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Abstract

The role of massive stars (those with masses greater than eight solar masses) in the chemical
enrichment of galaxies and renewed star formation forms an important field of fundamental
research in modern astrophysics. The complex nature of massive star evolution produces
formidable challenges in furthering our understanding of the processes driving massive star
evolution. Our ever-changing picture is further complicated by the relatively recent realisa-
tion that the vast majority of massive stars are formed in multiple star systems. In close
binaries, interactions between the stars can lead to an exchange of matter, dramatically al-
tering the structure and evolution of the component stars and the binary system as a whole.
Depending on the initial binary configuration, this transfer of mass may be stable or un-
stable, producing results varying from wide binaries with massive secondaries, to common
envelopes with tight binaries or even stellar mergers. A fraction of binary systems will be
disrupted when the primary star explodes as a supernova, producing a runaway secondary
star.

α-Orionis, commonly known as Betelgeuse, is believed to be the product of such a sce-
nario. We synthesise a realistic population of binary systems containing massive stars and
simulate the evolution of these systems accounting for mass transfer through Roche lobe
overflow. We analyse the probability for each system to be disrupted after the supernova
explosion of the primary for a range of supernova kicks and determine which fraction of these
systems will produce a secondary star in the estimated mass range of Betelgeuse. We also
investigate which mass transfer channel is most likely to produce a Betelgeuse-like star.

We find that ∼ 14% and ∼ 25% of binaries will produce a secondary in the mass ranges
13−18 M� and 11−20 M�, respectively, allowing for the large uncertainties in determining
the mass of Betelgeuse. Of these Betelgeuse candidates, approximately 75% emerge from
systems following stable mass transfer.

We show the dependence of the fraction of bound systems on the magnitude and direc-
tion of the supernova kick velocity and the pre-supernova orbital elements of the binary. We
establish the requirement for substantial supernova kicks in the disruption of close binaries
and the generation of runaway velocities consistent with that of Betelgeuse. We also briefly
discuss mechanisms other than post-supernova ejections which lead to runaway massive stars
and how these might apply to Betelgeuse-like stars.





Populärvetenskaplig Beskrivning

Mellan hösten 2019 och v̊aren 2020, fängslades b̊ade professionella och amatöra astronomer
av de besynnerliga händelserna av Betelgeuse. Den särskiljande, lysande röda supergiant av
Orions axel, vanligtvis den tionde ljusaste stjärnan p̊a himlen, började dämpa sig drama-
tiskt. Detta fick många att spekulera om dess överhängande förstörelse i en kataklysmisk
supernovaexplosion. Man tror nu att denna tillfälliga minskning av ljusstyrkan orsakades
förmodligen av damm och gas fr̊an stjärnan som fördunklade v̊ar vy, men till och med
världens ledande astrofysiker är osäkra p̊a de exakta fysiska processerna bakom s̊adana
händelser. Man kan naturligtvis undra varför en väl studerad stjärna som Betelgeuse forblir
ett mysterium.

S̊a kallade dvärgstjärnor, som v̊ar sol, lever länge. Det finns många av dem och är därför
väl först̊adda. Samma sak kan dock inte sägas om massiva stjärnor som Betelgeuse. De
lever snabbt och dör unga, deras livslängd mäts i miljoner år istället för miljarder - bara ett
ögonblick p̊a kosmologiska tidsskalor. Att komplicera fr̊agor ytterligare, studier tyder p̊a att
de flesta massiva stjärnor inte bildas isolerat; snarare är de födda i system som inneh̊aller tv̊a
(eller fler) stjärnor. När dess stjärnor utvecklas och p̊averkar varandra, utbyter de material,
som förändra deras struktur och ytterligare utveckling.

Ett möjligt resultat av dessa interaktioner i ett binärt system är utkastet av den min-
dre stjärnan efter att dess partner exploderar som en supernova. Betelgeuse verkar vara
en ensam, flyktig stjärna, rusande genom rymden med stor hastighet, l̊angt borta fr̊an
födelseplatsen. Det är d̊a mycket troligt att den var en g̊ang del av ett binärt system som
senare kastades ut av dess mer massiva partner.

I det här arbetet, simulerar vi en population av binära system som inneh̊aller massiva
stjärnor. Vi utforskar de olika typerna av interaktioner som dessa stjärnor genomg̊ar med
varandra medan de utvecklas. Efter den mer massiva stjärnan exploderar som en super-
nova, analyser vi vilken procentandel av systemen producerar en flyktig stjärna som liknar
Betelgeuse och bestämmer vad vi kan säga, om n̊agot alls, om Betelgeuses evolutionshistoria.
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Chapter 1

Introduction

Red supergiants (RSG) are among the largest known stars in the universe. They evolve
from massive stars, up to about 40 M� (Heuvel 2017), as they exhaust their hydrogen fuel,
evolve off the main sequence, and transition to the fusion of helium in their cores. The
study of RSGs constitutes a rich body of only partially answered questions in astrophysics.
For example, the long list of possible mechanisms to describe the often observed photomet-
ric and spectroscopic variability in RSGs is indicative of the uncertainties in our present
understanding. Similarly, the evolution of RSGs in binaries is an important element in con-
straining expected gravitational wave signals, given the probabilities of RSGs as progenitors
of colliding neutron stars (Levesque 2017). Understanding the RSG phase is critical then to
expanding our knowledge of the physics governing massive star evolution.

α-Orionis, popularly known as Betelgeuse, is one of the closest and most studied red su-
pergiants (Meynet et al. 2013). Despite these apparent advantages, we can say almost noth-
ing about Betelgeuse’s physical properties with absolute certainty, let alone its history and
evolutionary path. Stellar evolution models estimate Betelgeuse’s birth mass to be about
15 M� based on luminosity and temperature measurements, but estimates of its distance
from Earth vary over tens of parsecs (van Loon 2013) making any solid statements impossi-
ble. Its true birth mass has been placed at anywhere between 10 M� and 20 M� (Meynet
et al. 2013; Chatzopoulos et al. 2020).

What we do know is that Betelgeuse is a rapidly rotating RSG, a runaway star, far from
any star forming region and moving through space with a velocity of ∼ 30 km/s (Harper
et al. 2017). Extrapolating Betelgeuse’s trajectory back to its place of origin has proved chal-
lenging, with some suggesting the Orion OB1a association, while others suggest a succession
of dynamical kicks have altered its course (Chatzopoulos et al. (2020) and references therein).

Betelgeuse’s fast rotation rate and a possible late ejection from its birth environment strongly
suggests Betelgeuse was once the companion star of a more massive primary in a binary.
When the primary exploded as a supernova, the kick velocity disrupted the system, ejecting
Betelgeuse as a solitary, runaway star.

We pose the question, ’How odd is Betelgeuse?’. RSGs are rare and usually quite dis-
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CHAPTER 1. INTRODUCTION

tant, making direct comparisons of the known physical properties especially challenging. In
this work, we focus on Betelgeuse as a runaway star. Chapter 2 examines some fundamental
aspects of massive star formation and single star evolution. Particular emphasise is given
to the role of massive stars in the chemical enrichment of the universe and, consequently,
their importance in furthering our understanding of the universe. Chapter 3 explores the
basic orbital dynamics of binary systems from Kepler’s laws. We also look at the role of
mass loss from stellar winds on binary evolution. In chapter 4, we delve deeper into the
physics of mass transfer via the process of Roche lobe overflow. We introduce the principles
of stable and unstable mass transfer, assess the orbital evolution of the binary system during
mass transfer and evaluate the state of the binary on completion of mass transfer. Chapter
5 establishes criteria for determining whether a binary system remains bound or otherwise
after a supernova explosion.

Our ultimate goal is to understand the interactions in binary systems that produce sec-
ondary stars in Betelgeuse’s estimated mass range and determine which fraction of those
systems will be disrupted in the eventual supernova explosion of the primary. Can we say
if Betelgeuse really is especially peculiar or merely a familiar example of a commonplace
subset of massive runaway stars?
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Chapter 2

Massive Star Formation and Evolution

The ultimate fate of massive stars, those with masses greater than eight solar masses, is
most often a violent, cataclysmic supernova explosion. The role of massive stars in the
chemical enrichment of galaxies through the synthesis and dispersal of heavy elements and
the mechanical energy input into the interstellar medium through strong stellar winds and
supernova explosions is crucial to star formation and mixing of the interstellar matter (Tan
et al. 2014; Limongi 2017). Understandably, massive star formation and evolution forms a
key area of fundamental research in astrophysics.

Our current understanding of massive star evolution is comparatively lacking relative to
lower mass stars, such as our Sun. Massive stars are short-lived, burning through their main
sequence phase in as little as 106 years. For stars more massive than 10 M� the lifetime is
roughly proportional to M−2.5 (Heuvel 2017). The resultant relative paucity of samples and
the complex nature of massive star evolution necessarily introduce greater uncertainty in the
stellar evolution models.

