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Abstract

In this thesis, five methods of scoring the similarity of phrases from dickcissel birds are explored.
The methods are tested on real and simulated data. The method that is found to perform the
best is a variation of the spectrographic cross-correlation method that also looks at correlation in
the frequency domain. The second best method is based on singular value decomposition of the
spectrogram of the phrase and extracting density-based features. While the methods are not good
enough to give a reliable similarity between two phrases, they are able to find structure in a larger
data set.



1 Introduction

When analyzing large sets of bird songs a quantitative method of assessing the similarity of songs
is often useful. Automated analysis of bird songs and calls is an active area of research with many
possible applications. For example in [1] Kwan et. al. uses automated recognition of birds to
prevent collisions between birds and aircraft by using audio recordings to monitor bird activity
around airports and in [2] Lee et. al. uses it to do automated recognition of bird species.

Timothy H. Parker is an Associate Professor at the department of biology at Whtiman College,
Walla Walla, and has collected the songs of dickcissel birds over the course of several years in a
couple of different locations. He wants to analyze them to find out more about how the songs differ
in order to better understand their culture is shared. Culture in this context means behaviours
learned from other birds of the same species. Examples of questions to be explored is how the songs
differ across space and time and what impact the environment has on songs. In order to answer
these questions a method for quantifying the similarity of songs is required. The goal of this thesis
is to try and find a automated method of scoring song similarity that works well for the dickcissel
bird songs.

Many general methods of solving this problem exist. One common method used in [3] by Cartopassi
and Bradbury is spectrographic cross-correlation (SPCC). This method is based on transforming
a birdsong into the spectrogram and doing cross-correlation. Another common method is found in
[2] where Lee et. al. uses a feature extraction method called Mel-frequency cepstrum coefficients,
or MFCC, to classify signals. MFCC is based on a frequency representation that is meant to align
with the way humans perceive different frequencies of sound. There have also been some attempts
at using neural networks for example by Sprengel et. al. in [4]. General methods often work
decently among a large variety of songs but when working with specific birds you can often achieve
better results by writing a more specialized algorithm.

A full analysis of a bird song usually includes some prepossessing such as denoising and segmenta-
tion of the song into shorter sections, called phrases. In this case that is already done by Timothy.
The phrases of the dickcissel songs have also been classified into three different classes: cissel, dick
and trill, both based on the shape of the phrase and the context of the phrase. Because the full
similarity score only compares phrases of the same class, this thesis will do the same and phrases
of different classes will be treated as completely different objects and will not be compared. When
comparing full songs you would compare the composition of the song by different phrase classes in
combination with the similarity of phrases of the same class.

The thesis is organized as follows: In chapter 2 the methods are described, in chapter 3 the data
used to evaluate the methods is presented, in section 4 the methods are tested on simulated data,
in section 5 the methods are tested on real data and in section 6 the results are discussed.



2 Model and Methods

2.1 Model

The signals are zero mean and non-stationary. The phrases have different parts where a tone
or a chirp is sustained for some time, these different parts are called notes. The signals vary in
amplitude by a large amount, both between signals and between different notes in the signal. The
signals are generally low in noise but not free from it. Since the signals are recorded in nature the
primary source of noise seems to be things happening in the background. The cissel class phrases
vary between 105 ms and 439 ms in length. The dick class phrases are between 40 ms and 1264 ms
in length and the trill class phrases are between 130 ms and 615ms. An example signal looks like
figure 1 in the time domain and like figure 2 in the time-frequency domain.
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Figure 1: The time domain representation of a phrase.
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Figure 2: The time-frequency domain representation of a phrase.

The goal of a method is to take two signals x and y and make some sort of statement about the
similarity or dissimilarity between those two signals. A signal will consist of one phrase of one class,
either dick cissel or trill. A method will generally consist of two components: A feature extraction



part that reduces the signal down to some informative characteristics and a distance measurement
that takes two sets of characteristics from different signals and compares them.

2.2 Spectrographic cross-correlation (SPCC)

This method is a slight variation on the spectrographic cross-correlation (SPCC) method described
by K. A. Cortopassi and J. W. Bradbury in [3]. This method was chosen because it has seen
wide usage and success on many different species of birds. The method, as most methods in this
thesis, starts from the spectrogram. The spectrograms in this thesis are made using MATLAB’s
pspectrum command which uses Kaiser windows. Additionally the command was configured to use
a window size of 10ms, 85 % overlap and 0.9 leakage. This results in a spectrogram image with
1024 values in the frequency range (0,24000), one value every Af = 23.4375Hz. The image has a
time value every At = 1.5ms in the variable size time range (0, t¢nq) seconds. The time indexing
of the spectrogram does not match exactly with the time indexing of the original signal to make
space for the entire window. The spectrogram image can be represented both as a 1024-by-te,q/ At
matrix and as a function. In this thesis the spectrogram image function will be denoted by P(f,t)
and the spectrogram image matrix will be denoted by A(%,j). They are connected by the vectors
F=[0 Af 2Af .. 24000] and T = [0 At 2At .. tenq| such that

P(F(i), T(j)) = A(i, 7). (1)

It is to be understood that taking the sum over f or t represents letting them take all the values
in F and T respectively.

