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Abstract

This project is about focusing a Gaussian laser beam that has a spatial phase profile applied
by a spatial light modulator. The goal is to be able to control the shape, position and phase
of the peak at the focus and to split up the peak at the focus into several peaks. Controlling
the profile of the beam at the focus has interesting applications for opto-optical modulation.
A code was written in Matlab that simulates the focusing of a Gaussian beam. Within the
code a phase profile can be applied to the Gaussian beam profile. The phase profiles that
are tested are linear profiles and curved profiles. A function is written that combines phase
profiles by alternating between pixels. This splits up the peak the focus into several peaks.
It was found that by combining linear phases through alternating between pixels the peaks
at the focus can be split up into several peaks. However, when doing so, a number of extra
peaks appear at the focus. The origin of the extra peaks is not explained in this thesis,
but their behaviour and consequences are studied. It was also found that the peaks can be
controlled in time by applying a flat phase profile, and that the shape of the peak at the
focus can be adjusted by applying a curved phase profile.



Abbreviations

DFT Direct Fourier Transformation
FFT Fast Fourier Transformation
IR Infrared
OOM Opto Optical modulation
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1 Introduction

Ultrashort pulses of electromagnetic radiation in the extreme ultraviolet range (XUV) have
extremely interesting applications. Since the pulses are in the attosecond range, they can
be used to study ultra fast processes, such as the behaviour of electrons within an atom.
Another interesting application of these pulses is quantum control. Due to the high photon
energy they can be used for the control of short lived highly excited states [1]. In order to
use XUV pulses, it is desirable to have a close control of the pulses. Because of their high
photon energy, XUV pulses are absorbed by most materials. Therefore, regular devices to
manipulate light are not applicable to XUV pulses. Opto-Optical Modulation (OOM) is a
method to control XUV pulses. The XUV pulses are directed into a gas and get absorbed.
Shortly after the XUV pulse, a control pulse follows at a non-resonant wavelength, which
is in the infrared spectrum (IR). As the IR pulse passes through the gas it will temporarily
shift the energy levels in the excited atoms, which will result in a phase shift in the XUV
pulse that will be emitted when the gas de-excites. This allows us to control XUV pulses by
controlling the shape of an IR pulse. Since IR pulses have a low photon energy, they are easy
to control by conventional optical methods.

In order to get the desired shape of the XUV pulse, the IR pulse has to be shaped cor-
rectly. The IR pulse is shaped by a Spatial Light Modulator (SLM) that has 792 x 600
pixels. Each pixel can add a phase to a fraction of the beam. Every pixel can be controlled
individually, which allows us to apply a 2 dimensional phase profile to the spatial profile of
the beam. The profile of the IR beam is approximated as a Gaussian shape. After the phase
profile is applied, the beam is focused into the gas. This focusing process is a 2 dimensional
Fourier transformation. In order to create the desired profile at the focus, the correct phase
has to be applied.

Figure 1 shows a possible setup that can be used for this. The gas cell is used to create
the XUV pulses through high order harmonic generation and the iris is used to filter out the
IR.

Figure 1: Possible setup
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The aim of this project is to write a code that simulates this process. The input of the code
is the phase profile, and the output is the two dimensional intensity profile at the focus.
The code will first apply the phase shift to a Gaussian profile, and then focus this beam by
applying a Fourier transformation. The code allows control over every pixel of the SLM, and
can combine several phase profiles.

When there is no SLM and there is no phase shift applied, the spatial profile of the con-
trol pulse is approximately a single Gaussian peak. When this profile is used to control the
XUV light, the part of the profile where the Gaussian shape is approximately a linear increas-
ing line is used to to steer the XUV pulse. This will steer the pulse into a different direction.
Approximating a Gaussian function with a linear increasing line is a rough approximation.
With the code, different phase profiles can be used to change the shape of the control pulse,
and get a shape that is closer to the desired shape. This will increase the control over the
XUV pulses.

Besides controlling the shape of the peak, the SLM can also be used to control the posi-
tion of the peak, or split the peak up into several peaks at the focus. When there are two
peaks at the focus, one of the peaks can be delayed such that the peaks are out of phase. An
extremely precise interferometer can be built when two peaks are travelling together while
the phase difference between the two peaks can be controlled.

The goal of the project is to demonstrate the control over the pulses when only their phase
is accessible. One goal is to split up the peak at the focus into several peaks and delay one of
the peaks. To do this, first the pulses will be steered around using linear phase profiles. Then
these linear phase profiles will be combined to split up the peak and create several peaks at
the focus. After that a uniform phase profile is added to one of the peaks which will delay
the peak. Another goal is to control the shape of the pulses by using curved phase profiles.
The main focus of the project will be to create several peaks at the focus.

A limitation of this setup is that only the phase is accessible when shaping the IR pulse.
The code will allow us to investigate what is possible when only the phase is accessible.
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2 Theory

2.1 Generation of XUV pulses using High order Harmonic Gen-
eration (HHG)

The XUV pulses are created through a method called High order Harmonic Generation,
which is based upon a semi-classical model. [2, 3] This technique uses a gas that is exposed
to an alternating electric field. The strength of the electric field is similar to the binding
energy of the nucleus and the electron in the gas. The alternating electric field is called the
driving field, and influences the shape of the potential well of the atom. Due the changed
shape of the potential well, the electron can tunnel through the potential barrier on certain
occasions. After the electron has left the well, it will accelerate away from well because of
the electric field. The shape of the electric field will change and the electron might accel-
erate back towards the well until it recombines with the nucleus. During the excursion the
electron has gained kinetic energy during the acceleration. In this case the electron will the
de-excite and emit a photon with energy Ep = Ip + Ekin, where Ep is the photon energy, Ip
the ionization energy and Ekin the kinetic energy gained during the acceleration. An energy
diagram showing this process is added in figure 22 in appendix A.1.1. [4, 5, 6, 7]

The frequency of the emitted radiation depends on how much energy the electron has when
it recombines with the nucleus, which depends on the trajectory of the electron outside of
the atom. This can be calculated using a classical approximation of the trajectory of the
atom after it tunnels through the barrier. The acceleration of the electron after tunneling
through the barrier is given by: [8]

ẍ = −eE0

me

sin (ω0t) (1)

Here E0 is the electric field strength, ω0 is the angular frequency of the IR laser pulse, e is
the unit charge and me is the electron mass. By integrating it is found that the velocity is
given by:

ẋ = − eE0

meω0

[cos (ω0t)− cos (ω0ti)] (2)

Here ti is the time of tunnel-ionization. If we now let tr be the return time, or the time of
recombination, we can find the kinetic energy in the following way.

Ek =
1

2
meẋ

2 =
e2E2

0

m2
eω

2
0

[cos (ω0tr)− cos (ω0ti)]
2 = Up[cos (ω0tr)− cos (ω0ti)]

2 (3)

Here Up is the pondermotive energy [8], which represents the kinetic energy acquired by
a free particle in an electric field. It can be shown that the maximum amount of energy that
the electron can obtain during it’s excursion is approximately 3.17 Up. The value of Up can
be rewritten using the intensity I which is related to the amplitude by I = cε0E

2
0 , and the

wavelength λ which is related to the angular frequency through ω = 2πc/λ. This results in
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the following expression for the pondermotive energy:

Up =
e2λ2I

8π2meε0c3
(4)

In order to find the total energy gained by the electron, the return time has to be determined.
This is done by calculating the trajectory through integrating equation 2, and finding the
time at which the displacements reaches zero again. Figure 23a) displays the trajectory that
the electron follows dependent on the time at which the electron leaves the well (ti). If the
electron leaves while the potential is still increasing, the electron will gain too much energy
and will not return to the potential well. These trajectories are marked in green. The blue
trajectories are the electrons that recombine with the atom. The energy that the electrons
gained can be calculated using equation 3 as a function of the travel time (T) which is the
difference between the time of ionization (ti) and the time of recombination (tr).

Figure 23b) in appendix A.1.2 shows that an XUV pulse is not monochromatic, but contains
a continuous spectrum of energies. When multiple pulses travel with short time intervals
between them this will lead to interference, which will give discrete energies in the spectrum
of the XUV light.

2.2 Opto-optical modulation

Opto-Optical modulation is a method that controls the phase of XUV pulses using a sec-
ond control pulse, which is an IR pulse. The pulses are both directed into a gas of noble
atoms. The first pulse is the XUV pulse. When the XUV pulse interacts with the gas, it
gets completely absorbed and the gas ends up in a superposition of an excited state and the
ground state. Without any external factors, the gas would de-excite, and the pulse would get
emitted. However, the control pulse is focused into the gas right after the XUV pulse when
the atoms are still in their excited state. The IR has a much lower energy than the excitation
energy of the atoms, and is not resonant with the gas, meaning that absorption of the IR is
negligible. The dominant effect of the IR on the atoms will be the so called AC-stark effect. [9]

The AC-stark effect describes the interaction between electromagnetic radiation and atoms
that is also referred to as the light shift. [10] When the electromagnetic radiation hits the
atoms, it will shift the energy levels in the atom due to interaction between the dipole mo-
ment and the non-resonant field. [1] The magnitude of the shift of the energy states can be
calculated using equation 5 below:

δω =
Up
~

(5)

Equation 5 shows us that δω is proportional to Up which implies that the shift of the energy
states is proportional to the intensity of the electromagnetic radiation. This means that when
an IR pulse is sent into a gas, the shift in the energy level will be proportional to the profile
of the IR pulse.

The shift in the energy levels means that the electron will oscillate at a higher frequency
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when it is in a higher energy state. Since the control pulse is short it will result in a short
change in frequency, which will cause the phase of the electron to change. When the electron
de-excites, the emitted XUV light will have a different phase compared to the case of an atom
that remained undisturbed. The phase shift can be calculated by integrating the energy shift
over time, as shown in equation 6 below.