2.1 Initial Mass Function

Star formation is a continual process in stellar nurseries across the galaxy and beyond. Due
to their short lifespans, the number of massive stars over time decreases. Their relative
numbers are fewer still owing to the lower probability of massive star formation relative
to lower mass stars (Prialnik 2009). To get a broader understanding of the prevalence of
massive stars, much work has focused on the initial mass function (IMF) which quantifies
the distribution of stellar masses in star-forming environments.

The most widely adopted power-law IMF for stars with mass m ≥ 0.5 M� is

ξ(m)dm ∝ m−2.3 (2.1)

where ξ(m)dm is the number of single stars in the mass interval (m,m+dm) (Kroupa 2001).
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In theory, the IMF should vary with temperature and pressure in different star-forming re-
gions. Higher temperature should produce on average higher stellar masses (Kroupa 2001);
lower radiation pressure in low metallicity star forming environments should also lead to
higher average masses by facilitating easier accretion of the gas (Kroupa, Weidner, et al.
2013). Some variability has been seen in the IMF, but is yet not fully understood nor satis-
factorily explained (McKee and Tan 2002; Geha et al. 2013; Kroupa, Weidner, et al. 2013;
Villaume et al. 2017).

Since the IMF differs from the present day mass function (PDMF), due to dynamical mixing
in populations and different lifespans based on mass, it is an important tool for estimating
the mass exchange between stars and their environment, as well as determining mass dis-
tribution in stellar populations, since mass is the primary factor driving stellar evolution
(Prialnik 2009).

2.2 Single Star Evolution

Massive stars, like all stars, form in giant molecular clouds (GMCs). The fundamental
question of whether massive star formation is simply a scaled-up version of low-mass star
formation or follows from different physical processes is not quite decided (Bonnell and Bate
2005). Theoretical models of natal massive star formation pursue two lines of inquiry, core
accretion and competitive accretion. In the former, gravitational forces and turbulence form
clumps in the molecular gas, which begin to coalesce and collapse to form protostars. Mod-
els suggest the pre-stellar core function reflects the initial mass function well (Tan et al. 2014).

In the case of competitive accretion, gas is drawn chaotically from a wider region of the
clump eventually forming a massive protostar surrounded by low mass protostars. (McKee
and Tan 2002). Alternatively, collisions between protostars in dense stellar clusters may
produce massive stars through mergers. Models by Moeckel and Clarke (2011) suggest the
timescales required for rapid collisional growth would not reproduce the observed IMF at
higher masses; consequently, collisions in star forming regions play a comparatively minor
role in massive star formation (Tan et al. 2014).

Massive stars of spectral types O and B joining the zero-age-main-sequence (ZAMS) oc-
cupy the upper left portion of the theorist’s Hertzsprung-Russell (HR) diagram (log T, logL).
Upon exhaustion of hydrogen in the core, they move off the main sequence, expanding rapidly
across the Hertzsprung gap (horizontally to the right on the HR diagram), before their steep
rise along the Hayashi track on the red supergiant branch (RSGB) to the upper right portion
of the HR-diagram (figure 2.1). Studies of stellar populations in star clusters reveal impor-
tant aspects of stellar evolution, not least the age of the cluster and provide strong evidence
of the shorter lifespans of massive stars. Since stars in such clusters are assumed to have
formed at approximately the same time, this so-called turn-off point, where massive stars
leave the main sequence, permits a robust estimate of the age of the cluster. Comparative
studies between clusters of different ages then facilitates a careful analysis of the stellar evo-
lutionary model and is in fact a cornerstone of massive star evolutionary theory (Karttunen
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et al. 2017).

This standard model replicates observational studies well, where massive stars are seen to
evolve in isolation. The picture is greatly complicated by the presence of a companion star
in binary (or multiple) star systems. Indeed, many examples exist of massive stars whose
observed characteristics cannot be explained by this simple, single star evolutionary theory.
Likewise, progenitors of many supernovae must have experienced some external interactions
during their lifetimes (Parker 2017; Limongi 2017).

The consensus is that the majority of massive stars are not formed in isolation; rather,
they emerge in systems of two (or more) stars, with estimates for massive star binary frac-
tions ranging from greater than 0.5 up to 1 (Sana et al. 2012; Harper et al. 2017). Stars
in close binary systems will exchange mass at various points in their lifetime, the types of
binary interactions producing vastly different outcomes in the subsequent evolution of the
system and its component stars. These interactions are fundamental to the understanding
of massive star evolution and the investigation of such interactions informs the body of this
work.

Figure 2.1: HR (log T , logL) tracks for massive stars with masses 10, 20, 30 M� (Church
2020)
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Chapter 3

Binary Systems

3.1 Orbital Dynamics

We wish to understand what kind of interactions occur in binaries and how these affect the
evolution of the binary components in contrast to single-star evolution. Most binaries from
by fragmentation of protostellar cores or circumstellar discs (Tokovinin and Moe 2020). Ob-
servations of binary systems suggest a thermal eccentricity distribution for orbital periods
P & 103 days, where the population of binary systems have had sufficient time to reach a
Boltzmann energy distribution, and dN/de ≈ 2e. For P . 103, the eccentricity, e ∝ P .
(Kroupa and Burkert 2001). The minimum energy state in a binary system arises when or-
bital and spin angular momenta are aligned (Hut 1980). Furthermore, tidal interactions tend
to circularise the orbits on timescales shorter than the nuclear timescale of main sequence
H burning (Hurley, Tout, and Pols. 2002), in particular in close binaries (Pols 2011). For
simplicity, we will thus focus our attention on binaries with circular orbits and corotating
stars at time t = 0, even for systems with periods P & 103 days.

In this scenario, the nature of the binary interaction is largely determined by the initial
orbital period and mass ratio. For the two-body system in figure 3.1 with masses, m1 and
m2, separated by a distance r = r1 + r2, the bodies orbit their common centre-of-mass, the
barycentre. It follows that r1m1 = r2m2, where r1,2 are the distances from the respective
body to the centre-of-mass (CM). Alternatively, it can be shown that the distance r1 = m2r

M
,

where M is the total mass of the system m1 +m2. From Kepler’s third law the period P is
then given by

P =

(
4π2

GM
a3
)1/2

(3.1)

where the separation (semi-major axis) has been re-labelled with the more conventional a.
For circular orbits the orbital velocity of star 1 is

v1 =
2πr1
P

(3.2)
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Figure 3.1: Binary System with masses m1 > m2. The centre-of-mass (CM) lies closer to
the more massive star such that m1r1 = m2r2, i.e. r1 < r2.

and similarly for the companion star 2. We define the mass ratio q between the two stars as
q = m1/m2, from which it follows

q =
m1

m2

=
r2
r1

=
v2
v1

(3.3)

The angular momentum, J is given by

J = m1r1v1 +m2r2v2 (3.4)

= (m1r
2
1 +m2r

2
2)ω (3.5)

=

(
m1m

2
2

M2
+
m2m

2
1

M2

)
a2ω (3.6)

=
m1m2

M
a2ω (3.7)

=⇒ J =
m1m2

M

√
GMa (3.8)

where ω is the angular velocity, M is the total mass, and we have used ω = 2π/P and
Kepler’s law (equation 3.1). From these apparently simple celestial mechanics, much can be
inferred from the study of binaries, depending on which of the variables are known. Studies
of eclipsing binaries, for example, allow us to determine masses and radii of stars, and have
been crucial to furthering our understanding of processes in both binaries and individual
stars.

3.2 Mass Loss

Mass loss is a feature of all stars but is of particular importance in the evolution of mas-
sive stars, including during the main-sequence phase (Prialnik 2009). Since stellar mass is
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the prime factor in determining an individual star’s evolution, high rates of mass loss can
dramatically alter the fate of massive stars. For some massive stars, these stellar winds
can be so powerful that they strip the star of its entire envelope leaving behind a bare
hydrogen depleted core, so-called Wolf-Rayet stars (Smith 2014; Chiosi and Maeder 1986).
Understanding the role of mass loss in massive stars is also important in establishing the
progenitors of various supernova types. Together with examination of the post-SN circum-
stellar material, the pre-SN mass provides clues to the characteristics of the progenitor (Vink
2017). Determining the ZAMS stellar mass and subsequent pre-SN evolution depends cru-
cially on the amount of mass lost in the star’s life cycle. In interacting binary systems,
this is especially complicated due to the complexities of mass transfer, the subject of the
next section. First, we focus on mass loss from stellar winds before the onset of mass transfer.