A way to do dimensional reduction in a spectrogram is to take the sum in the time and fre-
quency directions, reducing the spectrogram to two one-dimensional signals that can be plotted
along the marginals. For example the signal in figure 3 can be reduced to the marginals in figure 4.
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Figure 3: The time domain representation of a phrase.
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Figure 4: The spectrogram of a phrase together with the time and frequency marginals.

Let A(i,j) be the spectrogram image value at frequency index ¢ and time index j, the marginals
can then be written as:

my(i) = 3 A j) 2)
ma(j) = D Al j) 3)

The signal m; is called the frequency marginal and vice versa. The main idea behind this method
is to directly compare these marginals between signals using a normalized cross-correlation. Cross-
correlation gives a measure of signal similarity for each time lag. The normalized cross-correlation
between signal x and y at lag 7 used is:

CorT,y(T) = %Z (:E(tix_ r) (y(t +5:) —9) (4)

t

where Z is the mean value of signal x and s, is the sample standard deviation of signal x and N
is the length of the signals. When x and y are frequency marginals then 7 represents a shift in
alignment in frequency and when they are time marginals 7 represents a shift in time alignment,
one signal is shifted in time.

Taking the correlation at zero time lag as the measure of similarity seems natural but would
lead to a sensitivity in how each phrase is cut from the whole song and would classify two phrases



identical in structure but shifted in frequency as two completely different phrases. An alternative
method would be to take the correlation at the time lag that would maximize correlation. This
would however run the risk of creating false positives where different parts of two signals have
similar structure. Visual inspections of the signal suggest that the value that maximizes the time
correlation can be used but that the frequency correlation needs some sort of compromise.

The method uses the following compromise: create a new signal shaped like a normal distribu-
tion centered at zero time lag and with standard deviation oy, then do point-wise multiplication
between the cross-correlation and the normal distribution and take the largest value of the resulting
signal as the similarity score. This means that if the signals are shifted in frequency some penalty
to the similarity is given but they would not be classified as completely different. The similarity
scores for the time and frequency marginals are multiplied to make a single similarity score.

The method is summarized in the following equation:

2
L 5
P = x . x Uf
SPCC,, sup (wcowmt mY (T)> sup (xcorrmf’m? (v) * Ufme ) (5)
where * denotes point-wise multiplication, m{ is the time marginal for phrase x, mfc is the frequency
marginal for phrase x, and oy is a tune-able parameter.

2.3 SVD as probability distributions, the Groutage method

This method uses feature extraction found in an article by Dale Groutage and David Bennink [5]
which uses the matrix decomposition Singular Value Decomposition (SVD) and will be referred to
as the Groutage method. Using SVD they decompose the spectrogram image matrix into a sum of
rank one matrices:

A1, 5) = BrAk(i,5) = Brugox (6)
k k

where uy, is a column vector of size 1024 and vy, is a row vector of size tepq/At. The values [ are
called the singular values and show how much the matrix Ay contributes to the full matrix.

With the goal of being able to treat the matrices A; as probability distributions new matrices
A; are created that are positive and normalized so that:

Zzﬁm,j) =1 (7)

Because the vectors u and v are orthonormal this is achieved by element-wise squaring the vectors
before multiplying them:

Ag(i, 5) = wk(i)*vr () (8)
Normalizing this way means the vectors u(i)? and v (j)? are the time and frequency marginals
of the matrix and the spectral moments can be calculated directly from them. Since the matrices
are all rank one the marginals here contain the full information of the matrix Ag. The drawback
is that since the decomposition creates so many matrices the cross-correlation can not be used
here. Instead features are extracted from each marginal and compares across signals using a metric
between sets.



Since Ay is treated as a probability distribution the expected value and variance can be calcu-
lated in both the time and frequency direction creating a feature vector with four features. The
hope is that these four features will accurately describe where things are happening in the signal
in both the time and frequency domains.

Using the assumption that matrices A with small associated singular values [y represent noise
only the matrices with singular values 8 > B are included in the method. This effectively acts

100
as de-noising the signal.
The features of the Groutage method can be conceptualized as rectangles with centers at the
expected values and sides the size of the standard deviation. This is shown for an example phrase

in figure 5.
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Figure 5: Left: Spectrogram of an example phrase. Right: The same spectrogram but with features
extracted by the Groutage method drawn on top.

In order to turn the feature vectors into a workable metric the modified Hausdorff distance described
in section 2.7 is used. The weight of a feature vector is the singular value S of the corresponding
matrix Ag.

