn't sufficiently identified 
or so in step 2. Great question. 

10. P1 Perhaps I missed something at the start, but for whom is the model intended ?  
11. A Like the user of this model? 
12. P1 yeah who would be the person using these steps? 
13. A we imagine that somebody driving development can be the user of the steps. It could 

be a developer. It could be someone working within a design team. It could also be 
someone working as a requirements engineer. It could even be a manager. Essentially 
someone who is driving the development. 



14. P1 Ah okey, and this is intended as a method for them to use? 
15. A yes exactly, it’s a suggestion for how to use prototypes and follow (the steps). 
16. A what else should we tell you about it… another thing is that projects might have 

varying complexity, in some projects, for instance your own application, you probably 
know a lot about the product already. But we’ve tried to make this model general. But I 
was definitely thinking that, we are very curious to hear your opinions and have you be 
able to build on eachother’s answers’, so the suggested talking point list is only intended 
to help you get started, for when we are discussing a certain question, and Franz and I 
will act as moderators. But if there’s not any question that’s particularly appealing for you 
P1, what are like your general thoughts on this? 
STEP 1 

17. P1 I was thinking about something, like to me, this is a weird process because it goes 
from top to bottom. I usually rather think of it as the design gets narrower and more 
specific, the funnel gets smaller. Ok so concept exploration. You haven’t written anything 
here about research, like analyzing competitors, that’s something I imagine maybe 
should be a part of this. In that step I usually also have some sort of inspirational phase.  

18. A what could such a phase look like? 
19. P1 I can look at what we have previously, and look at what competitors have done. I 

collect this material and then I can use the best parts. That’s material I collect at the start 
and go back to look at later, and during this point I can get a pretty good picture of what I 
wanna do and what direction I want the design to go. But then obviously you move onto 
the next step pretty quick. Okay let me have another look at the questions. What’s a 
good or a bad result during this step.. Hmm.. What kind of knowledge you need, I’m not 
sure you need any particular knowledge. The more you work with design the more you 
know what works for you. It’s difficult to define a method that you say you have to follow 
and that should work for everyone.  

20. A Ah, yes very good reflection 
21. P1 Like for us within the team, we work with having a personal sound board with each 

other, and we have some people involved throughout the process 
22. A very interesting 
23. P3 In a lot of ways, the JIRA ticket reflects this step. Like the design space exploration is 

often defined in the JIRA 
24. A Can you tell us a bit about that? 
25. P3 I’m probably the worst person to talk about that because I work the least with JIRA, 

but, the goal is to formulate the problem and define a background 
26. P2 In the best of worlds that’s what we have, I have a couple of JIRA tickets at the 

moment that are completely blank. I agree with Elizabeth that before you start exploring 
ideas and design space, you need to do some sort of exercise where you get to know 
the current product and use of it, so you start building understanding before you start 
thinking about solutions. I also think it’s interesting, like what is a prototype? What 
defines a prototype? You mention lo-fi prototypes and paper prototyping. We could 
maybe discuss, what is a prototype? Does it need to be simulated and do you need to 
be able to click and navigate between different environments? 



27. A it’s a very good question. We use a wide definition and consider that also a simple 
sketch on paper is a prototype. An artboard could also be a prototype. But to ask a 
related question. The first prototype you make, is that usually a sketch or an actual 
system? 

28. P1 We rarely make any prototypes at that stage, it takes a lot of time and is difficult 
usually. At this point it’s more about understanding the task and create a common view 
of what you are meant to do.  

29. P2 In practice, if you take theoretical guidelines of how a design process is supposed to 
look you need to keep some distance from starting to design too early. You shouldn’t 
start designing until you have gotten a good grasp of the problem. If you start designing 
too early you quickly accumulate ideas about what you concretely  wanna do, and you 
put those ideas on paper. And at this stage you need to make sure you don’t settle into a 
specific design too much, you need to be able to kill your darlings. At this point I wouldn’t 
call it a prototype, I would call it a sketch 

30. P5 I agree with the previous speaker. in this stage, what’s good and bad in this step. It’s 
good if you consider all directions, a bad result is getting locked into a certain path and 
not considering all options. 

31. P3 For me, sketching is a way to understand the problem. I’ll start thinking about things 
like commissions 

32. P2 I do the same thing, I think visually and I use sketches to start sorting ideas in my 
head and mapping the problem, it’s a good help and it sort of fits in with your suggested 
step. You kind of use it to organize and explore the design space.  

