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Abstract

Verifying a software system’s ability to withstand turbulent conditions in its pro-
duction environment can be a complex task, but it is nonetheless of uttermost
importance to modern companies, who can su�er from huge losses if their sys-
tems are not resilient enough to endure such inevitable turbulence. This thesis
proposes a framework for how to work with Chaos Engineering, a discipline
aiming to evaluate and subsequently improve the resilience of a software system
by using an experimental approach where the system under test is intention-
ally exposed to various types of problematic conditions to investigate how they
are handled by the system. The proposed framework consists of four activities
building on eight support documents, which collectively, with the help of a total
of twelve open source Chaos Engineering tools, aim to define and implement
a continuous and extensible Chaos Engineering practice for a software system.
The framework was designed to suit the applications developed at ICA Grup-
pen AB and it was evaluated by applying parts of it to the software system which
constitutes the website ica.se, including the e-shop which is accessible from the
website. The applied parts were concluded to be feasible and they successfully
discovered a set of initial improvement opportunities for the system’s resilience,
as well as a suitable Chaos Engineering practice for future resilience testing of
the system.

Keywords: Chaos Engineering, software resilience testing, experimentation, design sci-
ence research
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Chapter 1

Introduction

Since the dawn of the modern computer era, revolutionary advances in software engineer-
ing have made the modern software development both flexible and fast. It is now possible
for companies to deliver large-scale, complex software systems composed of thousands of
computers working together in order to perform advanced tasks accurately and quickly [1].
However, with these progressions inmind, newmatters of importance arise, for instance how
the resilience of these complex and distributed systems can be verified. Software engineers
should ask themselves how confident they can be that their complex software systems will
work as intended, or, put di�erently, how extensive their trust in their systems can be [2].

This report constitutes the final product of a master’s thesis project carried out at ICA
Gruppen AB (ICA), a group of companies whose core business is grocery retail. Apart from
grocery retail, the group also includes segments for real estate, banking and pharmacy oper-
ations. The purpose of the project was to examine how the resilience of the software systems
developed at ICA could be improved by using tools and techniques for Chaos Engineering, a
discipline based on the idea of experimenting on a software system to expose it to turbulent
conditions on purpose [2]. The software system under test can be exposed to various types
of turbulent conditions when Chaos Engineering is implemented, and examples include ter-
minating a process which is critical for the system or introducing delays in its network com-
munications. By implementing the principles of Chaos Engineering at ICA, the idea was to
work towards a long-term goal of completely eliminating critical incidents in ICA’s applica-
tions while at the same time maintaining a fast software development. The project aimed to
gather how these principles for Chaos Engineering are best implemented at ICA in what will
hereinafter be referred to as a framework. This framework was intended to be of support and
guidance to development teams at ICA, enabling them to benefit from Chaos Engineering
without previous expertise in the discipline. In this way, they themselves can still test, and
thus own, all parts of the applications they develop.

This chapter starts by presenting ICA as an enterprise in section 1.1, with a focus on
its software development. The research questions this thesis aims to answer are stated in
section 1.2, and an outline of the remaining chapters of this report can be found in section 1.3.
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1. Introduction

1.1 ICA Gruppen AB
The vision of ICA is to make every day a little easier [3]. The company values simplicity,
entrepreneurship and commitment, and over the last years ICA as a company has put an
increasing focus on digitalization. The operations of the group are divided into five segments:

• ICA Sweden, a grocery retailer in Sweden. ICA Sweden has a market share of approx-
imately 36 % of the Swedish grocery market, making it the country’s leading grocery
retailer [3]. ICA Sweden is also by far the largest segment of the ICA Group, con-
tributing with more than 70 % of the group’s total revenue.

• Rimi Baltic, a grocery retailer in the Baltic countries (Estonia, Latvia and Lithuania).
Almost half of the Rimi Baltic stores are located in Latvia. Of the remaining stores,
approximately 60 % are located in Estonia and 40 % in Lithuania [3].

• Apoteket Hjärtat, Sweden’s largest chain of private pharmacies.

• ICA Real Estate, a commercial real estate firm operating in retail.

• ICA Bank, a business o�ering services in private and business banking.

The business model of ICA Sweden is to combine the benefits of private store ownership
with the benefits of central scaling opportunities. Fundamentally, ICA Sweden owns the
brand and the rights to the locations of the stores, while the stores themselves are owned and
operated by local retailers. ICA Sweden provides the technical platforms that are necessary
for the individual retailers, who are then free to put their e�orts into adopting their stores
according to the local markets, for instance by tailoring o�ers and assortments. Around 1,300
ICA Sweden stores are currently open, along with an additional 270 Rimi Baltic stores and
390 Apoteket Hjärtat pharmacies.

ICA Sweden’s main website, and one of the software applications that are developed at
ICA, is ica.se. There, visitors can for instance find information, search for stores and browse
through current special o�ers. The most popular feature on the website, however, is to search
amongst and browse through the available set of recipes. There are more than 22,000 recipes
available at ica.se, ranging from appetizers and snacks to full meals and desserts. There
is usually an especially intensive spike in tra�c at this site just before Swedish holidays;
Christmas is the number one reason for increased tra�c, followed by Easter and Swedish
Midsummer. The Christmas period is intense for a considerable part of December and does
not end until after New Year’s Eve. The other holidays are intense for shorter periods of time,
Midsummer in particular.

At handla.ica.se, which is accessible from the top bar on ica.se, it is possible to shop
online from some of the ICA Sweden stores. When visiting the website, users are asked to en-
ter a postal code or select a city, which generates lists of stores which can deliver orders to the
customers’ homes ormake them available for pickup at the physical stores. As of 2019, around
300 stores have connected to the e-commerce service. When a store has been selected, the
e-shop is updated with that store’s assortment. Users can navigate through categories, such as
“Meat, poultry and fish” and “Fruit and vegetables”, and add specific groceries to their shop-
ping baskets, much like at a traditional store. The shop also shows current special o�ers, as
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1.2 Research Questions

well as groceries that are produced locally and delivered from the selected store’s local suppli-
ers. Another feature is the so-called Receptshoppen, which enables users to browse through
the available recipes and add all, or some, ingredients needed for a specific recipe. Addition-
ally, by creating an account and logging in, users can see their most commonly purchased
groceries and a list of their previous orders. Overall, ICA aspires for their combined online
applications to be the customers’ obvious number one choice for anything that concerns food.

Downtime is costly for ICA, perhaps when it comes to the company’s e-shop in partic-
ular, and the cost of downtime includes, but is not limited to, a possible immediate loss in
revenue if the customer decides to visit a competitor’s e-shop instead of ICA’s. The e-shop
previously had a monolithic architecture, but since this architecture is currently being di-
vided into numerous microservices, the number of failure points for the e-shop is growing.
Some of these failure points are more critical than others; for instance, if the service which
is responsible for showing product information goes down, the entire business of the e-shop
becomes unavailable since users cannot open the products’ information pages to add them to
their shopping baskets. However, if the service allowing users to search among the groceries
goes down it inarguably causes an inconvenience for the users, but they would still be able to
shop by selecting categories and scrolling. Resilience and overall reliability can thus be said
to be more important in some parts of ICA’s e-shop than in others.

1.2 Research Questions
In this report, a framework is defined as a structure of suggested activities, along with nec-
essary document support, which can support or guide how Chaos Engineering can be imple-
mented. What such a framework should contain was not defined when the project started
and answering that question was part of the research goal of this thesis. The framework
should, however, contain su�cient building blocks to be useful even for applications which
Chaos Engineering never has been used for previously.

The research goal of this thesis did not include finding new pieces of Chaos Engineering
functionality or investigating how to improve the Chaos Engineering practices which are pre-
sented in related work. Instead, the contribution of the thesis can be seen as an investigation
of how the existing functionalities and practices can be combined into a more long-term way
to work with the Chaos Engineering discipline, answering questions such as which pieces
of functionality to include for a specific application and how to improve the way the tools
which provide these pieces of functionality are used.

The research questions this thesis aims to answer are:

RQ1: How can Chaos Engineering improve the resilience of software systems at ICA?

RQ2: What are the necessary building blocks of a Chaos Engineering framework, and how
can they be implemented?

RQ3: Where is Chaos Engineering suitable to use at ICA, and can it be provided as a cen-
tralized service?

11



1. Introduction

1.3 Outline
The rest of the report is structured as follows. Chapter 2 presents some previous work on
Chaos Engineering along with topics related to Chaos Engineering. Chapter 3 contains a
description of the project’s research approach. In Chapter 4, the findings from the tool eval-
uation which was performed as part of this project’s solution design are presented, and the
rest of the framework is described in Chapter 5. Chapter 6 gives information on how the
framework was evaluated before Chapter 7 discusses and concludes the results.
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Chapter 2

Background

A common way to deliver a software service to its users today is over the Internet. Such a
service is always implemented in the form of a distributed system [4], or, in other words, in the
form of a collection of autonomous components that collaborate to appear to the user as a
single system [1]. As the scale of a distributed system increases, so does the number of ways
in which it can fail; not only can each component of a distributed system fail individually,
but they can also fail when trying to interact with the other components of the system. This
makes the task of ensuring that a distributed system works as intended a complex and chal-
lenging task [4]. At the same time, the importance of ensuring that the distributed system of
a company works can be of uttermost importance to the business of that company. For in-
stance, an estimate has been made that if www.amazon.com went down for a single minute, it
would cost Amazon more than $220,000 [5]. Other organizations are not immune to similar
downtime losses; the cost for an hour of downtime has been estimated to exceed $100,000
for 95 % of the companies with at least 1,000 employees [6]. This number is furthermore
based on the organizations’ average systems, not solely their most critical ones. Despite it
being di�cult to evaluate how well a distributed system behaves operationally, there exists
a practice of conducting such an evaluation empirically. The name of that practice is Chaos
Engineering.