∆Φ =

∫
δω(t)dt (6)

The magnitude of the phase shift is approximately proportional to the intensity of the IR
pulse, meaning that the intensity profile of the IR at the focus determines how the XUV
pulse will be shaped. Therefore, it is important that the shape of the IR pulse can be closely
controlled.

Shaping the infrared light is done with a Spatial Light Modulator (SLM). The SLM can
add a phase to the light, without influencing the intensity or the polarization. This is done
using liquid cells. The SLM can be controlled pixel by pixel, allowing a 2 dimensional phase
profile to be added to the spatial profile of the beam. After the SLM, the beam is focused
into the gas. This focusing process is a 2 dimensional Fourier transformation. [11]

When there is no phase shift applied, the profile of the IR pulse is approximately a Gaussian
shape. The sides of a Gaussian profile can be approximated by a linear function. This linear
function can then be used to steer the XUV pulse by adding or subtracting phase to the
wavefront, as shown in figure 2 below.

Figure 2: Changing the phase of the excited atoms using a Gaussian shaped control pulse

2.3 Numerical two dimensional Fourier transformation

The code has to be able to numerically perform a 2 dimensional Fourier transformation of
the wave profile. A Fourier transformation transforms a function from the spatial to the
frequency domain. The spatial domain is represented by x and the frequency domain is
represented by ν. The analytical form of the one dimensional Fourier transformation is given
in equation 7 below. Here F (ν) represents the Fourier Transformation of the original function
f(x).

F (ν) =

∫ ∞
−∞

f(x)e−i2πxνdx (7)
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The general way to execute a Fourier transformation numerically is by using a Direct Fourier
Transformation (DFT). The definition of the one dimensional DFT is given in equation 8.
[12] It is similar to the definition of the analytical Fourier transformation, but instead of
having a function as input, the input is a list with N discrete values.

X[k] =
N−1∑
n=0

x[n] · e−i
2π
N
kn (8)

Here X is the output list containing frequencies, which has indexes k and also has length
N . The input list x describes the wavefront and can contain either real or complex numbers.
The output list X contains complex numbers. The amplitude of the Fourier transformation
is the absolute value of each value in X. An interesting property of the DFT is that it is a
periodic over a period N, which is proven below.

X[k +N ] =
N−1∑
n=0

x[n] · e−i
k
N
2πn · e−i

N
N
2πn =

N−1∑
n=0

x[n] · e−i
k
N
2πn = X[k]

Due to the periodicity of the Fourier transformation, the frequencies in X between k = N/2
to k = N are identical to the samples between k = −N/2 to k = 0. Therefore, it is possible
to shift the values between k = N/2 to k = N to the beginning of the list. This operation is
called a Fourier shift.

For each value in X, the function runs through x and sums the value of the the exponent at
each point. This means that for a list with N values, the complexity of the computation is
O(N2). This becomes problematic when doing a Fourier transformation at a high resolution,
since the code becomes very slow. A more practical approach is the Fast Fourier Transfor-
mation (FFT), which uses an optimization algorithm. This optimization is based upon the
periodicity of the Fourier transformation. Because of this periodicity, the calculations for
the values between k = N/2 to k = N are redundant as these have already been done for
the values between k = 0 to k = N/2. The FFT algorithm gives the same solution as the
DFT, but it has a much shorter computation time. The FFT algorithm is fastest when N
is a power of 2. In this case, the computation complexity is O(N logN). [13] However, the
FFT algorithm is still much faster than the DFT algorithm when N is not a power of 2.

In order to apply a Fourier transformation to a wave profile, it has to be done in two dimen-
sions. The definition of the DFT in two dimensions is given in equation 9 below.

X[k, l] =
N−1∑
n=0

M−1∑
m=0

x[n,m] · e−i2π(
kn
N

+ml
M

) (9)

The DFT in two dimensions has the same properties as the one dimensional DFT. The
dimensions of x and X are both M x N. The optimization algorithm for the one dimensional
DFT can also be applied to the two dimensional DFT, meaning that this calculation can also
be done for high resolutions.
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3 Method
3.1 Writing the simulation code
The main purpose of the simulation code is to apply a two dimensional Fourier transforma-
tion to a spatial profile. Both Matlab and Python have built in libraries containing functions
that can apply the FFT algorithm, but in order to really understand how a numerical two
dimensional Fourier transformation works, a code was written from scratch that performs
the DFT in two dimensions. First the DFT in one dimension was written and some tests
were done to see if it worked correctly. The code also contains a function for an inverse
Fourier transformation, which was helpful for testing, as the inverse Fourier transformation
should be the same as the original function. The test showed that in order to get the right
shape of the curve, the Fourier shift had to be performed. In one dimension the DFT would
run within a reasonable amount of time for a list of 1000 points. As this is a high enough
resolution, there was no need investigate in using the FFT algorithm in one dimension. The
code was written in Python, and can be found in appendix H.1.

The code was expanded to two dimensions. The inverse Fourier transformation and Fourier
shift were also expanded to two dimensions. This code can be found in appendix H.2. When
testing with the two dimensional code, it would take about ten minutes to run the code using
a profile with the dimensions of 30 x 30 pixels. This is not enough since the SLM has a size
of 600 x 792 pixels. It became clear that the DFT algorithm was too slow, and that the FFT
algorithm was needed. This optimization algorithm is quite complicated, and the focus of
this project is not to understand optimization processes, so the built in libraries were used
to perform the two dimensional FFT. Despite the fact that the FFT is fastest when using
a number that is a power of 2 for the size of the matrix, it still runs within a reasonable
amount of time when using a matrix with the size 600 x 792.

3.2 Simulation code
The code is written in Matlab and can be found in appendix B. The goal of the code is
to simulate how the infrared pulse is shaped. The beam profile that is used is a Gaussian
profile. The parameters of this profile can be adjusted. The input of the code is the phase
profile. The code contains a function called combphases that can combine different phase
profiles. This function contains a few default phase profiles. The output of the code is the
beam profile at the focus.

3.2.1 Creating the beam profile

The first part of the code sets the amount of pixels, nX and mY, and the values between
which the axis range, called aX, aY, bX and bY. The obvious choice is to set nX to 600
and mY to 792, as these are the dimensions of the SLM. The values of aX, bX, aY and bY
are set to -10 and 10. These are dimensionless values that are used to create the Gaussian
profile, but have no physical meaning. To create the Guassian profile, the parameters of
the Gaussian function are set. The equation for a 2 dimensional Gaussian profile is given in
equation 10 below.

A · exp

(
− π · (x− x0)2 + (y − y0)2

2σ2

)
(10)
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Here A is the amplitude of the peak, x0 and y0 are the distance to the center in x and y
direction respectively, and σ is the peak width. The values of x0 and y0 are set to 0 and
A and σ are set to 1. Two lists are created with the linspace command that represent
the horizontal and vertical axis called x and y. Through element-wise operators a matrix is
created with dimensions 792 x 600 that applies a the Gaussian function to these axis. This
matrix represents a 2 dimensional Gaussian profile and is called input_profile.

3.2.2 Creating the phase profile

The phase profile that will be added to the Guassian profile is created next. The phase
profile is a Matrix of dimensions nX by mY called phase_profile. Some examples of phase
profiles that are of interest for this project are displayed in figure 3. Figure 3a) shows a linear
phase. Figure 3b) and c) show a second degree and third degree cylindrical paraboloid and
figure 3 d) shows a spherical paraboloid. The main interest of this project is to study the
combination of several linear phases. By combining linear phases in different direction and
with different gradients, the peak at the focus can be split up into several peaks. A function
called combphases has been created that can combine these linear phases.

a) linear phase b) second degree
cylindrical paraboloid

c) third degree
cylindrical paraboloid

d) Spherical paraboloid

Figure 3: Examples of Phase profiles

3.2.3 combphases function

To combine several phase profiles, a function called combphases has been created, which
is shown in appendix D. This function can combine several phase profiles by alternating
between pixels. It can combine up to 16 phase profiles. These phase profiles are defined
within the function. Initially, sixteen matrices are created filled with zeros called M1 to M16.
The phase profiles that are to be combined can then be put into the first few matrices, de-
pending on how many phase profiles will be combined. For example, if four phase profiles
are combined, these profiles are defined in M1 to M4, and M5 to M16 remain zero matrices.
Some default phase profiles are created in the beginning of the code, shown in appendix E.1.
These default phase profiles can be used to create the desired phase profiles. These profiles
can then be assigned to the matrices M1 to M16, and the code will then combine these phase
profiles by alternating between pixels.

The default phase profiles are four linear phases with height H that point in different di-
rections, and three curved profiles that have different shapes. The variable H is equivalent
to the phase added by the SLM, but is the not normalized value. This variable is used in
the figures to make the shape of the phase profile better visible, since the shape of the phase
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profile is not obvious when subtracting the largest multiple of 2π from each value. The linear
phases are created using the commands linspace and repmat. linspace creates a list of
linearly increasing numbers ranging from 0 to H, and repmat repeats this list such that a
matrix of the size nX x mY is created. These linear phases are called Left, Right, Up and
Down. The curved profiles that are created have the shape of a second degree and third
degree cylindrical paraboloid and a spherical paraboloid. The phase profile of the second
degree and third degree paraboloid are created by making a list of linearly increasing num-
bers ranging from -H to H. Every element in the list is squared or tripled and then the list is
repeated to become a matrix using the repmat command. The resulting matrices are called
Second_Degree_Cylindrical_Paraboloid and Third_Degree_Cylindrical_Paraboloid.
The spherical paraboloid is created using a double for loop that run through all x and y
values. This matrix is called Spherical_Paraboloid Another phase called Center contains
a matrix with only zeros. How these profiles are created in the code can be found in appendix
E.1. By combining these phases all different kinds of patterns can be created. For example,
by adding Left to Up, the phase points to the upper right corner.

