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Abstract

The core objective of this project was to design a controller for a drone (or quad-
copter) that would allow the drone to keep a target in the center of a video filmed
by a camera mounted on the drone. This was done by controlling the pitch of the
gimbal, on which the camera was placed, and the yaw of the entire drone combined
with using an image recognition program that could identify the target. For this
project the DJI Mavic 2 Zoom was used. Although designing a PID controller was
an important part of the project it was relatively easy and emphasis was instead
put on system identification and minimizing the impact of a large delay. The large
delay was present in sending images from the drone to the controller and could be as
long as 1 second. A Smith predictor was used in order to reduce the influence of the
measurement delay in the control while a Kalman filter was used in order to estimate
the position of the target based on the old measurements. The system consisted
of a computer connected wirelessly to a mobile phone, and the drone connected
wirelessly to the remote controller which in its turn was connected by wire to the
mobile phone. The end result was a system that could keep a moving target, with
constant velocity, well in the center of the video but suffered from overshoots for a
target making quick turns.
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Sammanfattning

Huvudsyftet med detta projekt var att designa en regulator för en drönare som skulle
tillåta drönaren att hålla ett mål i centrum av en video, filmad av en kamera mon-
terad på drönaren. Detta gjordes genom att reglera kardanupphängningens vinkel i
vertikalled samt reglera hela drönares vridning i horisontalled, kombinerat med ett
bildigenkänningsprogram som kunde identifiera målet. I detta projektet användes
drönaren DJI Mavic 2 Zoom. Även om designen av en PID-regulator var en viktig
del av projektet så var den relativt enkel och vikten av projektet placeras i sys-
temidentifiering samt förmågan att minimera påverkan av en stor tidsfördröjning i
systemet. Den stora tidsfördröjningen uppstod mellan drönaren och regulatorn i da-
torn, där tidsfördröjningen kunde bli så stor som en hel sekund. En Smith-prediktor
användes för att reducera påverkan av tidsfördröjda mätvärden i regleringen medan
ett Kalman-filter användes för att estimera positionen av målet baserat på fördröjda
mätvärden. Systemet bestod av en dator trådlöst kopplad till en mobil telefon, och
en drönare trådlöst kopplad till en handkontroll trådat kopplad till mobilen. Slutre-
sultatet var ett system som kunde följa ett mål med konstant hastighet, och behålla
målet väl i centrum av videon. Däremot, som resultat av Kalman-filtret kunde kam-
eran få översläng vid snabba stopp och svängar av målet.
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Preface

This Master Thesis was carried out during the second semester of the academic year
2019-2020 in Lund, Sweden. The Company Sony Nordic (Sweden) has a division
called Flying Camera Solutions, where the intention was to have a quadcopter drone
that uses a camera to film and follow a skier or snowboarder. A remote computer
was used to control the drone. Help was needed in keeping the target centered in the
screen and so a Thesis Project was offered to help to solve this issue.
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1
Introduction

1.1 Objective

The main objective of the project was to design a controller that could keep a mov-
ing target centered in the video filmed by the drone. The problems that were thought
to be required to be solved were handling varying speeds of the skier, handling of
strong wind, handling the large delay of the system and therefore also creating a
prediction model. Considering how all objectives would rely on the model of the
system a good model would be required. The success of the project would be deter-
mined by the ability to keep a target with constant speed centered on the screen.

1.2 Drone

The drone that was used for this project was the Mavic 2 Zoom shown in Figure 1.1,
a quadcopter developed and released by DJI in August 2018 [1]. It has a weight of
905 grams, and a flight time of 31 minutes with no wind flying at 15.5mph (25km/h)
speed. The maximum forward flight speed is 45mph (72km/h) in Sport mode al-
though for this project the drone had to be set in Positioning mode, which allows a
maximum forward speed of 31mph (50km/h) and a maximum backward flight speed
of 27mph (43km/h). The drone had a maximum tilt angle of 35º and a maximum
angular velocity of 200º/s in horizontal direction.

The Mavic 2 has a flight distance of 18km (11 miles) and a maximum height
of 5km (3.7 miles) above the sea. The navigation satellite system that it uses is
GPS and GLONASS, which allows the drone to connect to multiple satellites. This
dual satellite connectivity is used to assist with the precision flying, return to home
functionality, obstacle avoidance or waypoints, for example. This model is not wa-
terproof, can withstand wind speeds up to 24mph (38km/h) and temperatures from
-10ºC to 40ºC.
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Chapter 1. Introduction

Figure 1.1 DJI Mavic 2 Zoom [2] (left) and close-up of controllable gimbal [3]
(right)

Camera
The lens of the Mavic 2 Zoom has a field of view at approximately 83º horizon-
tally and 48º vertically. The video resolution can be in 4K (3840x2160p), 2.7K
(2688x1512p) or FHD (1920x1080p). In addition, the electronic shutter speed can
be set from 8s to 1/8000s and the still image resolution is 4000x3000p, which means
12 million pixels.

Gimbal
The 3-axis gimbal stabilizes the camera when its mount (i.e. the drone) is moving.
The motor controllers receive gyroscope information from the gimbal to compen-
sate for rotational movements of the mount. It has a controllable tilt range from -90º
to +30º, although mechanically the tilt range is from -135º to 45º and the roll range
is from -45º to 45º. The maximum speed control of the tilt is 120º/s and it has an
angular vibration range of ± 0.005º, which assures that when the drone is still it
will not divert more than that.

1.3 Remote Controller and Mobile SDK

The remote controller shown in Figure 1.2 has a transmission frequency between
2.4-2.483GHz and an operating temperature range from 0ºC to 40ºC. A mobile
phone is connected to the remote controller by a wired link. It can be micro-USB
or USB to micro-USB, USB-C or Lightning, depending on the phone which will be
connected. The schema is explained in Figure 1.3.

DJI has an SDK (Software Development Kit), designed to give developers ac-
cess to the capability of DJI’s aircraft and handheld camera products, for differ-
ent devices. DJI developed SDKs for being used in different platforms in mobile
phones, User Experience (UX), onboard the drone, payload the drone carries and
Windows [5]. The best solution would be onboard so that no connection with an-
other device would be needed. The problem was that DJI only has this SDK for
certain model drones, the Matrice Series, and these drones are too big for this pur-
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1.3 Remote Controller and Mobile SDK

Figure 1.2 Remote Controller of DJI Mavic 2 Zoom with a Mobile Phone [4]

pose along with the camera quality not being good enough. Then the next solution
would be the Windows SDK, but this has too few features for what was needed.
Therefore, in the project the Mobile SDK was used because of all the available fea-
tures. Although this requires a connection to the drone followed by a connection to
a Mobile phone and finally a connection to the computer.

There are many features that can be used, for example, flight control that can be
done manually with virtual stick commands and by missions, the reception of air-
craft’s state through telemetry and sensors such as GPS position, compass, barome-
ter, IMU, flight velocity and altitude. It has readings available at up to 10 Hz through
the Mobile SDK, obstacle avoidance, camera and gimbal control, the exposure and
parameters of the image and video and the direction using the gimbal, live camera
video feed, remote access to media stored (SD card or solid state drive), and pre-
defined missions such as Waypoint, HotPoint and FollowMe [6]. This following
mission only allows a person to be followed from a certain position, for example
laterally or from the back.

The Mobile SDK includes a library that can be imported into an Android or iOS
app that gives access to the DJI product. In this case the app was developed (by the
Sony team before the project was started) for Android systems within Android Stu-
dio. Furthermore, an aircraft simulator and visualization tools exist for the chosen
drone.

Flight Control
In order to better understand how the flight of the drone is controlled, the coordinate
systems and the attitude of the drone are explained.

Coordinate systems In the DJI Mobile SDK there exist two coordinate systems,
one relative to the aircraft body (body frame) and the other relative to the ground
(world frame), see Figure 1.4.
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Chapter 1. Introduction

Figure 1.3 Connection from the Mobile Device to the Aircraft [6]

Figure 1.4 Body Coordinate System translation axes (left), Ground Coordinate
System axes (center) and Body Coordinate System rotation axes (right) [6]

The body coordinate system is defined by the three axes so that the origin is
located in the center of mass, the X axis is directed through the front of the aircraft,
the Y axis through the right of the aircraft and the Z axis through the bottom of
the aircraft, using the coordinate right hand rule. Therefore, the positive translation
movements are considered forward, right and downward for the X, Y and Z axes,
respectively. The aircraft rotation is also described with the same axes, defining
the direction positive rotation using the coordinate right hand rule. When describ-
ing rotational movements, the X, Y and Z axes are renamed Roll, Pitch and Yaw,
respectively.

The ground or world coordinate system aligns the positive X, Y and Z axes
with the directions of North, East and down respectively. This convention is called
North-East-Down or NED. The axes movements follow the right hand rule, so for
instance a heading angle of 0º will point toward the North and +90º toward the East.
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1.3 Remote Controller and Mobile SDK

In this thesis work the yaw is set in the ground coordinate system and the roll
and pitch are set in the body coordinate system, although as a default it is set in the
ground coordinate system.

Attitude and Flight Attitude is the orientation of the aircraft and its camera gimbal
and it is defined by the rotation of the pitch, roll and yaw axes. Combined with
the throttle, which controls the aircraft’s average thrust from its propulsion system,
rotating the aircraft in pitch, roll and yaw orients the aircraft and moves it in space.
The DJI Mobile SDK provides APIs to adjust the pitch, roll and yaw angle and
velocity to achieve movement.

Pitch measures an object’s rotation about the lateral (Y, pitch) axis. Adjusting
the pitch will tilt the drone forwards or backwards. If the back propellers spin faster
and have more thrust than the front propellers, the pitch will be forward. The thrust
on each propeller is automatically balanced by the flight controller.

Roll measures an object’s rotation about the longitudinal (X, roll) axis. Adjust-
ing the roll will tilt the drone left or right. If the right propellers spin faster and have
more thrust than the left propellers, the roll will be to the left.

Yaw measures an object’s rotation about the vertical (Z, yaw) axis. Adjusting
the yaw will change the heading of the drone. Half of the propellers spin clockwise,
while the other half anti-clockwise. If one half spins faster than the other half, the
drone will rotate around the yaw axis.

Gimbal and Camera
The DJI Mobile SDK has different capabilities for runtime use, such as mechanical
stops of each gimbal axis, response speeds, and manual control can be customized
and which axis are controllable. The work modes of the drone depend on the number
of axes that are available for control:

• Free Mode: The gimbal can move independently of the aircraft’s yaw, which
means that pitch, roll and yaw are controllable.