Chaos Engineering can be defined as “the discipline of experimenting on a distributed sys-
tem in order to build confidence in the system’s capability to withstand turbulent conditions
in production” [7]. In other words, it is an empirical approach for system verification. The
overall goal with Chaos Engineering is to receive insight into how resilient the system un-
der test is and thus learn about potential systemic weaknesses. By bringing such weaknesses
to light before they cause problems which appear to the user as, for instance, outages or
decreases in system performance, it is possible to prevent such problems from ever taking
place.

This chapter will present relevant information on Chaos Engineering and related sub-
jects, and it will present findings from the literature study which was performed as an in-
troductory part of the project. The chapter starts with two general sections, in which a few
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useful definitions in the area of software quality are given in section 2.1 and the discipline of
fault injection testing is introduced in section 2.2. Then, findings from the Chaos Engineer-
ing literature study is presented in sections 2.3 through 2.7, where sections 2.3 through 2.5 first
present Chaos Engineering in terms of its history, practical implementation and principles,
respectively, before section 2.6 presents a model which can be used to map the extensiveness
of a specific Chaos Engineering implementation and section 2.7 suggests some advantages
and challenges with Chaos Engineering. Then, section 2.8 describes the to Chaos Engineer-
ing related topic of Continuous Experimentation. Finally, the chapter is concluded with
sections 2.9 and 2.10 on application containerization and cloud service providers, topics of
interest when examining Chaos Engineering tools.

2.1 Software Quality
The quality of software is not a trivial concept. Several e�orts have been made over the
past forty years to define software quality in terms of measurable quantities and one of the
resulting software quality models is the ISO 9126, developed under the control of the Inter-
national Organization for Standardization (ISO). ISO 9126 defines six categories of quality
characteristics that are independent of each other, namely functionality, reliability, usabil-
ity, e�ciency, maintainability and portability [8]. These broad categories can be further
decomposed into sets of subcharacteristics. There is no universal decomposition of the six
categories, but ISO 9126 includes an example of one, where each category is decomposed into
a number of subcharacteristics ranging from two to four.

Resilience, which Chaos Engineering aims to evaluate and subsequently improve in a
software system, is also known as recoverability [9]. In turn, recoverability is one of the
three subcharacteristics which reliability is decomposed into in the ISO 9126 sample quality
model [8]. Below are some definitions of these software quality concepts:

• Reliability is a “set of attributes that bear on the capability of software to maintain its
performance level under stated conditions for a stated period of time” [8]

• Resilience, or recoverability, is the “capability of the software to reestablish its level of
performance and recover data directly a�ected in the case of a failure” [8]

A common and related term is robustness. This can be described as how sensitive a system
is, or, in other words, how well it can handle erroneous input or conditions in the environ-
ment it operates in [8]. To distinguish between the terms, the following is a common un-
derstanding: robustness centers on how much the system can handle before it fails, whereas
resilience centers on how well the system can recover after it has already failed. Reliability is
a wider concept, containing everything which a�ects how capable the system is to maintain
a failure-free operation. This is the understanding of the concepts which will be used in the
rest of this report. Note that since Chaos Engineering mainly aims to improve a system’s
resilience, and resilience is part of a system’s reliability, Chaos Engineering will by extension
also aim to improve the system’s reliability.

14



2.2 Fault Injection Testing

2.2 Fault Injection Testing
Chaos Engineering is a simulation-based fault injection technique [10]. Fault injection test-
ing is commonly considered a white-box testing technique, meaning that the system’s code is
allowed as input when designing the tests. This is opposed to black-box testing techniques,
in which the system is viewed as a black box, or, equivalently, a single functional unit, when
testing it. To examine a system with black-box testing techniques, pairs of input-output are
considered instead of the system’s actual code. However, there exists a third testing strategy
called grey-box testing, where both white-box and black-box testing strategies are combined.
As opposed to white-box testing, where the internal structure of the system is known, and
black-box testing, where the internal structure of the system is unknown, the internal struc-
ture is only partially known in grey-box testing. This means that test cases can be designed
using internal data structures and algorithms, but the actual tests are performed at the black-
box, or user, level [11]. In some pieces of literature, fault injection testing is considered a
grey-box testing technique as opposed to a white-box one [10].

The idea of fault injection testing techniques is to insert faults or errors into the system
under test on purpose. Note the di�erence between faults and errors: an error is commonly
defined as a state of the system, whereas a fault often is considered to be the cause of an
error [8]. A fault can notably remain unexposed in the system for an arbitrary amount of
time, and not until some event activates the fault does it put the system in an error state.
Note also that an error is not equivalent to a failure, which, unlike the previous terms, is an
actual event. This event is what the user of the system can experience and occurs whenever the
external behavior of the system di�ers from the system’s intended behavior. To summarize, a
fault can put the system in an erroneous state, and if the system is left in that state, a failure
can occur. When conducting fault injection testing, the goal is to examine how the system
reacts to being brought into these unwanted states [10]. Important questions to ask are: does
the system fail, and if so, can it recover from the failure? In relation to the terms defined in
section 2.1, the questions can be rephrased as: how robust is the system, and how resilient is
it?

There are two di�erent types of fault injection testing: compile-time fault injection test-
ing and run-time fault injection testing [10]. Compile-time fault injection testing is based on
introducing faults directly in syntax or semantics, that is, directly in the source code. Run-
time fault injection testing, on the other hand, operates on a running system, and what it does
is to trigger failure scenarios in the system by executing specific commands or in some other
way introducing simulated real-world events representing one problem or another. That is
to say, instead of altering the system’s source code, run-time fault injection testing uses ad-
ditional code to simulate errors.

Out of these two types, Chaos Engineering is a run-time fault injection testing technique.
It experiments with a running distributed system and is not dependent on changing the code
of the system under test itself. The basic explanation of Chaos Engineering is that it monitors
the system’s behavior in the form of some predetermined metrics and conducts experiments,
in which faults are designed and executed in some part of the system, a�ecting a subset of
its current users. In other words, the environment of Chaos Engineering experiments is the
system’s real production environment. The metrics that are monitored are supposed to check
the system’s overall functionality, often referred to as the system’s health, and by monitoring
them during the experiments, conclusions can be drawn about how well the system handles
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2. Background

the injected faults [10]. By learning about the system’s behavior and becoming aware of po-
tential weaknesses before they cause unexpected harm, the ultimate goal is to improve the
system’s resilience [7].

2.3 History of Chaos Engineering
The coming five sections on Chaos Engineering and its history, practical implementation,
principles, maturity, and advantages and challenges, respectively, are findings from what is
referred to as a literature study in subsection 3.1.1. Subsection 3.1.1 describes how this liter-
ature study was carried out in more detail, but generally it can be said that the five sections
attempt to highlight some core principles of the discipline as they have been perceived when
reading previous work on Chaos Engineering. These pieces of related work have a varying
degree of maturity; community websites with numerous contributors are referenced along
with published e-books and journal articles. How these pieces of related work were found is
also described in subsection 3.1.1. A few references not directly related to Chaos Engineering
have been included as well, solely to add some pieces of trivia to the text. The sections are
not to be seen as an all-covering summary of Chaos Engineering literature, but rather as an
introduction to the subject and how it can be perceived when reading about it in di�erent
types of publications.

Chaos Engineering originated at Netflix, a provider of a subscription-based streaming
service. In August 2008, Netflix su�ered from an outage lasting no less than three days, dur-
ing which its services were unavailable to its users. This outage was caused by a database
corruption in one of their major databases [12]. This was the second big outage Netflix suf-
fered that year; in March 2008, Netflix went down for eleven hours due to a problem in its
maintenance system [13]. Up until then, Netflix’s services were running on in-house racked
servers, meaning that the number of failure points was limited to one [12]. However, starting
2008, Netflix decided to move one of their datacenters into the cloud [7]. In 2011, Netflix’s
whole architecture had been changed; the aforementioned racked servers were migrated and
the system became a distributed one, running on Amazon Web Services (AWS). The new
architecture was based on hundreds of microservices, drastically increasing the number of
failure points. On one hand, this eliminated the huge dependency Netflix’s services had on
their previous in-house racked servers, but, on the other hand, it introduced a whole new
spectrum of possible failures. This new complexity in Netflix’s system thus required it to
become significantly more reliable and fault-tolerant [12].