The input values of this function are nX and mY, which represent the dimensions of the
matrix. The number of linear phases that will be combined is determined by numphases.
This number has to be between 0 and 16. The other input variables of the function are
shape, boxsize, H, Phase and theta. These variables will be explained below.

The last three input variables determine the properties of the individual phase profiles that
will be combined. The value of H, which stands for height, determines the gradient of the
default phase profiles. The variable theta can be used to rotate the phases. For example
in the following way: sin(theta) * Left + cos(theta) * Up. By changing the value of
theta, the linear phase will rotate. This is useful when making the animations, or when
creating a circular pattern for the peaks at the focus. The variable Phase is used to add a
plane phase profile to one of the phase profiles. By doing so, a peak at the focus is delayed
in time.

The input variable boxsize determines how big the set of pixels is between which the phase
profiles alternate. The variable shape determines through which pattern the matrices are
combined. The phase profiles can be combined through horizontal, vertical or diagonal lines.
The input value for shape to do this are 'hor', 'ver' and 'dia', respectively. This can be
applied to any number of linear phases. When the number of phases is a multiple of two,
three or four, the phases can be combined in squares. Figure 26d) portrays hows this is done.
The input value for shape for this is 'sq2', 'sq3' and 'sq4'. The last number determines
the vertical dimension of the square. When combining four linear phases, the square has
to be dimension 2X2, do the input value 'sq2' has to be used. When combining six linear
phases, they can be combined through either a 3x2 square or a 2x3 square. To get a 3x2
square, the input value 'sq3' has to be used, and to get a 2x3 square, the input value 'sq2'

has to be used.

Figure 4 shows how the phase profiles are combined. Each color represents a different phase
profile. In this example, the number of phase profiles is four, but in principle it can be done
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for any number. The function supports a maximum of 16 phase profiles. Figure 26a) shows
the horizontal shape, figure 26b) shows the vertical shape, 26c) shows the diagonal shape and
26d) shows the square shape. In this case, the input value for the square shape is 'sq2'.

a) Horizontal b) Vertical c) Diagonal d) Square
Figure 4: Different patterns through which four phase profiles can be combined. Every box repre-
sents a pixel on the SLM. The different colours represent different phase profiles.

After the Matrix with the phase profile has been created, the largest multiple of 2π is
subtracted for each value in the matrix. This is because the phase is a periodic value,
and the SLM can only add a phase between 0 and 2π. This is done by using the fix

function which is built in by matlab. This function removes all the decimals of the in-
put number and returns the decimal number rounded down to an integer. Subtracting
2*pi * fix(phase_profile/2*pi) from phase_profile then subtracts the largest mul-
tiple of 2π from each element in the matrix. Figure 24 in appendix A.2.1 shows what a linear
phase looks like after subtracting the largest multiple of 2π from each value. In this figure
the value of H is 30.

Some test were run to confirm whether the profile at the focus was the same for the original
phases profile and the profile after the largest multiple of 2π was subtracted.

3.2.4 Add profiles and execute Fourier transform

Now the phase is added to the list and the Fourier transformation is executed. In order to
add phase to a Gaussian profile, equation 10 is expanded to equation 11 below.

A · exp

(
− π (x− x0)2 + (y − y0)2

2σ2
+ iϕ

)
(11)

Here, ϕ is the phase. The matrix phase_profile is added to input_profile by element
wise multiplication, where each element of input_profile is multiplied by exp (iϕ) for ϕ in
phase_profile. This matrix is called input

In order to execute the Fourier transformation, the FFT algorithm is applied in two dimen-
sions. This is done by using the fft2 command, which is built in by Matlab. This command
takes in a matrix and returns a Fourier shifted matrix of the same size. The fft2 command
is applied to both input and input_profile. The results are called focus_profile and
focus_profile_nophase. Both lists are made to compare what the focus looks like with
and without the phase. This gives a better insight to what the exact effect is of the phase
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shift. The inverse Fourier transformation is then applied to focus_profile by using the
ifft2 command. This is to check if we get the same profile back. This matrix is called
inverse_focus_profile_plot.

3.2.5 Plotting the profiles

The last part of the code plots the matrices. In order to plot the profiles at the focus,
the amplitude of the complex number is needed and the Fourier shift has to be applied.
The absolute value is taken with the abs command. For a complex number, this com-
mand adds the real part squared and the imaginary part squared, and takes the square
root. The Fourier shift is then applied by a self written function called fliplist2D, which
can be found in appendix F. This function divides the matrix in four evenly sized parts,
and then exchanges the top left and lower right part with each other, and does the same
for the top right and lower left part. In order to calculate the relative intensity, the maxi-
mum value of the profile at the focus with no phase shift is calculated. This value is called
max_nophase. Every value in focus_profile is divided by max_nophase to plot the rela-
tive intensity. The matrices obtained after these operations are called focus_profile_plot,
focus_profile_nophase_plot and inverse_focus_profile_plot.

Eventually the code plots 5 figures. Table The plots are made by using the surf command,
which plots the matrix as a surface in 3 dimensions. By using the command view([ 1 0 0]),
the angle is changed to look at the surface from directly above. This can be useful when an-
alyzing the profiles. The colorbar command is used to show the intensities that correspond
to the colours.

3.3 Testing phase profiles

The default input intensity for testing the different phase profiles has a Gaussian shape, and
is oriented at the center. This profile is plotted in figure 5a). The value of σ is 0.5, and the
amplitude is 1.
In order to combine the phases, they have to be defined in the function combphases. This
is done by inserting them in line 20 in the code shown in appendix D. Appendix E shows
the codes used to define these phases. Appendix E.1 shows the default phase profiles, and
different combinations of these default phases are shown in the appendices below this. The
default value of H is 300, the default value for Boxsize is 1 and for theta and Phase the
default value is 0. For nX and mY the default values are the dimensions of the SLM, which
are 600 by 792.
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4 Results
This section shows the results that were obtained using the code. The intensity at the focus
is plotted relative to the maximum intensity of the peak at the focus when no phase shift is
applied. When the default input intensity profile is used, the peak at the focus has a height
of 592 expressed in units of the input intensity.

When several subfigures are shown with one colorbar in the figure, this colorbar applies
to all the subfigures. In this case, the colorbar will be plotted either on the right of all figures
or below all figures. The units on the lower axis of the input intensity are pixels, the profile
at the focus is expressed in arbitrary units that are in the inverse length Fourier plane. The
size of these units depends on the setup.

4.1 Focusing the beam without a phase profile applied
To confirm that the code gives correct results the code was run with no phase added. By
doing an inverse Fourier transformation afterwards it was checked if the same profile as the
input profile was reconstructed. Figure 5a) below shows a Gaussian input profile with no
phase applied. Figure 5b) shows the Fourier transform and figure 5c) shows the inverse
Fourier transform. Since 5a) and 5c) are identical, the code gives correct results.

a) Input intensity b) Profile at focus c) inverse Fourier transform of profile at focus
Figure 5: Testing whether the code gives correct result with simple Gaussian profile

4.1.1 Changing input intensity profile

By changing the size of the input intensity profile, the size of the profile at the focus changes.
Figure 6 shows different sizes of input intensities and the corresponding profile at the focus.
The size of the input intensity is changed by changing the value of sigma in the code. The
figures on top show the input intensity profile and the figures below show the profile at the
focus for this input intensity. The dotted white lines represent where intensity has decreases
to 10% of the peak intensities. These lines visualise how the peak size changes. The value of
σ ranges from 0.3 to 2. As the value of sigma increases, the circumference of the peak in the
input intensity increases and the circumference of the peak in at the focus decreases. When
σ is equal to 0.5, the circumferences of the peak in the input intensity profile and the peak
at the focus are approximately equal.
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a) σ = 0.3 b) σ = 0.5 c) σ = 1 d) σ = 2
Figure 6: The figures on top show the input intensity profiles and the figures on the bottom show
the corresponding profile at the focus. The intensity is expressed in units of the height of the input
intensity.

4.2 Linear phase
Figure 7 shows the results of applying a linear phase. Appendix E.2 shows how the phase
profile was built up in the function combphases. Figure 7a) shows the phase profile of a
linear input phase. Figure 7b) shows the spatial profile of the beam at the focus with no
applied phase. Figure 7c) shows the profile at the focus with a linear phase applied with H
equal to 300. Figure 7d) shows the same but then with H equal 600. From these figures it
can be concluded that the peak moves upwards when a linear phase pointing up is applied.
The larger the value of H, the further the peak moves upwards.

a) Input phase profile b) H = 0 c) H = 300 d) H = 600
Figure 7: The effect of a linear phase pointing upwards for different values of H. The colorbar applies
to all three figures.

4.2.1 Adding Linear phases

Figure 7 above shows the result of one linear phase pointing up. By adding linear phases in
different directions, the peak at the focus can be moved around. For example, a linear phase
pointing to the left and a linear phase pointing up can be added. Appendix E.3 shows how
this is done in code. Figure 29b) in appendix A.3.1 shows the result of adding two linear
phases, one pointing up and one pointing left. Figure 29a) shows the profile focus with no
phase as a reference. For both linear phases H is 600. In the focus, the effect of the linear
phase pointing left and the linear phase pointing up are added, and the peak appears in the
upper left corner.
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The peak can follow a circular path by creating a linear phase that is the sum of sin(theta) *

Right + cos(theta) * Up. By adjusting the value of theta, the peak moves in a circular
path. Appendix E.4 shows how this is implemented in the code. Figure 30 in appendix A.3.2
shows how the peaks moves around. In this figure H is 600. The dashed white line represents
the trajectory of the peak.

4.3 Curved phase profile
Figure 8 shows the result of applying different curved phase profiles. The shapes that are
used are a second degree and third degree cylindrical paraboloids and a spherical second
degree paraboloid. The upper figures show the phase profile and the lower figure shows the
profile at the focus. Appendix E.5 shows how these profiles are created in the code.