• Yaw Follow Mode: Pitch and roll can be controlled so that the yaw will follow
the aircraft’s heading.

• FPV (First Person View) Mode: where yaw and roll are fixed relative to the
drone while pitch remains controllable. This is the mode set for this project.

State information is pushed back to the mobile device at up to 10 Hz by the gimbal
components. This information includes current attitude, calibration state and offsets,
work mode and whether the gimbal is at a mechanical stop.

The gimbal can be moved in two ways through the DJI Mobile SDK: the first
one is moving to an angle over a duration, where the angle rotation of the gimbal
can be defined as either relative to the aircraft heading (Absolute) or relative to its
current angle (Relative). The second way is to move at a certain speed in a direction
where the direction can either be set to clockwise or counter-clockwise.
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Chapter 1. Introduction

The camera can be set with DJI Mobile SDK to different operations modes,
resolutions (in the project, it will be 640x380px for the image processing), frame
rates, exposure, picture setting and file types

Missions
Many different missions, which allow automated flight, can be uploaded to and
managed by the drone or from the mobile device. To assure that the mission run
without problems the wireless link between the drone and the remote controller
should always be good enough not to lose the connection. The missions that are
available are:

• Hot Point Mission: the aircraft will repeatedly fly circles of a constant radius
around a specified point called Hot Point.

• Follow-Me Mission: the drone will follow GPS coordinates continually sent
to the aircraft maintaining separation and constant altitude.

• ActiveTrack Mission: allows tracking of a moving subject using the vision
system and without a GPS tracker on the subject. It can be done in three
different modes: trace mode (follows behind or in front of the subject keeping
a constant distance), profile mode (moves in parallel withe the subject) and
spotlight mode (the remote controller can be used manually to control the
aircraft move around the subject).

• TapFly Mission: flies the drone in the direction of a point on the live video
stream that the user chooses.

• Waypoint Mission: the aircraft will fly to a series of pre-defined locations
(waypoints). A location is a latitude, longitude and altitude. Aircraft heading
and altitude between waypoints can change either gradually or at the way-
point itself. At each waypoint a series of actions can be executed, such as
taking a photo. The drone can execute 99 waypoints per mission.

1.4 Drone Controller

As the purpose of the project was to film a skier from different positions and that
is something that DJI Mobile SDK does not support, another program was required
for tracking and control, written in C++ on the control-PC running Ubuntu/Linux,
called DroneController. The program is divided in many files, each one with
it own header file, which allows for a better structure of the program for future
modifications. The flowchart of the program is shown in Figure 1.5.

To run the app it is necessary to first execute the DroneController program in or-
der to establish the connection between the mobile phone and computer. When both
devices are connected, the information from and to the drone will start to be sent,
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1.4 Drone Controller

but any of the missions programmed will not be executed until the user introduces
the code in the session website.

Figure 1.5 Flowchart of DroneController program

Video
The decoding and processing of every video frame is done using the OpenCV li-
brary [7] and for the image detection of people the real-time object detection system
YOLOv3 is used [8]. Although the drone is filming in 4K resolution, in the com-
puter the video will be rescaled to the lower resolution of 640x380 pixels (in order
to send and use images faster).

When the app has been started video frames are stored in a buffer and when
it is full, the video is started to be sent to the computer from the phone through
that data buffer. The computer receives a frame every 30ms, in average, and that
image is decoded and stored in a queue of size one waiting to be processed, shown
in video part of Figure1.5. If the image recognition process is working and a new
frame arrives, it will discard the previous image as a way to always have the newest
frame. This will happen until a frame is required by the processing section and the
vector will be empty until the next frame arrives to the computer.

Tracking
Once a frame arrives from the drone, it will go to the program module called
PersonTracker, where the image recognition process is done. If the target hasn’t
been selected, the program will try to detect people in the image until the person at
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the computer selects the person that the drone should follow. Then when the person
is chosen, the program will from now on use the subsequent frames to update the
position of the target. In order to help the programmer debug, in every frame two
lines that form a cross are drawn to show the center of the screen and when the pro-
gram has a target tracked bounding box, another cross will be drawn for the center
of this bounding box. This rectangle of interest, which is being updated in every
frame, is not constant and will change the size slightly trying to find the complete
size of the person.

The way to control the gimbal’s pitch and the drone’s yaw for tracking a per-
son that was implemented before the start of this thesis work consisted solely of a
proportional controller. Firstly, it measured the error in pixels of the center of the
rectangle of interest on the target, to the center of the screen both vertically and
horizontally. Then the proportional controller was implemented having as input the
pixel error of the image from the center of the target to the center of the screen for
each axis. These simple P-controllers are shown in Equations 1.1 and 1.2.

uyaw =
pixelErroryaw

7
(1.1)

upitch =
pixelErrorpitch

10
(1.2)

To reduce flickering, a dead-zone for the gimbal motion was introduced. If the
velocity calculated for the gimbal pitch is between -5º/s and 5º/s a null velocity is
returned. Otherwise the calculated velocity reference is returned. In the case of the
drone yaw, the velocity calculated will always be sent.

Telemetry
All the information received from the drone and transmitted to it, and is not part of
the video, is sent in another thread, all included in a JSON file. For example, if the
drone altitude is wanted to be read or to set a new velocity reference for the yaw, it
will be received and sent by a JSON file. The commands available depend on the
DJI Mobile SDK, see Section 1.3. The frequency of receiving and sending these
JSON files is one file every 20ms.

Actions
As it was said in the beginning of Section 1.4, the drone will not fly until the mis-
sion actions have started. These missions, predefined in the program, are called and
ordered from a mission file.

The first action needed to activate the flight of the drone is TakeOff, for which
the drone will be elevated 1.2m from the ground. Then the drone will ascend and go
to the detection position. In this point, it will point to a certain area where the person
must be located and wait until a target in the computer is selected to be followed.
Then the tracking and recording will start.
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1.5 Transmission of information

After that, FlyToWaypoint action is called. In this action the drone will go to
different waypoints that were previously defined, corresponding to a nominal path
along the ski slope, while the drone will track the skier with the camera. In these
waypoints, the index of the waypoints, latitude, longitude, altitude and yaw (only at
that position) are set. Moreover, the minimum speed of the drone is set and if the
drone must keep that speed constant or not until it gets to the next desired point.
During the movement of the drone to these waypoints, the gimbal pitch and the
drone yaw will be moving according to the skier, trying always to keep it centered
in the screen.

Finally, when the drone gets to the final waypoint, it will release the detection
of the target, stop the recording and call GoHome action, where the drone will return
to the place from where it took off. Once the drone lands, the mission will have
finished.

1.5 Transmission of information

There are two different ways of receiving information from the drone. One is the
stream of the video images shown in green color in Figure 1.6, and other is the
telemetry information data in blue. As explained in Subsection Telemetry, the com-
mands sent to the drone are sent in a JSON file, so they are part of the telemetry
data, and can be transmitted to the drone with a delay of around 70ms. This delay
includes, being first sent to the app and then, forwarded from the app to the drone.

Every piece of information that is transmitted from and to the drone, both image
and data, goes firstly to the remote controller, which is connected with a cable to
the Android mobile phone, where the information is decoded and shown through
the app. For the image, it arrives to the app around 300ms delayed and then, it is
compressed again and sent to the computer. This transmission takes around 450ms
and it is longer because it is done by WiFi connection. There is therefore a big
dependency on the quality of the WiFi connection because if it is bad, the image can
be display on the computer screen even 2s delayed. However, with good connection
the delay is typically below 1s.

As this is the main cause of time delay in the transmission and it can differ
hugely, it is important to explain in detail every single step that the information and
image go through.

When the main program is started in the computer, all the sockets and connec-
tions are not activated until the mobile app has been started. Then, the telemetry
data arrives pretty fast (every 20ms), but with a delay of 200ms from the drone. The
first video frame takes 1.5 seconds fixed delay to be received in the computer. This
delay is due to the buffer, that needs to have a determinate fixed size to be sent. For
this reason, although it takes 1.5s since the program has been loaded, the first frame
received might only be 800ms delayed (without counting the processing time of the
frame, just when it has been decoded). This reception delay during the execution of
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Chapter 1. Introduction

Figure 1.6 Time delay of every system part

the program is around 700ms on average and the decoding just 10ms on average.
Recognizing and selecting a target takes a long time, in part because it will

detect all possible targets. After the detection it takes noticeably less time to update
the position of the target and it depends very much on the processor’s speed. With
the computer used for this project, an HP EliteBook 840 G3 with a processor Intel
Core i5 with vPro [9], the sample time for the detection was around 300ms and for
the target update, around 80ms, as Figure 1.5 shows. Using a computer with four
cores for instance the sample time can be halved.

In addition, it is important to comment that at least for the computer used, every
time that an action is started, the sample time is bigger. After some runs, it decreases
to a shorter sample time.

1.6 Skier motion

The purpose of the project was to design a controller for the drone while it was
tracking someone performing an outdoors sport such as skiing. Therefore, it was
important to know the movement of a skier.

Figure 1.7 shows that the movement of these skiers follows an approximate zig-
zag or sinusoidal motion. They descend in a straight line and turn to reduce their
speed. Depending on how a skier takes the turn, the path can be straighter and more
aggressive or have larger curves with a smoother turn. So while the skier is going
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1.6 Skier motion

Figure 1.7 Clip from a video filmed by the drone and the approximate, recon-
structed path of the skiers

approximately straight the movement can be predicted and the break point will be
in the turns.
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2
Methodology

2.1 System Identification

The first step to designing a controller for the system was to identify what kind
of system it was and determine its parameters. Due to the nature of the project, in
which an externally produced DJI drone was being used with internal proprietary
code and data sheets unavailable, the system had to be determined through mea-
surements.

The functions that could be used to control the drone that were available in-
cluded setting the angular velocity, setting the angle, and reading the angle. How-
ever, reading the angular velocity was not possible. This went for both the pitch of
the gimbal, on which the camera was mounted, and the yaw for the entire drone.
With the given constraints measurements were taken by making multiple test runs
where a desired angle was set, i.e. the control signal of the system, and measure-
ments of the angle were made. Likewise, test runs where the angular velocity was
set with measurements of the angle were also made. This was done for both con-
trolling the gimbal pitch and the drone yaw.