Since that first datacenter move in 2008, Netflix has conducted resilience testing in pro-
duction in one way or another. This led to the introduction of a tool named Chaos Mon-
key in 2010, which, to date, still delivers the same essential functionality as it did when it
launched [7]. The purpose of Chaos Monkey is to randomly select and terminate a running
instance in production. It operates during the day, which minimizes the potential impact on
users in two ways. Firstly, Netflix streams peak later at night, and the number of users online
is thus lower when Chaos Monkey is enabled than it otherwise could have been. Globally, the
tra�c reaches its peak around 9 pm on weekdays, and no country has an earlier peak time
than India, where the streams are at their highest at 5 pm [14]. Secondly, Netflix software
engineers are at work during the day, making them able to quickly resolve any issues the ex-
perimental testing might cause. The e�ect of the Chaos Monkey tool was prominent, since it
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made the failure scenario of an instance disappearing close to irrelevant to the operation of
Netflix’s services. Put di�erently, it provided a strong incentive for Netflix’s software engi-
neers to build resilient systems, which, as a result, has become part of the engineering culture
at Netflix.

Since Chaos Monkey, a variety of Chaos Engineering tools have emerged (see Chapter
4). Netflix themselves released a whole suit of testing tools called the Simian Army in 2011,
including not only Chaos Monkey for terminating running instances but also, for instance,
Latency Monkey for injecting communication delays in client-server links and Chaos Kong
for terminating entire AWS regions [10].

Today, there are numerous large companies who practice Chaos Engineering. Some of
them even have their own Chaos Engineering tools o�ered as a service on the market. Ex-
amples of companies who practice Chaos Engineering include LinkedIn, Facebook, Amazon,
Microsoft and Google, to mention a few. One probable reason for the spread of Chaos Engi-
neering since it originated more than a decade ago, is the variety of benefits it provides. Such
benefits are not necessarily limited to technical ones, but may include customer benefits and
business benefits as well [15]. See subsection 2.7.1 for a more thorough portrayal of what these
benefits can consist of.

2.4 Chaos Engineering in Practice
As Chaos Engineering revolves around conducting experiments in order to reveal weaknesses
in distributed systems, there is a need to describe the way in which such experiments can be
carried out. The experiments can be referred to as Chaos Experiments and one description of
them can be found on the community website principlesofchaos.org. This website has
its HTML code in a GitHub repository, which in turn has contributors from for instance em-
ployees at Netflix and research engineers at the Royal Institute of Technology in Stockholm,
Sweden. The website lists four steps which a Chaos Experiment can consist of [2]:

1. Defining a steady state which characterizes the normal behavior of the system under
test

2. Hypothesizing around how this steady state will be a�ected when running the exper-
iment

3. Running the experiment by simulating real-world events

4. Proving or disproving the hypothesis

One reason why Chaos Engineering revolves around empirical experiments can be that
the behaviors of large-scale software systems tend to be too complex to build all-covering
predictive models which represent their responses to all possible events [7]. It can in other
words be di�cult to test how a large-scale software system will react to any given event, such
as a latency increase or a component failure, without testing it directly on the system itself,
and an empirical approach can thus be favored. Similarly, it is not always feasible to write a
complete functional specification of a distributed system [16]. The number of possible inputs
for such a large-scale system, depending not only on an underlying infrastructure but also on
unpredictable user behavior, can simply be too large.
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2.4.1 Defining Steady State
If a Chaos Experiment is started by defining a steady state, this represents defining which
systemic behaviors are acceptable and which are not. If this is not defined in the beginning of
an experiment, it is probable that it is more di�cult to determine the outcome of the experi-
ment when it has been carried out. The steady state of the system refers to its normal behavior,
that is, the acceptable behavior it exhibits when no intentional fault has been injected into it.
In other words, a steady state definition is normally based on the system’s measurable output
rather than attributes of the system which are strictly internal [2].

According to Sathiya Shunmugasundaram, Site Reliability Engineer at Apple, both tech-
nical metrics and business metrics should be used when defining the steady state of a sys-
tem [17]. Technical metrics can include metrics such as latency, number of errors thrown over
a period and the average CPU usage, but they can vary greatly between di�erent cases. They
describe the health of the system, but they are not always directly connected to revenue or the
key business objectives of the company. This means that technical metrics such as the ones
just mentioned sometimes are unable to answer questions regarding for instance customer
satisfaction. Business metrics, on the other hand, should better capture such aspects. Examples
of business metrics include number of logins per minute, number of failed logins per minute,
or, in the case of Netflix, number of stream starts per second [7].

To define the steady state of a system, there are thus two questions that need to be an-
swered: what are the relevant technical and business metrics for the system under test, and
what are the acceptable values of those metrics? Naturally, tools for capturing these values
need to be in place as well.

2.4.2 Hypothesizing About Steady State
To further facilitate the process of determining the outcome of a Chaos Experiment, a formal
hypothesis describing what the experiment should result in can be formulated. Otherwise, it
can sometimes be di�cult to draw conclusions from the experiment. Experiences at Netflix
have resulted in a recommendation to phrase Chaos Experiment hypotheses on the following
form: “The events we are injecting into the system will not cause the system’s behavior to
change from steady state” [7]. If the hypothesis is phrased in the opposite way, that is, that
the injected events will cause the system’s behavior to change from its steady state, the logic is
that there is no purpose in even conducting the experiment. The purpose of running Chaos
Experiments is to uncover unknownweaknesses in the system, not proving that knownweak-
nesses definitely will cause the problems that Chaos Engineering intends to avoid. Known
weaknesses should always be addressed first. When they have been fixed, the Chaos Experi-
ment can proceed to either prove that the system now is more resilient or that one or more
weaknesses still remain.

2.4.3 Simulating Real-World Events
When a steady state has been defined and the hypothesis has been phrased, the next step is
to inject the fault into the system. This is also referred to as performing a Chaos Engineering
attack. The fault is normally based on real-world events, meaning that it simulates a problem
which might occur in the production environment naturally, without injecting it on purpose.

18



2.5 Principles of Chaos Engineering

There are of course too many possible events which may happen to be able to list or simulate
all of them, but examples naturally include the attacks provided by the Chaos Monkey, La-
tency Monkey and Chaos Kong tools, mentioned in section 2.3. Events can also be combined
and simulated simultaneously to truly force the system into a harmful state [7]. The tools
described in Chapter 4 can all be used to inject a variety of faults into the system under test,
or, equivalently, perform a variety of Chaos Engineering attacks on the system under test.

2.4.4 Proving or Disproving the Hypothesis
By continuing tomonitor the steady-statemetrics during the experiment, they can afterwards
be used to determine the outcome of the experiment. If themetrics remain in their acceptable
ranges, the hypothesis can be proved. If they do not, the hypothesis can instead be disproved,
and a weakness in the system has been found.

2.5 Principles of Chaos Engineering
Several pieces of previous work on Chaos Engineering mention best practices for how to im-
plement Chaos Engineering, and some of them have been gathered in this section. Firstly,
Chaos Experiments should according to the Principles of Chaos community website be car-
ried out directly in the production environment, that is, directly on production tra�c [2].
The point of this is to ensure the authenticity and relevance of the experiments. The alterna-
tive, to run Chaos Experiments in testing environments, can be inferior since a testing envi-
ronment does not always capture all aspects of a complete system running in production [10].
For instance, there can often be di�erences between a test system and the production sys-
tem when it comes to how real users of the system behave compared to synthetic users [16].
However, it can also be considered to be of uttermost importance to start small when imple-
menting Chaos Engineering. According to Tammy Bütow at Gremlin, one way of doing this
is incrementally, by starting in a demonstration environment, then moving on to a staging
environment, and finally, when su�cient confidence in the discipline of Chaos Engineering
has been obtained, moving to the real production environment [18].

Another principle that is mentioned in Chaos Engineering literature is to minimize the
blast radius of Chaos Experiments. The book titled Chaos Engineering, written by Casey
Rosenthal et al., sees that this includes several aspects, for instance running experiments
on only a subset of the system’s users to ensure that not too many users are a�ected if an
experiment results in a failure [7]. Another aspect that ismentioned regardingminimizing the
blast radius of an experiment is the ability to abort a running experiment when it is noticed
that it causes a failure. The termination can be automatic and the need for it can be detected
in the process of monitoring the metrics that define the system’s steady state. Note that
minimizing the blast radius is related to the business of the enterprise conducting the Chaos
Experiment; minimizing the blast radius seeks tominimize the e�ects on the business, which is
not necessarily equivalent to minimizing the e�ects on the technology under test [12]. Apart
from running the Chaos Experiment on only a subset of users and being able to abort the
experiment, another way of minimizing the blast radius can be to conduct the experiments
at times when software engineers aremost likely to be able to quicklymend any unintentional
damage [4].
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When conducting Chaos Experiments manually, they tend to require quite some re-
sources in the form of time and can therefore become expensive. Therefore, another Chaos
Experiment principle can be to automate Chaos Experiments to run continuously [2]. It is,
for instance, possible to integrate the Chaos Experiments into the pipeline for continuous
integration and continuous deployment, which enables the automation of the production
testing as a post-deploy step [19].

Also, it has been said to be important that Chaos Engineers view the system as a single
unit when conducting the experiments, regardless of it being distributed and consisting of
a great variety of running services [16]. Since the steady-state metrics are defined based on
the system’s output and not its internal attributes, the system boundary is where the system
is observed during the experiment. This can have the consequence of putting the focus dur-
ing an experiment on whether the system works or not, not the internal workings of how it
works [2].

When it comes to the real-world events which are simulated in the system, the number
of possible events can grow too large to be able to consider all of them. Therefore, it can be
necessary to prioritize between the events to decide which ones to simulate. This prioritiza-
tion can be based on di�erent aspects, for instance the possible impact an event could have
on the system or some estimated frequency of how often it occurs naturally [2].