2.4 Clustered Laplacian of Gaussian (LoG)

This method extracts features from a song by combining two methods from image analysis: the
Laplacian of Gaussian and the DBSCAN algorithm. They can be found in books on computer
vision such as [6]. It then uses those features together with the modified Hausdorff distance which
is a metric between sets in order to create a metric between two songs.

The method will be referred to as the Laplacian of Gaussian method, or the LoG method for short.
A number of different image analysis techniques have been explored and this one seems to be
the most promising. Because the method is an image analysis technique the spectrogram will be
treated as an image with pixels rather than a function of time and frequency. The main idea is to
find points in the spectrogram where a smoothing operation would have an especially large effect



with the hope that this will allow us to find where the notes are located in the image with less
sensitivity to amplitude variations than a simple thresholding operation. This is achieved by taking
the Laplacian of the Gaussian. Those locations will then be clustered and features will be extracted.

The Gaussian function in two dimensions is defined as:

1 _ 2452

e 208 9
\/2moy ( )

where o, is a parameter. The function is applied to an image by reducing the function into a
smaller matrix, called a kernel, with the center of the kernel being (i = 0,7 = 0). The kernel is
then convoluted with an image resulting in a blurred image. In this application the kernel size is
5x5 and o4 = 4. These values were arrived at by applying the LoG to different signals and visually
inspecting the results.

G(Z7J) =

The Laplacian is a differential operator defined in two dimensions as:

0’P  0’P
AP(f,t) = — + —5 10
(10 =5+ 5 (10)
and can be interpreted as the relative local rate of change.

The Laplacian of Gaussian is applying the Laplacian to the Gaussian function before reducing
it into the kernel. The LoG results in a new value for every pixel in the spectrogram representing
how much is happening in that pixel, these values are expected to be high on notes and low on
the background of the spectrogram. This new value is thresholded based on a parameter oy,
setting every pixel larger than the maximum value times oy, to one and every pixel smaller than
the maximum value oy,4 to zero. The pixels with value one are then simply referred to as the points.

The clustering algorithm ”Density-based spatial clustering of applications with noise”, or DB-
SCAN, is used to cluster the points into groups. The DBSCAN algorithm works as follows:

1. Specify a radius € and a number of points minPts.

2. Count the number of neighbours in a distance e from every point. Designate each point with
more than or equal to minPts neighbours as a ”core point”.

3. Make clusters of core points using the rule that if two core points are neighbours they are in
the same cluster.

4. Each non core point is assigned to the cluster of its nearest neighbour cluster point, if the
point has no cluster points as neighbours it is assigned as noise.

In this method the radius € is set to 10 pixels and the number of points minPts is set to 50.

The DBSCAN method was chosen because it has some desirable properties. First it doesn’t require
specifying the number of clusters, which is necessary since the number of notes differs between
phrases. Second it does not assign every point to a cluster, allowing noise to be filtered out. Third
the fact that it is density-based means that it can deal with the fact that the shapes of the notes



are often quite oblong.
The resulting clusters for an example phrase using the LoG method is shown in figure 6.
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Figure 6: Left: Spectrogram of a phrase. Right: The same spectrogram but with the two clusters
found by the LoG method drawn on top.

After clustering, the first two moments in both time and frequency are extracted as feature vectors
for each cluster. Aside for some trilling the shapes of the notes seem simple so the hope is that
the first and second moment encodes all the important information of each note. The modified
Hausdorff distance described in section 2.7 is then used to create a distance between two phrases.
The weight of a feature vector is the number of points in the associated cluster.

2.5 Peak frequency contours

The main idea behind this method is to trace the peaks of shapes in the spectrogram and extract
features from those contours. The method is based in part on the method used by Tchernichovski
et. al. in [7] and will be referred to as the Peak Frequency Contour method, or the PFC method
for short. While Tchernichovski et. al. do not assume any shape of the contours this method does
and will try to fit them to straight lines. This method also extracts a single feature vector per line
while the method in [7] they extract features that vary over time.

The first part of the method is to apply the Gaussian smoothing described in section 2.4. This
eliminates many small peaks created by noise while preserving the larger peaks. After that the
peaks at every slice of time are picked out and assigned as candidate peaks. A point A(i,j) is a
candidate peak if

Al =1,5) < AG,j) > Ali +1,5) (11)

Any peak with a larger peak in the same time slice and within 700 Hz in frequency is removed from
the candidates list. This is done to eliminate sub-peaks that often appear next to large peaks in
the spectrogram. In the next step any peak with a value that is smaller than the maximum peak
times the tune-able parameter . is removed from the candidates list, this is also done to remove



any peaks that has appeared in the background noise.

