
MASTER’S THESIS 2020

Personalized Product
Recommendations
Alexander Pålsson, Enis Hajzeri

ISSN 1650-2884
LU-CS-EX 2020-10

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY





EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-10

Personalized Product Recommendations

Alexander Pålsson, Enis Hajzeri





Personalized Product Recommendations

(Personalized Product Recommendation Engines For

Retailing)

Alexander Pålsson
dat14apa@student.lu.se

Enis Hajzeri
dat14eha@student.lu.se

March 19, 2020

Master’s thesis work carried out at Qlik .

Supervisors: Pierre Nugues, pierre.nugues@cs.lth.se
José Díaz López, jose.diazlopez@qlik.com

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:dat14apa@student.lu.se
mailto:dat14eha@student.lu.se
mailto:pierre.nugues@cs.lth.se
mailto:jose.diazlopez@qlik.com
mailto:jacek.malec@cs.lth.se




Abstract

Recommendation engines are today commonly used by companies that provide
a large collection of products to a large number of customers. The goal is to help
the customers navigate through the store by proposing products that fit their
needs.

This Master’s thesis presents two personalized recommendation engines that
can be used in di�erent scenarios in Market Basket Analysis. The two systems ex-
plore di�erent priorities between accuracy, cost and e�ciency and are evaluated
against Frequent Pattern Growth (FPG), the industry standard frequent item mining
algorithm. The evaluation methods used are precision, recall and F1-score.

ARM-KC is implemented by combining FPG with the clustering algorithm
K-mode. The association rules provided by the FPG algorithm are used as cus-
tomer characteristics by the K-mode algorithm. This system results into better
recommendations for some customers but takes longer time to train than a so-
lution utilizing only FPG. ARM-KC might therefore be used for specializing in
the needs of some customers provided only their purchase history as input.

The other system is an implementation of association rule mining by utiliz-
ing the Qlik Associative Engine (QIX) API. Unlike FPG, this solution requires no
training and provides very fast recommendations for a few customers at a time.
The system might therefore be used in real-time applications such as frequently
altering products and customers.

Keywords: market basket analysis, association rule mining, frequent item mining, clus-
tering, recommendation engine
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Chapter 1

Introduction

Large companies, such as IKEA, provide a large collection of products to a large number of
customers. It can be very di�cult for the customers to navigate through the assortment. Fur-
thermore, companies often make money from unplanned purchases, meaning that the cus-
tomer visits the store to purchase certain products and realises that s/he needs other products
as well. This is where recommendation engines come in.

There are many ways a recommendation engine could be implemented but the main goal
is always to propose products or service. For a company selling products to customers, the
goal of a recommendation engine is to predict what products the customers are potentially
interested in.

1.1 Problem statement
Since recommendation engines could be applied on many areas, a di�cult task is defining
your exact needs. The next step is to decide on the most appropriate tools. Furthermore, a
prioritisation must be made between di�erent objectives, such as e�ciency, cost and accu-
racy.

A recommendation engine can be implemented with simple approaches such as recom-
mending the most frequently purchased products. The time it takes to compute a recommen-
dation with this approach is insignificant. A more advanced approach is to have individual
predictions. To implement it, one needs to determine categories of products given the cus-
tomer characteristics and history of purchases. An approach to solve this kind of problem is
to use neural networks. The training phase for such an approach can be several days or even
weeks, which might be problematic if the data is frequently changing. Although the accuracy
might increase, the ability to add new products or customers might disappear due to the long
training phase needed.

One area where recommendation engines are often used is market basket analysis. The in-
dustry working with market basket analysis must utilize appropriate algorithms when build-
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1. Introduction

ing recommendation engines. Since there is no correct answer on where the balance between
cost, e�ciency and accuracy lies, approaches used today should be modified in order to ex-
plore potentially better approaches.

1.2 Objective
To solve this problem we have split our work into four objectives:

1. Implement a recommendation engine for market basket analysis with increased ac-
curacy compared to implementations with industry standard algorithms, while main-
taining the low cost.

2. Implement customer segmentation given data without any customer characteristics
such as parent, house owner and car owner but only purchase history.

3. Implement a recommendation engine which can be used in real-time applications with
constantly di�ering products, customers or features.

4. Implement a recommendation engine with the possibility of considering all available
products instead of the most frequent ones.

1.3 Related research
The design of recommendation systems to compute product/customer recommendations
based on historical purchase data is a very explored field; thus there are numerous research
articles on the matter.

Agrawal et al. (1994) propose an algorithm called Apriori in the context of mining associ-
ation rules. The Apriori algorithm has since worked as a popular benchmark for association
rule mining and basket analysis algorithms.

Hong-Wei et al. (2004) went one step further to make recommendations by first creating
their own virtual mall to simulate the behaviours of customers. Then with a combination
of machine learning techniques, such as fuzzy set and case-base reasoning, they created cus-
tomer tailored recommendations. They also brought up an important point, namely that
with e-commerce there is just too many di�erent products for customer to handle. There-
fore, customer specific recommendations get more and more important.

Abbas et al. (2013) provide a real life example of how a recommendation engine could
be implemented in a retail store. Using a store selling sport equipment, they implement the
market basket algorithm Apriori. Based on historical data they mined product relationships.
Based on the product relationships, they created recommendations on how the sport store
should be organized to increase sales.

Minh andWu (2019) explored topology based user recommendations. With amovie data-
set they utilized path based semantic similarities between customers based on their movie
ratings in order to get personalized movie recommendations.

A Master’s thesis done by Glas (2015) compared customer recommendation machine
learning algorithms. The thesis included the algorithms: K-Means Clustering, Decision Tree,
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1.4 Limitations

C4.5, k-Nearest Neighbors and Apriori. These algorithms were discussed based on their use
cases, strengths and weaknesses.

Multiple studies have been done on combining association rules with other algorithms.
In many of those studies, there has been a focus on classifying frequent patterns, in order to
get a deeper understanding of datasets.

Cao et al. (2011) handled the topic of integrated frequent pattern mining with classifica-
tion to generate frequent pattern-based classifiers. The paper does not propose any specific
algorithms. Instead, they have a broader approach where they try to summarize frameworks,
paradigms, and basic process. They finish the paper by doing a real-life study using the tech-
niques they discussed to prevent government debt by identify alarming patterns.

Yanchang et al. (2008) were more specific and proposed techniques to combine asso-
ciation rules with di�erent techniques. The study evaluates three di�erent ideas, namely
combining di�erent associations rules, combining rule pairs and lastly clustering association
rules.

Although there have been a lot of research about both recommendation engines and com-
bining frequent pattern mining with clustering algorithms, the field of customer segmenta-
tion based on their buying patterns is unexplored. Especially when using categorical data
clustering and more specifically the K-mode algorithm.

1.4 Limitations
One limitation for us when we wanted to make interpretations of the clustering was that we
had to work with an anonymized data set. Most variables, including product and customer
names, were translated into Id-numbers or unrecognizable names. For example products in
the decoration section had names like Decoration - product 1, Decoration - product 2 and so
on.

The anonymization led to several problems such as the loss of the ability to provide the
customers with meaningful labels such as Parent and House Owner. Another problem is the
reduced ability to decide which categories of products are the most popular ones. There is
the possibility to utilize the anonymous product numbers for this but it would not be as
meaningful as knowing what the products actually are.

All implementation and computation were done on laptops with 32GB RAM memory
and 6-core processors. This led to some time needed to train and evaluate the algorithms.
Due to the time limit of the project, the time spent waiting a�ected what kind of algorithms
that we tried and how many di�erent solutions and evaluations we produced.

1.5 Contributions
The experiments presented in this thesis provide creative implementations of recommenda-
tion engines that explore other levels of balance between accuracy, cost and e�ciency than
the industry standards.