33. P4 Yeah I agree, and I think a lot has to do with what you define as a prototype. I usually 
start by using the JIRA to produce some sort of requirement specification. Then I start 
sketching. I try to throw a wide net with many different options. You had one question in 
this document about when to start testing. I usually start showing it within the team early 
but also show it to some users that we are closely connected to, you could view that as 
some sort of early testing and viewing 

34. P1 Exactly, that is a kind of feedback 
35. A Do you usually show the first sketches you produce to anyone? 
36. P4 Well sometimes, but usually within the team and not with users 
37. P1 Yes likewise, but it can be difficult to have discussions without something to show. 

Like P4 said you try to throw a wide net in the beginning which makes it easier for others 
to give feedback about what they think are valid directions 

38. P3 It’s a very difficult thing though to show an incomplete sketch to someone who 
doesn’t understand that it’s an incomplete sketch, that’s why it is so beneficial to show it 
within our own design team. Even if you ask someone else to not look at certain aspects, 
they still might give you feedback about font size and that kind of things  

39. A very interesting. And as a later question, what are the options to get inspired and 
brainstorm? What do you do to generate ideas? 

40. P2 it kind of depends, sometimes it’s about finding a good structure for an information 
hierarchy. This is a typical case for menus. Then you can create bullet lists in order to 



start finding some sort of structure, bullet lists are really good to use for a lot of different 
things.  

41. A Interesting 
42. P4 You also at this point should gather some information from the different stakeholders, 

get some idea of what they want and conduct some sort of startup. Collect their thoughts 
and ideas during that startup. 

43. P3 I was thinking about this morning, I was talking about if you click this then that 
happens.. But when don’t have something to show and you have to describe with words 
like, if you do this then that happens, it can’t get very complicated because it gets too 
complicated to follow. 

44. A Okay very good. I feel like we have gotten great feedback for this first step, and 
propose we move on unless someone has something they are very eager to add or 
discuss? 

45. P2 sounds good 
STEP 2 

46. A So to recap quickly on this step, this step is about understanding the customer needs. 
I have P5 as the next speaker on the speaker list. If you have any thoughts on this P5 
you are welcome to share 

47. P5 we talked a bit about eliciting the requirements. Like how you can distill the 
requirements and find what sticks. An important thing is that it's usually very easy to get 
feedback on what’s good in a system. And things can also be shot down even though 
they are good, because the tester didn’t understand the purpose of the thing. P3 was 
discussing earlier about thinking about what feedback you want, and I think you need to 
structure the test so you get feedback on the right. You don’t wanna just get feedback on 
whether the system looks good or ugly. It’s good to frame the test in order to get the right 
feedback and be clear about what kind of feedback you are trying to get. Does anyone 
wanna add on this? 

48. P2 I’m thinking about one of the questions in the talking, “is it difficult to present 
prototypes early?” it can be, and sometimes we work with wireframes and avoid having 
pixel perfect prototypes. This can be a good solution and help you get the right feedback 
you are looking for.  

49. P3 I’d like to add that this depends a lot on the problem. It’s easy to model and say that 
you will follow a textbook on how to approach a problem, if you need to design a button 
then maybe none of these steps apply. Then you hastily assemble some suggestion and 
throw them out there 

50. P2 I don’t totally agree, I think you could follow this step in that scenario too 
51. P3 That’s a good point, but I’m not sure, maybe you don’t need to use paper sketches to 

understand the problem 
52. A What’s the more difficult thing to understand, is it the user problem or what kind of look 

the user wants the system to have? 
53. P3 We don’t really discuss with the users very often unfortunately 
54. P2 Yepp we kind of mess it up there right away! 
55. *Laughter* 



56. P1 I do talk to some customer proxies sometime 
57. P3 that can happen, but often you have to run into the best possible customer proxy to 

get the right feedback. And often they have a biased view towards their own situation. 
Talking with just one person isn’t enough 

58. P1 Yeah. But we don’t really show them bad or good design, it becomes some sort of 
interview. We ask them how they use a certain feature today. And we say, if we were to 
add this thing, where would you place it? And you fish for their ideas. And if you do have 
an interactive prototype, then I don’t show them until the end of the interview. I don’t 
really expect them to comment on the way the design is  

59. A Did I understand you correctly, you save the prototype for the end of the meeting? 
60. P1 That’s correct, I never show it at the start 
61. A How come? 
62. P1 well I wanna be able to understand how they use the current solution, and they can 

describe what they do. And then I say, this is the problem you presented to me and here 
is a solution I have in mind. And then we can have a discussion about whether we ticked 
all the boxes and properly solved the problem. And then we talk about if it’s a good 
match. 