To summarize, these are some best practices for how to implement Chaos Engineering
which have been mentioned in previous work on the discipline:

• Run experiments in production

• Start small and increase incrementally

• Minimize the blast radius of the experiments

• Automate experiments to run continuously

• Observe the system at its boundary

• Prioritize experiments based on impact or frequency

2.6 Chaos Maturity Model
The Chaos Maturity Model (ChMM) provides a way of mapping how extensively Chaos Engi-
neering is implemented in an organization. Themodel consists of twometrics: sophistication
and adoption. These two form a map where sophistication commonly is located on the y-axis
and adoption on the x-axis. By drawing the map and locating where the Chaos Engineering
practice of an organization lies, it is possible not only to decide whether or not an improve-
ment of the Chaos Engineering practice is needed, but also in which direction, or along which
axis, one’s e�orts for such an improvement best are focused [7].

Sophistication of Chaos Experiments refers to their validity and safety, meaning that un-
sophisticated Chaos Experiments are dangerous to the organization and thus potentially in-
valid. Four levels of sophistication can be distinguished, defined by their level of commitment
in a number of areas: the environment of the experiment, the degree of automation, the met-
rics that describe the steady state of the system and the complexity of the events that are
simulated. The four levels are:
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1. Elementary. Experiments are not run in production and they are conducted manually.
The metrics describing the steady state of the system are technical. Simple events are
simulated.

2. Simple. Production-like tra�c is used, for instance a replay of the real tra�c. The
experiments are executed automatically, but monitoring and potential terminations
are manual. Aggregated business metrics are included. Events are expanded, including
events such as network latency.

3. Sophisticated. Experiments are run in production. Monitoring and termination are
automated. Business metrics are disaggregated and used together with technical met-
rics. Events are combined to create complex failures.

4. Advanced. Experiments are run in every step of development, in every environment.
The design of the experiments is automated. Business metrics are disaggregated and
used together with technical metrics. Events are expanded, including events such as
changing user patterns.

Adoption of Chaos Experiments refers to how extensively they reach in an organization.
Four levels of adoption can be distinguished, defined by their level of commitment in a num-
ber of areas: the sanctioning of the experiments, the number of systems that are covered by
the experiments and the level of organizational awareness of Chaos Engineering. The four
levels are:

1. In the Shadows. Small and unstructured groups perform unsanctioned experiments.
Few systems are covered. There is no or low organizational awareness.

2. Investment. Experiments are sanctioned in the form of part-time resources. A few
critical systems are covered. There is an interest for Chaos Engineering in multiple
teams.

3. Adoption. Experiments are sanctioned in the form of a full-time team. Most critical
systems are covered. Stakeholders are invited to and participate in the experiments
when they run.

4. Cultural Expectation. Chaos Engineering is part of the overall engineering culture.
All critical systems and most noncritical systems are covered. Participation in the
experiments is required.

Figure 2.1 shows an example of what a ChMM map can look like, based on Chaos Engi-
neering at Netflix and which Chaos Engineering tools the organization relies on. The map in
the figure includes three tools: Chaos Monkey, Chaos Kong and Chaos Automation Platform
(ChAP). Their placement in the diagram was made by Netflix engineers based on the status
of using that specific tool in the Chaos Engineering practice in their organization in 2017,
aiming to give an example of how the model can be applied [7]. As can be observed in the
figure, ChaosMonkey was at the time highly sophisticated and adopted, whereas Chaos Kong
was slightly less advanced in both areas but still in the top-right quadrant of the map. ChAP
had reached a reasonably high level of sophistication but was still “In the Shadows” when
it came to adoption. The arrow in the figure shows the desired outcome of Netflix’s next
planned e�orts in extending the usage of the tool. This type of insight is what the ChMM
can assist in obtaining.
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Figure 2.1: The Chaos Maturity Model applied to Netflix in 2007.

2.7 Advantages and Challenges with Chaos
Engineering

This section presents some possible advantages which can be observed by practicing Chaos
Engineering, as well as some drawbacks and challenges with the practice.

2.7.1 Advantages with Chaos Engineering
The fundamental advantage of carrying out Chaos Engineering can be said to be that it has
the ability to identify weaknesses before they appear as real incidents and thus reduce the
number of incidents which actually occur [20]. In turn, identifying incidents early can have
several benefits on its own, and it can prevent not only user frustration but, by extension,
economic losses as well. Also, it is generally easier for developers to fix a problem in a piece
of code they just worked on as opposed to resolving problems in older code [19].

Chaos Experiments can further help engineers to better understand the systems they
develop. Resolving real incidents can, naturally, provide this knowledge as well, but Chaos
Engineering is a way of receiving the same types of insights without causing the company any
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real pain [12]. Engineers may also learn which parts of the system that are the most critical
ones, and which are less critical [20].

Since Chaos Experiments ideally are performed in the production environment, they
also provide a sense of realism in the testing according to the previously referenced Chaos
Engineering book written by Rosenthal et al. [7]. This gives a type of external validation,
and questions such as whether or not the results of the experiment fully generalize to the
phenomenon that is really of interest are completely eliminated.

Furthermore, Chaos Engineering can hopefully lead to a shift in the engineering culture
of an enterprise, causing engineers to develop more resilient systems from the start. Design
conversations tend to begin to center on what happens when a component of a system fails,
as opposed to what happens if the component fails [20].

Finally, Chaos Engineering is applicable even for large-scale and complex systems, due to
its empirical nature. It is possible to experiment on such systems even when other types of
testing might be di�cult to carry out [7].

2.7.2 Challenges and Drawbacks With Chaos Engi-
neering

As Chaos Experiments observes a system at its boundary, Chaos Engineering has been crit-
icized for neglecting the majority of the system, which represents the way it operates inter-
nally, when testing it [10]. Also, it has been pointed out that fault injection testing never is
enough on its own to improve system resilience [21]. It can take a lot of e�ort to analyze the
results of Chaos Experiments, and although the experiments can sometimes be excellent in
identifying systemic weaknesses, they provide nothing in terms of fixing them.

An obvious risk when conducting Chaos Experiments is the possibility of causing nega-
tive impact that proves to be di�cult to undo. If an experiment leads to a failure because the
resilience of the system was overrated in advance, this can in the worst-case scenario cause
severe harm [20].

Challenges withChaos Engineering include the engineering e�ort of implementing it [20]
as well as making it su�ciently systematic to cover enough scenarios [7]. An unsystematic
approach can cause the amount of information that can be extracted from the experiments
to decrease and is thus suboptimal.

2.8 Continuous Experimentation
Conducting experiments in production is not unique to Chaos Engineering. A similar dis-
cipline of experimentation is that of Continuous Experimentation, which is a general term
referring to conducting experiments iteratively [22]. The disciplines of Chaos Engineering
and Continuous Experimentation are similar, but their aims are di�erent; where Chaos En-
gineering aims to evaluate and improve the resilience of a software system, Continuous Ex-
perimentation aims to evaluate di�erent implementations and thus help select the superior
one.

Continuously experimenting with a software system is one way of becoming more data-
driven when developing software, as is clear when comparing it to the alternative of per-
forming data analysis in an ad-hoc manner [23]. It is a discipline with a growing popularity,
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and the number of organizations using not only customer data but also product data to sup-
port product decisions is increasing. The challenge of the discipline is to not just obtain the
relevant data, but to also utilize it e�ciently and thus be truly data-driven. The number of
organizations who overcome this challenge remains to be low, regardless of the popularity of
the discipline.

An elemental practice which can be conducted to receive continuous user feedback is to
run two variants of a software system to di�erent subsets of the total set of current users,
which is known as A/B testing [22]. By measuring the outcome of such experiments in a sys-
tematic manner, it is possible to conclude which of the variants is the superior one and then
select it for implementation. In other words, the software development can, by following this
practice, become guided by evidence provided by real, authentic users. Such experiments are
especially useful for software systems providing a service to a large amount of users, and exam-
ples of famous companies conducting A/B testing include Facebook, Google and Microsoft.

2.9 Application Containerization
When the number of users of a software system increases, it is vital for the system to be
scalable. Scalability can be defined as the ability of a system to handle increases not only in
number of users, but also in workload, system size and geographic area the system needs to
cover [8]. There are two main approaches of improving the scalability of a software system,
while at the same time ensuring that overhead costs are minimized and that the application
can run on a variety of di�erent platforms [24]. Those two approaches are virtualization and
application containerization.

The fundamental idea of virtualization is to split computer hardware into multiple logical
units called virtual machines [25]. Each virtual machine has its own amount of memory,
storage and processing power and behaves just like an independent computer, despite the fact
that it actually is only part of one computer. Using this technique it is possible to increase
and decrease the resources of a specific virtual machine based on current needs. For instance,
it is possible to increase the processing power of a virtual machine on which a suddenly
popular software system is running, thus making the system able to handle the workload of
an increased amount of users. One drawback of using virtual machines, however, is that every
virtual machine needs a copy of an entire operating system to function, meaning that they in
total require significant amounts of computer resources [24]. By extension, this also makes
virtual machines complicated to move.

When using containerization to deploy applications, there is no need to launch a virtual
machine for each application. Instead, everything the application needs to run, including its
files and libraries, is packaged in what is called a container. Multiple containers can then be
deployed on a single virtual machine and share its operating system with each other, making
them lightweight and quicker to scale up [24]. Containers are thus more suitable than virtual
machines when the number of total servers used for deploying needs to be minimized.