Attempts to model the system included the System Identification Toolbox in
Matlab [10] and Simulink. However, what proved to work best was choosing appro-
priate transfer functions and using a conversion table to get the same transfer func-
tion in the time domain. Choosing suitable transfer function were done by looking
at a time plot of the measurements. The fminsearch [11] function was then used in
Matlab to minimize the squared error between the model and all the measurements.

2.2 Measuring the Angle Error

The controller that had been previously used was obtained through trial and error
and had been using the error between the target and camera (center of the screen)
in pixels. However in order to provide more accurate results it was necessary to
measure the error as an angle.
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2.2 Measuring the Angle Error

It is important to emphasize that the coordinates origin of the screen is in the
top left side of the screen. There is a function for each axis, although both have the
same structure. For the horizontal axis the function takes as input values the pixel
error from the center of the screen to the center of the bounding box of the person,
variable a in Figure 2.1. Similarly, variable b is used in the vertical axis. The field of
view is 83º horizontally and 48º vertically. The width of the received image is 640
pixels (p) and the height is 380 pixels.

Figure 2.1 Field of view of the drone and variables to calculate the conversion of
pixel error to angle error

The objective is to calculate the angles A and B in Figure 2.1, following the
principles of trigonometry. First the "distance" d in pixels between the drone and
screen is calculated (which is merely an arbitrary constant used to better understand
how the pixels are converted to an angle), yielding that

tan
(

83◦

2

)
=

640/2
da

⇒ da =
320

tan(41.5◦)
= 361.69

tan
(

48◦

2

)
=

380/2
db

⇒ db =
190

tan(24◦)
= 426.75

This is then used to calculate angles A and B as given by Equations 2.1 and 2.2.

tan(A) =
a
da
⇒ A = arctan

( a
361.69

)
(2.1)
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tan(B) =
b
db
⇒ B = arctan

(
b

426.75

)
(2.2)

These functions can be seen implemented in lines 134-160 of Appendix A.
It is relevant to mention that the units of the angular measurement used in the

program for the calculations are in radians as a baseline and that all calculations
were made using degrees, so a conversion to radians in the code is needed.

It is also very important to clarify that due to the coordinate system and how
the drone moves, some things change compared to how it is in theory. Let’s say for
instance that the image detects a person up to the right like Figure 2.1 shows. In this
case to decrease the error in the vertical axis, the pitch gimbal has to move upwards.
But the error will be negative (due to the coordinate system of screen) which will
tell the controller to move the gimbal down, and then the error increases. Therefore,
to move the camera in the right direction, the sign must be switched.

2.3 Time delay and sample time

One crucial part to get a great controller and predictor is to measure the sampling
time of the process and the time delay of the image. The sample time was calculated
as the time it took between signals sent from the controller.

Getting the time delay of the image is more complicated. As the telemetry data
is not coordinated to the image, it is not known when received images of the video
were taken. The first way to measure it was taking a picture of a timer running and
the live video in the computer of the same timer the drone was filming. The problem
was that the time delay of the image depends on the WiFi connection.

So that, the way the time delay was measured was placing a dark object in front
of the camera and a white object below the camera, on the ground, before the drone
takes off. The pixel color of the center of the screen is measured using the RGB
color model [12]. This model is the composition of color in terms of the intensity of
the primary colors of the light: red, green and blue (RGB). The scale of this model
goes from 0 to 255 for each color e.g. the color white is [255,255,255] and the
color black is [0,0,0]. However, in OpenCV the order of the primary colors is BGR
instead of RGB.

Once the pixel color is measured, a fast movement of the gimbal pitch is sent
and when the program detects that the image change from a dark value (close to 0
in RGB scale) to a light color (close to 255 in RGB scale) the complete time delay
can be measured, including the time taken from sending action to the drone.

2.4 PID Controller

Measurements were made to determine the various delays of the system, and the
sampling time of the controller. The system was then implemented in Matlab and
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2.5 Smith Predictor

PID Tuner [13] was used to get an approximate controller. Afterwards, the closed
loop system is plotted and discretized as well as fine tuned. Then the preliminary
controllers could be tested on the real process.

With a derivative filter in place for noise reduction the PID controller is given
by Equation 2.3.

C(s) = Kp +Ki ·
1
s
+Kd ·

N
1+ N

s

(2.3)

Afterwards the controller could be discretized [14] using backward difference,
as shown in Equation 2.4. Combined with Equation 2.3 it yields the discretized
controller in Equation 2.5 where h denotes the sampling time of the controller.

s′ =
z−1

zh
(2.4)

C(z) = Kp +Ki ·
zh

z−1
+Kd ·

N(z−1)
(1+Nh)z−1

(2.5)

This gives Equations 2.6 and 2.7 that are used to implement the controller.

b0 = Kp(1+Nh)+Kih(1+Nh)+KdN
b1 =−(Kp(2+Nh))+Kih+2Kdh
b2 = Kp +KdN
a0 = (1+Nh)
a1 =−(2+Nh)
a2 = 1

(2.6)

u(k) =−a1

a0
u(k−1)− a2

a0
u(k−2)+

b0

a0
e(k)+

b1

a0
e(k−1)+

b2

a0
e(k−2) (2.7)

Finally, it is also important to implement some form of anti-windup [15] func-
tion for the controller since the real process has limitations on its input signal.

2.5 Smith Predictor

Due to the large delay in the system, a Smith predictor [16] could allow for a faster
controller. The basics of a Smith controller are to use a model of the system, rather
than the real system, and feed back the response without the delay. The difference
between the model (with the delay) and the real process is then compared and fed
back into the controller. The principle is shown in Figure 2.2.

It can easily be seen that if the process model is perfect, then the delayed Smith
measurement and delayed real measurement cancel each other out. This means the
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Figure 2.2 Smith predictor block diagram

only thing entering the controller is the non-delayed Smith measurement (which
should be equal to the real measurement). If the model of the process is not perfect,
then the error between the delayed Smith measurement and the real delayed mea-
surement will be returned into the controller and adjusted for. This still does not
remove any delay in the reference, and only allows the controller to act faster.

Assuming a perfect model, it is then possible to design a controller completely
as if the delay in the measurement did not exist.

Implementation
In order to implement the Smith Predictor in the code, it was required to store the
previous values of the model in a vector to get the corresponding real value of the
drone due to the time delay.

Therefore, three vectors were implemented using the std::vector library: one
for the Pitch values, another for the Yaw values and the third one is for the sample
times of each iteration. In such iterations, the newest value is stored at the end of
each vector. Then with a while function the sample time of the previous steps were
summed until the time delay is achieved. Finally linear interpolation was used to
approximate the delayed value of the desired Smith predictor value.

To avoid the collapse of the vector’s size, at the end of each iteration, the first
value of each vector is removed. Therefore, there is always the same amount of
values in the vector (once the full size of the vector has been reached). Although
different in implementation, this effectively becomes a ring buffer.

It later turned out that an integrator was part of the process model, so trapezoidal
integration was used in the code given by Equation 2.8.
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2.6 Kalman Filter

∫ b

a
f (x)dx≈ (b−a) · f (a)+ f (b)

2
(2.8)

2.6 Kalman Filter

In the process that was being controlled there was a very large time delay in receiv-
ing measurements. Which meant that as long as the target was moving the controller
would never be able to make the camera look directly at the target since it was con-
stantly trying to move the camera to the target’s old position.

In order to remedy this a simple prediction model was introduced where the
idea was to take the current position of the target and add the velocity of the target
multiplied by the time delay. If the target would be keeping constant speed then the
camera would be able to look at where the target actually is rather than where the
target was the time delay ago. However, in the process it is only possible to read the
position of the target (in the form of pixels on an image) and not the velocity. For
this reason a Kalman filter [17] is introduced to get an estimation of the velocity.

The model for the Kalman filter is based on the assumption of double-integrator
dynamics


x = x1

ẋ = x2

ẍ = 0

where x is an angle, which yields that in state-space representation

A =

[
0 1
0 0

]
B =

[
0
0

]
The B-matrix is considered to be 0 since the Kalman filter was following the

the target, i.e., the reference, and the controller signal had no affect on the target’s
position. It only had an effect on the camera’s position. Since only the position of
the target could be measured, and not the target’s velocity, it was given that

C =
[
1 0

]
Additionally, the K-matrix was given by

K =

[
k1
k2

]
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Chapter 2. Methodology

which gave Equations 2.9 to 2.12. This is visualized in Figure 2.3.

˙̂x = Ax̂+K(y− ŷ) (2.9)

ŷ =Cx̂ (2.10)

˙̂x = Ax̂+K(y−Cx̂) (2.11)

˙̂x = (A−KC)x̂+Ky (2.12)

Figure 2.3 Kalman filter block diagram

In order to discretize [18] Equation 2.12, and still have it be dependant on a
varying sampling time h, Equations 2.13 and 2.14 (the ordinary c2d [19] function
in Matlab) cannot be used without creating needlessly complicated calculations.

Φ(h) = e(A−KC)h (2.13)

Γ(h) =
∫ h

0
Ke(A−KC)sds (2.14)

Instead a simplified way of calculating the matrices was used, shown by Equa-
tions 2.15 and 2.16.

Φt(h), I +(A−KC)h+
(A−KC)2

2!
h2 +

(A−KC)3

3!
h3 (2.15)

Γt(h),
∫ h

0
KΦt(s)ds (2.16)

The results were then inserted into Equation 2.17. Since the Kalman filter was
used to approximate the velocity of the target in order to approximate the position
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2.7 Combining Smith Predictor with Kalman Filter

of the target, the approximate reference is given by Equation 2.18, where td is the
time delay from when an image is sent from the drone to its effect being noticed in
a received image.

x̂(kh+h) = Φt x̂(kh)+Γty(kh) (2.17)

r̂(t) = x̂1(t− td)+ x̂2(t− td) · td (2.18)

2.7 Combining Smith Predictor with Kalman Filter

A core issue in implementing the Kalman filter was rooted in the fact that it was
only possible to measure the angle error (more precisely, the pixel error and convert
it into an angle error) between the reference (i.e., the target or skier) and the mea-
surement (i.e. the angle of the camera). This meant that there was no direct access
to measuring the reference and how its velocity was being changed.

However, by the time the Kalman filter was being worked on it had been made
clear that the Smith predictor could very accurately predict the angle of the camera.
The solution was to apply the Kalman filter on the sum of the error and the Smith
predictor’s estimation of the camera position at that point in time, as clarified in
Equation 2.19. To be clear, rs becomes the input value y for the Kalman filter as
seen in Equation 2.12 and 2.17 while the y (or rather ysmith) relates to the camera
angle y in Figure 2.2 and 2.4.