The experiments also provide a way of clustering customers with the only prior knowl-
edge about them being their purchase history.
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1. Introduction

1.6 Report outline
The report consists of five chapters, namely Approach, Development, Results, Discussion
and Conclusion.

• Approach: This chapter includes the theory behind vital parts mentioned on the other
chapters, such as the di�erent algorithms we used, di�erent tools used to process data,
and evaluation metrics.

• Development: This chapter presents the di�erent parts of the system and how they
were implemented. Libraries used during the development are presented and explained.

• Results: This chapter consists of results and evaluations from running the di�erent
parts of the system in the form of graphs and tables. The chapter also includes an
interpretation of the graphs and tables.

• Discussion: This chapter discusses the di�erent parts of the system and the results of
the evaluation. The outcome is also compared to what it should have been and what
might have caused the di�erence.

• Conclusion: This chapter highlights the most important findings of the thesis.

10



Chapter 2

Approach

2.1 Data Format
The data set consists of receipts of transactions from the IKEA furniture chain. The receipt
data was divided into four di�erent tables:

• Customer - containing 103,995 customers,

• Purchase - containing 1,724,153 purchases,

• Product - containing 45,141 products,

• Purchase_details - containing 13,072,392 details about every item bought.

Figure 2.1 shows a more complete description of the tables.

Figure 2.1: Structure of the receipt data

Because of personal information protection laws, the data was anonymized, which made
it impossible to distinguish products from each other and likewise for customers. As can be
seen in Figure 2.2, it is impossible to see what products the table is referring to.
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2. Approach

Figure 2.2: First items in the anonymized products table

2.2 Clustering
Clustering is a method of grouping objects in a data set depending on similarities.

Clustering corresponds to partitioning data points or data objects into groups called
clusters. Clusters consist of multiple objects where all the objects have related characteristics.
According to Xu and Wunsch (2009), there is no general definition of a cluster, however,
Everitt (1980) summarizes clustering with his general description:

A cluster is a set of entities which are alike, and entities from di�erent clusters
are not alike.

Figure 2.3: Data points with and without clustering

To solve the clustering problem, many algorithms have been proposed and the three most
common are:

1. Density-based clustering.

2. Hierarchical clustering.

3. Centroid-based clustering.

2.2.1 Hierarchical Clustering
Hierarchical clustering (Johnson, 1967) incrementally builds a hierarchy within the data set.
The two points with the lowest distance between them will form a pair. This pair is then
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2.2 Clustering

merged into a new point. The algorithm proceeds to merge other pairs of data points, reduc-
ing by one the number of points at each iteration. The resulting object is called a dendrogram.

The data objects are built into a dendrogram depending on their distance to other data
points. Furthermore, this pair will mergewith the object or sub dendrogramwith the smallest
distance, forming a pair of clusters.

The first and standard hierarchical clustering algorithm has a O(n3) complexity, which
makes it slow for large datasets. However, there are more recent algorithms which address
the time complexity problem; for example SLINK (Sibson, 1973). SLINK lowers the run time
of the algorithm to O(n2).

2.2.2 Centroid-based clustering
The centroid-based clustering algorithms calculate centroids, which are the centers of the
clusters, and assign every data object to the closest centroid. The centroids then form clusters.
There are many variations of centroid-based clustering but they all share the basic goal of
minimizing the distances between the centroids and the data points. In order to find the
closest distance, three measuring methods are frequently used, namely Euclidean, Minkowski
and Manhattan distance (Santosh, 2014). Hamming distance is another measuring method
that is used less frequently, but will be important in our application.

The Euclidean distance is the straight-line distance between two data points in the Eu-
clidean space. The general computation of the Euclidean distance between two vectors q,p
is calculated by using the Pythagorean formula, which looks as following:

d(q,p) =
√

(q − p)2 (2.1)

The properties of Euclidean distance gives the algorithm a disadvantage; it becomes very
sensitive to outliers. Cleaning the data by removing outliers reduces the impact. However,
excessive cleaning might create distortion within the data.

The Hamming distance measures the binary similarity between two strings (Hamming,
1950). Hamming distance excels when clustering categorized data. In this case, Euclidean
distance is useless since the data points have no meaningful distance between them. An
example is data consisting of letters instead of numbers.

Given three encoded binary numbers 101, 1000 and 1010; the dHamming(0101, 1000) =
3, dHamming(0101, 1020) = 4 and dHamming(1000, 1010) = 1. Given a = 10 and b = 01
calculating the similarity between the strings a, b, ab the Hamming distances are given by
dHamming(a, b) = dHamming(10, 01) = 2 and dHamming(ab, a) = dHamming(11, 10) = 1.

2.2.3 NP-Hard
The metric distance based centroid problems are computationally hard and known to be be
NP-Hard (Mahajan et al., 2009). Due to NP-hardness, the optimal centroids that minimize
the distance between the centroids and data sets cannot be computed. Therefore, clustering
algorithms are constructed to find an approximate solution.
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2. Approach

2.2.4 K-means
One of the most common algorithms to find the local optimum is Lloyds algorithm, also
known as K-means (Lloyd, 1982). Local optimum is the optimal solution given its closest
neighbours. In order to find the local optimum, clustering algorithms consequently iterate
through di�erent centroids. The K-means clustering algorithm looks as follows:

1. Start with initial guesses for cluster centers (centroids)

2. For each data point, find closest cluster center (partitioning step)

3. Replace each centroid by the center of gravity of data points in its partition

4. Iterate 1+2 until convergence

2.2.5 One-Hot Encoding Variables
In 1957 Suits (1957) introduced one-hot encoding variables. One-hot encoding variables are
a numerical representations of categorical data. Originally one-hot encoding variables were
used in linear regression but can be e�ectively used in clustering. One-hot encoding variables
can take two values 0 or 1. For K items the number of one-hot encoding variables needed is
k − 1. The first step in creating one-hot encoding variables is to count the number of unique
categories or unique items within the category. Then assign each of the items or categories
with a unique nominal value. With a category C and the items: i1, i2,i3 the items assigned
nominal values can be seen in Figure 2.1. To represent these items as one-hot encoding vari-
ables, each item is represented as a column with either 0 or 1 if present. This makes detecting
unknown items simple, since all unknown items would be represented by an all zero vector.
One-hot encoding for the three items can be seen in Figure 2.2.

Item Nominal value
I1 1
I2 2
I3 3

Table 2.1: Nominal values of category items

I1 I2 I3
I1 1 0 0
I2 0 1 0
I3 0 0 1

IUnknown 0 0 0

Table 2.2
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2.2 Clustering

2.2.6 Clustering Categorical Data
In K-means, clusters are formed by minimizing the Euclidean distance between data points,
which requires all objects to have numerical values. Hence, clustering categorical data is
infeasible with a regular K-means algorithm. Ralambondrainy (1995) suggests transforming
categories into elements in vectors using one-hot encoding variables as described in Section
2.2.5. Given the Table 2.3, each customer will be represented by a vector with 3 elements
where the elements are the di�erent furniture present in the set. This results in the one-hot
encoding matrix shown in Table 2.4.

Customer Furniture
C1 Table, Chair
C2 Chair
C3 Lamp, Table

Table 2.3: Assignment of rule codes

Table Chair Lamp
C1 1 1 0
C2 0 1 0
C3 1 0 1

Table 2.4: Assignment of rule codes

The vectors require as many dimensions as there are categories in the data set. This
method used on high-dimensional categorical data leads to the problem of having very large
matrices to run K means on.