The peaks are made into contours by fitting them to lines in the spectrogram. This is done
iteratively by the following process:

1. Set t =ty
2. Calculate the distance to the closest contour for each candidate peak in the time slice P(-,t)
3. For every peak where the distance is less than 700 Hz, add the peak to the contour.

4. For every peak that did not get added to a contour, create a new contour with the peak as a
member.

5. If a contour has not had a line added to it for five time slices, terminate the contour.

6. Refit the contours to fit with the now points using linear regression. A contour with only one
point is defined as a horizontal line.

7. Sett=t+ At
8. If t > tymaz, terminate, otherwise go to step 2.

After the contours are found, any contour spanning less than 15ms is removed to remove false
contours.

The peaks making up a line using the PFC method in an example phrase show in in figure 7
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Figure 7: Left: Spectrogram of a phrase. Right: The same spectrogram but with the peaks making
up a single contour drawn on top.

A feature vector consisting of the center of the line in time and frequency as well as the angle of
the line is extracted as the feature vector for each line. The modified Hausdorff distance described
in section 2.7 is used to create the distance between two sounds. The weight is the mean intensity
among the peaks making up the contour.
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2.6 The filtered ambiguity spectrum

This method is taken from Grofle Ruse et. al. [8] and will be referred to as the Ambiguity method.
The main idea behind the method is to move to the filtered ambiguity spectrum and extract features
by way of SVD.

The filtered ambiguity spectrum is a spectral representation of the signal that is both invari-
ant to time and frequency shifts and arises by taking the Fourier transform in both the time and
frequency directions on the spectrogram. The SVD is applied to the ambiguity spectrum and the
first orthonormal vectors u; and v are extracted as features.

The spectrogram and ambiguity spectrum for an example phrase is shown in figure 8.
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Figure 8: Left: Spectrogram of a phrase. Right: The filtered ambiguity spectrum of the same
phrase.

The similarity score between two phrases is:

Anabig(z.y) = wmin {uf, o), (5. o) (12)

The inner product is used because it gives the similarity score a nice normalization: If the vectors
are the same then the score will be 1 and if they are orthogonal the score will be 0. The minimum
is used to make sure two signals are only measured as similar if they are similar in both the time
and the frequency directions.

2.7 Modified Hausdorff distance

Some of the methods in section 2 produce a variable number of feature vectors for each phrase. In
order to compare two sets of feature vectors and get a single number a metric between sets found
in a survey by A. Conci and C. S. Kubrusly [9] is used. The metric is a variation on the popular
Hausdorff distance that is more robust against outliers than the Hausdorff distance. The survey
contains many different metrics that could have been used but this one was was picked because of
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its robustness and because a set with a large amount of elements is not going to give a consistently
low or high similarity. The metric between two sets A and B is defined as:

H'(A,B) = #1,4 > d(a, B) + #13 > d(b, A) (13)

acA beB

where #A is the number of features in set A and d(a, B) is defined as:

d(a,B) = blélg(d(a, b)) (14)
where d(a,b) is a metric between feature vectors. In this thesis the metric between feature vectors
is always the euclidean distance normalized by a precalculated standard deviation for the feature.
To clarify: the standard deviation of each feature needs to be calculated before the method is used
on a set of signals that is representative of the signals being analyzed. The training set can include
any signals being analyzed.

The methods have a natural way to assign a weight to each feature vector in a set so the metric is
extended to be weighted by:

H(A, B) = #1A S d(a, Bywa + #13 S db, Ayw, (15)

a€A beB

where w, is the weight of feature vector a. The weights are selected differently for each method:
The LoG method uses number of points in each cluster, the Groutage method uses singular values
and the PFC method uses mean intensity among the points making up each line. The weights are
always normalized so that ) ., wq = 1. Additionally, for all a: w, > 0.

12



3 Data

3.1 Simulated data

The simulated signals are created by sampling the function:

s(t) = zn: Aisin(2mtw; +mi(t —19)%) - G(0,t — 1Y) (16)

i=1

at 15000 points evenly distributed in the interval [0, 0.3125] where A;,w;,tY and m; are parameters
and G is the Gaussian kernel described in equation 9 where the standard deviation o, is also a
parameter dependent on i. Five different types of signals are created using parameters sampled
from different distributions. The distributions are presented in table 1 letting U (a,b) represent the

uniform distribution in the interval [a, b].