In a binary system, the stellar wind carries off specific angular momentum of the mass-
losing star

j1 =
J1
m1

= r21ω =
(m2

M

)2
a2ω =

(m2

M

)2√
GMa

If star 1 loses mass at a rate ṁ1, we have

J̇ = ṁ1j1 = ṁ1

(m2

M

)2√
GMa

=⇒ J̇

J
=
ṁ1

(
m2

M

)2√
GMa

m1m2

M

√
GMa

=
m2

m1

ṁ1

M

=
ṁ1

m1

− 1

2

ṁ1

M
+

1

2

ȧ

a

=⇒ 1

2

ȧ

a
=
ṁ1

M

(
m2

m1

− m1 +m2

m1

+
1

2

)
=⇒ ṁ1

M
= − ȧ

a

=⇒ d

dt
(logM) = − d

dt
(log a)

=⇒ logM + log a = const

=⇒ aM = const

The product of the semi major axis and the total mass of the system is constant. Clearly if
the primary loses mass, the separation a must increase.

In the next section, we discuss mass transfer via Roche lobe overflow (RLOF), but we briefly
illustrate the significant effect mass loss through stellar winds can have on the evolution of
a binary. Figure 3.2 shows the mass loss in a primary with initial mass M1 = 30 M� and
subsequent widening of the orbit prior to filling its Roche lobe (here, the secondary has mass
M2 = 10 M� and the initial separation is 2000 R�). The 30 M� star experiences significant
mass loss from stellar winds. The expansion of the orbit delays the onset of RLOF, which
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Figure 3.2: Significant mass loss from stellar winds in a primary with mass M1 = 30 M�
(red) and subsequent orbital expansion (blue) of binary prior to the onset of mass transfer.
Here, the secondary has mass M2 = 10 M� and the initial separation is 2000 R�

can significantly alter the type of mass transfer. For example, RLOF could commence after
the primary has reached the RSG branch instead of on the Hertzsprung gap. The reduction
in mass may also lead to a reversal in the mass ratio by the time the primary fills its Roche
lobe. In a wide binary, RLOF may not even occur at all due to the expanding orbit.
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Chapter 4

Mass Transfer

There are essentially two mechanisms leading to mass transfer in binaries: if one of the
stars ejects mass in a stellar wind, the companion star may accrete some of this matter; or,
the companion may capture matter from the envelope of the primary through Roche lobe
overflow. Only the most massive stars have stellar winds strong enough to greatly affect
the evolution of the smaller companion (Nelson and Eggleton 2001; Neustroev 2017). We,
therefore, focus our attention on mass transfer via Roche lobe overflow.

4.1 Roche Geometry

Consider a binary system with the origin at the primary. In cartesian coordinates (x, y, z),
we define the x-axis joining the centres of the stars, the y-axis in the direction of orbital
motion of the primary and the z-axis perpendicular to the orbital plane. Approximating the
gravitational field generated by the stars as that of two point masses, the total potential,
the Roche potential ΦR is given by

ΦR = − GM1√
x2 + y2 + z2

− GM2√
(x− a)2 + y2 + z2

− 1

2
Ω2

orb

[
(x− µa)2 + y2

]
(4.1)

where µ = M2/(M1 + M2) and the orbital angular velocity Ωorb = 2π/Porb. It can be
shown that the Roche equipotentials are functions only of the mass ratio, q, their scales
determined by a. Close to the centre of each star, the gravitational potential dominates and
the equipotentials are approximately spherical and concentric. Farther from the stars, tidal
effects produce elongation of the potential surfaces towards the companion star. The 3D
potential surfaces are also flattened by centrifugal forces. Where the equipotentials meet,
the forces between the two stars cancel (figures 4.1 and 4.2). The innermost equipotential
surface which encloses both stars defines the Roche lobe of each star, within which material
is gravitationally bound to the star (Neustroev 2017; Hurley, Tout, and Pols. 2002). If one
star fills its Roche lobe, matter flows through the Lagrangian L1 point and may be captured
by the companion, in a process known as Roche lobe overflow (RLOF) (Eldridge 2017)
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4.1. ROCHE GEOMETRY CHAPTER 4. MASS TRANSFER

Figure 4.1: 3D representation of the Roche
surface.

Figure 4.2: Contour plot of Roche lobes for
mass ratios of 9 and 1 respectively. Credit:
Neustroev, University of Oulu.

4.1.1 Roche Lobe Overflow

The Roche lobe radius, RL, is the equivalent radius of the sphere of the volume V = 4
3
πR3

L

defining the Roche lobe. A fitting formula derived by Eggleton (1983) has proven to be
accurate to within 1% over the complete range of mass ratios (D. A. Leahy and J. C. Leahy
2015) with

RL

a
≈ 0.49q2/3

0.6q2/3 + ln (1 + q1/3)
(4.2)

Hydrostatic equilibrium in the corotating frame requires that the stellar surface coincides
with an equipotential surface (Pols 2011) leading to three possibilities (figure 4.3):

• Detached Binary: both stars fill equipotential surfaces inside their respective Roche
lobe. Their evolution, unaffected by Roche geometry, proceeds effectively as single-star
evolution.

• Semi-detached Binary: one star fills its Roche lobe. Hydrostatic equilibrium is lost
near the L1 point and matter flows through the L1 point.

• Contact Binary: both stars fill their Roche lobe at the L1 point. The stars exchange
both heat and mass.

In general, systems are formed as detached binaries. The expansion of the star(s) and/or
angular momentum loss leads to orbital shrinking which, in close binaries, produces a semi-
detached or contact binary. During the main-sequence, the radius increases by only a small
fraction. For massive stars, rapid expansion across the Hertzsprung gap is followed by He
burning as a red supergiant. Here the radius continues to expand, albeit at a much reduced
rate and scale. (As mentioned, more massive stars, M & 25M�, lose their H-rich envelopes
from strong stellar winds before He ignition, producing Wolf-Rayet stars with smaller radii)
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Figure 4.3: Possible binary configurations including CEE as discussed in the text. Credit:
Dhillon, University of Sheffield.

It is instructive to distinguish three cases of mass transfer:

• Case A: The star fills its Roche lobe on the main sequence.

• Case B: The star fills its Roche lobe after core hydrogen burning is exhausted.

• Case C: The star expands after He exhaustion.

Which case of mass transfer ensues depends on the size of the Roche lobe RL, the separation
a and the mass ratio q. Also of crucial importance is the stability of mass transfer, largely
determined by whether the donor has a radiative or convective envelope (discussed below).
Figure 4.4 shows the change in radius of a 16 M� star from the ZAMS to the end of carbon
burning. Also indicated are the approximate positions where mass transfer of types A, B
or C are observed. The blue dashed line marks the boundary between where the star has
a radiative envelope and a deep convective envelope as it becomes a red supergiant. Figure
4.5 illustrates the importance of the initial separation in determining at which stage of the
primary’s evolution RLOF occurs for given initial masses. The onset of mass transfer occurs
at progressively later stages of the primary’s evolution with increasing initial separation.
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Figure 4.4: Change in radius of a 16 M� star from ZAMS to the end of carbon burning.
Credit: Pols, Utrecht University.

4.2 Orbital Evolution During Mass Transfer

Since the orbital angular momentum is often much greater than the spin angular momentum
of the stars, the total angular momentum, assuming a circular orbit, is approximately

J =
M1M2

M

√
GMa (4.3)

where M is the total mass. In general, the orbital evolution is then determined by differen-
tiating to give

2
J̇

J
=
ȧ

a
+ 2

Ṁ1

M1

+ 2
Ṁ2

M2

− Ṁ1 + Ṁ2

M1 +M2

(4.4)

Conservative Mass Transfer

For conservative mass transfer, total mass and angular momentum are conserved such that
J̇ = 0 and Ṁ2 = −Ṁ1 giving

ȧ

a
= 2

(
M1

M2

− 1

)
Ṁ1

M1

(4.5)
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Figure 4.5: HR track of primary with mass M1 = 20 M� up to RLOF in a binary with
secondary of mass M2 = 10 M�. Top Row: With an initial separation of 20 M�, the
primary fills its Roche lobe on the main sequence (left); With a = 500 R�, RLOF begins
across the Hertzsprung gap (right). Bottom Row: At a = 2000 R�, the primary is beginning
its RSG phase (left); With an initial separation of 10,000 R�, the primary never fills its
Roche lobe and evolves as a single star.

Since Ṁ1 < 0, it follows that if M1 > M2, then ȧ < 0 and the orbit shrinks; if M1 < M2,
then ȧ > 0 and the orbit expands. If the donor transfers an amount of mass ∆M to its
companion, we have

M1M2

M

√
GMai =

(M1 −∆M)(M2 + ∆M)

M

√
GMaf (4.6)

from which

af = ai

(
M1M2

(M1 −∆M)(M2 + ∆M)

)2

(4.7)

for the resultant semi-major axis af after mass transfer, where ai is the initial separation.

