
Entanglement in a quantum heat
engine

Harald Öhrn

Thesis submitted for the degree of Bachelor of Science
Project duration: 2 months, 15 hp

Supervised by Peter Samuelsson
Co-supervised by Björn Annby-Andersson

Department of Physics
Division of Mathematical Physics

June 2020





Abstract

In 2015 Jonatan Bohr Brask et al. showed that steady-state entanglement could
be generated in two interacting qubits incoherently coupled to thermal baths of
different temperatures [1]. This thesis is an attempt to re-evaluate their findings
with the hope that a slightly different approach and system can help further our
understanding of this not yet well understood phenomena. A Lindblad master
equation approach is taken to study a two-qubit thermal machine interacting
with bosonic thermal reservoirs. It is found that the steady-state entanglement
behaves similarly using the Lindblad approach, the main difference being that a
larger amount of entanglement can be generated than initially found in Ref. [1].
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Chapter 1

Introduction

In 1824 Nicolas Léonard Sadi Carnot developed the Carnot-cycle, which describes
how a series of temperature and pressure changes in an ideal gas can develop
net mechanical work and in doing so laid the foundation for the second law of
thermodynamics [2]. The Carnot-cycle describes a type of heat engine, a machine
that converts a flow of thermal energy into mechanical energy. Another example
of heat engines are the turbines in a nuclear or fossil fuel power plant that are a
central part of modern electricity production. These kinds of heat engines are well
understood in the framework of conventional thermodynamics. However, it is not
yet well understood how heat engines behave when miniaturized since quantum
mechanical effects become relevant.

Quantum mechanics describes the world on a microscopic scale, and it might
appear contradictory to consider quantum effects in a heat engine, which histori-
cally is seen as a macroscopic system. In contrast, the current effort to establish
the laws of thermodynamics in the quantum regime suggests a deeper connection
between the two fields than what is intuitively apparent [3] [4]. The study of
thermodynamical quantities such as heat, work and temperature on a quantum
scale is called quantum thermodynamics. Of particular note is the quantum
analogy to the heat engine, called a quantum heat engine.

A quantum heat engine is a microscopic system coupled to thermal reservoirs
(or heat baths) where the resulting heat current produces a net amount of work,
exactly as in a classical heat engine. The small size of the system makes it possible
for quantum phenomena to appear. An example of such a phenomenon is quantum
entanglement. In 2015 it was shown that steady-state entanglement could be
generated in an autonomous thermal machine consisting of two qubits [1]. In
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CHAPTER 1. INTRODUCTION

other words, the qubits could be entangled using only the temperature gradient,
without any external control and in a stable configuration. This is a nice result as
entanglement is necessary for several other applications in a variety of fields. It
is, for example, required in quantum computation algorithms and for quantum
teleportation [5].

This project will try to re-evaluate the results of Jonatan Bohr Brask et al. [1]
using a similar, yet not identical, master equation approach. The Lindblad master
equation was used instead of the Reset equation that was used in Ref. [1].
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Chapter 2

Theory

2.1 Density matrices

Density matrices will be used extensively throughout this thesis, and as such, this
section will contain a brief overview of their properties. Readers that are interested
in a thorough formulation of the subject are referred to external material, such as
Ref. [5]. Density matrices are a language for representing quantum mechanical
states. They are used to describe statistical mixtures of states in a compact way.

The density matrix, usually denoted ρ̂, contains all the information of the
system it describes. It is defined as

ρ̂ =∑
i

pi |ψi 〉〈ψi |, (2.1)

where 0 ≤ pi ≤ 1 is the probability for the system to be in state |ψi 〉. When the state
|Ψ〉 of a system is known exactly, the system is said to be in a pure state and has
the density matrix ρ̂ = |ψ〉〈ψ|, otherwise it is in a mixed state. The density matrix
is by definition a positive, Hermitian matrix with trace one, that is,

ρ̂† = ρ̂,

Tr {ρ̂} = 1,

〈Ψ|ρ̂|Ψ〉 ≥ 0,∀ vectors |Ψ〉.

