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Abstract

The purpose of this thesis was to implement an alternative method to calculate the overlap
function, which describe to what extent two protons overlap with each other spatially, into
PYTHIA8 in order to determine how it affected the average number of multiparton interac-
tions. The new overlap function is based on an explicit impact parameter picture, whereas
PYTHIA8s overlap function uses an implicit impact parameter picture. This new overlap
function was calculated using the Glauber formalism, as well as the Good-Walker formal-
ism, both used by the Angantyr model, and by identifying appropriate terms in the overlap
function that PYTHIA8 used. Using this new overlap function, simulations were run to
compare the new overlap to default PYTHIA8 and default Angantyr. Despite the new
overlap function being unintuitive, the results show that it is potentially viable once it has
been tuned to data, and when decisions have been made regarding some parameterisations
in the new overlap function.

Populärvetenskaplig beskrivning

När en utredare observerar en olycksplats är bevisen de kan hitta viktiga. Bevisen är det
som gör att de kan återskapa hur olyckan hände och först̊a vad som hände. Men om de inte
först̊ar bevisen, eller använder dom för att återskapa olycksplatsen p̊a fel sätt, kan svaret
de f̊ar vara fel. Inom partikelfysik kolliderar vi atomkärnor med extrema energier för att
se vilka hemligheter universum har. För att återskapa scenen för dessa olyckor använder
vi s̊a kallade händelsegeneratorer.

Det är där vi stöter p̊a ett problem, eftersom det verkar som om vi inte återskapar dessa
partikelbilkrascher p̊a rätt sätt. Det vi för närvarande gör fel är att vi använder en felak-
tig modell av den s̊a kallade impact-parametern. I en bilkrasch skulle impact-parametern
likna hur bilarna kraschar in i varandra, vilket kan vara allt fr̊an en frontalkollision eller
en kantstöt. Just nu simuleras kollisionerna som om impact-parametern inte har en di-
rekt p̊averkan p̊a hur mycket bilen förstörs, vilket innebär att en kantstöt skulle kunna
förstöra en bil lika mycket som en frontalkollision vid samma hastighet. Detta är inte hur
en bilkrasch händer, och det borde inte heller vara hur partiklar kolliderar. Partikeldetek-
tiverna har bestämt sig för att lösa problemet genom att ändra händelsegeneratorn s̊a att
det spelar roll p̊a vilket sätt atomerna kolliderar.

Alla dessa ändringar görs s̊a att det kan hjälpa oss att undersöka det tidiga universum.
Forskare tror att förutsättningarna för det tidiga universum kan återskapas genom att
kollidera mycket tunga atomer, som bly, med varandra. Det slutgiltliga målet med Angan-
tyrprojektet är att skapa ett kvark-gluon plasma, vilket det tidiga universum misstänks
har varit gjort av, och berätta hur det fungerar.
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1 Introduction

Event generators are used in high energy physics to simulate particle interaction events
that occur at particle colliders, such as proton-proton collisions, using (pseudo) random
number generators [1]. The reason such number generators are used is due to the inherently
stochastic nature of quantum mechanical processes. In such collisions the particles have
been accelerated to velocities close to the speed of light, and because of that are Lorentz
contracted to the point that the interacting particles can be treated as discs rather than
spheres. The results of such simulations can then be compared to data gathered at particle
accelerators to determine how good the event generator is at describing the measured data.
An event generator that is able to accurately reproduce measured data can then be used
to make predictions about particle interactions. This thesis will be working with the most
common of such event generators, PYTHIA8 [1].

This thesis will deal with the bulk of collisions, known as minimum bias events. The
majority of these events have low momentum transfers, and there is a high chance for
the protons to undergo a non-diffractive interaction which is when the protons completely
break up [2]. In the current implementation of PYTHIA8 there are two ways of doing this,
the native PYTHIA8 method [3], and the Angantyr method [2], which is used to simulate
heavy-ion collisions. Even though Angantyr is built for heavy-ion collisions it can simulate
proton-proton collisions, which is what will be studied in this thesis, as it is the simplest
case of ion collisions. Minimum bias events are not often looked at with as much interest
as the extremely high momentum transfer interactions, like the ones most often studied at
CERN, where they are used to search for new particles, such as the Higgs Boson that was
discovered in 2012.