An example of a potential implementation could be on a catalogue of IKEA products.
IKEA has more around 45,000 articles, meaning that each cluster centroid would be repre-
sented by a 45,000 dimensional vector, which would give a various number of problem;

1. Firstly, clustering a 50,000 dimensional vector would require powerful computers.

2. Secondly, wide and sparse matrices could potentially encounter a problem called The
Curse of Dimensionality (Bellman et al., 1957), which is a gathering of phenomena. The
Curse of Dimensionality occurs when the number of the dimensions gets higher. The
consequence of this is that the number of data needed to support the result needs to
grow. However, curse of dimensionality is a discussed subject and Domingos (2012)
presents something called the blessing of non-uniformity as a counterpoint to the curse
of dimensionality. The claim is based on that data is not uniformly dispersed within
the feature space, therefore it is possible to gain traction by identifying the ways in
which the data is organized.

2.2.7 K-mode
Huang (2009) presents an algorithm, called K-mode, which is a modified version of K-means
to handle categorical data. While K-means tries to find similarities between objects by cal-
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2. Approach

culating and comparing the Euclidean distance, K-mode tries to find dissimilarities by com-
puting the Hamming distance. The definition of the K-mode algorithm can be seen in Eqs
2.2 and 2.3.

d(X,Y ) =
m∑

j=1

δ(x j , y j) (2.2)

where

δ(x j , y j) =
0, x j = y j

1, x j 6= y j
(2.3)

2.3 Affinity analysis
A�nity analysis, often called market basket analysis in the retail industry, is a data mining
technique for finding patterns between items or groups within a data set (Gutierrez, 2006).
Market basket analysis is used to map and create an understanding of customer behaviour.
Understanding customer behaviours is important in retail industries since advertisement,
product placement and product development are often based upon such information.

2.3.1 Association rule mining
Association rule mining or association rule learning is an a�nity analysis machine learning
algorithm that finds patterns in data sets. Agrawal et al. (1993) introduced the problem of
finding associations between item sets in a big basket of data. Given a large set of items, the
purpose of the algorithm is to find relations between them by finding association rules.

Agrawal et al. (1993) formally defined the problem with : I = {i1, i2, . . . , in} where I is a
set of items i1, i2, i3, ..., in and T = {t1, t2, . . . , tn}where T is a set of transactions t1, t2, t3, ..., tn

All the transactions contain a subset of I and all items in I occurs at least once in T . A
rule is the implication X ⇒ Y , where X and Y are subsets of items from I . In a specific rule,
the same items can not be present in both X and Y . X is called a antecedent and Y is called
a consequent.

To illustrate this, supermarket receipts could be used and an item set could be Bread,
Butter, Jam. The rules would then be as follows; {Bread} ⇒ {Butter}, {Bread, Jam} ⇒
{Butter} ... {Bread} ⇒ {Butter, Jam}. {Bread} ⇒ {Butter, Jam} implies that if a customer
bought bread, s/he would also buy butter and jam.

To comprehend the significance of the di�erent association rules, di�erentmeasurements
can be used.

Support is the frequency of an item set in the data set. The support is given by:

supp(X) =
|t ∈ T ; X ∈ t|

|T |
(2.4)

For the transactions {Bread, Butter}, {Butter, Jam}, supp(Bread) is 1/2 = 0.5 or 50%
since it appears in 1 out of 2 transactions. Support is variously presented with percent or
with the number of times it occurs.
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2.3 Affinity analysis

A low support means that the item set doesn’t occur frequently in the data set. Therefore,
it also implies that rules shouldn’t consist of that item set since it might be an outlier rather
than a rule. Therefore in all Frequent Itemset Mining algorithms, support is used to filter
what set should be examined. Setting the support limit to 10% means that an item set must
occur in 10% of the transactions in order to be taken into account.

Confidence is defined as follows:

con f (X ⇒ Y ) =
supp(X ∪ Y )

supp(X)
(2.5)

Confidence is the conditional probability of occurrence of a consequent given the an-
tecedent, meaning that it is the likeliness of a rule to hold true. For example if a customer buys
bread, how likely is it that s/he also buys butter. Using the previous example {Bread, Butter},
{Butter, Jam}, con f (Bread ⇒ Butter) = 1

1 = 100% since every time bread is bought butter
is also bought.

2.3.2 Frequent Pattern Mining
According toHan et al. (2007), to generate association rules, frequent itemsets can be utilized.
There are three frequent pattern mining algorithms that provide frequent itemsets, namely
Join-Based, Tree-Based and Recursive Su�x-Based.

Recursive Suffix-Based Growth
According to Han et al. (2007), Join-Based and Tree-Based algorithms use the prefix, which
is a set of characters at the beginning of a word, to build a tree of frequent items. Recursive
su�x-based growth on the other hand, extends the su�x, which is a set of characters at the
end of the frequent patterns.

The conditional transaction database, a database containing only frequent extensions of
the current su�x, is sent as an input in every iteration of the recursion. In every recursion,
another frequent item is added in the projected database. In the su�x based approach, the
frequent items are ordered in descending order.

Frequent Pattern Growth
One algorithm usingRecursive Su�x-BasedGrowth is Frequent Pattern-Growth. FP-growth
utilizes a FP-tree. The FP-tree uses compressed su�xes, making the approach more e�cient.

According to Han et al. (2000), the definition of the FP-tree looks as follows:

1. A FP-tree consists of one root labeled as “null", a set of item prefix subtrees as the
children of the root, and a frequent-item header table.

2. Each node in the item prefix subtree consists of three fields: item name, count, and
nodelink, where item name registers which item this node represents, count registers
the number of transactions represented by the portion of the path reaching this node,
and node-link links to the next node in the FP-tree carrying the same item-name, or
null if there is none.
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3. Each entry in the frequent-item header table consists of two fields, (1) item name and
(2) head of node-link, which points to the first node in the FP-tree carrying the item-
name.

2.4 Qlik’s Associative Difference
Qlik Associative Di�erence is a patented system to handle and analyse big data sets (Qlik,
2020b). The system is the foundation of Qlik’s products and therefore all details of how the
system work are not publicly available. There are two major reasons that Qlik is faster then
a lot of SQL based tools (Qlik, 2020a).

1. The first is that Qlik associative engine (QIX) which is the calculation motor is not
built with SQL. Therefore when working across di�erent tables with QIX, no expen-
sive outer joins is required.

2. The second thing thatmakes it faster is that themodel is loaded into the RAMmemory
and therefore is easily accessible. This makes selection faster and makes it possible for
frequently used data to be stored in the cache. This means calculations in datasets that
are centred around a few but often used items can be done very fast.

2.5 Customer Segmentation
Customer segmentation is a branch within market segmentation. Market segmentation have
been practiced long before it became a theoretical subject(Fullerton, 2016). There are ev-
idence of market segmentation practiced dating to the bronze age (Alberti, 2016). Since
beginning of 19th century it’s been researched and widely practiced in the reselling indus-
try(Fullerton, 2016). Market segmentation is dividing the market into groups of customer,
segments. The aim is to create segments were the properties of the segments have similar
characteristics. This makes it possible to make a conclusion about unique customers based
on the properties of the segment.

A common strategy within customer segmentation is the S-T-P approach (Segmentation
⇒ targeting ⇒ positioning). First the market is divided into segments, then a number of
segments are targeted with a position to attract the selected segment.

In the retail business, this is used to di�erentiate business/advertisement strategies based
on customer segment. For a companies like IKEA customer segmentation is important and
two customer segments could potentially be parents and retired people. These customer
groups have widely di�erent needs and therefore customer segmentation is important to
target these customers with the products they are more likely to buy.

A big part of the customer segmentation is to identify the most profitable segment for
the company.

2.6 Evaluation measures
According to Goutte and Gaussier (2005), in order to get a complete view of a system’s per-
formance, one might compute a precision- recall curve and their harmonic mean, F1-score
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In order to define precision, recall and F1-score, four variables need to be explained:

• TP - True Positive stands for an object which is recommended by the system and is
relevant.

• TN - True Negative stands for an object that is not recommended by the system and
is not relevant.

