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Abstrakt

Materialegenskaper som hållfasthet och duktilitet har historiskt förbättrats genom
att materialet modifieras homogent, men även kompositer har vuxit fram som ett
vanligt verktyg inom industrin som sätt att förbättra materialegenskaper. En alter-
nativ metod som bygger på att materialets mikrostruktur modifieras heterogent, är
harmoniskt strukturerade material. Det består av två olika moder av materialet där
det ena innehar hög hållfasthet, och det andra hög duktilitet, deras topologi i materi-
alet är dessutom kontrollerat så att ett repeterande mönster bildas. I experiment har
harmoniskt strukturerade material har uppvisat gynnsamma materialegenskaper,
men en djupgående förståelse för deformationsbeteendet saknas fortfarande. En
del i ledet av att lära sig mer om materialbeteendet är beräkningsbaserad mate-
rialmodellering. Dock kantas traditionella simuleringsmetoder av bland annat två
problem, dels att på ett resurseffektivt sätt modellera längdskalorna, och även att
på ett simpelt sätt modellera brottmekanik. Genom en alternativ formulering av
kontinuumsmekaniken kan båda problemen lösas, nämligen peridynamiken.

Det här examensarbetet, som är utfört vid avdelningen för mekanik på Lunds
Tekniska Högskola, tillämpar peridynamik på harmoniskt strukturerat nickel med
hjälp av programvaran Peridigm för att utvärdera dess potential för forskning inom
harmoniskt strukturerade material, med fokus på brottmekanik. I arbetet utsätts
de ingående material-moderna för enaxiella dragprover för att kalibrera en linjär
elastoplastisk materialmodell mot experimentell data. Prototypsimuleringar av har-
moniskt strukturerat nickel har också genomförts.

Simuleringarna lyckas inte generera kalibrerade materialmodeller, då de inte upp-
visar frakturer eller midjebildning på ett tillfredställande sätt. Orsaken till avsak-
naden av frakturer tillskrivs den numeriska lösningsmetoden, som antar statiska
förhållanden för varje inkrementellt steg. Orsaken till att midjebildningen inte
uppkommer tros bero delvis på den linjära deformationshärdningskonstanten. Pro-
totypsimuleringen av harmoniskt strukturerat nickel uppvisar uppkomst, spridning,
och reflektion av vibrationer, samt sprick-bildning och fortplantning. Beträffande
Peridigmbedöms potentialen vara låg jämförtmed kommersiella programvaror inom
den klassiska kontinuumsmekaniken när det kommer till effektiv materialmodeller-
ing. Detta på grund av att programvaran fortfarande är i ett utvecklingsstadie,
samt avsaknad av dokumentation, support, och tillgängliga verktyg. Däremot har
Peridigm, i ochmed dess öppna källkoden och därmed den högamodifikationsnivån,
stor potential för att vara ett kraftfullt verktyg för forskning på peridynamik.
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Abstract

Materials are constantly sought to be improved in different manners. Two of themost
common characteristics to improve are strength, and ductility. Historically, materials
are modified homogeneously to achieve improvement, while the past century has
also seen composite materials becoming standard-issue within various industries.
Just recently the concept of heterogeneously modifying material micro-structures
has gained prominence. One such concept is the harmonic-structured material. It
consists of the same material, but topologically controlled to yield two different
modes organised in a repeated manner, possessing high strength and high ductility
respectively. Harmonic structured materials exhibit favourable characteristics, but
the precise behaviour of the deformation of the material is yet to be understood
in-depth. Computational modelling is a great asset in this behaviour evaluation, but
as the length-scales of the modes and the topology are relatively large, modelling
using molecular dynamics is not suitable. Neither are regular classical continuum
mechanics simulations, which are incapable of modelling fracture in materials. Both
of these issues are addressed by a certain formulation of continuummechanics called
peridynamics.

This master thesis, written at the division of mechanics at the faculty of engineering
at Lund University, has applied the peridynamic theory to harmonic-structured
nickel using the Peridigm software in order to evaluate the utility of peridynamics in
the field of harmonic-structured materials, mainly focusing on fracture behaviour.
In the thesis, the modal component materials are subjected to uniaxial tension in
order to calibrate a linear elastic-plastic material model of experimental data. A
proof-of-concept simulations of harmonic-structured nickel are also performed.

The calibration simulations fail to properly model the experimental data regarding
stress localisation and fracture. The cause for absence of fracture is attributed to
the use of a numerical solver which disregards velocities, and the cause for the lack
of stress localisation is believed to originate partly from the linear behaviour of the
strain-hardening modulus. The proof-of-concept simulation of harmonic-structured
nickel is capable of modelling both wave initiation, propagation, and reflection, as
well as fracture initiation and propagation. Peridigm, as a tool formaterialmodelling,
is found to be subpar regarding efficiency when compared to commercial classical
continuum mechanics software. This is mainly due to its development status, lack
of documentation, support, and implemented utilities. However, Peridigm is an
open-source initiative and therefore could be customised extensively. Overall, it is
most certainly a useful tool for research on peridynamics.
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1 Introduction

1 Introduction

This report applies the continuum mechanics theory of peridynamics on a novel
type of materials called harmonic-structured materials. Simulations of uniaxial ten-
sion tests, on the material components as well as on a proof-of-concept harmonic-
structured domain are conducted in the peridynamic software Peridigm. The topo-
logical and macro-scale stress-strain behaviour are then used to analyse the utility
of peridynamics in the field of harmonic-structured materials.

1.1 Background

As society endeavours into new frontiers of possibility, the material industry and
scientific communitymaintain pace byfindingways to improve the ductility, strength,
deformation behaviour, weight, micro-structures, etc. of materials. Historically,
improvements have been sought in both homogeneous materials and composite
materials [1], but relatively recently a paradigm shift has occurred, resulting in an
increase of research into materials with heterogeneous micro-structures. Strength is
one of two key characteristics of materials [2]. It can be increased in a multitude of
ways, but is often correlated with a decrease of ductility [3], the other key material
characteristic. One of the methods for increasing strength is a decrease in grain size
of the material, from coarse-grained (CG, dCG ≥ 10 µm) [4] down to ultra-fine-
grained (UFG, dUFG ≤ 1.0 µm) [4] microstructures, but this method also decreases
ductility [2].

A possible solution proposed is to modify the structure heterogeneously in a certain
topology, creating what is denoted as a Harmonic-structured Material (HS) [4, 5,
6, 1]; The harmonic structure consists of evenly distributed cores of CG material
inside a shell of UFG material, as seen in Figure 2 on page 5. The grain sizes
should differ at least by one order of magnitude, and the elastic behaviour and
chemical composition must be the same for both UFG and CG materials. Given
that the material is relatively new, and the fabrication process involves five separate
stages, some requiring specific and expensive hardware, finite element simulations
have previously been utilised to better understand the deformation behaviour of HS
materials [7, 8, 9].

There are several techniques for computational mechanics existing today. One
such technique is the finite element method mentioned in the earlier section, which
is a local classical continuum mechanics (CCM) theory [10]. In addition, there
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1 Introduction

are atomistic methods for treating molecular dynamics (MD) [11]. Each of these
approaches have their respective benefits and drawbacks. Within CCM [10], the
material is assumed to be continuous on every scale, meaning that there is no discrete
smallest form (compared to atoms, for example), instead, the material is divisible
to infinity. This divisibility is represented by continuum particles possessing the
micro-scale characteristics of the material. For these characteristics to remain valid,
there must exist a length l which is significantly larger than the discrete phase
of the material, yet small enough to omit large differences in a material on the
macro-scale. This length is problem dependent, and care must be taken to ensure
that l is neither too small nor too large. If the problem possesses length-scales in
this interval, continuum mechanics provides a resource-efficient approximation of
reality suitable for computational mechanics. One of the reasons for being resource-
efficient is the fact that it is a local theory. A local theory of mechanics regards only
immediate neighbours to the point in question when calculating properties, reducing
the amount of point-wise calculations. The local theories neglect the effects of for
example wave dispersion and deformation history of the complete body [12]. A local
theory also fails to model the long-wavelength impact of short-wavelength cohesive
forces present on atomic scales [13], like Van der Waals bonds [3].

Regardingmolecular dynamics, the usefulness of length-scales is in practice limited.
This is partly due to a significant increase in computational resources required as the
domain size grows, but also due to a demand growth stemming from large horizons
resulting in a cubic increase of computations per node. The aforementioned issues in
CCM and molecular dynamics have been addressed by the creation of Peridynamics
(PD), which was developed in 2000 [14]. It is a non-local continuum mechanics
theory based on an integral formulation of the equations of motion, being valid even
at discontinuities in the domain.

𝛿→∞

𝛿

Local Theories Non-Local Theories

Peridynamics
Molecular 
Dynamics

Figure 1: An illustration of the interaction between elements/nodes in different locality
theories.

The peridynamic domain, being a continuum theory, consists of an infinite amount

2



1 Introduction

of material points/particles x(k), which are individually identified using their ref-
erence/initial coordinates x(k). The material points possess a volume V(k), and a
mass density ρ(x(k)), as well as a strain energy density W(k). The points can be
prescribed or subjected to body loads b(k)(x(k), t), displacements u(k)(x(k), t), or
velocities u̇(k)(x(k), t). The specificmaterial points to be included in the calculations
are determined by the horizon δ, and it is assumed that influence beyond this region
is negligible [14]. The material points within the horizon are said to belong to the
family Hx(k)

of x(k)and contribute to the net force acting on x(k).

Three different peridynamic theories exists. The so-called bond-based peridynamics
is the first of the three. This theory describes how a material point interact bond-
wise with the other material points within the horizon δ. When calculating bond-
wise interaction, the influence of the other material points within Hx(k)

on x(j)

are neglected when calculating the effect of y(k)on x(k). Later, the concepts of
state-based peridynamics emerged, due to issues with the bond-based approach
[15]. They resulted in the peridynamic theory becoming more compatible with the
classical continuum theory. The two state-based formulations are called ordinary
and non-ordinary state based peridynamics. The ordinary state-based formulation
allows peridynamic equivalents of CCM formulation, and the non-ordinary state-
based formulation directly implements classical continuum descriptions of material
behaviour.

1.2 Aim and Purpose

This master thesis aims to investigate the suitability of using peridynamics for
fracture simulations on HS materials, and developing a workflow for using the
Peridigm software, including pre- and post-processing, as well as an evaluation of
the current status of Peridigm.

More specifically this thesis will document the installation and use of Peridigm.
Also, methods for topology domain creation as well as data extraction and post-
processing functionality are ascertained. An assessment of the Peridigm capabilities
for fracture simulations in general, and HS materials specifically, is a key purpose
of this thesis.

3



1 Introduction

1.3 Disposition of Report

The report will first explain the theory behind HS materials and the basics of
peridynamics, as well as the related Peridigm implementations. This is followed by
a run-down on the methodology, which presents the experimental procedures of the
thesis, the software used, domains and behaviour models used in the simulations, as
well as post-processing of the results. After the methodology has been presented,
the results are then presented in tables which contain the relevant settings for the
simulations, a short comment, and reference to the corresponding figures. The
bulk of the analysis is found in the discussion, where the simulation results of the
material behaviour of necking and fracture are dissected, reasoned and related back
to the theory as results of the damage and material models, as well as the numerical
solvers. It also contains a discussion on the Peridigm simulation software. The most
important remarks are summarised in the conclusion together with a compilation of
the suggestions on further work.
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2 Theory

2 Theory

This section is structured as an initial overview of the current understanding of
harmonic-structured materials, followed by relevant peridynamic theory, and finally
the corresponding Peridigm-specific implementations and workflows. The method
section will more closely deal with some Peridigm-related topics more closely.

2.1 Harmonic-Structured Materials

Strength is one of two key characteristics of materials [2]. It can be increased in
a multitude of ways, but is often correlated with a decrease of ductility [3], the
other key characteristic of materials. One of the methods for increasing strength is
a decrease in grain size of the material, from coarse-grained (CG, dCG ≥ 10 µm)
[4] down to ultra-fine-grained (UFG, dUFG ≥ 1.0 µm) [4] microstructures, but
this method does not increase ductility [2]. A proposed solution is to modify
the structure heterogeneously, by featuring both CG and UFG microstructures in a
bimodal fashion [16]. The increased ductility will originate from the coarse grains
containing the lattice defects, while the UFG will provide increased strength [1].

Figure 2: A conceptual illustration of the topology of the harmonic-structured material
fabricated in [5]. The CG cores are surrounded by a UFG shell. Image adopted from [5].

Fabrication of such materials exists, but [1] identifies an issue in common for the
methods, namely topological distribution of coarse and fine grains. The topology
of the materials is not easily reproduced and does not take full advantage of the
respective grain size characteristics. For this issue, different topology controlling
methods exist, whereof one is the method being the subject of this paper: Harmonic-
Structured (HS) materials [5]. The structure consists of regularly distributed CG
cores inside a UFG shell as seen in Figure 2. Furthermore, the grain sizes differ at
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2 Theory

least by one order of magnitude, and the elastic behaviour and chemical composition
are the same for both UFG and CG [1].

The fabrication process to achieve the harmonic structuredmaterial in a reproducible
fashion is as follows [1]:

1. Powder creation made using plasma rotating electrode processing [17] or
similar methods.

2. Deformation hardening using mechanical milling or jet milling, which de-
creases the grain size on the surface of the particles.

3. Combination of individual particles into full specimens by sintering using
spark-plasma sintering, hot isostatic pressing, or hot-roll sintering, in a vacuum
to avoid pores.

4. The previous step is repeated iteratively until the desired quality is achieved.

Current understanding of harmonic-structured metals [1] suggest that due to the
heterogeneous topology, some HS material will exhibit both a ductility increase as
well as an increase in toughness and strength, compared to the random-distributed
bimodal material which only exhibits increased strength. Some other materials
only exhibit increased toughness and strength, with the pure UFG material still
having higher ductility than the harmonic structured ditto. A material which shows
mutual increase in strength and ductility is harmonic-structured nickel [4], the
behaviour being shown in the curves in Figure 3. Here, the stress-strain curves for
randomly distributed bimodal nickel, bimodal HS nickel, and CG nickel are shown
in a comparison.

Figure 3: The stress strain curves measured in [4]. Ni-bHS40 and Ni-bR40 denotes the
bimodal harmonic and random structured topology with a 40 % fraction of UFG material.
The Ni-IP is the corresponding CG nickel. Image adopted from [4].
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2 Theory

The deformation process, according to [1], consists of an initial homogeneous elastic
deformation (elastic properties of the UFG and CG materials in the HS material are
the same), followed by a plasticity in the CG regions. This initial plasticity affects
the stress strain-curve moderately, changing the slope inclination but maintaining
a nearly linear behaviour during much of the stress increase. Knowledge of the
behaviour following yielding in the CG region is as of yet not established fully, but
is believed to be attributed to dislocation movement [4].

2.2 Peridynamics

Being a continuum theory, the PD domain consists of an infinite amount of material
points/particles. Using the notation given in [13], these particles are individually
identified using their reference/initial coordinates x(k). This is also known as a
Lagrangian description, as opposed to the Eulerian description, in which references
to set spatial points are used for calculations [10]. The material points possess
a volume V(k), a mass density ρ(x(k)), and a strain energy density W(k) which is
the sum of micro-potentials w(k)(j) between two material points. The points can
be prescribed or subjected to body loads b(k)(x(k), t), displacements u(k)(x(k), t),
or velocities u̇(k)(x(k), t). Which material points to include in the calculations are
defined by the horizon δ, and assumes that influence beyond this region is negligible
[14]. The material points within the horizon are said to belong to the family Hx(k)

of x(k)and contribute to the net force acting on x(k). The size of the horizon acts
as a scale parameter, as well as allowing various long-range forces to be modelled.
When modelling continuous and homogeneous materials for the purpose of damage
and fracture, choosing the horizon as three times the grid spacing δ = 3∆x is found
to be optimal [18].

Bond-based peridynamics, originally introduced in 2000 [14], describes bond-wise
interaction between material points within the horizon δ. When calculating bond-
wise interaction of y(k)on x(k), the influence of the other material points within
Hx(k)

on x(j) are neglected. Several issues with the bond-based approach exist,
prompting the creation of a new PD formulation known as state-based peridynamics
[15]. These issues are:

• The simplification resulting from the assumption that material points within
the family only interact with the central particle and not each other, resulting
in, amongst other things, a limitation on the Poisson’s ratio to 0.25.

7



2 Theory

• An inability to formulate a stress tensor, making it difficult to use existing con-
tinuum constitutive models, reducing the de facto usability of peridynamics.

• Inappropriate plasticity modelling, a main issue being failure to model plastic
incompressibility in metals.

State-based peridynamics redefines the constitutive aspect of peridynamics, making
it easier to apply and analyse CCM concepts such as elastic-plastic stress, and the
Cauchy and Piola-Kirchhoff stress tensors [13]. The theory behind the peridynamic
formulations is further expanded in the sections below.

2.2.1 Vector States

A state [15, 13] is generated by considering a continuous (or discontinuous) function
g using an infinite amount of discrete values. The array made from these values is
the state of the attribute

g =


g(x1)

g(x2)

g(x3)
...

g(xi)

 (1)

where i = 1, . . . ,∞.

States can be related to other states using tensors, explained in detail in [10], such
as by expansion of a vector state X to Y by operating the tensor A on state X:

Y = AX (2)

The extraction of information regarding a certain discrete value from a state is
denoted by

X〈x1〉 = x1 (3)

Y〈x1〉 = y1 (4)

The purpose of the state is to provide information about an attribute of a material
point and how it is related to the other material points. Another key feature of the

8



2 Theory

state concept is reduction, which is the transformation from a vector state to a second
order tensor. It is defined as

F = <{Y} = (Y ∗X)K−1 (5)

Here, K = X ∗ X is defined as the shape tensor, and * is the convolution of the
vector states.

2.2.2 Deformation:

The deformation of the family surrounding x(k)influences its deformation. In the
same manner, x(j) is influenced by its own family. The displacement of these are
denoted as u(k) and u(j). Introducing the relative position vector (x(j) − x(k)) and
applying the corresponding deformations yields the relative deformed-configuration
position vector

(y(j) − y(k)) =
(
(x(j) + u(j))− (x(k) + u(k))

)
(6)

The stretch between x(k)and x(j), which is a property needed for modelling damage
and cracks, can now be defined as

s(k)(j) =

(∣∣y(j) − y(k)

∣∣− ∣∣x(j) − x(k)

∣∣)∣∣x(j) − x(k)

∣∣ (7)

Having yielded the deformed-configuration position vector associated with a bond,
the resulting deformed-configuration position vector state is constructed from each
bond within the family Hx(k)

giving

Y(x(k), t) =



(y(1) − y(k))
...

(y(j) − y(k))
...

(y(∞) − y(k))


(8)

9



2 Theory

2.2.3 Force Density:

The total deformation of the material points within the family results in a force
density vector t(k)(j) which is the net force exerted on x(k)by y(k). This force density
vector is not necessarily equal to the net force exerted on y(k)by x(k), since the family
Hx(j)

differs from Hx(k)
. The force density vector state for x(k)can then be defined

from all interactions within the family by

T(x(k), t) =



t(k)(1)

...
t(k)(j)

...
t(k)(∞)


(9)

But, as the force density depends on the displacement, the force vector state also
depends on the deformation vector state as

T(x(k), t) = T
(
Y(x(k), t)

)
(10)

2.2.4 Strain Energy Density

The strain energy density is the result of interaction between x(k)and x(j). It is a
scalar micro-potential, depending on material properties and stretches between the
material particles in the family, and constitutes a function of the interaction between
the deformed-configuration position vector of the point y(k), and the deformed-
configuration position vectors of the interacting material points y(ik) where i =

1, 2, . . . ,∞:

w(k)(j) + w(j)(k) = w(k)(j)

(
y(1k) − y(k), . . . ,y(∞k) − y(k)

)
. . .

+ w(j)(k)

(
y(1j) − y(j), . . . ,y(∞j) − y(j)

)
(11)

These micro-potentials form the total strain energy density W(k), which can be
expressed using the strain energy function

W(k) =
1

2

∞∑
j=1

(
w(k)(j) + w(j)(k)

)
V(j) (12)

10
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2.2.5 Balance Laws

The PD formulation, like the CCM formulation, should provide a physically sound
model of reality. This is enforced by applying balance laws, which enforces con-
servation of energy, as well as linear and angular momentum, on the equations of
motion. The equations of motion are not only governed by the balance laws, but by
displacement and constitutive relations as well. In the derivation of the equations of
motion, the linear momentum and energy conservation laws are met, leaving angular
momentum to be defined separately. This is done differently depending on whether
bond-based, ordinary state-based or non-ordinary state-based peridynamics is used.

Equations ofMotion In order to describe the PDequations ofmotion, the principle
of virtual work is applied on the body as

δ

∫ t1

t0

(L)dt = δ

∫ t1

t0

(T − U)dt = 0 (13)

where L is defined as the Lagrangian

L = T − U (14)

Here, T is the total kinetic energy of the body and U is the total potential energy of
the body, given by the summation over all material points as

T =
∞∑
i=1

1

2
ρ(i)u̇(i) · u̇(i)V(i) (15)

and

U =
∞∑
i=1

W(i)V(i) −
∞∑
i=1

(b(i) · u(i))V(i) (16)

respectively. Alternatively, the principle of virtual work can be formulated in words
as [19]

The virtual work done by external active forces on an ideal mechanical
system in equilibrium is zero for any and all virtual displacements
consistent with the constraints.

The principle of virtual work is satisfied by the solution to Lagrange’s equation

d

dt

(
∂L

∂u̇(k)

)
− ∂L

∂u(k)

= 0 (17)

11
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By expanding (16) using (12) and (11), inserting (16) and (15) into Lagrange’s
equation, and only performing calculations related to x(k), (14) is rewritten as

ρ(k)ü(k)V(k) +

[
∞∑
j=1

(
∞∑
i=1

∂w(k)(j)

∂(y(j) − y(k))
V(i)

)
∂(y(j) − y(k))

∂u(k)

+
∞∑
j=1

(
∞∑
i=1

∂w(j)(k)

∂(y(k) − y(j))
V(i)

)
∂(y(k) − y(j))

∂u(k)

− b(k)

]
V(k) = 0 (18)

As only the kinetic energy depends on the velocity, and both terms in the potential

energy depends only on displacement, the first term is equivalent to
d

dt

(
∂T

∂u̇(k)

)
and the bracketed term is equivalent to

∂U

∂u(k)

.

Knowing the dimensions of the strain energy density and the force density as

w(k)(j) =

[
N

m2

]
=
[
ML−1T−2

]
(19)

t(k)(j) = [ρü] =
[
ML−2T−2

]
(20)

a dimensional analysis of (18) is performed yielding

ML−3 × LT−2 × L3

+
[(
ML−1T−2 × L−1 × L3

)
× L× L−1

+
(
ML−1T−2 × L−1 × L3

)
× L× L−1 −ML−2T−2

]
× L3

= MLT−2 +
[(
ML−2T−2 × L3

)
+
(
ML−2T−2 × L3

)
−ML−2T−2

]
× L3

(21)

where it is noted that the dimensions of the force density appear in

∞∑
i=1

∂w(k)(j)

∂(y(j) − y(k))
V(i) (22)

The force densities can thus be expressed as

t(k)(j) =
1

2

1

V(j)

(
∞∑
i=1

∂w(k)(i)

∂(y(i) − y(k))
V(i)

)
(23)

t(j)(k) =
1

2

1

V(j)

(
∞∑
i=1

∂w(k)(i)

∂(y(i) − y(k))
V(i)

)
(24)

12
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Rearranging the expanded Lagrange’s equation and inserting the force density results
in

ρ(k)ü(k) =
∞∑
j=1

[
t(k)(j) − t(j)(k)

]
V(j) + b(k) (25)

Applying the vector state information extraction notation from (4) on the force
density vector state (9), and inserting this in (25) yields

ρ(k)ü(k) =
∞∑
j=1

[
T〈x(k) − x(j)〉 −T〈x(j) − x(k)〉

]
V(i) + b(k) (26)

As the amount ofmaterial points described in the vector state approaches infinity, the
resulting volume of each material point approaches an infinitesimally small value.
This results in the infinite sum being expressed as an integral. Since the total volume
only involves the summation of the volumes of the material points influencing x(k),
the volumetric domain of the integral will be equal to the family H . The equations
of motion can now be formulated as

ρ(k)ü(k) =

∫
H(k)

(
T〈x(k) − x(j)〉 −T〈x(j) − x(k)〉

)
dH(k) + b(k) (27)

or, using matrix notation,
Mü = f(u) + b(u) (28)

where M is the lumped (diagonal) mass matrix with nodal densities along the
diagonal, allowing for a simple inversion to M−1.

The integration formulation in (27) is one of the fundamental benefits of peridy-
namics. The integral domain is easily modified by removing a material point from
the states when a bond is considered broken, allowing for native fracture mod-
elling. Since there are no spatial derivatives in the equation, physical singularities
or discontinuations present no issue.

Angular Momentum As the balance of energy and balance of linear momentum
are already accounted for by deriving the equations of motion from the principle
of virtual work, the angular momentum is derived separately. However, to show
conservation of angularmomentum, the conservation of linearmomentum is applied.

The linear momentum exerted on a set of particles within a volume around a coor-
dinate at a specific time is given by

L =

∫
V(k)

ρ(x(k))u̇(x(k), t)dV(k) (29)
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and the total force acting on the same set by

F =

∫
V(k)

b(x(k), t)dV(k) +

∫
V(k)

∫
H(k)

T(x(k), t)〈x(j) − x(k)〉dH(k)dV(k)

−
∫
V(k)

∫
H(k)

T(x(j), t)〈x(k) − x(j)〉dH(k)dV(k) (30)

where H(k), as mentioned before, is the family containing the set of particles inter-
acting with x(k). If there is balance of linear momentum, all change in momentum
must come from the total force acting upon the volume as L̇ = F. Per definition, any
material point not part of the family will not affect the material point in question,
allowing the integral over the family to be rewritten to contain all the particles within
the volume of the contributing material point. Knowing this, the change in linear
momentum can be written as∫

V(k)

ρ(x(k))ü(x(k), t)dV(k) =

∫
V(k)

b(x(k), t)dV(k)

+

∫
V(k)

∫
V(k)

T(x(k), t)〈x(j) − x(k)〉dV(j)dV(k)

−
∫
V(k)

∫
V(k)

T(x(j), t)〈x− x(j)〉dV(j)dV(k) (31)

According to Newton’s second law, the forces in the material points described in the
force density vector state are equal in magnitude and opposite in direction of each
other, implying that∫
V(k)

∫
V(k)

T(x(j), t)〈x(k)−x(j)〉dV(j)dV(k) =

∫
V(k)

∫
V(k)

T(x(k), t)〈x(j)−x(k)〉dV(k)dV(j)

(32)
Replacing the last double integral on the right-hand side in (31) using (32), and
rearranging the remaining terms results in∫

V(k)

(
ρ(x(k))ü(x(k), t)− b(x(k), t)

)
dV(k) = 0 (33)

which is valid for arbitrary force density vectors.

The angular momentum conservation condition is reached in a similar manner, by
taking the cross product of the deformed coordinate vector and the terms in the linear
momentum calculations as

H0 =

∫
V(k)

y(x(k), t)× ρ(x(k))u̇(x(k), t)dV(k) (34)

where y = x(k) + u(k) is the deformed configuration material point vector. The
torque acting on the volume is given by

14
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Π0 =

∫
V(k)

y(x(k), t)× b(x(k), t)dV(k)

+

∫
V(k)

∫
H(k)

y(x(k), t)×T(x(k), t)〈x(j) − x(k)〉dH(k)dV(k)

−
∫
V(k)

∫
H(k)

y(x(k), t)×T(x(j), t)〈x(k) − x(j)〉dH(k)dV(k) (35)

The change of angular momentum must come solely from the total forces, i.e. the
torque, expressed as Ḣ0 = Π0, which is given by

∫
V(k)

y(x(k), t)× ρ(x(k))ü(x(k), t)dV(k) =

∫
V(k)

y(x(k), t)× b(x(k), t)dV(k)

+

∫
V(k)

∫
H(k)

y(x(k), t)×T(x(k), t)〈x(j) − x(k)〉dH(k)dV(k) (36)

−
∫
V(k)

∫
H(k)

y(x(k), t)×T(x(j), t)〈x(k) − x(j)〉dH(k)dV(k)

Once again it is possible to replace the force density integrals by integrating over
the volume instead of the family, and replacing the material point of interest as

∫
V(k)

∫
V(k)

y(x(k), t)×T(x(j), t)〈x(k) − x(j)〉dV(j)dV(k)

=

∫
V(k)

∫
V(k)

y(x(j), t)×T(x(k), t)〈x(j) − x(k)〉dV(k)dV(j) (37)

Unlike (33), the resulting equation is not valid for all force density vectors at a
glance. Instead the following is yielded

(38)

∫
V(k)

y(x(k), t)×
(
ρ(x(k))ü(x(k), t)− b(x(k), t)

)
dV(k)

=−
∫
V(k)

∫
V(k)

(
y(x(j), t) − y(x(k), t)

)
× T(x(k), t)〈x(j) − x(k)〉dV(j)dV(k)

The terms y(x(j), t)−y(x(k), t) can be expressed using the deformed-configuration
position vector state in (8) as (y(j)−y(k)) = Y(x(k), t)〈x(j)−x(k)〉. If the linear mo-
mentum is conserved, the right-hand side must equal zero. Simplified, disregarding
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the outer integral,∫
H(k)

Y(x(k), t)〈x(j) − x(k)〉 ×T(x(k), t)〈x(j) − x(k)〉dH(k) = 0 (39)

Here, integration is once again performed over the family, since the deformed-state
position state vector is defined for the horizon. In the first PD theory [14], (39) was
achieved by yielding a cross-product of zero, which occurs if the force vectors are
parallel with the position vectors. Equal and opposite force density vectors are the
main characteristics of bond-based peridynamics, illustrated in Figure 4a. As it is
a very limiting case of peridynamics, bond-based peridynamics is not covered in
this project. Two other formulations exist as well [15, 13]. They are the ordinary
state-based peridynamics pictured in Figure 4b and the non-ordinary state-based
peridynamics seen in Figure 4c. Both are used in the project and will be examined
further.