63. P2 This is usually two separate meetings or checkups. Like we were discussing, our 
customer proxies are usually the ones we talk to. And the first meeting is used to 
investigate what the problem is. What is the problem that needs to be solved, what do 
users experience as the problem? Why do they not use a certain feature? And you find 
out questions about whatever whatever, And you ask questions to find out about the 
problem. And then you get back to them maybe a week later and do some sort of 
update. And then you go back to your corner and try to solve it. But this is something that 
would happen before step 1 

64. A Ah I see, you would throw the steps around a bit 
65. P2 Yes exactly 
66. A And do you others also recognize that you wait a bit before prototyping. That you do 

some research first before anything? 
67. P5 yes exactly, but maybe that is something that happens as a step zero. And you in 

step zero do some research 
68. P2 absolutely. The step we are discussing now, “discover customer needs”. But never 

use prototypes to discuss customer needs, prototypes don’t come into play this early. It 
depends though now that I think if it… if it is a very loosely defined project, then it can 
ofcourse help to have some prototype to create discussion about their desires, that’s the 
way we did it in the terminator project. We showed some sketches and that helped us 
understand what we were discussing and we framed what we should do. But in the more 
common and simpler projects, we don’t really use prototypes that early 

69. P3 In general, if you ask someone what they think about a certain functionality or how at 
the look at something, then there’s a chance you get a answer that they think you want, 
but if you wanna get an answer that’s more accurate, then a prototype can help you see 
what they actually do. And then you can talk about what was done. That can be a better 
foundation to base a discussion on. 



70. A Yes I understand what you mean 
71. P2 I’m not following at all 
72. *laughter* 
73. P2 but yeah, you can use a prototype and observe what they do, but you can use the 

current system and see what they do. How is that different using the prototype instead of 
the current system? 

74. P3 no that’s true you can use the current system and that’s a different research method. 
But if you just talk to people that can lead to some “dirty” data 

75. P2 absolutely 
76. P3  it’s not always totally kosher to use that from a research perspective. Then a 

prototype can help you get better data. 
77. P2 Ah okey. And you were talking a bit about what the questions are that you’re asking. 

If you ask a customer proxy, how should we design this page, then you get faulty 
answers. But if you just try and figure out what the problem is, then it’s easier to get good 
answers. The more solution-agnostic kind of questions you ask, the better data you can 
get 

78. P3 yeah 
79. P1 Did you say solution-agnostic? 
80. P2 Yeah 
81. P1 that is not a word I’ve heard recently.. 
82. P2 well yeah…. Do you wanna hear it one more time ? 
83. *laughter* 
84. P3 throw that straight into the thesis report! 
85. P2 yes straight into the report 
86. A haha yes that was the first time I’ve heard that. I thought you provided some very 

interesting answers for step 2. I’m thinking we can move on to step 3.  
STEP 3 

87. A so in this step I imagine that we start formulating a suggestion for a solution. And I 
have P2 on top of the speaker list for this step.  

88. P2 So if I look back at some of my most recent work, I’ve done more things related to 
this. I often work with invision to build something. I build a prototype, sometimes several 
variants of it, and bring that into a meeting with stakeholders and collect ideas about how 
to proceed and what path to choose. So in that sense I feel like my work very much 
matches the text presented in this step  

89. A Ah okey. And is the first prototype the most difficult or the last one more difficult? 
90. P2 It’s not always a given that you build a final prototype. It depends on if the prototype 

is a deliverable or if it’s just intended to support the discussion. I usually imagine 
sketches as more like, just pictures. And the hardest thing.. Hmm.. I’m actually not sure, 
it depends, there’s usually a lot of feedback after you review and find that some things 
don’t work and need to be improved before the final delivery. I can’t really say. 

91. P1 It can also depend on the tool that you are working with, like depending on how 
you’ve created the system and what you can do in the tool, it can be difficult to change 



stuff in the prototype. And maybe you don’t have sketches to base it on, then it can take 
some time to create the basics. In that sense the first prototype can take a lot of time. 

92. P2 For me it’s usually not the tools that’s the issue, that always works itself out 
eventually. Sometimes it’s easier or more difficult but you solve it somehow. For me the 
difficulty as at the creative level. If you’ve developed the first version of a prototype then 
some requests show and they want you to add things, and that’s challenging to fit in 
sometimes with the concept you have to mind. You have to change the pretty world that 
you have built up, you need to go back and reset to go back. That's when the 
compromising starts and that part is always difficult.  