• FP - False positive stands for an object that is recommended by the system but is not
relevant.

• FN - False negative stands for an object that is not recommended by the system but is
relevant.

2.6.1 Precision
Precision is defined as follows:

p =
TP

TP + FP
(2.6)

An interpretation of this definition is that precision is the probability that an object that
the system returns is relevant.

2.6.2 Recall
Recall is defined as follows:

r =
TP

TP + FN
(2.7)

A interpretation of this definition is that recall is the probability that a relevant object
is returned by the system.

2.6.3 F1-score
The F1-score is the harmonic mean between precision and recall and is calculated as follows:

F1 =
2pr
p + r

(2.8)
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Chapter 3

Development

The development chapter presents how the system was implemented. The system consists of
four major parts:

1. An implementation of frequent pattern growth (FPG).

2. Our application, which is a association rule mining with K-mode clustering (ARM-
KC).

3. An Qlik Associative Engine (QIX) implementation.

4. An evaluation section in which we calculate precision, recall and F1-scores of the dif-
ferent algorithms.

The FPG implementation serves two purposes. Firstly, it works as a baseline in order to
evaluate other algorithms. The second function is that it works as the first step in the ARM-
KC application. We designed ARM-KC to further increase the ability to make predictions
with association rule mining by utilizing clustering to segment customers.

The QIX implementation is an application designed to make real-time predictions with-
out the need of training the algorithm. In the evaluation part, we evaluate both FPGs and
ARM-KCs capabilities to make accurate predictions.

We implemented the system in Python and used external libraries for the K-Mode and
FPG algorithms.

3.1 pandas
A lot of the data preparation was done using the open source python library Python Data
Analysis Library (pandas). The purpose of pandas is to provide tools for working with data
analysis in Python. We used Pandas for the following purposes:

21
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• Read and write csv files

• Create pandas dataframe out of pickle files

• Manipulate dataframes such as concatenating several dataframes, drop and add rows,
sum, count and locating values.

3.2 Data Cleaning
Because of the anonymized structure of the data, the first step of the cleaning process was
to remove irrelevant columns. As can be seen in Figure 3.1, only a few relevant attributes
remained.

In the second step of the cleaning process, we removed NULL values and duplicates.

Figure 3.1: Structure of the receipt data after process

3.3 Frequent Pattern Growth
The implementation of Frequent Pattern Growth (FPG) serves two purposes:

• Firstly, to work as a baseline when comparing precision and recall between algorithms.
FPG is one of the best known association rule mining algorithms and faster than the
classic Apriori algorithm Garg and Gulia (2015). Therefore, it was a natural choice as
baseline.

• The second purpose, and the most important, was to take the association rule set that
FPG creates and use it on further applications. FPG makes a one dimensional set of
relations between products. The goal was tomake a customer segmentation using these
item relations. So it was of greatest importance that the rules from the FPG algorithm
could easily be leveraged in further researches and algorithm implementations.

The number of rules the FPG algorithm generates is dependent on what percentage of
support and confidence is provided to the algorithm. Di�erent support and confidence may
vary the output from none to millions of rules, with high support and confidence giving
less rules. The performance of the algorithm is also dependent on support and confidence.
Because of time limits and hardware limitations, we set these parameters to relatively high
values.
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Since the performance was not a priority, we used the standard Python machine learning
library pyspark.mlllib.fpm.FPGrowth. This library is an implementation of Han et al.
(2000) description of FPGrowth.

The output from the FPG algorithm is a set of rules describing relations within the tables.
Table 3.1 is a snippet from our implementation describing relations between products. The
first line describes that products 1065 and 78 occur 2048 times with product 2748. It also
shows that when 1065 and 78 appear together on a receipt, there is a 0.9 probability that 2748
is also present on that receipt.

From To Support Confidence
{1065, 78} {2748} 2048 0.90
{78, 2153, 1065} {2748} 1866 0.91
{2748, 1065} {78, 2153} 1866 0.83
{741} {2748, 78} 1831 0.32

Table 3.1: Assignment of rule codes

An example can be seen in Equation 3.1

15, 17⇒ 49, support = 0.2, con f idence = 0.1 (3.1)

3.4 ARM-KC
The main goal with the implementation of a K-mode algorithm is to make a broad customer
segmentation. The FPG provides association rules that describe the relationship between
di�erent rules. However, it does not make any assumptions about the customers. Our imple-
mentation aims to cluster customers who fulfil similar association rules. The implementation
also utilizes the K-mode algorithm’s categorical clustering in order to tie customers with sim-
ilar buying patterns to each other.

Our implementation can be divided into 6 steps as shown in Figure 3.2, starting with
data cleaning and FPG rule generation as described in the previous sections. Step 3-6 is our
further development of creating a recommendation engine based on customer segmentation,
utilizing the K-mode algorithm. The output of the solution is a customer recommendation
based on this customer’s specific purchase history.

3.4.1 Data Preparation
In order to transfer the association rules into the K-mode algorithm, the data must be in
the appropriate format. The K-mode algorithm uses one or more columns with multiple
values when clustering. Therefore association rules in their regular form are unusable for the
K-mode algorithm.

Utilizing one-hot encoding variables, we can create orthogonal vectors for each of the
di�erent customers, making a matrix that tells which customers satisfy each rule.

1. The first step in creating this matrix is to assign each unique rule to a corresponding,
unique rule number or rule code. Table 3.2 shows the first three rules, named R1, R2
and R3.
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Figure 3.2: The di�erent steps when creating recommendation with
the ARM-KC implementation

2. The second step is to transform these numbers into vectors where, if the rule is satis-
fied, it is marked as a 1, otherwise as a 0.

3. The third step is to create a vector for each customer containing his/her corresponding
rules, in order to use it for clustering. If a customer satisfies the rules R1 and R3, but
not R2, the customer vector is (1, 0, 1).

Rule name Association rule
R1 1065, 78⇒ 2748
R2 2748, 1065⇒ 78, 2153
R3 741⇒ 2748, 78

Table 3.2: Assignment of rule codes

With every customer represented as a rule-vector, this procedure creates a matrix as can
be seen in Table 3.3. This matrix is in the correct format for the K-mode algorithm to utilize
for creating clusters.

3.4.2 K-mode Algorithm
To cluster with K-mode, we used Nico de Vos python library KModes (de Vos, 2020). De Vos
implemented the first version of the K-mode algorithm that clusters categorical data (Huang,
1998). Running the algorithm on Table 3.3 leads to two things:

24



3.4 ARM-KC

Customer Id R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 ... R388
1 1 0 0 1 0 0 1 0 0 1 ... 1
2 1 0 0 0 0 0 1 0 1 1 ... 0
3 1 1 0 0 0 0 0 0 0 0 ... 0
4 0 0 1 0 0 0 1 0 0 0 ... 0
5 0 0 0 1 0 0 1 1 0 0 ... 0
... ... ... ... ... ... ... ... ... ... ... ... ...

45228 0 0 0 1 0 0 1 1 0 0 ... 0

Table 3.3: Assignment of rule codes

1. The algorithm creates centroid vectors with 0s and 1s creating the centers of the clus-
ters. The number of clusters is decided by the user. An example of a 10 customers
placement in three clusters can be seen in Figure 3.3.

2. The algorithm assigns each customer to the closest centroid using Hamming distance.

Figure 3.3: Example of three clusters with a total of 10 rules

Our algorithm is highly dependent on what rules the FPG algorithm produces. Therefore
the number of rules was strongly believed to influence the accuracy of the K-mode algorithm.
Hence, the K-mode algorithm was executed with di�erent number of clusters and FPG rules.
The rules experimented with are; 52, 164 and 388. The number of clusters experimented with
are; 15, 20 and 25.