Figure 2.4 Full control system, consisting of controller (green), Smith predictor
(red), process (blue), and Kalman filter (orange)
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rs(t− td) = e(t− td)+ ysmith(t− td) (2.19)

ysmith(t− td) = ysmith_delay(t) (2.20)

Figure 2.4 shows a block diagram of the full control system and how each part is
connected. Note that although the reference r and measurement of camera position
y are shown individually it was only possible to measure the error between them.
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3
Results

3.1 System Identification

For all sets of measurements the input signals were sent as constant steps. The mea-
surements were then normalized by dividing them by the input signal and plotted
out. The results can be seen in Figures 3.1 and 3.2. From Figure 3.1 it can be seen
that a transfer function according to Equation 3.1 became suitable, where the input
is an angle and the output is an angle. Since Figure 3.2 showed an input signal that
is an angular velocity, and the measurements showed an angle, it became reasonable
to just add an integrator to Equation 3.1. However, the Matlab code used to estimate
the transfer function then completely ignored the time delay (for some unknown
reason). Since the curve of the slope was so small, and the measurements were not
fully accurate anyway, a simple delay and integrator shown in Equation 3.2 was
instead used.

Ga(s) = b · a
as+1

· e−sL (3.1)

Figure 3.1 Plot of normalized gimbal pitch (left) and drone yaw (right) angle mea-
surements over time, color coded to input signal
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Figure 3.2 Plot of normalized gimbal pitch (left) and drone yaw (right) angle mea-
surements over time for a certain angular velocity, color coded to input signal

Gv(s) =
b
s
· e−sL (3.2)

When converted from the Laplace domain to the time domain, these transfer
functions become Equations 3.3 and 3.4 respectively.

ga(t) = b · (1− e−at)

{
ga(t−L) t−L > 0
0 t−L < 0

(3.3)

gv(t) = b · t

{
gv(t−L) t−L > 0
0 t−L < 0

(3.4)

After the fminsearch function was used in Matlab using the transfer functions
in the time domain, a line was fitted to each set of measurements in order to get the
transfer functions. The results are shown in Figures 3.3 to 3.6. The parameters for
the transfer functions are provided in Table 3.1.

Table 3.1 Parameter values for the transfer function

Function Measurement a b L
Angle Pitch 8.82 1.01 0.08
Angle Yaw 5.55 1.02 0.23
Velocity Pitch - 0.93 0.10
Velocity Yaw - 0.97 0.13

However, as can be seen there were plenty of outliers. This was in part due
inaccurate measurements and it also turned out that sometimes the first run in a
set of measurements had a much larger delay. Moving forward, since these transfer
functions are results of built-in functions made to set the angle or speed in the drone,
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3.1 System Identification

Figure 3.3 Plot of transfer function next to the gimbal pitch angle measurements

Figure 3.4 Plot of transfer function next to the drone yaw angle measurements
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Figure 3.5 Plot of transfer function next to the gimbal pitch angular velocity mea-
surements

Figure 3.6 Plot of transfer function next to the drone yaw angular velocity mea-
surements
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3.2 Sample time and Time delay

and all b values are so close to 1, it was assumed that b=1 for all four transfer
functions.

3.2 Sample time and Time delay

The sampling time of the controller was greatly dependant on the speed of the com-
puter’s processor. The sampling time was constantly changing, shown in Figures 3.7
and 3.8, where the results were centered around 70 to 80ms. However, this variation
in sampling time did not have to represent a standard run and can vary a lot between
runs. This variation was a core reason in not assuming a constant sampling time in
the discretization of the controller, Smith predictor or Kalman filter.

Figure 3.7 Sample times during a program’s execution.

Regarding the full delay from computer to drone and back to the computer, it
became evident that the delay was far from constant. Attempting to use the proposed
method of measuring the delay at the beginning of a run, comparing a white and
black background, turned out to give worse results than an estimated full delay of
0.7 seconds. This is a result of the quality of the WiFi connection which can change
during the run of the program.

3.3 PID Controller

Even though controllers were made for the angle processes Ga, it turned out to be
a problem with the angle process. The issue was that it was not possible to increase
or decrease the angle without reading the current angle (without altering other parts
of the project which would create new problems). Note that this angle is the angle
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Chapter 3. Results

Figure 3.8 Histogram of Sample time.

of the gimbal or drone in reference to north, and not the angle from the image. The
main issue in reading this angle was that it had a different delay (blue in Figure 1.6)
than the images from the camera and could not be synchronized to the other parts
of the process. For this reason the project was continued by designing a controller
for the velocity processes Gv. The velocity processes are differentiated by calling
the angular velocity process Gvp for the gimbal pitch and Gvy for the drone yaw.

The controller for the gimbal pitch Cvp and the controller for the drone yaw Cvy
are shown in Equation 3.5 with parameters in Table 3.2. Since the models of the
processes were almost identical the same controller could be used for them both.
The closed loop of the process and controller can be seen in Figure 3.9.

Cv(s) = Kp +Ki ·
1
s
+Kd ·

N
1+ N

s

(3.5)

Table 3.2 Parameter values for the angular velocity controllers

Kp Ki Kd N
0.5 0 0.15 3

The controller was then promptly discretized and implemented. Since Ki = 0
there was no need for an anti-windup functionality.

Implementation
The implementation of the PID discretized controller and its parameters was done
following the Equations 2.6 and 2.7. In lines 126-145 of Appendix B the implemen-
tation of the PID for the gimbal can be seen and lines 165-182 for the yaw. All the
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Figure 3.9 Closed-loop step response of Cvp and Gvp (with a full delay [computer-
to-drone and drone-to-computer] of 960ms and a constant sampling time of 150ms)
in simulation

values were updated in every iteration due to the variation of the program execution
sample time for improved accuracy.

Measurements were taken from the stationary target using the same controller
values as shown in Table 3.2. The measured angle and the control signal are shown
in Figure 3.10 for both the pitch and yaw.

Figure 3.10 Response of yaw and gimbal controlled with a PD controller following
a target without movement

27



Chapter 3. Results

3.4 Smith Predictor

Since the delay can be ignored by a Smith predictor with a perfect model, the delay
from drone to computer was ignored when designing a faster controller. However,
the delay L in Table 3.1 was still kept. That is because the delay L is the actual
delay in which the system starts moving. By using this system’s new controller
parameters, given in Table 3.3, the closed loop step response could be evaluated. As
seen in Figure 3.11, the new controller Csmith gives a much faster response.

Table 3.3 Parameter values for the angular velocity controllers in simulations

Kp Ki Kd N
2.9 0 0.1 3
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Figure 3.11 Closed-loop step response of Csmith and Gvp (with a full delay
[computer-to-drone and drone-to-computer] of 960ms and a constant sampling time
of 150ms) in simulation

Implementation
The Smith Predictor was implemented in the program using trapezoidal integration
for the system model, as is shown in lines 137 to 146 of Appendix B for the gimbal
pitch and in lines 176 to 184 for the drone yaw, and using the ring buffer to store
and select the proper model value delayed, in lines 82 to 108 of Appendix B. For
the measurements of following a person standing still and camera initially facing
wrong direction, using the parameters values of Table 3.4, the results for the error
and controller signal can be seen in Figure 3.12 for both the pitch and yaw.
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3.5 Kalman Filter

Table 3.4 Parameter values for the angular velocity controllers in practice

Kp Ki Kd N
2.5 0 0.2 3

Figure 3.12 Response of yaw and gimbal controlled with Smith predictor follow-
ing a target without movement

3.5 Kalman Filter

The dynamics of the Kalman filter were given by the A-KC-matrix in Equation 2.12.
With poles placed in

{
p1 =−0.85+0.45i
p2 =−0.85−0.45i

where the characteristic polynomial was given by Equation 3.6. This could eas-
ily be compared to the determinant of A-KC to acquire a suitable K-matrix, seen in
Equation 3.7.

(s− p1)(s− p2) = s2 +1.7s+0.925 (3.6)

|A−KC|= s2 + k1s+ k2 (3.7)

This gave

K1 =

[
1.7

0.925

]
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and served as a decent starting point for the Kalman filter. The Kalman filter
parameters were then manually tuned to

K2 =

[
4

10

]
where the respective results in simulation can be seen in Figures 3.13 and 3.14

for an arbitrary measurement. The pole placement for the discretized Kalman filter
of K2, assuming a sampling time of h=0.200s, was given by Equation 2.13 and
yielded that

eig(Φ)⇒

{
p1 = 0.590+0.316i
p2 = 0.590−0.316i

which are within the unit circle and corresponds to continuous poles with nega-
tive real values.
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Figure 3.13 Kalman filter states given by K1
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Figure 3.14 Kalman filter states given by K2
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3.5 Kalman Filter

By using Equations 2.17 to 2.20 it was possible to test the Kalman filter’s ability
to predict where a target was heading. In Figures 3.15 and 3.16 the Kalman filter
prediction r̂ can be seen for two different curves, both using a time delay from drone
to computer at td=890ms and a constant sampling time of h=150ms.

A
ng

le
(d

eg
re

es
)

Figure 3.15 Kalman filter prediction given by K2 for a target moving in a sinu-
soidal shape
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Figure 3.16 Kalman filter prediction given by K2 for a target making a quick turn
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Note that the two curves are used in simulation for two arbitrary curves and time
frames, that intentionally showcase the strength and weakness of Kalman filter K2.
It became evident that the the ability to predict the position of a target that quickly
changes velocity is difficult while a target that turns slowly (or not at all) is easy to
follow.

Implementation
The Kalman filter was discretized and implemented using Equation 2.15. The
Kalman filter did however have to be tuned further for the real process, giving the
Kalman filter

K3 =

[
5
8

]
for the real implementation. The states of the filter can be seen in Figure 3.17

and the ability to follow a measurement and approximate the velocity is shown in
Figure 3.18.
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Figure 3.17 Kalman filter states given by K3

3.6 Combining Smith Predictor with Kalman Filter

When everything was finally combined into one system, according to Figure 2.4, it
was possible to get a fast controller that could get the camera into almost the same
position as the target due to the prediction.