(a) In bond-based peridynam-
ics, the force density vector
pair solves (39) being equal in
magnitude and parallel in di-
rection.

(b) In ordinary state-based
peridynamics, the force den-
sity vector pair solves (39) be-
ing parallel in direction, but
magnitudes are allowed to dif-
fer.

(c) In non-ordinary state-
based peridynamics, the force
density vector pair solves (39)
with arbitrary magnitude and
direction.

Figure 4: The different force density vectors allowed using the different PD formulations.

Satisfying Angular Momentum using Ordinary State-Based Peridynamics:
The first modification away from bond-based peridynamics is allowing the force
density vectors different magnitudes, i.e. they will differ by a scalar. The cross-
product will still yield zero if they are parallel, satisfying the balance of angular
momentum. Knowing this, the force density vector is extracted from the force
vector state (10) for material points x(k) and x(j), and defined as

t(k)(u(j) − u(k),x(j) − x(k), t) = T(x(k), t)〈x(j) − x(k)〉 =
1

2
A

y(j) − y(k)∣∣y(j) − y(k)

∣∣ (40)

t(j)(u(k) − u(j),x(k) − x(j), t) = T(x(j), t)〈x(k) − x(j)〉 =
1

2
B

y(k) − y(j)∣∣y(k) − y(j)

∣∣ (41)

where the values of A and B depend on their material constants, the horizon, and
the deformation field. The force density vectors were related to the strain energy
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densities in (23) and (24), whose magnitude in the direction of deformation is given
by the strain energy density function in (12) by

∂W (x(k))

∂(
∣∣y(j) − y(k)

∣∣) (42)

The values ofA andB can now be found explicitly for different types of constitutive
models knowing that

t(k)(u(j) − u(k),x(j) − x(k), t) = T(x(k), t)〈x(j) − x(k)〉

∝
∂W (x(k))

∂(
∣∣y(j) − y(k)

∣∣) y(j) − y(k)∣∣y(j) − y(k)

∣∣ (43)

t(j)(u(k) − u(j),x(k) − x(j), t) = T(x(j), t)〈x(k) − x(j)〉

∝
∂W (x(k))

∂(
∣∣y(k) − y(j)

∣∣) y(k) − y(j)∣∣y(k) − y(j)

∣∣ (44)

Satisfying AngularMomentumusingNon-ordinary State-Based Peridynamics:
The PD formulation allowing arbitrary force vectors is called the non-ordinary state-
based peridynamics. It can be derived in several ways, [15] and [13] has two different
methods to reach an equivalent expression. As [13] integrates the Piola-Kirchhoff
stress tensor in the derivation, further illustrating the connection to CCM, it is the
one which will be used here.

A virtual displacement increment ∆u is introduced to (27). The material point
replacement used in (32) is applied, and the whole expression is integrated across
the body. Remembering that the force density relative to material points outside the
family is zero, the following is yielded:∫

V(k)

(
ρ ¨u(k) − b(k)

)
∆u(k)dV(k)

= −
∫
V(k)

∫
V(k)

(
T〈x(j) − x(k)〉(∆u(k) −∆u(j))

)
dV(j)dV(k) (45)

Here it is noted that the displacement increment ∆u(k) − ∆u(j) is the equivalent
to the increment of the deformed configuration vector state Y〈x(j) − x(k)〉. As
force times distance is dimensionally equivalent to virtual work, the integral on the
right-hand side in (45) can be reformulated to the virtual work acting on x(k) due to
internal forces,

∆WI =

∫
H(k)

(
T〈x(j) − x(k)〉T (∆Y〈x(j) − x(k)〉

)
dH(k) (46)
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This allows (45) to be reformulated to∫
V(k)

(
ρ ¨u(k) − b(k)

)
∆u(k)dV(k) = −

∫
V(k)

∆WIdV(k) (47)

The ability to incorporate classical continuum constitutive formulations into peri-
dynamics originates from the above reformulation of virtual work. Comparing
the virtual work formulated in peridynamics (48) and in CCM (49), using matrix
notation:

∆WI =

∫
H(k)

(
T〈x(j) − x(k)〉T (∆Y〈x(j) − x(k)〉

)
dH(k) (48)

∆ŴI = tr(ST∆E) (49)

In the CCM formulation, S is the second Piola-Kirchhoff stress tensor, and E =
1
2
(FTF − I) is the Green-Lagrange strain tensor. Here the deformation gradient

tensor is denotedwithF. Knowing the first Piola-Kirchhoff stress tensorP = STFT ,
(49) is reformulated to

∆ŴI = tr(P∆F) (50)

Applying reduction using (5), and performing a significant reformulation, (50) is
expressed as

∆ŴI =

∫
H(k)

(
w〈x(j) − x(k)〉PK−1(x(j) − x(k))

)T (
∆Y(x(k), t)

)
dH(k) (51)

where w is a weight function, not to be confused with the scalar micro-potential
w(k)(j), and K, as mentioned before, is the shape tensor.

With these final steps, balance of angular momentum has been shown to be satisfied
for arbitrary force vectors, using virtual displacement, if the internal virtual work
can be formulated using (51), which is possible if the first Piola-Kirchhoff stress
tensor can be derived for the material. The non-ordinary state-based PD force vector
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can now be expressed as

t(u(j) − u(k),x(j) − x(k), t) = T(x(k), t)〈x(j) − x(k)〉
= w〈x(j) − x(k)〉PK−1(x(j) − x(k)) (52)

and thus, the necessary balance laws have been formulated.

2.2.6 Boundary Conditions

The PD equations of motions only necessitates initial displacement and velocity
conditions for time-integration. But in order to model more complex systems, time
and spatial constraints, as well as external loads, can also be applied. How to apply
them differs compared to CCM formulations, as different conditions have to be
applied to different kinds of volumetric regions of nodes, shown for 2D in Figure 5
on the next page. Since this project did not make use of external loads, it will not be
covered in the theory section. For further reading on external loads in PD, see [13].

Initial conditions are straight-forward. Every material point on the domain R is
given an initial displacement u∗(x) and velocity v∗(x), their initial spatial gradients
can also, if needed, be specified as the spatial displacement gradient H∗ and spatial
velocity gradient L∗.

Constraint conditions, as mentioned before, are not necessary, but useful to prevent
rigid body motion, as well as impose displacements. Since peridynamics is a non-
local theory, the constraints cannot simply be applied on surfaces. Instead a virtual
boundary domainRc is introduced, ontowhich the constraint is applied. Its thickness
should be the same as the horizon δ [20], to make sure that the true boundary fully
experiences the value from that part of the family.

2.2.7 Damage Modelling

In peridynamics, the architecture of the state vectors are used to introduce damage to
the material, by removing any information on the micro-potential regarding another
node from the state vector of the node in question. Removing the micro-potential
between material points breaks the bond irreversibly. When to break the bond can
be decided in two ways [21]: Critical Energy and Critical Stretch. As the critical
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Figure 5: An illustration of the different condition regions of the PD domain. R denotes
the full domain, Rl is the sub-region of R where an external load is applied, B denotes the
boundary of R, and Rc denotes a fictitious boundary layer for constraint conditions.

energy criterion implemented in Peridigm is only valid for certain elastic materials
only, it is not of any use to the project, and will not be covered in this report.

Using the critical stretch, the bond between two material points is broken when
the stretch between them reaches a predefined value. This value can be either
static, or time dependent [22] when dealing with for example viscous material or
creep. The formulation of the critical stretch is part material model dependent, and
part computation specific due to horizon dependence originating from the micro-
potentials [13]. This means it can be derived for every material, but the values of its
dependencies might be hard to find analytically.

For example, the micro-brittle 3D PD material model has a critical stretch which
depends on the horizon, bulkmodulus, shear modulus, and the critical energy release
rate as [21]

sc =

√
G0c

(3G+ (3/4)4) (K − 5G/3) δ
(53)

Finding the correct value of sc using a similar analytical method for other, even
more complex material models would be a very time-consuming exercise. Instead,
an iterative method of finding the correct value can be used, which boils down to
running repeated simulations, varying only the critical stretch, until the point of
fracture corresponds to experimental data.

As a bond is broken, the stress is distributed to the other material points still bonded
to the material point in question. This increase in stress promotes further bond
breakage, leading to a progressively growing fracture [13]. As an indicator of the

20



2 Theory

amount of interactions eliminated from a material point, relative to the interactions
present at initiation, the local damage [18] can be used. Local damage ranges from
0 to 1, where a 0 indicates that all interactions are intact, and a 1 is equivalent to all
initial interactions being severed. Introducing the individual interaction indicator µ,
or failure parameter for short, and attributing the following boolean expression

µ =

1 if bond stretch below critical stretch

0 else
(54)

allows the local damage to be formulated as

ϕ(x(k), t) = 1−

∫
H(k)

µ(x(j) − x(k), t)dV(j)∫
H(k)

dV(j)

(55)

2.3 Peridigm

Peridigm is an open-source peridynamic simulation program developed at Sandia
National Laboratories [23]. It was first published in 2011, and has subsequently been
developed continuously by Sandia and a small community of private contributors.
The latest source code is available on GitHub [24]. Some general Peridigm theory
is presented below, summarising some of the important aspects regarding usage. A
thorough explanation of the software has been made by Deutsches Zentrum für Luft-
und Raumfahrt (DLR) [21], they also provide an installation guide, both of which
are available in the PeriDoX package on GitHub [25].

2.3.1 Input - Output

Input is given by providing an input deck written in either XML [26] or YAML [27]
format, and a discretization containing information on the material points. The
available option sections [21] and their respective purpose are shown in Table 1
on the following page. An example of a YAML input deck is found in Appendix B.
Code is written using significant whitespace, meaning that the indentation guides
the code interpreter. Tabs and spaces are not equal, and either one should be used
consequently in the whole file. Input which is supposed to yield a value can be
parsed using either functions or the value specified as an integer or double. Writing
functions in the input deck is necessary when velocities are used, as the time variable
t can be used, or when imposing displacements related to coordinates x, y, or z.
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Table 1: The various options sections available in Peridigm, and their purpose.

Verbosity The amount of information printed in the Peridigm output.
Discretization Specifies the file type and file name of the domain to be used.
Materials Models Specifies the different material models and their corresponding vari-

ables. Different material models are referenced by naming.
Damage Models [Optional] Specifies the different damagemodels and their correspond-

ing variables. Referenced by naming
Contact Models [Optional] Specifies how regions not part of each others’ families

behave when in contact. Not used in this project
Blocks Specifies the material, damage, and contact models to be applied to the

different blocks.
Boundary Condi-
tions

Specifies the different boundary and initial conditions applied during
the simulation.

Solver Specifies time interval and time integration schemes.
Compute Class Pa-
rameters

[Optional] Specifies eventual extra computations wished to be per-
formed during a load step.

Output Specifies which variables to save, how often, and to what file in which
format.

2.3.2 Discretization

Two inputs are required for the discretization: which file to read, and what file-type
it is. The two currently available file types [21] are Text files and Exodus II files
[28].

Text file input is easily written by hand but requires a certain format. Both a domain
discretization text file as well as auxiliary node set text files are needed for this. The
domain discretization file contains information on coordinates, block ID and the
volume of the node, arranged as below, each row being the corresponding node ID.

Column 1 Column 2 Column 3 Column 4 Column 5
Node ID X Y Z Block ID Volume

The node set text file simply contains the node ID of the nodes belonging to the set,
on individual rows as below:

Column 1
Row Node ID

Peridigm I/O is streamlined to work with the Exodus II file format, and the text files
generated should be converted to this format using the providedtext_to_genesis.py
script available in the source code on GitHub [29].
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Blocks are used to define the type of material, damage, and contact properties the
material points will exhibit, as well as specify nodes for the compute class param-
eters. Node sets are used by boundary conditions and compute class parameters in
the same way.

Bond filters can be implemented to create pre-cracks. They prevent bonds frombeing
created during initialization and will result in crack initiation during simulation. It
can be defined using different 2D shapes: rectangular plane, disk, or Exodus mesh
[30].

Figure 6: A bond-filter used for pre-cracking, defined by a rectangular slice.

2.3.3 Material Models in Peridigm

Several material models exist, they are listed in [21], and in the source codematerials
folder of Peridigm. Bond-based as well as ordinary and non-ordinary state-based
materials exist. The latter two are denoted as non-correspondence and correspon-
dence material models respectively in Peridigm. The available material models as
of the beginning of spring 2020 are:

• Elastic (bond-based, non-correspondence, and correspondence)

• Position-aware elastic [Pals] (non-correspondence)

• Partial-volume solid (volumetric elasticity in nodes. Non-correspondence)

• Elastic-plastic (Perfect plasticity. Non-correspondence, correspondence)

• Elastic-Plastic Hardening (non-correspondence, correspondence)

• Viscoelastic (non-correspondence)

• Needleman viscoelasto-plastic (correspondence)
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• Several non-documented material models in the source code.

This project has made use two material models: The Isotropic Hardening Corre-
spondence model [21], and the Elastic Plastic Hardening model [31], which both
exhibit the behaviour shown in Figure 7. This is due to plasticity being a necessary
component in the modelling of the material, disregarding all non-plasticity models.
Since perfect plasticity does not increase stress levels following yielding, it is not
suitable either. The Needleman viscoplastic material model is not well documented
in [21], and requires many parameter inputs, increasing calibration time and is as
such not deemed a useful model for this project.

σ

ε

K

K
H

σ
yield

Figure 7: The stress-strain behaviour of the Peridigm elastic-plastic hardening models.
Adapted from [21].

The elastic plastic hardening models feature linear elasticity as well as linear plas-
ticity, the inclinations being the bulk modulus and hardening modulus, respectively.
The non-correspondence elastic plastic hardening material model is governed by
seven variables:

• Density: ρ

• Bulk modulus: K

• Shear modulus: G

• Elasticity modulus: E

• Poisson’s ratio: ν

• Yield stress: σyield

• Hardening modulus: KH

When using the correspondencemodel, an extra variable is introduced for calculation
of hourglass force densities, which are added to the regular force density to minimise
low- and zero-energy modes [32].

• Hourglass coefficient: Chk
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Peridigm code uses K and G for calculations, but engineering constants (G, E, ν)
can be used instead as they are recalculated in Peridigm into K and G using the
relations

K =
E

3(1− 2ν)
(56)

and
G =

E

2(1 + ν)
(57)

It makes no difference to the result, so the choice is purely dependent on which
data is closest at hand. If used, only two engineering constants are needed as the
third constant can be derived from (57). Chk is used for calculation of hourglass
force densities which are added to the regular force density to minimize low- and
zero-energy modes [32].

The PD yield criterion used in Peridigm for plasticity [31], is equivalent to the CCM
VonMises plasticity model [33], which assumes that the stress is decomposable into
an elastic and a plastic part, that the elastic region is confined within a deviatoric-
state-dependent yield surface, and that only deviatoric stresses (non-hydrostatic
stresses) will induce yield. The yield function (yield surface) is given by [31]

f = ψ − ψ0 = 0 (58)

where ψ0 is the yield point of the material and ψ =
‖td‖2

2
is a material flow function

where td is the deviatoric force state. It is illustrated in Figure 8, as seen from the
deviatoric plane in the stress space.

σ
2

σ
3

σ
1

f = 0

Figure 8: The von Mises yield surface, illustrating (58). f < 0 denotes the inner area of
the circle, while outside the circle f > 0. On the boundary between them f = 0.

Together with the consistency parameter λ, f and λ must satisfy the Karush-Kuhn-
Tucker complementary conditions [33]:

λ ≥ 0 (59)

f ≤ 0 (60)

λf = 0. (61)
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The values of f and λ under these restrictions indicates whether the increment is
plastic or elastic. A value of f < 0 implies an elastic increment if λ = 0, while
f = 0 in combination with λ > 0 indicate that the stress has reached the yield
surface.

The three-dimensional yield point (the distance from zero loading to the yield
surface) is related to the yield stress. In Peridigm it is given by [34]

ψ0 =
25.0σyield

8πδ5
(62)

This is used in a backward Euler (fully implicit) scheme [33] to derive the value of
the increment of λ resulting in

∆λ =
1

α

[
‖tditer‖√

2ψ0

− 1

]
(63)

if the step is plastic. Otherwise ∆λ = 0, and the force state will be calculated
elastically. In order to prohibit f > 0, the yield surface must increase further to
ensure that f stays at zero, ensuring that that ḟ = 0. This increase makes the
increment a plastic loading increment. It is done by, using the Von Mises isotropic
hardening [33], defining a hardening parameter K = K(KH) which is not to be
confused with the bulk modulus, as well as a new yield function F , and using these
to redefine the initial yield function as:

f = F −K = 0 (64)

Specifics on the correspondence model: The correspondence materials are the
Peridigm equivalents of the PD non-ordinary state-based materials. According to
[21], they allow classical continuum output such as Von Mises and Cauchy stress
tensor outputs, as well as proper surface treatment. Surface calculations is an
issue for non-correspondence materials, as the calculations are made based on the
assumption that the material point is completely surrounded by its family, i.e. in
the bulk. On the boundaries where the material point is missing bonds, calculations
will be erroneous. This can be corrected using surface correction algorithms, but
the correspondence does not require any correction. Instead, they require that every
material point has at least three non-parallel bonds, as these are needed for the
computation of a proper deformation gradient.
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The material can also feature spatial flaws [35], a region of the material where the
yield strength is reduced using the formula

σf,yield = σyield

(
1− Cf,m exp

{
− ((x− xf )2 + (y − yf )2 + (z − zf )2)

C2
f,s

})
(65)

where σf,yield is the resulting yield stress from the flaw, Cf,m is the flaw magnitude
expressed as part of total yield stress, Cf,s is the physical flaw size, and xf , yf , and
zf are the coordinates of the flaw centre.

Conversion of engineering stress-strain to true stress-strain The engineering
strain is defined as [3]

εe =
∆L

L0

(66)

where ∆L is the elongation, and L0 is the initial length of the domain. The true
strain is derived from (66) using the relation

εt = ln

(
L

L0

)
= ln

(
∆L+ L0

L0

)
= ln(εe + 1) (67)

The engineering stress is defined as [3]

σe =
F

A0

(68)

where F is the force and A0 is the initial cross-sectional area. The true stress is
calculated for the instantaneous area A as

σt =
F

A
(69)

Assuming that the total volume is preserved, the instantaneous area A can be found
knowing the elongation as well as the initial area and length

V = AL = A0L0 =⇒ A =
V

L
=
A0L0

L
(70)

which gives
σt =

F
A0L0

L0+∆L

= σe(1 + εe) (71)
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2.3.4 Damage Models in Peridigm

Peridigm implements the critical stretch model in three different ways. Standard,
time dependent, or interface aware. The standard and time dependent critical stretch
models can only be utilised for bond-based and non-correspondence state-based ma-
terials. For correspondencematerials, an issue ariseswith bond breaking. Amaterial
point might end up with less than three non-parallel bonds, which will break the
simulation as mentioned previously. The interface aware damage model contains a
check, which makes sure that no rank deficient node will be part of the deformation
gradient calculation. Instead, they are put in a certain node set and removed from
the computation. This is done by invoking the command

Create Node Set For Rank Deficient Nodes: true

shown in the Boundary Conditions section in Appendix B. Without this, the sim-
ulation will break. This information is not available in the documentation, but is
understood from the source code of the interface aware damage model [36].

Apart from the node check, interface aware and standard critical stretch behave the
same. As illustrated in Figure 9, a certain amount of work w0, defined using the
critical stretch sc will result in the bond breaking. Until that point is reached, the
bond can be stretched and contracted infinitely. When the bond breaks, further
stretching will not contribute any force to the material point bond.

Bond force: f

Bond Stretch: s
S
c

w
0

Figure 9: The schematic force-stretch behaviour of the Peridigm critical stretch model.
Adapted from [21].
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2.3.5 Boundary Conditions

Peridigm implements both constraint and initial conditions, but does not as of yet
implement periodic boundary conditions. Body forces and displacements are enough
for most applications, as the coordinate and time variables x, y, z, and t allow for
rates of change to be expressed using the function parser. They can be specified for
either blocks or node sets. Each boundary condition is given a unique name and a
node list or block which identifies the nodes the boundary condition applies to. It
also defines what kind of boundary condition it is. Several ones can be found in
the source code, but some of them have not been implemented yet [21]. Depending
on what type it is, the relevant attributes are specified as well. For a displacement
boundary condition, a magnitude value and direction coordinate are given, one for
each Cartesian coordinate. As mentioned before on page 28, the setting for rank
deficient nodes has to be specified in this section if the interface aware damage
model is used.

2.3.6 Solvers

Several numerical solvers exist in Peridigm, utilising different time integration
schemes as well as quasi-static schemes. For dynamic simulations, explicit and
implicit solvers exist. An explicit time integration scheme uses only values from the
current time step to calculate the result of the next time step, while an implicit time
integration scheme uses data from both the current as well as the next time step to
calculate the next time step.

The explicit time integration scheme is recommended for damage and fracture
modelling [21], and consists of aVelocity Verlet algorithm [37]. Given the discretised
equation of motion (28) at time step n

Mün = fn(un) + bn(un) (72)

and the explicitly stored velocity vn, the velocities, external and internal forces,
as well as displacements for the next load steps are calculated using the algorithm
below [38].

1. Calculation of the half step velocity: vn+1/2 = vn +
∆t

2
M−1(fn + bn)

2. Calculation of the new displacement: un+1 = un + ∆tvn+1/2

3. Re-evaluation of new force densities: fn+1, bn+1
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4. Calculation of the new velocity: vn+1 = vn+1/2 +
∆t

2
M−1(fn+1 + bn+1)

Explicit time integrations are subjected to conditional stability [33], meaning that
in order to prevent errors from diverging as time moves forward, a critical time step
can be found, above which the solution is unstable. The time step allowed is related
to information flow speed in the discretisation via a spring constant. It is calculated
by finding the lowest critical time step among all material points as [39]

∆tcrit = min

√
2ρ

tkd
, k ∈ R (73)

where the time step denominator for a material point x(k)is

tkd =

∫
H

Vjkj
(x(k) − x(j))

dH (74)

where kj is the spring constant. The same spring constant is used for every material
in Peridigm, but actually based on the derivation of the bond constant for isotropic
compression loading, through equation of the PD and CCM strain energy densities.

WPD =
1

2

∫
H

wdH (75)

WCCM =
1

2
σijεij (76)

into
1

2

∫
H

wdH =
1

2
σijεij (77)

The PD formulation, expressed in spherical coordinates since the family H is a
sphere, is

WPD =

∫ δ

ξ=0

∫ 2π

ϕ=0

∫ 2π

θ=0

ks2

4
ξ3 sin θdξdθdϕ =

ks2πδ4

4
(78)

where s is the stretch and δ is the horizon. The classical continuum formulation,
using Hooke’s law for the strain energy density

σij = 3(K − λ)εij + λεkkδij (79)

and
λ =

3K

5
(80)

results in

WCCM =
∑
i

(∑
j

6K

10
ε2
ij +

3K

10

∑
k

εkkεii

)
(81)

30



2 Theory

Uniaxial loading allows the strain tensor to be written as

εii = s (82)

yielding
WCCM =

9

2
Ks2 (83)

Solving (77) using (78) and (83) for k gives

k =
18K

πδ4
(84)

which is denoted as kj in (74), and is a semi-material-parameter, as it depends on
both the bulk modulus as well as the horizon. The spring constant can also be used
to calculate resonance frequencies ω using the relation

ω =

√
k

m
(85)

where m is the mass of the node.

The critical time step is usually very low, presenting an issue when dealing with low
strain rates. The explicit time integration scheme therefore is mostly suitable for
short simulations of time intervals. When the time step criteria can be met however,
the explicit solution solves the equations of motion without the use of iterations [33].

If the time step criteria cannot bemet, an implicit solver can be used instead. They are
less straight forward, requiring more calculations per load step as well as the usage
of iterations, but allows for larger time steps. Depending on whether the number
of iterations or the number of time steps required is the highest, the corresponding
numerical solver should be used. The implicit solver implemented in Peridigm is the
Newmark-β method [37]. It is not used in this project and therefore not explained
further. Note that the fully implicit backward Euler method used for calculation of
∆λ in (63) is not governed by the choice of time-integration scheme.

If the left-hand side of (72) can be neglected, it is discretised into virtual time steps
as

−fn(un) = bn(un) (86)

This corresponds to the Quasi-static solver schemes. Peridigm features two differ-
ent kinds: the regular QuasiStatic, and a scheme from one of the dependencies of
Peridigm [40]. It is the Trilinos-developed NOXQuasiStatic solver. The NOXQua-
siStatic method requires a general preconditioner, load step direction method, ja-
cobian operator and preconditioner, as well as manually specifying the polynomial
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line search method [21]. The regular QuasiStatic method does not require these,
but do require more numerical variables to be specified. As a result, it requires
more adjustment of values for every new simulation and this is assumed to be less
favourable for the project. Neither method is well documented in either the source
code or the user manuals [38, 21, 37].

2.3.7 Running Peridigm

To run Peridigm, the input deck must be written and the domain discretisation
must be provided. If the discretisation is specified as a text file, the file name is
simply written. If the discretisation is an Exodus II file, it must be decomposed to
the number of CPU cores, denoted as <np>, sought to be used. This is done by
running the decomp script available in the Trilinos source code [41]. For an arbitrary
decomposition, the command is

python decomp.py <filename>.g -p <np>

The discretisationfile name is specifiedwithout the decomposition indicator ".<total
cores>.<np>" in the input deck.

Peridigm is invoked in a Linux shell terminal either in serial, or in parallel. In serial,
the command is simply:

Peridigm <filename>.yaml

Since the discretisation is declared in the yaml file, no further input is required for
Peridigm. Preferably, the output is stored in a log file, storing error and regular
output separately is done as:

Peridigm <filename>.yaml >PeridigmOut.log 2>PeridigmErr.log

or combined:

Peridigm <filename>.yaml >PeridigmOut.log 2>&1

As time is often a limited resource, parallel Peridigm is more suitable for large
computations. It is made by calling the MPI interface [42], which is used to
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communicate data between the processors. For an arbitrary number of cores, the
shell command is

mpirun -np <np> Peridigm <filename>.yaml >PeridigmOut.log 2>&1

The data is saved in the Exodus II output format, for every decomposed file separately.
To combine these files into one single data file, they are merged using the script
available in the Peridigm source code:

python MergeFiles.py <filename>.e 20

This can now be read using Paraview [43], where data can be presented in a com-
prehensible manner, and exported to other formats.
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3 Method

In order to investigate if fracture of HS materials can be sufficiently modelled using
peridynamics in Peridigm, realistic behaviour for the UFG and CG materials must
be formulated and combined in a domain mirroring the topology of experimental
HS materials. The steps required to achieve this are: generating a domain, finding
proper constitutive models for both deformation and damage, and finally combining
the models in bi-modal simulations an HS domain. The different steps and their
subsequent goals are listed below for clarity.

The general procedure:

1. Domain generation:

• Scalable resolution for mesh-independence studies.

• Reasonable resolution interval for the available computational resources.

• Domain for calibration

• Ideal HS domain.

2. Material calibration: UFG and CG calibrated separately

• Material model - Fit general experimental data on stress-strain curves.

• Damage model - Show proper necking and fracture.

3. Harmonic structure simulations: UFG and CG combined

• Evenly distributed domain - Comparable with current experimental data.

3.1 Software

For domain generation, Matlab [44] was used. The open-source finite element
mesh generation program Gmsh [45] was used initially but abandoned due to issues
with the scalability and random generation of coarse-grained centres. Data points
based on the experimental data in Figure 13a on page 39 and Figure 15a on page 41
was measured using GIMP [46] and subsequently loaded and analysed in Matlab.
The simulations are carried out using Peridigm [23] and its dependencies, with
parallelisation made possible using OpenMPI [42]. The data files are loaded into
Paraview [43], where images and data are exported. The data is then read inMatlab
for stress and strain calculations.
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3.2 Domain and Discretisation

Two different domains are used:

• A standard homogeneous tensile test specimen pictured in Figure 10a, which
is available as part of a tensile test example in the Peridigm source code. In
this example, the material model is purely elastic without any damage model.
Therefore, it has been verified neither for plastic deformation nor fracture.
The domain is used for calibrating the two materials separately.