The density matrix for two uncorrelated system, here labeled 1 and 2, is given
by the tensor product of the density matrices of the two separate system. For two
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CHAPTER 2. THEORY 2.2. ENTANGLEMENT AND CONCURRENCE

general two-dimensional subsystems this would be,

ρ̂pr od = ρ̂1 ⊗ ρ̂2 (2.2)

→
[

a1 b1

c1 d1

]
⊗

[
a2 b2

c2 d2

]
=


a1a2 a1b2 b1a2 b1b2

a1c2 a1d2 b1c2 b1d2

c1a2 c1b2 d1a2 d1b2

c1c2 c1d2 d1c2 d1d2

 . (2.3)

The state space of the product state is the tensor product of the state spaces of its
parts [5]. For example, the product space of two qubits with basis {|0〉, |1〉} has the
basis {|00〉, |01〉, |10〉, |11〉}. Note that |ab〉 is short-hand for |a〉⊗ |b〉.

2.2 Entanglement and Concurrence

By definition, two particles, A and B, are said to be entangled if the total state
|Ψ〉 of both particles cannot be described as a tensor product of the two separate
states, i.e. |Ψ〉 6= |ΨA〉⊗ |ΨB 〉. For example, the state |Ψ〉 = a1b1|u1v1〉+ a1b2|u1v2〉+
a2b1|u2v1〉+a2b2|u2v2〉 describes two particles. Particle one can be in state |u1〉 or
|u2〉 and particle two in |v1〉 or |v2〉. These particles are not entangled as |Ψ〉 =
(a1|u1〉 + a2|u2〉)⊗ (b1|v1〉 + b2|v2〉). However, the state c1|u1v1〉 + c2|u2v2〉 can not be
separated in a similar fashion and therefore the two particles are entangled.

This definition of entanglement can be extended to mixed states as well. In
general, a mixed state is said to be separable if it can be written as ρ̂ =∑

i wi ρ̂
A
i ⊗ ρ̂B

i ,
where ρA

i and ρB
i are mixed states on different subsystems A and B respectively

and wi are probabilities. As for pure states, a mixed state is considered entangled
if it is not separable.

By this definition, a system is either entangled or not. It does not take into
account varying degrees of entanglement; for this concurrence will be used. Con-
currence is closely related to another, more general, measure of entanglement
called entanglement of formation, but is only defined for systems consisting of a
pair of qubits [6]. The concurrence is preferred in this project as it gives a clear
metric for comparing entanglement levels of two states (a non-entangled state
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CHAPTER 2. THEORY 2.3. LINDBLAD MODEL/MASTER EQUATIONS

has a concurrence of zero while a fully entangled state has concurrence one) and
while the entanglement of formation has a better physical motivation the process
of calculating it is beyond the scope of this project.

There exists an explicit formula for the concurrence C of a system [7].

C (ρ) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}, (2.4)

where λi are the eigenvalues of ρρ̃ in descending order. ρ̃ is the spin-flipped density
matrix defined as

ρ̃ = (σy ⊗σy )ρ∗(σy ⊗σy ), (2.5)

σy is the Pauli Y matrix and * denotes the complex conjugate.

2.3 Lindblad model/master equations

The non-unitary time evolution of a system that is in contact with its environment
can be described with a differential equation called a master equation. Such
a system is called an open system. The master equation should preserve the
properties of the density matrix as given in Sec. 2.1. The most general form for
Markovian master equations (systems without memory effects) is given by the
Lindblad form as,

d ρ̂

d t
=− i

ħ [Ĥ , ρ̂]+∑
j

[
L̂ j ρ̂L̂†

j −
1

2
{L̂†

j L̂ j , ρ̂}

]
. (2.6)

Here {a,b} = ab +ba is the anti-commutator, Ĥ is the system Hamiltonian that
describes the coherent part of the system dynamics and L̂ j are the Lindblad
operators that describe how the system couples to its environment [5].