Protons, like all hadrons, are not pointlike particles. They have a substructure and their
constituent particles, quarks and gluons, are collectively called partons. When protons are
scattered at particle accelerators there is enough energy to have the individual partons
interact and give rise to new particles. In these interactions it is possible to have more
than one pair of partons interacting in the same proton-proton collision, and this is known
as multiparton interactions [3], sometimes shortened to MPIs. An example of this can be
seen in Figure 1, where two protons are collided and their overlapping area represents the
area where multiparton interactions can take place.

As can be seen from Figure 1, the overlap is extremely important in regards to multi-
parton interactions as the number of interactions is directly tied to the size of the overlap,
which is simply a representation of how many partons are available to interact with each
other. Given all of this, it might be a surprise that native PYTHIA8 does not use an
explicit geometrical picture to describe the collision [3]. It uses an implicit geometrical
image of this scenario to derive the overlap function, which in turn is used to randomly
pick the average number of interaction in any given event. The reason it can only give an
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Figure 1: Schematic image of two protons colliding. Left side is a side view of the protons
travelling towards each other. The protons are represented as ovals due to lorentz contrac-
tions. Right side is the view along the beam pipe of an accelerator at the time of collision.
The top row shows the interaction between two protons without an internal structure.
The bottom row shows interaction with substructure. The dark circles represent partons,
with smaller circles being sea quarks and gluons, while larger circles represent the valence
quarks of the proton.

average number is due once again to the inherently stochastic nature of these interactions,
where it is impossible to predict the number of interactions for any individual event. Not
only can we only get an average number of interactions, but that average number can vary
greatly depending on the width of the assumed overlap function, from as few as a single
interaction, to around thirty [4].

This differs from the Angantyr model, which relies on an explicit geometrical picture. This
is because Angantyr is used to simulate heavy-ion collisions [2], and in such a scenario it
must be explicit in order to determine which nucleon interacts with which. If it was not an
explicit picture, an entire heavy-ion would be interpreted as simply one massive hadron,
leading to a vast increase in the complexity of the calculations. This explicit picture is also
potentially useful in trying to calculate the number of multiparton interactions that occur,
using an overlap function that is dependent on the impact parameter, b, which represents
the distance between the centers of the two colliding protons [2].

The intent of this thesis is to investigate the effects on the simulated results if one al-
ters the code of PYTHIA8 such that it supports an alternative method to calculate the
overlapping area of interacting particles based on the explicit impact parameter picture
used by Angantyr [2]. The current overlap function that is used by PYTHIA8 is implicit
with regards to the impact parameter, while Angantyr’s method is explicit. PYTHIA8
already supports several different ways to calculate the overlap area [1], as there is not yet
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a consensus as to what method correctly describes the overlap function. The addition of
Angantyr’s method is to give a more consistent picture of heavy-ion collisions so that the
way Angantyr chooses which nucleons interact also influences the number of multiparton
interactions occur in the individual sub-collisions [5].

The next section consists of the theory required to understand this subject on a level
beyond what this introduction can convey, specifically a deeper dive into the math and
physics of MPIs, and how it is implemented in PYTHIA8 and how it is impacted by the
changes that Angantyr makes. After this, in section 3, a new method of calculating the
overlap function will be presented, which is then followed in section 4 by the results of
the simulations that were run once this new overlap function was implemented, as well
as interpretations of these results. Finally the issues with this new overlap function will
be discussed in section 5, and the conclusions that can be drawn from the results will be
presented in section 6.

2 Background Theory

The explanation above is obviously not sufficient to understand the changes and impacts
that the addition of the Angantyr method has on PYTHIA8. To reach such an under-
standing the concept of multi-parton interactions needs to be more thoroughly explained
with a grounding in mathematics and physics rather than a hand-waving explanation. The
current state of the multi-parton interactions machinery of PYTHIA8 also needs to be ex-
plored to understand how the Angantyr method alters it.