• A rectangular heterogeneous three-dimensional block pictured in Figure 11a
on the next page, similar to the domain used in [7]. This domain is used for
the harmonic structured simulations, as well as calibration of materials.

3.2.1 Standard Tensile Test Specimen

(a) The discretised domain of the tensile test
specimen. The different colours indicate the
various node sets.

(b) A view of the right end of Figure 10a. The
colours indicate the three different boundary
condition regions imposed on the tensile test
specimen domain

(c)The gauge region of the tensile test specimen
domain highlighted in white.

(d) A two-dimensional view of the tensile test
specimen.

Figure 10: Four views of the standard tensile test specimen used in this project.

As the domain is already discretised in Peridigm, the domain cannot be subjected to
refining or coarsening, and is used as-is. The initial gauge measurements, the gauge
being indicated in Figure 10c, are 24.8 mm long (y), 5.7 mm wide (x), and 2.5 mm

deep (z). The full specimen measures 100.0 mm long, 12.0 mm wide, and 2.5 mm

deep. Three boundary conditions are applied on each side of the specimen, pictured
in Figure 10b for the right side. A displacement of y × 0.005 × t m, equivalent to
a displacement rate of y × 0.005 m s−1 is applied on the bulk (yellow) nodes. Also,
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rigid body motion is prevented by enforcing a displacement of 0 m in x and z applied
on the right (purple) nodes and the on the bottom (brown) nodes, respectively.

3.2.2 Thin Rectangular Block

(a) The discretised domain of the harmonic
structured material. The two blocks are illus-
trated inwhite (CG) and red (UFG). The colours
of the end sides shows two different node sets.

(b) A view of the right end domain of 11a. The
colours show the final three boundary condition
regions imposed on the HS domain.

(c) The gauge region of the HS domain high-
lighted in white.

(d) A two-dimensional view of the HS domain.

Figure 11: Four views of the harmonic structured domain used in this project.

The domain chosen is similar to the one used in [7]. It is generated using the code
in Appendix F, which automatically adjusts the radius of the CG regions to ensure
that a certain percentage of the nodes will be UFG. The fraction chosen is 40 %
UFG nodes, to be equivalent to both [7] and [4]. The domain is oriented differently
from the tensile test specimen, x being the length, y being the width, and z being the
depth. The size of the domain measures 5.0 mm in x, 1.0 mm in y, and a fifth of the
width being (1.0/5 = 0.2) mm in z. Several boundary conditions for the prevention
of rigid body motion are tested, and the final choice, being the same as the tensile
test specimen, is pictured in Figure 11b. The bulk (turquoise) nodes are displaced
in x direction, nominally at a rate of x× 3.6e− 3 m s−1, but higher magnitudes are
used in the Verlet solver simulations. The bottom (red) nodes prevent rigid body
motion in z, and the left (blue) nodes prevent rigid body motion in y.

Some other boundary conditions are also examined on the harmonic structured
domain. The application regions are shown in Figure 12 on the next page, and the
boundary conditions applied to the different node sets (NS) are

• Preventing the whole domain from displacement in z.
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Figure 12: Schematic representation of different node sets (indicated in Paraview as vtk-
BlockColors) used for preliminary boundary conditions in the harmonic structured domain
in Figure 11d on the facing page. For clarity on the dark blue node sets, NS 2 denotes the
left end, and NS 3 denotes the right end.

• Enforcing an artificial shrinking of the boundary region nodes in y, as the
domain expands in x (NS 2 and 3).

• Prevention of y-movement of the bottom border in x (NS 6).

• Two centre end points locked in y-direction (NS 7).

These alternative boundary conditions and the resulting issues are derived from
trying to conform to the theory of having a boundary region the size of the horizon.
The tensile test example in Peridigm does not utilise this principle for the rigid body
motion boundary conditions, showing that it is not necessary nor suitable to have
a full horizon region for such a boundary condition. However, neither is assigning
the boundary condition to one node only, as this would result in a too large force
acting on the single node. For the application of a displacement affecting the rest
of the domain, a boundary condition region, as opposed to a boundary condition
surface, is applied. Due to this necessity, an extra width is addedwhere the boundary
conditions are applied, and the CG blocks are not generated here. This is illustrated
in Figure 11a on the facing page, where the coarse grains are not present at the
endings. As a result, the UFG fraction calculation is not based on the full domain,
and instead calculated only in the region where both UFG and CG is present.

The gauge region, designated by white in Figure 11c on the preceding page, is even
smaller, to mitigate the effect of the boundary region on parts of the domain. As
Peridigm as of spring 2020 have not implemented two-dimensional simulations, the
domain is a thin slice of the three-dimensional FCC structure to reduce computational
effort. Its outer boundaries can be adjusted freely, and is here chosen to contain one
unit cell of FCC in the depth (z) direction. Besides the FCC domain, a 2D "random"
domain structure is also created using the code in Appendix G. Its purpose is to be
used for random-distributed simulations, in order to compare topology effects on
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the material. These simulations are superseded in priority by calibration and the
HS simulation due to time restrictions, and thus not performed. It therefore only
included as a reference for further work

The discretisation is saved to a domain file and corresponding node set files in .txt
format, and subsequently converted to ExodusII using the text_to_genesis.py
script, as explained in the theory. Furthermore, for parallelisation the domain is
decomposed using the decomp.py-script into as many parts as processor cores used
for the simulation.

3.3 Material and Damage Models

Experimental engineering stress-strain data to calibrate the models with has been
found for both the CG and the UFG material. It is discretised using GIMP 2 [46]
and converted to true stress-strain and presented in figures using the Matlab code
in Appendix J. A power law function on the form f = kxy based on the plastic stress
points are fitted to the plastic stress data available using a linear fit on the log-log plot
of the true stress strain curves. Since no data on the cross-sectional area is available
after the ultimate tensile strength point, true stress cannot be derived analytically
using (71) after this point since knowledge of the complex stress state within the
neck region is unknown. The values are found in SI units, but depending on the
units of the discretisation, they can be converted between different unit systems. The
tensile test specimen domain is defined in centimetres, necessitating a conversion
from SI to CGS (Centimetre-Gram-Second). Conversion tools are readily available
online.

3.3.1 Coarse Grain Material Model

The CG material is assumed to behave as the Ni-200 material in [47], based on
the material provided from [48], which specifies the ultimate tensile strength to be
nominally between 380-520 MPa for engineering stress. The curve in Figure 13a
and Figure 13b on the facing page shows the engineering stress-strain behaviour of
the material. Initial plasticity is assumed from the picture and data in [48] to be 185
MPa. The highest stress value of the curve is presumed to be the ultimate tensile
strength (UTS), and as a result, the whole curve can be used for discretisation and
conversion to true stress, as seen in Figure 13c on the next page.
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(a) The full uniaxial tension engineering stress-
strain curve. Image adopted from [47].

(b)A closer look at the initial phase of the uniax-
ial tension engineering stress-strain curve. Im-
age adopted from [47].

(c)The numerical discretisation of the CG engineering stress-strain curve and the converted
true stress-strain curve.

Figure 13: The uniaxial tension stress-strain curves of Nickel 200 [47], and the correspond-
ing discretisation and conversion to true stress-strain.

The linear fit of the log-log stress-strain curve is seen in Figure 14a on the following
page, and the extrapolation using the complete power law as well as a linear approx-
imation is seen in Figure 14b. Note that the stress values are in MPa, which transfers
to the values of the inclination and y-intercept of the fitted function in both the CG
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and the UFG fits. The power law approximation yielded is σ = 980×106ε0.399. The
linear approximation is based on the power law being valid from no strain to max
strain, which is not correct, as the initial strain is elastic. Due to this, the hardening
modulus is taken to be 898e6, which is the same value as in [49].

(a) The log-log curve fit of the plastic region of Nickel 200 .

(b) The extrapolation of the power law yielded in 14a, with power law exponent
(curved yellow line) as well as exponent equal to one (straight purple line). The
plastic data is seen as blue dots along the curved yellow line.

Figure 14: The log-log curve fit and extrapolation of the plastic region of the CG material
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3.3.2 Ultra-Fine Grain Material Model

(a) Nickel stress-strain curves for different temperatures and purity
levels [50]. The data used is Ni99.97 HPT at 25 °C .

(b) The numerical discretisation of the CG engineering stress-strain curve and
the converted true stress-strain curve.

Figure 15: The uniaxial tension stress-strain curves of high-pressure torsion nickel, and the
corresponding discretisation and conversion to true stress-strain.

The UFG material model is based on data from an experiment using high-pressure
torsion (HPT) to achieve small grain sizes in different purities of nickel at different
temperatures [50]. UFG is assumed to correspond to 99.97 % pure nickel deformed
at a temperature of 25 °C, as seen in Figure 15a. Initial plasticity is interpreted to
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Table 2: A summary of the material parameter values initially chosen.

UFG and CG
ρ 7850 kg m−3

E 210 GPa
ν 0.31

CG Specific
σyield 185 MPa
KH 898× 106

UFG Specific
σyield 1502 MPa
KH 4356× 106

occur at 1502 MPa based on Figure 15a on the preceding page. The displacement is
converted to strain using the initial gauge length of 2.5 mm given in the article.

At the point of necking, analytical conversion to true stress is no longer valid since
the strain becomes localised, resulting in three data points utterly defining the plastic
behaviour used to fit a linear log-log curve fit in Figure 16a on the next page. Once
again, it is noted that the stress values are given in MPa, and constants resulting
from the curve-fit inherits this prefix. Based on the three available plastic stress
data points, the power law approximation is σ = 4356× 106ε0.302 and the hardening
modulus is taken to be 4356× 106.

3.3.3 General Nickel Data

For both UFG and CG, the Poisson’s ratio and elasticity modulus are assumed to
be the same for both grains, and taken from [47]. This gives a Poisson’s ratio of
ν = 0.31, and an elasticity module of E = 210 GPa. The density was faultily taken
to be as 7580 kg m−3, which is the density of iron. The true density of nickel varies
around 8900 kg m−3 [3]. As this error was noticed after all the simulations have
been made, the error is mentioned here for clarity only.

Summarised in Table 2 are the material parameters initially used for the project. The
material data for the correspondence model also requires an hourglass coefficient
Chkto be specified. To avoid having to calibrate too many variables, it was chosen
to consistently be exactly half of the interval specified in [21], giving Chk = 0.025.
Since the data for UFG and CG are both derived from tensile testing, the yield
criterions are assumed to be valid for the uniaxial testing done in the Peridigm
simulations as well, which should be checked according to [37].

3.3.4 Damage Model

For the damage model, an arbitrary initial value of the critical stretch was chosen to
0.002, as it was the stretch present in one of the Peridigm examples. Apart from the
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(a) The log-log curve fit of the plastic region of the UFG material.

(b) The extrapolation of the power law yielded in 14a, with power law exponent
(curved yellow line) as well as exponent equal to one (straight purple line). The
plastic data is seen as blue dots along the curved yellow line.

Figure 16: The log-log curve fit and extrapolation of the plastic region of the UFG material

critical stretch value, pre-cracks and material flaws, as explained in the theory, are
also used as tools for fracture actualisation experiments. Iteratively a value for the
critical stretch, yielding similar behaviour as the material models, is sought.
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3.4 Solvers

Both the NOXQuasiStatic and the Verlet solvers are used. The displacement rate
in tensile test experiments are on an order of magnitude of 10−3 m s−1, and ne-
glectable compared to the force resulting from the stretch of the constitutive model
as illustrated by the rough estimate below. For these reasons, the domain is initially
believed to behave quasi-statically.

Fü = ρV ü = 8000× 1e− 7× 10 = 0.02N

Fσ = EεA = 210× 109 × 1× 10−3 × 1× 10−5 = 2100N

Fü

Fσ
= 9.5× 10−6

The Verlet solver, as explained in the theory, yields very short time steps. Using the
values specified in Table 2 on page 42, on a magnitude of 1 × 10−13. To address
this issue, both mass-scaling, numerical dampening, safety factor modification, and
increase of displacement rate are tested.

3.5 Simulations

Simulations are carried out on three different platforms. Both a desktop and a laptop,
as well as on the computer cluster Aurora on LUNARC, the centre for scientific and
technical computing at Lund University. This allows the computations to be tested at
different levels of parallelisation, and reduces time consumption as more simulations
can be made in parallel. An example of a job submission script to Aurora can be
seen in Appendix D.

3.6 Post Processing

The Exodus II file is loaded into Paraview [43], where various cell, point and field
data distributions can be visualised. A python script is generated to automate the
process of data exportation and image generation using the built-in trace function.
The trace has to be re-made depending on which data is available, which domain
is used, etc. The Paraview and Matlab post-processing scripts are all generated
using a bash file which produces the final data. It is directory-independent and
stand-alone, generating all necessary .m files, included in Appendix E for the full
harmonic structured domain.
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The corresponding data is exported as cell, field, and point data to .csv files, which
are then read by one of the Matlab scripts generated, converting them to .mat
files, see Appendix H. The data, on total force along the side boundaries and the
elongation of the gauge region, calculated from the compute class parameters, as
well as the the smallest cross-sectional area of the specimen, are used to plot the
true and engineering stress-strain curves using scripts similar to Appendix I, also
generated by the stand-alone post processing script. The true stress-strain curves
are based on the force component in the axial direction, resulting in the correct
stress-strain curve being calculated for axial tension testing.

The workflow explained in the sections above is illustrated in Figure 17 on the
following page, where the flow of data is indicated as arrows between different
actions, processes, configuration files, and programs. The figure is simplified to
reduce the complexity of the image, and governing scripts such as job farms or job
queues are not included.
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   Discretisation

 Discretisation file
 Nodelists files

        YAML Input Deck

- Discretisation
       - Material
       - Block
       - Damage
       - BC
       - Solver
       - Output

  Text to Exodus    
 
    <filename>.g   

           Domain
    Decomposition

 <filename>.g.<np>.#Parallelisation

 Number of CPU:s 
<np>

        mpirun  -np <np> Peridigm <name>.yaml

<filename>.e.<np>.#

     Merge Files

       <filename>.e
     

Paraview Post-processing script

Topology screenshots.     Point, Cell and Field .csv files.

          MATLAB Calculations
Data matrices
True Stress-Strain curves
Engineering Stress-Strain curves

Data Curves

Topology
Images

Figure 17: A simplified workflow scheme of the Peridigm usage, illustrating data flow
between different scripts, files, and programs.
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4 Results

The results are presented in separate tables for simulations regarding boundary con-
ditions, material calibration, and the Verlet-solver simulations. The tables reference
to figures and graphs, depending on what. A short comment is made for each simu-
lation noting any interesting results or lack thereof. Below is a short explanation on
the details of the different simulations.

Boundary Conditions: The material parameters are not compared with experi-
mental data in these simulations, only the macroscopic deformation due to boundary
conditions is investigated. A summary of the BC tests can be seen in Table 3 on the
next page.

Calibration: Simulations are conducted on both the tensile test specimen domain,
and the harmonic structured domain. The calibration simulations are summarised
in Table 5 on page 49.

Verlet Simulations: The Verlet explicit time integration solver is used. Mass scal-
ing does not result in larger time step increments, since mass scaling influence both
density and bulk modulus, which determines the critical time step. Reduced total
time combined with increased displacement velocities are simulated and presented
in Table 4 on page 49.
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Table 3: A summary of the different boundary conditions examined. The boundary condi-
tion node sets (NS) are denoted using the numbers in Figure 12 on page 37 and the colours
used in Figure 11b on page 36. t is the time, and x, y, z are the nodal coordinates.

N. BC: X NS BC: Y NS BC: Z NS Comment
1 0.0;

t*x*3.6e-3
m

2; 3 0.0 7 0.0 Domain No shrinking along NS
2 or NS 3. Displace-
ment at NS 3 causes
asymmetric behaviour
and damage localisa-
tion compared to NS 2,
Figure 34 on page 59.

2 0.0;
t*x*3.6e-3
m

2; 3 0.0 6 0.0 Domain No shrinking along NS
2, but at NS 3. Dis-
placement at NS 3.
Asymmetric behaviour
in whole domain, Fig-
ure 35 on page 59.

3 t*x*3.6e-3
m

2, 3 - - 0.0 Domain No shrinking along NS
2 or NS 3, Figure 36
on page 60. Damage
localisation in several
places.

4 t*x*3.6e-3
m

2, 3 0.0 Blue 0.0 Red No shrinking along the
red or blue NS pic-
tured in Figure 11b on
page 36. Full do-
main capable of cross-
sectional compression
due to elongation in x.
Simulation made using
CG material only. The
lack of asymmetric be-
haviour can be seen in
Figure 37 on page 60.
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Table 4: The twoVerlet time integration simulations made by increasing speed and reducing
total time only. No mass scaling made. Solver safety factor is 0.01 and numerical damping
is 160.0e3 for both simulations. Both are made using the non-correspondence material and
its parameters, resulting in the same time step ∆t = 1.78e− 13 s. The critical stretches are
sc,UFG = 0.10 and sc,CG = 0.22

N. v0 Final Time Comment
1 450 m/s 22.77e-7 s Initial velocity waves propagates through material and

causes fracture as they meet, figures 48, 49, 50, 51,
and 52. Vibrations progress throughout the material.
Fracture occurs along grain boundaries as seen in fig-
ure 54. Following initial central fracture, outer ends
fracture as well as seen in figures 51 52 and 53, where
the nodes preventing rigid body motion in z are noted
to be damaged as well.

2 45 m/s 27.76e-7 s Initial velocity waves does not cause fracture upon
meeting. Propagation of the waves illustrated in fig-
ures 55, 56, 57, 58, 59, 60, and 61.

Table 5: A summary of the calibration simulations. An interface aware (IA) damage
model indicates a correspondence material model. Units are converted from CSG to SI. All
simulations use NOXQuasiStatic solver unless stated otherwise.

N. Material - KH Dmg - sc ∆t Comment
1 CG - 898e6 IA - 0.002 0.033 s No fracture. No necking. Stress strain

figure 18. CPU Core decomposition dif-
ferences: figures 38 and 39.

2 CG - 898e6 IA - 0.0005 0.023 s No fracture. No necking. Figure 19.
3 CG - 898e6 IA - 0.0001 0.023 s Strain localisation outside gauge region.

Figures 22 and 40.
4 CG - 898e6 IA - 0.0002 0.020 s Fracture occurs. No necking. Figure 20.
5 CG - 898e6 IA - 0.0002 0.010 s No necking . No necking. Figure 21.
6 CG - 2100e6 IA - 0.0002 0.015 s Modified hardening. No fracture. No

necking. Figure 23.
7 CG - 2100e6 IA - 0.00005 0.012 s Fracture occurs. No necking. Figures

24 and 44.
8 CG - 2100e6 IA - 0.00005 0.010 s No fracture. No necking. Figure 25.
9 CG - 2100e6 IA - 0.001 0.010 s Flaw: Cf,m = 0.3, Cf,s = 0.05 at

origo. No fracture. No necking. Fig-
ure 26.

10 CG - 2100e6 IA - 0.001 0.010 s Flaw: Cf,m = 0.3, Cf,s = 0.4 at origo.
No fracture. No necking. Noticeable
gradual yield. Figure 27.
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11 CG - 2100e6 IA - 0.0001 0.013 s Bond filter: One corner. No fracture.
No necking. Figures 28 and 41.

12 CG - 2100e6 IA - 0.0001 0.012 s Bond filter: Centre, size is half of full
cross-sectional area. No fracture. No
necking. Figures 29 and 42.

13 CG - 2100e6 IA - 0.0001 0.012 s Bond filter: Centre, larger than cross-
sectional area. Domain split in two. Fig-
ure 43.

14 UFG - 898e6 IA - 0.00425 0.033 s Misconfigured UFG material, using the
hardening coefficient of theCGmaterial.
Necking occurs. No Fracture. Figures
46 and 45.

15 UFG - 4356e6 IA - 0.02 0.1 s Necking occurs. No Fracture. Figure 33
.

16 CG - 2100e6 IA - 0.01 0.004 s HS Domain, Volume: 6.1 × 10−18 m3.
Figure 30.

17 CG - 2100e6 IA - 0.01 0.004 s HS Domain, Volume: 6.1 × 10−2 m3.
Figure 31.

18 CG - 2100e6 IA - 0.01 - Verlet solver, InterfaceAware solver pro-
duces error message.

19 Elastic CG - - Crit. Stretch - 0.02 6e-8 s Verlet solver, correspondence elastic
material, Interface Aware solver pro-
duces error.

20 Elastic CG - - Crit. Stretch - 0.02 6e-8 s Verlet solver, non-correspondence elas-
tic material. Fracture occurs. No neck-
ing possible due to no plasticity mod-
elling. Displacement velocity of y*500
m/s. Figure 47.
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4.1 Graphs

Figure 18: CG withKH = 898× 106, sc = 0.002, and ∆t = 0.033 s.

Figure 19: CG withKH = 898× 106, sc = 0.0005, and ∆t = 0.023 s.
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Figure 20: CG with KH = 898 × 106, sc = 0.0002, and ∆t = 0.02 s. Fracture occurs
abruptly.

Figure 21: CG withKH = 898× 106, sc = 0.0002, and ∆t = 0.01 s.
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Figure 22: CG with KH = 898 × 106, sc = 0.0001, and ∆t = 0.023 s. Localised strain
occurs outside the gauge region. Oscillations occur.

Figure 23: CG withKH = 2100× 106, sc = 0.0002, and ∆t = 0.015 s.
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Figure 24: CG withKH = 2100× 106, sc = 0.00005, and ∆t = 0.012 s. Fracture occurs
abruptly.

Figure 25: CG withKH = 2100× 106, sc = 0.00005, and ∆t = 0.010 s.
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Figure 26: CG withKH = 2100× 106, sc = 0.001, and ∆t = 0.010 s. Flaw: Cf,m = 0.3,
Cf,s = 0.05 at origo.

Figure 27: CG withKH = 2100× 106, sc = 0.001, and ∆t = 0.010 s. Flaw: Cf,m = 0.3,
Cf,s = 0.4 at origo. Initial yielding gradual.
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Figure 28: CG withKH = 2100× 106, sc = 0.0001, and ∆t = 0.013 s. Bond filter at one
corner. No further crack propagation. No necking.

Figure 29: CG with KH = 2100 × 106, sc = 0.0001, and ∆t = 0.012 s. Bond filter at
centre of domain. No further crack propagation. No necking.
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Figure 30: Harmonic structured CG with KH = 2100× 106, sc = 0.01, and ∆t = 0.004

s. Small volume increases stress magnitude but does not impact other aspects.

Figure 31: Harmonic structured CG with KH = 2100× 106, sc = 0.01, and ∆t = 0.004

s. Large volume increases stress magnitude but does not impact other aspects.

57



4 Results

Figure 32: UFG with KH = 898 × 106, sc = 0.00425, and ∆t = 0.033 s. Erroneous
simulationmade using the hardening coefficient of theCGmaterial. Necking occurs instantly
after yielding as seen in the engineering stress strain curve.

Figure 33: UFG withKH = 4356×106, sc = 0.02, and ∆t = 6×10−8 s. Necking occurs
as seen in the peak of the engineering stress-strain curve.
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4.2 Images

Figure 34: NS 3 displaced at x*3.6e-3 m/s. Domain locked in z and NS 7 locked in y.
Asymmetric behaviour in x-direction.

Figure 35: NS 3 displaced at x*3.6e-3 m/s. Domain locked in z and NS 6 locked in y.
Asymmetric behaviour in x- and y-direction.
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Figure 36: NS 2 and NS 3 displaced at x*3.6e-3 m/s. Domain locked in z and no nodes
locked in y. Localised damage across the domain at an angle with displacement direction.

Figure 37: Single-row BC preventing movement in x and z as specified in 11b. Homoge-
neous displacement of the whole domain. Force is symmetrical. Material is CG only.
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Figure 38: CGwithKH = 898×106, sc = 0.002, and∆t = 0.033 s. Domain decomposed
to 20 CPU cores. Borders with reduced damage can be seen as light blue lines, which is due
to a failure of the CPU cores to communicate damage between them.

Figure 39: CGwithKH = 898×106, sc = 0.002, and∆t = 0.033 s. Domain decomposed
to 8 CPU cores. Borders with reduced damage can be seen as light blue lines, which is due
to a failure of the CPU cores to communicate damage between them.
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Figure 40: CG with KH = 898 × 106,
sc = 0.0001, and ∆t = 0.023 s. Lo-
calised strain occurs outside the gauge re-
gion. Asymmetric stress and displacement
on specimen shoulder.

Figure 41: CG with KH = 2100 × 106,
sc = 0.0001, and ∆t = 0.013 s. Bond filter
at one corner. Plastic strain is lower around
the bond filter.

Figure 42: CG with KH = 2100 × 106,
sc = 0.0001, and ∆t = 0.012 s. Bond filter
at centre of domain. Lower damage at bond
filter. Yielding occurs further from origo.

Figure 43: CG with KH =, sc = 0.0, and
∆t = 0. s. Anomalies at right end of speci-
men.

Figure 44: CGwithKH = 2100×106, sc = 0.00005,
and ∆t = 0.01167 s. Fracture occurs abruptly. Three-
dimensional deformation.
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Figure 45: UFG with KH = 898 × 106, sc = 0.00425, and ∆t = 0.033 s. Erroneous
simulation made with the hardening coefficient of CG material. Stress localisation occurs
instantaneously following yielding.

Figure 46: UFG with KH = 898 × 106, sc = 0.00425, and ∆t = 0.033 s. Erroneous
simulation made with the hardening coefficient of CG material. Plastic deformation occurs
only in the neck region.

Figure 47: Elastic CG, non-correspondence sc = 0.002, and ∆t = 6× 10−8 s. Anomalies
at right end of specimen.
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Figure 48: Fracture propagation: t = 3.9 × 10−7 s. Non-damaged and fully
damaged nodes are hidden.

Figure 49: Fracture propagation: t = 7.1 × 10−7 s. Non-damaged and fully
damaged nodes are hidden.

Figure 50: Fracture propagation: t = 8.2 × 10−7 s. Non-damaged and fully
damaged nodes are hidden.
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Figure 51: Fracture propagation: t = 9.6 × 10−7 s. Non-damaged and fully
damaged nodes are hidden.

Figure 52: Fracture propagation: t = 11.0 × 10−7 s. Non-damaged and fully
damaged nodes are hidden.

Figure 53: Fracture propagation on the corner: t = 11.4× 10−7 s.
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Figure 54: Close up of the fracture region at t = 10.3×10−7 s. Grain materials highlighted
in red and white. Separation seems to occur along grain boundaries.
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Figure 55: Initial velocity of the nodes at t = 2.9 × 10−7 s. Wave propagating towards
centre.

Figure 56: Velocity of the nodes at t = 4.0× 10−7 s. Slightly before waves interference.

Figure 57: Velocity of the nodes at t = 4.8 × 10−7 s. Destructive interference of the
velocity waves.

Figure 58: Velocity of the nodes at t = 5.6× 10−7 s. Waves propagating past each other.
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Figure 59: Velocity of the nodes at t = 8.8× 10−7 s. Waves reach the opposite end.

Figure 60: Velocity of the nodes at t = 9.6× 10−7 s. Reflection of end wall.

Figure 61: Velocity of the nodes at t = 12.0 × 10−7 s. Destructive and constructive
interference present.
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5 Discussion

No satisfying results on fracture in static tensile testing of harmonic structured
materials are achieved. Material calibration of neither UFG nor CGmaterial models
were successful. However, successful fracture simulations were made and a general
framework including installation recommendations, automation scripts, and post-
processing used with Peridigm has been developed.

5.1 Necking

Necking is only seen to occur in the UFG calibration simulation, illustrated in figure
32 and Figure 33 on page 58. The necking in the former case occurs instantaneously
upon first yield of the material. As a result, the plastic engineering stress never
increases as the cross-sectional area is reduced upon initial plasticity. This is
confirmed by Figure 46 on page 63, where the equivalent plastic strain is seen to
only occur in the necking region as well as on the boundary blocks. In the latter
necking case, a substantial plastic strain is required before aminor neckingmanifests.

As the difference in hardening modulus between the two is several times larger than
the smaller hardening modulus, this difference could be a reason for the different
UTS points. The simulation made in Figure 32 however, shows that necking clearly
can be achieved without significant displacement. Why simulation 1 in Table 5 on
page 49 does not result in a similar yield despite having the same time increment, and
a lower critical stretch, could then be attributed to the lower yield stress, as neither
the 8 core or 20 core decompositions result in necking, the 8 core decomposition
being the same decomposition as the UFG material is simulated on.

There could be several reasons for the lack of necking in the CG calibration simu-
lations. The largest problem is that none of them are elongated as far as the UFG
simulation in Figure 33 on page 58. Not running a simulation until necking occurs
was a conscious decision motivated by restricted computational resources initially
in the project, before Peridigm was installed on the cluster. If UTS did not occur
around the same strain as for the experimental data, it would be assumed to be a
faulty calibration and not run further. This would allow more simulations to be run
on the same amount of resources, yielding a properly calibrated material. The issue
with this approach is that since the sought behaviour did not occur, the impact of
the parameters on the UTS point remains unknown. In hindsight, a better approach
would have been to elongate at least until UTS, irrespective of whether it occurs
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around the expected strain or not. In that way, the simulation parameters’ effect on
the UTS point could perhaps have been established more clearly.