Figure 8a) shows the result of applying a phase profile with the shape of a second degree
cylindrical paraboloid as a phase profile. In this figure H is 3000. At the focus the peak
stretches out along the axis orthogonal to the cylindrical axis. Figure 8b) shows the result
for applying a phase profile with the shape of a third degree cylindrical paraboloid. In this
figure H is 5000. Here, the peak is stretched out along the axis orthogonal to the cylindrical
axis. In the direction where the sheet moves down, the peak does not stretch out, and in the
direction where the sheet moves up the peak stretches out oscillating in intensity. Figure 8c)
shows the result of applying a phase profile with the shape of a spherical paraboloid. H is
6000 in this figure. Here the peak stretches out in all directions.

Figure 8: Different curved phase profiles

4.4 Subtracting the largest multiple of 2π
Figure 9 shows the results of subtracting the largest multiple of 2π from each element in
the linear phase profile. Figure 9a) shows what the phase looks like when H is 30 and the
largest multiple of 2π is subtracted. In figure 9b) and c), the value of H is 300. The focus at
the profile is the same in figure 9c) and figure 7c). This shows that subtracting the largest
multiple of 2π from each value in the phase does not affect the profile at the focus.
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a) Phase profile b) No applied phase c) Profile at focus with phase profile figure a)
Figure 9: Testing whether subtracting largest multiple of 2π from phase gives different results

4.5 Combining linear phases
The function combphases can combine different phase profiles through alternating between
pixels. By combining linear phases that point in different directions, the peak at the focus
splits up into several peaks. The sections below shows some results obtained by combining
linear phases.

4.5.1 Two Linear Phases

Figure 10 shows the results of using the combphases function to combine two linear phases in
opposite direction, one pointing up and one is pointing down. Appendix E.6 shows how these
linear phases are created. Figure 10 shows the profile at the focus for different combination
patterns. The combination patterns are displayed in figure 25 in appendix A.2.2, where the
different colours represent the two linear phases in opposite direction. As predicted, the two
peaks move apart. However, extra peaks appear. Their position depends on the pattern
through which the phases are combined.

a) diagonal b) horizontal c) vertical

Figure 10: Two linear phases combined through different patterns
In order to split up the peaks, the value of H has to be sufficiently large for the peaks to
be considered as two separate peaks. Figure 11 shows the two patterns combined through
diagonal lines with the value of H increasing. The peaks shows the same behaviour of a single
peak in figure 7, namely they move further apart as the value of H increases.

a) H = 50 b) H = 100 c) H = 150 d) H = 200

Figure 11: Two linear phases with increasing values of H
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4.5.2 Four Linear Phases

Figure 12 shows the results of using the combphases function to combine four linear phases.
The phases that are combined are pointing up, down, to the left and to the right. Appendix
E.9 shows the how the linear phase profiles are created. The phases can be combined in four
ways, namely through horizontal lines, vertical lines, diagonal lines and through squares of
size 2x2. Figure 12 shows the beam profile at the focus for these four different combinations.
Figure 26 in appendix A.2.2 shows how the phase profiles are combined, respectively. Each
color represents a different phase profile, and each box represents a pixel. The figures below
show the profile at the focus.

a) diagonal b) horizontal c) vertical d) square

Figure 12: Four Linear Phases combined through different patterns
Figure 12 shows how the pattern through which the phase profiles are combined influences
the shape of the profile at the focus. The four peaks at the center, which are the peaks that
will eventually be used in the experiment, are identical regardless of how the phase profiles
are combined. The extra peaks appear in the same orientation with respect to each other as
the center peaks. The center peaks appear in a diamond shape of four, and the extra peaks
also appear in a diamond shape of four. In each picture, the total number of peaks is 16. The
position of the peaks depends on the pattern through which the phase profiles are combined.

4.5.3 N linear phases

The function combphases can combine up to sixteen phase profiles which means that up to
sixteen main peaks can be created at the focus. The position of every single peak can be
controlled by changing the height and direction of the linear phase. This gives the possibility
to create many different orientations of peaks at the focus. Figure 13 shows a square of
nine peaks and a square of sixteen peaks. This is done through combining linear phases.
Appendix E.14 and appendix E.16 shows how these phase profiles are built up in the code.
The phase profiles are combined through squares. For nine peaks this is done by using sq3

for the shape and H equal to 300, for sixteen peaks the shape is sq4 and H is equal to 100.
For bigger values of H the main peaks start to overlap with the extra peaks.

a) nine linear phases b) sixteen linear phases
Figure 13: Nine and sixteen linear phases combined to create squares
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4.6 Time delay

One of the peaks can be delayed in time by adding a plane phase to one of the linear phases.
A plane phase is a uniform phase profile. A plane phase does not change the position of the
peaks, but it does change the way the peaks interact with each other when they are close
to each other. Figure 31 in appendix A.3.3 shows what the phase profile looks like for two
linear phases, one pointing up and one pointing down. Figure 31a) shows the normal case,
and in figure 31b) one peak is delayed with 11π. The figure shows the profile of the phases
looking from the side. Since the phase is periodic, the effect from a delay of 11π is the same
as the effect of a delay of π, which is equivalent to half a cycle. A delay of 11π is used in
the figure since this makes the phase difference more visible in the figure. The results of the
added plane phase are shown in figure 14. The figures are zoomed in to make the effect of
the delay more visible.

a) 0 delay b) π/2 delay c) π delay c) 3π/2 delay

Figure 14: Profile at the focus for different delays in lower peak

The peaks can be moved closer together such that they completely overlap. This is shown in
figure 15 below. In this case H is zero, which means that there is no tilt in the phase profiles
and they are flat. The two peaks then overlap at the center. The profiles are combined
through diagonal lines. When there is no phase difference, the two linear phases are both flat
phases at the same height, so the final phase profile will be a uniform phase. At the focus
the peaks add up and the extra peaks disappear, creating the same profile as when there are
no phase profile applied. When the two linear phases are half a cycle out of phase, the phase
profiles are two uniform phases but at different heights. The final phase profile consists of
diagonal lines alternating between 0 and π. When this phase profile is applied the peaks
at the center disappear and the extra peaks double in intensity. In figure 15, the figure on
top shows the phase profile, and the figure below shows the profile at the focus. The phase
profile is zoomed to make the pattern better visible.

a) No phase shift b) Phase shift equal to π
Figure 15: Two linear phases combined with H=0
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4.7 Extra peaks
When the combphases function is used to combine linear phases, extra peaks appear. In
order to create several peaks at the focus, the behaviour of the extra peaks has to be well
understood. The sections below show the behaviour of the peaks with regard to height of
the linear phase, the number of peaks, the pattern through which the phases are combined
and the phase of the peaks.

4.7.1 Gradient of the linear phase

Figure 10a), b) and c) shows the profile at the focus when combining two linear phases. In
each case, two extra peaks appear. In figure 10c), there are four half peaks, giving two peaks
in total. This figure is used to study the behaviour of the peaks with regard to the value of
H. The two upper peaks and the two lower peaks have the same height. The distance of the
two main peaks to the center is the same as the distance from the extra peaks to the top.
As the two main peaks move up, the extra peaks move down. By increasing the gradient of
the linear phase, which is done by increasing H, the main peaks move further apart and the
extra peaks move closer together. To understand how this works, a new variable called the
step size is introduced. The step size is the difference in height between each pixel. The step
size can be adjusted by setting H to (mY - 1) * S, where S is the step size.

Figure 32 in appendix A.3.4 shows how the peaks move apart depending on the step size. It
was found that the main peaks and the extra peaks were at the same height when the step
size is π/2. When the step size is π the extra peaks merge in the middle and the main peaks
disappear. This is the point where the peaks have a maximum separation. When the step
size is 3π/2, the same result is obtained as for a step size of π/2, meaning that the peaks
move backwards. When the step size is 2π, the results is the same for no phase, and the
extra peaks disappear.

4.7.2 Number of extra peaks

The number of extra peaks depends on the number of linear phases that is combined. In
the case of two linear phases, there are four peaks in total. When four linear phases are
combined there are sixteen peaks in total. Figure 16 demonstrates how the number of extra
peaks changes. Figure 16a) shows three linear phases that create three peaks forming a
triangle. The phase profiles are combined horizontally. Here a total of nine peaks appear.
Figure 16b) show five linear phases in a square with one peak in the middle. The phase profile
are combined diagonally. In this figure there are 25 peaks in total. Figure 16c) shows nine
linear phases forming a line of peaks. Here the phase profiles are combined diagonally. This
figure has 81 peaks in total. figure 16d) shows eight linear phases forming a circle. The phase
profiles are combined trough rectangles of dimension 4x2, and H is equal to 400. This figure
has 64 peaks in total. Figure 13b) displays sixteen peaks forming a square. This figure has
256 peaks in total. In all figures it holds that the total amount of peaks that appears at the
focus is equal to the number of linear phases that is combined squared. The pattern through
which the phases are combined is different in each case. Therefore, this can be regarded as
a general rule.
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a) Three linear phases b) Five linear phases
c) Nine linear phases

making a line
d) Eight linear phases

making a circle
Figure 16: Profile at the focus for different numbers of peaks

4.7.3 Pattern through which linear phases are combined
The linear phases can be combined through lines or through squares. The phases can be
combined through lines for any number of phases, but in order to combine the linear phases
through squares, the number of phases has to be a multiple of two, three or four. Figure 12
shows how the position of the extra peaks changes as a result of the pattern through which
the phases are combined. The extra peaks always appear in the same shape as the main
peaks, but their position depends on the pattern through which the phases are combined.