Param Typel Type 2 Type 3 Type 4 Type 5

n 3 3 3 3 4

Ay U(0.0125,0.0375)  U(0.0125,0.0375)  U(0.0125,0.0375)  U(0.0125,0.0375)  U(0.0125,0.0375)
As U(0.005, 0.015) U(0.005,0.015) U(0.005,0.015) U(0.005,0.015) U(0.005,0.015)
Az U(0.0125,0.0375)  U(0.0125,0.0375)  U(0.0125,0.0375)  U(0.0125,0.0375)  U(0.0125,0.0375)
As - - - - U(0.0025,0.0075)
w1 U (3800, 4200) U (3800, 4200) U (3800, 4200) U (4300, 4700) U (3800, 4200)

w2 U (6650, 7350) U (6650, 7350) U (6650, 7350) U (7150, 7850) U (6650, 7350)

ws U (6175, 6825) U (6175, 6825) U (6175, 6825) U(6675,7325) U(6175,6825)

wa - - - - U (380, 420)

mi 0 0 0 0 0

me 0 0 0 0 0

ms —107U(9.5,1.05) —107°U(9.5,1.05) —107°U(9.5,1.05) —107°U(9.5,1.05) —107°U(8.75,11.25)
fa - - - - 0

9 U(0.209,0.231) U(0.259,0.281) U(0.259,0.281) U(0.209,0.231) U(0.209,0.231)
t9 U(0.114,0.126) U(0.114,0.126) U(0.164,0.176) U(0.114,0.126) U(0.114,0.126)
t3 U(0.152,0.168) U(0.152,0.168) U(0.202,0.218) U(0.152,0.168) U(0.152,0.168)
9 - - - - U(0.0475,0.0525)
og1 0.01 0.01 0.01 0.01 0.01

og2 0.015 0.015 0.015 0.015 0.015

T3 0.005 0.005 0.005 0.005 0.005

Tga - - - - 0.01

Table 1: The distributions parameters for equation 16 are drawn from when creating a realization
of a simulated phrase

The goal of the simulated signals is to create one type that qualitatively approximates the real
signals, the other types are then variations of that base type that are different in some predictable
way. The base type can then be compared to the variations to see how well the methods can
recognize the type of change present in each variation. The signals are primarily modeled after the
example signal shown in section 2.1 and have some important characteristics: They contain several
distinct components with a variable amount of definition, they are not as distinct in every realiza-
tion. They also contain a chirp, a section with continuously decreasing frequency. They also have
a large variation in amplitude. The simulated signals are not necessarily that similar the the real
signals in a quantitative sense, the primary differences is that the real signals have more complex-
ity and structural noise. The real signals also vary in more complex ways than the simulated signals.
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Realizations of the five types of simulated signals are shown in figure 9. Type 1 is meant to
act as the base type. Type 2 is the same as type 1 except the final envelope has been moved to
peak slightly later. Type 3 is the same as type 1 except it is entirely shifted in time by about 50 ms.
Type 4 is the same as type 1 except it is entirely shifted in frequency by about 5kHz. Type 5 is
the same as type 1 except it adds another enveloped sinusoidal signal at the start of the phrase.

Each phrase simulated is realized a little differently no matter what type it is. The centers of
the envelopes varies a little in time, the sinusoidal signals varies a little in frequency and the am-

plitude of each envelope varies a lot. The signals are also corrupted by Gaussian white noise with
standard deviation 0.0005 which is approximately the noise encountered in the real signals.

Type 1 Type 2 Type 3 Type 4 Type 5
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Figure 9: Simulated phrases separated by type.

3.2 Real data

The data set of recorded birds consists of 3583 sounds of which 1722 are of type cissel, 1634 are of
type dick and 184 are of type trill. Each phrase has an associated bird name and date. Most of the
sounds also have a location associated with it. Some of the birds are marked and can be tracked

across time while some are unmarked and can have different names for different dates. The sounds
are recorded between 2006 and 2014.

The phrases from real birds are shown in figure 10 and figure 11. The sounds in figure 10 are

from the cissel class and from four different birds recorded in four different locations. The sounds
in figure 11 are from all classes and from a single bird.
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Figure 10: Real phrases of the cissel class from four different birds, separated by bird
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Figure 11: Real phrases of different classes from bird 319, separated by class

The data is partly collected at seven different sites around Manhattan, Kansas. Four of the locations
are grassland locations and three are cropland. The approximate locations are plotted on a map
from OpenStreetMap in figure 12. Yellow arrows are cropland while green arrows are grassland.
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Figure 12: Map of sites where sounds have been collected. Yellow arrows mark cropland sites while
green arrows mark grassland sites
3.3 Parameter tuning

Some of the algorithms have parameters that need tuning. An initial tuning was made by visual
inspection. A better tuning was then found by testing the accuracy of several candidate parameter
setups and picking the one with with highest accuracy on a single grassland site and class cissel
after N = 2000 tests using the following algortihm:

1. set n=0,acc =0
2. Pick a phrase at random from the testing set, call that phrase ”phrase 1”.

3. Pick a different phrase at random from the same bird that made phrase 1, call that phrase
” 7
phrase 27.

4. Pick two new phrases at random from the testing set, call them ”phrase 3” and ”phrase 4”.

5. If phrase 3 and phrase 4 were recorded from the same bird, go to step 4, otherwise continue.

16



6. Calculate the distance/similarity between phrase 1 and phrase 2 and between phrase 3 and
phrase 4.

7. If the distance is smaller or the similarity is larger between phrase 1 and phrase 2 than
between phrase 3 and phrase 4, set acc = acc + 1.