Non-Conservative Mass Transfer

This simple formulation is complicated by mass loss and angular momentum loss leading to
non-conservative mass transfer, a more realistic picture. In this case the companion accretes
only a fraction of the matter flowing from the primary. Modelling the several modes of non-
conservative mass transfer is notoriously complex (Soberman, Phinney, and van den Heuvel
1997) and we will assume that stable mass transfer is conservative.

14
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4.2.1 Common Envelope Evolution

Dynamically unstable mass transfer in massive stars leads to common envelope evolution.
The adiabatic response of the mass losing star is unable to prevent it overfilling its Roche
lobe; the mass transfer rate increases and an unstable, runaway loss of mass from the pri-
mary ensues. The smaller companion is unable to accrete the ejected matter and a common
envelope is formed, engulfing both stars.

Following the energy formulation of Tout et al. (1997), the total binding energy of the
envelope is

Ebind,i = −GM1M1,env

λR1

(4.8)

where M1,env is the mass of the primary’s envelope, λ depends on the structure of the donor’s
envelope, and R1 is the radius of the envelope which for simplicity we set equal to ai, the
initial separation. The initial orbital energy of the system at the onset of RLOF is

Eorb,i = −1

2

GM1,cM2

ai
(4.9)

where M1,c is the mass of the primary’s core. As the stars move through the expanding enve-
lope, friction causes them to lose orbital momentum and the two stars spiral in, transferring
orbital energy into the envelope with an efficiency parameter α. If we assume α = 1, then
the amount of energy transferred such that the entire envelope is ejected from the system
can be expressed as

∆E = Eorb,f − Eorb,i = Ebind,i (4.10)

with

Eorb,f = −1

2

GM1,cM2

af
(4.11)

where af is the final separation and M2 remains unchanged (i.e. we assume none of the
ejected matter from the primary is accreted by the companion). The final separation is thus

af = ai

(
M1,cM2

2M1M1,env + λM1,cM2

)
(4.12)

The final separation is smaller than the initial separation resulting in a tight binary or a
stellar merger.

4.3 Stability of Mass Transfer

The stability criteria for the onset of mass transfer are the subject of much study (Hurley,
Tout, and Pols. 2002). They are determined by the response of the donor radius to mass
loss, the change in orbital separation and the response of the Roche lobe radius due to mass
transfer. In practice, we compare the slopes of the mass-radius relation of the stellar radius
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and Roche lobe radius, expressed as the mass-radius exponents (Soberman, Phinney, and
van den Heuvel 1997), respectively

ζ∗ ≡
d lnR∗
d lnM

ζL ≡
d lnRL

d lnM
(4.13)

If ζ∗ ≥ ζL, we have stable mass transfer, otherwise, unstable mass transfer. The picture is
complicated by the readjustment of the star to mass loss on different timescales: the star
attempts to recover hydrostatic equilibrium on its dynamical timescale but thermal adjust-
ment is on the much slower Kelvin-Helmholtz timescale. The initial dynamical response of
the stellar radius to mass loss is (almost) adiabatic with

ζad =

(
d lnR∗
d lnM

)
ad

(4.14)

Dynamical stability of mass transfer is then governed by the condition ζad ≥ ζL. A thorough
treatment of the various regimes can be found in Soberman, Phinney, and van den Heuvel
(1997), Hurley, Tout, and Pols. (2002), and Pols (2011). For our purposes, we restrict our
formulation to the structure of the envelope of the primary at the onset of mass transfer and
the response of the Roche lobe radius to mass loss.

The Roche lobe radius depends mainly on the mass ratio, q. For conservative mass trans-
fer, Soberman, Phinney, and van den Heuvel (1997) established a critical mass ratio as
ζL = 2.13q − 1.67 for q < 10. For stars with deep convective envelopes (RSG in our case),
the star expands to maintain an approximately constant radius, with ζad ≤ 0. Mass transfer
is dynamically unstable unless mass loss due to stellar winds has reduced the mass of the
initially more massive primary to q ≤ 5/6 (Soberman, Phinney, and van den Heuvel 1997;
Neustroev 2017) at the onset of RLOF.

If the star has a radiative envelope (case A or early case B for massive stars), then the
star shrinks rapidly upon mass loss, as ζad � 0. Mass transfer is unstable only if the pri-
mary is much more massive than the companion. We adopt the critical mass ratio from Pols
(2011) where we assume stable, conservative mass transfer for q ≤ 4.

In this thesis, we assume stable mass transfer leads to conservative mass transfer and widen-
ing of the orbit. Additionally, all of the primary’s envelope mass is received by the compan-
ion. Conversely, unstable mass transfer leads to non-conservative mass transfer and common
envelope evolution (CEE) with orbital shrinking or mergers if af < 1 R�. In the case of an
intact binary, we assume the companion’s mass is unchanged in the common envelope (CE)
phase. A summary of the stability criteria used in this paper is given in figure 6.3.

16



Chapter 5

Supernovae

Supernova (SN) explosions in binary systems occur on timescales much shorter than the
orbital period (Postnov and Yungelson 2014) and one can assume that the mass lost is effec-
tively instantaneous. In this approximation, the relative separation and the relative velocity
remain effectively unchanged (Kulkarni 2010). Typically the supernova explosion is asym-
metric and the remnant neutron star (or black hole) receives a kick velocity, vk.

Consider the pre-supernova binary system, with initial masses M1 and M2. The stars move
in a circular orbit with initial separation ai and relative velocity v, with v = |v1 − v2|. The
primary explodes as a supernova leaving behind a neutron star(NS) or black hole(BH) with
mass Mc (Parker 2017).

Supernova without kick In the simple case where we assume there is no supernova kick,
the explosion is symmetric in the primary’s frame but not in centre-of-mass frame, leading
to system recoil, Blaauw–Boersma recoil (Postnov and Yungelson 2014).

The equations of motion for 2 bodies (approximated as point masses) orbiting each other
under the force of gravity is equivalent to a single body problem with mass µ moving in an
external gravitational potential

µ
d2r

dt2
= −GM1M2

a2
(5.1)

with reduced mass µ = (M1M2)/(M1 +M2). The total energy is then

E =
1

2
µv2 −GM1M2

a
(5.2)

From Kepler’s 3rd law, it can be shown that

v2 = G
M1 +M2

a

When star 1 explodes as a supernova, it leaves behind a remnant neutron star of mass
Mc = 1.4 M�. To re-iterate, the assumption of instantaneous mass loss assumes the relative
separation, a, and relative velocity, v, are unchanged immediately after the SN explosion.
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The sum of the kinetic energy and the gravitational binding energy of the post-explosion
binary is then

E ′ =
1

2
µ′v2 −GMcM2

a

where µ′ = McM2

Mc+M2
is the reduced mass of the resulting system. Eliminating v2, we get

E ′ = G
McM2

2a

[
M1 +M2

Mc +M2

− 2

]
The post-SN orbit will be bound only if E ′ is negative. This occurs if and only if the mass
lost in the explosion: ∆M < 1/2(M1 +M2).

Supernova with kick More generally, the supernova explosion is asymmetric and we need
to account for the kick velocity in determining the state of the system post-supernova. For
example, simulations have shown that modelling a 1% asymmetry in the neutrino momen-
tum flux produces a kick velocity of order ∼ 400 km/s (Brandt and Podsiadlowski 1994). In
truth, much is unknown about the precise mechanisms governing asymmetry in supernovae
explosions and is the subject of ongoing research. Our primary aim is to determine whether
a binary system is disrupted following a supernova explosion. We outline an amalgamation
of the work of Tout et al. (1997) and Brandt and Podsiadlowski (1994) in establishing the
relevant criteria.

Consider a coordinate system where the x-axis is the line from M1 to M2, vi is directed
along the y-axis and the z-axis is perpendicular to the orbital plane. In this reference
frame, the initial orbital velocity is vi = (0, vi, 0). The total orbital angular momentum
is Ji = µiai(0, 0,−vi). Since we consider the explosion to be instantaneous the position
of the exploding star is unchanged. However, with a kick velocity vk = (vkx, vky, vkz), the
post-supernova relative velocity becomes vf = (vkx, vi + vky, vkz) and the orbital momen-
tum is now Jf = µfai(0, vkz,−(vi + vky)), where the reduced mass of the system is now
µf = McM2/(Mc + M2). Equating both the total energy and absolute value of the orbital
momentum of the initial system to those of the resulting elliptical system, respectively, gives

1

2
µfv

2
f −

GMcM2

ai
= −GMcM2

2af
(5.3)

and

µfai

√
v2kz + (vi + vky)2 = µf

√
G(Mc +M2)af (1− e2) (5.4)

Solving for the resulting separation af gives

af
ai

=

[
2− χ

(
v2kx + v2kz + (vi + vky)

2

v2i

)]−1
(5.5)

The resulting eccentricity is then

1− e2 = χ
ai
af

(
v2kz + (vi + vky)

2

v2i

)
(5.6)
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where χ is the dimensionless mass relation χ ≡ (M1 + M2)/(Mc + M2) = M/(M − ∆M)
The angle θ defines the change in direction between the orbital angular momentum pre- and
post-supernova with

cos θ =
Ji · Jf

|Ji||Jf |
=

vi + vky√
v2kz + (vi + vky)2

(5.7)

The binary is disrupted if the left hand side of equation 5.3 is non-negative or if the eccen-
tricity as given in equation 5.6 is e ≥ 1. Succinctly, the binary is disrupted if

vf
vi
≥
√

2

χ
(5.8)

For any given pre-supernova system, it is necessary to simulate a range of kick velocities and
directions to calculate the likelihood of the system becoming unbound. This is a crucial step
in this work, as the primary aim is to estimate the percentage of systems that produce a
runaway massive star following a supernova explosion.
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Method

A population of binary star systems containing massive stars is synthesised using Monte
Carlo techniques with the following prescriptions: the masses of the primaries, in the
range 8 − 30 M�, are distributed according to the power-law IMF of Kroupa (2001); the
masses of the secondaries are generated assuming a uniform mass ratio distribution for
q = (M2/M1) ∈ (0, 1]; the distribution of initial binary separation is flat in log a with mini-
mum separation amin = 20 R�, and maximum separation amax = 105 R�; an eccentricity of
e = 0 is assumed in all cases.