Then, of course, the changes that Angantyr implements need to be described in far greater
detail. The Angantyr model [2] is largely based on the Glauber model [6], which describe
which nucleons interact with each other, and the Good-Walker formalism [5][7], which
describe how those nucleons interact. Both of these make use of quantum mechanical
calculations, and must therefore be described thoroughly.

2.1 MPIs, A Mathematical Description

Most of the following two sections are based largely on the PYTHIA6 manual [1]. As
described before, multiparton interactions is when more than one pair of partons interact
in colliding hadrons. The total rate of this type of interaction is assumed to be given by
perturbative QCD [1][8]. Due to the way the strong force behaves, the cross sections for
such processes increases rapidly at lower transverse momentum, p⊥, leading to a divergence
of the cross section as p⊥ → 0. This requires a cut-off of the p⊥, known as p⊥min

. The
interactions between these pairs of partons can be considered to take place independently,
and can therefore have the number of interactions be given by a Poisson distribution [1].
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The description above has described hadrons as composite, but not necessarily as extended,
objects. If this fact is included, it lowers the rate, as the number of interactions should be
lower in an edge-edge collision than in a head-on collision. The distribution is still Poisso-
nian in a given collision, but the average number is lowered, and the precise way that it is
lowered depends on what matter distribution is assumed [1]. It should be said that in the
end, the overall distribution is non-Poissonian due to n = 0 corresponding to no event, as
well as the effects of energy-momentum conservation and Parton Density Function (PDF)
rescaling.

The cross section for a hard QCD 2 → 2 process, which is what we are interested in,
is given by:

dσ

dp2⊥
=
∑
i,j,k

∫
dx1

∫
dx2fi(x1, Q

2)fj(x2, Q
2)
dσ̂kij
dp2⊥

. (1)

The x1 and x2 represents the fractions of momentum that the two interacting partons
carry. The fi and fj represent the PDFs of the two interacting partons of flavours i and
j, and Q2 represents the energy scale of the scattering. The σ̂kij derivative represents the
individual parton-parton cross sections, iterated over all of the possible channels, k. This
is summed over all possible flavours and channels to give a full hadron-hadron cross section.

The cross section for hard scatterings, σhard above some minimum transverse momentum,
p⊥min, is given by [1]

σhard(p⊥min) =

∫ s/4

p2⊥min

dσ

dp2⊥
dp2⊥, (2)

where s is the center of mass energy. The upper limit of the integration is the square of half
of the center of mass energy: (

√
s/2)2 = s/4, which is the most energy a body can get in a

two body collision. This hard cross section can be compared to the full non-diffractive cross
section, σnon−diff . This ratio can easily be larger than unity, which is not a contradiction,
as the σhard does not give the cross section for the hadron, but for the individual partons.
A number larger than unity simply implies that there was more than one parton-parton
interaction in that particular hadron-hadron interaction. This leads to the average number
of parton-parton interactions above a certain threshold p⊥min being simply [1]

〈n〉 =
σhard(p⊥min)

σnon−diff
. (3)

Note that this is in the Poissonian case.

2.2 PYTHIA8s Current Implementation

The current way that multiparton interactions are implemented in PYTHIA8 relies on a
spherically symmetric matter distribution inside of the hadron, or in mathematical terms:
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ρ(x)d3x = ρ(r)r2 sin θdrdθdφ [1]. The radial matter distribution can have several different
shapes, ranging from a single Gaussian, a double Gaussian, to an exponentially decreasing
function. Regardless of the specific shape, if two such matter distributions collide with an
impact parameter b, the time integrated overlap function becomes [1]:

O(b) ∝
∫
dt

∫
d3xρ(x, y, z)ρ(x+ b, y, z + t). (4)

As stated in the introduction, the larger the overlap area, the more likely it is for partons
to interact. In PYTHIA8, the relationship is linear, and is stated as [1]:

〈ñ(b)〉 = kO(b), (5)

where ñ is the number of parton-parton interactions when two hadrons collide with and
impact parameter b, and k is related to the parton-parton cross section. Note that the
average number of interactions is dependent on the impact parameter.