The reset model used in Ref. [1] derives a master equation from the assumption
that during a short time interval the coupling to the thermal baths either resets
the qubit to a thermalized state or leaves it unaffected [8][9]. In comparison the
Lindblad master equation can be seen as a more physical approach, as it can be
derived from microscopic theory. Ref. [10] provides such a derivation.
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Chapter 3

System

3.1 The system

The system considered in this thesis is a thermal machine consisting of two
coupled qubits, each coupled to a separate, bosonic, thermal bath, see Fig. 3.1.
This particular system is chosen mainly because two-qubit systems allow for
the use of concurrence. It also happens to be (one of) the smallest theoretically
possible thermal machines [11], which limits the computational cost of solving
the system.These two facets make this system ideal for studying entanglement
generated by temperature gradients within the scope of this project.

8



CHAPTER 3. SYSTEM 3.2. THE MODEL

Figure 3.1: A sketch of the quantum thermal machine. Two qubits with energy gap E are
coupled with a coupling constant g . The left qubit is coupled to a cold thermal bath of
temperature Tc with a coupling constant kc . Mirroring this, the right qubit is coupled to a
hot thermal bath of temperature Th ≥ Tc with constant kh. The left qubit will be referred to
as cold, with sub-index c and the right one as hot, with sub-index h.

3.2 The model

The time evolution of the state ρ̂ of the two-qubit system can be described by the
Lindblad master equation (2.6) and can be written as [3] [5] [12],

∂ρ̂

∂t
= i

[
ρ̂, Ĥ0 + Ĥi nt

]+Lc ρ̂+Lhρ̂, (3.1)

where ρ̂ is the density matrix and we set ħ= 1 for the rest of this work. The term
i
[
ρ̂, Ĥ0 + Ĥi nt

]
describes the time evolution if the system was not coupled to the

thermal baths. In the commutator, we have

Ĥ0 = E (|1〉〈1|⊗1+1⊗|1〉〈1|) (3.2)

which is the free Hamiltonian and

Ĥi nt = g (|10〉〈01|+ |01〉〈10|) (3.3)
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CHAPTER 3. SYSTEM 3.2. THE MODEL

which is the interaction Hamiltonian of the two qubits. The last two terms in Eq.
(3.1) describe the interactions of the qubits with their corresponding bath and are
given by

Lαρ̂ = kα [rα+1]

(
σ̂αρ̂σ̂

†
α−

1

2
{σ̂†

ασ̂α, ρ̂}

)
+kαrα

(
σ̂†
αρ̂σ̂α−

1

2
{σ̂ασ̂

†
α, ρ̂}

)
. (3.4)

The operators σ̂c = |0〉〈1|⊗1 and σ̂h =1⊗|0〉〈1| are defined as the lowering operators
and rα = 1

eE/Tα−1
is the Bose-Einstein distribution, note that the Boltzmann constant

kB is set to one. In this work, we investigate the effects of keeping the system
under a thermal bias while the chemical potentials of the reservoirs are set to be
equal. Therefore, to simplify calculations, we can let the chemical potentials be
zero without loss of generality. In principle one could look at the same effects for
baths with different chemical potentials as in those with different temperature.
However the non-conservation of photons requires the chemical potential to be
zero, suggesting that a system with fermionic baths would be better suited for
studying the effects of differing chemical potentials.

In Eq. (3.4) the σ̂αρ̂σ̂†
α term in the first parentheses describes how the qubit

de-excites and the corresponding σ̂†
αρ̂σ̂α term in the second parentheses describes

excitation of the qubit. The terms with the anti-commutators re-normalizes and
makes sure that ρ̂ keeps trace one.