93. A very interesting 
94. F how do you look at adding this extra step of adding invision, what is the background to 

adding invision (making it interactive) 
95. P4 Usually if a problem is a bit more complex that makes it more difficult to just keep in 

static flows. Before we started using Invision you were sitting down doing wireframe 
documents with page references, you say that if you wanna do that then it’s these pages 
that show how it’s done, that’s at least how I did it some years ago. But now with invision 
you can remove that complexity and build an interactive flow. Hmm, I forgot where I was 
going with this.. But as soon as it’s more complex, you get value out of being able to 
click around in an interactive prototype? 

96. P3 I think it’s a great way to connect to the primal brain, look to feel how it works… P4 
you showed me something this morning about expanding or minimizing, showing how 
the arrows should be.. With invision it’s easier to trick yourself and feel like it’s real 

97. P1 but that wasn’t invision that was used 
98. P3 Yeah 
99. P4 yeah you can…  
100. P3 yeah what I mean… 
101. P2 but yeah about invision, we need something to show interactive prototype. It can 

be Invision or it could be flash, or even old HTML. You can prototype in several different 
ways. Personally, I don’t care if it’s invision or some other tool. I’m tool agnostic 

102. *laughter* 
103. P2 you can use that too. But I think we wouldn’t do a good job if we weren’t able to 

make interactive prototypes. When you study, like if it’s something as easy as clicking in 
google slides… as long as i’ve been a designer i’ve had a way of building a prototype. 

104. P5 yes. But often the purpose is not specifying, but rather on communicating. Like 
when you can’t explain with excel or with 10.000 screenshots.  

105. P4 but it can be a timesaver, to disagree with you. Like I might make an invision for 
myself just to get an overview. But I agree with p2, any tool can work. 

106. A to connect this a bit to requirements engineering, in this step requirement 
specification are often used, typically long spreadsheets, I’m not sure you’ve seen one 

107. P2 Absolutely 
108. P5 At Company C (changed for anonymity) 
109. P2 absolutely at Company C! 
110. *laughter* 



111. A what is good or bad with specification as alternative to prototypes? 
112. P2 I don’t really see them as comparable.. Do you mean as a specification? Like 

usually you are provided with a specification when you are going into the design project, 
and the prototype is an output of the design process, so I don’t see it as comparable. But 
I’m one of those people that like requirement specification lists 

113. *laughter* 
114. P2 then you can use that specification and check off boxes. It’s good for your own 

sanity and feeling like you’ve done what you need to 
115. P3 but isn’t a shortcoming of these specifications that you don’t know why something 

is a problem? 
116. P2 yes, but that’s not the point of a specification. That work has been done before 

you receive the specification. The specification doesn’t solve everything, it just lists what 
the design needs to do. But you need to assume that the proper groundwork has been 
done, a specification is useless without proper groundwork. Like if they didn’t understand 
the problem from the beginning. 

117. A okay, very interesting! Franz, do you have anything you’d like to ask about?  
118. F nothing to add! 
119. A Okay, in that case, let’s move on to step 4.  

STEP 4 
120. A Okey, so surrounding this step. I feel like we already discussed it a bit earlier, but I 

feel like it would be interesting to focus on the aspect of iterative improvement with user 
testing in this step. On the speaker list I have Maria for this one 

121. P3 How fortunate that I get more room to talk!  
122. *laughter* 
123. P3 I think that, surrounding the question of how early you should test your prototype, 

I think it’s interesting to think about what testing your prototype means. Because the first 
line you draw, you are testing the system for yourself. So even the first sketch you make 
you have rejected a 100 other options. Because for each decision you have moved 
things, removed stuff and made a different product. It’s like when I send emails, for about 
a third of the mails I try to send, I realise when typing that I already have a way to solve 
the issue I’m writing about 

124. A Okey. And if you find yourself stuck with a problem, do you ever create a prototype 
to just kind of throw the problem out there? Do you ever use testing in that capacity? 

125. P2 Yeah sometimes 
126. P3 Naaah 
127. *Laughter* 
128. P2 But yeah sometimes, it depends on if we are viewing a prototype as a simple 

sketch. If I get an idea, most recently this happened Friday, I tested that idea with a 
developer and asked what they thought about what I had in mind. It can be alot easier to 
do it that way rather than put it down in words. Sometimes you don’t know if you have a 
good or bad idea and it’s useful to send it off to find out.  