The evolution of each binary system from these initial conditions is simulated to determine
at which stage of its evolution the primary fills its Roche lobe, followed by implementation
of a mass transfer routine based on the stability criteria detailed above and summarised in
figure 6.3. It is assumed the primary in the resulting system explodes as a supernova leaving
behind a 1.4 M� neutron star. Each system is tested for a range of supernova kicks, dis-
tributed isotropically with velocities uniformly between 0− 1000 kms−1, to determine what
percentage of them produce a runaway star with a Betelgeuse-like mass.

Population Synthesis

The sample size for the statistical analysis is 10,000 systems. Masses greater than 30 M�
are eliminated from the Monte Carlo generator. The effects of the intense stellar superwinds
from these stars on the binary companion cannot be neglected, adding a level of complexity
beyond the scope of this work. More importantly, these stars will produce black holes, where
this work considers only core-collapse supernovae (CCSNe) leaving a remnant neutron star.
After elimination, four simulations were performed, totalling 8,361, 8,341, 8,330 and 8,322
binary systems, respectively.

A further simulation was conducted with 1,200 samples, delivering 1,094 valid binary sys-
tems, for greater clarity in some of the plots below. Figures 6.1 and 6.2 provide an overview
of the initial binary systems under study. Figure 6.1 shows the initial distribution of pri-
mary masses from run 4 containing 8,322 samples. Although the number of primaries with
M1 = 8 M� is higher here than other runs (purely a statistical aberration resulting from
rounding the generated masses to integer values), the pertinent results from all four simu-
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Figure 6.1: The initial distribution of pri-
mary masses between 8 M� and 30 M� fol-
lowing the power-law index α = 2.3.

Figure 6.2: The initial distribution of 1,094
binary systems, with mass ratio, q =
M2/M1, versus initial separation in log(a).
In the larger samples the (q, log(a)) space is
well-sampled and evenly distributed.

lations differ by less than 2% at each stage of the system evolution. The results reported
below represent the mean value from the four runs.

Binary Evolution

Complete HR tracks for single star evolution at integer values between 8 M� and 30 M�
were processed from the Cambridge Stellar Evolution Code (Church 2020). The main body
of code is a self-penned python class ’HR’ (Appendix A) which takes the initial orbital pa-
rameters, (M1, M2, a) as arguments. From each created instance of a binary system, the
code provides methods for establishing if and when RLOF occurs; how mass transfer pro-
ceeds; the final pre-SN configuration; and the resulting post supernova outcomes for a range
of kick velocities and directions.

Figure 6.3 shows a graphical representation of how each binary is evolved. We first de-
termine if and when the primary fills its Roche lobe. If the Roche lobe is not filled, the
component stars evolve as single stars before the more massive star explodes as a supernova.
If the Roche lobe is filled on the main sequence, we have case A mass transfer. In our simu-
lation, we are considering massive stars and ignoring the response of the smaller companion.
Therefore, we assume case A leads to a contact binary and ultimately a merger. If the Roche
lobe is filled after the primary has developed a massive core, we have case B mass transfer.
Here we have two branches: if the star is still crossing the Hertzsprung gap, we assume it
has a radiative envelope and stable mass transfer ensues if the mass ratio q ≤ 4. Similarly, if
the primary has become a RSG with a convective envelope, we assume stable mass transfer
only if mass loss before RLOF has reduced the mass ratio to q ≤ 5/6. In all other cases,
unstable non-conservative mass loss is assumed.

The code determines the updated configuration after mass transfer is complete (which we
carry out in one step, neglecting the finer details and complexities). If, on the unstable
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Figure 6.3: The different pathways from initial binary configuration to fully evolved system
as explained in the text. The star filling its Roche lobe (or otherwise) is assumed to be the
more massive primary.
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mass transfer channel, the separation is less than 1 R�, we assume a merger. Otherwise, the
configurations are taken as the pre-SN orbital elements.

We assume the primary explodes as a supernova shedding all but the 1.4 M� of the remnant
neutron star mass. We simulate a range of kicks with velocities from 0 to 1,000 km/s and
directions in an isotropic uniform distribution. In total 106 kicks are performed for each
binary system. The code returns the final total energy, Etot for each kick. The system
remains bound if Etot is positive and unbound otherwise. We also determine the minimum
kick velocity required to disrupt the system.

Further data analysis and additional functions are performed in Jupyter notebooks with
extensive use of pandas dataframes, in particular for plotting and analysing subsets of the
data. Again, the key question is what percentage of systems are likely to become unbound,
producing a runaway star? Of those systems, how likely is it we have a runaway star in the
mass range of Betelgeuse? What can we say about the velocities of those runaway stars?
Which evolutionary path best resembles a possible match for Betelgeuse?
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Results & Analysis

7.1 Roche Lobe Overflow

Figure 7.1 shows the relationship between the initial binary configurations (using the smaller
sample of 1,094 systems for clarity) and the state of the binary at the onset of RLOF. We find
38.12% of primaries never fill their Roche lobe and the stars evolve as single, non-interacting
stars (blue in the figure). As expected, these occur at large initial separations.
For initially very close binaries, RLOF commences during the main sequence of the primary
in 3.59% of the systems (red in the figure). The majority of stars (58.29%) fill their Roche
lobe having left the main sequence (green in the figure) forming semi-detached binaries.

We see an overlap in close binaries where systems with very similar initial mass ratios and
separations reach RLOF at different stages in the evolution of the primary. Figure 7.2 demon-
strates how this occurs. We have 3 different binary systems, each with mass ratio q = 3 and
initial separation a = 700 R�. The initial masses are, however different. Eggleton’s formula,
equation 4.2, tells us the Roche lobe radius is a function of the mass ratio only for a given
separation. Therefore, the three primaries in the figure with masses 8, 12, and 18 M� must
have approximately the same radius at the onset of RLOF (in this case ∼ 720 R�). Clearly
the more massive 18 M� will reach this radius at a much earlier stage in its life cycle than
the 8 M� star.
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Figure 7.1: Initial separation log a vs. mass ratio M2/M1 for 1,094 binary systems at the
onset of RLOF. The primary masses, M1, are in the range 8 ≥M� ≥ 30. Detached binaries
(blue) dominate at larger separations. Short-period binaries with stars that fill their Roche
lobe on the main sequence are shown in red. Semi-detached binaries are shown in green.

Figure 7.2: HR diagram for 3 primaries with different mass. The mass ratio in each case is
q = M1/M2 = 3 and the initial separation is a = 700 R�. The evolutionary tracks are shown
up to the onset of RLOF.
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7.2 Mass Transfer

Obviously, in the systems which remain detached, no mass transfer occurs. We also ignore
case A mass transfer. This does, in fact, often lead to stable mass transfer. Indeed, in
systems where q ≈ 1, case A mass transfer can be extremely long-lived and stable on the
nuclear timescale of the donor. Case A is also thought responsible for Algol systems (Pols
2011). The response of the donor plays a highly significant role in the evolution of such
systems. For massive stars, the likelihood of such close companions forming a contact binary
is high, and thought to be a major channel in the formation of stellar mergers (Bonnell and
Bate 2005), and we assume this outcome here.

For the semi-detached systems, we find 33.42% will lead to stable mass transfer and 24.88%
will lead to unstable mass transfer and CEE. Figure 7.3 shows the distribution of the mass
transfer types from their initial conditions. Clearly, unstable mass transfer dominates when
the primary is much more massive than the secondary. When the mass ratio q = M1/M2 is
smaller, stable mass transfer is dominant at smaller separations. As a increases, we see an
increase in unstable mass transfer also at lower mass ratios. This is because RLOF occurs
at a later stage in the primary’s evolution. Early case B is no longer possible and we see a
marked decrease in the proportion of stable mass transfer cases.