In Figures 3.19 and 3.20 the results can be seen of how well in simulation the
actual position of the camera can follow the actual position the target. It should
come as no surprise that the results are very similar to those in Figures 3.15 and
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A
ng

le
(d

eg
re

es
)

Figure 3.18 Kalman filter K3 input and prediction for 0.7s later

3.16, respectively. The results are also using the K2 Kalman filter, combined with
the system consisting of Csmith and Gvp.
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Figure 3.19 Actual position of camera and target (not the delayed measurement)
compared in simulation for sinusoidal movement of target in system consisting of
K2, Csmith and Gvp

Implementation
When running full system it was not uncommon for the camera to start looking
ahead of the target. For this reason Equation 2.18 was modified into Equation 3.8
where the trust factor is added. The trust factor Tf ac can be seen as how much into
the future it is desired to look, as a percentage.
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Figure 3.20 Actual position of camera and target (not the delayed measurement)
compared in simulation for a fast turn in system consisting of K2, Csmith and Gvp

r̂(t) = x̂1(t− td)+ x̂2(t− td) · td ·Tf ac (3.8)

Figure 3.21 Response of yaw and gimbal controlled with Smith predictor and
Kalman filter following a target without movement

When running the full implementation with Smith predictor and Kalman filter
used to predict position of target a trust factor of 0.8 worked well for the pitch pro-
cess. However, for the yaw a trust factor as low as 0.4 had to be used. Otherwise
the system would become unstable and start to oscillate. The discretized imple-
mentation is seen in lines 112-124 for the pitch and in lines 152-163 for the yaw
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3.6 Combining Smith Predictor with Kalman Filter

in Appendix B, as well as lines 138 and 176 for how they were connected to the
controllers.

Still using K3, the results of following a stationary target with an initial error are
shown in Figure 3.21. There it can clearly be seen how there is an overshoot, which
is due to the Kalman filter "thinking" the target moved that distance very quickly
and believing the target will continue at that speed.
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4
Discussion

4.1 Improved System Identification

A mistake that was made in modelling the system was to only model how the cam-
era moves from being stationary to starting to move. This was enough for modelling
the gimbal pitch and creating a very fast and functional Smith predictor. However,
when controlling the drone’s yaw the process seemed to be different when the ve-
locity was decreased compared to increased, and was not as quick to stop as it was
to start moving. Although not detrimental to the project this effect did decrease
performance. The issue was realized too far into the project and at that point there
was not enough time to model this effect. But if this project were to be redone then
modelling the camera movement as the angular velocity is decreased, rather than
just increased, should have been done as well.

Alternatively, if the gimbal on which the camera was mounted could be turned
in the yaw direction then more control and accuracy could be achieved over the
system. This way a fast controller could be used for the gimbal yaw, and a slow
controller for the drone yaw so that no turn limit is reached for the gimbal. This
could be handled with midranging control [20].

4.2 Measuring the Time delay

The idea to measure the delay at the start of a run by measuring the time it takes
for the first image to be received from when the program is told to start did not
work. The issue was that before the image could be sent an image buffer had to
be filled and this made it impossible to know the actual delay. There was also an
effect of the program running more slowly at the start of a run this kind of time
delay measurement method was unlikely to work. Especially since the delay was
not constant.

An alternative way of measuring the delay as it is right now is using the ability
to change certain settings for the image or drone, such as modifying the frequency
of the camera shutter, in order to measure the time for this effect to be detected, i.e.,
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4.3 Controlling the Velocity instead of the Angle

the time delay. The benefit of this would be the ability to measure the time delay
mid flight but the downside would be that it would affect the video.

Instead it would be recommended to find a way to continuously measure the
time delay similar to how the sampling time is measured. The best solution would be
to simply add timestamps to the images that are sent from the drone to the computer,
but that was not possible in this case.

If it is not possible to get timestamps for the images that are sent, the ability to
mount a clock in front of the camera should be investigated. This could however be
in the form of very tiny LEDs in the corner of the screen that form a binary clock.
This would give every image a timestamp and would provide the option of using a
non-static time delay in the Smith predictor and Kalman filter which would improve
performance. The main downside of this option is that the image would have to be
cropped in order to remove the LEDs. The reasons this option was not pursued in
this project was in part the time constraint but also the physical limitations of this
drone model.

4.3 Controlling the Velocity instead of the Angle

The choice to control the velocity instead of controlling the angle was a practical
decision. It was done because it was not possible to increase the angle without also
measuring the current drone heading angle, in relation to the north. If the drone had
a current heading angle at 70°, and it was desired to increase it by 30°, then the
input to the function would have to be 100°. This caused issues because not only
were these heading angles received from the telemetry data (which was different
from the images) with a different frequency, they were also sent with a different
delay and could therefore not be synchronized to the images with the tools that
were at hand.

The main downside of controlling the velocity is that if the computer (or any
other part of the process) gets stuck just as it is sending a high velocity signal then
the camera might turn too fast and lose the target. If this project would be done on
another drone then investigating the option of controlling the angle instead of the
velocity would be advised.

4.4 Identifying inaccuracies in the Smith Predictor

Previously in the report simulated results have only been shown in the case of a
perfect model of the system. However, it is very important to understand how a
wrong model and delay estimation affects the full system, in order to recognize
what might be wrong with the model when adjusting and fine tuning.

In order to more easily explain the effects of an inaccurate model, a couple pa-
rameters are introduced as well as Figure 4.1 to easier understand them. In the pro-
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cess there are two delays: the computer-to-drone delay L and the drone-to-computer
delay td , where the full delay Td is given by 4.1.

Td = L+ td (4.1)

The delay Le denotes the error in approximating the delay L, where a perfect
approximation has Le=0. The delay te denotes the error in approximating the delay
td , where a perfect approximation has te=0. The process and model are in this case
just an integrator, and the factor K is used to represent an erroneous approximation
of the model where K=1 represents a perfect approximation.

Figure 4.1 The Smith predictor shown in more detail for this system

When K>1 then the controller will give a smaller control signal u than what
is actually needed, which can be seen in Figure 4.2. After the delay the controller
receives the difference between the real process and Smith predictor and adjusts.
When K<1 then the controller acts similarly, as seen in Figure 4.3, however this
time the controller will send a larger signal than what is actually needed and will
cause the real process to overshoot.

If instead, the model of the system is approximated correctly but the the full
delay Td have been approximated poorly, then a different issue arises. What happens
is that at first the Smith predictor will correctly predict how the (in this case) camera
will move. However, it will then receive a mismatched comparison between the real
measurement and Smith predictor, because the delay approximation is wrong, and
cause a "bump" to be sent into the controller which is then acted upon. This process
of following the reference perfectly at first, followed by a "bump," is shown in
Figures 4.4 and 4.5.

Additionally, if the full delay Td has been successfully approximated but been
allocated wrongfully so that Le =−te, and Le 6= 0, then another issue can be seen in
Figure 4.6. In this case the comparison between the delayed real measurement and
delayed Smith predictor value are equal and cancel each other out, which means that
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Figure 4.2 The delayed reference at the time it is received compared to the real
camera movement for K=1.1
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Figure 4.3 The delayed reference at the time it is received compared to the real
camera movement for K=0.9

all that remains is the innermost loop with the Smith predictor with only the delay
L+Le. This causes a too fast controller to act on a too slow system and the result is
an overshoot. This is the reason a Smith predictor is used so that the delay can be
artificially "removed" and allow a much faster controller. If instead Le is negative
then a mismatch between the real process and process model is caused (since L is
considered to be part of the process) and although it does not result in an overshoot
it does result in a slower system as seen in Figure 4.7.

Understanding Figures 4.2 to 4.7 is important in order to understand not only
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Figure 4.4 The delayed reference at the time it is received compared to the real
camera movement, for a real process Td=960ms and te=100ms
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Figure 4.5 The delayed reference at the time it is received compared to the real
camera movement, for a real process Td=960ms and te=-100ms

how the Smith predictor works but also to identify where the issue is, if there is one,
so that it can be fixed.

4.5 Effects of altering the Kalman filter

When designing a Kalman filter it is important to keep in mind that there is a trade-
off between speed and sensitivity. If Figures 3.13 and 3.14 are taken into account,
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Figure 4.6 The delayed reference at the time it is received compared to the real
camera movement, for a real process Td=960ms where L=70ms and Le=70ms
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Figure 4.7 The delayed reference at the time it is received compared to the real
camera movement, for a real process Td=960ms where L=70ms and Le=-70ms

where K1 and K2 are compared, then it can be seen that K2 is much faster and better
at following the arbitrary measurement. However, this makes it more sensitive to
noise and small changes that are better to be ignored. Also, it can clearly be seen
how fast the velocity state x̂2 reacts in K2. This is not inherently a bad thing, but
in this application where there is a large delay it can cause overshoot as seen in
Figure 3.16. What happens there is that the Kalman filter prediction will think that
whatever velocity it is detecting will continue to have that velocity for as long as
the delay is. So when the target makes a quick turn the Kalman filter will cause an
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overshoot. While K2 was shown before, a new Kalman filter K4 can be shown where

K2 =

[
4

10

]

K4 =

[
4
1

]
What this shows in Figure 4.8 (using the same arbitrary measurement as in Fig-

ure 3.14) is that it is fairly effective at following the measurement with the position
x̂1 while the velocity x̂2 changes much slower than when K2 is used.
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Figure 4.8 Kalman filter states given by K4

The benefit of this Kalman filter, that is significantly slower at detecting a
change in velocity, is that when it is used to predict the position of the target it
can provide much smoother camera movement for a target that suddenly stops, as is
shown in Figure 4.10. However, since it is so slow at detecting a change in velocity
this creates a greater overshoot for a target turning back and forth as well as taking
longer time at "catching up" with the target as seen in Figure 4.9. These figures fol-
low the same simulated target (and the same delay and sampling time) as Figures
3.15 and 3.16, and the difference between them showcase the trade-off that must be
made when choosing parameters for the Kalman filter.

Had more time been available then a suggested way of tuning the Kalman filter
would be to use a video run of the drone and use that same run for multiple tests.
Then use the Kalman filter to predict where the target will be based on images as
old as the time delay td and use it to draw a visible dot where it thinks the target
should be. By doing this the dot will hopefully always be on top of the target and it
becomes easier to fine tune the Kalman filter. Since the Kalman filter uses the Smith
predictor values, these would likely have to be saved along with the images of the
video with corresponding time stamps.
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Figure 4.9 Kalman filter prediction given by K4 for a target moving in a sinusoidal
shape
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Figure 4.10 Kalman filter prediction given by K4 for a target making a quick turn
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4.6 The Kalman filter’s reliance on the Smith predictor

Something interesting in this project was the reliance the Kalman filter had on the
Smith predictor. Normally in an application such as this (and this is actually what
was done in the project) someone would want to track where the reference is head-
ing and attempt to predict where the target actually is at that moment based on the
delayed measurement.