8. Setn=n+1
9. If n < N, go to step 2, otherwise continue
10. Calculate the accuracy as acc/N

The parameter setups found are presented in table 2.

Method Parameter Value

SPCC oy 67 hz
LoG Qo 10%
PFC e 10%

Table 2: Parameter tunings
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4 Performance on simulated data

4.1 Accuracy

In order to test how sensitive the methods are to different types of changes in a signal the methods
are given two pairs of signals. One pair has two simulated phrases of type 1 and one pair has one
phrase of type 1 and one phrase of a different type. The methods are then asked which pair is which.
This is done N = 2000 times for each method and type using the algorithm in section 3.3. Each
test has signals generated for it and then thrown away so that every test has a unique realization
of the signals. The results are presented in table 3. A 95% confidence interval is approximately
+1%.

Method Type 1vs2 Type 1vs3 Type 1vs4d Type 1vsh

SPCC 61 % 51 % 93 % 1%
Groutage 99 % 50 % 84 % 100 %
PFC 92 % 95 % 67 % 83 %
LoG 61 % 75 % 55 % 66 %
Ambiguity 51% 90 % 66 % 90 %

Table 3: Accuracy of classifying whether a pair of signals both come from type 1 simulated signals
or whether one of them has a different type, for each column the type that is not type 1 changes

A high accuracy identifying type 2 sounds represent a high sensitivity to changes timing of notes in
the signal relative to each-other. A high accuracy is found by the Groutage and PFC methods. A
high accuracy identifying type 3 sounds represent a high sensitivity to how the phrase is segmented
from the larger signal and a lower accuracy is better. The PFC, LoG and Ambiguity methods
have some sensitivity to this while the SPCC and Groutage methods are completely invariant to
zero padding at the start of the phrase. A high accuracy identifying type 4 sounds represent a
high sensitivity to frequency shifts of the entire signal. The SPCC and Groutage methods have
a high sensitivity. A high accuracy identifying type 5 sounds represent a high sensitivity to extra
components in the signal. All methods have some sensitivity to this but the Groutage method
stands out as the most sensitive.

The results here seem to indicate that the Groutage method performs well due top its high accuracy
on type 2 and 5. It also has the nice property of being completely invariant to the phrase position
in the signal which it shares with the SPCC method. It can also be seen that the SPCC method has
a very high sensitivity to frequency shifts die to its high accuracy on type 4. Because the frequency
sensitivity of the SPCC method is a tuneable parameter that is tuned to give good results on the
real data this indicates that a high frequency sensitivity will correlate to good results on the real
data.

4.2 Noise tolerance

In order to test how well the methods work in noisier environments the methods are given two pairs
of signals. One pair has two simulated phrases of type 1 and one pair has one phrase of type 1 and
one phrase of type 5. Type 5 was chosen as the comparison type because most of the methods can
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tell it apart from type 1 fairly well in low noise conditions and this will make the noise sensitivity
tests more accurate because the difference between high and low noise accuracy will be bigger. The
methods are then asked which pair is which. This is done N = 10000 times using the algorithm in
section 3.3 with different amounts of pink noise added to the signals. The pink noise was generated
using MATLAB’s pinknoise command and the noise level was adjusted by multiplying the resulting
pink noise vector by a scalar. The noise level is measured using Signal to Noise Ratio (SNR) wich
models the signal as a signal part y and a noise part w such that x = y + w. The SNR is then:

2
SNR, = % Ui (17)
i Wi

The accuracy at each level is evaluated and shown in figure 13.
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Figure 13: Accuracy with different levels of pink noise for the different methods and the mean SNR
in the real signals

The figure shows that the Groutage method has a much lower noise tolerance than the other
methods while the SPCC method has a consistently good noise tolerance. The figure also shows
the estimated mean noise level in the real signals. The noise estimate was collected as the mean
power in the first and last 50 samples of each phrase. The mean SNR in the signals was estimated
to be 1.94 and 95 % of the signals had an estimated SNR in the range (0.9, 3.0). In this range the
difference between the methods is negligible aside from the Groutage method which is worse in the
lower SNR range. This means that for the recordings used in this thesis noise tolerance will not be
a differentiating factor except for the Groutage method which will perform worse due to the noise
level of some of the recordings.
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4.3 Continuity