PYTHIA8 requires that in each event there is at least one interaction above a certain
cutoff value, p⊥min [1]. It is important to note here that normally the cutoff is simply
a value, below which no interactions are allowed. However, PYTHIA8 has replaced this
”hard” cutoff with a ”soft” suppression, which is given by [1]

p⊥0(s) = (2.28 GeV)
( √s

7 TeV

)0.215
, (6)

The 2 → 2 cross section is dominated by t-channel gluon exchange, therefore it diverges
as 1

p4⊥
as p⊥ → 0. This was fixed in the previous section by the hard cut-off p⊥min, so:

dσ̂

dp2⊥
∝ αs(p

2
⊥)

p4⊥
→ αs(p

2
⊥)

p4⊥
Θ(p⊥ − p⊥min)

This is now fixed by the more realistic, soft cut-off:

dσ̂

dp2⊥
∝ αs(p

2
⊥)

p4⊥
→ dσ

dp2⊥
=
α2
s(p

2
⊥ + p2⊥0)

(p2⊥ + p2⊥0)
2
. (7)

In eq. (6) s is the center of mass energy. The physical interpretation of eq. (7) is that
at low p⊥ the gluon density becomes very high. At such high densities it is difficult to
differentiate between the gluons, leading to the gluons ”shadowing” each other, leading to
a sort of saturation. It is this divergence in the gluon density that is better modelled by
a gradual suppression rather than a unphysical hard cutoff. However, once this is taken
into consideration, the simplified picture that was shown in figure 1 is no longer correct,
as the gluons (which would make up a large fraction of the partons in figure 1) would now
overlap with each other, which is the ”shadowing” that was described previously. If the
matter distribution has a tail that approaches zero for large impact parameter, which is
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the case for the ones listed above, there is a possibility to have an event where there is no
interactions. For the purposes of this thesis, we are interested in non-diffractive collisions
where there is at least one parton-parton interaction. The probability, according to Poisson
statistics, for two protons to collide with at least one non-diffractive interaction is then
given by [1]:

Pint(b) = 1− exp(−〈ñ(b)〉) = 1− exp(−kO(b)). (8)

This leads to the average number of interactions per event to become [1]:

〈n(b)〉 =
〈ñ(b)〉
Pint(b)

=
kO(b)

1− exp(−kO(b))
. (9)

The relation 〈n〉 = σhard
σnon−diff

must still hold true, and therefore, the numerator and denom-

inator must be integrated over b, separately, becoming [1]:

〈n〉 =

∫
〈n(b)〉 Pint(b)d2b∫
Pint(b)d2b

=

∫
kO(b)d2b∫

1− exp(−kO(b))d2b
=

σhard
σnon−diff

. (10)

Obviously the average number of interactions no longer explicitly depends on the impact
parameter. If this equation is studied, one can see that fluctuation of the impact parameter
(or any variable that induces non-Poissonian fluctuations in the number of MPIs on an
event-by-event basis) can lead to a large change in the average number of parton-parton
interactions.

2.3 The Glauber and Good-Walker Formalisms

Most of the following section is based on the Angantyr paper by Bierlich et al [2]. Angantyr
makes use of the so-called Glauber formalism [6], which is formulated in impact parameter
space. This allows for cross sections to be interpreted directly as probabilities. This will
be of great use when trying to interpret the Good-Walker formalism [2]. Glaubers original
paper [6] did not include fluctuations in the nucleon-nucleon cross section. Without these
fluctuations the model treats the hadrons as completely opaque, solid disks, so if the impact
parameter is smaller than the added radii of the interacting hadrons, then the hadrons will
interact. The Angantyr version [2] of the Glauber model does include fluctuations, which
relates the fluctuations to the diffractive cross section in accordance with the so-called
od-Walker formalism, which Angantyr also makes use of.

For particles with a substructure, it is possible that the mass eigenstates are not the
same as the elastic interaction eigenstates [5]. Denoting the mass eigenstates with Ψi,
the projectile protons mass eigenstate with Ψ0, and with Φl being the eigenstates of the
scattering amplitude, such that TΦl = tlΦl. The mass eigenstates is a linear combination
of scattering eigenstates [5]:

Ψi =
∑
l

ailΦl.
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This leads to the elastic amplitude of the ground state projectile being given by [5]:

〈Ψ0|T |Ψ0〉 =
∑
l

|a0l|2tl = 〈T 〉 .