The master equation holds in the perturbative regime k ′
c ,k ′

h , g << E and k ′
c ,k ′

h << 1

[1]. Note that k ′
α is the coupling constant used if the system is described by the

Fermi-distribution rF D and is related to kα as [3]

k ′
α = kα

r ( 1
Tα

)

rF D ( 1
Tα

))
. (3.5)

To see that there exist equivalent forms using either Bose of Fermi-distributions
consider that rF D = r

1+2r . The equation would still describe the same system, irre-
spective to if one chooses to formulate it in terms of the Bose or Fermi-distribution.
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CHAPTER 3. SYSTEM 3.3. STEADY STATE SOLUTION

3.3 Steady state solution

Of particular interest is the state when the system is static, that is, when the time
derivative of Eq. (3.1) is zero. This is called the steady state solution. This can
be done by re-writing Eq. (3.1) into matrix form using the basis {|00〉, |01〉, |10〉, |11〉}.
Then wrap the density matrix into a vector ρ where the first four elements are the
main diagonal, followed by the off-diagonal elements in order. Equation (3.1) can
then be written in the form

∂ρ

∂t
= Mρ, (3.6)

where M is a 16x16 matrix constructed by putting the factors for each differential
equation into the rows of M, such that all the factors containing the first element
of ρ are in the first column, all the factors containing the second element is in
the second column and so on. The steady state solution is found by solving the
system of equations Mρ = 0, which corresponds to finding the null-space of M . The
vector representation of the steady state can then be wrapped back to operator
notation.

Manipulation of the master equation in matrix form was done in Mathematica
9 in the Wolfram language, including solving for the null-space of M . It should be
noted that the non-diagonal part of M is quite sparse, allowing for computations
to be done with reasonable speed. If this method would work for more complicated
systems (increased number of baths or qubits, for example) depend in practice
on the exact shape of M. Eventually the system would no longer be solvable
analytically as is done here and one would be forced to consider other options,
such as numerical solutions.
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Chapter 4

Results

4.1 Steady state

The steady state solution is found as described in Sec. 3.3. In operator notation it
is given by

ρ̂∞ = γ
[

kc kh τ̂c ⊗ τ̂h + 4g 2

(kc (1+2rc )+kh(1+2rh))2
(kc τ̂c +kh τ̂h)⊗2

+ 2g kc kh(rc − rh)Y

kc (1+2rc )+kh(1+2rh)

]
, (4.1)

where τ̂α = (rα+1)|0〉〈0| + rα|1〉〈1|. While the state τ̂α is similar to a thermal state
it is not a true thermal state in the sense that it is not normalized. This is not
a problem in our discussion, but it is straight forward to re-write the solution
using normalized thermal states. The constant γ= (4g 2 +kc kh(1+2rc )(1+2rh))−1 is a
normalization factor to ensure that the trace of ρ̂ equals one, Y = i (|10〉〈01|−|01〉〈10|)
and A⊗2 = A⊗ A is the tensor square. Note that only two off-diagonal elements of
the steady-state solution are non zero.

These results are in agreement with Ref. [3]. It should be noted that while the
same calculations are present in Ref. [3] the approach for finding the solutions
differ sightly. All results presented here have been calculated as described, given
the Lindblad operators.

To check that the model gives us a proper physical state, the limits of high and
low temperatures are calculated. Consider Tc = Th, this would imply rc = rh = r . This
in turn implies that the off-diagonal elements are both zero and that τ̂c = τ̂h = τ̂.
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CHAPTER 4. RESULTS 4.1. STEADY STATE

The steady state would then simplify to:

ρ̂∞ = τ̂⊗ τ̂
(1+2r )2

= 1

(1+2r )2

[|00〉〈00|(1+ r )2 +|01〉〈01|(1+ r )r +|10〉〈10|(1+ r )r +|11〉〈11|r 2] (4.2)

This limiting case is visualized in Fig. (4.1). In the low temperature limit
(T → 0), the steady state approaches |00〉〈00|. In the high temperature limit every
state approaches equal probability. This is exactly what is expected of a four-level
system in contact with a thermal bath.