The dominating tool for application containerization is called Docker, which is used for
packaging and provisioning containers as well as running them. However, it is common to
combine the use of Docker, which can be described as a containerization tool, with a con-
tainerization management tool. While the containerization tool provides the fundamental
technology of containerization, a containerizationmanagement tool can be used to automate
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the processes of deploying the containers, scaling them up and down and balancing the loads
between them. The dominating management tool for these processes is called Kubernetes.
This tool can automatically scale applications, which is useful for instance when the workload
of an application is di�erent on weekdays and weekends. It would then be unnecessary to
maintain the same amount of resources during the entire week, but to manually increase and
decrease them would be too labor-intensive. Kubernetes also has a variety of other features,
such as automatically orchestrating storage, rolling out updates in a progressive manner and
restarting containers upon failures [26].

The architecture of Kubernetes is illustrated in Figure 2.2. As can be seen in the rightmost
part of the figure, the containers live inside what is called pods. A Kubernetes pod can be
described as a logical collection of all containers needed for an application to work, meaning
all containers which need to interact with each other in order for the application to be able to
perform its intended overall function. Pods are hosted inside of nodes, which are the actual
worker machines, either physical machines or virtual machines.

The desired configuration of a specific deployment can be described in a file, called the
application deployment file, which can then be fed to the Kubernetes Master as illustrated
in Figure 2.2. In this file, it is possible to configure the pods and specify the desired num-
ber of replicas of each pod. It is then the role of the Master to decide how to divide these
pods between nodes and schedule them correctly, and to subsequently ensure that the correct
number of replicas of each pod is maintained at all times.

In relation to Chaos Engineering, there are many tools which simulate chaos in Docker
and Kubernetes environments, which is clear when studying Table 4.1 in section 4.1. The
tools commonly define their attacks in Docker and Kubernetes terminology, for instance in
terms of which containers, pods and nodes to target during a Chaos Experiment.

Application
deployment

file

Kubernetes
Master

Node 1
Container Container Container Container

Node 1
Pod 1 Pod 2 Pod 3 Pod 4

Node 2

Node 3

Figure 2.2: A simplified illustration of the Kubernetes architecture.

2.10 Cloud Service Providers
Apart from Chaos Engineering tools for Kubernetes environments, some tools are specified
to be of special suitability when using certain cloud service providers. A cloud service provider is
a company which provides other organizations with some cloud computing component [27].
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The term cloud computing refers to using the Internet to store data in and access data from a
remote server, as opposed to storing the data on the hard disk of the computer in use [28].
This can be reformulated as renting computer power and storage from a remote data center,
paying as you go. There are three typical types of cloud computing components which can
be o�ered by a cloud service provider: infrastructure as a service (IaaS), software as a service
(SaaS) and platform as a service (PaaS) [27]. In the IaaS case, what is delivered is an infras-
tructure component such as a server or a storage unit. For SaaS providers, the o�er instead
includes some business technology, in the form of a software. Finally, PaaS providers deliver
tools usually aimed for application development. Cloud service providers often deliver their
services in the form of a subscription, commonly paid for twelve or four times per year.

Three cloud service providers dominate the market today, and they are also the ones
which are most frequently mentioned as suitable providers in the documentation of Chaos
Engineering tools. They are Amazon, Microsoft and Google, o�ering Amazon Web Services
(AWS), Microsoft Azure and Google Cloud Platform (GCP). Which one to choose depends
heavily on the workload and other characteristics of a specific project, and it is therefore
common for companies to benefit from using multiple providers in di�erent parts of their
organizations [29].

AWS was released in 2006 and provides services which can be likened to building blocks,
designed to be able to cooperate with each other. The services are categorized into several
broad categories, including computing, security and database services [30]. The computing
services include EC2, which sets up remote virtual machines that can be grouped into what is
called ECS clusters. The EC2 instances can also be given block-level storage with the service
EBS. The computing services also include Lambda, which is a serverless service for running
functions in the cloud, and EKS, which allows for using Kubernetes in AWS environments.
Other types of services include IAM for managing user identities and accesses, CloudWatch
for monitoring AWS environments and triggering alarms when necessary, RDS for providing
relational databases in the cloud and ELBV2 for balancing loads. EC2 instances and ECS
clusters are common targets of Chaos Experiments in AWS environments, as are instances
and clusters of the other mentioned services above.

Microsoft Azure was released in 2010, four years after AWS. Plausibly related to this is
the fact that AWS o�ers over 200 services while Azure o�ers approximately half of that [31].
However, Microsoft Azure is easy to integrate with other Microsoft tools, making it suitable
for organizations who already use numerous Microsoft components. As with AWS, Azure’s
services are categorized into broad categories, including computing, storage and databases.
Two of the computing services are Azure Virtual Machines (VMs), hosting Windows and
Linux virtual machines, and Azure Virtual Machine Scale Sets (VMSS), used for scaling the
hostedWindows and Linux virtual machines, which lets the user create and manage multiple
virtual machines that are identical to each other and at the same time balance the loads
between the virtual machines. Similar to AWS EKS, another computing service that Azure
provides is Azure Kubernetes Servcice (AKS), which allows users tomanage clusters of virtual
machines on which containerized services run. VMs, VMSS andAKS can all be experimented
with using Chaos Engineering. When comparing Azure to AWS, it can be concluded that
AWS is more commonly used than Microsoft Azure, having a market share of around 30 %
compared to Microsoft Azure’s 16 %. However, when it comes to growth rate, the numbers
are reversed. Microsoft Azure has shown an annual growth rate of 75 % as of 2019, whereas
the same number for AWS is 41 %.
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GCP was made publicly available in 2011 and is thus the youngest, and also smallest in
terms of number of services and market share, provider of the three. It o�ers around 60
services and has a market share of approximately one tenth of the total market [31]. It is,
however, the provider with the highest annual growth rate, namely 83 % as of 2019.

The three providers are similar to each other in various ways, not excluding functionality
and suitable use areas. They all come with their own sets of benefits and drawbacks, making
it impossible to distinguish a universal provider to use in all cases. This contributes to the
fact that which provider to choose is highly dependent on the characteristics of a specific
project and can therefore explain why organizations often choose to use several providers in
their operations.
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Chapter 3

Research Approach

This chapter contains a description of the project’s research approach. The approach has a
problem-solving nature, meaning that it aims to propose a solution for a problem which has
been experienced, which, furthermore, is the aim of most software engineering research [32].
The research paradigm followed during the project was the design science paradigm, which
consists of three types of research activities: problem conceptualization, solution design and
empirical validation [33].

Problem conceptualization is key in design science research since design science research is
focused around real-world problems. The methods which are performed during the prob-
lem conceptualization aim to generate an understanding of a general problem in terms of a
number of so-called problem instances, or, in other words, concrete real-world examples of
how the general problem has materialized. A problem conceptualization is not equivalent
to a problem description, since a conceptualization is based on a specific solution envision-
ing and contains aspects such as characterizing the domains of both the problem and the
solution. In this case, the envisioned solution is the framework for Chaos Engineering.

During the solution design, the problem is mapped to a solution. This is a creative activity
which should not be separated from the problem conceptualization, which aligns well with
the fact that the problem conceptualization is carried out based on an envisioned solution.

Finally, the last research activity, empirical validation, consists of evaluating whether or
not the proposed solution works in a real-world context, or, at least, a context similar to the
real-world one. The activity thus aims to determine whether or not the proposed solution
addresses the problem successfully.

This chapter is structured as follows. Section 3.1 describes the methods which were all
used to work towards the problem-solving goal of the design science research paradigm, and
how these methods relate to the three research activities described above is illustrated in
Figure 3.1. Section 3.2 then lists the delimitations which limited the scope of this project.
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Problem Conceptualization Solution Design

Methods:

Literature Study
Interviews (ICA IT, Why Chaos
Engineering)

Methods:

Interviews (Chaos Engineering Areas)
Tool Evaluation
Demonstration + Questionnaire

Empirical Validation

Methods:

Applying the Framework
Evaluation Exercise

Figure 3.1: The methods which supported the problem conceptual-
ization, solution design and empirical validation research activities.

3.1 Methods
This section describes how the methods in Figure 3.1 were carried out. Subsections 3.1.1
through 3.1.6 describe one of the six methods each.

3.1.1 Literature Study
A literature study was conducted in the area of Chaos Engineering as part of the problem
conceptualization, in order to examine the current knowledge of the practice. The purpose
was to gain an understanding of Chaos Engineering and find information on how it can and
should be implemented, and at the same time generate a general sense of context in terms of
how the discipline relates to other aspects of software testing. The goal was in other words to
discern the core principles and definitions needed to give a relevant introduction to Chaos
Engineering, as defined by the author of this report, while keeping the aim of the project as
a whole in mind. This means that the aim was not to cover and summarize all existing pieces
of literature on Chaos Engineering, partly because of the project’s time limitation and partly
because the literature study was simply the introductory part of the project, not its main
focus.