With the elastic cross section given by [2]:

dσel
d2b

= 〈T (b)〉2 .

Doing the same with diffractive scattering (which includes elastic scattering), using that it
is the sum of the transition to all possible states Φl [2]:

dσdiff
d2b

=
∑
l

〈Ψ0|T |Φl〉 〈Φl|T |Ψ0〉 = 〈Ψ0|T 2|Ψ0〉 = 〈T 2(b)〉 .

All of this has been calculated using that only the projectile proton has a substructure. If
both the projectile and the target have a substructure, then there can be a single excitation
of either the target or the projectile, or that both become excited. Using that the total
cross section is dσtot

d2b
= 〈2T (b)〉p,t [2], where the subscript p and t represents that it has

been averaged over the projectile and target states, the non-diffractive cross section then
becomes [2]:

dσnon−diff
d2b

=
dσtot
d2b
− dσdiff

d2b
= 〈2T (b)− T 2(b)〉p,t .

The remaining cross sections, single and double diffractive are [2]:

dσtarget
d2b

= 〈〈T (b)〉2p〉t − 〈T (b)〉2p,t .

dσprojectile
d2b

= 〈〈T (b)〉2t 〉p − 〈T (b)〉2p,t .

dσDouble
d2b

= 〈T 2(b)〉p,t − 〈〈T (b)〉2p〉t − 〈〈T (b)〉2t 〉p + 〈T (b)〉2p,t .

These differential cross sections are acquired by averaging, in various order, over the two
different sets of states, the states for the projectile, subscript p, and the target, subscript
t. The parameters of T can be determined by fitting the integrated expressions above to
measured cross sections using PYTHIA8 parametrisations.

T is a parameterisation of the imaginary part of the elastic scattering amplitude. In
Angantyr it is defined as the following [2]

T (b, rp, rt) = T0(rp, rt)Θ

(
rp + rt√
2T0(rp, rt)

− |b|
)
, (11)

with T0 being the opacity of the interaction, which ranges from completely opaque, leading
to T0 having a value of 1, to completely transparent, leading to T0 having a value of 0. The
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rp,rt represents the radii of the projectile and target protons, respectively. In the Angantyr
parameterization these radii are allowed to fluctuate. The theta function, Θ(x), takes the
value 1 if x > 0 and 0 otherwise. T0 has two definitions, and the physical interpretation of
these definitions are essentially opposites. The first definition [2]

T0(rp, rt) = (1− exp(−π(rp + rt)
2/σt))

α, (12)

has the physical interpretation that when the size of the proton increases it becomes less
transparent. The second definition [2]

T0(rp, rt) = (1− exp(−σt/π(rp + rt)
2))α, (13)

has the opposite meaning, that is, when the proton size decreases it becomes less trans-
parent.

If we take the differential cross section for the non-diffractive case, which is the main
concern of this thesis, and integrate away d2b we are left with just the non-diffractive cross
section. The cross section is averaged over all projectile and target states, which is given
by the integral over a probability distribution Pp for the projectile and Pt for the target.
In Angantyr these probability distributions are given by the same distribution [2]:

P (r) =
rk−1e−r/r0

Γ(k)rk0
, (14)

where k and r0 are parameters that are fitted to describe the state, while the state itself
is described by r, which can be thought of as the radius of the proton, and Γ is a gamma
distribution. With all of this considered, the integrated non-diffractive cross section can
be written as

σnon−diff =

∫
d2b

∫
drp

∫
drtP (rp)P (rt)(2T (b, rp, rt)− T 2(b, rp, rt)), (15)

with rp and rt being the radii of the colliding hadrons, that fluctuate according to the
probability distribution above, with b being the impact parameter. This equation is an all
event average.

3 The Angantyr Overlap

It should be clarified before explaining the new overlap function that Angantyr currently
does have a method for calculating the overlap [2]. However, it is a very simplified version
that equates the explicit impact parameter calculated in Angantyr to the implicit impact
parameter used in PYTHIA8. This calculation is modified by a ”fudge” factor, which is
tuned to data to give a good description of minimum bias final states. Due to the simplified
nature of this calculation, it was decided to include an alternative, less naive picture of the
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overlap function.