Different orientations of lines
The linear phases can be combined in lines that are either diagonal lines, horizontal lines or
vertical lines. In figure 12a), the phase profiles are combined through diagonal lines running
from the top left to the bottom right. The extra peaks in the focus are oriented in a line that
runs from the top right to the bottom left. In figure 12b), the phase profiles are combined
through horizontal lines and the extra peaks are oriented in a vertical line, and in figure 12c)
the phase profiles are combined through vertical lines and the extra peaks are oriented in
a horizontal line. The same behaviour is observed when using a different number of phases
combined. Therefore, in the case of combining the linear phases through lines, the extra
peaks align orthogonal to the direction of the lines that are combining the phases.

Different square shapes
When the linear phases are combined through squares, the peaks appear in the corners and
on the sides. In the case of square numbers such as four, nine and sixteen, the phases can
be combined through a square that has the same height and width, as shown in figure 27
in appendix D. These combination patterns lead to symmetry in the patterns of the extra
peaks, meaning that the pattern of the original peaks appears in the same amount in the
horizontal direction as the vertical direction.

a) Four linear phases b) Nine linear phases c) Sixteen linear phases
Figure 17: Square numbers
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For the case of non-square numbers, the squares through which the linear phases are combined
can have different dimensions. For example, six phases can be combined through a 2x3 square
or a 3x2 square. This will lead to different positions of the extra peaks. Figure 18 shows
what the profile looks like in this case. When using a square of size 2x3, which is displayed
in figure 18a), the pattern of six peaks appears three times in horizontal direction, and two
times in vertical direction. When using a square of size 3X2, the opposite happens, namely
the pattern appears three times in vertical direction and two times in horizontal direction.
The combinations patterns of the phase profiles are displayed in figure 28 in appendix A.2.2

a) 2x3 a) 3x2
Figure 18: Different dimensions of squares through which the phase profiles are combined

4.7.4 Phase difference extra peaks

Section 4.6 shows how adding a time delay to one of the phase profiles causes the peaks
at the focus to be out of phase. When the peaks are out of phase by exactly half a cycle,
meaning that they have a phase difference of π, a diffraction pattern appears between the
peaks. The phase difference between the extra peaks can be determined by studying the
diffraction pattern between the extra peaks. Figure 19 shows the profile at the focus where
the peaks are split up horizontally. The phase profiles are combined through horizontal lines
are a sufficiently close such that the diffraction pattern can be observed. The value of σ in
the input intensity profile is 0.2. This is done to make the peaks bigger and the diffraction
pattern more visible. The value of H is 220. Figure 19a) shows two peaks that have the same
phase at the center and figure 19b) shows two peaks that have a phase difference of π at the
center. Appendix E.7 shows how the phases are created in the code. In figure 19a) the value
of Phase is 0 and in figure 19b) the value of Phase is π. In figure 19a) the extra peaks show a
diffraction pattern, which means that the peaks have a phase difference of π. In figure 19b)
the extra peaks do not show a diffraction pattern, which means that the peaks have no phase
difference.

a) no phase difference b) phase difference π
Figure 19: Phase difference extra peaks
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4.8 Increasing the dimension of the SLM

The dimensions of the SLM are 600x792. The code can be used to investigate what the
advantages are when using a SLM that has more pixels. The number of pixels of the SLM
is changed in the code by changing the values of nX and mY. Figure 20 below shows sixteen
linear phases forming a four by four square. Figure 20 shows how the figure changes when
the number of pixels on the SLM increases. In this simulation, the total size of the SLM
remains constant. This means that when the number of pixels on the SLM increases, the
size of the pixels decreases. The figure shows that the space between the extra peaks and
the original peaks increases as the amount of pixels in the SLM increases. This simulation is
purely hypothetical since there is are SLM’s with these dimensions in the lab. However, these
results give an indication of what advantages a SLM with larger dimensions would have.

a) 600 x 792 b) 1024 x 1024 c) 2048 x 2048 d) 4096 x 4096
Figure 20: Increasing the dimensions of the SLM

4.9 Effect of size input intensity profile on multiple peaks

As shown in section 4.1.1, the size of the peak at the focus decreases as the size of the peak
of the input intensity increases. Figure 21 below shows how increasing the size of the input
intensity changes the size of the peaks at the focus when a phase profile is applied that
consists of sixteen linear phases. The peaks become smaller but their position with respect
to each other does not change.

a) σ = 0.5 b) σ = 1 c) σ = 2 d) σ = 3
Figure 21: Increasing the size of the input intensity profile when applying phase profile combining
sixteen linear phases
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5 Discussion
5.1 Changing input intensity profiles
It is shown that when the size of the input intensity profile increases, the size of the peak at
the focus decreases. This is the same as focusing a Gaussian beam with a lens. The relation
between the beam diameter of the input intensity (D) and at the focus (D′) is the following
[11]:

2D ≈ 4λf

πD′
(12)

This relation shows that the diameter of the beam at the focus is inversely proportional to
the diameter of the input beam. This relation corresponds to the results obtained in section
4.1.1 and section 4.9.

5.2 Periodicity phase
In section 4.4 it was observed that subtracting the largest multiple of 2π from each value in
the phase profiles matrix does not affect the profile at the focus. This is because the wave is
periodic and has a phase of 2π. The advantage of this is that the SLM does not have to be
able to add a phase larger than 2π. This explains why the extra peaks disappear in figure
32f). Here, the step size is equal to 2π, but since the largest multiple of 2π can be subtracted
this is equivalent to a flat phase. Therefore the profile at the focus is the same as in figure
32a) where no phase is applied.

5.3 Origin extra peaks
The origin of the extra peaks can be found in the frequencies of the Fourier transformed phase
image that represent intensity changes across the phase profiles. One way to understand the
extra peaks is to see the pattern through which the phase profiles are combined as a diffraction
grating. When combining the phase profiles through lines the peaks align orthogonal to the
lines through which the phase profiles are combined, which is exactly how a diffraction grating
behaves. Combining the phase profiles through squares can be seen as combining diffraction
gratings. This explains why the peaks appear in the corners. A different way to explain
the peaks is with Fourier theory. The extra peaks can be seen as a repetition of the Fourier
domain.

5.4 Phase of the peaks
Section 4.6 shows how the interaction between two close peaks changes when one of them
is delayed. When there is no phase difference and the peaks are close, their intensities are
added in the areas where the peaks overlap. When the phase difference is π, the intensities
cancel each other out. This is because one peak arrived half a cycle after the other peak, and
is in the exact opposite phase of the earlier peak. Due to destructive interference, the peaks
will cancel each other out in the parts where they overlap.
When combining two linear phase profiles and their gradient is zero, the two peaks have the
same position. This can be seen in figure 15. When the phase difference is zero, the two
phase profiles are the same and they form a flat phase at zero. Therefore, the profile at the
focus is a Gaussian profile. When there is a phase difference, the phase profile has diagonal
lines alternating between 0 and π. This works as a diffraction grating. At the focus, the
peaks at the center cancel each other out and the extra peaks appear at the corners. This is
the same result as when using a diffraction grating.
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5.4.1 Phase of the extra peaks

Figure 19 shows the diffraction pattern between the extra peaks. In figure 19a), the main
peaks are in phase and a diffraction line is visible between the extra peaks, which means that
they are exactly π out of phase. In figure 19b) the main peaks are π out of phase and the
extra peaks are in phase. This means that the phase difference between the extra peaks is
exactly opposite of the phase difference between the main peaks. An explanation for why the
extra peaks have the exact opposite phase of the main peaks is energy conservation. When
the main peaks are in phase their intensities are added when the peaks overlap. The extra
peaks are out of phase, so their intensities cancel out when they overlap. The energy of the
extra peaks therefore gets conserved by the main peaks, and the total energy in the profile
does not change. When the main peaks are out of phase and overlap, they cancel each other
out while the intensities of the extra peaks add up, meaning that the energy of the main
peaks is conserved in the extra peaks.

5.5 Controlling the shape of the peaks
The curved profiles change the shape of the peaks at the focus. The curved profiles that were
tested in this project stretched out the peaks at the focus. For the third degree cylindrical
paraboloid, the peak stretched out in an oscillating way. This can be explained by comparing
the the third degree cylindrical paraboloid to a linear phase profile. A linear phase profile has
a uniform gradient which adds the same shift to the entire peak. The third degree cylindrical
paraboloid has a gradient that is positive or zero at all points, but is not uniform over the
entire surface. Therefore the peak is stretched out but the phase is not uniform. This will
lead to constructive interference at some points, and negative interference in other points,
which results in the oscillating pattern.
The XUV pulses are steered by using the part of the Gaussian profile of the control pulse that
can be approximated by a linearly increasing line. By stretching the pulse, the gradient of this
straight line can be adjusted. With this, the direction of the XUV pulse can be controlled.
The pulse can also be stretched out by using a different shape of the input intensity. However,
by changing the shape of the intensity profile, only the size of the peak at the focus can be
controlled. When using a curved profile, it is possible to stretch out the pulse in only one
direction, which conserves energy.

5.6 Avoiding overlapping of center peaks and extra peaks
The extra peaks that appear when combining phase profiles are a disturbance when executing
experiments. The number of extra peaks is equal to the square of the number of the original
peaks, so the number of extra peaks can become very big. This makes it likely for the extra
peaks to start overlapping with the peaks at the center. To avoid this the extra peaks must
be oriented such that they are sufficiently far away from the center peaks to not disturb the
experiment. The sections below discuss some ways to minimize this disturbance.

5.6.1 Reducing gradient Linear phase

The gradient is reduced by using a low value of H. In this case the peaks at the center are
closer together and the extra peaks will stay further away from the peaks at the center.
However, when the peaks are too close to each other they will start to interact with each
other. The peaks will add up when they are in phase and cancel each other out when they
are half a cycle out of phase. These interference patterns change the shape of the peaks.
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Therefore, the value of H can be reduced only up until a certain point. In the results section
an input intensity profile is used where σ is equal to 0.5. Figure 11 shows that for this input
intensity the peaks at the center start to overlap with each other when H is smaller than 150.
To combine sixteen linear phases, the value of H has to be 100, which means that the peaks
are showing diffraction patterns. This can be seen in figure 13b). Here H can not be increased
since the extra peaks will overlap with the peaks at the center.