5.2 Fracture and Solvers

Evident from the results of the material calibration as well as the theory, quasi-static
solvers do not model fracture as expected initially in the project. This is mainly due
to the fact that fracture is a dynamic and relatively fast phenomenon compared to the
slow axial displacement. As such, the neglect of velocities is not a valid assumption
when modelling fracture. The explicit solver on the other hand, models fracture in
a realistic way. Both fracture initiation and propagation between nodes occur in a
physically sound way. As seen in figures 49 to 52, the fracture paths are noticeable
before the full crack occurs. The direction of fracture propagation is consequent
once it arises. This conforms to the theory specifying that crack propagation occurs
progressively due to the strain density vector states removing bonds as they reach the
critical stretch. The behaviour is seen both for the three central cracks, and the two
end-side cracks, which both propagate continuously upwards. One-node, free-flying
particles are created during fracture as well as seen in Figure 53 on page 65. When
fracture occurs in the quasistatic solver, the nodes not subjected to any external force
would remain still as soon as they disconnected from the domain body.

One errorwhichmanifested itself early in this project, and the reason theVerlet solver
was disregarded initially, is that it is currently incompatible with the Interface Aware
damagemodel in Peridigm (at least in the version installed using the installation script
inAppendixA). This is the reason there is an elastic correspondencemodel simulated
in the Verlet solver, to show that it is not caused by an error in the correspondence
material model. There could of course be other errors in the material model as
well, given the messaged mentioned during Peridigm installation in Appendix A.
For example, the fact that different domain decompositions yield different damage
results in Figure 38 and Figure 39 on page 61. According to the answer to the issue
posted to the Peridigm GitHub, (https://github.com/Peridigm/Peridigm/
issues/119), the processors are not communicating the damage properly between
them. The cause for this remains unknown, and until this issue is resolved, the
interface aware damage model, and as a result all correspondence models, are of no
use.

The implicit solver was not used at all, mainly due to time limitations following
the late realisation that quasistatic solvers were not suitable. It might also be more
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suitable compared to the explicit time integration given the larger load steps allowed.
An issue might arise with this approach if fracture propagation turns out to be larger
than the horizon for a load step. In that case, the solution will probably diverge.
Another issue might be that the amount of iterations required for each load step
results in long simulation times as well.

To mitigate both of these issues, the combination of different solvers should be
utilised. For tensile testing, the quasistatic solver or the implicit solver could be
used initially up to a time when fracture is expected to occur, where the switch to
the explicit solver takes place. The switch point could be decided by running the
simulation using purely a quasistatic or implicit solver, preferably the implicit solver,
since fracture seems to be initiated at different times depending on load step size as
seen in the pairs encompassing figure 20 and Figure 21 on page 52, as well as Figure
24 and Figure 25 on page 54. The solver combination is mentioned as a solution to
small time increments for the explicit solver in [21] as well, together with coarsening
of the resolution and increasing the horizon.

Wave behaviour, as seen in figures 55 to 61 for the slower explicit HS simulation,
looks promising. Both destructive and constructive interference is exhibited, as well
as wave reflections along the outer boundaries of the material. The number of time
steps between each output is 200000, output aliasing problems could be an issue,
where higher frequencies are indistinguishable from lower ones due to not sampling
at least twice the highest frequency. This error is separate from aliasing issues
caused by not modelling enough time steps to simulate the highest frequencies.

In any case, the wave behaviour could perhaps be useful for modellingmore dynamic
problems than tensile testing, for example the cutting-edge research at the division
of Production and Materials Engineering at the faculty of engineering at Lund Uni-
versity, which has the added benefit of short time periods. The fractures mentioned
earlier and pictured in 49 to 52 also demonstrates promising wave modelling, as the
initial waves, already causing damage while propagating towards the centre, results
in a fracture, as well as the secondary fractures caused by reflection of the waves at
the end walls.

An interesting problem that comes tomind ismechanical vibrations resulting from an
non-centred mass centre in a rotating axle. The setup for such an experiment would
only require another discretisation, as well as displacement boundary conditions
translated from a spherical coordinate system into a Cartesian one, assuming that
proper material calibration can be made. Another interesting wave-phenomenon to
investigate would be wave propagation, dispersion, and transmission between UFG
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and CG in the HS material.

Knowing that the resonance frequency is given by (85), and the spring constant in
(84) is dependent solely on the bulk modulus and horizon, the resonance frequency
would be the same for both materials as they possess the same elasticity modulus and
Poisson’s number, used in (56). However, waves would perhaps transmit in a non-
homogeneous fashion given the earlier onset of plasticity in the CG material. This
could possibly act as vibrational damping. Also, possible heterogeneous fracture
behaviour might affect the propagation as well.

5.3 Material Models

The density value error could easily have been mitigated by double checking the
value. A possible explanation is that the density was not mentioned in the same
sources as the elasticity modulus, and as a result density values were never read from
the source following the first occurrence of the error. The macro-scale yield point
for both UFG and CG materials are consistently equal to the yield point specified
in the material parameters of the input and the experimental data, irrespective of
variation of time increments, critical stretch, or hardening modulus. This should be
expected but given other unexpected behaviour, having it confirmed is positive.

The yield flaw affects the curve by smoothing the total transition to a fully plastic
curve. This has potential usability in material simulation where the experimental
initial yield occurs over a strain interval, as many metals do, instead of instanta-
neously. More concrete, this could be implemented by creating many small yield
flaw locations evenly or "randomly" spaced in the deformation region. This would
potentially create a quite extensive and intricate input file with many lines of code.
An alternative would be to assigning a certain amount of randomly selected nodes
in the deformation region, to a block with identical properties, apart from the yield
stress property which could be set to a lower value.

The hardening models used are linear, not following the power law, which is not
completely realistic for the nickel metal. However, the impact of the hardening curve
being straight rather than curved might be lower than the impact from the fact that
model extrapolation was made using three data points for the UFG material, taken
analogous from a PDF image. Another reason is the wide gap for ultimate tensile
strength mentioned in [48], which allows the UTS point to vary 200 MPa. Due
to these reasons, the linear approximation of the power law might be sufficient for
the modelling problem, unless necking is dependent solely on the inclination of the
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hardening curve.

This dependence on the inclination would imply an instantaneous or never-occurring
necking, depending on whether the linear approximation of the hardening modulus
is above or below a certain threshold. The stress-strain curve in Figure 32 on page 58
is serving as a base for this argument since necking occurs as soon as the material
yields. A counterargument can bemade using the behaviour of the stress-strain curve
in Figure 33 on page 58, which features a high hardening rate but still experience
necking at a point of extensive plastic strain.

Assuming necking is not only dependent on the hardening modulus inclination,
the linear approximation could still have been adapted in a different way. The
approximation made in this project is taken to be the line between the value of the
power law at ε = 0, and at ε = 1. This approximation is faulty due to two main
reasons. It does not take the elastic region into account, and intersects the power law
at a later point than the UTS for both materials. The exact point at which plasticity
is initiated in the UFG data is also not evident due to the low amount of data points.

The HS simulations made with the explicit solver shows preliminary positive results
regarding bi-modal modelling. Fracture occurs mostly in the UFG material (red
nodes), while propagating around the CG material (white nodes) in Figure 54 on
page 66. The resolution is a bit coarse however, as there is only one node of UFG
material between the CG cores at the shortest distance between them.

UFG material was used on the ends of the discretised material due to the issues
which would arise with stress distribution in a displacement-controlled region, as
well as on the border between the boundary condition region and the regular domain.
This issue seems to be confirmed by Figure 35 on page 59, where the CG material
at the y-displacement-locked bottom is seen to be damaged more compared to the
UFG material.

The alternative of using CG material would not be suitable since a border where
the CG BC domain is transformed into cores would be abrupt and result in a virtual
grain-boundary across thewhole cross-section of the domain. The downside of using
the UFG material for the BC domain, is that it will possess less ductile properties,
which could result in fracture in this region before the ductile CG cores can carry the
plastic strain. But since the nodal stretch is lower further out due to the centre nodes
having families containing nodes displaced in both axial directions, this might not
be an issue.

By applying the peridynamic theory, a continuum approximation is made. Given
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that the current theory on HS materials suggest that dislocation movement plays a
central role in its behaviour, the continuum approximation might not be suitable at
all. If that is the case, it would also mean that CCM simulations would be able
to model the behaviour neither. If the dislocation length scales are very small, the
resource benefits of peridynamics over molecular dynamics might be lost since the
number of nodes would have to increase to sufficiently model the dislocations.

5.4 Peridigm

A lot of manual tweaking was put into making Peridigm run. Achieving the installa-
tion used for the results presented in the article took about two months to complete.
The documentation available online is not written for non-tech-savvy individuals,
including the writer of this project. The shear amount of dependencies between
libraries and programs which have to match takes a long time to figure out. Some of
the versions of the software libraries prescribed in the DLR manual [21] where not
found online, prompting other version to be used, possibly contributing to the errors
in the final Peridigm installation. A new installation should preferably be made, one
which does not yield any errors. Given that not even the computer cluster team at
LUNARCmanaged to install it without using the script in Appendix A indicates that
this might be a tedious task which takes time.

Expanding Peridigm to encompass new material models should be of no significant
issue, given that the software as mentioned previously is open-source. With knowl-
edge in C++, all the tools are available for writing new material models. There are
also some instructions on user development in the PeriDox documentation [25]. On
a related note, some of the material models also show signs of not being completely
finished, as the code contains TODO- and debug comments as well as questions on
implementation of certain methods.

In order to establish some sort of verification tool for material models, it is rec-
ommended to construct a Peridigm-specific material calibration manual. It is not
something which has been found in the peridynamic literature during this project,
and could be of great contribution to the international Peridigm community. The
framework should preferably encompass the creation and discretisation of suitable
domains, boundary conditions, modification of material parameters, as well as how
to post-process the data.

Regarding Peridigm’s viability for HS simulations, a more commercially established
simulation tool should be used, unless time can be allocated to solving issues that
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will undoubtedly arise using Peridigm. This is mainly due to the existing issues in
the code and the lack of support currently available, which is limited to the GitHub
and the Peridigm-users email list [51].

For research on peridynamics it is on the other hand a very useful tool, compared
to writing in-house code from scratch. Due to the already implemented paralleli-
sation tools and existing libraries, the simulation framework and post-processing
is ready-made, allowing researchers to focus on the more important aspects of
peridynamics, such as new material formulations, multi-physics, and multi-scale
modelling. Contributions to the software at this stage could perhaps substantially
influence Peridigm’s direction of development in favour of the contributor.
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6 Conclusion

The viability of peridynamics in the research field of harmonic-structured materials
has been evaluated in this report. It has also contributed several usefulmethodologies
and scripts applicable to the Peridigmwork-flow including pre- and post-processing,
establishing a basis on which further research on peridynamics can be built.

The peridynamic theory is found to possesses the necessary tools to model the
different behaviours of HS materials just as well as classical continuum mechanics,
and especially well for fracture modelling. Whether the HS material is sufficiently
modelled using the continuum approximation remains to be scrutinised. If the effect
of discontinuities on the micro-structure is not readily modelled on a continuum
scale, a molecular dynamics model might be better.

The Peridigm software however is still too much of a development project to justify
the amount of time and programming knowledge required to make it run without
errors, especially given the more user-friendly commercial software available.

At its current stage of development, Peridigm is not fully usable beyond the research
field of computational mechanics. It will probably remain so for a foreseeable fu-
ture, especially given the open-source nature of Peridigm, currently being the work
of fourteen people in total. The low usability outside of computational mechanics
could, and should, be changed by making use of the open-source concept. Contribu-
tion to new material and damage models on the Peridigm GitHub would increase its
usefulness to other scientific fields, leading to more contributions and an increased
spread, effectively propelling peridynamics to the front line of fracture computa-
tional modelling. Peridynamics is not the Swiss knife of computational modelling,
and does not outshine either classical continuum mechanics or molecular dynamics
in their respective fields of excellence. However, the ease with which it models
fracture, simply by removing an element from the state vector, makes it an effective
tool in continuum damage mechanics. As Florin Bobaru puts it [52]:

In peridynamics, cracks are part of the solution, not part of the problem.
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6.1 Suggestions for Further Work

In order to provide an overview of the suggestions for further work mentioned in the
discussion, the suggestions are compiled in the list below, in no specific order.

• Develop a material calibration manual for use in Peridigm, encompassing cre-
ation of test domain, discretisation, boundary conditions, material parameter
modification, and post-processing.

• Combine solvers for faster computations.

• The linear approximation should be redefined by the line between initial
yielding and UTS.

• Write new material models, especially power law elastic-plastic hardening
models.

• An updated Peridigm installation with no errors

• Apply peridynamics to other research fields, like the metal cutting research
at the faculty of engineering, due to the promising behaviour of the dynamic
simulations.

• Apply peridynamics to model the dynamic behaviour of HS materials, espe-
cially wave propagation and dispersion due to heterogeneous plasticity and
fracture.
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#########################################################################
####                   PERIDIGMINSTALLATION 2.0                      ####
####                  theodor.desousa@gmail.com                      ####
#########################################################################
 
# This is the installation script used for installing peridigm on my laptop.  
# Many directories, variables etc are not generalisable, the code must be adapted 
# to the situation. Simply copy-pasting the code into a terminal will not work.
 
# It didn't generate a fully functional peridigm which pass all tests however. 
# This is a large issue, but given limited time, it was deemed enough for a 
# proof of concept. 
 
 
#--------------------------------#
##        What hardware?        ##
#--------------------------------#
 
# OS: Ubuntu 18.04.4 LTS 64-bit
# Processor: Intel i7-7500U 2.70 GHz*4
# Graphics: Intel HD Graphics 620 Kaby Lake GT2
# Memory 15.5 GiB
# GNOME version: 3.28.2
# 
 
 
#--------------------------------#
##       What to install?       ##
#--------------------------------#
 
# BASICS                        DEPENDENCIES:                       COMMENTS:
#   COMPILERS:                              
#       gfortran    4.8.5                   -
#       gcc         4.8.5                   -
#       g++         4.8.5                   -
#   CMake           3.5.1                   Compilers
#   Open-MPI        2.1.5 (DLR: 1.10.2)     Compilers               Bug in 1.10.x with HDF 1.10.x
#   Python          2.7.9                   -
# LIBRARIES
#   Boost           1.60.0                  OpenMPI
#   HDF5            1.10.3 (DLR: 1.10.0)    OpenMPI
#   NetCDF-C        4.4.0                   OpenMPI, HDF5, m4
#       m4                                  -
#   Trilinos        12.12.1 (DLR: 12.6.1)   CMake,OpenMPI,Boost,HDF5,NetCDF-C,Blas,Lapack,X11
#       Blas                                -
#       Lapack                              -
#       X11                                 -
# Peridigm          1.5.0                   CMake, OpenMPI, Python, Boost, Trilinos
 
 
#--------------------------------#
##       In which order?        ##
#--------------------------------#
 
# BASICS:
# 1:    gfortran, gcc, g++
# 2:    CMake
# 3:    OpenMPI
# 4:    Python - should be the newest
# LIBRARIES:
# 5:    bz2, zlib, m4, blas, lapack, libX11
# 6:    Boost
# 7:    HDF5
# 8:    NetCDF-C
# 9:    Trilinos
# 10:   Peridigm
 
 
# Main structure of installation:
# /home
#    /$USER ("theodor" in my case)
#      /peri   (the installation directory where I put the peridigm-related programs)
#      /src    (the source directory where I put tar.gz and the resulting sources)
 

 
 
#--------------------------------#
##        Installation          ##
#--------------------------------#
 
sudo apt-get update
#Checkinstall will allow for easier uninstallation as it can be uninstalled with "sudo apt remove $PACKAGE.
sudo apt-get install -y checkinstall 
 
# Prepare .bashrc 
sudo echo "#########################################################################
####                           USER SETTINGS                         ####
#########################################################################" >>~/.bashrc
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sudo echo '' >>~/.bashrc
. ~/.bashrc
 
#Everything needed for peridigm should be installed in the peri folder
mkdir /home/$USER/peri/ 
#Their sources should be put here
mkdir /home/$USER/src/ 
 
#----COMPILERS----#
cd /home/$USER/src/
# Install from source these versions if not already installed. 
gcc --version           # == 4.8.5
g++ --version           # == 4.8.5
gfortran --version      # == 4.8.5
 
sudo update-alternatives --remove-all gcc
sudo update-alternatives --remove-all g++
sudo update-alternatives --remove-all gfortran
sudo apt-get install gcc-4.8 g++-4.8 gfortran-4.8
 
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.8 10
 
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.8 10
 
sudo update-alternatives --install /usr/bin/gfortran gfortran /usr/bin/gfortran-4.8 10
 
 
sudo update-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30
sudo update-alternatives --set cc /usr/bin/gcc
 
sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++ 30
sudo update-alternatives --set c++ /usr/bin/g++
 
 
 
#####################
#----CMake 3.5.1----#
#####################
cd /home/$USER/src
 
wget https://cmake.org/files/v3.5/cmake-3.5.1.tar.gz
tar -xf cmake-3.5.1.tar.gz
cd cmake-3.5.1/
#Specify compiler (has to be the same for all installations):
env CC=gcc CXX=g++ ./bootstrap >cmake_boostrap.log 2>&1
make >cmake_make.log 2>&1
sudo make test >cmake_test.log 2>&1
 
sudo make install >cmake_install.log 2>&1
 
 
#ALTERNATIV 1 yields these errors:
# sudo checkinstall
#The following tests FAILED:
#   7 - kwsys.testSystemTools (Failed)
# 103 - Simple_EclipseGenerator (Failed)
# 104 - Simple_CodeBlocksGenerator (Failed)
# 105 - Simple_KDevelop3Generator (Failed)
# 191 - CTestCoverageCollectGCOV (Failed)
# 223 - CTestLimitDashJ (Failed)
# 258 - CMakeOnly.AllFindModules (Failed)
 
#Alternativ 2 yields these errors:
# sudo make test >cmake_test.log 2>&1
#The following tests FAILED:
#   7 - kwsys.testSystemTools (Failed)
# 103 - Simple_EclipseGenerator (Failed)
# 104 - Simple_CodeBlocksGenerator (Failed)
# 105 - Simple_KDevelop3Generator (Failed)
# 181 - WarnUnusedCliUnused (Failed)
# 191 - CTestCoverageCollectGCOV (Failed)
# 258 - CMakeOnly.AllFindModules (Failed)
#Installed in usr/local/bin, usr/local/share, usr/local/doc
 
#########################
#----Open-mpi 2.1.5-----#
#########################
cd /home/$USER/src/
wget https://download.open-mpi.org/release/open-mpi/v2.1/openmpi-2.1.5.tar.gz
tar -xf openmpi-2.1.5.tar.gz 
cd openmpi-2.1.5/
 
./configure --prefix=/home/$USER/peri/openmpi-2.1.5 > ompi_configure.log 2>&1
make -j 4 > ompi_make.log 2>&1
make check
 
sudo checkinstall
 
#Update path variables in .bashrc: $USER should perhaps be replaced with something else, or use
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#double quotation marks "$USER" to allow it to print the current user.
sudo echo 'export CC=mpicc
export CXX=mpicxx
export FC=mpif90
export F77=mpif77
export CXXFLAGS="$CXXFLAGS -fPIC"' >>~/.bashrc
sudo echo '' >>~/.bashrc
sudo echo 'export PATH=$PATH:/home/$USER/peri/openmpi-2.1.5/bin' >>~/.bashrc
sudo echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/$USER/peri/openmpi-2.1.5/lib' >>~/.bashrc
sudo echo '' >>~/.bashrc
#Reload the file in the shell
. ~/.bashrc
 
################
#----Python----# 
################
# Should be installed already on a linux distribution
python --version 
 
 
#########################
#----Basic Libraries----#
#########################
sudo apt-get update
sudo apt-get install -y libbz2-dev      # bz2
sudo apt-get install -y zlib1g-dev      # zlib
sudo apt-get install -y m4              # m4
sudo apt-get install -y libblas-dev     # blas
sudo apt-get install -y liblapack-dev   # lapack
sudo apt-get install -y libx11-dev      # X11
 
# Make sure NetCDF and HDF5 are removed
sudo apt list | grep netcdf #If installed using checkinstall instead of make install, they can be found 
here
sudo apt list | grep hdf5 #If installed using checkinstall instead of make install, they can be found here
#check other names as well
sudo apt remove netcdfperi  
sudo apt remove hdf5peri    
 
###############
#----Boost----#
###############
# MIGHT NOT BE NECESSARY FOR PERIDIGM 1.5.0, could try disregarding. 
#   Depends on: OpenMPI
cd /home/$USER/src
wget http://sourceforge.net/projects/boost/files/boost/1.60.0/boost_1_60_0.tar.gz 
tar xvfz boost_1_60_0.tar.gz
cd boost_1_60_0
 
echo '# Set environment variables for MPI compilers
export CC=mpicc
export CXX=mpicxx
export FC=mpif90
export F77=mpif77
# Run the Boost bootstrap script
./bootstrap.sh
# add using mpi to project-config.jam
echo "using mpi ;" >> project-config.jam
# Compile and install Boost using the Boosts bjam build system
./b2 install --prefix=/home/$USER/peri/boost-1.60.0
' >> boost_install.sh
chmod +x boost_install.sh
 
./boost_install.sh > boost_install.log 2>&1
 
sudo echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/$USER/peri/boost-1.60.0/lib' >>~/.bashrc
sudo echo '' >>~/.bashrc
. ~/.bashrc
 
##############
#----HDF5----#
##############
#   Depends on: OpenMPI
cd /home/$USER/src
wget https://support.hdfgroup.org/ftp/HDF5/prev-releases/hdf5-1.10/hdf5-1.10.3/src/hdf5-1.10.3.tar.gz
tar  xvfz hdf5-1.10.3.tar.gz 
cd hdf5-1.10.3/
 
echo '# Set environment variables for MPI compilers
export CC=mpicc
export CXX=mpicxx
export FC=mpif90
export F77=mpif77
# Configure HDF5
./configure --prefix=/home/$USER/peri/hdf5-1.10.3/ --enable-parallel 
# Make and install HDF5
make -j 4 >hdf5_make.log 2>&1
' >> hdf5_install.sh
chmod +x hdf5_install.sh

A Custom Installation Script for Peridigm

,

85



./hdf5_install.sh >hdf5_install.log
 
make check
# The parallel HDF5 test "t_pflush1" will pass, but the return value of mpirun will be non-zero since 
MPI_Finalize is not called, 
# which is listed as one of three reasons when googling. As a result, the "t_pflush1" test will fail. A 
work-around is below, which just creates a fake file.  
cd testpar
touch t_pflush1.chkexe
cd ..; make check
 
 
 
sudo checkinstall
 
sudo echo 'export PATH=$PATH:/home/$USER/peri/hdf5-1.10.3/bin' >>~/.bashrc
sudo echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/$USER/peri/hdf5-1.10.3/lib'  >>~/.bashrc
sudo echo '' >>~/.bashrc
. ~/.bashrc
 
##################
#----NetCDF-C----#
##################
#tråd om peridigm och NetCDF-C.
#https://www.unidata.ucar.edu/support/help/MailArchives/netcdf/msg14000.html
#   Depends on: OpenMPI, HDF5, m4
cd /home/$USER/src
 
#Important to use 4.4.1.1, many bugfixes
wget https://github.com/Unidata/netcdf-c/archive/v4.4.1.1.tar.gz
tar xvfz v4.4.1.1.tar.gz
cd netcdf-c-4.4.1.1/
 
 
# Below is a suggested modification to some MAX values. This makes the installation fail. 
# Other values could perhaps be tried as well, I just disregarded it however.
 
#Insert into : ./include/netcdf.h
#cd include/
#sed -i 's/#define\sNC_MAX_DIMS.*$/#define NC_MAX_DIMS 65536/g' netcdf.h
#sed -i 's/#define\sNC_MAX_ATTRS.*$/#define NC_MAX_ATTRS 8192/g' netcdf.h
#sed -i 's/#define\sNC_MAX_VARS.*$/#define NC_MAX_VARS 524288/g' netcdf.h
#sed -i 's/#define\sNC_MAX_NAME.*$/#define NC_MAX_NAME 256/g' netcdf.h
#sed -i 's/#define\sNC_MAX_VAR_DIMS.*$/#define NC_MAX_VAR_DIMS 8/g' netcdf.h
#cd ..
 
echo '# Set environment variables for MPI compilers
export CC=mpicc
export CXX=mpicxx
export FC=mpif90
export F77=mpif77
# Configure NetCDF
#CPPFLAGS="-I/home/$USER/peri/hdf5-1.10.3/include" \
#LDFLAGS="-L/home/$USER/peri/hdf5-1.10.3/lib" \
./configure --prefix=/home/$USER/peri/netcdf-4.4.1.1/ --disable-netcdf-4 --disable-dap
# Make and test NetCDF
make -j 4
make check
'>>netcdf_install.sh
chmod +x netcdf_install.sh
./netcdf_install.sh >netcdf_install.log 2>&1
 
sudo checkinstall
 
sudo echo 'export PATH=$PATH:/home/$USER/peri/netcdf-4.4.1.1/bin' >>~/.bashrc
sudo echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/$USER/peri/netcdf-4.4.1.1/lib' >>~/.bashrc
sudo echo '' >>~/.bashrc
. ~/.bashrc
 
##################
#----YAML-CPP----#
##################
 
cd /home/$USER/src
git clone https://github.com/jbeder/yaml-cpp.git
cd yaml-cpp
mkdir build
cd build
 
#Important for trilinos to be able to build shared libraries, which is necessary for the script
# text_to_genesis.py to work. 
cmake -DYAML_BUILD_SHARED_LIBS=ON .. 
make
make test
 
sudo make install # since it installs in /usr/local/ we need to do it using sudo. Could be installed 
somewhere else using setprefix probably
 
##################
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#----Trilinos----#
##################
#   Depends on: CMake, OpenMPI, Boost, HDF5, NetCDF-C, Blas, Lapack, yaml-cpp
# Found the trilinos version on a computer. Trilinos webpage was broken and didn't respond to wget  
 
cd /home/$USER/src
tar xvfz trilinos-12.12.1-Source.tar.gz
mkdir trilinos-12.12.1 
cd trilinos-12.12.1
 
 
#This file is the most critical part of the installation. It takes time to make, and errors might be 
discovered first after an hour, or when installing peridigm.
echo 'rm -f CMakeCache.txt
rm -rf CMakeFiles/
cmake -D CMAKE_INSTALL_PREFIX:PATH=/home/$USER/peri/trilinos-12.12.1/ \
-D MPI_BASE_DIR:PATH="/home/$USER/peri/openmpi-1.10.2" \
-D CMAKE_CXX_FLAGS:STRING="-O2 -std=c++11 -pedantic -ftrapv -Wall -Wno-long-long" \
-D CMAKE_BUILD_TYPE:STRING=RELEASE \
-D BUILD_SHARED_LIBS=ON \
-D Trilinos_WARNINGS_AS_ERRORS_FLAGS:STRING="" \
-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=OFF \
-D Trilinos_ENABLE_Teuchos:BOOL=ON \
-D Trilinos_ENABLE_Shards:BOOL=ON \
-D Trilinos_ENABLE_Sacado:BOOL=ON \
-D Trilinos_ENABLE_Epetra:BOOL=ON \
-D Trilinos_ENABLE_EpetraExt:BOOL=ON \
-D Trilinos_ENABLE_Ifpack:BOOL=ON \
-D Trilinos_ENABLE_AztecOO:BOOL=ON \
-D Trilinos_ENABLE_Amesos:BOOL=ON \
-D Trilinos_ENABLE_Anasazi:BOOL=ON \
-D Trilinos_ENABLE_Belos:BOOL=ON \
-D Trilinos_ENABLE_ML:BOOL=ON \
-D Trilinos_ENABLE_Phalanx:BOOL=ON \
-D Trilinos_ENABLE_Intrepid:BOOL=ON \
-D Trilinos_ENABLE_NOX:BOOL=ON \
-D Trilinos_ENABLE_Stratimikos:BOOL=ON \
-D Trilinos_ENABLE_Thyra:BOOL=ON \
-D Trilinos_ENABLE_Rythmos:BOOL=ON \
-D Trilinos_ENABLE_MOOCHO:BOOL=ON \
-D Trilinos_ENABLE_TriKota:BOOL=OFF \
-D Trilinos_ENABLE_Stokhos:BOOL=ON \
-D Trilinos_ENABLE_Zoltan:BOOL=ON \
-D Trilinos_ENABLE_Piro:BOOL=ON \
-D Trilinos_ENABLE_Teko:BOOL=ON \
-D Trilinos_ENABLE_SEACASIoss:BOOL=ON \
-D Trilinos_ENABLE_SEACAS:BOOL=ON \
-D Trilinos_ENABLE_SEACASBlot:BOOL=ON \
-D Trilinos_ENABLE_Pamgen:BOOL=ON \
-D Trilinos_ENABLE_EXAMPLES:BOOL=OFF \
-D Trilinos_ENABLE_TESTS:BOOL=ON \
-D TPL_ENABLE_Matio:BOOL=OFF \
-D TPL_ENABLE_HDF5:BOOL=ON \
-D HDF5_INCLUDE_DIRS:PATH="/home/$USER/peri/hdf5-1.10.3/include" \
-D HDF5_LIBRARY_DIRS:PATH="/home/$USER/peri/hdf5-1.10.3/lib" \
-D TPL_ENABLE_Netcdf:BOOL=ON \
-D Netcdf_INCLUDE_DIRS:PATH="/home/$USER/peri/netcdf-4.4.1.1/include" \
-D Netcdf_LIBRARY_DIRS:PATH="/home/$USER/peri/netcdf-4.4.1.1/lib" \
-D TPL_ENABLE_MPI:BOOL=ON \
-D TPL_ENABLE_BLAS:BOOL=ON \
-D TPL_ENABLE_LAPACK:BOOL=ON \
-D TPL_ENABLE_Boost:BOOL=ON \
-D Boost_INCLUDE_DIRS:PATH="/home/$USER/peri/boost-1.60.0/include" \
-D Boost_LIBRARY_DIRS:PATH="/home/$USER/peri/boost-1.60.0/lib" \
-D TPL_ENABLE_yaml-cpp:BOOL=ON \
-D yaml-cpp_INCLUDE_DIRS:PATH=/usr/local/include/yaml-cpp/include \
-D yaml-cpp_LIBRARY_DIRS:PATH=/usr/local/include/yaml-cpp/lib \
-D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \
-D Trilinos_VERBOSE_CONFIGURE:BOOL=ON \
/home/$USER/src/trilinos-12.12.1-Source/
'>cmake_trilinos.cmake
 
 chmod +x cmake_trilinos.cmake 
./cmake_trilinos.cmake >trilinos_cmake.log 2>&1
make -j 4   >trilinos_make.log 2>&1
make 
make test
 
sudo checkinstall
 
sudo echo 'export PATH=$PATH:/home/$USER/peri/trilinos-12.12.1/bin' >>~/.bashrc
sudo echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/$USER/peri/trilinos-12.12.1/lib' >>~/.bashrc
sudo echo '' >>~/.bashrc
. ~/.bashrc
 