In figure 7.4, we see the outcomes of mass transfer. The results are summarised in ta-
ble 7.1. Of those systems undergoing mass transfer, we find 54.00% undergo stable mass
transfer, 25.75% result in a tighter binary after CEE and 20.25% end in a stellar merger.
The percentages of the initial population are also in table 7.1.

Table 7.1: Evolutionary path of binary systems. In RLOF, the Semi-Detached column
includes all non-case A mass transfer channels. Mass transfer outcomes shows the percentages
for the total population (the percentages in brackets are for interacting binaries only, i.e.
excluding wide binaries.)

Roche Lobe Overflow
Main Sequence Semi-Detached Detached
3.59% 58.29% 38.12 %

Mass Transfer Type
Stable Unstable No Mass Trans-

fer
33.42% 24.88% 38.12%

Mass Transfer Outcomes
Stable Common Enve-

lope
Merger

33.42% (54.00%) 15.94% (25.75%) 12.53% (20.25%)
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Figure 7.3: Initial separation log a vs. initial mass ratio (M2/M1) for the same sample
as in figure 7.1. Stable mass transfer (red) occurs at relatively shorter initial separations
and favours secondary masses closer to the primary’s. Unstable mass transfer (yellow) arises
when the primary is much more massive than the secondary or when the primary has evolved
sufficiently to develop a deep convective envelope.

Figure 7.4: Initial separation log a vs initial mass ratio (M2/M1) as in figure 7.3 colour coded
for the outcomes of mass transfer. CEE can lead to tighter binaries (yellow) or a merger
(black). Stable mass transfer leads to a widening of the orbit (red), or a merger (black) for
very close binaries in case A mass transfer.
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Figure 7.5: The change in separation after mass transfer shows two regimes; widening of the
orbit in stable mass transfer (red) and orbital shrinking in unstable mass transfer (green).

Stars which merge after CEE tend to have smaller initial separations and larger mass
ratios. From equation 4.12, we see a smaller secondary mass will give a smaller final sepa-
ration. For larger separations, the primary is also more evolved with a more massive core,
which also contributes to the reduction in orbital separation.

In figure 7.5 we see two clearly distinguishable regimes for stable and unstable mass transfer.
Stable conservative mass transfer leads to a widening of the orbit (red in the figure). In
unstable, non-conservative mass transfer, the orbit always shrinks as discussed above.

28



7.3. SUPERNOVAE CHAPTER 7. RESULTS & ANALYSIS

7.3 Supernovae

Figure 7.6 illustrates the effect of both the kick velocity and direction in determining whether
a particular system remains bound or not. The pre-supernova system has masses M1 = 6 M�
and M2 = 14 M�. 106 kicks were simulated, distributed isotropically with velocities from 0
to 1,000 km/s. In the extremely tight binary at a = 1 R�, 91.44% of systems remain bound.
With an initial separation of a = 5 R�, the percentage of bound systems reduces to 67.96%.
At a = 25 R� ∼ 39% of systems remain bound, while at a = 100 R�, only 18.6% remain
bound. The minimum kick velocity (Vmin) required to disrupt the system always occurs
when the kick, Vk is parallel to the orbital velocity, Vorb and increases with decreasing
separation; in this example, Vmin was calculated to be 473, 214, 95, 49 km/s respectively for
a = 1, 5, 25, 100 R�. In the two lower panels of the figure, the separation is large enough,
that beyond a certain kick velocity, Vmax, all systems become unbound, with Vmax = 869
and 426 km/s for a = 25 and 100 R�, respectively. In the close binaries of the upper two
panels, there is no reasonable kick velocity (i.e. less than 103 km/s) that will disrupt every
system at arbitrary angles. This is true, in particular, when the kick is antiparallel to the
pre-SN orbital velocity. These results assume a uniform distribution of kick velocities; a poor
assumption and, in fact, an oversight which I discuss further below.

Figure 7.6: For a pre-SN system with M1 = 6 M�,M2 = 14 M�, the percentage of systems
which remain bound for a range of supernova kicks depends strongly on the initial separation,
a. The y-axis is the normalised dot product of the orbital velocity and supernova kick
velocity, effectively cos θ, where θ is the angle between the two. The x-axis is the magnitude
of the kick velocity. Upper left panel: The initial separation is 1 R�. 91.44% of the systems
remain bound; Upper right panel: With an initial separation of a = 5 R�, the percentage
of bound systems reduces to 67.96%; Lower left panel: a = 25 R� and ∼ 39% of systems
remain bound; Lower right panel: At a = 100 R�, only 18.6% remain bound.
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Figure 7.7: The ratio of bound systems ver-
sus the pre-supernova separation in all sys-
tems undergoing supernova explosions. The
colourbar indicates ∆M , the mass lost from
the primary during the supernova explosion.

Figure 7.8: The ratio of bound systems
versus the pre-supernova separation in sys-
tems producing Betelgeuse-like stars, colour-
coded by mass transfer type. Wide non-
interacting binaries are in blue. Systems
evolving from stable mass transfer are shown
in red, while those from unstable mass trans-
fer are shown in green.

Figure 7.9: The ratio of bound systems ver-
sus the pre-supernova separation in systems
following stable mass transfer. The colour-
bar indicates ∆M , the mass lost from the
exploding primary.

Figure 7.10: The ratio of bound systems
versus the pre-supernova separation in sys-
tems following unstable mass transfer. The
colourbar indicates ∆M , the mass lost from
the exploding primary.

Figure 7.7 shows the fraction of bound systems versus separation for all systems in the
sample. Figure 7.8 shows the same for systems producing stars with Betelgeuse-like masses,
colour-coded by mass transfer type. The three regimes of unstable, stable and no mass trans-
fer are clearly defined and in agreement with the expectation that tighter binaries following
CEE are more difficult to disrupt, whereas wide binaries are only weakly bound. Table 7.2
shows the mean value for disrupted systems for each of the mass transfer channels.
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Figure 7.11: The minimum kick velocity re-
quired to disrupt a binary system versus the
pre-SN separation. The colour-bar indicates
the value for ∆M .

Figure 7.12: The ratio of bound systems ver-
sus the minimum kick velocity required to dis-
rupt the system. The colour-bar indicates the
value for ∆M .

Figures 7.9 and 7.10 show the fraction of bound systems as a function of the separation
for the stable and unstable mass transfer channels, respectively. The unstable channel shows
a clear correlation between the mass lost in the supernova ∆M and the number of unbound
systems at a given separation. For stable mass transfer, the relationship for ∆M appears
reversed. Systems undergoing stable mass transfer will have wider orbits. For increasing
pre-SN separation, the secondary’s mass is, on average, proportionally higher (as can be
seen in table 7.5) as it has accreted more mass. In addition, the core mass of the primary
before the supernova is invariably small. This is quite apparent if one compares the values
in tables 7.5 and 7.4 which are randomised samples from the Betelgeuse-like populations for
stable and unstable mass transfer, respectively. Typically then, the pre-SN potential energy
will be dominated by the comparative mass of the secondary. What remains true is that, for
a given ∆M , the number of bound systems falls off with the orbital separation.

Figure 7.11 shows the relation between the minimum kick required to disrupt the system
and the orbital separation. Smaller separations require larger kicks. The colour bar in the
figure represents the mass lost from the exploding star, ∆M . For higher values of ∆M ,
no kick is required if the condition ∆M > (1/2)(M1 + M2) is satisfied. In figure 7.12 the
proportion of bound systems is plotted as a function of the minimum kick required to disrupt

Table 7.2: Global sample of post-supernova systems by mass transfer type, including wide
(non-interacting) binaries. The mean and median of unbound systems are given in percent-
ages for a range of 106 kicks up to 1000 km/s for each system over the entire sample.

Mass Transfer Mean Unbound (%) Median Unbound (%)

Stable 86.80 88.50
Unstable 66.04 72.70

Wide 98.72 98.90
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the system. For tightly bound systems, larger minimum kicks are necessary. Again, for large
∆M , systems are unbound more readily.

In the next section, we move from these global statistics to systems producing Betelgeuse-like
stars.

7.4 Final Outcomes

In total we find that 14.03% of the initial binary systems will produce a secondary with a
stellar mass in the range 13 ≤ M/M� ≤ 18, excluding mergers. 12.77% of the total initial
population produce a runaway star of appropriate mass. Of those systems with Betelgeuse-
like candidates, 74.92% arise from the stable mass transfer channel, 6.18% from unstable
mass transfer and 18.90% emerge from detached binary systems.