The literature used in this literature study was initially found by searching the databases
included in the LundUniversity Libraries, using the terms “Chaos Engineering” and “Software
Chaos Engineering” and limiting the subjects of the results to subjects related to software en-
gineering. When a piece of literature describing Chaos Engineering in some way was found,
its abstract was read in order to determine whether or not its contents were relevant to use
in the project. Here, pieces of literature were deemed irrelevant if they described implemen-
tations of interdisciplinary Chaos theories in general engineering fields or if they described
specific Chaos Engineering tools or systems. These tool or system descriptions were instead
saved to facilitate the start of the project’s tool evaluation, described in subsection 3.1.3. If
the decision regarding the relevance of a piece of literature could not be made by reading
only the abstract, the conclusion was screened as well. The pieces of literature which were
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considered to be useful after the initial screening were read and summarized, before they
were given a unique ID and their general information, including title, authors and dates of
publication and retrieval, was logged using the reference management tool RefWorks. The
unique ID’s were used to maintain a traceability throughout the project and to more easily be
able to refer to the pieces of literature, without confusing them with each other. After each
summarization, backward snowballing was performed, meaning that the references of the
found piece of literature were screened in hopes of discovering additional publications and
authors involved in subjects related to Chaos Engineering. Finally, the set of summaries was
compiled into the information found in sections 2.3 through 2.7. For a list of the literature
used in this report, see References.

3.1.2 Interviews
Interviews were held with various stakeholders at ICA. The interviews were organized in
terms of the following themes: ICA IT, Why Chaos Engineering and Chaos Engineering Ar-
eas. For each theme, a number of people were interviewed to gather information relevant
to that theme. Table 3.1 lists the people who were interviewed along with a description of
their role at ICA and the date and theme of the interview. The structure of the interviews
di�ered for the di�erent themes, which is described below. However, common for all inter-
views was that the interviewees’ answers were written down on a computer while the inter-
viewees spoke, and that they at the end of the sessions were given a chance to validate how
their answers had been perceived. More information on this and the overall structure of the
interviews can be found in Appendix A.

The theme ICA IT aimed to gather information on how the IT department at ICA oper-
ates and which services it delivers. The interviews were also held to receive a first insight into
the problems the IT department has su�ered and they were, in other words, part of the prob-
lem conceptualization activity. Since the interview theme had a main purpose of giving an
orientation to the ICA IT department, no e�ort in making the interviewee selection as rep-
resentative as possible was made and only two people were interviewed. These interviewees
were selected based on recommendations given by interviewees of other interview themes or
other employees who came in contact with the project for one reason or another. The in-
terviews were openly structured with question areas according to the interview guide found
in Appendix A. The majority of the findings from the ICA IT interviews is not included in
this report, since both interviews focused solely on ICA’s operations and IT department in a
way which was unrelated to a possible inclusion of Chaos Engineering. They were, however,
useful when it came to getting familiar with the workplace, and they generated several useful
contacts in the organization. The parts of the interview results which were included in the
report are presented in section 1.1.

The themeWhy Chaos Engineering aimed to gather motivation for why Chaos Engineering
should be implemented at ICA by qualitatively examining the need for an improved software
resilience. The selection of interviewees was based on stratification in an attempt to cover
some of the variation in the population, and the categories used were “general employee”—
“incident employee”. An “incident employee” interviewee was defined as a person who is
directly involved in solving IT incidents at ICA, whereas a “general employee” has other
work tasks in the company’s IT department. The interviews were semi-structured with ques-
tions according to Appendix A. In relation to the design science research paradigm, theWhy
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Table 3.1: A list of the people who were interviewed during the
project along with their role at ICA, the date of the interview and
the theme of the interview. Names have been omitted to establish
anonymity and the interviewees have instead been given unique IDs.

Interviewee Role Description Date Theme
P1 General Employee 2019-12-05 Why Chaos Engineering
P2 Incident Employee 2019-12-10 Why Chaos Engineering
P3 Developer 2019-12-16 Chaos Engineering Areas
P4 Incident Employee 2019-12-12 Why Chaos Engineering
P5 Scrum Master 2019-11-08 ICA IT
P6 IT Architect 2019-11-18 ICA IT
P7 Change Manager 2019-12-12 Chaos Engineering Areas
P8 Test Engineer 2019-12-11 Chaos Engineering Areas
P9 Developer 2019-12-16 Chaos Engineering Areas
P10 General Employee 2019-11-11 Why Chaos Engineering
P11 Solution Architect 2019-02-17 Chaos Engineering Areas
P12 Developer 2019-02-17 Chaos Engineering Areas

Chaos Engineering theme was part of the problem conceptualization. Since the aim of the
interviews was to qualitatively examine the need for Chaos Engineering, the results were only
processed by categorizing specific problem incidentsmentioned by the interviewees into gen-
eral categories of reasons why an improved resilience was considered to be of value. No e�ort
in quantifying these results were made, due to the nature of the interviews. The findings
from the Why Chaos Engineering interviews are presented in section 6.4 and discussed in
section 7.1.

The theme Chaos Engineering Areas aimed to gather information on where at ICA Chaos
Engineering is suitable. It was therefore part of the solution design activity. The selection of
interviewees was based on the results of the questionnaire described in subsection 3.1.4. The
interviews were semi-structured with questions according to Appendix A. The findings from
the interviews were used to identify individuals who would be interested in participating
in the research methods “Applying the Framework” and “Evaluation Exercise”, described in
subsections 3.1.5 and 3.1.6. No other findings from these interviews are presented or discussed
in this report.

3.1.3 Tool Evaluation
There is currently a wide range of tools for Chaos Engineering and they di�er when it comes
to a range of factors, for instance functionality, prerequisites and age. Therefore, some of the
available tools were evaluated as part of the project’s solution design, with the aim of gaining
insight into which tools were appropriate components of the Chaos Engineering framework.
The tool evaluation was performed in a process containing four phases: tool characteriza-
tion, tool selection, tool experimentation and tool comparison. Figure 3.2 illustrates how the
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phases were related to each other, the actual activities they contained and the outputs they
generated.

1. Tool characterization

Research available tools

Tool list

Find information about each tool's
functionality and the application types

to test with each tool

Extended
tool list

3. Tool experimentation

Study documentation
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locally and explore functionality on
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4. Tool comparison

Compare all experimentation protocols

2. Tool selection

Eliminate tools used to test application
types not developed at ICA

Eliminate tools with prerequisites
which cannot be satisfied

Reduced
tool list

Map between tools,
functionality and

environments

Eliminate overlapping and redundant
tools

Eliminate tools with only a subset of
the functionality of another tool

Figure 3.2: The tool evaluation process. Rectangles symbolize activ-
ities and circles symbolize outputs.

The tool characterization phase started by researching available Chaos Engineering tools,
an activity whichwas partly initialized during the literature study since anymentionedChaos
Engineering tool in the studied literature was included in the reference summaries described
in subsection 3.1.1 and references describing single tools were saved for this purpose exclu-
sively. Also, additional tools were found by using the search string “chaos engineering tool
OR chaos engineering open source tool OR oss chaos engineering tool OR <tool name> al-
ternatives OR chaos engineering resources”, where <tool name> was replaced with names
of tools which had already been found. The purpose of this was to generate useful results
of two types. The first type was the actual tools, in terms of links to specific Chaos Engi-
neering tool repositories or, in some cases, websites describing a Chaos Engineering tool.
The second type was repositories summarizing other Chaos Engineering resources, such as
https://github.com/dastergon/awesome-chaos-engineering. When compared to
traditional search engines, such as Google, testing to use the search string to search the Lund
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University Libraries databases proved unsuccessful in terms of the number of results it gen-
erated, which is why the Google approach was favored in this case. All found resources were
subsequently screened in hopes of finding references to other tools. The activity generated
a list of tool names and short tool descriptions. Then, the posts on the list were extended
by adding information about what the tools can do and where the tools are applicable, in
terms of the applications they can be used to test. Such information was found by reading
the introductory parts of the tools’ documentation and browsing the information on the de-
velopers’ websites. Finally, the tool list was homogenized to ensure that tools were described
in similar and cohesive terms. This was done by creating categories of tool functionalities
and application types to test with the tool, respectively, and categorizing each tool into one
or more categories of both types. The extended tool list and these categories can be found in
section 4.1.

Next, during the tool selection, the extended tool list was used to select tools for further
evaluation. This selection started by removing tools used for testing application types which
are not developed at ICA. Then, tools with prerequisites which for some reason would be
impossible to satisfy given the current circumstances at ICAwere also removed. For these two
types of eliminations, an IT architect at ICA was consulted. Finally, the categories defined
during the tool characterization phase were used to find overlapping tools, before every tool
with only a subset of the functionality of another tool was eliminated. All eliminations are
described and motivated in section 4.2, for the sake of transparency. The tool selection phase
generated a reduced tool list as output.

For every tool on the reduced tool list, the tool experimentation phase was then iterated.
The tool experimentation aimed to fill out the protocol in Appendix B for every tool on the
reduced tool list. During this phase, a larger part of the tool’s documentation, or, in most
cases, the tool’s entire documentation, was studied. If it was possible and needed, the tool
was then installed locally and the types of attacks the tool could perform were explored on
an arbitrary sample software. Here, “needed” refers to two things: either it was needed to
install the tool because it was impossible to fill out every field of the protocol in Appendix B
based on the documentation only, or it was needed because it was decided that the tool’s
entire functionality had not yet been uncovered or understood. “Possible” refers mainly to
word “locally” in the install activity, since not all tools are to be used in a local environment.
Due to the time limitation of the project, it was declared unfeasible to set up appropriate
environments for all tools on the reduced tool list, which for instance would include cloud
environments and environments for containerized applications. The results of the tool ex-
perimentation phase are presented in section 4.3.