##################
#----Peridigm----#
##################
#   Depends on: CMake, OpenMPI, Python, Boost, Trilinos, yaml-cpp
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cd /home/$USER/src
git clone https://github.com/peridigm/peridigm.git
 
mv peridigm/ Peridigm-1.5.0-Source
 
mkdir peridigm-1.5.0
 
cd peridigm-1.5.0
 
echo 'rm -f CMakeCache.txt
rm -rf CMakeFiles/
cmake \
-D CMAKE_BUILD_TYPE:STRING=Release \
-D CMAKE_INSTALL_PREFIX=/home/$USER/peri/peridigm-1.5.0 \
-D Trilinos_DIR:PATH=/home/$USER/peri/trilinos-12.12.1/lib/cmake/Trilinos/ \
-D CMAKE_C_COMPILER:STRING=/home/$USER/peri/openmpi-2.1.5/bin/mpicc \
-D CMAKE_CXX_COMPILER:STRING=/home/$USER/peri/openmpi-2.1.5/bin/mpicxx \
-D BOOST_ROOT=/home/$USER/peri/boost-1.60.0/ \
-D CMAKE_CXX_FLAGS:STRING="-O2 -Wall -std=c++11 -pedantic -Wno-long-long -ftrapv -Wno-deprecated" \
/home/$USER/src/Peridigm-1.5.0-Source' > cmake_peridigm.cmake
chmod +x cmake_peridigm.cmake
./cmake_peridigm.cmake 
make -j 4
make
make test
 
 
#The following tests FAILED, must be solved:
# 187 - IsotropicHardeningPlasticFullyPrescribedTension_NoFlaw_np1 (Failed)
# 188 - IsotropicHardeningPlasticFullyPrescribedTension_NoFlaw_np4 (Failed)
# 189 - IsotropicHardeningPlasticFullyPrescribedTension_WithFlaw_np1 (Failed)
# 190 - IsotropicHardeningPlasticFullyPrescribedTension_WithFlaw_np4 (Failed)
 
sudo checkinstall
 
#Create symbolic link to Peridigm
sudo ln -s ~/peri/peridigm-1.5.0/bin/Peridigm /usr/local/bin/
 
#--------------------------------#
##  Checkinstall package names  ##
#--------------------------------#
#CMake:     cmakeperi
#Openmpi:   openmpiperi
#HDF5:      Not installed using checkinstall
#NetCDF:    netcdfperi
#Trilinos:  trilinosperi
#Peridigm:  peridigmperi
 
#--------------------------------#
##        Final .bashrc         ##
#--------------------------------#
 
export CC=mpicc
export CXX=mpicxx
export FC=mpif90
export F77=mpif77
 
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/$USER/peri/boost-1.60.0/lib
 
export PATH=$PATH:/home/$USER/peri/openmpi-2.1.5/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/$USER/peri/openmpi-2.1.5/lib
 
export PATH=$PATH:/home/$USER/peri/hdf5-1.10.3/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/$USER/peri/hdf5-1.10.3/lib
 
export PATH=$PATH:/home/$USER/peri/trilinos-12.12.1/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/$USER/peri/trilinos-12.12.1/lib
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Peridigm:
    Verbose: false          #Limit output information for log files.
    Discretization:         
        Type: "Exodus"      #If input is text file, change to "Text File"
        Input Mesh File: "domainMeshNoPert.g"  #Do no specify core decomposition 
here. 
                                               
 
    Materials:
        CG:
            Material Model: "Elastic Plastic Hardening"
            Density: 7850.0     #safe increase is \rho*60 according to 
"Computational materials engineering"
            Young's Modulus: 210.0e9
            Poisson's Ratio: 0.31
            Yield Stress: 185e6
            Hardening Modulus: 980.9e6
        UFG:
            Material Model: "Elastic Plastic Hardening"
            Density: 7850.0 
            Young's Modulus: 210.0e9
            Poisson's Ratio: 0.31
            Yield Stress: 1502.0e6
            Hardening Modulus: 4355.5e6
 
    Damage Models:
        My CG Dmg Model:
            Damage Model: "Critical Stretch"
            Critical Stretch: 0.2242 #Has to be found for every horizon by 
comparing with real data,
        My UFG Dmg Model:
            Damage Model: "Critical Stretch"
            Critical Stretch: 0.1
 
    Blocks:
        My CG Block:
            Block Names: "block_1"
            Material: "CG"
            Damage Model: "My CG Dmg Model"
            Horizon: 7.3892e-5 
        My UFG Block:
            Block Names: "block_2"
            Material: "UFG"
            Damage Model: "My UFG Dmg Model"
            Horizon: 7.3892e-5 
 
    Boundary Conditions:
        Create Node Set For Rank Deficient Nodes: true
 
        # X-direction
        Prescribed Displacement Bottom In X:
            Type: "Prescribed Displacement"
            Node Set: "nodelist_1"
            Coordinate: "x"
            Value: "t*x*3.6e+5/2 "
        Prescribed Displacement Top In X:
            Type: "Prescribed Displacement"
            Node Set: "nodelist_2"
            Coordinate: "x"
            Value: "t*x*3.6e+5/2"
 
        # Y-direction
        Prescribed Displacement Fix Top Rigid Body Motion In Y:
            Type: "Prescribed Displacement"
            Node Set: "nodelist_9"
            Coordinate: "z"
            Value: "0.0"
 
        # Z-direction
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        Prescribed Displacement Fix Bottom Rigid Body Motion In Z:
            Type: "Prescribed Displacement"
            Node Set: "nodelist_10"
            Coordinate: "y"
            Value: "0.0"
 
    Solver:   
        Verbose: true                   #Provides more solver output
        Initial Time: 0.0               
        Final Time: 9.0e-6              
        Disable Heuristics: true        #Apparently useful for fractures.
        Verlet:                         #Specifies the solver
            Safety Factor: 0.01         #Decreases the time increment.
            Numerical Damping: 160.0e3  #Reduces vibrations from fractures etc.
 
 
##  Below is a quasi-static solver 
#       Peridigm Preconditioner: "None"
#       NOXQuasiStatic:
#            Nonlinear Solver: "Line Search Based"
#            Number of Load Steps: 10000
#            Max Solver Iterations: 100
#            Relative Tolerance: 5.0e-4
#            Max Age Of Prec: 100
#            Direction:
#              Method: "Newton"
#              Newton:
#                Linear Solver:
#                  Jacobian Operator: "Matrix-Free"
#                  Preconditioner: "None"
#            Line Search:
#              Method: "Polynomial"
 
 
#   This section allows the user to specify calculations to be performed.
    Compute Class Parameters:
#       This compute class saves the initial position of the left side of the 
strain gauge
        Strain Gage Left Initial Position:
            Compute Class: "Nearest_Point_Data"
#           Coordinates used for the Model_Coordinates variable
            X: -0.0018   
            Y: 0.0       
            Z: 0.0      
            Variable: "Model_Coordinates"
#           Specify the output label in the output section as well
            Output Label: "Gage_Left_Initial_Position" 
            Verbose: true
 
#       Same as above
        Strain Gage Right Initial Position:
            Compute Class: "Nearest_Point_Data"
            X: 0.0018
            Y: 0.0
            Z: 0.0
            Variable: "Model_Coordinates"
            Output Label: "Gage_Right_Initial_Position"
            Verbose: true
 
        Strain Gage Left Displacement:
            Compute Class: "Nearest_Point_Data"
            X: -0.0018
            Y: 0.0
            Z: 0.0
            Variable: "Displacement"
#           Specify the output label in the output section as well
            Output Label: "Gage_Left_Displacement"
            Verbose: true
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        Strain Gage Right Displacement:
            Compute Class: "Nearest_Point_Data"
            X: 0.0018
            Y: 0.0
            Z: 0.0
            Variable: "Displacement"
#           Specify the output label in the output section as well
            Output Label: "Gage_Right_Displacement"
            Verbose: true
 
        Left Reaction Force:
            Compute Class: "Node_Set_Data"
            Calculation Type: "Sum"
            Node Set: "nodelist_1"
            Variable: "Force"
#           Specify the output label in the output section as well
            Output Label: "Left_Reaction_Force"
 
        Right Reaction Force:
            Compute Class: "Node_Set_Data"
            Calculation Type: "Sum"
            Node Set: "nodelist_2"
            Variable: "Force"
#           Specify the output label in the output section as well
            Output Label: "Right_Reaction_Force"
 
    Output:
        Output File Type: "ExodusII"
        Output Filename: "Verlet_Experiment"
        Output Frequency: 200000 #Increase as much as possible to reduce file size.
        Output Variables:        #Less variables reduce filesize.
#           Standard output and material model.
            Block_Id: true
            Coordinates: true
            Damage: true
            Deformation_Gradient: true
            Displacement: true
            Element_Id: true
            Force_Density: true
            Force: true
            Neighborhood_Volume: true
            Number_Of_Neighbors: true
            Proc_Num: true
            Radius: true
            Surface_Correction_Factor: true
            Velocity: true
            Volume: true
#           Compute class output
            Right_Reaction_Force: true
            Gage_Left_Displacement: true
            Gage_Left_Initial_Position: true
            Gage_Right_Displacement: true
            Gage_Right_Initial_Position: true
            Left_Reaction_Force: true
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#!/bin/bash
# FUNCTION FOR RUNNING PERIDIGM IN EACH DIRECTORY
Perirun () {
    for k in $(seq $1 1 $2 )
    do
        dir="NonCorrbulk_Nickel_plasticity_$k"
        echo "--------Starting simulation in $dir--------"
        cd $dir
        ret=$?
        if [ $ret -eq 0 ]
        then
            taskset --cpu-list $3 time Peridigm piripiri.yaml >peridigmSim.log 2>&1 
            date
        else                
            echo "        Simulation Failed in $dir          "
        fi
        cd ..
        echo "--------Finished simulation in $dir--------"
        sleep 1
    done    
}
 
 
# MAIN
# Names still needs to be modified depending on circumstances, could be modified using $<variable> instead
if [ "$BASH" != "/bin/bash" ]; then
  echo "Please do ./$0"
  exit 1
fi
export LC_NUMERIC="en_US.UTF-8" #Solves issues with decimal comma during this run
# urVise should contain the yaml file named "piripiri.yaml", and discretisation named as specified in the 
yaml file. 
export urdir="/home/mekk/Documents/Peridigm de Sousa/Simulations/NonCorrPlasticitySims/urVise/"
cd "/home/mekk/Documents/Peridigm de Sousa/Simulations/NonCorrPlasticitySims/"
 
 
echo "Building Directories"
 
i=1
# The for loops are used for generating modifications to the yaml file. Can be used to modify any line 
with the sed command.
for trigger in 1 2 
do
 #   for cs in $(seq 0.0000063 0.0000005 0.000017 ) 
  #  do
        dir="NonCorrbulk_Nickel_plasticity_$i"
        mkdir "$dir"
        
        # Copies the generic files to be modified into the new dir.
        cp -r --strip-trailing-slashes "$urdir/."  "$dir"
        cd $dir
        
        # Modify the relevant parameters in the .yaml file    
        if [ $trigger -eq 1 ]
        then
            sed -i -e "s/Material:\s.*/Material: \"UFG\"/" piripiri.yaml
        else
            sed -i -e "s/Material:\s.*/Material: \"CG\"/" piripiri.yaml
        fi  
       #sed -i -e "s/Horizon:\s[0-9].*/Horizon: $cs/" piripiri.yaml
        sed -i -e "s/Output\sFilename:\s.*/Output Filename: \"$dir\"/" piripiri.yaml
        cd ..
        i=$(($i+1))
    #done
done
 
 
cd "/home/mekk/Documents/Peridigm de Sousa/Simulations/NonCorrPlasticitySims/"
export count=1
echo "Commencing Simulations" 
export imax=$i
export float=$(($imax/4)) # Adjust this to the amount of processors
export increment=${float%.*}
for j in 0 1 2 3   # Loop on the amount of processors above, starting from 0. 
do
    Perirun $(($j*$increment+1)) $((($j+1)*$increment)) $(($j+2))  &
    sleep 5
done
wait
echo "All simulations done."
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#!/bin/sh
 
 
############################################################
#-----------General comments regarding simulations---------#
############################################################
 
 
 
# --------------------------------------------------------------------------- #
#       Below are differenct directories which can be referenced due to slurm.
# Variable              Addressed Volume
# SNIC_TMP              node local disk, copy your input data here and start your 
program from here
# TMPDIR                node local disk, use this environment variable to locate a 
disk volume for temporary scratch space.
#                       If your application follows that convention nothing needs 
to be done.
# SLURM_SUBMIT_DIR      submission directory where you ran sbatch
 
#       The directory specifier I define myself
# SIM_DIR               Directory to copy to and from on the permanent storage. 
 
# --------------------------------------------------------------------------- #
 
 
 
# --------------------------------------------------------------------------- #
#   If you want to copy a directory from machine a to b while logged into a:
#       scp -r /path/to/directory user@ipaddress:/path/to/destination
 
#   If you want to copy a directory from machine a to b while logged into b:
#       scp -r user@ipaddress:/path/to/directory /path/to/destination
 
#   Copy directory from desktop to correct cluster server directory
#       scp ~/Documents/Peridigm/Kluster/Directory tdesousa@aurora.lunarc.lu.se:~/
simFolders
 
#   Copy this submission file to the cluster server. Should be one level above the 
simulation directory
#       scp ~/Documents/Peridigm/Kluster/jobsub.sh tdesousa@aurora.lunarc.lu.se:~/
 
 
#   Copy multiple necessary files existing in simFolders from the cluster server 
to current folder on desktop
#       scp tdesousa@aurora.lunarc.lu.se:\{~/simFolders/*.e*,~/simFolders/*.log,~/
simFolders/*.yaml\} .
# --------------------------------------------------------------------------- #
 
 
 
# --------------------------------------------------------------------------- #
#   Find and copy yaml files to external drive
#       find . -name "*.yaml" -exec sh -c 'cp "$1" "/media/peridyna/Middagsbox/
Kluster/$1"' _ {} \;
# --------------------------------------------------------------------------- #
 
 
 
# --------------------------------------------------------------------------- #
#   Find and rename png files in all subdirectories to "subdirectory/subdirectory-
filename"
#       find . -name "*.png" -exec sh -c 'mv "$1" "${1%/*}/${1%/*}-${1##*/}"' _ {} 
\;
# --------------------------------------------------------------------------- #
 
 
 
# --------------------------------------------------------------------------- #
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# Basic time calculation:
#  KNOWN
#   t_known   = Previous experimental simulation time.
#   c_known   = Previous experimental simulation number of cpu cores.
#   c_cluster = Desired amount of cpu cores on the cluster.
 
#  UNKNOWN
#   x         = Simulation constant.
#   t_cluster = Time it will take on the cluster.
 
#  FINDING x
#   x/c_known = t_known => x = t_known*c_known
 
#  FINDING t_cluster
#   t_cluster = x/c_cluster = t_known* (c_known/c_cluster)
 
#  EXAMPLE
#   t_known   = 9 hours
#   c_known   = 8 cpu cores
#   c_cluster = 20 cpu cores
 
#   x = 9*8 = 72 cpu-core-hours
#   t_cluster = 72/20 = 3.60 hours = 3 hours + 60*0.6 minutes + 60*0.0 seconds  = 
03:36:00 hh/mm/ss needed
#   Probably worth to round to nearest hour
# --------------------------------------------------------------------------- #
 
 
 
 
############################################################
#------------------SBATCH Specifications-------------------#
############################################################
# Simulation Name
#SBATCH -J TPeridigmLONG
 
# Time required on format hh:mm:ss
#SBATCH -t 148:13:37
 
# Project is an LU project
#SBATCH -p lu
 
# The project. In this case: FE simulation of manifacturing processes (LU 
2019/2-38)
#SBATCH -A lu2019-2-38
 
# I want to be notified when the state of the simulation changes: BEGIN, END, 
FAIL, REQUEUE, ALL
#SBATCH --mail-user=mas14tde@student.lu.se
#SBATCH --mail-type=ALL
 
# Exclusive access to node
#SBATCH --exclusive
 
# Number of nodes
#SBATCH -N 1
 
# Amount of cores: 20 tasks maximum per node
#SBATCH --tasks-per-node=20
 
# The %j in the file name will be replaced by the jobnumber SLURM assigns to your 
job. 
#SBATCH -o periOut_%j.out
#SBATCH -e periErr_%j.err
 
#SBATCH --no-requeue
 
 
############################################################
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#----------------------Job Excecution----------------------#
############################################################
# write this script to stdout-file - useful for scripting errors. Place after last 
#SBATCH
cat $0
 
 
 
echo 'Loading Peridigm module'
# Reset the models
module purge
# Loading the virtual peridigm module
module load Peridigm/virtual-1.5.0
 
 
echo 'Copy necessary files to node-side'
 
# Specify which directory to run.
SIM_DIR="SimFullDomain0"
cp -p -R $SLURM_SUBMIT_DIR/$SIM_DIR $SNIC_TMP
cd $SNIC_TMP/$SIM_DIR
#Remove the previous log since we append the file rather than overwrite
rm -f periLog.log
 
Perirun (){

peri-virt mpirun -np 20 Peridigm piripiri.yaml >periLog.log 2>&1; touch 
periDone.txt
}
 
 
 
#Start peridigm and wait
echo 'Starting simulation'
date
Perirun &
sleep 10 #Allows the first output from the log file to be part of first copy
 
# Ensuring we don't lose data if running out of time
# Comparison: if "peridigm NOT done OR scriptTime LESS THAN maxTime 
while [ ! -e periDone.txt ]
do
  echo 'Copying intermittent data.'
        date

cp -p -R ../$SIM_DIR $SLURM_SUBMIT_DIR
#       The check happens every five minutes
        sleep 300
done
 
rm -f periDone.txt
 
# Copy final data to permanent storage
echo 'Copying final iteration to permanent storage'
cp -p -R "../$SIMDIR" $SLURM_SUBMIT_DIR
echo 'Finished'
date
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#!/usr/bin/env bash
 
#Write the necessary program files. Input is: "<filename>.e"
echo "Writing program source code"
filename=$1
pwd=$(pwd)
 
####################################################
#               Paraview data saver               #######################################################
####################################################
echo "# trace generated using paraview version 5.7.0
#
# To ensure correct image size when batch processing, please search 
# for and uncomment the line `# renderView*.ViewSize = [*,*]`
 
#### import the simple module from the paraview
from paraview.simple import *
#### disable automatic camera reset on 'Show'
paraview.simple._DisableFirstRenderCameraReset()
 
# create a new 'ExodusIIReader'
tensile_teste = ExodusIIReader(FileName=['$pwd/$filename'])
tensile_teste.ElementVariables = []
tensile_teste.PointVariables = []
tensile_teste.GlobalVariables = []
tensile_teste.NodeSetArrayStatus = []
 
# get animation scene
animationScene1 = GetAnimationScene()
 
# get the time-keeper
timeKeeper1 = GetTimeKeeper()
 
# update animation scene based on data timesteps
animationScene1.UpdateAnimationUsingDataTimeSteps()
 
# Properties modified on tensile_teste
tensile_teste.ElementVariables = ['Block_Id', 'Damage', 'Deformation_GradientX', 'Deformation_GradientY', 
'Deformation_GradientZ', 'Element_Id', 'Neighborhood_Volume', 'Number_Of_Neighbors', 'Proc_Num', 'Radius', 
'Surface_Correction_Factor', 'Volume']
tensile_teste.PointVariables = ['Coordinates', 'Displacement', 'Force', 'Force_Density', 'Velocity']
tensile_teste.GlobalVariables = ['Gage_Left_Displacement', 'Gage_Left_Initial_Position', 
'Gage_Right_Displacement', 'Gage_Right_Initial_Position', 'Right_Reaction_Force', 'Left_Reaction_Force']
tensile_teste.ElementBlocks = ['block_1', 'block_2']
tensile_teste.FilePrefix = ''
tensile_teste.FilePattern = ''
 
# get active view
renderView1 = GetActiveViewOrCreate('RenderView')
# uncomment following to set a specific view size
# renderView1.ViewSize = [1099, 562]
 
# show data in view
tensile_testeDisplay = Show(tensile_teste, renderView1)
 
# trace defaults for the display properties.
tensile_testeDisplay.Representation = 'Surface'
tensile_testeDisplay.ColorArrayName = [None, '']
tensile_testeDisplay.OSPRayScaleArray = 'Coordinates'
tensile_testeDisplay.OSPRayScaleFunction = 'PiecewiseFunction'
tensile_testeDisplay.SelectOrientationVectors = 'Coordinates'
tensile_testeDisplay.ScaleFactor = 0.0004975418793037534
tensile_testeDisplay.SelectScaleArray = 'Coordinates'
tensile_testeDisplay.GlyphType = 'Arrow'
tensile_testeDisplay.GlyphTableIndexArray = 'Coordinates'
tensile_testeDisplay.GaussianRadius = 2.487709396518767e-05
tensile_testeDisplay.SetScaleArray = ['POINTS', 'Coordinates']
tensile_testeDisplay.ScaleTransferFunction = 'PiecewiseFunction'
tensile_testeDisplay.OpacityArray = ['POINTS', 'Coordinates']
tensile_testeDisplay.OpacityTransferFunction = 'PiecewiseFunction'
tensile_testeDisplay.DataAxesGrid = 'GridAxesRepresentation'
tensile_testeDisplay.PolarAxes = 'PolarAxesRepresentation'
tensile_testeDisplay.ScalarOpacityUnitDistance = 0.00012612856299355803
tensile_testeDisplay.ExtractedBlockIndex = 2

# init the 'PiecewiseFunction' selected for 'ScaleTransferFunction'
tensile_testeDisplay.ScaleTransferFunction.Points = [-0.00247539408305662, 0.0, 0.5, 0.0, 
0.0025000246167497897, 1.0, 0.5, 0.0]
 
# init the 'PiecewiseFunction' selected for 'OpacityTransferFunction'
tensile_testeDisplay.OpacityTransferFunction.Points = [-0.00247539408305662, 0.0, 0.5, 0.0, 
0.0025000246167497897, 1.0, 0.5, 0.0]
 
# init the 'GridAxesRepresentation' selected for 'DataAxesGrid'
tensile_testeDisplay.DataAxesGrid.XTitleColor = [0.0, 0.0, 0.0]
tensile_testeDisplay.DataAxesGrid.YTitleColor = [0.0, 0.0, 0.0]
tensile_testeDisplay.DataAxesGrid.ZTitleColor = [0.0, 0.0, 0.0]
tensile_testeDisplay.DataAxesGrid.XLabelColor = [0.0, 0.0, 0.0]
tensile_testeDisplay.DataAxesGrid.YLabelColor = [0.0, 0.0, 0.0]
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tensile_testeDisplay.DataAxesGrid.ZLabelColor = [0.0, 0.0, 0.0]
 
# init the 'PolarAxesRepresentation' selected for 'PolarAxes'
tensile_testeDisplay.PolarAxes.PolarAxisTitleColor = [0.0, 0.0, 0.0]
tensile_testeDisplay.PolarAxes.PolarAxisLabelColor = [0.0, 0.0, 0.0]
tensile_testeDisplay.PolarAxes.LastRadialAxisTextColor = [0.0, 0.0, 0.0]
tensile_testeDisplay.PolarAxes.SecondaryRadialAxesTextColor = [0.0, 0.0, 0.0]
 
# reset view to fit data
renderView1.ResetCamera()
 
# get the material library
materialLibrary1 = GetMaterialLibrary()
 
# update the view to ensure updated data information
renderView1.Update()
 
# set scalar coloring
ColorBy(tensile_testeDisplay, ('FIELD', 'vtkBlockColors'))
 
# show color bar/color legend
tensile_testeDisplay.SetScalarBarVisibility(renderView1, True)
 
# get color transfer function/color map for 'vtkBlockColors'
vtkBlockColorsLUT = GetColorTransferFunction('vtkBlockColors')
vtkBlockColorsLUT.InterpretValuesAsCategories = 1
vtkBlockColorsLUT.AnnotationsInitialized = 1
vtkBlockColorsLUT.Annotations = ['0', '0', '1', '1', '2', '2', '3', '3', '4', '4', '5', '5', '6', '6', 
'7', '7', '8', '8', '9', '9', '10', '10', '11', '11']
vtkBlockColorsLUT.ActiveAnnotatedValues = ['0', '1']
vtkBlockColorsLUT.IndexedColors = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 
0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.63, 0.63, 1.0, 0.67, 0.5, 0.33, 1.0, 0.5, 0.75, 0.53, 0.35, 0.7, 1.0, 
0.75, 0.5]
 
# get opacity transfer function/opacity map for 'vtkBlockColors'
vtkBlockColorsPWF = GetOpacityTransferFunction('vtkBlockColors')
 
# create a new 'Merge Blocks'
mergeBlocks1 = MergeBlocks(Input=tensile_teste)
 
# show data in view
mergeBlocks1Display = Show(mergeBlocks1, renderView1)
 
# trace defaults for the display properties.
mergeBlocks1Display.Representation = 'Surface'
mergeBlocks1Display.ColorArrayName = [None, '']
mergeBlocks1Display.OSPRayScaleArray = 'Coordinates'
mergeBlocks1Display.OSPRayScaleFunction = 'PiecewiseFunction'
mergeBlocks1Display.SelectOrientationVectors = 'Coordinates'
mergeBlocks1Display.ScaleFactor = 0.0004975418793037534
mergeBlocks1Display.SelectScaleArray = 'Coordinates'
mergeBlocks1Display.GlyphType = 'Arrow'
mergeBlocks1Display.GlyphTableIndexArray = 'Coordinates'
mergeBlocks1Display.GaussianRadius = 2.487709396518767e-05
mergeBlocks1Display.SetScaleArray = ['POINTS', 'Coordinates']
mergeBlocks1Display.ScaleTransferFunction = 'PiecewiseFunction'
mergeBlocks1Display.OpacityArray = ['POINTS', 'Coordinates']
mergeBlocks1Display.OpacityTransferFunction = 'PiecewiseFunction'
mergeBlocks1Display.DataAxesGrid = 'GridAxesRepresentation'
mergeBlocks1Display.PolarAxes = 'PolarAxesRepresentation'
mergeBlocks1Display.ScalarOpacityUnitDistance = 0.00012612856299355803
 
# init the 'PiecewiseFunction' selected for 'ScaleTransferFunction'
mergeBlocks1Display.ScaleTransferFunction.Points = [-0.00247539408305662, 0.0, 0.5, 0.0, 
0.0025000246167497897, 1.0, 0.5, 0.0]
 
# init the 'PiecewiseFunction' selected for 'OpacityTransferFunction'
mergeBlocks1Display.OpacityTransferFunction.Points = [-0.00247539408305662, 0.0, 0.5, 0.0, 
0.0025000246167497897, 1.0, 0.5, 0.0]
 