3.4.3 K-mode Recommendations
The final step of the recommendation engine is to output recommendations for specific cus-
tomers. Since each cluster contains a set of rules and each customer is assigned to a cluster,
recommendations can be made by recommending all the other products belonging in the
cluster, except for those that the customer has already bought. Given a customer placed in
cluster C1 based on satisfying rule R1 and R1, R2, R3 ∈ C1, the algorithm will recommend
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the consequent, meaning the right-hand-side of R2 and R3. If Table 3.2 is an representation
of C1, the recommendations would be products 15, 19. In order to assign a customer to a
cluster, the customer always needs to satisfy a minimum of one of the clusters rules. Hence,
the algorithm is limited to only making predictions for customers with a purchase history.

The products are ranked according to their support, with higher support leading to higher
rank.

3.4.4 Filtering customers
As mentioned in the previous section, recommendations were made based on the centroids
of the clusters. One of the clusters, no matter how the algorithm was tuned, contained a
centroid that was only zeros. A cluster with only zeros means that there are no rules in the
cluster and therefore no recommendations can be made from that cluster. Therefore, the
application comes with an option to filter away the customers that are assigned to the zero
cluster. In the evaluation step of the thesis, ARM-KC is evaluated with both the zero cluster
included and without.

3.5 Qlik Associative engine
We found that FPG and ARM-KC had two major limitations. Firstly, the model needed to
be trained with every new addendum to the data set. Secondly, it could only create recom-
mendations if the products that the customer bought were present in the trained model. To
overcome these limitations, we used the Qlik Associative Engine (QIX) API to implement
an associative rule mining algorithm. QIX data handling is based on a associative database
model. That makes the engine faster for handling the selections compared to regular query
based database structures. The goal was to make a QIX implementation that mimics the as-
sociation rule mining ability to make customer predictions based on the same receipt data as
used by ARM-KC set but without the need of a training phase.

The application was successfully implemented in a way that it can make real time pre-
dictions on the entire data set without any previous training. With a product combination,
an output recommendation is created with all the data. This means that every time a new
recommendation is made, all the calculations will be redone. This also means that even if
the data is updated frequently, the calculations will always be made on the latest data. In the
application, it is possible to select gender and martial status for the customer recommenda-
tion. If for example the attribute male is selected, the recommendation will only be based on
purchases done by males.

This also led to limitations on the application in such a way that it is only possible to
create recommendations for one product combination at a time. FPG and ARM-KC create
a model with the most frequent rules. To create this kind of model with the QIX implemen-
tation, the algorithm needs to iterate through every possible product combination, which
would be too computationally expensive. Another restriction on the application is that the
output recommendations are limited to one product for each input combination. On the
contrary, other association rule algorithms allow multiple products as a recommendation.

The implementation in QIX was based on the QIX function set analysis (qlik.com, 2020).
Set analysis makes it possible to customize data selection in a way that specific unions and
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intersections are created based on the current selection. This is used in our algorithm to
create the following functionality:

1. A user selects the purchased products that the recommendation should be based on.
Let it be P1 and P2.

2. All receipts where the product combination P1, P2 occurs are selected.

3. On these receipts, all other products are counted. These products are the consequent
to the antecedent P1, P2 and the count is the support for this rule.

4. Lastly, the confidence is calculated by diving the support with the number of times the
combination P1, P2 occurs in the receipt in total.

The two expressions used in our QIX implementation can be seen below:
To calculate the support:

Count(distinct {<productId=,
receiptId={"=aggr(count(distinct productId),
receiptId) =getselectedcount(productId)"}>} receiptId)

To calculate the confidence:

Count(distinct {<productId=,
receiptId={"=aggr(count(distinct productId),
receiptId) =getselectedcount(productId)"}>} receiptId)/
(max( Total AGGR(Count(distinct {<productId=, receiptId =
{"=aggr(count(distinct productId),
receiptId)=getselectedcount(productId)"}>}
receiptId),productId)))

Configurations
TheQIX application is implemented in Javascript usingQlik’s enigma.js library. The program
has five di�erent configurations:

• Products: The product combination that the customer has bought.

• Number of rec: How many output recommendations should be made.

• Gender: The gender of the customer in the data.

• Marital status: Whether the customer is married or not.

• Subsets: The number of the smallest subsets. If the subset is selected as 2, with products
P1, P2 and P3, the program will output recommendations for subsets P1, P2, P1, P3
and P2, P3.

The output is:

• The recommendations generated by the product combination with its associated sup-
port and confidence.

• Recommendations generated by the product sub-combinations with the combinations
associated support and confidence.
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Enigma.js
The library used to implement QIX is enigma.js. Enigma.js is a javascript library created to
ease the communication with the QIX-API:s. The library sets up a websocket connection
against QIX-engine and communicates over the websocket using JSON-schemas.

3.6 Train- and Test set
In order to evaluate the performance of the developed recommendation engine, a test set was
created. The test set consisted of the same receipts as the train set. However, every receipt
was divided. Three ways of division were compared; 50/50, 70/30 and 90/10.

The division was performed by grouping all purchases of the set by customerId. The
purchases of the customer that are saved into test- and train set are chosen randomly.

3.7 Evaluation
Asmentioned earlier, the test set consisted of 30 percent of every receipt. The larger part, the
train set was used to train the algorithm and receive a recommendation. The smaller part,
the test set was used to calculate F1, recall and precision.

3.7.1 ARM-KC
The F1 score was calculated for the entire recommendation but also for each cluster. No extra
packages were used in order to calculate precision, recall and F1 score.

Instead, a recommendation for every customer was received by training the algorithm
with the full set and predicting for the train set. This vector was called y_pred. The products
in y_pred were compared with the products of the customer in the test set, which was called
y_true.

The evaluation of the algorithm "ARM-KC" was done on three di�erent set of rules; 52
rules, 155 rules and 388 number of rules.

3.7.2 FPG
The first step to evaluate FPG was by using the train set to create the FPG rules. This gave
us recommendations for each customer, y_pred. These product recommendations were then
compared to the products in the test set to obtain a vector with correct recommendations.

The FPG algorithm was only evaluated using the set of rules that performed the best
during the evaluation of the algorithm "ARM-KC", namely 388 number of rules.
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Chapter 4

Results

In this chapter, we present the results of our evaluation of ARM-KC. The first sections
present F1-scores with di�erent configurations running the ARM-KC algorithm. The fol-
lowing section compares ARM-KC with the baseline we have used, namely Frequent Pattern
Growth, which is the industry standard algorithm for making customer recommendations.
The last section explicates the result of the implementation based onQlikAssociative Engine.

4.1 ARM-KC Configurations

Figure 4.1: Precision for di�erent number of rules

4.1.1 Different Number of Rules
The y-axis of Figure 4.1 shows the percentage of customers whose precision is in the di�erent
ranges shown on the x-axis. As can be seen in the Figure, around 80% of the customers get 0
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Figure 4.2: Recall for di�erent number of rules

Figure 4.3: ARM-KC with di�erent number of FPG-rules

correct recommendations, whereas 388 rules having 76% and 164 having 85%. Figure 4.2 has
the same layout as the precision graph but shows the recall ranges of the evaluations instead
of the precision ranges.

Figure 4.3 shows the F1-score and the number of correct recommendations when running
the algorithm with di�erent number of FPG-rules as input. The graph shows the ARM-KC
algorithm run with 52, 164 and 388 rules. 388 rules provides both the highest number of cor-
rect recommendations and the highest F1 score. 164 provides a few more recommendations
than 52 rules. However, 52 rules gives a better F1 score than 164 rules and therefore gives a
higher precision.

The recommended set of rules should therefore, comparing the three random choices
evaluated, always be 388. An interpretation of Figure 4.3 is that the F1-score is not linearly
dependent on the number of rules. However, with a higher number of rules the algorithm is
able to predict more recommendations correctly.