Finally, during the tool comparison phase, the experimentation protocols were analyzed to
find similarities and di�erences between the tools. Tools which were found redundant from
an ICA perspective were eliminated, which is described and motivated in section 4.4. Here,
the word “redundant” refers to a tool with a functionality that is a complete subset of the
combined functionalities of some other tools. The priority was to eliminate as many tools
as possible without removing any piece of functionality, in order to generate a framework
that was as wide as possible in terms of functionality and as simple as possible in terms of
usability. The output from the phase was a map, illustrating which tools to use for which
purposes. This map was also the final output of the entire tool evaluation activity, and it can
be found in section 4.4.
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3.1.4 Demonstration and Questionnaire
On repeated occasions, a demonstration of Chaos Engineering was held for di�erent stake-
holders at ICA. The purpose of this was two-fold. Firstly, it aimed to give an introduction
to the discipline to relevant ICA employees, thus creating an awareness of and interest in
the subject. By holding the demonstrations for people who were not familiar with the con-
cept of Chaos Engineering in advance, they also became more likely to be able to help with
the project and more suitable as future interviewees. Secondly, during and after the demon-
stration, the participants were asked to fill out a questionnaire, thus giving their answers to
questions of importance related to the project.

The demonstrations started by defining Chaos Engineering and Chaos Experiments, af-
ter which an introduction to the Chaos Monkey tool was given. To facilitate the demonstra-
tions, an open source example application had been downloaded and slightly modified prior
to holding the demonstrations. The application was a Spring Boot application built around
the concept of microservices and is available at https://examples.javacodegeeks.com/
spring-boot-microservices-example/. The modifications made to the original appli-
cation consisted of adding a dependency to the Chaos Monkey for Spring Boot tool, adding a
property to enable a required Chaos Monkey profile when running the application and mak-
ing it possible to control the tool using HTTP requests. Finally, the main part of the demon-
stration consisted of applying the Chaos Monkey for Spring Boot tool to the microservices
application to simulate three problems: latency, thrown exceptions and random termination
of a service. The demonstration aimed to show what a tool for Chaos Engineering could
do, not what a complete Chaos Experiment might look like. Therefore, the simple Spring
Boot application which was used had no resilience mechanisms to be able to withstand the
problems which were simulated during the demonstration. Instead, the problems were fully
visible to the user, giving an illustration of what the tool was actually causing.

The accompanying questionnaire was handed out before the demonstration to the people
who were physically present and sent out after the demonstration to the people who partici-
pated remotely over a video call. The questionnaire consisted of five questions, three regard-
ing where at ICA Chaos Engineering might be applicable and two regarding how extensive
the respondent’s perceived benefits of Chaos Engineering were. The respondents were also
free to give any other information they thought relevant or helpful. The five questions are
given in their full form in Appendix C. The two questions regarding the perceived benefits
of Chaos Engineering (questions 4 and 5 in Appendix C) were also asked during interviews
belonging to the Why Chaos Engineering and Chaos Engineering Areas interview themes, if
the interviewee had not already given their answer in connection to one of the demonstra-
tions. The three questions regarding where at ICA Chaos Engineering might be applicable
(questions 1 through 3 in Appendix C) were asked and more thoroughly discussed during
interviews belonging to the Chaos Engineering Areas interview theme.

The results of the two questions regarding the perceived benefits of Chaos Engineering
are presented in section 6.3 and simply aim to give an indication of the employees’ attitudes
towards Chaos Engineering. These results are then discussed in section 7.1. The results of
the three questions regarding Chaos Engineering areas helped identify interviewees for the
Chaos Engineering Areas interview theme and also helped formulate one of the project’s
delimitations, and they are therefore presented in section 3.2. Since these results had an
impact on the contents of the framework, the “Demonstration andQuestionnaire” was placed
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in the solution design research activity.

3.1.5 Applying the Framework
To build a useful and relevant framework, and to attain an agile and incremental way of
working, early versions of the framework were applied to sample ICA applications as it was
being built. The purpose of this was to test how feasible the recommendations presented in
the framework were, and also to further demonstrate Chaos Engineering to stakeholders at
ICA. Applying the framework was furthermore a way to collect feedback from the people
who might ultimately be using the framework to adopt the principles of Chaos Engineering
to test their applications. In relation to the design science research paradigm, the method of
applying the framework was placed in the empirical validation research activity.

The method of applying the framework was carried out by creating proposals for ac-
tivities supporting the implementation of Chaos Engineering and then testing to apply the
activities to software applications developed at ICA. This was done at meetings with ICA
employees who work with the chosen application in some way. At the meetings, the partici-
pants were instructed to work through the activities while being observed, so that feedback
could be collected regarding the time it took to finish the activity, the ease with which the
activities were understood and how well they produced the results they are intended to pro-
duce. This observation was obviously subjective and qualitative, but the participants also got
to give their own feedback regarding the framework’s usability orally during and after the
meeting. When it came to selecting the applications and participants, no e�ort was made
in covering any specific variation in the total number of ICA applications or employees.
Instead, interviewees or people who had been recommended by an interviewee during the
Chaos Engineering Areas themed interviews were contacted. The applications considered
were, however, limited to the ones which make up ica.se and ICA’s e-commerce. This was
one of the project’s delimitations, which will be further described in section 3.2. The findings
from applying the framework are presented in section 6.1 and discussed in section 7.2.

The initial intention was to apply all activities of the framework to some ICA application
at least once, to validate the feasibility of all proposed activities. This required interest and
time from the development teams of the ICA applications in question, and it was found
that there was no lack of interest but unfortunately a great lack of time, due to a number of
reasons. The activity took place in the weeks before Easter, which, asmentioned in section 1.1,
are always stressful for ICA, but the year the project took place this was particularly true due
to an unforeseeable event (the outbreak of the corona virus, SARS-CoV-2) which drastically
increased the general demand for groceries. Also, a particularly severe incident caused ica.se
to go down for several hours during the same time, which shifted all focus away from Chaos
Engineering for the time being. This forced the activity of applying the framework to stop
when the first activity of the framework, the discovery activity, had been applied three times
and the first step of the second activity of the framework, the implementation activity, had
been applied once. The remaining activities were thus left unevaluated by this method.

3.1.6 Evaluation Exercise
The final activity of the project was an evaluation exercise, which was part of the empirical
validation research activity. The exercise was prepared by planning a simulation of Chaos
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Engineering, in which participants would be able to try to apply the framework and hope-
fully both understand and criticize its contents, regardless of previous experience in software
development. The simulation was prepared in the following way: real-world equivalents of
a software application and Chaos Engineering tools were defined to be a tower of various
buildingmaterials and envelopes filled withmaterials which aimed to bring the towers down.
During the exercise, the idea was to liken the participants with development teams and let
them build a tower (a software application) and use the framework to decide which of the
items in the envelope (which of the Chaos Experiments) were suitable to test the towers with,
based on the same logic as the logic behind the recommendations of the framework. Then, the
participants were to use their findings when attempting to bring their towers down (and, in
other words, test their towers’ resilience) before finding improvement opportunities in how
to make them more resilient. Prior to the exercise, the di�erent parts of the framework had
been converted into simplified versions which were suitable for towers rather than software
applications. The real parts of the frameworkwere to be presented during the exercise as well,
and hopefully the simulation could give the participants a context in how to use them which
could make it easier to understand and criticize them. After holding the Chaos Engineering
Areas interviews, it was decided to invite participants with experience in developing ways
of working and processes, and therefore, people working as process managers, or in direct
contact with process managers, were invited to the exercise.

Unfortunately, the ICA o�ce where the exercise was to take place was closed during
the project’s last weeks, due to the same unforeseeable event as the one referenced in the
previous subsection (the outbreak of the corona virus, SARS-CoV-2). Therefore, the exercise
could not take place in the form it was initially planned. Instead, the participants got to
participate over a video call, and the task of applying the framework had to be explained to
the participants rather than letting them apply the framework themselves. Their feedback
was then collected digitally; the participants were encouraged to give feedback orally during
the video call, or send it in via email if that was preferred.

After the exercise, the idea was to use the opinions of the exercise’s participants as a foun-
dation to make the final changes to the framework. The results of the method are presented
in section 6.2 and discussed in section 7.2.

3.2 Delimitations
In order to limit the scope of the project, the following delimitations were made:

• Only open source tools were considered during the tool evaluation. The reason for this
was the project’s time span of 20 weeks.

• The applications at ICAwhichwere consideredwhen building the frameworkwere the
ones which make up ica.se and ICA’s e-commerce. For instance, the framework was
never applied to any other application during the project and the tools were during the
tool evaluation evaluated based on the infrastructure of these applications only. The
results leading to this delimitation came from asking IT professionals at ICA where
the principles of Chaos Engineering are best suited in the organization, in terms of
the company’s software applications. There were clear trends in the given answers. 23
professionals were asked, out of which 18 chose to give an answer to the question. The
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respondents were allowed to state any number of software applications, resulting in a
total of 15 unique answers appearing. Out of these, six answers appeared more than
once. The six reappearing answers had di�erent degrees of popularity. Four of the
answers were present in between 11 % and 22 % of the answers, which can be considered
low in comparison to the remaining two answers, which were precisely ica.se and
ICA’s e-commerce. 50 % of the answers included the e-commerce whereas two-thirds of
the answers included ica.se. Therefore, the project was limited to these applications.