# init the 'GridAxesRepresentation' selected for 'DataAxesGrid'
mergeBlocks1Display.DataAxesGrid.XTitleColor = [0.0, 0.0, 0.0]
mergeBlocks1Display.DataAxesGrid.YTitleColor = [0.0, 0.0, 0.0]
mergeBlocks1Display.DataAxesGrid.ZTitleColor = [0.0, 0.0, 0.0]
mergeBlocks1Display.DataAxesGrid.XLabelColor = [0.0, 0.0, 0.0]
mergeBlocks1Display.DataAxesGrid.YLabelColor = [0.0, 0.0, 0.0]
mergeBlocks1Display.DataAxesGrid.ZLabelColor = [0.0, 0.0, 0.0]
 
# init the 'PolarAxesRepresentation' selected for 'PolarAxes'
mergeBlocks1Display.PolarAxes.PolarAxisTitleColor = [0.0, 0.0, 0.0]
mergeBlocks1Display.PolarAxes.PolarAxisLabelColor = [0.0, 0.0, 0.0]
mergeBlocks1Display.PolarAxes.LastRadialAxisTextColor = [0.0, 0.0, 0.0]
mergeBlocks1Display.PolarAxes.SecondaryRadialAxesTextColor = [0.0, 0.0, 0.0]
 
# hide data in view
Hide(tensile_teste, renderView1)
 
# update the view to ensure updated data information
renderView1.Update()
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animationScene1.GoToLast()
 
# save data
SaveData('$pwd//FieldData.csv', proxy=mergeBlocks1, UseScientificNotation=1,
    FieldAssociation='Field Data')
 
# save data
SaveData('$pwd/CellData.csv', proxy=mergeBlocks1, WriteTimeSteps=1,
    UseScientificNotation=1,
    FieldAssociation='Cells')
 
# save data
SaveData('$pwd/PointData.csv', proxy=mergeBlocks1, WriteTimeSteps=1,
    UseScientificNotation=1)
 
# set scalar coloring
ColorBy(mergeBlocks1Display, ('CELLS', 'Damage'))
 
# rescale color and/or opacity maps used to include current data range
mergeBlocks1Display.RescaleTransferFunctionToDataRange(True, False)
 
# show color bar/color legend
mergeBlocks1Display.SetScalarBarVisibility(renderView1, True)
 
# get color transfer function/color map for 'Damage'
damageLUT = GetColorTransferFunction('Damage')
damageLUT.RGBPoints = [0.0, 0.231373, 0.298039, 0.752941, 0.039473684210526314, 0.865003, 0.865003, 
0.865003, 0.07894736842105263, 0.705882, 0.0156863, 0.14902]
damageLUT.ScalarRangeInitialized = 1.0
 
# get opacity transfer function/opacity map for 'Damage'
damagePWF = GetOpacityTransferFunction('Damage')
damagePWF.Points = [0.0, 0.0, 0.5, 0.0, 0.07894736842105263, 1.0, 0.5, 0.0]
damagePWF.ScalarRangeInitialized = 1
 
# Properties modified on mergeBlocks1Display
mergeBlocks1Display.PointSize = 10.0
 
# Properties modified on mergeBlocks1Display
mergeBlocks1Display.RenderPointsAsSpheres = 1
 
# get color legend/bar for damageLUT in view renderView1
damageLUTColorBar = GetScalarBar(damageLUT, renderView1)
damageLUTColorBar.Title = 'Damage'
damageLUTColorBar.ComponentTitle = ''
damageLUTColorBar.TitleColor = [0.0, 0.0, 0.0]
damageLUTColorBar.LabelColor = [0.0, 0.0, 0.0]
 
# change scalar bar placement
damageLUTColorBar.Orientation = 'Horizontal'
damageLUTColorBar.WindowLocation = 'AnyLocation'
damageLUTColorBar.Position = [0.3422020018198361, 0.0]
damageLUTColorBar.ScalarBarLength = 0.32999999999999946
 
# current camera placement for renderView1
renderView1.CameraPosition = [1.2315227650105953e-05, 4.926128895021975e-06, 0.005539835654097468]
renderView1.CameraFocalPoint = [1.2315227650105953e-05, 4.926128895021975e-06, 1.0837444278877228e-05]
renderView1.CameraParallelScale = 0.0025351215722264845
 
# save screenshot
SaveScreenshot('/home/peridyna/Documents/Peridigm/Simulations/Verifications/Kluster/CG_FD_NC/DmgSS.png', 
renderView1, ImageResolution=[1099, 562],
    TransparentBackground=1)
 
# set scalar coloring
ColorBy(mergeBlocks1Display, ('POINTS', 'Force', 'Magnitude'))
 
# Hide the scalar bar for this color map if no visible data is colored by it.
HideScalarBarIfNotNeeded(damageLUT, renderView1)
 
# rescale color and/or opacity maps used to include current data range
mergeBlocks1Display.RescaleTransferFunctionToDataRange(True, False)
 
# show color bar/color legend
mergeBlocks1Display.SetScalarBarVisibility(renderView1, True)
 
# get color transfer function/color map for 'Force'
forceLUT = GetColorTransferFunction('Force')
forceLUT.RGBPoints = [2.0218012240182936e-05, 0.231373, 0.298039, 0.752941, 4812.927562062904, 0.865003, 
0.865003, 0.865003, 9625.855103907796, 0.705882, 0.0156863, 0.14902]
forceLUT.ScalarRangeInitialized = 1.0
 
# get opacity transfer function/opacity map for 'Force'
forcePWF = GetOpacityTransferFunction('Force')
forcePWF.Points = [2.0218012240182936e-05, 0.0, 0.5, 0.0, 9625.855103907796, 1.0, 0.5, 0.0]
forcePWF.ScalarRangeInitialized = 1
 
# set scalar coloring
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ColorBy(mergeBlocks1Display, ('POINTS', 'Force_Density', 'Magnitude'))
 
# Hide the scalar bar for this color map if no visible data is colored by it.
HideScalarBarIfNotNeeded(forceLUT, renderView1)
 
# rescale color and/or opacity maps used to include current data range
mergeBlocks1Display.RescaleTransferFunctionToDataRange(True, False)
 
# show color bar/color legend
mergeBlocks1Display.SetScalarBarVisibility(renderView1, True)
 
# get color transfer function/color map for 'Force_Density'
force_DensityLUT = GetColorTransferFunction('Force_Density')
force_DensityLUT.RGBPoints = [33326.56265622793, 0.231373, 0.298039, 0.752941, 7933437276202.003, 
0.865003, 0.865003, 0.865003, 15866874519077.443, 0.705882, 0.0156863, 0.14902]
force_DensityLUT.ScalarRangeInitialized = 1.0
 
# get opacity transfer function/opacity map for 'Force_Density'
force_DensityPWF = GetOpacityTransferFunction('Force_Density')
force_DensityPWF.Points = [33326.56265622793, 0.0, 0.5, 0.0, 15866874519077.443, 1.0, 0.5, 0.0]
force_DensityPWF.ScalarRangeInitialized = 1
 
# get color legend/bar for force_DensityLUT in view renderView1
force_DensityLUTColorBar = GetScalarBar(force_DensityLUT, renderView1)
force_DensityLUTColorBar.Title = 'Force_Density'
force_DensityLUTColorBar.ComponentTitle = 'Magnitude'
force_DensityLUTColorBar.TitleColor = [0.0, 0.0, 0.0]
force_DensityLUTColorBar.LabelColor = [0.0, 0.0, 0.0]
 
# change scalar bar placement
force_DensityLUTColorBar.Orientation = 'Horizontal'
force_DensityLUTColorBar.WindowLocation = 'AnyLocation'
force_DensityLUTColorBar.Position = [0.37586897179253853, 0.15149466192170827]
force_DensityLUTColorBar.ScalarBarLength = 0.3300000000000003
 
# change scalar bar placement
force_DensityLUTColorBar.Position = [0.36131028207461313, 0.0]
 
# current camera placement for renderView1
renderView1.CameraPosition = [1.2315227650105953e-05, 4.926128895021975e-06, 0.005539835654097468]
renderView1.CameraFocalPoint = [1.2315227650105953e-05, 4.926128895021975e-06, 1.0837444278877228e-05]
renderView1.CameraParallelScale = 0.0025351215722264845
 
# save screenshot
SaveScreenshot('/home/peridyna/Documents/Peridigm/Simulations/Verifications/Kluster/CG_FD_NC/FDSS.png', 
renderView1, ImageResolution=[1099, 562],
    TransparentBackground=1)
 
#### saving camera placements for all active views
 
# current camera placement for renderView1
renderView1.CameraPosition = [1.2315227650105953e-05, 4.926128895021975e-06, 0.005539835654097468]
renderView1.CameraFocalPoint = [1.2315227650105953e-05, 4.926128895021975e-06, 1.0837444278877228e-05]
renderView1.CameraParallelScale = 0.0025351215722264845
 
#### uncomment the following to render all views
# RenderAllViews()
# alternatively, if you want to write images, you can use SaveScreenshot(...).">pv_SS_data_script.py
####################################################
#               natsortfiles.m                   ########################################################
####################################################
echo "function [X,ndx,dbg] = natsortfiles(X,rgx,varargin)
% Alphanumeric / Natural-Order sort of a cell array of filename/filepath strings (1xN char).
%
% (c) 2014-2019 Stephen Cobeldick
%
% Alphanumeric sort of a cell array of filenames or filepaths: sorts by
% character order and also by the values of any numbers that are within
% the names. Filenames, file-extensions, and directories (if supplied)
% are split apart and are sorted separately: this ensures that shorter
% filenames sort before longer ones (i.e. thus giving a dictionary sort).
%
%%% Example:
% P = 'C:\SomeDir\SubDir';
% S = dir(fullfile(P,'*.txt'));
% C = natsortfiles({S.name});
% for k = 1:numel(C)
%     fullfile(P,C{k})
% end
%
%%% Syntax:
%  Y = natsortfiles(X)
%  Y = natsortfiles(X,rgx)
%  Y = natsortfiles(X,rgx,<options>)
% [Y,ndx,dbg] = natsortfiles(X,...)
%
% To sort all of the strings in a cell array use NATSORT (File Exchange 34464).
% To sort the rows of a cell array of strings use NATSORTROWS (File Exchange 47433).
%
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%% File Dependency %%
%
% NATSORTFILES requires the function NATSORT (File Exchange 34464). The optional
% arguments <options> are passed directly to NATSORT. See NATSORT for case
% sensitivity, sort direction, numeric substring matching, and other options.
%
%% Explanation %%
%
% Using SORT on filenames will sort any of char(0:45), including the printing
% characters ' !\"#$%&''()*+,-', before the file extension separator character '.'.
% Therefore this function splits the name and extension and sorts them separately.
%
% Similarly the file separator character within filepaths can cause longer
% directory names to sort before shorter ones, as char(0:46)<'/' and
% char(0:91)<'\'. Check this example to see why this matters:
%
% >> X = {'A1\B', 'A+/B', 'A\B', 'A=/B', 'A/B'};
% >> sort(X)
% ans =   'A+/B'  'A/B'  'A1\B'  'A=/B'  'A\B'
% >> natsortfiles(X)
% ans =   'A\B'  'A/B'  'A1\B'  'A+/B'  'A=/B'
%
% NATSORTFILES splits filepaths at each file separator character and sorts
% every level of the directory hierarchy separately, ensuring that shorter
% directory names sort before longer, regardless of the characters in the names.
%
%% Examples %%
%
% >> A = {'a2.txt', 'a10.txt', 'a1.txt'};
% >> sort(A)
% ans = 'a1.txt'  'a10.txt'  'a2.txt'
% >> natsortfiles(A)
% ans = 'a1.txt'  'a2.txt'  'a10.txt'
%
% >> B = {'test_new.m'; 'test-old.m'; 'test.m'};
% >> sort(B) % Note '-' sorts before '.':
% ans =
%    'test-old.m'
%    'test.m'
%    'test_new.m'
% >> natsortfiles(B) % Shorter names before longer (dictionary sort):
% ans =
%    'test.m'
%    'test-old.m'
%    'test_new.m'
%
% >> C = {'test2.m'; 'test10-old.m'; 'test.m'; 'test10.m'; 'test1.m'};
% >> sort(C) % Wrong numeric order:
% ans =
%    'test.m'
%    'test1.m'
%    'test10-old.m'
%    'test10.m'
%    'test2.m'
% >> natsortfiles(C) % Shorter names before longer:
% ans =
%    'test.m'
%    'test1.m'
%    'test2.m'
%    'test10.m'
%    'test10-old.m'
%
%%% Directory Names:
% >> D = {'A2-old\test.m';'A10\test.m';'A2\test.m';'A1archive.zip';'A1\test.m'};
% >> sort(D) % Wrong numeric order, and '-' sorts before '\':
% ans =
%    'A10\test.m'
%    'A1\test.m'
%    'A1archive.zip'
%    'A2-old\test.m'
%    'A2\test.m'
% >> natsortfiles(D) % Shorter names before longer (dictionary sort):
% ans =
%    'A1archive.zip'
%    'A1\test.m'
%    'A2\test.m'
%    'A2-old\test.m'
%    'A10\test.m'
%
%% Input and Output Arguments %%
%
%%% Inputs (*=default):
% X   = CellArrayOfCharRowVectors, with filenames or filepaths to be sorted.
% rgx = Regular expression to match number substrings, '\d+'*
%     = [] uses the default regular expression, which matches integers.
% <options> can be supplied in any order and are passed directly to NATSORT.
%
%%% Outputs:
% Y   = CellArrayOfCharRowVectors, filenames of <X> sorted into natural-order.
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% ndx = NumericMatrix, same size as <X>. Indices such that Y = X(ndx).
% dbg = CellVectorOfCellArrays, size 1xMAX(2+NumberOfDirectoryLevels).
%       Each cell contains the debug cell array for directory names, filenames,
%       and file extensions. Helps debug the regular expression. See NATSORT.
%
% See also SORT NATSORT NATSORTROWS DIR FILEPARTS FULLFILE NEXTNAME CELLSTR REGEXP IREGEXP SSCANF
 
%% Input Wrangling %%
%
assert(iscell(X),'First input <X> must be a cell array.')
tmp = cellfun('isclass',X,'char') & cellfun('size',X,1)<2 & cellfun('ndims',X)<3;
assert(all(tmp(:)),'First input <X> must be a cell array of strings (1xN character).')
%
if nargin>1
    varargin = [{rgx},varargin];
end
%
%% Split and Sort File Names/Paths %%
%
% Split full filepaths into file [path,name,extension]:
[pth,fnm,ext] = cellfun(@fileparts,X(:),'UniformOutput',false);
% Split path into {dir,subdir,subsubdir,...}:
pth = regexp(pth,'[^/\]+','match'); % either / or \ as filesep.
len = cellfun('length',pth);
num = max(len);
vec = cell(numel(len),1);
%
% Natural-order sort of the file extensions and filenames:
if isempty(num)
    ndx = [];
    ids = [];
    dbg = {};
elseif nargout<3 % faster:
    [~,ndx] = natsort(ext,varargin{:});
    [~,ids] = natsort(fnm(ndx),varargin{:});
else % for debugging:
    [~,ndx,dbg{num+2}] = natsort(ext,varargin{:});
    [~,ids,tmp] = natsort(fnm(ndx),varargin{:});
    [~,idd] = sort(ndx);
    dbg{num+1} = tmp(idd,:);
end
ndx = ndx(ids);
%
% Natural-order sort of the directory names:
for k = num:-1:1
    idx = len>=k;
    vec(:) = {''};
    vec(idx) = cellfun(@(c)c(k),pth(idx));
    if nargout<3 % faster:
        [~,ids] = natsort(vec(ndx),varargin{:});
    else % for debugging:
        [~,ids,tmp] = natsort(vec(ndx),varargin{:});
        [~,idd] = sort(ndx);
        dbg{k} = tmp(idd,:);
    end
    ndx = ndx(ids);
end
%
% Return the sorted array and indices:
ndx = reshape(ndx,size(X));
X = X(ndx);
%
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%natsortfiles
">natsortfiles.m
echo "
function [X,ndx,dbg] = natsort(X,rgx,varargin)
% Alphanumeric / Natural-Order sort the strings in a cell array of strings (1xN char).
%
% (c) 2012-2019 Stephen Cobeldick
%
% Alphanumeric sort a cell array of strings: sorts by character order and
% also by the values of any number substrings. Default: match all integer
% number substrings and perform a case-insensitive ascending sort.
%
%%% Example:
% >> X = {'x2', 'x10', 'x1'};
% >> sort(X)
% ans =   'x1'  'x10'  'x2'
% >> natsort(X)
% ans =   'x1'  'x2'  'x10'
%
%%% Syntax:
%  Y = natsort(X)
%  Y = natsort(X,rgx)
%  Y = natsort(X,rgx,<options>)
% [Y,ndx,dbg] = natsort(X,...)
%
% To sort filenames or filepaths use NATSORTFILES (FEX 47434).
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% To sort the rows of a cell array of strings use NATSORTROWS (FEX 47433).
%
%% Number Substrings %%
%
% By default consecutive digit characters are interpreted as an integer.
% Specifying the optional regular expression pattern allows the numbers to
% include a +/- sign, decimal digits, exponent E-notation, quantifiers,
% or look-around matching. For information on defining regular expressions:
% http://www.mathworks.com/help/matlab/matlab_prog/regular-expressions.html
%
% The number substrings are parsed by SSCANF into numeric values, using
% either the *default format '%f' or the user-supplied format specifier.
%
% This table shows examples of regular expression patterns for some common
% notations and ways of writing numbers, with suitable SSCANF formats:
%
% Regular       | Number Substring | Number Substring              | SSCANF
% Expression:   | Match Examples:  | Match Description:            | Format Specifier:
% ==============|==================|===============================|==================
% *         \d+ | 0, 123, 4, 56789 | unsigned integer              | %f  %i  %u  %lu
% --------------|------------------|-------------------------------|------------------
%      [-+]?\d+ | +1, 23, -45, 678 | integer with optional +/- sign| %f  %i  %d  %ld
% --------------|------------------|-------------------------------|------------------
%     \d+\.?\d* | 012, 3.45, 678.9 | integer or decimal            | %f
% (\d+|Inf|NaN) | 123, 4, NaN, Inf | integer, Inf, or NaN          | %f
%  \d+\.\d+e\d+ | 0.123e4, 5.67e08 | exponential notation          | %f
% --------------|------------------|-------------------------------|------------------
%  0[0-7]+      | 012, 03456, 0700 | octal notation & prefix       | %o  %i
%   [0-7]+      |  12,  3456,  700 | octal notation                | %o
% --------------|------------------|-------------------------------|------------------
%  0X[0-9A-F]+  | 0X0, 0X3E7, 0XFF | hexadecimal notation & prefix | %x  %i
%    [0-9A-F]+  |   0,   3E7,   FF | hexadecimal notation          | %x
% --------------|------------------|-------------------------------|------------------
%  0B[01]+      | 0B1, 0B101, 0B10 | binary notation & prefix      | %b   (not SSCANF)
%    [01]+      |   1,   101,   10 | binary notation               | %b   (not SSCANF)
% --------------|------------------|-------------------------------|------------------
%
%% Debugging Output Array %%
%
% The third output is a cell array <dbg>, to check if the numbers have
% been matched by the regular expression <rgx> and converted to numeric
% by the SSCANF format. The rows of <dbg> are linearly indexed from <X>,
% even columns contain numbers, odd columns contain split substrings:
%
% >> [~,~,dbg] = natsort(X)
% dbg =
%    'x'    [ 2]
%    'x'    [10]
%    'x'    [ 1]
%
%% Examples %%
%
%%% Multiple integers (e.g. release version numbers):
% >> A = {'v10.6', 'v9.10', 'v9.5', 'v10.10', 'v9.10.20', 'v9.10.8'};
% >> sort(A)
% ans =   'v10.10'  'v10.6'  'v9.10'  'v9.10.20'  'v9.10.8'  'v9.5'
% >> natsort(A)
% ans =   'v9.5'  'v9.10'  'v9.10.8'  'v9.10.20'  'v10.6'  'v10.10'
%
%%% Integer, decimal, NaN, or Inf numbers, possibly with +/- signs:
% >> B = {'test+NaN', 'test11.5', 'test-1.4', 'test', 'test-Inf', 'test+0.3'};
% >> sort(B)
% ans =   'test' 'test+0.3' 'test+NaN' 'test-1.4' 'test-Inf' 'test11.5'
% >> natsort(B, '[-+]?(NaN|Inf|\d+\.?\d*)')
% ans =   'test' 'test-Inf' 'test-1.4' 'test+0.3' 'test11.5' 'test+NaN'
%
%%% Integer or decimal numbers, possibly with an exponent:
% >> C = {'0.56e007', '', '43E-2', '10000', '9.8'};
% >> sort(C)
% ans =   ''  '0.56e007'  '10000'  '43E-2'  '9.8'
% >> natsort(C, '\d+\.?\d*([eE][-+]?\d+)?')
% ans =   ''  '43E-2'  '9.8'  '10000'  '0.56e007'
%
%%% Hexadecimal numbers (with '0X' prefix):
% >> D = {'a0X7C4z', 'a0X5z', 'a0X18z', 'a0XFz'};
% >> sort(D)
% ans =   'a0X18z'  'a0X5z'  'a0X7C4z'  'a0XFz'
% >> natsort(D, '0X[0-9A-F]+', '%i')
% ans =   'a0X5z'  'a0XFz'  'a0X18z'  'a0X7C4z'
%
%%% Binary numbers:
% >> E = {'a11111000100z', 'a101z', 'a000000000011000z', 'a1111z'};
% >> sort(E)
% ans =   'a000000000011000z'  'a101z'  'a11111000100z'  'a1111z'
% >> natsort(E, '[01]+', '%b')
% ans =   'a101z'  'a1111z'  'a000000000011000z'  'a11111000100z'
%
%%% Case sensitivity:
% >> F = {'a2', 'A20', 'A1', 'a10', 'A2', 'a1'};
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% >> natsort(F, [], 'ignorecase') % default
% ans =   'A1'  'a1'  'a2'  'A2'  'a10'  'A20'
% >> natsort(F, [], 'matchcase')
% ans =   'A1'  'A2'  'A20'  'a1'  'a2'  'a10'
%
%%% Sort order:
% >> G = {'2', 'a', '', '3', 'B', '1'};
% >> natsort(G, [], 'ascend') % default
% ans =   ''   '1'  '2'  '3'  'a'  'B'
% >> natsort(G, [], 'descend')
% ans =   'B'  'a'  '3'  '2'  '1'  ''
% >> natsort(G, [], 'num<char') % default
% ans =   ''   '1'  '2'  '3'  'a'  'B'
% >> natsort(G, [], 'char<num')
% ans =   ''   'a'  'B'  '1'  '2'  '3'
%
%%% UINT64 numbers (with full precision):
% >> natsort({'a18446744073709551615z', 'a18446744073709551614z'}, [], '%lu')
% ans =       'a18446744073709551614z'  'a18446744073709551615z'
%
%% Input and Output Arguments %%
%
%%% Inputs (*==default):
% X   = CellArrayOfCharRowVectors, to be sorted into natural-order.
% rgx = Regular expression to match number substrings, '\d+'*
%     = [] uses the default regular expression, which matches integers.
% <options> can be entered in any order, as many as required:
%     = Sort direction: 'descend'/'ascend'*
%     = NaN/number order: 'NaN<num'/'num<NaN'*
%     = Character/number order: 'char<num'/'num<char'*
%     = Character case handling: 'matchcase'/'ignorecase'*
%     = SSCANF number conversion format, e.g.: '%f'*, '%x', '%li', '%b', etc.
%
%%% Outputs:
% Y   = CellArrayOfCharRowVectors, <X> sorted into natural-order.
% ndx = NumericArray, such that Y = X(ndx). The same size as <X>.
% dbg = CellArray of the parsed characters and number values.
%       Each row is one input char vector, linear-indexed from <X>.
%
% See also SORT NATSORTFILES NATSORTROWS CELLSTR REGEXP IREGEXP SSCANF
 
%% Input Wrangling %%
%
assert(iscell(X),'First input <X> must be a cell array.')
tmp = cellfun('isclass',X,'char') & cellfun('size',X,1)<2 & cellfun('ndims',X)<3;
assert(all(tmp(:)),'First input <X> must be a cell array of char row vectors (1xN char).')
%
if nargin<2 || isnumeric(rgx)&&isempty(rgx)
    rgx = '\d+';
else
    assert(ischar(rgx)&&ndims(rgx)<3&&size(rgx,1)==1,...
        'Second input <rgx> must be a regular expression (char row vector).') %#ok<ISMAT>
end
%
% Optional arguments:
tmp = cellfun('isclass',varargin,'char') & cellfun('size',varargin,1)<2 & cellfun('ndims',varargin)<3;
assert(all(tmp(:)),'All optional arguments must be char row vectors (1xN char).')
% Character case:
ccm = strcmpi(varargin,'matchcase');
ccx = strcmpi(varargin,'ignorecase')|ccm;
% Sort direction:
sdd = strcmpi(varargin,'descend');
sdx = strcmpi(varargin,'ascend')|sdd;
% Char/num order:
chb = strcmpi(varargin,'char<num');
chx = strcmpi(varargin,'num<char')|chb;
% NaN/num order:
nab = strcmpi(varargin,'NaN<num');
nax = strcmpi(varargin,'num<NaN')|nab;
% SSCANF format:
sfx = ~cellfun('isempty',regexp(varargin,'^%([bdiuoxfeg]|l[diuox])$'));
%
nsAssert(1,varargin,sdx,'Sort direction')
nsAssert(1,varargin,chx,'Char<->num')
nsAssert(1,varargin,nax,'NaN<->num')
nsAssert(1,varargin,sfx,'SSCANF format')
nsAssert(0,varargin,~(ccx|sdx|chx|nax|sfx))
%
% SSCANF format:
if nnz(sfx)
    fmt = varargin{sfx};
    if strcmpi(fmt,'%b')
        cls = 'double';
    else
        cls = class(sscanf('0',fmt));
    end
else
    fmt = '%f';
    cls = 'double';
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end
%
%% Identify Numbers %%
%
[mat,spl] = regexpi(X(:),rgx,'match','split',varargin{ccx});
%
% Determine lengths:
nmx = numel(X);
nmn = cellfun('length',mat);
nms = cellfun('length',spl);
mxs = max(nms);
%
% Preallocate arrays:
bon = bsxfun(@le,1:mxs,nmn).';
bos = bsxfun(@le,1:mxs,nms).';
arn = zeros(mxs,nmx,cls);
ars =  cell(mxs,nmx);
ars(:) = {''};
ars(bos) = [spl{:}];
%
%% Convert Numbers to Numeric %%
%
if nmx
    tmp = [mat{:}];
    if strcmp(fmt,'%b')
        tmp = regexprep(tmp,'^0[Bb]','');
        vec = cellfun(@(s)sum(pow2(s-'0',numel(s)-1:-1:0)),tmp);
    else
        vec = sscanf(sprintf(' %s',tmp{:}),fmt);
    end
    assert(numel(vec)==numel(tmp),'The %s format must return one value for each input number.',fmt)
else
    vec = [];
end
%
%% Debugging Array %%
%
if nmx && nargout>2
    dbg = cell(mxs,nmx);
    dbg(:) = {''};
    dbg(bon) = num2cell(vec);
    dbg = reshape(permute(cat(3,ars,dbg),[3,1,2]),[],nmx).';
    idf = [find(~all(cellfun('isempty',dbg),1),1,'last'),1];
    dbg = dbg(:,1:idf(1));
else
    dbg = {};
end
%
%% Sort Columns %%
%
if ~any(ccm) % ignorecase
    ars = lower(ars);
end
%
if nmx && any(chb) % char<num
    boe = ~cellfun('isempty',ars(bon));
    for k = reshape(find(bon),1,[])
        ars{k}(end+1) = char(65535);
    end
    [idr,idc] = find(bon);
    idn = sub2ind(size(bon),boe(:)+idr(:),idc(:));
    bon(:) = false;
    bon(idn) = true;
    arn(idn) = vec;
    bon(isnan(arn)) = ~any(nab);
    ndx = 1:nmx;
    if any(sdd) % descending
        for k = mxs:-1:1
            [~,idx] = sort(nsGroup(ars(k,ndx)),'descend');
            ndx = ndx(idx);
            [~,idx] = sort(arn(k,ndx),'descend');
            ndx = ndx(idx);
            [~,idx] = sort(bon(k,ndx),'descend');
            ndx = ndx(idx);
        end
    else % ascending
        for k = mxs:-1:1
            [~,idx] = sort(ars(k,ndx));
            ndx = ndx(idx);
            [~,idx] = sort(arn(k,ndx),'ascend');
            ndx = ndx(idx);
            [~,idx] = sort(bon(k,ndx),'ascend');
            ndx = ndx(idx);
        end
    end
else % num<char
    arn(bon) = vec;
    bon(isnan(arn)) = ~any(nab);
    if any(sdd) % descending
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        [~,ndx] = sort(nsGroup(ars(mxs,:)),'descend');
        for k = mxs-1:-1:1
            [~,idx] = sort(arn(k,ndx),'descend');
            ndx = ndx(idx);
            [~,idx] = sort(bon(k,ndx),'descend');
            ndx = ndx(idx);
            [~,idx] = sort(nsGroup(ars(k,ndx)),'descend');
            ndx = ndx(idx);
        end
    else % ascending
        [~,ndx] = sort(ars(mxs,:));
        for k = mxs-1:-1:1
            [~,idx] = sort(arn(k,ndx),'ascend');
            ndx = ndx(idx);
            [~,idx] = sort(bon(k,ndx),'ascend');
            ndx = ndx(idx);
            [~,idx] = sort(ars(k,ndx));
            ndx = ndx(idx);
        end
    end
end
%
ndx  = reshape(ndx,size(X));
X = X(ndx);
%
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%natsort
function nsAssert(val,inp,idx,varargin)
% Throw an error if an option is overspecified.
if nnz(idx)>val
    tmp = {'Unknown input arguments',' option may only be specified once. Provided inputs'};
    error('%s:%s',[varargin{:},tmp{1+val}],sprintf('\n''%s''',inp{idx}))
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%nsAssert
function grp = nsGroup(vec)
% Groups of a cell array of strings, equivalent to [~,~,grp]=unique(vec);
[vec,idx] = sort(vec);
grp = cumsum([true,~strcmp(vec(1:end-1),vec(2:end))]);
grp(idx) = grp;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%nsGroup">natsort.m
####################################################
#               dataInspector.m                   #######################################################
####################################################
echo "
clear;
close;
clc;
csvfiles        = strcat(pwd, '/Field*.csv');
files           = dir(csvfiles);
Fieldfiles      = struct2cell(files);
sortedfilenames = natsortfiles(Fieldfiles(1,:));
filedata        = importdata(fullfile(pwd,sortedfilenames{1}));
 