129. A Oh okey. And related to that, does it also happen that they solve the issue for you 
130. P2 Yeah, that can happen 



131. P3 Yeah sometimes 
132. A How many times do you test a given design? 
133. P3 What is testing in this case? 
134. A Like, just having a user try it 
135. P5 For us, with each other in the design team all the time 
136. P2 Something I think we are bad at is reaching out to a potential end-user and 

having them test the system. For me that is something more than just asking a customer 
proxy to click through something and ask for feedback. But as stated before, we test the 
system with eachothers and some  

137. P1 The CEO sometime 
138. P2 Yes even the CEO sometime 
139. P5 Something else we do is roll out stuff gradually and beta test it with users. We 

don’t roll out everything at once and the test is done with actual users, and that is a 
powerful way of doing it. And another thing we do sometimes is call in students and 
newly hired people and have them sit in a conference room, testing a system and using 
scenarios. We maybe do that two times a year. Beta-rollout is something we do all the 
time 

140. P2 Yeah, but I am not sure if we’re always that great at following up during 
beta-testing. We talk a lot about getting better. We talk about getting better at metrics. 

141. P5 But we often get the feedback from lead tech and the (development) teams 
themself follow up crashes and so. So it’s not only us that’s building it. There are other 
parties involved that take a lot of responsibility 

142. A And if the users do have feedback about design, does it ever come back to the 
development team or do the developers sometimes solve it straight away?  

143. P5 well that depends. Developers resolve a lot of crashes straight away when they 
get the report. But regarding design. If the design needs to be changed, the 
responsibility for that sits with the design team, so it comes back to us then. But it’s not 
always something we react to. Sometimes we don’t agree. And sometimes we do agree 
and see a better way of doing it, but there are more important things in the pipeline and 
then we need to focus on those things. So feedback does not always lead to changes.  

144. A okey, very interesting. And what is important to reach a good result in this step? Is 
it getting good feedback?  

145. P1 Is P4 next on the speaker list? 
146. P4 Hmm are we still on step 4? I think it’s important what you ask for and what kind 

of questions you are putting out there 
147. P3 Usually the first question during a feedback session is what kind of input would 

like. Because you can get feedback like, I think the whole system is wrong. It can be 
difficult to relate to because like. We never make the best design, because that means 
you spent too much time designing, you just make it good enough for testing 

148. A Okey great. I have something else I’d like to ask. What people should be involved? 
I know you talked a bit about testing with each other and with users, but should you be 
talking to someone else too? 



149. P1 Well for instance, if the design is related to the mobile application, it’s good to talk 
to a mobile application developer 

150. A What is it that makes that important? Is it to see if it’s feasible to make the design? 
151. P1 Yes for someone like me who doesn’t write code, I sometimes wanna find out 

what’s the easiest way for them to implement the solution. Like if I have 3 different 
options and if they have a given component already maybe that can make it easy for 
them, and otherwise they might need to spend 2 weeks developing. That kind of thing 
can be decisive in the design decision later, so I atleast wanna check up with them. 
That’s my thoughts on it 

152. P2 It depends. If I’m building a new invoice handling system, it can be useful to get a 
stakeholder that knows economics. There can be other stakeholders as well. But the 
order of priority if I'm required to give one, first off there is the end-user or somebody that 
represents them. Then next somebody within the design team. And then finally a 
developer. At least that is what I think. 

153. A perfect. I’m thinking we can move on to the final step. 
154. P5 I unfortunately need to leave but it sounds like you have good flow going.  
155. A okay that’s no problem. Take care P5 and thanks for participation. But so 

regarding the final step, but this is something we see as a more formal step. You 
mentioned sometimes even the CEO participates as a tester. I’m wondering, related to, 
well first let’s have a look at the speaker list, P4 is next. So I’m wondering for this 
particular step. Do you need to get approval from the business side of things, how do 
you go about getting that kind of approval? 

156. P1 Do you mean before it gets picked up by the development team? 
157. A Yes exactly 
158. P4 We’re a bit spoiled since we have our lead designer in our team. He’s senior in 

the company and there’s not a lot of people that would disagree if he says something, 
often what he says goes..  

159. P2 He’s not here so you can say whatever you want to 
160. *laughter* 
161. P4 It’s not common that we prototype all the way through the process. And you could 

see the beta as a prototype. But it’s rare that we would go back on a design. 
162. P2 i’m not sure.. 
163. P4 We don’t take a lot of chances, I feel like sometimes. It’s very rare that we put a 

design on hold and redo it. 
164. P2 I’m not sure I can view beta-testing as prototyping. I don’t agree with it. It’s like… 
165. P1 It’s not everything that goes into beta 
166. P2 Yeah and even if it goes into beta, it’s rare that we go back and look at it again. 