5.6.2 Using most efficient pattern for combining phase profiles

To use the peaks at the center for the experiment the extra peaks can not overlap with the
peaks at the center. It is desirable to have as much distance as possible between the center
peaks and the extra peaks. This can be achieved by using the most efficient pattern through
which the phase profiles are combined.

In general the center peaks form a pattern that has approximately the same height as length,
such as a square or a circle. In this case square shapes are most efficient, since this will lead
to the extra peaks being distributed over the whole profile and not on a line. Using a larger
surface to distribute peaks over will keep the largest distance between the center peaks an
the extra peaks. In order use square shapes to combine the phase profiles, the number of
peaks has to be a multiple of two, three or four. Square numbers are most efficient since the
phase profiles can be combined through squares that have the same height and width, which
results in the sets of extra peaks being evenly distributed in horizontal and vertical direction,
so that they are placed as far away as possible from each other.
Numbers that are multiples of two, three and four can best be combined through squares
that have approximately the same height and width. For example, when combining twelve
linear phases, it is more efficient to use squares of size 3x4 than using squares of size 2x6.
When using squares of size 3x4, the set of peaks will appear four times in horizontal direction
and three times in the vertical direction. When using squares of size 2x6, the set of peaks
will appear six times along the in the horizontal direction and two times along the vertical
direction. There will be more space between the peaks when using squares of size 3x4.
Prime numbers are least efficient since they can only be combined through lines. This means
that the extra peaks will appear in a line which will leave little space between the sets of
peaks making it likely for them to overlap.

When the center peaks form a pattern that does not have the same height and length,
such as a line of peaks as in figure 16c), it can be more favourable to combine the phase
profiles through lines. When creating a shape that is wide but not high, it is most efficient to
combine the phase profiles through horizontal lines. The sets of extra peaks will then appear
in a vertical line, which will prevent the peaks from overlapping horizontally.

5.7 Using lab equipment most efficiently
5.7.1 Changing intensity

In order to be able to combine more peaks, the peaks need to be brought closer together.
This can be achieved by decreasing the size of the peaks at the focus. The size of the peak
in the input intensity profile determines the size of the peaks at the focus. Therefore, to
combine more peaks the size of input intensity profile has to be increased.
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To use the SLM as efficient as possible, the peak of the input intensity profile has to be
as large as possible. When using a small peak, the largest part of the intensity profile is flat
and a big part of the pixels on the SLM is unused. Therefore, it is most efficient to use a big
peak for the input intensity profile. This will ensure that the peaks at the focus are small
enough to avoid peaks from overlapping, and the SLM will be used most efficient.

5.7.2 Resolution SLM

A large number of pixels on the SLM will result in more space between the main peaks
and the extra peaks. The SLM that is used in this experiment has 792x600 pixels, which is
enough for combining two or four linear phases. However, when more peaks are needed at
the focus, the extra peaks will likely be a problem. This problem can be solved by using a
SLM that has more pixels.

5.8 Possibilities and limitations
This project shows that it is possible to control the shape and position of a focused Gaussian
beam using a spatial light modulator. The shape and position can be controlled, and the peak
can be delayed in time. The peak can be split up into several peaks, and each of these peaks
can be controlled individually. In total up to sixteen peaks can be created. It is possible to
expand the code to combine more phase profiles, but in practice this will not be necessary.
To create an interferometer, a profile is needed at the focus that contains two peaks of which
the phase difference is adjustable. This project shows that this is achievable, meaning that
it is possible to create an interferometer using a spatial light modulator.
A limitation of the project is the control over the shape of the peak at the focus. The peak
at the focus can be stretched out or compressed when a curved profile is applied, but the
shape will always remain a Gaussian shape. The amount of peaks at the focus is limited
because of the extra peaks. Disturbance of the extra peaks can be avoided up until a certain
number of peaks, but there is a limit to how many peaks can be created. With the size of
the input intensity used in this project, sixteen peaks can be created. A larger number is not
possible since too many extra peaks will appear and they will overlap with the main peaks.
Increasing the size of the input intensity will make the peaks smaller which allows the peaks
to be brought closer together. However, the number of extra peaks increases as a square of
the number of main peaks, so it won’t be possible to combine many more peaks. However,
in practice there is no need for profiles containing many peaks, so this limitation does not
affect the research.

6 Outlook

Future research could include developing a method to control the shape of the peaks at the
focus. Ideally, a pulse having a triangular shape would be created, since a triangle contains a
straight linear line. It is not possible to create a profile that contains discontinuities such as
corners. However, it is possible to create a profile that has a shape closer to a triangular shape.

This project shows that it theoretically possible to create an interferometer. The next step
would be to try this out in the laboratory.
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A Figures

A.1 High order Harmonic Generation

A.1.1 Energy diagram of three step model

Figure 22 shows the energy diagram of the three step model.

Figure 22: Energy diagram of three step model

A.1.2 Electron trajectories High Order Harmonic Generation

a) Electron trajectories b) Energies as a function of trajectory time
Figure 23: The trajectory (a) and corresponding energy (b) of the electron. The green lines represent
the trajectories of the electrons that do not recombine with the atom, and the blue lines represent
the the trajectories of the electrons do recombine.



A.2 Method

A.2.1 Subtracting largest multiple of 2π from a phase profile

a) Linear phase b) Linear Phase with maximum of 2π
Figure 24: Subtracting the biggest multiple of 2π from each value

A.2.2 Combination patterns of phase profiles

The figures below show the possible combination patterns of phase profiles.

Two phase profiles

a) diagonal b) horizontal c) vertical
Figure 25: Different patterns through which two phase profiles can be combined. Every box repre-
sents a pixel on the SLM. The different colours represent different phase profiles.

Four Phase profiles

a) Horizontal b) Vertical c) Diagonal d) Square
Figure 26: Different patterns through which four phase profiles can be combined. Every box
represents a pixel on the SLM. The different colours represent different phase profiles.

Four, Nine and Sixteen Phase profiles combined through squares



a) Four linear phases b) Nine linear phases c) Sixteen linear phases
Figure 27: The combination patterns for combining four, nine and sixteen phase profiles through
square shapes. Every box represents a pixel on the SLM. The numbers represent different phase
profiles.

Six phase profiles combined through different rectangles

a) rectangles 2x3 b) rectangles 3x2
Figure 28: The combination patterns for combining six phase profiles through rectangles of dimen-
sion 2x3 or 3x2. Every box represents a pixel on the SLM. The numbers represent different phase
profiles.

A.3 Results

A.3.1 Adding linear phases

a) No phase b) Sum of phase pointing up and left
Figure 29: Adding linear phases in different direction



A.3.2 Move peak around circular trajectory

a) theta = 0 b) theta = π/4 c) theta = π/2 d) theta = 3π/4

e) theta = π f) theta = 5π/4 g) theta = 3π/2 h) theta = 7π/4
Figure 30: Circular trajectory

A.3.3 Time delay

Figure 31 shows how two phase profiles combined look when observed from the side. In figure
31a) there is no time delay, but in figure 31b) a time delay is added.

a) two linear phases b) two linear phases, one delayed by half a cycle (π)
Figure 31: The effect of delaying one peak by adding a plane phase



A.3.4 Changing the step size for 2 linear phases

a) no phase b) step size π/4 c) step size π/2

d) step size π e) step size 3π/2 f) step size 2π
Figure 32: Profile at the focus for two linear phases with different step sizes

B Simulation code (Matlab)

1 %1. Set Paratmeters

2 nX = 600;

3 mY = 792;

4

5 aX = -10;

6 bX = 10;

7 aY = -10;

8 bY = 10;

9

10 x = linspace(aX, bX, nX);

11 y = linspace(aY, bY, mY)';

12

13 %2. Create Input intensity profile

14 x0 = 0; % center

15 y0 = 0; % center

16 sigma = 0.5; % width

17 A = 1; % amplitude

18

19 ang = -pi * ((x-x0).^2 + (y-y0).^2)./(2*sigma^2);

20 input_profile = A * exp(ang);

21

22 % f(sqrt(x.^2 + y.^2)<0.5) = 0; %Create a hole

23 %3. Create Input Phase profile

24 %Setting the Parameters



25 numphases = 16;

26 shape = 'sq4';

27 boxsize = 1;

28 % H = (mY - 1) * (2*pi);

29 H = 300;

30 Phase = 0;

31 theta = 0;

32

33 % For shape there are 6 options:

34 % 1. 'dia' - Diagonal lines

35 % 2. 'hor' - Horizontal lines

36 % 3. 'ver' - Vertical lines

37 % 4. 'sq2' - Squares of size 2 x (numwaves/2)

38 % 5. 'sq3' - Squares of size 3 x (numwaves/3)

39 % 6. 'sq4' - Squares of size 4 x (numwaves/4)

40

41 % Phase_profile = zeros(mY, nX); %No phase

42 Phase_profile = combphases(mY, nX, numphases, shape, boxsize, H, Phase,

theta); %Linear Phase in several directions↪→

43

44 % Phase_profile = Phase_profile - fix(Phase_profile/(2*pi)) * 2*pi;

%substracts↪→

45 % % the largest multiple of 2pi as this is the physical limit of the SLM

46

47 %4. Execute Fourier Transform and Inverse

48 input = input_profile.*exp(1i * Phase_profile);

49

50 focus_profile = fft2(input);

51 focus_profile_phase = angle(focus_profile);

52 focus_profile_nophase = fft2(input_profile);

53 inverse_focus_profile = ifft2(focus_profile);

54

55 %5. Plot Figures

56 focus_profile_plot = abs(fliplist2D(focus_profile));

57 focus_profile_nophase_plot = abs(fliplist2D(focus_profile_nophase));