As mentioned in the previous section, the non-diffractive cross section of two colliding
protons, according to the Good-Walker formalism is

σnon−diff =

∫
d2b

∫
drp

∫
drtP (rp)P (rt)(2T (b, rp, rt)− T 2(b, rp, rt)).

Note that Angantyr specifies the impact parameter, as well as the radii of the two protons
as well, which, through eq. (12) or eq. (13) (depending on the definition used), gives us
the states of the protons. PYTHIA8 only specifies the impact parameter.

This allows a very useful identification of terms. Considering the denominator of eq. (10):∫
1− exp(−kO(b))d2b = σnon−diff ,

it becomes clear that the following can be used to calculate the new Angantyr overlap
function.

σnon−diff =

∫
d2b

∫
drp

∫
drtP (rp)P (rt)1− exp(−kO(b, rp, rt)) =∫

d2b

∫
drp

∫
drtP (rp)P (rt)2T (b, rp, rt)− T 2(b, rp, rt),

(16)

with the addition of the fact that the PYTHIA8 method encodes the states of the protons
implicitly in the equation, while Angantyr explicitly depends on them, leading to the slight
change in dependencies above. Eq. (16) is an all event average, however after this step in
the calculation the probability distributions are removed, because the following equality is
for only one event.

We then wish to equate the exponent with some expression, as the exponent in the de-
nominator is the numerator of eq. (10). This can be done by taking the natural logarithm
of both sides, and changing sign

kO(b, rp, rt) = − log(1− 2T0(rp, rt) + T 2
0 (rp, rt))Θ

(
rp + rt√
2T0(rp, rt)

− |b|
)
, (17)

Which simplifies to

kO(b, rp, rt) = −2 log(1− T0(rp, rt))Θ
(

rp + rt√
2T0(rp, rt)

− |b|
)
, (18)

This leaves us with an expression for both σhard and σnon−diff , and therefore, an expression
for 〈n〉, and we have the following expression for the average number of parton-parton
interactions in a hadron collision event.

〈n(b, rp, rt)〉 =
−2 log(1− T0(rp, rt))

2T (b)− T 2(b)
Θ

(
rp + rt√
2T0(rp, rt)

− |b|
)
, (19)
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4 Comparison with Experimental Data

The new overlap function described in eq. (19) was implemented as a method to calculate
the average number of parton-parton interactions in PYTHIA8. This new method was
compared to data, as well as with native PYTHIA8. This comparison was done on data
from a minimum-bias measurement done at ATLAS at energies of 900 GeV and 7 Tev [4]
where the number of charged particles was measured, as well as the pseudorapidity, η, and
p⊥ of the particles. It should be mentioned that the measurement is made at minimum
bias, not no bias, and that the results that are presented below show events with at least
6 charged particles with a p⊥ of more than 500 MeV. This is because these types events
are more likely to be non-diffractive, which is what this thesis is concerned with. The
simulations were run with the full minimum bias settings, including diffractive events. The
data was collected and afterwards was compiled into the graphs below using a program
called Rivet [9].

Figure 2 shows the comparison between default PYTHIA8, default Angantyr, and An-
gantyr using the new overlap function for the non-diffractive cross section, represented by
red, blue and green lines respectively. This was done in order to investigate the differences
between default Angantyr and Changed Angantyr, with the minimum bias data [4] and
default PYTHIA8 as references. Figure 2a shows that the η distribution is lower than
PYTHIA8, but as close to data as PYTHIA. Figure 2b shows that the spectra are almost
identical between the default PYTHIA8 method and the new overlap method. Figure 2c
however, shows that there are some differences compared to data regarding the number
of charged particles in the region of Nch = 15 to Nch = 30, after which the new overlap
seems to give a far too large value compared to data. This could be an indication that the
fluctuations of the proton radii in the new overlap function are too large.