Figure 4.1: The elements of ρ̂ where Tc = Th = T and the coupling parameters are fixed.
|10〉〈10| and |01〉〈01| are identical over the entire interval and the off diagonal elements are
zero. All main diagonal elements go asymptotically to 0.25 as the temperature goes to
infinity.
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CHAPTER 4. RESULTS 4.2. ENTANGLEMENT

4.2 Entanglement

The steady-state solution (4.1) can be written in the form

ρ∞ =


a 0 0 0

0 b i f 0

0 −i f c 0

0 0 0 d

 , (4.3)

where a,b,c,d , f are real and positive (for Th > Tc ). The spin flipped state is given by
Eq. (2.5) and reads

ρ̃∞ =


d 0 0 0

0 c i f 0

0 −i f b 0

0 0 0 a

 . (4.4)

Then

ρ∞ρ̃∞ =


ad 0 0 0

0 bc + f 2 2i b f 0

0 −2i c f bc + f 2 0

0 0 0 ad

 (4.5)

with the eigenvalues

λi = {ad , ad , ( f −
p

bc)2, ( f +
p

bc)2)}. (4.6)

The following relation was noted in Eq. (4.1): ad −bc =− f 2, which can be used to
prove the inequalities

p
ad < | f +

p
bc|, (4.7)

f <
p

bc. (4.8)

These inequalities together with

{a,b,c,d , f } > 0 =⇒ | f −
p

bc| < | f +
p

bc|, (4.9)
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CHAPTER 4. RESULTS 4.2. ENTANGLEMENT

implies that f +p
bc is the square root of the largest eigenvalue. The absolute sign

could be dropped and | f −p
bc| =p

bc − f as a consequence of inequality (4.8). This
in turn, gives the following expression for the concurrence from Eq. (2.4),

C (ρ∞) = max{0,2 f −2
p

ad}. (4.10)

The highest degree of entanglement possible to generate in the system was
found by numerically maximizing Eq. (4.10) over g , kc, kh, Tc /E and Th/E. This
was done in Python using the L-BFGS-B minimization method provided by the
scipy library. In the numerical calculations all parameters are given as a fraction
of the separation of energy levels in the qubits. This makes them unitless if the
units of Boltzmann’s constant is taken into account. Figure (4.2. a) shows how
the concurrence changes as the hot bath temperature increases. The concurrence
finds its maximum value for the parameters: g /E = 1.5285×10−3,kc /E = 10−2,kh/E =
1.1374×10−4,Tc /E ≈ 0 (the numerical value used for low cold temperature was Tc /E =
10−2 as going any lower would result in overflow errors) and Th/E = 8.1258, all
coupling constants were capped to 10−2 to make sure that the system is still in
the perturbative regime. For these parameters the maximum concurrence is

Cmax(ρ∞) = 0.0934. (4.11)
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CHAPTER 4. RESULTS 4.2. ENTANGLEMENT

(a) (b)

Figure 4.2: (a): Concurrence generated in the steady state. The parameters g , kc , kh

and Tc /E where optimized to give the highest peak value for the concurrence. (b): The
individual, unique elements of ρ̂, plotted with the same parameters as in (a), over a slightly
shorter interval. The purple line shows the absolute value of the imaginary part of the
two off diagonal elements. Note that the |11〉〈11| element is not identically zero.

By keeping the coupling constants from Fig. (4.2) while varying the cold bath
temperature it was observed in Fig. (4.3) that a minimum temperature difference
is needed to generate concurrence, the size of this difference is dependant on
the temperature of the cold bath in agreement with Ref. [1]. In addition, the
maximal entanglement seems to decrease monotonically when the cold bath
temperature is increased and for temperatures larger than approximately Tc /E = 0.27

no entanglement could be shown at all. The size of the individual elements of
ρ∞ are shown in Fig. (4.2. b). The figure visualizes the elements for the same
parameters as in Fig. (4.2. a). In contrast to when both temperatures become
large the density matrix tends towards an equal distribution between the ground
state and the state where the hot qubit is excited while the cold one is not.
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CHAPTER 4. RESULTS 4.2. ENTANGLEMENT

Figure 4.3: Concurrence as a function of hot bath temperature for several different
cold bath temperatures. The parameters g , kc and kh are the same for each cold bath
temperature and are not optimized again for the new fixed Tc /E.