Since the thing being measured is the difference in angle between the target r
and camera y, the only thing being received is the error. There is no information in
the received images about the angle of the target or the angle of the camera. Due to
this it was initially believed that it would be possible to apply the Kalman filter on
the error e(t− td) and use it to predict the error ê(t). At first this seemed reasonable
because it would mean that if the error is increasing the Kalman prediction will
believe that it will continue to increase and apply a control signal accordingly. The
same principle goes for a decreasing error, in which if old images are seen were the
error is decreasing then it is likely that the real error will be gone before the received
delayed error shows this, where once again the Kalman filter can be used to predict
this and the controller can act accordingly.

However, when the Kalman filter was applied on the error in simulation the
results looked the same as before the filter was introduced. This can be explained
by the fact that neither the target angle r or the camera angle y remains static, so the
Kalman filter also introduces an unwanted derivative term of the camera angle y.
The following equations use the same color coding as is used in Figure 2.4 for easier
understanding, where etot will be used to denote the input signal to the controller.

By looking at the process without the Kalman filter but with the Smith predictor,
it can clearly be seen in Equation 4.3 that the real time camera position is following
the delayed position of the target. This allows the camera to move quickly but it will
never catch up with a moving target.

etot(t) = r(t− td)− y(t− td)+ysmith(t− td)− ysmith(t) (4.2)
etot(t)≈ r(t− td)−ysmith(t) (4.3)

If instead the Kalman filter is introduced then an unwanted term appears. In
Equation 4.9 it becomes easy to see that the only thing that should be sent into
the controller is the error between the target and camera without any delay, but the
unwanted term ˙̂y(t− td) · td is subtracted.
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4.7 The Trust Factor

etot(t) = x̂1(t− td)+ x̂2(t− td) · td+ysmith(t− td)− ysmith(t) (4.4)

etot(t) = ê(t− td)+ ˙̂e(t− td) · td+ysmith(t− td)− ysmith(t) (4.5)

etot(t) = r̂(t− td)− ŷ(t− td)+( ˙̂r(t− td)− ˙̂y(t− td)) · td+ysmith(t− td)− ysmith(t)
(4.6)

etot(t)≈ r̂(t− td)+( ˙̂r(t− td)− ˙̂y(t− td)) · td−ysmith(t) (4.7)

etot(t)≈ r̂(t)−ysmith(t)− ˙̂y(t− td) · td (4.8)

etot(t)≈ e(t)− ˙̂y(t− td) · td (4.9)

What this shows is that if the Kalman filter is applied on the error signal then the
unwanted term negates any ability it might have to predict the future. Therefore this
shows that in this system where only the error can be measured the Kalman filter
becomes reliant on a functional Smith predictor. This puts further emphasis on the
importance of an accurate model of the system and accurate measurements of the
time delay.

4.7 The Trust Factor

The trust factor for the pitch process was very high (Tf ac = 0.8) and can easily
be explained by a slightly imperfect model or poor estimation of the time delay.
However, for the yaw process it was very low (Tf ac = 0.4) and this circles back to
previous problems. It puts emphasis on the importance of an accurate model and
also that a proper method of continuously measuring the time delay is something
very integral to all aspects of this project and the quality of the video. A hypothesis
for why the trust factor was much lower for the yaw process than the pitch process
is that the way the drone stops or decreases its angular velocity in the yaw direction
was not modelled properly and that it might move further than the Smith predictor
estimates, which matters to the Kalman filter since only the error could be measured
and the position of the target is reliant on the Smith predictor. It should be noted
though that since the process worked as well as it did in the pitch direction, it can
be seen as a proof of concept and that improvements to the yaw process should be
possible.

4.8 Comparing the Control Methods

In this section graphs are shown for the old controller (a P-controller), the PD con-
troller, the PD controller with Smith predictor, and the PD controller with Smith
predictor and Kalman filter. They are compared for a step response, where the target
is standing still and the camera starts looking in wrong direction, and for a moving
target, respectively.
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Tracking a stationary target
Figure 4.11 shows the different controllers in comparison for the gimbal pitch pro-
cess when the target is standing still. It can clearly be seen how by only adding a
small derivative part to the controller much was not changed. The main issue was
still the large time delay which slowed down the system. The addition of the Smith
predictor did however speed up the process and that can clearly be seen in this com-
parison. However, the main downside of the Kalman filter can also be seen here.
Since the controller is practically following a step response it thinks that the target
has moved very far away very quickly and will continue to do so, which is why the
overshoot happens. The Kalman filter works best when following a target with a
constant velocity.

Figure 4.11 Error comparison in pitch direction for various control methods for
stationary target

When the same experiment was carried out for the drone yaw process similar
results were obtained as can be seen in Figure 4.12. With the Kalman filter im-
plemented there was still an overshoot as this test showcases the weakness of the
Kalman filter prediction. Although the Smith predictor was not faster for this pro-
cess it was still an improvement as the old controller and the PD controller had
larger overshoot. It should be noted that the target was in the same position for
all trials, however the image detection program is not perfect and the target was
therefore perceived to be in slightly different positions.

Tracking a moving target
The controllers were compared for a target moving back and forth. The PD con-
troller was not used in this case since it was so similar to the old controller. The
trials had some variation since there were issues in attempting to standardize the
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4.8 Comparing the Control Methods

Figure 4.12 Error comparison in yaw direction for various control methods for
stationary target

tests, such as the image recognition program being "too smart" and not recognizing
an image of skier on a projector screen or a printed photograph of a skier.

The tests for the gimbal pitch process can be seen in Figure 4.13 where the
benefit of the Kalman filter is clearly show. The ability to predict the velocity and
look ahead of received information allowed it to minimize the error. The Smith
predictor works well enough, and can be seen to be an improvement over the old
controller that was not as well designed.

Figure 4.13 Error comparison in pitch direction for various control methods for
target moving back and forth

Although the drone yaw process is less accurate, the same conclusion could be
drawn from the corresponding tests. In Figure 4.14 it can be seen how there was
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always an error for the old controller and the new controller with a Smith predictor.
That is because the target was moving and the controllers were using delayed mea-
surements. When the Kalman filter was applied in order to estimate the position of
the target there was a smaller error. However, there were also larger overshoots.

Figure 4.14 Error comparison in yaw direction for various control methods for
target moving back and forth

It should be noted how the yaw process is less still than the pitch, and that
the yaw is controlled with four motors as well as constantly affected by wind. The
Kalman filter could possibly be adapted to react faster or slower to the shakiness.
However as discussed previously this both changes come with their own pros and
cons. Furthermore, when the process starts to stabilize it is not actually changing
very fast or very much even though the graphs might at a quick glance suggest
otherwise.
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5
Conclusion

5.1 Completion of Objectives

Due to certain parts of the project taking longer than anticipated, there was no time
to secure robustness to strong winds or implement a program to take into account
the varying velocity of the target. However, the project was a success in terms of
minimizing the impact of the large delay, implementing a prediction program, mod-
elling the system, and keeping a target with constant velocity centered in the screen.

The impact of the delay was successfully mitigated through the implementation
of a Smith predictor to allow a faster controller and the implementation of a Kalman
filter that was used to predict the position of the target. Although improvements
could be made to the model of how the drone turns in the yaw direction it was still
good enough to keep the target centered in the video. The model of how the camera
moves in the pitch direction worked very well, and provided excellent results.

Overall the project was a success but with room for improvement.

5.2 Future Research

To improve the results of this project, there are some very clear goals that must
be achieved. The best method of improving the performance is to simply eliminate
the time delay. The setup used in this project was far from optimal and the Sony
team is already working on removing steps in the transfer of information by using
a more accommodating drone, where a computer can communicate with the drone
directly. This is likely to have a huge impact in minimizing the time delay (currently
hypothesized by the team that the full delay will be decreased from around 1s to
0.3s). Minimizing the time delay is important because not only will the controller
start receiving information earlier but the Kalman filter prediction will not have to
"look" as far into the future, making the prediction more accurate.

The second best method of improving performance is to make sure it is possible
to measure the time delay. As have been shown, the time delay delay estimation
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only has to be wrong by 100ms for the end result to give unsatisfactory results (and
that is just taking the Smith predictor into account).

Additionally, the Smith predictor will only work well with an accurate model
of the system. For that reason it is important that moving forward the system is
modeled both for an increase and decrease of velocity. Furthermore, since the gim-
bal pitch process was easier to control accurately than the drone yaw process, the
ability to implement a fast controller for the gimbal yaw (accompanied by a slow
controller for the full drone yaw) should be looked into.

In conclusion, these are the areas that are the most important to investigate if
this project is to be continued with improved performance.
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A
PersonTracker.h

This file is the header file PersonTracker.h where the variables and the static
parameters values are defined.

1 #ifndef DRONECONTROLLER_PERSONTRACKER_H
2 #define DRONECONTROLLER_PERSONTRACKER_H
3

4 #include <opencv2/opencv.hpp >
5 #include <opencv2/tracking.hpp >
6 #include <command/MessageContainer.h>
7 #include <command/SpeedController.h>
8 #include "YoloDetector.h"
9 #include <command/Actions/IAction.h>

10 #include <command/Actions/TakeOff.h>
11 #include <memory >
12 #include <vector >
13 #include <iostream >
14

15 namespace Tracking {
16

17

18 class PersonTracker {
19

20 public:
21 PersonTracker(int width , int height , std:: shared_ptr <

Command :: MessageContainer > message);
22

23 bool processFrame(cv:: InputOutputArray frame);
24

25 int resetTracker ();
26

27 virtual ~PersonTracker ();
28

29 private:
30 cv::Ptr <cv::Tracker > tracker;
31 cv:: Vec3b color;
32 bool trackingPerson = false;
33 cv:: Rect2d roi;
34 std::vector <cv::Rect > boxes;
35 YoloDetector detector;
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36 int width; //640 px
37 int height; //380 px
38

39 int blue = 0;
40 int green = 0;
41 int red = 0;
42 std:: chrono :: milliseconds endDelay;
43

44 void drawDebugLines(const cv:: _InputOutputArray &frame ,
double offset_x , double offset_y) const;

45

46 //Smith Predictor
47 double smithPitch = 0;
48 double smithPitchDelayed = 0;
49 double smithYaw = 0;
50 double smithYawDelayed = 0;
51 std::vector <double > smithPitchV;
52 std::vector <double > smithYawV;
53 std::vector <double > smithTime;
54 // Read the item of a position in the vector
55 double readVector(std::vector <double > vector , int prev){
56 // get previous item
57 if(prev < 0){return 0;}
58 else{
59 double item = vector[prev];
60 return item;
61 }
62 }
63