In Figure 3 we compare PYTHIA8 and the two forms of T0, defined in eq. (12) and
eq. (13). These three cases are defined, respectively, as default PYTHIA8, Changed An-
gantyr, and Changed Collision Model and are coloured red, blue and green, respectively.
This was done in order to investigate which definition of the opacity was better suited to
explain data. Similar to figure 2, figure 3 shows that the second definition of T0 correlates
almost exactly with the new overlap function and quite well to default PYTHIA8. In
subfigure (c) we can see that the second definition of T0 leads to a deviation away from
the Changed line and approaching default PYTHIA8, settling about halfway in between
the two, as well as being closer to data than either, showing that the second definition
seems to be more suitable to use in these simulations. However, since this was done before
parameters were retuned this might be a premature conclusion.

Figure 4 requires some further explanation regarding what ecmPow represents. EcmPow
scales the p⊥0, according to eq. (6), where ecmPow is the value 0.215, and this is related
to the increase of the total cross section. Figure 4 compares default PYTHIA8, default
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Figure 2: Subfigure (a) shows, per event, the average number of charged particles per unit
η, with regards to the η distribution. Subfigure (b) shows the average number of particles
per event with regards to the p⊥ distribution. Subfigure (c) shows the relative probability
of having a certain number of charged particles be created in the event. The data that is
compared to is minimum bias data gathered by ATLAS [4]. The red line represents the
default PYTHIA8 [1] event generator. The blue line represents the default Angantyr [2],
using the old method of calculating the overlap. The green line represents Angantyr using
the new overlap function for the non-diffractive cross section that was calculated in section
4, which will be referred to as Changed Angantyr from now on.
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Figure 3: The subfigures here display the same distributions as in figure 2. The red line
still represents default PYTHIA8 [1]. The blue line represents Changed Angantyr. The
green line represents Changed Angantyr that uses the second definition of the opacity, T0,
found in eq. (13), called Changed Collision Model.
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Figure 4: The subfigures here only show two sets of η distribution, similar to figure 2a
and 3a. The red line still represents default PYTHIA8 [1]. The blue represents default
PYTHIA8 with the parameter MultipartonInteractions:ecmPow set to zero. The green
line represents Changed Angantyr. The yellow line represents Changed Angantyr with
MultipartonInteractions:ecmPow set to zero. The difference between subfigure (a) and (b)
is that subfigure (a) is simulated at 900 GeV, while (b) is simulated at 7 TeV.
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PYTHIA8 with ecmPow set to zero, Changed Angatyr and Changed Angantyr with ecm-
Pow set to zero, represented as red, blue, green and yellow lines respectively. This is done
to investigate the dependence of the Changed Angantyr model on the ecmPow parameter,
and to discover to what extent the Changed Angantyr model compensates for the change
in activity. Angantyr compensates for the change because the new overlap have an implicit
dependence on the center of mass energy [2] since the parameters that govern the fluctu-
ations are fitted to the cross sections at any given center of mass energy. This is done by
fixing the p⊥min at the value used at 7 TeV and then compare what the effect this has
on the 900 GeV case, both for default PYTHIA8 and the Changed Angantyr. As can be
seen, in figure 4b, at 7 TeV, both the default models (red and green line) are the same
as the models with ecmPow set to 0 (blue and yellow line), as expected. In figure 4a it is
clear that the difference between the Changed Angantyr and it corresponding zero ecm-
Pow case is less than the difference between default PYTHIA8 and its corresponding zero
ecmPow. Of note is that while the Changed Angantyr is better than default PYTHIA8 at
compensating for the energy dependence, it is far from perfect.

5 Discussion

The results show that the Changed Angantyr model, while not a bad model, is not as good
at reproducing the data as default PYTHIA8. However, PYTHIA8 has many parameters
that all have been specifically tuned [10] for the default PYTHIA8 overlap function. Unsur-
prisingly, when using an untuned overlap function the data is not going to be reproduced
as well as with a function that has tuned parameters. In an effort to see if this overlap
function can be viably tuned using these parameters, we investigated the effects of chang-
ing some of them slightly, and the graphs for those simulations can be found in appendix A.