Noting the uncertainty in Betelgeuse’s current mass and increasing the range of stellar
masses to 11 ≤ M/M� ≤ 20 produces a significant increase to 25.18% of systems with
possible candidates and 22.87% with runaway stars. Of these, 77.92% are found in the sta-
ble mass transfer channel, 5.71% in the unstable mass transfer channel and 16.39% are from
non-interacting binary systems. Figures 7.13 and 7.14, focus on the stable and unstable mass
transfer channels, respectively.

Table 7.3 shows the mean and median values of the percentage of unbound systems in each
of the mass transfer channels. We find that wide binaries will nearly always disrupt after a
supernova explosion with on average > 97% producing a runaway star. Systems following the
stable mass transfer channel tend to also have comparatively wide pre-SN orbital separations
and we find ∼ 90% will be disrupted. Unstable mass transfer leads to tighter binary systems
which are more difficult to disrupt in the supernova. For the chosen range of kicks, we find
84.89% of systems are disrupted. This seems a high number, but reducing the range of kick
velocities to a maximum of 500 km/s, we find a mean value of 34.76% of unbound systems.
Clearly the equal weighting of natal kick velocities across the 0−1000 km/s range emphasises
the import of the kick velocity in disrupting the system. Indeed, the uniform distribution of
kick velocities was an oversight on my part. The distribution of kick velocities has been found
to be well described by a Maxwellian distribution (Hobbs et al. 2005) with mean velocities
between 200−500 km/s (Limongi 2017; Villaume et al. 2017). Our results are certainly then
a substantial overestimation of the number of unbound systems produced in a typical system.

Nevertheless, the results strongly suggest stable mass transfer as the most likely source
of large mass runaway stars. This is in part due to the not insignificant number of ZAMS
intermediate mass stars in such systems which accrete mass from a more massive partner.
These stars will experience rejuvenation and, in effect, become massive main sequence stars.

In our simple model where companions in unstable mass transfer do not accrete matter,
there is then no addition to the intial population of massive secondaries in these systems.
Coupled with the possibility of mergers and tightly bound systems, we expect to see propor-
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tionally fewer runaway stars from these systems.

Figures 7.15 and 7.16 trace the Betelgeuse candidates to their initial conditions from the
stable and unstable channels, respectively. In the unstable channel, originally close binary
systems tend to have large mass ratios and will ultimately merge. Even those secondaries
that survive the CE phase will have comparatively small mass. Our Betelgeuse candidates
from this channel then invariably stem from relatively wide binaries, preferentially with lower
mass ratios. In the stable channel, high mass ratios are absent since mass transfer in such
systems will generally be unstable. The most general conclusion to be drawn from the stable
channel is that the Betelgeuse candidates are found more often at initial separations less
than 300 R� and mass ratios M2/M1 between 0.8 and 1.

The rightmost column in tables 7.4 and 7.5 gives the pre-SN velocity of the secondary
star in systems following unstable and stable mass transfer, respectively. In the former, the
velocities are on average much higher. As discussed, CEE will form tighter binaries with
initially more massive primaries, and consequently more massive cores than those systems
evolving on the stable mass transfer channel. The post-SN binary will be unbound only if
the kinetic energy exceeds the potential energy. The smaller the separation, the larger the
kick required to disrupt the system. Detailed calculations performed by Tauris and Takens
(1998) have established that runaway velocities of companion stars are correlated with the
magnitude and direction of the kick away from the companion. Only in close binaries does
the shell velocity impact on the companion’s runaway velocity.

The mean orbital velocity of Betelgeuse candidates in the unstable channel is found to
be 〈V2〉 = 34.71 km/s. The mean minimum kick velocity is 〈Vmin〉 = 37.67 km/s. Most of
these systems require a reasonable kick velocity to become unbound, and have secondaries
with speeds greater than the observed ∼ 30 km/s of Betelgeuse.

The mean velocity of candidates in the stable channel is 〈V2〉 = 15.55 km/s. The mean
minimum kick velocity is 〈Vmin〉 = 37.30 km/s. The smaller average values of the orbital
speeds of the secondaries necessitates larger kick velocities to match the observed speed of
Betelgeuse, particularly for those with larger separations.

Table 7.3: The mean and median percentage of unbound systems where the secondary is a
Betelgeuse-like star for each mass transfer channel.

Mass Transfer Mean Unbound (%) Median Unbound (%)

Stable 89.80 90.90
Unstable 84.89 83.10

Wide 97.68 97.75
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Figure 7.13: The ratio of bound systems ver-
sus the pre-supernova separation in systems
containing Betelgeuse-like secondaries, fol-
lowing the stable mass transfer channel.

Figure 7.14: The ratio of bound systems ver-
sus the pre-supernova separation in systems
containing Betelgeuse-like secondaries, fol-
lowing the unstable mass transfer channel.

Figure 7.15: The initial binary configuration
for systems containing Betelgeuse-like stars
post-supernova. The colourbar indicates the
change in mass following accretion during
stable mass transfer.

Figure 7.16: The initial binary configura-
tions for systems evolving common envelopes
before producing Betelgeuse-like stars post-
supernova. The colourbar indicates the mass
lost from the primary during mass transfer,
i.e. the primary’s envelope mass.
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7.4.1 Example

We consider two channels producing a runaway star of mass M2 ≈ 16 M�. System 1 has
initial masses M1 = 10 M� and M2 = 9 M� and initial orbital period of 170 days, i.e. the
initial separation is 100 R�. The primary fills its Roche lobe as it crosses the Hertzsprung
gap (figure 7.17). It has developed a massive core but maintains its radiative envelope. Mass
transfer ensues according to early case B mass transfer. Since the mass ratio q = 1.11 ≤ 4,
we have conservative, stable mass transfer. Assuming the mass transfer continues until
the primary is stripped of its envelope, all of which is accreted by the companion, upon
completion of mass transfer, the primary has a core mass of M1,core = 2.03 M�, while the
secondary has become a significantly more massive mains sequence star with M2 = 16.76 M�.
The binary experiences significant widening during mass transfer and the separation is now
a = 675.69 R�. We assume this configuration as the pre-supernova configuration. The pri-
mary explodes as a supernova leaving behind a neutron star of mass MNS = 1.4 M�. The
mass lost to the system is ∆M = M1,core−MNS = 0.63 M�. For an isotropic distribution of
kick directions, ranging in velocity from 0 to 1000 km/s, we find 7.46% of the systems remain
bound and 92.54% become unbound. The minimum kick required to disrupt the system is
29.0 km/s (parallel to the orbital motion) and the maximum kick, beyond which all systems
are unbound, is found to be 273.0 km/s. The most likely outcome of such a system is thus
a neutron star of mass MNS = 1.4 M� and a runaway massive star M2 ∼ 16− 17 M�

System 2 has initial masses M1 = 22 M� and M2 = 16 M�. The initial separation is
a = 2500 R�. In this case the primary fills its Roche lobe at a much more evolved state,
on the red supergiant branch (figure 7.18). Helium core ignition has commenced and the
primary has developed a deep convective core. Mass transfer ensues as case C, dynamically
unstable mass transfer. The system develops a common envelope. If we assume the sec-
ondary does not accrete matter during formation of the envelope, the pre-supernova masses
are then, M1,core = 6.24 M� and M2 = 16 M�. Friction and angular momentum loss causes
the stars to spiral in, resulting in a tighter binary with final separation of a = 218.20 R�.
Again the primary explodes as a supernova leaving behind a neutron star. The mass lost
to the system in this case is ∆M = 4.84 M�. Approximately 14.26% of the systems will
remain bound, with 85.74% unbound. The minimum kick required to unbind the system is
36.0 km/s and no systems remain bound with kicks exceeding 312.0 km/s.
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Figure 7.17: HR diagram for a 10 M� pri-
mary and 9 M� secondary with initial sepa-
ration 100 R�. The primary fills its Roche
lobe crossing the Hertzsprung gap.

Figure 7.18: HR diagram for a 22 M� pri-
mary and 16 M� secondary, with initial sep-
aration 2500 R�. The primary fills its Roche
lobe on the Red Supergiant Branch.
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Table 7.4: Representative sample of systems with secondaries of mass 11 < M2 < 20 following
the non-conservative mass transfer channel. Masses are given in units of M� and distance
in units of R�. The left panel and centre panel give the initial and pre-SN orbital elements
respectively. The right panel contains the proportion of unbound systems for a range of kicks
as described in the text, the minimum kick velocity required to disrupt the system and the
pre-SN orbital velocity of the secondary in km/s.