64 // Kalman filter
65 double inputKalmanGimbal = 0;
66 double inputKalmanYaw = 0;
67

68 double yGimbal = 0;
69 double yGimbalNew = 0;
70 double x1P = 0;
71 double x2P = 0;
72 double x1PNew = 0;
73 double x2PNew = 0;
74 double k1P = 5;
75 double k2P = 8;
76

77 double yYaw = 0;
78 double yYawNew = 0;
79 double x1Y = 0;
80 double x2Y = 0;
81 double x1YNew = 0;
82 double x2YNew = 0;
83 double k1Y = 5;
84 double k2Y = 8;
85

86 int printstate =0;
87 std::shared_ptr <Command :: MessageContainer > mMessage;
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88 std::unique_ptr <Command :: SpeedController >
mSpeedController;

89 double Td = 0; //Time image delay
90 double sampleTime = 0; // Everytime a new measurement is

received and processed
91 double Tex = 0; //Total program execution time
92

93 //PID pitch vel control parameters
94 double Ts = sampleTime;
95 double Ppv = 2; // Proportional coefficient 0.5 Smith: 2.5

Kalman: 2
96 double Ipv = 0; // Integral coefficient
97 double Dpv = 0.2; // Derivative coefficient 0.1 Smith: 0.2

Kalman :0.2
98 double Npv = 3; // Filter coefficient derivative zoom:
99 // Coefficients for the discretization

100 double b0pv = Ppv *(1+ Npv*Ts) + Ipv*Ts*(1+ Npv*Ts) + Dpv*
Npv;

101 double b1pv = -(Ppv *(2+ Npv*Ts) + Ipv*Ts + 2*Dpv*Npv);
102 double b2pv = Ppv + Dpv*Npv;
103 double a0pv = (1 + Npv*Ts);
104 double a1pv = -(2 + Npv*Ts);
105 double a2pv = 1;
106

107 //PID yaw velocity control parameters
108 double Pyv = 2.5; // Proportional coefficient 0.5 Smith

:2.5 Kalman :2.5
109 double Iyv = 0; // Integral coefficient zoom:
110 double Dyv = 0.2; // Derivative coefficient 0.1 Smith :0.2

Kalman :0.2
111 double Nyv = 3; // Filter coefficient derivative zoom:
112 // Coefficients for the discretization
113 double b0yv = Pyv *(1+ Nyv*Ts) + Iyv*Ts*(1+ Nyv*Ts) + Dyv*

Nyv;
114 double b1yv = -(Pyv *(2+ Nyv*Ts) + Iyv*Ts + 2*Dyv*Nyv);
115 double b2yv = Pyv + Dyv*Nyv;
116 double a0yv = (1 + Nyv*Ts);
117 double a1yv = -(2 + Nyv*Ts);
118 double a2yv = 1;
119

120 double velPitchControl = 0;
121 double velYawControl = 0;
122

123 // Velocity Pitch
124 double pepv = 0; // previous error PID pitch
125 double peppv = 0; // previous previous error PID pitch
126 double pupv = 0; // previous pitch velocity send to the

process
127 double puppv = 0; // previous previous pitch velocity send

to the process
128 // Velocity yaw
129 double yepv = 0; // previous error PID yaw
130 double yeppv = 0; // previous previous error PID yaw
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131 double yupv = 0; // previous yaw velocity send to the
process

132 double yuppv = 0; // previous previous yaw velocity send
to the process

133

134 /**
135 * Get the error angle of the gimbal pitch between the

reference in the screen and the target
136 * boxVerticalCenter - The amount of pixels between the

target and the screen center (targetPixelCenter -
screenPixelCenter).

137 * fieldOfView - The FOV for the drone. For Mavic 2 Zoom
it is 83 degrees and for Mavic 2 Pro it is 77 degrees.

138 * screenPixelHeight - The max amount of pixels vertically
on the screen. We use 380.

139 */
140 double getPitchAngleError(double boxVerticalCenter ,

double fieldOfView , double screenPixelHeight) {
141 double oppositeKathetus = screenPixelHeight / 2;
142 double halfFieldOfView = fieldOfView / 2;
143 double adjacentKathetus = oppositeKathetus / tan(Utils ::

deg2rad(halfFieldOfView));
144 double result = Utils:: rad2deg(atan(boxVerticalCenter/

adjacentKathetus));
145 return result;
146 }
147

148 /**
149 * Get the error angle of the yaw between reference in the

screen and the target
150 * boxHorizontalCenter - The amount of pixels between the

target and the screen center (targetPixelCenter -
screenPixelCenter).

151 * fieldOfView - The FOV for the drone. For Mavic 2 Zoom
it is 83 degrees and for Mavic 2 Pro it is 77 degrees.

152 * screenPixelWidth - The max amount of pixels
horizontally on the screen. We use 640.

153 */
154 double getYawAngleError(double boxHorizontalCenter ,

double fieldOfView , double screenPixelWidth) {
155 double oppositeKathetus = screenPixelWidth / 2;
156 double halfFieldOfView = fieldOfView / 2;
157 double adjacentKathetus = oppositeKathetus / tan(Utils ::

deg2rad(halfFieldOfView));
158 double result = Utils:: rad2deg(atan(boxHorizontalCenter/

adjacentKathetus));
159 return result;
160 }
161 };
162 }//
163

164

165 #endif // DRONECONTROLLER_PERSONTRACKER_H
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PersonTracker.cpp is included to show how the controller is implemented.

1 #include <utils/Utils.h>
2 #include "utils/Functions.h"
3 #include "PersonTracker.h"
4 #include <Networking/Telemetry.h>
5 #include <core/SimpleStateMachine.h>
6 #include <core/GlobalVariables.h>
7 #include "command/Actions/ThesisTesting.h"
8 #include "video/FeedServer.h"
9

10

11 namespace Tracking {
12

13 PersonTracker :: PersonTracker(int width , int height , std::
shared_ptr <Command :: MessageContainer > message) :

14 width(width), height(height), mMessage(std::move(
message)) {

15 detector.init(width , height);
16 mSpeedController = std:: make_unique <Command ::

SpeedController >(width);
17 }
18

19 PersonTracker ::~ PersonTracker () = default;
20

21 int PersonTracker :: resetTracker () {
22 trackingPerson = false;
23 return 0;
24 }
25

26 bool PersonTracker :: processFrame(cv:: InputOutputArray frame)
{

27 Utils :: print("Frame");
28 //Take color BGR of the frame
29 color = frame.getMat ().at<cv::Vec3b >( height/2,width /2);

// center bottom pixel (y,x)
30 blue = color.val [0];
31 green = color.val [1];
32 red = color.val [2];
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33 //check if the image has change
34 if(blue > 50 && green > 50 && red > 50 && Td==0){ //Check

if the image is darker
35 endDelay = std:: chrono :: duration_cast < std:: chrono ::

milliseconds >(
36 std:: chrono :: system_clock ::now().time_since_epoch ());
37 Td = (endDelay.count() - Core:: GlobalVariables ::

getInstance ().getTime () - 200) /1000; //Time delay image in
seconds

38 }
39 Td=0.7; // Estimated complete time delay
40 Utils :: print("Colour: " + std:: to_string(blue) + "," +

std:: to_string(green) + "," + std:: to_string(red) + " Time
delay: " + std:: to_string(Td));

41

42 std:: chrono :: milliseconds start = std:: chrono ::
duration_cast < std:: chrono :: milliseconds >(

43 std:: chrono :: system_clock ::now().time_since_epoch ());
44 if (! trackingPerson) {
45 detector.processFrame(frame , boxes); // Detect people

in the frame
46 Utils :: print("Frame processed");
47 std:: chrono :: milliseconds end = std:: chrono ::

duration_cast < std:: chrono :: milliseconds >(
48 std:: chrono :: system_clock ::now().time_since_epoch

());
49 Utils :: print("Time to do detection: " + std::

to_string(end.count()-start.count()) + " ms");
50 } else {
51 trackingPerson = tracker ->update(frame , roi); //

Update the position of the target
52 Utils :: print("Frame and target processed");
53

54 std:: chrono :: milliseconds end = std:: chrono ::
duration_cast < std:: chrono :: milliseconds >(

55 std:: chrono :: system_clock ::now().time_since_epoch
());

56 double Tp = end.count()-start.count ();
57 Utils :: print("Time to update detection and control: "

+ std:: to_string(end.count()-start.count ()) + " ms");
58 Ts=Tp /1000; // Sample time in seconds
59 Tex = Tex + Ts; //Total program execution time
60

61 //Print in the Measurements Log file
62 //Utils :: MeasurementsLog :: getInstance ().log("Time to

update detection and control: " + std:: to_string(end.count ()-
start.count()) + " ms");

63

64 if (! trackingPerson) { //If target lost , find and
detect it again

65 tracker.reset();
66 return trackingPerson;
67 }
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68 cv:: rectangle(frame , roi , cv:: Scalar (255, 0, 0), 2,
1);

69

70 //debugline , follow roi
71 auto offset_x = roi.x + (roi.width / 2); //get the x

center of roi from the left of the screen.
72 auto offset_y = roi.y + (roi.height / 2); //get the y

center of roi from the top of the screen.
73 drawDebugLines(frame , offset_x , offset_y);
74 auto diff_yaw = offset_x - (width / 2); //the amount

of pixels from the center of the screen. Width = 640px
75 auto diff_gimbal = offset_y - (height / 2); // height

= 380px
76

77

78 auto controllerData = mMessage.get()->getData ();
79 // GIMBAL
80 double pitchAngleError = PersonTracker :: getPitchAngleError(

diff_gimbal , 48, height); //Error pitch center screen -
center reference

81

82 //Smith predictor (for both PITCH and YAW)
83 smithTime.push_back(sampleTime); //Add a value at the

end of the vector
84 smithPitchV.push_back(smithPitch);
85 smithYawV.push_back(smithYaw);
86 int pos = 0, prev = 0;
87 double sumTs = 0;
88 // increse the previous sample time position until the

sum achieves the time delay
89 while(prev >= 0){
90 prev = (smithTime.size() - pos);// vector.size

print the size of the vector
91 sumTs = sumTs + readVector(smithTime , prev);
92 pos ++;
93 if(sumTs >= Td){break;}
94 }
95 if(readVector(smithPitchV , prev) == 0){//Take the

previous values corresponding to the time delay
96 smithPitchDelayed = 0;
97 smithYawDelayed = 0;
98 }else{ // interpolate to get the accurate value
99 smithPitchDelayed = readVector(smithPitchV , prev