Despite giving a fairly good description of the data, the new overlap function produced
in eq. (19) seems very unintuitive. While it says that the average number of multiparton
interactions is dependent on the impact parameter, the only dependence is contained in
the theta function, where it determines whether there is a probability of a collision at all.
The reason for this is due to the way that Angantyr has defined the T [2]. This runs
counter to intuition which says that given two uniform discs, their overlap function should
be dependent in some way on the actual geometric overlap. This leaves us with the option
to more accurately tune T0 as well as the shape of the probability distributions, Pp and
Pt, or alternatively, change the form of T0 into something more intuitive so that it is also
dependent on the impact parameter. This is more difficult as the parametrisation of T
becomes more cumbersome.

Initially, the idea was to derive an overlap function entirely from a geometrical argument.
The geometrical argument can be seen in figure 5, where two Lorentz contracted discs
collide with some impact parameter b. This leads to three cases. Firstly, where the discs
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do not impact, when rt + rp < b, which was uninteresting as PYTHIA8 requires at least
one event [1]. Secondly, when one disc is entirely contained within the other, rt − rp > b,
in which case the overlap is simply the area of the smaller disc. The third case, when
rt + rp < b, is the most complex case.

Using several trigonometric identities it is possible to get the following, somewhat compli-
cated, formula to calculate the overlap

O3 = Atot = r2t arccos
( b

2rt
− r2p

2brt
+
rt
2b

)
+ r2parccos

( b

2rp
+
rp
2b
− r2t

2brp

)
−

−1

2

√
(−b+ rp + rt)(b+ rp − rt)(b− rp + rt)(b+ rp + rt)

This entirely geometrical picture turned out to be a too naive, and was therefore replaced
with the calculations in section 3. This could still be useful if the decision was made to
go from the current factorization of T to a different one, where T0 was not independent in
regards to impact parameter.

6 Conclusion

The purpose of this thesis was to implement an alternative method to calculate the overlap
into PYTHIA8 that was explicitly dependent on the impact parameter to determine its
impact on the average number of multiparton interactions. This new overlap function was
calculated using the formalisms used by Angantyr model [2], and by identifying appropri-
ate terms in the overlap function that PYTHIA8 used. Using this new overlap function,
simulations were run to compare the new overlap to default PYTHIA8 and default Angan-
tyr.

Figure 5: Two discs with radii rt and rp whose centers are a distance b away from each
other.
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The results enables us to be cautiously optimistic in further developing the overlap func-
tion. It seems possible to interpret the Angantyr method of generating proton-proton
collisions in terms of an overlap function that can be utilized by PYTHIA8. The overlap
function that has been derived in this thesis can be now further tuned in the same way
that the other overlap functions that already exist as options in PYTHIA8 have been.

The investigation and results of the different definitions of T0 are also useful in further
development of this overlap function. it was shown that the second definition, found in
eq. (13), was more correlated to data, but not by much. It was also discovered that the
current factorization of T is unintuitive, having no dependence on the impact parameter
beyond informing if there is an impact or not. Both of these results are important moving
forward, as they can be used to decide whether to continue to use the second definition of
the T0, or to change the definition to something that is dependent on the impact parameter
in a more meaningful way.

Figure 4 shows an interesting results in regards to the energy dependence. It is clear that
the Changed Angantyr method ”catches” some of the energy dependence that PYTHIA8
catches using the energy evolution of the soft suppression parameter p⊥0. This is due to
the way Angantyr fits its parameters to the different cross sections. Since these cross sec-
tions are based on the center of mass energy, this method ”catches” some of this energy
dependence. However, while it is better than default PYTHIA8, it is still far from perfect.
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7 Appendix A

The parameters that were altered were called SpaceShower:alphaSvalue (figure 6a) that
had a default value of 0.1365, that was changed to the value 0.12, MultipartonInterac-
tions:alphaSvalue (figure 6b) that had a default value of 0.130, that was changed to the
value 0.12, and MultipartonInteractions:pT0Ref (figure 6c) that had a default value of
2.28, that was changed to the value 2.5, and can be seen, respectively, in the figure below.
These changed parameters imply that there is a good possibility to be able to tune these
parameters to better fit data.
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