M1,i M2,i ai M1,SN M2,SN aSN Unbound Vmin V2

12 11.42 1672.34 3.61 11.42 228.54 0.87 34.22 26.85
23 18.86 3380.82 8.67 18.86 1096.66 0.93 14.73 21.75
18 17.61 1915.01 4.71 17.61 188.76 0.83 45.74 31.63
23 14.24 2513.00 6.50 14.24 187.83 0.85 33.04 45.39
13 12.99 1772.46 4.00 12.99 266.04 0.87 33.22 25.93
19 11.07 1712.78 5.07 11.07 105.93 0.82 41.36 53.45
16 12.41 1619.95 4.14 12.41 125.19 0.82 46.25 39.65
21 15.36 2517.11 7.60 15.36 519.87 0.90 19.08 30.32
21 13.69 2597.73 7.61 13.69 487.74 0.91 17.34 32.54
13 12.63 1626.12 4.00 12.63 236.84 0.87 34.54 27.78
13 12.66 877.77 3.07 12.66 74.81 0.76 67.36 39.01
27 16.54 2858.29 7.94 16.54 236.46 0.86 29.54 45.49
18 17.87 2794.07 6.00 17.87 548.83 0.90 24.61 22.85
12 11.61 1255.36 2.69 11.61 100.44 0.80 57.39 30.94
22 18.74 2096.57 6.10 18.74 203.48 0.83 41.64 37.40
21 16.74 1905.33 5.75 16.74 168.09 0.82 43.07 40.76
22 17.75 2315.51 6.10 17.75 213.53 0.84 38.93 37.26
18 11.82 1758.96 4.71 11.82 118.09 0.82 43.17 46.47
22 12.38 2175.90 6.11 12.38 141.72 0.84 34.77 52.03
14 11.67 1630.90 4.37 11.67 214.61 0.87 32.96 32.47
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Table 7.5: Representative sample of systems with secondaries of mass 11 < M2 < 20 following
the conservative mass transfer channel. Masses are given in units of M� and distance in units
of R�. The left panel and middle panel give the initial and pre-SN orbital elements of the
binary, respectively. The right panel gives the proportion of unbound systems for a range
of kicks as described in the text, the minimum kick velocity required to disrupt the system
and the pre-SN velocity (V2) of the secondary in the COM-frame in km/s.

M1,i M2,i ai M1,SN M2,SN aSN Unbound Vmin V2

9 3.84 33.02 1.78 11.06 101.90 0.80 60.83 21.45
8 5.56 81.56 1.46 12.10 516.54 0.91 29.04 7.60
8 5.46 58.49 1.47 11.99 360.98 0.89 34.55 9.19
11 4.35 23.67 2.51 12.61 52.72 0.72 84.35 38.75
11 2.94 140.66 2.36 11.33 201.37 0.86 41.34 19.59
8 6.83 28.95 1.49 13.34 218.00 0.85 46.60 11.42
11 8.89 342.94 2.34 17.28 1927.74 0.94 16.71 5.24
8 7.13 25.68 1.50 13.63 199.69 0.85 49.14 11.89
10 3.25 95.83 2.03 11.02 197.43 0.86 42.54 17.43
12 6.83 540.87 2.70 15.83 1923.33 0.94 15.57 6.23
12 10.46 490.85 2.70 19.45 2696.51 0.95 14.70 4.82
10 9.27 416.48 2.02 17.05 2940.84 0.95 13.73 3.72
9 3.98 226.07 1.74 11.25 762.69 0.92 22.50 7.62
13 10.18 28.52 3.26 19.69 118.17 0.77 68.33 27.29
10 3.44 96.50 2.03 11.20 214.76 0.86 41.12 16.60
10 6.57 28.16 2.09 14.28 133.16 0.81 58.70 19.51
10 7.84 190.54 2.02 15.61 1139.77 0.93 21.10 6.21
9 8.85 150.13 1.74 16.11 1209.83 0.93 21.21 5.16
8 5.22 55.34 1.47 11.75 324.60 0.89 36.10 9.78
12 6.08 424.32 2.70 15.08 1317.67 0.94 18.31 7.69
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Conclusion

Every paper on astrophysics comes with caveats. We are unable to observe systems evolving
over time, but must rely on simulations and comparative studies, testing outcomes with
observations. The results necessarily depend on the underlying assumptions made in each
model. Chiefly, then, the goal is often to further constrain the uncertainties in some hoped-
for standard model. This is particularly true for massive stars, given their short lifespans
and relative paucity. The myriad of interactions in binary systems, where most massive stars
reside, and dense clusters only serves to complicate the picture further.

In this work, we have made some extreme simplifications. We assume all stable mass transfer
is conservative, thereby neglecting the responses of donor and companion stars during mass
transfer, where the mass ratio may be reversed, the companion may fill its Roche lobe, or
some mass or angular momentum may be lost from the system.

In unstable mass transfer, we assume the companion star does not accrete mass and that
energy is not lost from the system - an unlikely scenario.

Wide binaries are very likely to produce runaway stars. However, if we assume a secondary
mass of about 16 M� evolving as a single star, its companion must be a more massive,
short-lived star. To place such a system’s birthplace in Orion OB1a and allow sufficient time
to observe a Betelgeuse-like star so far from ’home’ necessitates some fine-tuning, unless the
binary system itself was ejected soon after formation. This may occur for some systems, but
one could speculate that few wide binaries would remain intact after dynamical ejection (of
course, we would still have a runaway star, but the fingerprints of binary interactions, such
as rapid rotation, would be absent).

Are our results, then, little more than back-of-an-envelope estimates? To first approxi-
mation, they contain the most important underlying physical processes. At every juncture
in the evolution of our model, we can add complexity which will alter subsequent evolution
in various ways. As mentioned, we could/should weigh our supernova kick velocities to re-
flect the observed/inferred mean kick velocities and Maxwellian distribution, which would
significantly reduce the proportion of systems producing massive runaway stars.
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Sana et al. (2012) found that approximately 30% of massive stars in binaries will end in
a merger, significantly higher than our result of ∼ 13%. Again, the simplified energy for-
malism of CEE produces different results than a more complex γ formalism, incorporating
non-conservative mass transfer modes, for example. Additionally, we adopted an extremely
conservative stellar radius of ≤ 1 R� as a condition for a merger. Even for a star stripped
entirely of its envelope, the radius of the remaining core is likely to be significantly larger
for the more massive stars in our sample.

Betelgeuse as a Merger? In this paper, we have looked exclusively at the case of Betel-
geuse as the smaller companion in a massive binary system. Chatzopoulos et al. (2020) have
examined the possibility that Betelgeuse was in fact a 15 − 17 M� primary which merged
with a smaller 1 − 4 M� companion. They propose the binary system was ejected intact
from its birthplace a few million years ago before a merger took place some hundreds of
thousands of years ago when Betelgeuse was crossing the Hertzsprung gap. The primary
goal of their paper is to explain Betelgeuse’s unexpectedly fast rotation rate, which we have
here neglected. They explicitly do not rule out spin up by accretion (with Betelgeuse as the
smaller companion) and subsequent ejection in a supernova explosion.

Of course, there are other channels for producing runaway stars. A solitary star may stray
too close to a massive binary and be slung-shot from its parent cluster. Alternatively, a com-
panion star in a binary may have already experienced interactions with its partner, before
a subsequent interaction with another binary or a wandering massive star may kick the star
from its system.

Fujii and Portegies Zwart (2011) report ∼ 20% of massive OB stars are observed with
significant peculiar velocities with Gvaramadze and Gualandris (2011) reporting up to 25%
of runaways among spectral-type O stars. Whether the main mechanism for such ejections
from the parent cluster is by dynamical slingshot or through binary disruption during a
supernova event is not easily discernible, since the observed runaway stars are often far
from their birth place. Both of the aforementioned papers suggest a significant proportion
of massive stars are dynamically ejected early in the evolution of young star clusters and
this mechanism is chiefly responsible for runaways with higher velocities (above 30 km/s).
Further production of massive runaways in supernova explosions occurs later and Fujii and
Portegies Zwart (2011) model hardening of massive binaries within the cluster which may,
themselves, be subsequently ejected from the birth environment. Either way, they propose
the relative fraction of runaway stars is inversely proportional to the total mass of the cluster.
A truer representation of the processes producing a massive runaway like Betelgeuse clearly
requires incorporation of a broader field of investigation than simple binary interactions for
an effective comparative study.

Adding such complexity is beyond the scope of this work. Our conclusion that the most
likely channel for producing a massive runaway star in binaries is by stable mass transfer is
at least plausible. It broadens the scope for ZAMS intermediate mass stars to subsequently
evolve as massive main sequence stars before its companion explodes as a supernova. It is
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also less likely to produce mergers and, perhaps most importantly, it produces wider, more
loosely bound pre-SN systems with stars of the appropriate mass. That this occurs in up
to 25% of systems places such stars in the category of rare, but certainly not unusual. It is
safe to assume that, although we cannot say for certain how Betelgeuse itself has evolved,
the production of massive runaway stars in binary systems is not an atypical phenomenon.
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Appendix A

The aforementioned self-penned Python code, HR.py, as well as the additional snippets for
supernovae simulations and data analysis can be accessed at https://vsredshift.github.
io/HR/.
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