Maybe it’s different now, but I feel like it’s still rarely we revisit things after they go into 
beta. The video-conference for instance, it’s not really a prototype 

167. P4 No you’re right. But we do have the potential and the beginnings of doing it in a 
more test-focused way. For instance by releasing a beta to friendly customers. So I think 
we have an ambition to work that way. But I’d like to do some work with actual running 



prototypes with code, but maybe that would be resource heavy and require a developer 
resource 

168. A What does it take in order for you to reach agreement with the lead designer about 
a design? What do you need to show him in order to get clearance to go ahead? 

169. P4 We have a discussion throughout the entire design process. In this phase it’s very 
rare that we still have disagreement. He’s usually at least partly the person requesting 
the feature as well.  

170. A How do you imagine it would look if he wasn’t part of the process, like in another 
company? 

171. P4 I imagine then maybe you would get a software requirement specification, saying 
the design needs to fulfill certain criteria. And then you need to pitch the design, maybe 
not in this step, but during some earlier step. That’s something that we are protected 
from 

172. A How do the others feel about this? 
173. P1 As early as last fall, we introduced our own process within the team. This process 

was intended for how to go about approving each other's work. We’re sticking to that and 
everybody feels like it’s working well. We decide that during a feedback meeting we 
show designs that are between 10 to 70 percent complete. And then we can bounce 
ideas off of each other and discuss the prototype, and from an early stage we are all 
involved in each other's work. And then you do some updates and show your design and 
display again next week. And maybe you agree that if you change a given button and 
add a certain thing, then the next iteration will be the good enough final version. In 
addition we have a team meeting on every Tuesday, and before we as a team approve a 
design, we need to show a final design on a Tuesday and get agreement from everyone. 
And that makes the design approved, and at that point everybody has been given the 
chance to talk a couple of times before and they can’t suggest changes that come totally 
out of the blue. When I first started here, sometimes it was more individual, designers 
would pass on designs that the other designers never even saw. But we moved away 
from that, now we can all stand behind a design and for me that’s a good thing, the 
designs we send down the chain are confirmed designs. 

174. A Okey very interesting. And as for agreeing with developers, do they also need to 
approve the design in some capacity? 

175. P2 I think we try to do that in a good way. Sometimes there is a bit of friction. If you 
don’t communicate with developers during the design process and you just show up 
dropping work on them that they haven’t been consulted about, then they might feel 
irritated. So to not show up and surprise them and have them go, oh what you have 
done here, we involve them throughout the process. They test prototypes and discuss 
solutions. Sometimes we do it in a good way and sometimes in not as good a way, and 
that’s probably how it’s always gonna be, but we’re trying and a lot of time we can avoid 
the problems that can arise here. I try to involve them even in smaller features, just to 
check in that it feels reasonable to them as well. And maybe they will say, no sorry I 
think that’s f’ed up, and then you work with that 



176. P1 And then sometimes there’s not a clear receiver, and that can make it 
complicated. I might have a confirmed design that’s complete, but I might go back and 
redo some sketches so it looks more incomplete, then the developer can feel like they 
were involved at an earlier stage. It can take some time but it’s worth the effort, it makes 
the work much easier. I’ve been a consultant before and I took away that you should 
consider what the specific person you are working with wants. Like some people you 
need to involve much more and discuss the design several times with, while others are 
happy to just receive the final design 

177. P3 Yes some people wanna be really involved 
178. P1 Exactly 
179. P3 And others just wanna find out what are the components I need to build 
180. P1 Yes, so what you need to do is find out a bit about the person picking up the 

design for development 
181. A Very interesting, I’m very happy with the answers you have provided. I was 

thinking we could take two quick minutes to discuss the process in entirety. We can use 
the speaker list for order. So P1 what are your thoughts on the five step and what we 
have talked about today? 
Summary discussion 

182. P1 Hmm.. 
183. A Have you gotten any special thoughts, and how has it made you look at the way 

you are currently working? 
184. P1 It has given me the feeling that our current mode of working is good and that the 

steps proposed here match pretty well with those steps. But then to be honest, I don’t 
feel like these are entirely new steps, if you’re a trained interaction designer this is 
probably the way that you’ll be working.  