4.1.2 Different Number of Clusters
Figure 4.4 shows the result when di�ering the number of clusters in the K-mode algorithm.
In the same way as Figure 4.3, it shows the number of correct recommendations and F1-
score. This graph describes that the F1-score gets linearly worse with more clusters. This is
noticeable since intuitively, more clusters should increase the F1-score. Another result that
the graph suggests is that there is no correlation between the number of clusters and the
number of correct results.
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Figure 4.4: ARM-KC with di�erent number of clusters

4.1.3 Different Split Ratios

Figure 4.5: Example of three clusters with a total of 10 rules

ARM-KC was evaluated using a train set and a test set, where the train set contained a
part of every receipt and the test set the rest. For example, if a receipt consists of products
{1, 2, 3, 4, 5, 6} and the split ratio is 50/50, three of the products are placed in the train set
and three are placed in the test set. This is done for every receipt in the set.

Figure 4.5 shows the evaluation of the ARM-KC algorithm with di�erent split ratios
between the customer product predictions and answer set. In the Figure, a 90/10 split ratio
can be seen. The first part describes that 90 percent of the customers purchase history is
used to make predictions and 10 percent is used to evaluate the predictions. The two y-axis
describe, as the two previous figures, the number of correct recommendations and the F1-
score. In this figure the F1-score is increasing linearly when the answer part of the customers
purchases grows. However, it can be seen that the number of recommendations drops with
40% when the ratio is changed from 70/30 to 50/50. From the graph it is also clear that 90/10
has no advantage over a 70/30 split as the 70/30 split gives both more recommendations and
more accurate recommendations.

4.2 ARM-KC Compared to FPG
Figure 4.6 shows ARM-KC’s interval of precision compared to the FPG’s. The graph is based
on FPG and ARM-KC evaluated with 388 FPG rules and a predictive/answer split ratio of
70/30. ARM-KC was clustered using 20 clusters. The customers are filtered in a way where
customers that are placed in the K-mode algorithm’s 0-cluster are removed. The figure shows
that FPG provides 0 correct predictions with 5% more customers than ARM-KC.
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Figure 4.6: FPG’s and ARM-KC’s precision compared

Figure 4.7: FPG’s and ARM-KC’s recall compared

Figure 4.8: FPG’s and ARM-KC’s F1 scores compared

Figure 4.7 is similar to Figure 4.6 but shows the recall intervals instead of precision inter-
vals. In this figure we see that the 0 prediction bar is 11% higher with FPG than ARM-KC.

Figure 4.8 shows a comparison between FPG’s and ARM-KC’s evaluated F1-scores. The
blue bars describe the algorithms F1-scores when evaluating with all customers that satisfy at
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Zero cluster included Number of customers
No 5,422
Yes 41,540

Table 4.1: Number of customers with di�erent filtration

least one FPG-rule. The red bars on the other hand show the F1-score for only the customers
not filtered away by ARM-KC’s for being in the zero cluster. The FPG gives roughly the same
result as it did previously. The ARM-KC gives a 9 times higher F1-score with the zero cluster
filtered away. The number of customers that the di�erent filtration settings can be seen in
Table 4.1.

4.3 F1-Score in Different Clusters

Figure 4.9: F1-scores for di�erent clusters

Figure 4.9 shows the F1-score for the di�erent clusters. This means that the F1-score is
evaluated for each K-mode cluster. The algorithm was executed with 20 clusters, 388 FPG-
rules and evaluated with a 70/30 split ratio. There is a significant di�erence in performance
between the di�erent clusters. For example cluster 2, 9 and 17 have an approximately 6 times
higher F1-score than 12 and 19. Overall, cluster 9 has the highest F1-score with 0.12 and
cluster 12 has the lowest with 0.2. This gives a di�erence of 0.1 between the best and the
worst predicted cluster.

This means that for clusters 2, 9 and 17, it is easier to make predictions.
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4.4 Qlik’s Associative Engine Implementa-
tion

Since the Qlik’s Associative Engine (QIX) implementation is based on FPG, the F1-scores
produced by QIX would be the same as for FPG. It performs slightly worse because of the
limitation of the algorithm that it can only output single FPG consequent for each rule. The
result of the QIX-implementation is more related to benchmarking. Also the use case di�ers
which makes it impracticable to evaluate with our evaluation methods. Therefore, the QIX-
implementation will be evaluated in the discussion.
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Discussion

5.1 Evaluation

5.1.1 Anonymized Data Set
Customer Features
We clustered customers based on what they had purchased. One natural extension would be
to associate the clusters to demographic or lifestyle labels. An example of a label would be
Parents" for a cluster containing customers that had purchased a lot of products specific to
parents. Such characteristic products would for example be a cot, a child seat and a baby
gym.

Another label would for example be "House renovators". Customers belonging into this
cluster would have purchases such as laminate floor coverings, doorknobs and floor decking.

Given data with original description of products, a customer could have received the
appropriate labels depending on what cluster they belonged. The recommendation could
have consisted of products belonging that label.

The anonymization makes it impossible to add features to the customers. Had it been
possible to add features such as "Parent" or "House renovator" the algorithmwould have led to
a much better understanding of the customers in the future as well. Would IKEA add a new
product, it would be easier to knowwhich customers to recommend it to by just checking the
information about them. This would save the time that otherwise would go to run through
the entire ARM-KC to include one or a few new products.

Cluster Interpretation
Working with data that isn’t anonymized gives the possibility to make sense of the clusters.
The K-mode algorithm places the customers in the clusters they belong to depending onwhat
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their purchase history tells about them. This means that clusters should contain association
rules consisting of products in similar categories. A possibility here would be to calculate
which categories are the most common in the cluster and a name for the cluster would be
possible.

Spam Reduction
In the case of named clusters, one possible evaluation would be to check which product cate-
gories that are easier to recommend correctly. This would be done by evaluating the clusters
with appropriate tools and comparing them to each other. A possible usage for this kind of
evaluation would be to focus on recommending the categories in the highest ranked clusters.
This would be useful since recommendations usually require sending out a lot of information
before reaching a customer that is a�ected by it. Customers can perceive this as spam, which
might cause the company to lose them. By focusing on categories with lower risk of wrongful
recommendations, spam could be avoided at a higher rate.

5.1.2 ARM-KC
Number of FPG Rules
The number of FPG rules used to develop ARM-KC a�ects how well the program evaluates.
This can be seen in Figure 4.3. We started with 164 rules and decided to try a higher and a
lower number. Both cases gave higher F1 scores but 52 rules gave a lower number of correct
recommendations. 388 rules was better both in the case of F1 score and on the number of
correct recommendations. A fair assumption is that it would lead to even better results by
going even higher up regarding the number of rules. However, the evaluation of ARM-KC is
done by comparing to the original FPG algorithm. Therefore, trying out higher numbers of
FPG rules would not contribute much since the original FPG algorithm would also improve.
We chose to maintain our program with 388 FPG rules.

Split Proportion of Test/Train Set
As seen in Figure 4.5, the highest F1 score is obtained by splitting the set 50/50 and the lowest
by splitting 90/10. However, we chose to split the set 70/30. The reason for this is that it
provides a higher number of recommendations compared to the split 50/50. On the other
hand, it provides a lower number of recommendations than the split 90/10 but a higher F1
score. The combination of a reasonably high F1 score and number of recommendations led to
us choosing the 70/30 split. The reason that the 70/30 split is the best might be that having
fewer products in the basket gives too bad recommendations due to poor predicting and
having too many products in the train set leaves too few to recommend.

Number of Clusters
In K-mode, an important aspect is to choose a right number of clusters to divide the cus-
tomers into. A commonly used method is the elbow method.
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However, the data set we worked with in this project does not have a natural clustering,
meaning that some customers are supposed to be in the same cluster because they only have
things in commonwith each other. In our data set, most customers have purchases in common
with most other customers. This leads to errors when using the elbow method. Instead we used
trial and error to decide the best number of clusters. The starting number was 20. To decide
which direction to go after that, we chose to try a higher and a lower one as can be seen in
Figure 4.4.