58 inverse_focus_profile_plot = abs(inverse_focus_profile);

59 max_nophase = max(focus_profile_nophase_plot(:));

60

61 figure

62 surf(Phase_profile)

63 grid on

64 title('Phase profile')

65 xlabel('pixels');

66 ylabel('pixels');

67 zlabel('H');



68 hYLabel = get(gca,'zLabel');

69 set(hYLabel,'rotation',0,'VerticalAlignment','middle')

70 shading interp

71 ylim([0 mY])

72 xlim([0 nX])

73 ax = gca;

74 ax.FontSize = FS;

75 % view([ 1 0 0 ])

76 % hc=colorbar;

77 % title(hc,'H');

78

79 figure

80 mesh(input_profile)

81 grid on

82 str = sprintpf('Input intensity profile with \sigma = %d', sigma);

83 title('str')

84 title('Input intensity')

85 xlabel('pixels');

86 ylabel('pixels');

87 zlabel('Input intensity');

88 ylim([0 mY])

89 xlim([0 nX])

90 ax = gca;

91 ax.FontSize = FS;

92 view([0 0 1])

93 hc=colorbar;

94 title(hc,'Intensity');

95

96 figure

97 surf(focus_profile_plot/max_nophase)

98 shading interp

99 grid on

100 title('Profile at focus');

101 zlabel('Relative Intensity');

102 ylabel('a.u.');

103 xlabel('a.u.');

104 ylim([0 mY])

105 xlim([0 nX])

106 ax = gca;

107 ax.FontSize = FS;

108 view([0 0 1])

109 ax = gca;

110 % cb = colorbar('Location','eastoutside');

111 % cb.FontSize = 16;

112 % title(cb,'Relative intensity');



113

114 figure

115 mesh(focus_profile_nophase_plot)

116 grid on

117 title('Focus intensity profile for no phase shift')

118 view([0 1 0])

119 ylim([0 mY])

120 xlim([0 nX])

121

122 figure

123 mesh(inverse_focus_profile_plot)

124 grid on

125 xlabel('pixels');

126 ylabel('pixels');

127 zlabel('Input Intensity');

128 ax = gca;

129 ax.FontSize = FS;

130 title('Inverse Fourier transform')

131 ylim([0 mY])

132 xlim([0 nX])

B.1 Output Summary

Table 1 summarizes the matrices that the code plots.

phase_profile Phase profile
input_profile Input Gaussian profile
focus_profile_plot Fourier transformation of the input profile with a phase profile

applied to it
focus_profile_nophase_plot Fourier transformation of the input profile without the phase

profile applied to it
inverse_focus_profile_plot Inverse Fourier transformation of the focus profile

Table 1: Matrices made by the code

C Animation code (Matlab)

1 numphases = 6;

2 shape = 'sq3';

3 boxsize = 1;

4 H = 300;

5 Phase = 0;

6

7 loops = 20;

8 F(loops) = struct('cdata',[],'colormap',[]);

9



10 i = 1;

11

12 v = VideoWriter('1 peak rotating.avi');

13 v.FrameRate = 12;

14 open(v)

15

16 for theta=linspace(0, 6*pi, loops)

17 Phase_profile = combphases(mY, nX, numphases, shape, boxsize, H, Phase, theta);

18 focus_profile = focus_beam(input_profile, Phase_profile);

19 surf(focus_profile);

20 str = sprintf('angle = %d', theta);

21 title(str)

22 shading interp

23 view([0 0 1])

24 drawnow

25 A = getframe(gcf);

26 writeVideo(v, A);

27 F(i) = getframe(gcf);

28 i=i+1;

29 end

30

31 close(v);

32 fig = figure;

33 movie(fig,F,2,6)

D combphases (Matlab)

1 function [ M1 ] = combphases( nX, mY, numphases, shape, boxsize, H, Phase,

theta)↪→

2

3 M1 = zeros(nX, mY);

4 M2 = zeros(nX, mY);

5 M3 = zeros(nX, mY);

6 M4 = zeros(nX, mY);

7 M5 = zeros(nX, mY);

8 M6 = zeros(nX, mY);

9 M7 = zeros(nX, mY);

10 M8 = zeros(nX, mY);

11 M9 = zeros(nX, mY);

12 M10 = zeros(nX, mY);

13 M11 = zeros(nX, mY);

14 M12 = zeros(nX, mY);

15 M13 = zeros(nX, mY);

16 M14 = zeros(nX, mY);



17 M15 = zeros(nX, mY);

18 M16 = zeros(nX, mY);

19

20 %Define phases that are to be combined here

21

22 L = [M1; M2; M3; M4; M5; M6; M7; M8; M9; M10; M11; M12; M13; M14; M15; M16];

23

24 if rem(nX, boxsize) ~= 0 || rem(mY, boxsize) ~=0

25 error('boxsize has to be multiple of nX and mY');

26 elseif numphases > 16 || numphases < 0

27 error('numphases has to be between 0 and 16')

28 end

29

30 if numphases == 0

31 M1 = zeros(nX, mY);

32 elseif numphases==1

33

34 elseif shape == 'dia'

35 for i=1:nX/boxsize

36 for j=1:mY/boxsize

37 for n = 1:numphases

38 if (rem(i, numphases) + rem(j, numphases) == n - numphases)

|| (rem(i, numphases) + rem(j, numphases) == n +

numphases) || (rem(i, numphases) + rem(j, numphases) ==

n)

↪→

↪→

↪→

39 M1(boxsize*i-(boxsize-1):boxsize*i, boxsize*j -

(boxsize-1):boxsize*j) = L((n-1)*nX +

boxsize*i-(boxsize-1) : (n-1)*nX + boxsize*i,

boxsize*j - (boxsize-1):boxsize*j);

↪→

↪→

↪→

40 end

41 end

42 end

43 end

44

45 elseif shape == 'hor'

46 for i=1:nX/boxsize

47 for j=1:mY/boxsize

48 for n = 1:numphases

49 if rem(i, numphases) == n - 1

50 M1(boxsize*i-(boxsize-1):boxsize*i, boxsize*j -

(boxsize-1):boxsize*j) = L((n-1)*nX +

boxsize*i-(boxsize-1) : (n-1)*nX + boxsize*i,

boxsize*j - (boxsize-1):boxsize*j);

↪→

↪→

↪→

51 end

52 end



53 end

54 end

55

56 elseif shape == 'ver'

57 for i=1:nX/boxsize

58 for j=1:mY/boxsize

59 for n = 1:numphases

60 if rem(j, numphases) == n - 1

61 M1(boxsize*i-(boxsize-1):boxsize*i, boxsize*j -

(boxsize-1):boxsize*j) = L((n-1)*nX +

boxsize*i-(boxsize-1) : (n-1)*nX + boxsize*i,

boxsize*j - (boxsize-1):boxsize*j);

↪→

↪→

↪→

62 end

63 end

64 end

65 end

66

67 elseif shape == 'sq2'

68 if rem(numphases, 2) ~= 0

69 error('numphases has to be multiple of 2')

70 else

71 for i=1:nX/boxsize

72 for j=1:mY/boxsize

73 for n = 1:numphases

74 if n <= numphases/2

75 if rem(j, numphases/2) == n - 1 && rem(i, 2) == 1

76 M1(boxsize*i-(boxsize-1):boxsize*i, boxsize*j -

(boxsize-1):boxsize*j) = L((n-1)*nX +

boxsize*i-(boxsize-1) : (n-1)*nX +

boxsize*i, boxsize*j -

(boxsize-1):boxsize*j);

↪→

↪→

↪→

↪→

77 end

78 elseif n > numphases/2

79 if rem(j, numphases/2) == n - numphases/2 - 1&&

rem(i, 2) == 0↪→

80 M1(boxsize*i-(boxsize-1):boxsize*i, boxsize*j -

(boxsize-1):boxsize*j) = L((n-1)*nX +

boxsize*i-(boxsize-1) : (n-1)*nX +

boxsize*i, boxsize*j -

(boxsize-1):boxsize*j);

↪→

↪→

↪→

↪→

81 end

82 end

83 end

84 end

85 end



86 end

87

88 elseif shape == 'sq3'

89 if rem(numphases, 3) ~= 0

90 error('numphases has to be multiple of 3')

91 else

92 for i=1:nX/boxsize

93 for j=1:mY/boxsize

94 for n = 1:numphases

95 if n <= numphases/3

96 if rem(j, numphases/3) == n - 1 && rem(i, 3) == 1

97 M1(boxsize*i-(boxsize-1):boxsize*i, boxsize*j -

(boxsize-1):boxsize*j) = L((n-1)*nX +

boxsize*i-(boxsize-1) : (n-1)*nX +

boxsize*i, boxsize*j -

(boxsize-1):boxsize*j);

↪→

↪→

↪→

↪→

98 end

99 elseif n > numphases/3 && n <= 2*numphases/3

100 if rem(j, numphases/3) == n - numphases/3 - 1 &&

rem(i, 3) == 2↪→

101 M1(boxsize*i-(boxsize-1):boxsize*i, boxsize*j -

(boxsize-1):boxsize*j) = L((n-1)*nX +

boxsize*i-(boxsize-1) : (n-1)*nX +

boxsize*i, boxsize*j -

(boxsize-1):boxsize*j);

↪→

↪→

↪→

↪→

102 end

103 elseif n > 2*numphases/3

104 if rem(j, numphases/3) == n - 2*numphases/3 - 1 &&

rem(i, 3) == 0↪→

105 M1(boxsize*i-(boxsize-1):boxsize*i, boxsize*j -

(boxsize-1):boxsize*j) = L((n-1)*nX +

boxsize*i-(boxsize-1) : (n-1)*nX +

boxsize*i, boxsize*j -

(boxsize-1):boxsize*j);

↪→

↪→

↪→

↪→

106 end

107 end

108 end

109 end

110 end

111 end

112

113 elseif shape == 'sq4'