 
% Create structure into which we load data
timeSortedDataField = struct();
for i = 1:numel(filedata.colheaders)
    structFieldName = strrep(filedata.colheaders{i},'\"','');
    structFieldName = strrep(structFieldName,':','');
    structFieldName = strrep(structFieldName,' ','_');
    timeSortedDataField.(structFieldName)=filedata.data(:,i);
end
 
% Load data into respective structure Fields
for i = 2:numel(sortedfilenames)
    disp(sortedfilenames(i))
    currfile = importdata(fullfile(pwd,sortedfilenames{i}));
    [length, height] = size(currfile.data);
    for j = 1:numel(currfile.colheaders)
        structFieldName = strrep(currfile.colheaders{j},'\"','');
        structFieldName = strrep(structFieldName,':','');
        structFieldName = strrep(structFieldName,' ','_');

        timeSortedDataField.(structFieldName) = [timeSortedDataField.(structFieldName),currfile.data(:,j)];
    end
    
end
 
% Save structure fields to mat file
save('timeSortedDataField.mat','timeSortedDataField', '-v7.3');
disp('Done')
 
 
clear;
close;
clc;
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%% Cells 
csvfiles        = strcat(pwd, '/Cell*.csv');
files           = dir(csvfiles);
cellfiles       = struct2cell(files);
sortedfilenames = natsortfiles(cellfiles(1,:));
filedata        = importdata(fullfile(pwd,sortedfilenames{1}));
 
 
% Create structure into which we load data
timeSortedDataCells = struct();
for i = 1:numel(filedata.colheaders)
    structFieldName = strrep(filedata.colheaders{i},'\"','');
    structFieldName = strrep(structFieldName,':','');
    structFieldName = strrep(structFieldName,' ','_');
    timeSortedDataCells.(structFieldName)=filedata.data(:,i);
end
 
% Load data into respective structure fields
for i = 2:numel(sortedfilenames)
    disp(sortedfilenames(i))
    currfile = importdata(fullfile(pwd,sortedfilenames{i}));
    [length, height] = size(currfile.data);
    for j = 1:numel(currfile.colheaders)
        structFieldName = strrep(currfile.colheaders{j},'\"','');
        structFieldName = strrep(structFieldName,':','');
        structFieldName = strrep(structFieldName,' ','_');
        
        timeSortedDataCells.(structFieldName) = [timeSortedDataCells.(structFieldName),currfile.data(:,j)];
    end
    
end
 
% Save structure fields to mat file
save('timeSortedDataCells.mat','timeSortedDataCells', '-v7.3');
clear
 
%% Points 
csvfiles        = strcat(pwd, '/Point*.csv');
files           = dir(csvfiles);
cellfiles       = struct2cell(files);
sortedfilenames = natsortfiles(cellfiles(1,:));
filedata        = importdata(fullfile(pwd,sortedfilenames{1}));
 
 
timeSortedDataPoints = struct();
for i = 1:numel(filedata.colheaders)
    structFieldName = strrep(filedata.colheaders{i},'\"','');
    structFieldName = strrep(structFieldName,':','');
    structFieldName = strrep(structFieldName,' ','_');
    timeSortedDataPoints.(structFieldName)=filedata.data(:,i);
end
 
for i = 2:numel(sortedfilenames)
    disp(sortedfilenames(i))
    currfile = importdata(fullfile(pwd,sortedfilenames{i}));
    [length, height] = size(currfile.data);
    for j = 1:numel(currfile.colheaders)
        
        structFieldName = strrep(currfile.colheaders{j},'\"','');
        structFieldName = strrep(structFieldName,':','');
        structFieldName = strrep(structFieldName,' ','_');
        
        timeSortedDataPoints.(structFieldName) = [timeSortedDataPoints.
(structFieldName),currfile.data(:,j)];
    end
    
end
 
% Save structure fields to mat file
save('timeSortedDataPoints.mat','timeSortedDataPoints', '-v7.3');
clear
 
disp('Done')
exit()
">dataInspectorTT.m
####################################################
#               DataAnalyserTT.m                 ########################################################
####################################################
echo "clear all;
close all;
clc;
format long
 
 
%% File Availability check
tic
disp('File Availability')
fieldMatfiles   = strcat(pwd, '/*Field*.mat');
fieldFiles      = dir(fieldMatfiles);
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fieldCellfiles  = struct2cell(fieldFiles);
sortedFieldfilenames = natsortfiles(fieldCellfiles(1,:));
 
disp('File Availability')
pointMatfiles   = strcat(pwd, '/*Point*.mat');
pointFiles      = dir(pointMatfiles);
pointCellfiles  = struct2cell(pointFiles);
sortedPointfilenames = natsortfiles(pointCellfiles(1,:));
 
cellMatfiles   = strcat(pwd, '/*Cell*.mat');
cellFiles      = dir(cellMatfiles);
cellCellfiles  = struct2cell(cellFiles);
sortedCellfilenames = natsortfiles(cellCellfiles(1,:));
 
toc
%% Loading mat-files
tic
disp('Loading MAT-files')
finalTime   = 10;
figIndx     = 0;
k = 1; %Ignore loop since there is only one field file and one cell file.
%for i = 1:length(sortedPointfilenames)
 
pointfilename      =  sortedPointfilenames{k};        %Load current mat-file
pointfile          = load (pointfilename);
pointfilename      = strrep(pointfilename,'.mat',''); %Remove .mat to use for variable
 
cellfilename      =  sortedCellfilenames{k};        %Load current mat-file
cellfile          = load (cellfilename);
cellfilename      = strrep(cellfilename,'.mat',''); %Remove .mat to use for variable
 
fieldfilename      = sortedFieldfilenames{k};        %Load current mat-file
fieldfile          = load (fieldfilename);
fieldfilename      = strrep(fieldfilename,'.mat',''); %Remove .mat to use for variable
toc
%% Calculation-related variables
tic
disp('Variables')
timeIncr    = finalTime/length(fieldfile.(fieldfilename).Left_Reaction_Force0(:));
time        = 0:timeIncr:finalTime-timeIncr;
x_section   = 1e-3*2e-4; %Cross section of domain.
nodeLeftInitial   = 1218;
nodeRightInitial  = 11565;
nodeLeftDisp      = 1218;
nodeRightDisp     = 11565;
 
%Interval node set
elemIndxLeft =find(pointfile.(pointfilename).PedigreeNodeId(:,1)==nodeLeftInitial);
elemIndxRight =find(pointfile.(pointfilename).PedigreeNodeId(:,1)==nodeRightInitial);
 
LeftX = pointfile.(pointfilename).Coordinates0(elemIndxLeft,1);
RightX = pointfile.(pointfilename).Coordinates0(elemIndxRight,1);
 
LeftXDisp = pointfile.(pointfilename).Displacement0(elemIndxLeft,:);
RightXDisp = pointfile.(pointfilename).Displacement0(elemIndxRight,:);
 
LeftXForce = pointfile.(pointfilename).Force0(elemIndxLeft,:);
RightXForce = pointfile.(pointfilename).Force0(elemIndxRight,:);
 
 
intervalNodes1 = find( (pointfile.(pointfilename).Coordinates0(:,1)>=LeftX));
intervalNodes = find(pointfile.(pointfilename).Coordinates0(intervalNodes1,1) <= RightX);
interval = intervalNodes;
 
L0          = RightX - LeftX;
elongation  = RightXDisp - LeftXDisp;
L           = elongation + L0;
 
cvNodes = find (abs(pointfile.timeSortedDataPoints.Coordinates0(:,1)) < 0.0000318);
 
%Retrieve the node index among the cvNodes, which are located on the ends
%of the domain.
%The node is the one to be used for calculations for the rest of the time
%period
[~, yMaxIndex]= max(pointfile.(pointfilename).Coordinates1(cvNodes,1));
[~, yMinIndex] = min(pointfile.(pointfilename).Coordinates1(cvNodes,1));
yCalcMaxNode = cvNodes(yMaxIndex);
yCalcMinNode = cvNodes(yMinIndex);
yWidth = pointfile.(pointfilename).Coordinates1(yCalcMaxNode,:) - pointfile.
(pointfilename).Coordinates1(yCalcMinNode,:);
 
[~, zMaxIndex ]= max(pointfile.(pointfilename).Coordinates2(cvNodes,1));
[~, zMinIndex]= min(pointfile.(pointfilename).Coordinates2(cvNodes,1));
zCalcMaxNode = cvNodes(zMaxIndex);
zCalcMinNode = cvNodes(zMinIndex);
zWidth = pointfile.(pointfilename).Coordinates2(zCalcMaxNode,:) - pointfile.
(pointfilename).Coordinates2(zCalcMinNode,:);
 
varyingCrossSection = (yWidth).*(zWidth);
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diff = (varyingCrossSection(1)-x_section);
varyingCrossSection = varyingCrossSection - diff;
 
 
%% Engineering Stress/Strain
eStrain = elongation./L0; %Dimensionless, no conversion needed
eStress = ((fieldfile.(fieldfilename).Left_Reaction_Force0(:)))./varyingCrossSection(1); 
tStress = ((fieldfile.(fieldfilename).Left_Reaction_Force0(:)))./varyingCrossSection';
tStrain = log(L/L0);
 
figIndx=+1;
figure(figIndx)
plot((eStrain),(eStress*10^(-6)),'-o');
xlabel('Engineering Strain')
ylabel('Engineering Stress[MPa]')
%MODIFIERA DENNA
legend('Stress-Strain','Location','southeast')
grid on
name = strcat('eStressStrain','.png');
saveas(figure(figIndx), name);
 
figIndx=figIndx+1;
figure(figIndx)
plot((tStrain),(tStress*10^(-6)),'-o');
xlabel('True Strain')
ylabel('True Stress[MPa]')
%MODIFIERA DENNA
legend('Stress-Strain','Location','southeast')
grid on
name = strcat('tStressStrain','.png');
saveas(figure(figIndx), name);
 
figIndx=figIndx+1;
figure(figIndx)
plot((eStrain),(eStress*10^(-6)),'-o');
hold on
plot((tStrain),(tStress*10^(-6)),'-o');
hold off
xlabel('Strain')
ylabel('Stress[MPa]')
%MODIFIERA DENNA
legend('Engineering Stress-Strain','True Stress-Strain','Location','southeast')
grid on
name = strcat('StressStrain','.png');
saveas(figure(figIndx), name);
 
 
exit()
 
">dataAnalyserTT.m
####################################################
#             Running the scripts                 ##
####################################################
 
echo "Running paraview script."
 
# The file path needs to be full, since when using sudo, it can't seem to find any alias in the .bashrc. 
Modify this to each computer.
if sudo /home/peridyna/peri/ParaView-5.7.0-MPI-Linux-Python3.7-64bit/bin/pvbatch pv_SS_data_script.py
#if sudo /home/theodor/src/ParaView-5.7.0-MPI-Linux-Python3.7-64bit/bin/pvbatch pv_SS_data_script.py
then
    #Remove the unneccesary rows. Must be modified if the trace generated py-file is changed. "Title" 
column in csv-files breaks the dataInspector. 
    sudo cut -d, -f20-111 --complement FieldData.csv>FieldData2.csv 
    sudo rm FieldData.csv
    matlab -nodisplay -nosplash -nodesktop -r "run('dataInspectorTT.m')"
    matlab -nodisplay -nosplash -nodesktop -r "run('dataAnalyserTT.m')"
fi
 
#Cleanup since .csv have already been exported to .mat-files to save data
rm -f *.csv
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F MATLAB code: Harmonic Structure Generation

F MATLAB code: Harmonic Structure Generation

%% Node generation of harmonic structure domain
% Theodor de Sousa theodor . desousa@gmail . com
% Last edit : 2 0 2 0 0 5 2 8
%
% This code generates evenly spaced nodes , assigns them two kinds of

block ID
% depending on distance to a sphere center , as well as boundary

condition
%node sets for Peridigm .
%
%To be fully functional , they should be converted to exodusII input

using the
% script " text_to_genesis .py" provided in the source code to Peridigm .
%
% The script adjusts the sphere center iteratively to ensure a

percentage of
%40 % of nodes outside of spheres and 60 % inside sphere , within the

domain
% excluding the boundary sides on the left and right ends .

close all ;
clear all ;
clc ;
%% User defined values
domainX = 5.0e 3 ; % Length
domainY = 1.e 3 ; % Height
domainZ = domainY /5; % Depth
resolutionX = 200; % Amount of nodes in x direction

%% Initial values

domainA = domainX ∗ domainY ; %m2

commonRes = resolutionX / domainX ;

pointsX = resolutionX +3;
pointsY = ( commonRes ∗ domainY );
pointsZ = ( commonRes ∗ domainZ );

pointsA = pointsX ∗ pointsY ;
pointsV = pointsX ∗ pointsY ∗ pointsZ ;

elementSize = domainX / pointsX ; % The spacing between
material nodes

delta = elementSize ;
domainV = domainX ∗ domainY ∗ domainZ ; % m3

totalPoints1 = pointsV ;
elementVolume = elementSize ^2;
halfElemSize = elementSize /2;
horizon = 3.0∗ delta ; % Could be 3.015 to ensure

full family .
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%% Generate grains
disp (’ Placing grain centers ’)
% To reduce computational time if run often , adjust the intial

guess of
% grainlength to yield an initial guess .
grainDist = domainY /10; % Amount of grains in y direction decides .
grainLength = 1.663589216265020∗ grainDist ;
xGrains = 1/ grainDist ∗ domainX ;
yGrains = 1/ grainDist ∗ domainY ;
zGrains = 1/ grainDist ∗ domainZ ;

grainCenters = [];
grain = 0;
for i = 1 : xGrains

for j = 1 : yGrains
for k = 1 : zGrains

if xor ( mod (i ,2) ,mod (j ,2) )
z = k∗ grainDist + grainDist ;

else
z = k∗ grainDist ;

end

if xor ( mod (j ,2) ,mod (k ,2) )
x = i∗ grainDist + grainDist ;

else
x = i∗ grainDist ;

end

if xor ( mod (i ,2) ,mod (k ,2) )
y = j∗ grainDist + grainDist ;

else
y = j∗ grainDist ;

end

if x > ( horizon + grainDist ) && x < domainX ( horizon +
grainDist )
grainCenters = [ grainCenters ;[x,y,z ]];

end

end
end

end

%% Create node files
id = 1;
data = zeros ( totalPoints1 ,5) ;
nodelist_1 = [];
nodelist_2 = [];
nodelist_3 = [];
nodelist_4 = [];
nodelist_5 = [];
nodelist_6 = [];
nodelist_7 = [];
nodelist_8 = [];
nodelist_9 = [];
nodelist_10 = [];
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nodelist_11 = [];
z = 0.0;
ratio = 0.4002;
soughtUFGPoints = 0;
totalPoints = 0;

%% Points and boundary conditions
disp (’ Placing points ’)
for i = 1: pointsX

for j = 1: pointsY
for k = 1: pointsZ

% Coordinates
x = i∗ elementSize halfElemSize ;
y = j∗ elementSize halfElemSize ;
z = k∗ elementSize halfElemSize ;
data (id ,[1 ,2 ,3 ,5]) = [x, y, z, elementVolume ];

% Boundary conditions
if x <= horizon % Left side clamped

nodelist_1 = [ nodelist_1 ; id ];
elseif x >= domainX horizon % Right side elongated

nodelist_2 = [ nodelist_2 ; id ];
else

nodelist_3 = [ nodelist_3 ; id ]; % The bulk
end
if (x <= horizon && y <= horizon && z < horizon )

... % Low Left
Front

|| (x <= horizon && y <= horizon && z > domainZ
horizon ) ... % Low Left Back

|| (x <= horizon && y >= domainY horizon && z <
horizon ) ... % Up Left

Front
|| (x <= horizon && y >= domainY horizon && z >

domainZ horizon ) ... % Up Left Back
|| (x >= domainX horizon && y <= horizon && z <

horizon ) ... % Low Right
Front

|| (x >= domainX horizon && y <= horizon && z >
domainZ horizon ) ... % Low Right Back

|| (x >= domainX horizon && y >= domainY
horizon && z < horizon ) ... % Up Right
Front

|| (x >= domainX horizon && y >= domainY
horizon && z > domainZ horizon )% Up Right
Back

nodelist_4 = [ nodelist_4 ; id ];
end
if y <= horizon

nodelist_5 = [ nodelist_5 ; id ];
end
if abs (y) <= horizon && ( x <= horizon || x >= ( domainX

horizon ) )
nodelist_6 = [ nodelist_6 ; id ];

end
if y >= domainY horizon halfElemSize

nodelist_7 = [ nodelist_7 ; id ];
end
if abs (y domainY /2) < horizon && ( x <= horizon || x >= (
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domainX horizon ) )
nodelist_8 = [ nodelist_8 ; id ];

end
% Prevent rigid body motion in z
if (z <= elementSize && x <= elementSize ) || (z <=

elementSize && x >= domainX elementSize )
nodelist_9 = [ nodelist_9 ;id ];

end
% Prevent rigid body motion in y
if (y <= elementSize && x <= elementSize ) || (y <=

elementSize && x >= domainX elementSize )
nodelist_10 = [ nodelist_10 ;id ];

end
if ~(x > ( horizon + grainDist ) && x < domainX ( horizon

+ grainDist ))
nodelist_11 = [ nodelist_11 ;id ];

end
id = id +1;

end
end

end

%% Grain size
disp (’Find grain size ’)
ratioCheck = 1;
loopIndx = 0;
% Eliminate the sides
dataRows = 1: length ( data );
sideIndex = ismember ( dataRows ,[ nodelist_11 ,]) ;
notSideIndex = ~ sideIndex ;
dataSideRows = dataRows ( sideIndex );
dataNotSideRows = dataRows ( notSideIndex );

while ratioCheck
% The exponent dampens the iterative guesses , modify to adjust for

overshoot .
grainLengthChange = ( ratio /0.4) ^( sqrt ( abs ( ratio 0 . 4 ) ));
grainLength = grainLength ∗( grainLengthChange );

% Assigning block IDs
for i =1: length ( data )

x= data (i ,1) ;
y= data (i ,2) ;
z= data (i ,3) ;
for t = 1: length ( grainCenters )

if ( norm ([x,y,z ] grainCenters (t ,:) ) <= ( grainLength /2) )
%CG
block_id = 1;
break

else
% UFG
block_id = 2;

end

end
data (i ,4) = block_id ;

end

% Finding the ratios of the grain sizes .

112



F MATLAB code: Harmonic Structure Generation

% Find amount of points with UFG and total amount of points
UFGPoints = length ( find ( data ( dataNotSideRows ,4) ==2) );
soughtUFGPoints = totalPoints ∗0.4;
totalPoints = length ( dataNotSideRows );

ratio = UFGPoints / totalPoints ;
loopIndx = loopIndx +1;

% Behaves like a damped
% plot ( loopIndx , ratio ,’o ’)
% drawnow
% hold on

ratioCheck = abs ( ratio 0.4) > 0.001;
if (~ ratioCheck )

data (id ,4) = block_id ;
end

end

%% Post processing
% centering domain on 0
data (: ,1) = data (: ,1) domainX /2 + halfElemSize ;
data (: ,2) = data (: ,2) domainY /2 + halfElemSize ;
data (: ,3) = data (: ,3) domainZ /2 + halfElemSize ;

% Introducing perturbations in the nodes
% pert = 0.001∗ elementSize ;
% for i = 1: length ( data (: ,1) )

% data (i ,1) = data (i ,1) + (2∗ rand 1)∗ pert ;
% data (i ,2) = data (i ,2) + (2∗ rand 1)∗ pert ;
% data (i ,3) = data (i ,3) + (2∗ rand 1)∗ pert ;

% end

% Compute class data :
xLeftCoord = 2∗ domainX /8 domainX /2;
yLeftCoord = 0.0;
zLeftCoord = 0.0;

xRightCoord = domainX 2∗ domainX /8 domainX /2;
yRightCoord = 0.0;
zRightCoord = 0.0;

disp (’ Writing matrices ’)

writematrix (data ,’ domainMeshNoPert . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_1 ,’ nodelist_1 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_2 ,’ nodelist_2 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_3 ,’ nodelist_3 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_4 ,’ nodelist_4 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_5 ,’ nodelist_5 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_6 ,’ nodelist_6 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_7 ,’ nodelist_7 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_8 ,’ nodelist_8 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_9 ,’ nodelist_9 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_10 ,’ nodelist_10 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_11 ,’ nodelist_11 . txt ’,’ Delimiter ’,’ ’);
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%% Node generation of random rectangular domain
% Theodor de Sousa theodor . desousa@gmail . com
% Last edit : 2 0 2 0 0 5 2 8
%
% This code generates randomly spaced nodes , assigns them two kinds of

block ID
% depending on distance to a sphere center , as well as boundary

condition node sets for Peridigm .

close all ;
clear all ;
clc ;
%% User defined values
domainX = 2.5e 3 ;
domainY = 1.0e 3 ; %m
pointsZ = 4; % nodes
resolutionX = 400;
strainrate = 3.6e 3 ; % m/s
E = 210 e9;
poissons = 0.31;

soughtResolution = 1370706;

%% Initial values
rtext = num2str ( resolutionX );

domainA = domainX ∗ domainY ; %m2

commonRes = resolutionX / domainX ; % nodes / meter

pointsX = resolutionX +3; % nodes
pointsY = round ( commonRes ∗ domainY ); % nodes

pointsA = pointsX ∗ pointsY ;
pointsV = pointsX ∗ pointsY ∗ pointsZ ;

elementSize = domainX / pointsX ; % The spacing between
material nodes

delta = elementSize ;
domainZ = pointsZ ∗ elementSize ; % m
domainV = domainX ∗ domainY ∗ domainZ ; % m3

totalPoints = pointsV ;
elementVolume = domainV / totalPoints ;
halfElemSize = elementSize /2;
horizon = 3.015∗ delta ;
G = E /(2∗(1+ poissons ));
K = E / ( 3 ∗ ( 1 2 ∗ poissons ));
G0 = 40; % This is just an assumption to get something
scStateBased = sqrt ( G0 /( horizon ∗( 3∗ G + ( 3/4 ) ^4∗( K 2∗ G ) ))

);
scBondBased = sqrt (5∗ G0 /(9∗ K∗ horizon ));

%% Generera korn
disp (’ Placing grains ’)
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grainDist = domainY /11;
grainLength = 1.2∗ grainDist /1.8; %m
xGrains = 1/ grainDist ∗ domainX ;
yGrains = 1/ grainDist ∗ domainY ;
zGrains = 1/ grainDist ∗ domainZ ; % Disregard

grainCenters = [];

% Calculate amount of grains
grain = 0;
for i = 1 : xGrains +1

for j = 1 : yGrains +1
grain = grain + 1;

end
end
grainCenters = [];
grainLengths = [];
% Random normal distribution
% grainLengths = ( randn ( grain ,1,’ like ’, grainLength ) +0.5) ∗ grainLength ;
% Random equal distribution
grainLengths = horizon + rand ( grain ,1) ∗ grainLength ∗1.8;

% grainLengths = grainLength ∗ rand ( grain ,1) ;
grainLengths = abs ( grainLengths );

figure (1)
hold on
for i = 1: grain

accepted = 0;
xTest = 0;
yTest = 0;

%% Single rectangle
% disp (’ Grain ’)
% disp (i);
% while accepted ~= 1
% % disp (’ Refresh ’)
% xTest = ((2∗ horizon + grainDist ) + domainX ∗ rand );
% yTest = domainY ∗ rand ;
% grainLengths (i) = horizon + rand ∗ grainLength ∗1.8;
% if xTest > (2∗ horizon + grainDist ) && xTest < domainX (2∗

horizon + grainDist )
%
% if length ( grainCenters ) > 1
% for t = 1: length ( grainCenters (: ,1) )
% % disp (’t: ’)
% % disp (t)
% if ( norm ([ xTest , yTest ] grainCenters (t ,:) ) < (

grainLengths (t) /2+1/2∗ grainLengths (i)))
% accepted = 0;
% break ;
% else
% accepted = 1;
% end
% end
% else
% accepted = 1;
% end
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% end
% end
% grainCenters (i ,:) = [ xTest , yTest ];
%
% plot ( grainCenters (i ,1) , grainCenters (i ,2) ,’o ’)
% pause (0.01)

% grainLengths (i) = gLTest ;

%% Four rectangles
if i< round ( grain /4)

disp (’ Section 1’)
disp (’Grain ’)
disp (i);
while accepted ~= 1

% disp (’ Refresh ’)
xTest = ((2∗ horizon + grainDist ) + domainX /2∗ rand );
yTest = domainY /2∗ rand ;
grainLengths (i) = horizon + rand ∗ grainLength ∗1.8;

if xTest > (2∗ horizon + grainDist ) && xTest < domainX
(2∗ horizon + grainDist )

if length ( grainCenters ) > 1
for t = 1: length ( grainCenters (: ,1) )

% disp (’t: ’)
% disp (t)
if ( norm ([ xTest , yTest ] grainCenters (t ,:) ) < (

grainLengths (t) /2+1/2∗ grainLengths (i)))
accepted = 0;
break ;

else
accepted = 1;

end
end

else
accepted = 1;

end
end

end
grainCenters (i ,:) = [ xTest , yTest ];

plot ( grainCenters (i ,1) , grainCenters (i ,2) ,’o’)
pause (0.01)
% grainLengths (i) = gLTest ;

elseif i< round ((2∗1/4) ∗ grain )

disp (’ Section 2’)
disp (’Grain ’)
disp (i);
accepted = 0;
while accepted ~= 1

% disp (’ Refresh ’)
xTest = ((2∗ horizon + grainDist ) + domainX /2∗ rand );
yTest = domainY /2 + domainY /2∗ rand ;

grainLengths (i) = horizon + rand ∗ grainLength ∗1.8;
if xTest > (2∗ horizon + grainDist ) && xTest < domainX

(2∗ horizon + grainDist )
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if length ( grainCenters ) > 1
for t = 1: length ( grainCenters (: ,1) )

% disp (’t: ’)
% disp (t)
if ( norm ([ xTest , yTest ] grainCenters (t ,:) ) < (

grainLengths (t) /2+1/2∗ grainLengths (i)))
accepted = 0;
break ;

else
accepted = 1;

end
end

else
accepted = 1;

end
end

end
grainCenters (i ,:) = [ xTest , yTest ];

plot ( grainCenters (i ,1) , grainCenters (i ,2) ,’o’)
pause (0.01)

elseif i < round ((3∗1/4) ∗ grain )

disp (’ Section 3’)
accepted = 0;
disp (’Grain ’)
disp (i);
while accepted ~= 1

% disp (’ Refresh ’)
xTest = domainX /2 + ( domainX /2 (2∗ horizon + grainDist

))∗ rand ;
yTest = domainY /2∗ rand ;

grainLengths (i) = horizon + rand ∗ grainLength ∗1.8;
if xTest > (2∗ horizon + grainDist ) && xTest < domainX

(2∗ horizon + grainDist )

if length ( grainCenters ) > 1
for t = 1: length ( grainCenters (: ,1) )

% disp (’t: ’)
% disp (t)
if ( norm ([ xTest , yTest ] grainCenters (t ,:) ) < (

grainLengths (t) /2+1/2∗ grainLengths (i)))
accepted = 0;
break ;

else
accepted = 1;

end
end

else
accepted = 1;

end
end

end
grainCenters (i ,:) = [ xTest , yTest ];

plot ( grainCenters (i ,1) , grainCenters (i ,2) ,’o’)
pause (0.01)

else
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disp (’ Section 4’)
accepted = 0;
disp (’Grain ’)
disp (i);
while accepted ~= 1