The decisions were made by examining the variables in Table 5.1.

Number of clusters Correct Number of Recommendations F1 score
15 879 0.11
20 1308 0.09
25 1030 0.07

Table 5.1: Comparison of di�erent cluster numbers with Correct
number of recommendations and F1 score

Since a number of clusters higher than 20 gives a lower number of correct recommenda-
tions and also gives a lower F1 score, we decided that 20 clusters was the ceiling. 15 clusters
however, require a prioritisation to be made. On the one hand, 15 clusters give a higher F1
score than 25 clusters. On the other hand they give a lower number of correct recommenda-
tions since more customers fall into a cluster where no recommendation can be made due to
a centroid without FPG rules.

Since the F1 score only di�ers about 18 percent while the correct number of recommen-
dations di�ers with around 32.8 percent, we chose 20 clusters as the best number and we did
not investigate lower than 15.

Filtering customers

As seen in Figure 4.8, ARM-KC has a lower F1 score than the original FPG algorithm when
calculated for all 41,546 customers. The reason for this is that when running K-mode we
place customers in clusters based on the FPG rules in the centroids.

ARM-KC provides a higher F1 score than the original FPG algorithm if the F1 score is
calculated based only on the customers that get at least one recommendation fromARM-KC.
Even though it might seem that 5422 out of 41,546 is a small number to get a recommendation
for, it is important to recognize that get a much higher accuracy for a part of the customers
might give better sales than getting bad recommendations for all customers.

5.2 Algorithm comparison
The evaluation part gives a great understanding of how the application was tuned and which
parameters were significant. However, creating the application was also about deciding
which algorithms should be used and how they should be used.
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5.2.1 Frequent Pattern Growth
The main goal when choosing the algorithm was to make predictions of the customer’s next
buy. The data set contained limited information about the customers. There were only three
features provided, namely what they had bought, their marital status and their gender. Mak-
ing customer segments that provided useful insights based on features was therefore limited.
The industry standard for finding relationships between products is market basket analysis.
Therefore market basket analysis was the natural first step for us based on the sparse data set.
The most commonly used technique within market basket analysis is associative rule mining
and since our data set was in a proper format, it was chosen as a first step. Within item rule
mining there are several di�erent algorithms. The most used is probably the popular Apriori
algorithm. However, we decided to use another algorithm, namely frequent pattern growth
(FPG), because of its faster computational time.

5.2.2 ARM-KC
Working with our data set it was obvious to create association rules between the products.
However, just these rules do not give an understanding of the customer segments since they
only explains products relations. The main goal with our ARM-KC was to divide the cus-
tomers into sub groups and based on these sub-groups create recommendations. The ex-
pectations of the customer segmentation was to create more personalized recommendations
and therefore increase the precision and recall compared to recommendations given by only
running FPG.

There are a lot of di�erent methods for grouping customers together. The intention
was to create multiple groups of customers with similar buying patterns. A standard way of
creating groups with similar characteristics is clustering. One of the most popular clustering
algorithms is the K-means algorithm. However, K-means is not suitable for categorical data.
But with the modified K-means algorithm, namely K-mode, it is possible to do clustering on
categorical data.

In order for K-mode to create the clusters, every customer had to be represented with a
vector. The appropriate form of the matrix can be seen in Table 3.3. This matrix structure of
the rules leads to some complications which in turn leads to some limitations on the ARM-
KC applications. One is that every rule creates a new feature in the matrix, which means
that more rules lead to a wider matrix. The training time of the K-mode algorithm is very
dependent on the width of the matrix. Because of our limited time and computational power,
the matrix could not contain too many rules.

To only train with a few rules, on the other hand, leads to another problem. The struc-
ture of the IKEA data was that a few products were bought with a high frequency. Therefore,
a lot of the rules contained the same products in di�erent combinations creating a circular
dependency. Since our application could not handle too many rules, some of the clusters con-
tained very many rules and others very few. This led to the algorithms providing very precise
and many recommendations for some customers while providing no recommendations at all
for a lot of customers. As a result, which can be seen in Figure 4.8, ARM-KC created better
recommendations then FPG on a smaller subset of customers but performed worse on the
entire set.
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5.2.3 Qlik Associative Engine
The FPG and ARM-KC algorithms have two major constraints:

• The first is that both algorithms need to be trained. The training process is time con-
suming. With bigger data sets, more rules and limited computer power the training
time increases, in some cases exponentially. Even with our relatively small ARM-KC
model with just 388 rules and 20 clusters it took between 4-5 hours to train. Another
disadvantage with the training process is that if the data set changes, the rules no longer
reflect the data set. Therefore, for precise recommendations that are completely based
on the data, the model needs to be trained again.

• The second constraint is that the recommendation of products is limited to only the set
of rules that is created in the training processes. All products that are not a part of the
trained model will not be related to any recommendation. In our case, because of time
limit, the training time needed to be kept low. This means that there were limited rules
in our model. In our most extensive training phase, only 109 out of 45,141 products
were consequents in the rules. This means that only 0.24% of IKEA’s total products
could be recommended with that FPG model.

Our QIX implementation was able to overcome both of these limitations. Without these
limitations, a system was created that was easy to use and with some real-life advantages
compared to the classic FPG algorithm.

One advantage is that the QIX algorithm is not limited to product patterns that occur
more frequently than the support threshold. This means that all products will be taken in
consideration by the algorithm when creating customer recommendations. FPG and ARM-
KC is limited to only give recommendation about popular products, which on the other hand
can be argued to be enough since a few products are responsible for most sales. With our QIX
implementation however, this is no longer an arguing point since it gives recommendations
for both popular and non-popular products. In the end, this leads to more complete and
comprehensive customer recommendations.

Another advantage with the QIX implementation is that the algorithm will always be
based on the current data. Every time a purchase pattern is selected, the application will be
executed all over. This makes it possible for the application to see if the data set has changed
since the last time. If the the data is changed, it can be reloaded and the algorithm will
always be executed on the latest data set. This functionality is infeasible with both ARM-KC
and FPG because of the training phase. Every time the data changes, the model needs to be
trained again to represent the updated data as well. This training phase is time consuming
so it would be impossible in a scenario where the data set is frequently updated.

Another improvement that the QIX implementation has over FPG and ARM-KC is the
possibility to conveniently include other customer features. In our data set, the customers
had two features: gender and martial status. These features were unsuitable to use in the
FPG’s and K-mode’s training phase, but were relevant to understand the data set. With the
QIX implementation it is possible to select gender and martial status. In this case, the calcu-
lations will be made with only data of this selection. If male is selected, only male’s purchase
history will be taken into the calculations. This is a large advantage in creatingmore customer
specific recommendations. This functionality could be implemented by using the FPG and

39



5. Discussion

ARM-KC algorithm as well. However, this would require a training phase with every di�er-
ent feature combination. In our data set there were 3 di�erent alternatives in both marital
status and gender. That would result in 9 (32) di�erent combinations, which would require
9 training phases; each of them very time consuming. With 10 features and 10 alternatives it
would require 1010 training phases while the QIX implementation would calculate recom-
mendations instantaneously.

5.3 Further development

5.3.1 Parameter tuning
The ARM-KC algorithm’s number of clusters and number of rules tuning was discussed in Sec-
tion 5.1.2. We think that in further versions of ARM-KC, tuning these parameters further
could lead to improved overall performance.

Both the F1 score and the amount of recommendations are dependent on the number of
rules used as input for the ARM-KC algorithm. The number of rules used in our model was
limited due to lack of time and computational power. This had the consequent that only 109
of over 40,000 products could be recommended. Therefore, in further developments of the
application, a higher number of FPG rules should be used for ARM-KC in order to create
more recommendations.