In order to test if the methods actually provide a metric and not just a binary yes/no two sounds
were simulated at the same time but different frequencies. The lower frequency sound was then
shifted in time and the distance between the unshifted signal and the shifted signal were calculated
for increasing amounts of shifting using every method. The setup is shown graphically using the
spectrogram of the signal in figure 14. The equation describing the signal is:

sai(t) = sin(nt - 10%) - G(0,t — (0.1 + At)) + sin(3rt - 10%) - G(0,t — 0.1) (18)

where G(-,-) is the Gaussian kernel from equation 9 with o, = 0.01. The result is presented in
figure 15.
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Figure 14: Left: Spectrogram of the base signal. Right: Spectrogram of the signal with a time shift
of 300 ms
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Figure 15: Normalized distance between the base sound and a sound that has had a component
shifted in time

The distance is normalized using subtraction and division so that the lowest distance is zero and the
highest distance is one. All of the methods rise smoothly but the SPCC, Groutage and Ambiguity
methods reach a point of saturation in the difference, the PFC and LoG methods perform the best
in this respect. There is also a bump down in the Ambiguity method and the SPCC method.
The cause of this is unknown but probably related to how the cross-correlation and ambiguity
spectrum works. The purpose of this test is more as a sanity check rather than something to rank
the methods by. Seen in this light the inconsistencies in the Ambiguity and SPCC methods are so
small that all methods pass this test.
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5 Performance on real data

5.1 Accuracy

In order to test the methods performance on the real world data each method was given two pairs
of phrases. One pair had both phrases from the same bird and the other pair had two phrases from
different birds. The methods were then asked to classify which one was which. This was repeated
N = 2000 times for each method and phrase type using the algorithm in section 3.3. The signals
were chosen randomly from the entire data set and replaced between repetitions so a signal has the
same chance of being chosen every repetition. The result are shown in table 4. A 95% confidence
interval is approximately &1 %.

Method Cissel Dick Trill Average

SPCC 80 % 3% % 76.1%
Groutage  77% 3% 0% 73.3%
PFC 3% 66% 66% 68.4%
LoG 67 % 3% 61% 67.0%

Ambiguity 73% % 66% T1.8%

Table 4: Classification accuracy on different types and classes

The SPCC method performs well on every class and is the best on both cissel and trill, it also has
the highest average accuracy. The Groutage method performs the second best or tied second best
on all classes, it also has the second highest average accuracy. The Ambiguity spectrum method
performs the best for the dick class but performs poorly on the trill class. The PFC and LoG
methods both perform decently on one class but poorly on the others.

5.2 Correlation with distance

Further analysis will be limited to the two methods with highest total accuracy on the previous
test, Groutage and SPCC, in order to be able to look more closely at the results. These two are
picked because they can be seen as the most successful methods and therefore the most interesting
to use.

Since the region a phrase was recorded in is known a test is made to see if the distance between
recording sites correlates to an acoustic distance. To do this the mean acoustic distance between
every pair of sites is calculated and plotted against the geographic distance between those sites for
the cissel class. While the sites are not single geographical points the distance between the sites is
usually larger than the distance within sites. The difference between sites will also be accentuated
by averaging the distances between sites. The point of this test is to see if the methods can find
structure in the data and if they do to see if the results differ. This test in particular is useful
because it tests the method on a regression task, the methods need to give levels of difference rather
than just saying if two signals are the same or different. The results are presented in figure 16.
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Figure 16: Left: Similarity over geographical distance using SPCC Right: Acoustic distance over
geographical distance using the Groutage method. Trend lines are fit using robust linear least

squares.

Both method seem to show that phrases are more similar between sites with a shorter distance but
the correlation is much stronger using the SPCC method, r2 = 0.22 for SPCC and 72 = 0.10 for
Groutage. The similarity produced by the SPCC method has been transformed into a distance by
taking 1 — similarity to make the results easier to compare. This works because the similarity only
gives values in the range (0,1). Both methods seem to give the same general shape to the data.

5.3 Homogeneity

A different type of structure that might be found in the data is a difference of homogeneity in the
songs between grassland and cropland sites. This is tested for by taking two random birds from a
single site and calculating the similarity /distance between them. This is repeated N = 2000 times
for each type of site. The distributions are then presented as box-plots in figure 17.

23



1 - —_— +
|
| | 04
0.9 | | +
| 0.35
0.8 .
L +
0.3
Q07 )
g g +
= =
o 06 ® 025
= i | =
= | =
w05 | | F ozl
3 [ 3
2 0.4 | | | =]
£ 0 | | < 015
|
L | ]
0.3 | : o1k | |
El + —
0.2 1
f 0.05F
-
011 F 1
. . 0 . .
Grassland Crop\and Grassland Cropland
Location type Location type

Figure 17: Left: Similarity within sites for the grassland sites vs the cropland sites using SPCC
Right: Similarity within sites for the grassland sites vs the cropland sites using the Groutage
method.