Fig. (4.4) shows how the concurrence and the elements of the density matrix
depend on g . It shows that for the same kα, Tα as for peak concurrence in Fig.
(4.2) the system is entangled for any non-zero g lower than a maximum value. In
likeness to the behavior for increasing temperature difference, the concurrence
quickly drops when g changes from its optimal value.
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(a) (b)

Figure 4.4: Concurrence generated in the steady state (a) and the elements of ρ̂∞ plotted
over the qubit to qubit coupling parameter g (b). The maximum value in (a) corresponds
to the g used in Fig. (4.2).
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Chapter 5

Conclusions

5.1 Discussion

The main results of Ref. [1] have been successfully replicated. Namely, entangle-
ment can be generated in a two qubit thermal machine from entirely incoherent
interactions with the heat baths, at the steady state. For the system to be entan-
gled a minimum temperature difference and therefore heat current is required
between the baths. In addition, the cold bath temperature must not be larger
than some threshold value that depends on the separation of energy levels in the
qubits. However, there are some differences between the results.

With the Lindblad model, we found the optimal temperature of the hot bath
to generate maximal entanglement. This optimization would be very useful in
an experimental realization of the system. To see why there is a suppression of
the concurrence for high temperature notice that Eq. (4.1) could be re-written in
terms of the Fermi-Dirac distribution, with a different coupling constant given
by Eq. (3.5). This new coupling constant would then increase linearly at high
temperatures; this is what causes the suppression.

With the Lindblad approach, the maximal entanglement is ca. 1.5 times larger
in contrast to the approach using the reset model. There is also a difference for
the threshold temperature for the cold bath where entanglement can no longer be
generated. It is shown to be higher by a substantial margin, from Tc /E ≈ 0.21 to
Tc /E ≈ 0.27.

In addition to the system considered here, Ref. [1] considers the same system
with fermionic baths. In such a system entanglement can be generated for any
large enough temperature difference, provided that the cold bath is colder than
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CHAPTER 5. CONCLUSIONS 5.2. OUTLOOK

the threshold temperature. In fact, with fermionic baths the system generates the
largest amount of entanglement as Th →∞. As the temperature difference grows
one can imagine that keeping the cold qubit isolated from the hot bath could
become a challenge. In contrast, the bosonic case would require much better
control of the hot bath temperature.

It is hard to predict the exact effects of varying the parameters in the expression
for the concurrence. However, some conclusions can be drawn from the above
results. It should be noted that Eq. (2.4) was maximized with numerical methods
and that it is its variations around this maximum that have been studied and as
such tells us little of the functions behavior far from this maximum. It is found
that of the three coupling constants, both g and kh give maximum entanglement
for values one or two magnitudes lower than the largest allowed value. This is
nice when looking for maximal entanglement as they stay well within the weakly
coupled regime. In contrast, the highest entanglement was found for kc equal to
the maximal value allowed to ensure that the models assumptions are correct.
The comparison to Ref. [1] still holds true as the same assumptions about the
coupling constants are made.

5.2 Outlook

It would be interesting to see if steady state entanglement can be created in
different systems. Exploring the limits, both in terms of the strength of the
coherence and the possible size of the entangled system, could determine the
practical usefulness of incoherent entanglement generation for such things as
quantum computation that may require large ensembles of entangled particles.
Ref. [13] is a recent paper that concerns a similar topic, written by some of the
same researchers that wrote the paper that inspired this thesis.

As in Ref. [14] one could investigate the fluctuations of entanglement in the
system. For even if entanglement can be generated, if the fluctuations are as large
or larger than the entanglement itself its usefulness in other applications could
be severely limited.

Another possible direction to take is to study the heat currents through the
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CHAPTER 5. CONCLUSIONS 5.2. OUTLOOK

thermal machine. Calculating both the heat flow and its fluctuations could show
how, if at all, entanglement impacts these quantities. With the end goal to study
the thermodynamical uncertainty relation that relates the average energy flow,
the average fluctuations of this flow and the created entropy in the system with
each other. This would be done in the regime where the qubits are entangled. The
validity of the thermodynamical uncertainty relation is in no way guaranteed in
this case[15]. Arguably the most interesting outcome of such a study would be
for the uncertainty relation to not hold in the presence of entanglement. For in
that case it might be possible to devise ways to infer that a system is entangled by
checking if the thermodynamical uncertainty relation holds or not.
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