In our evaluation, we limited ARM-KC to 15-25 clusters, which is a short span. There was
no clear correlation between the number of clusters and the performance, so further evaluation
on the number of cluster should be done. This includes evaluating both less than 15 and more
than 25 clusters.

5.3.2 A non-anonymized data set
Because of the anonymized structure of the data set, there was sparse information about the
customers that was useful. With a non-anonymized data set, including more features, the
ARM-KC could be used to its full potential.

Interpretation of the clusters
To make more sense of clustering, labeling and interpretation of the clusters are important.
Within customer segmentation, it is even common practice to name the customer segmen-
tations. A big problem with the current data set is that it is impossible to give the clusters
labels. If the data set contained non-anonymized features, it would be easier to create cus-
tomer statistics for each cluster, which would have made it possible to label the clusters.

Clustering with additional features
The ARM-KC application is built to cluster depending on categorical data. Therefore, in-
cluding more features than only purchased products might improve the results. In the IKEA
data set, there was two additional features, marital status and gender, that could have been
utilized in the clustering. However, the downside of adding more features is that it might
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remove the purposes of what was discussed in Section 5.3.2, since the cluster would be based
on customer characteristics more than buying patterns.

5.3.3 Qlik implementations
In the current version of our QIX implementation, the biggest limitation is that it does not
create a set of the most frequent rules like FPG and ARM-KC do. There are many market
basket analysis use-cases where a rule set is desirable. An example of such a use-case is physical
item placement in a store. To create this kind of rule sets, the QIX-implementation has to
iterate through every possible combination of products. Over 45,000 products makes this
infeasible. However, in further development on streamline selection, a su�x-based pattern
exploration could be utilized. Since FPG is based on su�x-based pattern exploration, we see
no reason why our QIX implementation shouldn’t be at least as fast as FPG without losing it
advantages.

A current flaw with the QIX-implementation is that it can only output one product as
consequent, whereas FPG can have a set of output products. With the 388 FPG rules that
were used when we compared the algorithms, this limitation was not very noticeable because
almost all of the rules only had one consequent. But with more rules, a lot more consequents
with multiple products will occur.
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Chapter 6

Conclusion

In this thesis, we have implemented two personalized recommendation engines that can be
used in di�erent scenarios in market basket analysis. One recommendation engine provides
customer segmentation where only purchase history is given beforehand as knowledge about
the customers. We call this recommendation ARM-KC and it performs three main steps in
order to produce recommendations:

• Create association rules of the products with Frequent Pattern Growth (FPG).

• Use the association rules to create new characteristics for the customers.

• Cluster the customers with K-mode.

Another option could be to recommend products to customers by just using the associ-
ation rules given by running FPG. This would save the time it takes to run K-Mode. As seen
in Table 4.8, FPG provides basically the same F1 score for a small part of the customers in
the set as it does for the entire set. The reason one might use ARM-KC can also be seen in
Table 4.8. There we see that for a small number of customers in the set, the F1-score for the
recommendations becomes higher than the FPG due to further personalizing. Although it
only applies to a small number of the customers in the set, one might argue that it increases
the sales for the company and lowers the risk of spam.

One more vital improvement provided by the ARM-KC compared to classic FPG is that
more knowledge about the customers can be extracted. Since the clusters can be evaluated on
their own, the most important clusters can be prioritised. For example, if the cluster with the
highest F1-score contains mainly products bought by parents and house owners, the company
might want to focus their recommendations on these sorts of products and customers. We
worked with an anonymized data set and therefore had limited possibilities to explore this
further.

The other recommendation engine in this thesis is an association rule mining algorithm
implemented by using the Qlik Associative Engine (QIX) API. The need for this solution
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comes from the time it takes to train classic FPG and ARM-KC. For certain scenarios, for
example when new products and customers are added to the data set frequently, or a meeting
with a new customer is being held and a recommendation is needed quickly, a solution that
requires no training can be useful.

Of course , this solution also has downsides compared to classic FPG and ARM-KC. The
solution takes a long time to produce association rules and recommend for more than a few
customers.

When implementing a recommendation engine, one might choose a frequently used al-
gorithm and settle with the good results that is provides. However, a better approach is to
modify the algorithms for your specific needs in order to obtain the best outcome. For our
specific need of obtaining more personalized recommendations, we managed to double the
F1 score for some customers with ARM-KC compared to the results given by the industry
standard algorithms. For our specific need of getting quick recommendations on frequently
altering data, we managed to do so in insignificant time with the QIX implementation.
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Skräddarsydda kundrekommendationer
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Maskinlärning används idag inom detaljhandeln för att skapa personliga produktrek-
ommendationer för kunder. Detta arbete presenterar två lösningar som kombinerar
välkända maskinlärnings algoritmer med ny teknik vilket resulterar i förbättrade rek-
ommendationer.

Att förstå sina kunder för att kunna öka försäljnin-
gen är något som företag försökt göra länge. Fak-
tum är att man har hittat bevis som tyder på att
de Aeganska samhällena på den grekiska halvön
använde sig av kundsegmentering redan under
bronsåldern. Förståelsen av kunders beteenden
har många olika tillämpningar men den kanske
viktigaste för företagen är att omsätta denna till
reklam. I och med internet har mängden reklam
som når kunder ökat explosionsartat. För kon-
sumenter har detta lett till att man får så mycket
reklam att det är nästintill omöjligt att filtrera
alla olika erbjudanden. Därför finns det en stor
risk för att den ökande mängden reklam inte leder
till en ökad försäljning utan ger en helt motsatt
effekt, eftersom konsumenter uppfattar reklamen
som irriterande. För att stoppa denna negativa
trend runt reklam och få kunder mer positivt in-
ställda är en strategi att skräddarsy reklam för
varje enskild konsument, d v s att reklamen in-
nehåller produkter som hen kan se sig själv köpa.
Hur gör man för att skräddarsy reklam?

Idag tränar man datorer för att göra gissningar
baserat på historiska data, en teknik som brukar
kallas maskininlärning. De två kanske vanli-
gaste maskininlärnings algoritmerna för att förut-
spå kunders beteende är Frequent Pattern Growth
(FPG) och klustrering. FPG skapar rekommen-
dationer genom att beräkna sannolikheter av att

varor köps tillsammans baserat på köphistorik.
Klustrering däremot grupperar kunder med lik-
nade egenskaper i så kallade kluster. Sedan rek-
ommenderar man alla inom samma kluster lik-
nande varor. Det finns några nackdelar med båda
dessa tekniker, t ex att algoritmerna måste trä-
nas vilket kan ta dagar. En annan nackdel är
att eftersom tekniken bygger på att hitta produk-
ter med hög köpfrekvens gör att produkter som
inte köps så ofta får väldigt få rekommendationer.
För att lösa några av problemen med dagens di-
rektreklam och algoritmerna FPG och klustrering,
har vi inom detta examensarbete vidareutvecklat
två olika system. Det första systemet förbättrar
noggrannheten för de skräddarsydda kundrekom-
mendationerna. Genom att kombinera FPG och
klustrering på ett unikt sätt har antalet korrekta
gissningar dubblerats för ett stort antal kunder.
Det andra fokuserar på problemet med att algo-
ritmerna normalt måste tränas. Med hjälp av
Qliks QIX-API har en applikation tagits fram
som rekommenderar produkter till konsumenter
med samma precision som FPG, fast utan trän-
ing. Qliks snabba datahantering och förmåga att
extrahera relationer i data gör det möjligt att
ögonblickligen hitta samma associationer i kund-
kvitton som FPG. En bonus med QIX applika-
tionen är att inga produkter utelämnas oavsett
köpfrekvens.
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