185. A Okay, very good. And if you want you’re very welcome to point out any flaws in the 
steps we present here, that is just as welcome as telling us that the steps are good. P2 
what are your thoughts about what we talked about today 

186. P2 I’m just thinking, how are these steps intended to be used, are they like a 
suggestion for method? 

187. A Oh yes. We can talk a bit about the steps and their background, perhaps we 
should have done that earlier 

188. P2 it’s possible that you did and that I just missed it.  
189. A So what we’ve done is we’ve taken 3 activities from requirements engineering. 

One activity is elicitation, getting an understanding of customer needs, the next one is 
specification which is putting things down in writing and lead to the creation of a 
requirement specification. And then there’s also validation where you get an approval for 
the design. And we’ve combined that with the research we did on prototyping to 
generate these steps. We’ve focused on how can you perform these activities by using 
prototypes 

190. P2 Ah okey. Well the thing is I don’t really consider a simple paper sketch a 
prototype, but if you do then this matches pretty well. But if you don’t see it that way, I 
don’t think you can work with prototypes all the time. For me a prototype is something 



interactive that you can test out and really get a feeling for. And I don’t think that the 
effort required to produce that kind of prototype is justified for all of these steps. And if 
you look at for instance step 2 it could even be a bad idea to start prototyping. You can 
get locked into an idea, you’ve put time and effort into it and that makes it hard to reject 
it, you kind of develop a bond to it and it’s your baby. But maybe it missed the target 
completely. The first design you spit out is usually horrible, like you get anxiety looking 
back at it. But you do need to put something out there and start thinking about the 
problem. There’s a danger in putting to much love into a given design at an early stage. I 
think there was also a question about how the way we are working today is working. I’m 
a cynic, I always complain, so I’m gonna put out that I miss getting the approval on when 
the design is good enough, sometimes we’re a bit messy company but we’re also very 
fast moving. We typically don’t have definitive roles like product owner, project manager. 
Sometimes I miss that sort of structure.  

191. A P1 I noticed that we are now approaching a time where you need to leave.  
192. P1 Yes, I need to go pick up my kids 
193. A that’s totally Ok, thank you for participating 
194. P1 Bye everybody 
195. A P3, you are next up one 
196. P3 I think this model is interesting because it gives some perspective on what you 

need to find out with prototypes. I don’t think I’m always that aware about what I’m 
looking for. Initially maybe a prototype should serve to explore. And this model can help 
give an idea of how to focus my goals. But then I also feel like it is a bit hard because of 
some of the terminology. Some words like prototype, test, customer needs and so on 
that I have a hard time interpreting. Like what they actually are in this context. Like what 
is a test and what is a prototype. That can make it hard. And also the parameters are not 
always clear. What do you have initially and what do you output?  

197. P2 If I can ask an interesting question, do you have a definition for prototype as 
defined in your thesis? 

198. A Hmm, maybe we can define it a bit more clearly. But our view is that even the 
sketch is a prototype. In our own (case study) work at one point your lead designer 
requested we make some clearer drawings to build on, and to be honest at first we didn’t 
totally see the value, but then we noticed how much clearer it got what we were 
discussing, even if it was a primitively drawn google drawing that we used to 
communicate. I also noticed that during the process we avoided prototyping because it 
felt hard to present something incomplete. I hope that kind of answers your question. 

199. P2 Okay, yes kind of. So to flip it. I feel like what we are talking about here is more 
like sketches.  

200. A Oh okey, great point. And P4, your thoughts on everything? 
201. P4 I don’t have a lot to add apart from what’s been said already. But concerning our 

own process and specifically prototyping. I feel like there’s a lack of high-fidelity code 
based prototypes. But maybe I said that already.  



202. P2 A certain challenge is that if you construct a high-fidelity prototype, sometimes it’s 
very close to the final implementation, like particularly in HTML. Then you have almost 
built the whole entire thing. 