% disp (’ Refresh ’)
xTest = domainX /2 + ( domainX /2 (2∗ horizon + grainDist

))∗ rand ;
yTest = domainY /2 + domainY /2∗ rand ;

grainLengths (i) = horizon + rand ∗ grainLength ∗1.8;
if xTest > (2∗ horizon + grainDist ) && xTest < domainX

(2∗ horizon + grainDist )

if length ( grainCenters ) > 1
for t = 1: length ( grainCenters (: ,1) )

% disp (’t: ’)
% disp (t)
if ( norm ([ xTest , yTest ] grainCenters (t ,:) ) < (

grainLengths (t) /2+1/2∗ grainLengths (i)))
accepted = 0;
break ;

else
accepted = 1;

end
end

else
accepted = 1;

end
end

end
grainCenters (i ,:) = [ xTest , yTest ];

plot ( grainCenters (i ,1) , grainCenters (i ,2) ,’o’)
pause (0.01)
% grainLengths (i) = gLTest ;

end
%

end
grainInfo = [ grainCenters , grainLengths ];

%% Skapa nodfil
id = 1;
data = zeros ( totalPoints ,5) ;
nodelist_1 = [];
nodelist_2 = [];
nodelist_3 = [];
nodelist_4 = [];
nodelist_5 = [];
nodelist_6 = [];
z = 0.0;
disp (’ Placing points ’)
for i = 1: pointsX

for j = 1: pointsY
for k = 1: pointsZ

x = i∗ elementSize halfElemSize ;
y = j∗ elementSize halfElemSize ;
z = k∗ elementSize halfElemSize ;
% Check grain type
for t = 1: length ( grainCenters )
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if ( norm ([x,y ] grainCenters (t ,:) ) <= ( grainLengths (t)
/2) )
%CG
block_id = 1;
break

else
% UFG
block_id = 2;

end
end
data (id ,:) = [x, y, z, block_id , elementVolume ];

% Boundary conditions
if x <= 2∗ horizon + 2∗ elementSize % Left side clamped

nodelist_1 = [ nodelist_1 ; id ];
elseif x >= domainX 2∗ horizon % Right side elongated

nodelist_2 = [ nodelist_2 ; id ];
else

nodelist_3 = [ nodelist_3 ; id ]; % The bulk
end
if (x < horizon && y < horizon && z < horizon )

... % Low Left Front
|| (x < horizon && y < horizon && z > domainZ

horizon ) ... % Low Left Back
... || (x < horizon && y > domainY

horizon && z < horizon ) ... %
Up Left Front

... || (x < horizon && y > domainY
horizon && z > domainZ horizon ) ... %
Up Left Back

|| (x > domainX horizon && y < horizon && z <
horizon ) ... % Low Right Front

|| (x > domainX horizon && y < horizon && z >
domainZ horizon ) ... % Low Right Back

... || (x > domainX horizon && y >
domainY horizon && z < horizon ) ... %
Up Right Front

... || (x > domainX horizon && y >
domainY horizon && z > domainZ horizon )%
Up Right Back

nodelist_4 = [ nodelist_4 ; id ];
end
if y < horizon

nodelist_5 = [ nodelist_5 ; id ];
end
if abs (y domainY /2) < horizon && ( x < horizon || x > (

domainX horizon ) )
nodelist_6 = [ nodelist_6 ; id ];

end
id = id +1;

end
end

end

disp (’ Drawing figures ’)
figure (2)
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% plot ( data (: ,1) ,data (: ,2) ,[ data (: ,4) ,1 ,0] ’o ’);
surface ([ data (: ,1) ,data (: ,1) ] ,[ data (: ,2) ,data (: ,2) ] ,[ data (: ,3) ,data

(: ,3) ] ,[ data (: ,4) ,data (: ,4) ] ,...
’ facecol ’,’no ’,’ edgecol ’,’ interp ’,’linew ’ ,2)

scatter ( data (: ,1) ,data (: ,2) ,1, data (: ,4) );

figure (3)
plot3 ( data (: ,1) ,data (: ,2) ,data (: ,3) ,’o’);
disp (’ Writing Matrices ’)

writematrix ( grainInfo ,’ grainInfo . txt ’,’ Delimiter ’,’ ’);

writematrix (data ,’ domainMesh . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_1 ,’ nodelist_1 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_2 ,’ nodelist_2 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_3 ,’ nodelist_3 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_4 ,’ nodelist_4 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_5 ,’ nodelist_5 . txt ’,’ Delimiter ’,’ ’);
writematrix ( nodelist_6 ,’ nodelist_6 . txt ’,’ Delimiter ’,’ ’);

% You can attach multiple files to an email .
% sendmail (’ recipient@someserver .com ’,’ Hello from MATLAB !’, ...
% ’ Thanks for using sendmail .’,{’C:\ yourFileSystem \ message .txt ’,

...
% ’C:\ yourFileSystem \ message2 .txt ’}) ;

% sendmail (’ lthperidigm@gmail .com ’,’ NodeSet2D ’,’ Here are some files
’ ,...

% { ’/ home / theodor / Documents / Skola /5 _Examensarbete i mekanik
% FMEM01 / Peridigm / domainMesh .txt ’ ,...
% ’/ home / theodor / Documents / Skola /5 _Examensarbete i mekanik

FMEM01 / Peridigm / nodelist_1 .txt ’ ,...
% ’/ home / theodor / Documents / Skola /5 _Examensarbete i mekanik

FMEM01 / Peridigm / nodelist_2 .txt ’ ,...
% ’/ home / theodor / Documents / Skola /5 _Examensarbete i mekanik

FMEM01 / Peridigm / nodelist_3 .txt ’}) ;

120



H MATLAB code: Data Conversion

H MATLAB code: Data Conversion

clear ;
close ;
clc ;
csvfiles = strcat (pwd , ’/ Field ∗. csv ’);
files = dir ( csvfiles );
Fieldfiles = struct2cell ( files );
sortedfilenames = natsortfiles ( Fieldfiles (1 ,:) );
filedata = importdata ( fullfile (pwd , sortedfilenames {1}) );

% Create structure into which we load data
timeSortedDataField = struct ();
for i = 1: numel ( filedata . colheaders )

structFieldName = strrep ( filedata . colheaders {i},’"’,’’);
structFieldName = strrep ( structFieldName ,’:’,’’);
structFieldName = strrep ( structFieldName ,’ ’,’_’);
timeSortedDataField .( structFieldName )= filedata . data (: ,i);

end

% Load data into respective structure Fields
for i = 2: numel ( sortedfilenames )

disp ( sortedfilenames (i))
currfile = importdata ( fullfile (pwd , sortedfilenames {i}));
[ length , height ] = size ( currfile . data );
for j = 1: numel ( currfile . colheaders )

structFieldName = strrep ( currfile . colheaders {j},’"’,’’);
structFieldName = strrep ( structFieldName ,’:’,’’);
structFieldName = strrep ( structFieldName ,’ ’,’_’);

timeSortedDataField .( structFieldName ) = [ timeSortedDataField
.( structFieldName ), currfile . data (: ,j)];

end
end

% Save structure fields to mat file
save (’ timeSortedDataField . mat ’,’ timeSortedDataField ’);
disp (’Done ’)

clear ;
close ;
clc ;

%% Cells
csvfiles = strcat (pwd , ’/ Cell ∗. csv ’);
files = dir ( csvfiles );
cellfiles = struct2cell ( files );
sortedfilenames = natsortfiles ( cellfiles (1 ,:) );
filedata = importdata ( fullfile (pwd , sortedfilenames {1}) );

% Create structure into which we load data
timeSortedDataCells = struct ();
for i = 1: numel ( filedata . colheaders )

structFieldName = strrep ( filedata . colheaders {i},’"’,’’);
structFieldName = strrep ( structFieldName ,’:’,’’);
structFieldName = strrep ( structFieldName ,’ ’,’_’);
timeSortedDataCells .( structFieldName )= filedata . data (: ,i);
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end

% Load data into respective structure fields
for i = 2: numel ( sortedfilenames )

disp ( sortedfilenames (i))
currfile = importdata ( fullfile (pwd , sortedfilenames {i}));
[ length , height ] = size ( currfile . data );
for j = 1: numel ( currfile . colheaders )

structFieldName = strrep ( currfile . colheaders {j},’"’,’’);
structFieldName = strrep ( structFieldName ,’:’,’’);
structFieldName = strrep ( structFieldName ,’ ’,’_’);

timeSortedDataCells .( structFieldName ) = [ timeSortedDataCells
.( structFieldName ), currfile . data (: ,j)];

end
end

% Save structure fields to mat file
save (’ timeSortedDataCells . mat ’,’ timeSortedDataCells ’);
clear

%% Points
csvfiles = strcat (pwd , ’/ Point ∗. csv ’);
files = dir ( csvfiles );
cellfiles = struct2cell ( files );
sortedfilenames = natsortfiles ( cellfiles (1 ,:) );
filedata = importdata ( fullfile (pwd , sortedfilenames {1}) );

timeSortedDataPoints = struct ();
for i = 1: numel ( filedata . colheaders )

structFieldName = strrep ( filedata . colheaders {i},’"’,’’);
structFieldName = strrep ( structFieldName ,’:’,’’);
structFieldName = strrep ( structFieldName ,’ ’,’_’);
timeSortedDataPoints .( structFieldName )= filedata . data (: ,i);

end

for i = 2: numel ( sortedfilenames )
disp ( sortedfilenames (i))
currfile = importdata ( fullfile (pwd , sortedfilenames {i}));
[ length , height ] = size ( currfile . data );
for j = 1: numel ( currfile . colheaders )

structFieldName = strrep ( currfile . colheaders {j},’"’,’’);
structFieldName = strrep ( structFieldName ,’:’,’’);
structFieldName = strrep ( structFieldName ,’ ’,’_’);

timeSortedDataPoints .( structFieldName ) = [
timeSortedDataPoints .( structFieldName ), currfile . data (: ,j)
];

end
end

% Save structure fields to mat file
save (’ timeSortedDataPoints . mat ’,’ timeSortedDataPoints ’);
clear

disp (’Done ’)
exit ()
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clear all ;
close all ;
clc ;
format long

%% File Availability check
tic
disp (’File Availability ’)
fieldMatfiles = strcat (pwd , ’/∗ Field ∗. mat ’);
fieldFiles = dir ( fieldMatfiles );
fieldCellfiles = struct2cell ( fieldFiles );
sortedFieldfilenames = natsortfiles ( fieldCellfiles (1 ,:) );

disp (’File Availability ’)
pointMatfiles = strcat (pwd , ’/∗ Point ∗. mat ’);
pointFiles = dir ( pointMatfiles );
pointCellfiles = struct2cell ( pointFiles );
sortedPointfilenames = natsortfiles ( pointCellfiles (1 ,:) );

cellMatfiles = strcat (pwd , ’/∗ Cell ∗. mat ’);
cellFiles = dir ( cellMatfiles );
cellCellfiles = struct2cell ( cellFiles );
sortedCellfilenames = natsortfiles ( cellCellfiles (1 ,:) );

toc
%% Loading mat files
tic
disp (’ Loading MAT files ’)
finalTime = 120;
figIndx = 0;
k = 1; % Ignore loop since there is only one field file and one cell

file .
% for i = 1: length ( sortedPointfilenames )

pointfilename = sortedPointfilenames {k}; % Load current
mat file

pointfile = load ( pointfilename );
pointfilename = strrep ( pointfilename ,’. mat ’,’’); % Remove . mat to

use for variable

cellfilename = sortedCellfilenames {k}; % Load current mat
file

cellfile = load ( cellfilename );
cellfilename = strrep ( cellfilename ,’. mat ’,’’); % Remove . mat to

use for variable

fieldfilename = sortedFieldfilenames {k}; % Load current
mat file

fieldfile = load ( fieldfilename );
fieldfilename = strrep ( fieldfilename ,’. mat ’,’’); % Remove . mat to

use for variable
toc
%% Calculation related variables
tic
disp (’ Variables ’)
timeIncr = finalTime / length ( fieldfile .( fieldfilename ).
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Bottom_Reaction_Force1 (:) );
time = 0: timeIncr : finalTime timeIncr ;
x_section = 1.999996 e 0 5 ; % Cross section of the specific tensile

test bar in m2.
nodeTopInitial = 6715;
nodeBotInitial = 6676;
nodeTopDisp = 6715;
nodeBotDisp = 6676;

% Interval node set
elemIndxTop = find ( pointfile .( pointfilename ). GlobalNodeId (: ,1) ==

nodeTopInitial );
elemIndxBot = find ( pointfile .( pointfilename ). GlobalNodeId (: ,1) ==

nodeBotInitial );
topY = pointfile .( pointfilename ). Coordinates1 ( elemIndxTop ,2) ;
botY = pointfile .( pointfilename ). Coordinates1 ( elemIndxBot ,2) ;
intervalNodes1 = find ( ( pointfile .( pointfilename ). Coordinates1 (: ,2) <=

topY ));
intervalNodes = find ( pointfile .( pointfilename ). Coordinates1 (

intervalNodes1 ,2) >= botY );
interval = intervalNodes ;

L0 = ( fieldfile .( fieldfilename ). Gage_Top_Initial_Position1
(1) ) ( fieldfile .( fieldfilename ). Gage_Bottom_Initial_Position1
(1) );

elongation = ( fieldfile .( fieldfilename ). Gage_Top_Displacement1 (:) )
( fieldfile .( fieldfilename ). Gage_Bottom_Displacement1 (:) );

L = elongation + L0;

cvNodes = find ( abs ( pointfile . timeSortedDataPoints . Coordinates1 (: ,1) )
< 0.0318) ;

% Retrieve the node index among the cvNodes , which are located on the
ends

%of the domain .
% The node is the one to be used for calculations for the rest of the

time
% peroid
[~ , xMaxIndex ]= max ( pointfile .( pointfilename ). Coordinates0 ( cvNodes ,1)

);
[~ , xMinIndex ] = min ( pointfile .( pointfilename ). Coordinates0 ( cvNodes

,1) );
xCalcMaxNode = cvNodes ( xMaxIndex );
xCalcMinNode = cvNodes ( xMinIndex );
xWidth = pointfile .( pointfilename ). Coordinates0 ( xCalcMaxNode ,:)

pointfile .( pointfilename ). Coordinates0 ( xCalcMinNode ,:) ;

[~ , zMaxIndex ]= max ( pointfile .( pointfilename ). Coordinates2 ( cvNodes
,1) );

[~ , zMinIndex ]= min ( pointfile .( pointfilename ). Coordinates2 ( cvNodes ,1)
);

zCalcMaxNode = cvNodes ( zMaxIndex );
zCalcMinNode = cvNodes ( zMinIndex );
zWidth = pointfile .( pointfilename ). Coordinates2 ( zCalcMaxNode ,:)

pointfile .( pointfilename ). Coordinates2 ( zCalcMinNode ,:) ;

varyingCrossSection = (0.01∗ xWidth ) .∗(0.01∗ zWidth );
diff = ( varyingCrossSection (1) x_section );
varyingCrossSection = varyingCrossSection diff ;
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%% Engineering Stress / Strain
eStrain = elongation ./ L0; % Dimensionless , no conversion needed
eStress = ( fieldfile .( fieldfilename ). Bottom_Reaction_Force1 (:) )

.∗0.00001./ varyingCrossSection (1) ; % Conversion 1 dyne = 0.00001
Newton and F/A = sigma

tStress = (( fieldfile .( fieldfilename ). Bottom_Reaction_Force1 (:) )
.∗0.00001) ./ varyingCrossSection ’;

tStrain = log (L/L0);

figIndx =+1;
figure ( figIndx )
plot (( eStrain ) ,( eStress ∗ 1 0 ^ ( 6 ) ),’ o’);
xlabel (’ Engineering Strain ’)
ylabel (’ Engineering Stress [ MPa ]’)
% MODIFIERA DENNA
legend (’Stress Strain ’,’ Location ’,’ southeast ’)
grid on
name = strcat (’ eStressStrain ’,’. png ’);
saveas ( figure ( figIndx ), name );

figIndx = figIndx +1;
figure ( figIndx )
plot (( tStrain ) ,( tStress ∗ 1 0 ^ ( 6 ) ),’ o’);
xlabel (’True Strain ’)
ylabel (’True Stress [ MPa ]’)
% MODIFIERA DENNA
legend (’Stress Strain ’,’ Location ’,’ southeast ’)
grid on
name = strcat (’ tStressStrain ’,’. png ’);
saveas ( figure ( figIndx ), name );

figIndx = figIndx +1;
figure ( figIndx )
plot (( eStrain ) ,( eStress ∗ 1 0 ^ ( 6 ) ),’ o’);
hold on
plot (( tStrain ) ,( tStress ∗ 1 0 ^ ( 6 ) ),’ o’);
hold off
xlabel (’ Strain ’)
ylabel (’ Stress [ MPa ]’)
% MODIFIERA DENNA
legend (’ Engineering Stress Strain ’,’True Stress Strain ’,’ Location ’,’

southeast ’)
grid on
name = strcat (’ StressStrain ’,’. png ’);
saveas ( figure ( figIndx ), name );

%% Force calculated stress

fStresszMax = ( abs ( pointfile .( pointfilename ). Force1 ( zCalcMaxNode ,:) )
.∗0.00001) ./ varyingCrossSection ;

figIndx = figIndx +1;
figure ( figIndx )
plot (( eStrain ) ,( fStresszMax ),’ o’);
xlabel (’ Strain ’)
ylabel (’Force calculated Stress [ MPa ]’)
hold on
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fStresszMin = ( abs ( pointfile .( pointfilename ). Force1 ( zCalcMinNode ,:) )
.∗0.00001) ./ varyingCrossSection ;

plot (( eStrain ) ,( fStresszMin ),’ o’);

fStressxMax = ( abs ( pointfile .( pointfilename ). Force1 ( xCalcMaxNode ,:) )
.∗0.00001) ./ varyingCrossSection ;

plot (( eStrain ) ,( fStressxMax ),’ o’);

fStressxMin = ( abs ( pointfile .( pointfilename ). Force1 ( xCalcMinNode ,:) )
.∗0.00001) ./ varyingCrossSection ;

plot (( eStrain ) ,( fStressxMin ),’ o’);

fStress = ( fStresszMax + fStresszMin + fStressxMax + fStressxMin ) ./4;
plot (( eStrain ) ,( fStress ),’ o’);

legend ()
legend (’Stress Strain ’,’ Location ’,’ southeast ’)
grid on
name = strcat (’ fStressStrain ’,’. png ’);
saveas ( figure ( figIndx ), name );

%% Von Mises Stress
% Displaying time varied average Von Mises
figIndx = figIndx +1;
figure ( figIndx )
avgVonMises = mean ( cellfile .( cellfilename ). Von_Mises_Stress ( interval

,:) );
% Plots %
plot ( eStrain , avgVonMises );
title (’ Average interval Von Mises as function of strain ’)
xlabel (’ Strain ’)
ylabel (’{\ fontsize {16}\ sigma_ {v}} [ MPa ]’)
grid on
name = strcat (’ VonMisesStressStrain ’,’. png ’);
saveas ( figure ( figIndx ), name );

%% Cauchy Stress
% Displaying time varied average Cauchy
figIndx = figIndx +1;
figure ( figIndx )
intAvgCauchyY1 = mean ( cellfile .( cellfilename ). Cauchy_StressY1 (

interval ,:) );
% Plots %
plot ( eStrain , intAvgCauchyY1 );
title (’ Average interval Cauchy YY as function of strain ’)
xlabel (’ Strain ’)
ylabel (’{\ fontsize {16}\ sigma_ {yy }} [ MPa ]’)
grid on
name = strcat (’ CauchyXXStressStrain ’,’. png ’);
saveas ( figure ( figIndx ), name );

exit ()
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J MATLAB code: Stress-Strain Curve Discretisation

% Theodor de Sousa
% theodor . desousa@gmail . com
% Last edit : 2 0 2 0 0 5 2 8
% Converts data points taken from analog plots and discretise these

into true
% stress strain curves .
clear all
close all
clc

%% CG
% Matrix generator of tensile curves from ASM Ni 200 Annealed

nickel sheet
% Two images , full , and " elastic " part

% " Elastic " part
c_elast_horisontal = 0.001∗2/228;
c_elast_vertical = 70/300;

CG_Elastic_Strain = c_elast_horisontal
∗[13 ,24 ,34 ,44 ,54 ,64 ,74 ,84 ,94 ,104 ,114 ,124 ,134 ,144 ,154 ...
164 ,194 ,224 ,284 ,344 ,404 ,454 ,504 ,554 ,604 ,664];

CG_Elastic_Stress = c_elast_vertical
∗[98 ,174 ,249 ,302 ,361 ,408 ,453 ,498 ,532 ,558 ,586 ,610 ,630 ,648 ,664 ,

...
679 ,710 ,734 ,767 , 787 , 801 , 810 , 818 , 824 ,829 ,833];

% Full part
c_full_horisontal = 0.05/149;
c_full_vertical = 140/226;

CG_Full_Strain = c_full_horisontal
∗[20 ,25 ,35 ,45 ,65 ,85 ,105 ,155 ,205 ,255 ,305 ,355 ,405 ,455 ,505 ,555 ,605 ,655 ,705 ,749];

% Adjusted for systematic error of 10 pixels
CG_Full_Stress = c_full_vertical

∗([327 ,334 ,347 ,358 ,382 ,404 ,424 ,473 ,512 ,548 ,576 ,601 , 622 , 640 ,
655 , 670 ,682 , 691 , 699 , 7 0 5 ] 1 0 ) ;

% Complete Part
CG_Engineering_Strain = [ CG_Elastic_Strain , CG_Full_Strain ];
CG_Engineering_Stress = [ CG_Elastic_Stress , CG_Full_Stress ];

% Reverse get the gauge length from maximum strain and knowledge that
total

% elongation is 39 ,5 percent
elongationPercentage_CG = 0.395;
gaugeLengthCG = elongationPercentage_CG / CG_Engineering_Strain ( end );
% convert to millimeters
gaugeLengthCG = gaugeLengthCG ∗ 1 0 ^ ( 3 ) ;

% Find the area change per step .
A0CG = 1;
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VCG = A0CG ∗ gaugeLengthCG ;
elongationPerStepCG = gaugeLengthCG .∗ CG_Engineering_Strain ;
AincrCG = VCG ./( gaugeLengthCG + elongationPerStepCG );

% Ensure we don ’t use post necking calculations .
[~ , maxIndexCG ] = max ( CG_Engineering_Stress );

% Calculate true stresses and strains .
% CG_True_Stress = CG_Engineering_Stress (1: maxIndexCG )./ AincrCG (1:

maxIndexCG );

CG_True_Stress = CG_Engineering_Stress (1: maxIndexCG ) .∗(1+
CG_Engineering_Strain (1: maxIndexCG ));

CG_True_Strain = log (( elongationPerStepCG (1: maxIndexCG )+ gaugeLengthCG
)/ gaugeLengthCG );

% Power Law index :
logCG_TStrain = log ( CG_True_Strain (35: end ));
logCG_TStress = log ( CG_True_Stress (35: end ));

p = polyfit ( logCG_TStrain , logCG_TStress ,1) ;

figure (500)
plot ( logCG_TStrain , logCG_TStress ,’bo ’);
axis equal square
grid
xlabel (’log ( strain )’);
ylabel (’log ( stress )’);
k=p (1) ;
loga =p (2) ;
a= exp ( loga );
hold on;
plot ( logCG_TStrain ,k∗ logCG_TStrain +loga ,’g’);
legend (’Data ’, sprintf (’ stress =%.3 f{} log ( strain )+ log (%.3 f)’,k,a));

figure (600)
plot ( CG_True_Strain (35: end ), CG_True_Stress (35: end ),’bo ’);
xlabel (’ Strain ’);
ylabel (’ Stress [ MPa ]’);
grid
hold on;
plot ( CG_True_Strain (35: end ),a∗ CG_True_Strain (35: end ).^k,’g’)
plot (( linspace (0 ,1.05) ),a ∗( linspace (0 ,1.05) ).^k,’o ’)
plot (( linspace (0 ,1.05) ),a ∗( linspace (0 ,1.05) ).^1 , ’o ’)
legend (’ Plastic data ’,’ Corresponding power law ’, sprintf (’ stress =%.3 f

{} strain ^{%.3 f}’,a,k), sprintf (’ stress =%.3 f{} strain ^{% i}’,a ,1) ’);

hold off

figure (1)
plot ( CG_Engineering_Strain , CG_Engineering_Stress ,’o ’);
xlabel (’ Engineering Strain ’)
ylabel (’ Engineering Stress [ MPa ]’)
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figure (2)
plot ( CG_True_Strain , CG_True_Stress ,’ o’)
xlabel (’True Strain ’)
ylabel (’True Stress [ MPa ]’)

figure (12)
plot ( CG_Engineering_Strain , CG_Engineering_Stress ,’o ’);
hold on
plot ( CG_True_Strain , CG_True_Stress ,’ o’)
hold off
% Enhance !
xlabel (’ Strain ’)
ylabel (’ Stress [ MPa ]’)
legend (’ Engineering Stress strain ’,’True Stress strain ’,’ Location ’,’

southeast ’)
title (’CG Stress Strain Curves ’)
grid on

name = strcat (’ CG_facit ’,’. png ’);
saveas ( figure (12) , name );
hold off

%% UFG
% Matrix generator of tensile curves from figure 5 in Ni99 .79 @25

degrees C
% " Influence of impurities and deformation temperature on
% the saturation microstructure and ductility of HPT deformed

nickel ."

% Measurment Error + 0.5
c = 200/4.5;
UFG_Engineering_Stress = c .∗[8.85;

13.55;18.7;23.85;28.35;32.55;35.75;38;39.25; ...
39.75;39.5;39.05;38.3;37.45;36.6;35.35;34.2;32.7;30.95];

c2 = 50/3.15;
UFGdispl = c2 .∗1e

6.∗[2.35;3.15;4.05;4.9;5.85;6.7;7.6;8.45;9.25;10.2;11.1;11.95;
...
12.9;13.75;14.65;15.55;16.4;17.3;18.2];

gaugeLength = 2.5e 3 ;
UFG_Engineering_Strain = UFGdispl ./ gaugeLength ;

A0 = 1;
V = A0 ∗ gaugeLength ;
Aincr = V ./( gaugeLength + UFGdispl );

[~ , maxIndex ] = max ( UFG_Engineering_Stress );
UFG_True_Stress = UFG_Engineering_Stress (1: maxIndex )./ Aincr (1:

maxIndex );
UFG_True_Strain = log (( UFGdispl (1: maxIndex )+ gaugeLength )/ gaugeLength )

;

% Power Law index :
logUFG_TStrain = log ( UFG_True_Strain (end 2 : end ));
logUFG_TStress = log ( UFG_True_Stress (end 2 : end ));
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p = polyfit ( logUFG_TStrain , logUFG_TStress ,1) ;

figure (700)
plot ( logUFG_TStrain , logUFG_TStress ,’bo ’);
axis equal square
grid
xlabel (’log ( strain )’);
ylabel (’log ( stress )’);
k=p (1) ;
loga =p (2) ;
a= exp ( loga );
hold on;
plot ( logUFG_TStrain ,k∗ logUFG_TStrain +loga ,’g’);
hold off
legend (’Data ’, sprintf (’ stress =%.3 f{} log ( strain )+ log (%.3 f)’,k,a));

figure (800)
plot ( UFG_True_Strain (end 2 : end ), UFG_True_Stress (end 2 : end ),’bo ’);
xlabel (’ Strain ’);
ylabel (’ Stress [ MPa ]’);
axis equal square
grid
hold on;
plot ( UFG_True_Strain (end 2 : end ),a∗ UFG_True_Strain (end 2 : end ).^k,’g’)
plot (( linspace (0 ,1.05) ),a ∗( linspace (0 ,1.05) ).^k,’o ’)
plot (( linspace (0 ,1.05) ),a ∗( linspace (0 ,1.05) ).^1 , ’o ’)
legend (’ Plastic data ’,’ Corresponding power law ’, sprintf (’ stress =%.3 f

{} strain ^{%.3 f}’,a,k), sprintf (’ stress =%.3 f{} strain ^{% i}’,a ,1) ’);
hold off

%% Plots

figure (3)
plot ( UFG_Engineering_Strain , UFG_Engineering_Stress ,’ o’)
xlabel (’ Engineering Strain ’)
ylabel (’ Engineering Stress [ MPa ]’)

figure (4)
plot ( UFG_True_Strain , UFG_True_Stress ,’ o’)
xlabel (’True Strain ’)
ylabel (’True Stress [ MPa ]’)

figure (34)
plot ( UFG_Engineering_Strain , UFG_Engineering_Stress ,’ o’)
hold on
plot ( UFG_True_Strain , UFG_True_Stress ,’ o’)
xlabel (’ Strain ’)
ylabel (’ Stress [ MPa ]’)
legend (’ Engineering Stress strain ’,’True Stress strain ’,’ Location ’,’

southeast ’)
title (’UFG Stress Strain Curves ’)
grid on

name = strcat (’ UFG_facit ’,’. png ’);
saveas ( figure (34) , name );

hold off
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