-1) + (readVector(smithPitchV , prev) - readVector(smithPitchV
, prev -1))/

100 readVector(smithTime , prev) * (Td
- (sumTs - readVector(smithTime , prev)));

101 smithYawDelayed = readVector(smithYawV , prev -1) +
(readVector(smithYawV , prev) - readVector(smithYawV , prev -1)

)/
102 readVector(smithTime , prev) * (Td

- (sumTs - readVector(smithTime , prev)));
103 }
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104 if(smithTime.size() == 30){ //Erase the first value
of the vector to avoid it colapse

105 smithTime.erase(smithTime.begin());
106 smithPitchV.erase(smithPitchV.begin());
107 smithYawV.erase(smithYawV.begin());
108 }
109

110 // Kalman filter Pitch
111 inputKalmanGimbal = -pitchAngleError *0.95 +

smithPitchDelayed; //0.95 because of the constant change of
the ROI

112 // Taylor
113 yGimbal = inputKalmanGimbal;
114 x1P = x1PNew;
115 x2P = x2PNew;
116 x1PNew = x1P *(( k1P*k1P*Ts*Ts)/2 - (k2P*Ts*Ts)/2 - k1P

*Ts + (k1P*k2P*Ts*Ts*Ts)/6 + (k1P*Ts*(- k1P*k1P*Ts*Ts + k2P*
Ts*Ts))/6 + 1) +

117 yGimbal *(k1P*(Ts + (Ts*((k1P*k2P*Ts*Ts*Ts)/6
+ (k1P*Ts*(- k1P*k1P*Ts*Ts + k2P*Ts*Ts))/6))/4 - (k1P*Ts*Ts)
/2 - (Ts*(( k2P*Ts*Ts)/2 - (k1P*k1P*Ts*Ts)/2))/3) -

118 k2P *(( k1P*Ts*Ts*Ts)/6 + (Ts*(( k2P*Ts*Ts*Ts)/6
- (k1P*k1P*Ts*Ts*Ts)/6))/4 - Ts*Ts/2)) + x2P*((k1P*k1P*Ts*Ts

*Ts)/6 - (k1P*Ts*Ts)/2 - (k2P*Ts*Ts*Ts)/6 + Ts);
119

120 x2PNew = x1P *(( k1P*k2P*Ts*Ts)/2 - k2P*Ts + (k2P*Ts*(-
k1P*k1P*Ts*Ts + k2P*Ts*Ts))/6) + x2P*((k1P*k2P*Ts*Ts*Ts)/6 -
(k2P*Ts*Ts)/2 + 1) +

121 yGimbal *(k2P *((k1P*k2P*Ts*Ts*Ts*Ts)/24 - (k2P
*Ts*Ts*Ts)/6 + Ts) + k1P*(( k1P*k2P*Ts*Ts*Ts)/6 - (k2P*Ts*Ts)
/2 + (k2P*Ts*Ts*(- k1P*k1P*Ts*Ts + k2P*Ts*Ts))/24));

122 yGimbalNew = x1PNew + x2PNew*Td*0.8;
123

124 Utils :: print("diff_gimbal: " + std:: to_string(
diff_gimbal) + " x1PNew: " + std:: to_string(x1PNew));

125

126 //PID for the pitch velocity discretized
127 // Coefficients for the discretization
128 b0pv = Ppv *(1+ Npv*Ts) + Ipv*Ts*(1+ Npv*Ts) + Dpv*Npv;
129 b1pv = -(Ppv *(2+ Npv*Ts) + Ipv*Ts + 2*Dpv*Npv);
130 b2pv = Ppv + Dpv*Npv;
131 a0pv = (1 + Npv*Ts);
132 a1pv = -(2 + Npv*Ts);
133 a2pv = 1;
134 sampleTime=Ts;
135

136 // double pev = -pitchAngleError *0.95; //pitch error
137 // double pev = -pitchAngleError *0.95 +

smithPitchDelayed - smithPitch; //pitch error with Smith
Predictor

138 double pev = yGimbalNew - smithPitch; //pitch error
with Smith Predictor

139 double puv = (-a1pv*pupv - a2pv*puppv + b0pv*pev +
b1pv*pepv + b2pv*peppv)/a0pv; // pitch gimbal velocity send to
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the drone
140 velPitchControl = puv;
141 peppv = pepv; // Update values
142 pepv = pev;
143 puppv = pupv;
144 pupv = puv;
145

146 smithPitch = (pupv+puv)/2* sampleTime + smithPitch; //
trapezoidal integration

147

148

149 //YAW
150 double yawAngleError = PersonTracker ::

getYawAngleError(diff_yaw , 83, width);
151

152 // Kalman filter Yaw
153 inputKalmanYaw = yawAngleError + smithYawDelayed;
154 yYaw = inputKalmanYaw;
155 x1Y = x1YNew;
156 x2Y = x2YNew;
157 x1YNew = x1Y *(( k1Y*k1Y*Ts*Ts)/2 - (k2Y*Ts*Ts)/2 - k1Y

*Ts + (k1Y*k2Y*Ts*Ts*Ts)/6 + (k1Y*Ts*(- k1Y*k1Y*Ts*Ts + k2Y*
Ts*Ts))/6 + 1) +

158 yYaw*(k1Y*(Ts + (Ts*((k1Y*k2Y*Ts*Ts*Ts)/6 + (
k1Y*Ts*(- k1Y*k1Y*Ts*Ts + k2Y*Ts*Ts))/6))/4 - (k1Y*Ts*Ts)/2 -
(Ts*((k2Y*Ts*Ts)/2 - (k1Y*k1Y*Ts*Ts)/2))/3) -

159 k2Y *(( k1Y*Ts*Ts*Ts)/6 + (Ts*(( k2Y*Ts*Ts*Ts)/6
- (k1Y*k1Y*Ts*Ts*Ts)/6))/4 - Ts*Ts/2)) + x2P*((k1Y*k1Y*Ts*Ts

*Ts)/6 - (k1Y*Ts*Ts)/2 - (k2Y*Ts*Ts*Ts)/6 + Ts);
160

161 x2YNew = x1Y *(( k1Y*k2Y*Ts*Ts)/2 - k2Y*Ts + (k2Y*Ts*(-
k1Y*k1Y*Ts*Ts + k2Y*Ts*Ts))/6) + x2Y*((k1Y*k2Y*Ts*Ts*Ts)/6 -
(k2Y*Ts*Ts)/2 + 1) +

162 yYaw*(k2Y*(( k1Y*k2Y*Ts*Ts*Ts*Ts)/24 - (k2Y*Ts
*Ts*Ts)/6 + Ts) + k1Y*((k1Y*k2Y*Ts*Ts*Ts)/6 - (k2Y*Ts*Ts)/2 +
(k2Y*Ts*Ts*(- k1Y*k1Y*Ts*Ts + k2Y*Ts*Ts))/24));

163 yYawNew = x1YNew + x2YNew*Td*0.4;
164

165 //PID for the yaw velocity discretized
166 // Coefficients for the discretization
167 b0yv = Pyv *(1+ Nyv*Ts) + Iyv*Ts*(1+ Nyv*Ts) + Dyv*Nyv;
168 b1yv = -(Pyv *(2+ Nyv*Ts) + Iyv*Ts + 2*Dyv*Nyv);
169 b2yv = Pyv + Dyv*Nyv;
170 a0yv = (1 + Nyv*Ts);
171 a1yv = -(2 + Nyv*Ts);
172 a2yv = 1;
173

174 // double yev = yawAngleError ;// yaw error
175 // double yev = yawAngleError + smithYawDelayed -

smithYaw; //yaw error with Smith Predictor
176 double yev = yYawNew - smithYaw; //yaw error with

Smith Predictor and Kalman Filter
177 double yuv = (-a1yv*yupv - a2yv*yuppv + b0yv*yev +

b1yv*yepv + b2yv*yeppv)/a0yv; //yaw velocity send to the
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drone
178 velYawControl = yuv;
179 yeppv = yepv; // Update values
180 yepv = yev;
181 yuppv = yupv;
182 yupv = yuv;
183

184 smithYaw = (yupv+yuv)/2* sampleTime + smithYaw; //
trapezoidal integration

185

186 //Send values to be saved in the JSON file
187 controllerData.gimbal = velPitchControl;
188 controllerData.velocityYaw = velYawControl;
189

190

191 //Old controller //
192

193 /*auto velocity_yaw = diff_yaw /7; /// @note "Taget ur
luften ... divide by 7 worked fine in Idre"

194 auto velocity_gimbal = - diff_gimbal /10; /// @note "
Taget ur luften"

195

196 // controllerData.velocityYaw = 0; //@todo - Use this
to have a constant yaw rotation. 0 means no rotation. 90
means rotate clockwise with velocity 90.

197 controllerData.velocityYaw = velocity_yaw; //@todo -
Use this in FlyToWaypoint to let the targets pixel offset
control the yaw with velocity.

198

199 if(Utils::IsBetween <double >(-2, 2)(velocity_gimbal)){
200

201 controllerData.gimbal = 0;
202 }else {
203

204 controllerData.gimbal = velocity_gimbal;
205 }*/
206

207

208 mMessage.get()->setData(controllerData);
209 }
210 return trackingPerson;
211 }
212

213 void PersonTracker :: drawDebugLines(const cv::
_InputOutputArray &frame , double offset_x , double offset_y)
const {

214

215 cv::line(frame , cv:: Point((int)offset_x , 0), cv::Point ((
int)offset_x , height), cv:: Scalar(0, 0, 255), 2, 1);

216 cv::line(frame , cv:: Point(0, (int)offset_y), cv::Point(
width , (int)offset_y), cv:: Scalar(0, 0, 255), 2, 1);

217

218 // debugline for image center
219 auto line1_x = width / 2;
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220 cv::line(frame , cv:: Point(line1_x , 0), cv:: Point(line1_x ,
height), cv:: Scalar (255, 0, 0), 2, 1);

221

222 // debugline horizontal
223 auto line1_y = height / 2;
224 cv::line(frame , cv:: Point(0, line1_y), cv:: Point(width ,

line1_y), cv:: Scalar (255, 0, 0), 2, 1);
225 }
226 } // namespace
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