203. P3 Maybe that would be different if we worked at Netflix, then maybe we would 
afford a lot of tweaking and doing A/B testing 

204. A Yes. And maybe more tools will surface that change the landscape and how you 
work. I like Invision but it does have limitations 

205. P4 Yeah I think easier tools will show up soon 
206. F One of the aspects we have noticed is that there’s a difference in building a 

product for a company end-user and just a regular consumer, that can drastically change 
the feedback. Hmm there was another thing as well, but I forgot it now 

207. P3 Tools and things maybe?  
208. F Nah.. Anyways, it doesn’t matter. 
209. A Okey, in that case lets finish up for today. Thank you so much for participating. I for 

one was happily surprised that this matched so well with your design, and maybe we 
need to move things around a bit, but we haven’t based this in any way on how you do 
things. And then obviously stakeholders look differently depending on the given 
company. Have a great afternoon 

 
 
 
 
 
 
 
 
 



INSTITUTE OF COMPUTER SCIENCE | LUNDS UNIVERSITY OF TECHNOLOGY | PRESENTED 2020-06-11

MASTER THESIS Prototyping as a Requirements Engineering Technique
STUDENTS Franz Lang, Alexander Mjöberg
SUPERVISORS Maria Blomberg (Telavox), Elizabeth Bjarnason (LTH)
EXAMINER Björn Regnell (LTH)

Prototyping as a Requirements
Engineering Technique

POPULAR SCIENTIFIC SUMMARY Franz Lang, Alexander Mjöberg

Prototyping is a widespread technique used for anything from illustrating ideas of a
product to providing the foundation for a sales negotiation. This thesis presents a
model that depicts the domain of prototyping and explores its use in the context of
requirements engineering.

Software prototyping is a consolidated term for
the creation and evaluation of a prototype that
depicts a simplified version of a software product.
Prototypes are used to explore certain aspects of a
product throughout the product development pro-
cess, such as testing the usability of a mobile ap-
plication before release. There is a large number of
different types of prototypes as each type is suited
for exploring certain aspects. For example, evalu-
ating physical properties of a flood barrier may ne-
cessitate the use of physical materials in a physical
environment while user interaction in a mobile ap-
plication may only require digital means. Subcon-
sciously these are plausible connections but what
factors do we take into consideration to determine
what necessitates the use of a physical prototype
and when it is sufficient to use a digital one?
We have set out to create a model that can

be used to understand the domain of prototyping.
We identified four aspects in a literature study of
the domain; purpose, strategy, scope, and review
method. The knowledge captured in our model
can be used to identify the best prototyping ap-
proach for a given context.
The model was evaluated in an exploratory case

study where we manipulated the aspect of scope,
yielding three prototype variants. Subjects were

shown one of the prototype variants after which
they responded to a survey.

Purpose

Review 
method

Strategy

Scope

Our results indicate that manipulating the as-
pect of scope in prototyping can encourage users
to focus on certain attributes such as how some-
thing looks or how it works. The feedback received
from the user will vary depending on the scope of
the prototype. This means that if you are looking
to perfect the choice of colours in an interface you
should focus your efforts on creating a prototype
that looks good. If your goal is to evaluate a new
functionality in a software you should create an
illusion of functionality, such as with the use of
Sketch, thereby increasing the amount of concep-
tual feedback.


	Introduction
	Research Questions
	Contribution
	Structure

	Background
	Requirements Engineering
	Prototyping
	Practical use
	Evaluation

	Case company description
	Product
	Product development


	Research Method
	Literature study
	Goals and boundaries
	Literature search
	Validity and relevance
	Synthesis and result

	Designing the model
	Case study on prototyping
	Design
	Process
	Data collection
	Data analysis

	Agile Prototyping Guidelines
	Guideline construction
	Focus group


	Prototyping Aspects Model
	Purpose
	Exploration
	Desirability testing
	Viability testing
	Feasibility testing
	Communication
	Usability testing
	Partial product
	Validation
	Performance improvement

	Strategy
	Point-based design
	Set-based solution array
	Performance set investigation
	Flexible design

	Scope
	Visual refinement
	Functional refinement
	Contemporary prototype dimensions

	Review method
	Presentation and use
	Setting
	Iterations

	Model design choices

	Agile Prototyping Guidelines
	Guidelines
	Implementation of Guidelines

	Result
	Literature study
	Case study
	Experiences of Prototype Variants
	Quantitative Performance Evaluation of Prototypes

	Focus group
	Agreement with guidelines
	Questioning linear order of steps
	Terminology discussed by participants
	Unclear results
	New ideas
	Disagreement


	Discussion
	Relevant Aspects of Prototyping ([introduction:rq1]RQ1)
	Output and Learning of Prototyping ([introduction:rq2]RQ2)
	Supporting Agile Development ([introduction:rq3]RQ3)
	Validity threats
	Literature study
	Exploratory case study


	Conclusions
	References
	Appendix Literature selection
	Appendix Prototype 1 and 2
	Appendix Prototype 3
	Appendix Survey
	Appendix Talking points focus group
	Appendix Focus group transcribed meeting notes