The p-value for the means being smaller in the grasslands is smaller than 0.001 for both methods.
The SPCC method has again had its result transformed using 1 — similarity to create acoustic
distance. This test reaffirms what could be seen in the previous test that the two different methods
let us see the same structures when analyzing the data. A clear difference is however that the
distributions look different, the Groutage method has large tails towards larger acoustic distance.
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6 Discussion

The SPCC method seems to work the best the tests performed here since it has the highest accu-
racy on the real data. It also has the advantage over the method with the second highest accuracy,
the Groutage method, of not requiring any training data aside from the data used to tune its pa-
rameter. The noise resistance tests seem to indicate that the Groutage method suffers a bot from
the noise in the signals, even at the relatively low noise level in the testing data. This means that
the Groutage method should not be used for noisier signal but might be useful in even less noisy
environments, such as in a lab.

The accuracy of the methods against simulated types 2 and 5 do not seem to correlate to a high
accuracy on real data. This is likely due to the higher complexity in the real data or that the
variation withing birds in the real data is different from the variation between realizations of a
simulated phrase. The properties found such as continuity and sensitivity to noise and time shifts
should still be correct however. The continuity test should be viewed as a sanity test that all
methods passed rather than something to rank the methods by since any real signal is going to be
far more complex. The bumps in the ambiguity and SPCC methods are small enough to ignore.

No claims about the real world based on the analysis made here, only about the methods and
the data set. For example: is the distance relation because the similarity correlates to distance in
reality or is it just a difference between grasslands and croplands? Is there some other explanation?
Based on only this analysis we cannot know.

One avenue of possible future research for the methods is to look at different metrics other than
the modified Hausdorff distance. The metric was chosen because of its relative low sensitivity to
outliers but evaluating the performance of other metrics could possibly uncover a better choice. It
would also be interesting to see if a summary statistic of the feature vectors could be used instead of
a metric between sets of feature vectors, a sort of feature of features. The PFC method is probably
the most pliable of the methods. One way it could maybe be improved is to lower the acceptance
rate of peaks and lines and then include the ones that has the best fit. You could also do things like
increase the acceptance radius as the line becomes longer. The Groutage method suffers a lot when
the matrices in the decomposition has multiple modes, this might be something that could be ad-
dressed by smoothing and splitting the matrices to only have a single mode per decomposed matrix.

The performance evaluation is primarily composed of a classification task while the problem that
is being solved is a regression problem which can lead to things being missed in the performance
evaluation. For instance the large tails in the Groutage method could be indications that when the
method misclassifies two signals the error is very large. I would therefore err on the side of making
the methods too robust rather than being too sensitive when implementing them in different con-
texts. For example the parameter oy for the SPCC method should rather be too big than too small
and the same goes for the cutoff for singular values in the Groutage method. I could also see some
merit in exchanging the Gaussian kernel in the SPCC method for a more fat-tailed distribution.

On the other hand: When making analyses of the real data of the type the methods were built to

do there is a negligible difference between the two most promising methods. The methods also find
structure in the data set when performing regression tasks. This indicates that the risk of having
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created classification methods instead of regression methods might not be that big.

It is not easy to say whether the goal set in the introduction of finding a good method for comparing
the songs of the dickcissel is met as it depends on what we mean by good. No method examined is
good enough to give a reliable similarity between any two songs, however the SPCC method seems
to be good enough to find relationships and test hypotheses in a larger data set, such as the one
collected by Timothy Parker.
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Popular abstract

A method for comparing the similarity of dickcissel songs

In this thesis some methods for automatically deciding the similarity of dickcissel songs are ex-
plored and compared. The method found to be working the best is a previously known method called
the SPCC method.

Using computers to analyze bird songs has given us great possibilities in recent times. Not only
does it reduce the workload of researches looking through audio files for the presence of birds it
also allows for tasks that would be impossible otherwise such as computing the pairwise similarity
between thousands of songs or tracking the positions of birds in real time. One particularly inter-
esting application tracks the locations of birds around airports to prevent collisions between birds
and aircraft.

While big steps have been made in the past there are still many obstacles left and all known
methods have some downside that makes them unsuitable for some tasks. What is often done
these days is to develop a method specifically for the bird species analyzed. Timothy H. Parker of
Whtiman College, Walla Walla, has collected dickcissel songs and wants to find an algorithm that
can compare two songs and say how similar they are. The goal is to see how bird culture changes
over time and space and what the effect of different environments are on songs. In the thesis a
method is found that is specialized towards the similarity of dickcissel songs.

Several methods are discussed and some are examined in greater detail. To test the methods
some artificial songs are synthesized and by analyzing the way the methods react to different sig-
nals properties can be derived. For example some of the methods are very sensitive to shifts in the
pitch of the signal while some are not. The methods are also evaluated on the real songs collected
in Kansas, USA. Based on how accurate the methods are on these songs the performance can be
evaluated.

The method that ends up performing the best is a well known general method called spectro-
graphic cross-correlation. It works by seeing how well the signals correlate in time and frequency.
Using this method some structure can be found in the data set but further analysis is needed to
make statements about the birds themselves.
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