114 if rem(numphases, 4) ~= 0

115 error('numphases has to be multiple of 4')

116 else



117 for i=1:nX/boxsize

118 for j=1:mY/boxsize

119 for n = 1:numphases

120 if n <= numphases/4

121 if rem(j, numphases/4) == n - 1 && rem(i, 4) == 1

122 M1(boxsize*i-(boxsize-1):boxsize*i, boxsize*j -

(boxsize-1):boxsize*j) = L((n-1)*nX +

boxsize*i-(boxsize-1) : (n-1)*nX +

boxsize*i, boxsize*j -

(boxsize-1):boxsize*j);

↪→

↪→

↪→

↪→

123 end

124 elseif n > numphases/4 && n <= 2*numphases/4

125 if rem(j, numphases/4) == n - numphases/4 - 1 &&

rem(i, 4) == 2↪→

126 M1(boxsize*i-(boxsize-1):boxsize*i, boxsize*j -

(boxsize-1):boxsize*j) = L((n-1)*nX +

boxsize*i-(boxsize-1) : (n-1)*nX +

boxsize*i, boxsize*j -

(boxsize-1):boxsize*j);

↪→

↪→

↪→

↪→

127 end

128 elseif n > 2*numphases/4 && n <= 3*numphases/4

129 if rem(j, numphases/4) == n - 2*numphases/4 - 1 &&

rem(i, 4) == 3↪→

130 M1(boxsize*i-(boxsize-1):boxsize*i, boxsize*j -

(boxsize-1):boxsize*j) = L((n-1)*nX +

boxsize*i-(boxsize-1) : (n-1)*nX +

boxsize*i, boxsize*j -

(boxsize-1):boxsize*j);

↪→

↪→

↪→

↪→

131 end

132 elseif n > 3*numphases/4

133 if rem(j, numphases/4) == n - 3*numphases/4 - 1 &&

rem(i, 4) == 0↪→

134 M1(boxsize*i-(boxsize-1):boxsize*i, boxsize*j -

(boxsize-1):boxsize*j) = L((n-1)*nX +

boxsize*i-(boxsize-1) : (n-1)*nX +

boxsize*i, boxsize*j -

(boxsize-1):boxsize*j);

↪→

↪→

↪→

↪→

135 end

136 end

137 end

138 end

139 end

140 end

141 % Phasevector = Phasevector - fix(Phasevector/(2*pi)) * 2*pi;

142 end



E Different phase combinations

E.1 Default linear phases

1 Right = repmat(linspace(0, H, mY), nX, 1);

2 Left = repmat(linspace(H, 0, mY), nX, 1);

3 Up = repmat(linspace(0, H, nX)', 1, mY);

4 Down = repmat(linspace(H, 0, nX)', 1, mY);

5 Center = zeros(nX, mY);

6 Second_Degree_Cylindrical_Paraboloid = 10 * repmat(linspace(-H, H, nX)', 1, mY).^2 / H;

7 Third_Degree_Cylindrical_Paraboloid = 150 * repmat(linspace(-H, H, nX)', 1, mY).^3 / H^2;

8

9 Phase_profile = zeros(nX, mY);

10

11 ii = 1;

12 jj = 1;

13 for x=linspace(-H, H, nX)

14 jj = 1;

15 for y = linspace(-H, H, mY)

16 Phase_profile(ii, jj) = x^2 + y^2;

17 jj = jj + 1;

18 end

19 ii = ii + 1;

20 end

21 Spherical_Paraboloid = 20 * Phase_profile / (2*H);

E.2 One Linear Phase pointing up

1 M1 = Up;

E.3 One Linear Phase pointing up and left

1 M1 = Left + Up;

E.4 One Linear Phase on boundary circle

1 M1 = sin(theta) * Right + cos(theta) * Left;

E.5 Curved phaseprofiles

E.5.1 Second degree cylindrical paraboloid

1 M1 = Second_Degree_Cylindrical_Paraboloid;



E.5.2 Third degree cylindrical paraboloid

1 M1 = Third_Degree_Cylindrical_Paraboloid;

E.5.3 spherical paraboloid

1 M1 = Spherical_Paraboloid;

E.6 Two Linear Phases

1 M1 = Up;

2 M2 = Down;

E.7 Two Linear Phases, one of them has a phase difference

1 M1 = Left;

2 M2 = Right + Phase;

E.8 Three Linear Phases in a triangle

1 M1 = Up;

2 M2 = Right;

3 M3 = Left;

E.9 Four Linear Phases in Diamond shape

1 M1 = Up;

2 M2 = Down;

3 M3 = Left;

4 M4 = Right;

E.10 Four Linear Phases in a square

1 M1 = Up + Left;

2 M2 = Down + Left;

3 M3 = Up + Right;

4 M4 = Down + Right;

E.11 Five Linear Phases, a square with one peak at the center

1 M1 = Up;

2 M2 = Right;

3 M3 = Left;

4 M4 = Down;

5 M5 = Center;



E.12 Six Linear Phases in a 3x2 square

1 M1 = Left;

2 M2 = Right;

3 M3 = Left + Up;

4 M4 = Right + Up;

5 M5 = Left + Down;

6 M6 = Right + Down;

E.13 Eight linear phases in a circle

1 M1 = sin(0) * Up + cos(0) * Left;

2 M2 = sin(pi/4) * Up + cos(pi/4) * Left;

3 M3 = sin(pi/2) * Up + cos(pi/2) * Left;

4 M4 = sin(3*pi/4) * Up + cos(3*pi/4) * Left;

5 M5 = sin(pi) * Up + cos(pi) * Left;

6 M6 = sin(5*pi/4) * Up + cos(5*pi/4) * Left;

7 M7 = sin(3/2*pi) * Up + cos(3/2*pi) * Left;

8 M8 = sin(7*pi/4) * Up + cos(7*pi/4) * Left;

E.14 Nine Linear Phases in a Square

1 M1 = Up + Left;

2 M2 = Down + Left;

3 M3 = Up + Right;

4 M4 = Down + Right;

5 M5 = Center + Phase;

6 M6 = Right;

7 M7 = Left;

8 M8 = Down;

9 M9 = Up;

E.15 Nine linear phases in a line

1 M1 = 4 * Left;

2 M2 = 3 * Left;

3 M3 = 2 * Left;

4 M4 = Left;

5 M5 = Center;

6 M6 = Right;

7 M7 = 2 * Right;

8 M8 = 3 * Right;

9 M9 = 4 * Right;



E.16 16 Linear Phases in a Square

1 M1 = Up + Left;

2 M2 = Down + Left;

3 M3 = Down + Right;

4 M4 = Up + Right;

5 M5 = 3 * Up + Left;

6 M6 = 3 * Up + Right;

7 M7 = 3 * Up + 3 * Right;

8 M8 = 3 * Up + 3 * Left;

9 M9 = Up + 3 * Left;

10 M10 = Down + 3 * Left;

11 M11 = 3 * Down + 3 * Left;

12 M12 = 3 * Down + Left;

13 M13 = 3 * Down + Right;

14 M14 = 3 * Down + 3 * Right;

15 M15 = Down + 3 * Right;

16 M16 = Up + 3 * Right;

F Fourier shift (Matlab)

1 function [ t ] = fliplist2D( f )

2 [n, m] = size(f);

3 t = zeros(n,m);

4 nhalf = floor(n/2);

5 mhalf = floor(m/2);

6

7 f1 = f(1:nhalf, 1:mhalf);

8 f2 = f(nhalf+1:n, 1:mhalf);

9 f3 = f(1:nhalf, mhalf+1:m);

10 f4 = f(nhalf+1:n, mhalf+1:m);

11

12 t(1:nhalf, 1:mhalf) = f4;

13 t(nhalf+1:n, 1:mhalf) = f3;

14 t(1:nhalf, mhalf+1:m) = f2;

15 t(nhalf+1:n, mhalf+1:m) = f1;

16 end

G Focus beam (Matlab)

1 function [focus_profile_plot] = focus_beam(input_profile,Phase_profile)

2 input = input_profile.* exp(1i * Phase_profile);

3

4 focus_profile = fft2(input);



5

6 focus_profile_plot = abs(fliplist2D(focus_profile));

7

8 end

H DFT (Python)

H.1 One dimension

1 def fourier1D(f):

2 N = len(f)

3 F = []

4 for v in range(N):

5 Sum = 0

6 for n in range(N):

7 c = 2 * np.pi * n * v/N

8 Sum = Sum + (f[n] * np.e**(-1j * c))

9 F.append(Sum)

10 return (F)

11

12 def invfourier1D(F):

13 n = len(F)

14 f = []

15 for v in range(n):

16 Sum = 0

17 for t in range(n):

18 c = 2 * np.pi * t * v/n

19 Sum = Sum + 1/(n+1) * (F[t] * np.e**(1j * c))

20 f.append(Sum)

21 return (f)

H.2 Two dimensions

1 def fourier2D(f):

2 M = len(f[0])

3 N = len(f)

4 F = array([[complex(0)]*N]*M)

5 for k in range(M):

6 for l in range(N):

7 Sum = 0

8 for m in range(M):

9 for n in range(N):

10 c = 2 * np.pi * (m * k / M + l * n / N)

11 Sum = Sum + (f[m][n] * np.e**(-1j * c))



12 F[l][k] = Sum

13 return(F)

14

15 def invfourier2D(f):

16 M = len(f)

17 N = len(f[0])

18 F = array([[complex(0)]*N]*M)

19 for k in range(M):

20 for l in range(N):

21 Sum = 0

22 for m in range(M):

23 for n in range(N):

24 c = 2 * np.pi * (m * k / M + l * n / N)

25 Sum = Sum + 1/(M*N) * (f[m][n] * np.e**(1j * c))

26 F[l][k] = Sum

27 return(F)