• Aswill be described in section 5.6, the process of introducing new tools at ICA consists
of seven conceptual steps. Recommendations regarding how to introduce the tools
which were evaluated during the project only took the first step into account, in which
a Proof of Concept is performed to explore the tool’s value in one of ICA’s development
teams. This decision was made based on a recommendation from ICA’s continuous
delivery center.
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Tool Evaluation

This chapter presents the findings from the tool evaluation which was performed as part of
the project’s solution design. As illustrated in Figure 3.2, the tool evaluation consisted of four
phases: tool characterization, tool selection, tool experimentation and tool comparison. The
findings from these four phases are presented in sections 4.1 through 4.4, respectively.

4.1 Tool Characterization
After researching the available open source Chaos Engineering tools, a total of 27 tools were
found. This is not claimed to be an all-covering number, but it was decided in collaboration
with the project’s supervisor at ICA that it was su�cient for the sake and scope of this project.
Names and descriptions of the tools are listed in Table 4.1, along with suitable applications
which the tools can be used to test according to their documentation and developer websites.

Table 4.1: The extended tool list which was produced during the tool
characterization phase.

Tool
ID

Tool Name Description of Functionality Suitable Applica-
tions to Test

T1 Chaos Monkey Used for instance termination. Ter-
minates virtual machines and con-
tainers.

Applications man-
aged with Spinnaker
(a continuous deliv-
ery platform)

T2 kube-monkey Used for instance termination. Ter-
minates Kubernetes pods.

Applications man-
aged with Kubernetes

39



4. Tool Evaluation

T3 Chaos Toolkit Used for instance termination, simu-
lating network problems and stress-
ingmachines. Exact functionality de-
pends on installed drivers.

Applications run-
ning on AWS, Azure,
Cloud Foundry (a
cloud computing
platform) or GCP.
Applications man-
aged with Kubernetes

T4 ChaoSlingr Used for security Chaos Engineer-
ing. Performs changes to VPC secu-
rity groups.

Applications run-
ning on AWS

T5 PowerfulSeal Used for instance termination. Ter-
minates Kubernetes pods and nodes.

Applications man-
aged with Kubernetes

T6 drax Used for instance termination. Ter-
minates DC/OS tasks.

Applications run-
ning on DC/OS (a
distributed operating
system)

T7 WireMock Used for simulating network prob-
lems. Mocks HTTP APIs which the
application under test relies on.

Applications relying
on other services

T8 Pod-Reaper Used for instance termination. Ter-
minates Kubernetes pods.

Applications man-
aged with Kubernetes

T9 Muxy Used for simulating network prob-
lems. Is a proxy for the transport, ses-
sion and HTTP layers.

Applications relying
on other services

T10 Toxiproxy Used to simulate network problems.
Is a proxy for the session layer.

Applications relying
on other services

T11 Pumba Used for instance termination and
simulating network problems. Ter-
minates Docker containers and in-
jects network delays.

Applications con-
tainerized with
Docker

T12 Blockade Used for instance termination and
simulating network problems. Ter-
minates Docker containers, adds de-
lays, simulates packet losses and du-
plicates and partitions the network.

Applications con-
tainerized with
Docker

T13 Chaos Lambda Used for instance termination. Ter-
minates AWS EC2 and ECS in-
stances.

Applications run-
ning on AWS
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T14 Chaos Monkey
for Spring Boot

Used for instance termination, sim-
ulating network problems and find-
ing implementation faults in an ap-
plication’s source code. Terminates
instances of, adds delays to and
throws exceptions in Spring Boot
Controllers, RestControllers, Ser-
vices, Repositories and Components.

Spring Boot (Java)
applications

T15 Byte-Monkey Used for finding implementation
faults in an application’s source code.
Throws exceptions, adds method call
delays and nullifies arguments.

Java applications

T16 GomJabbar Used for instance termination. Ter-
minates running services in private
cloud environments.

Applications run-
ning in private cloud
environments

T17 Turbulence Used for stressing machines and sim-
ulating network delays. Imposes
CPU/RAM/IO loads, adds delays,
simulates packet losses and parti-
tions networks.

Applications run-
ning on Cloud
Foundry

T18 Chaosblade Used for instance termination, sim-
ulating network problems, finding
implementation faults in an applica-
tion’s source code and stressing ma-
chines. Exact functionality depends
on installed executors.

Applications con-
tainerized with
Docker. Applications
managed with Ku-
bernetes. Java and
Go applications

T19 Cthulhu Used for instance termination. Ter-
minates Kubernetes pods, AWS EC2
instances and GCP virtual machines.

Applications run-
ning on AWS or
GCP. Applica-
tions managed with
Kubernetes

T20 Byteman Used for finding implementation
faults in an application’s source code.
Throws exceptions and adds method
call delays.

Java applications

T21 Litmus Used for instance termination, simu-
lating network problems and stress-
ing machines. Terminates Docker
containers and various Kubernetes
components, adds delays, simulates
network losses, corrupts network
packets, imposes CPU loads and per-
forms disk fills and disk losses.

Applications con-
tainerized with
Docker. Applica-
tions managed with
Kubernetes
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T22 Perses Used for finding implementation
faults in an application’s source code.
Throws exceptions and adds method
call delays.

Java applications

T23 ChaosKube Used for instance termination. Ter-
minates Kubernetes pods.

Applications man-
aged with Kubernetes

T24 Chaos Dingo Used for instance termination. Ter-
minates Azure virtual machines and
Azure virtual machine scale sets.

Applications run-
ning on Azure

T25 Monkey-Ops Used for instance termination. Ter-
minates OpenShift pods.

Applications man-
aged with OpenShift
(an alternative to
Kubernetes)

T26 Chaos Lemur Used for instance termination. Ter-
minates virtual machines.

Applications run-
ning on Cloud
Foundry

T27 Chaos HTTP
Proxy

Used for simulating network prob-
lems. Is a proxy for the HTTP layer.

Applications relying
on other services

Tools were characterized in two main dimensions: the applications they can be used to
test and their functionality, here used interchangeably with the Chaos Engineering attacks
the tools are able to perform. For instance, as can be seen in Table 4.1, there are eight di�erent
tools which are explicitly suitable for applications that are managed with Kubernetes: T2, T3,
T5, T8, T18, T19, T21 and T23. Similarly, if the sought functionality is instance termination,
there are eighteen di�erent tools which implement this functionality in some way: T1, T2,
T3, T5, T6, T8, T11, T12, T13, T14, T16, T18, T19, T21, T23, T24, T25 and T26.

As a preparation for the following phases, the tools were organized into categories to
more easily be able to find overlaps. A total of five categories of Chaos Engineering attacks
were identified, based on the functionalities described in Table 4.1. All 27 tools are able to
perform attacks belonging to at least one of these five categories. Also, 13 categories of appli-
cations to test were identified, based on the suitability information in the rightmost column
in Table 4.1. The identified application categories either represent applications needing a
certain architectural component to run, such as a tool or a cloud service provider, or appli-
cations of certain types, meaning applications written in certain programming languages or
relying on certain types of APIs. As with the functionality categories, each tool belongs to at
least one of the application categories. The five functionality categories and 13 application
categories are listed in Table 4.2, along with the number of tools which belong to the di�erent
categories. Descriptions of the functionality categories are given here:

• Instance termination attacks. This category contains tools which can stop, delete or in
some other way terminate a component or process needed for the application to run.

• Network attacks. Tools in the network problem category impair network conditions
in some way, for instance by adding delays or simulating packet losses.

• Machine-stressing attacks. Here, stressing machines refers to injecting problems close
to hardware, such as imposing CPU loads or filling disks.
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• Security attacks. Only one tool (T4) explicitly mentions that it can be used for security
Chaos Engineering, which here refers to Chaos Engineering aiming to find weaknesses
in the system’s ability to withstand malicious attacks.

• Implementation attacks. These tools perform attacks to unveil issues in the applica-
tion’s own source code, in terms of incorrect calls to methods, argument declarations,
exception handling or similar.

Noteworthy is that the application categories are not mutually exclusive when seen from
an application’s perspective, and they capture di�erent aspects of a software system, includ-
ing not only an application’s own code but also the infrastructures and platforms it relies
on. An application which for instance is managed with Kubernetes is by extension also con-
tainerized with Docker, since Kubernetes is an orchestration tool for Docker containers, and,
furthermore, it is possible that the same application happens to be written in Java. However,
the tools have been placed in application categories based solely on what is explicitly men-
tioned in their documentation, and a tool which incidentally is able to test Java applications
but is specifically aimed towards Kubernetes environments is thus not automatically placed
in the Docker and Java categories, only the Kubernetes category. The categories thus repre-
sent which perspective a tool takes when used as a Chaos Engineering tool; tools placed only
in the Kubernetes category inject chaos only in Kubernetes-native components, regardless of
the implications it has on an application that is is managed with Kubernetes or how the ap-
plication under test is structured otherwise. To find all useful tools for a specific application,
every category therefore needs to be evaluated as either relevant or irrelevant for the distinct
structure of that application. It is then possible that the found tools will be able to perform
Chaos Engineering attacks from various points of view.

An illustration of how the tools are categorized into one or several application categories
can be found in Figure 4.1.
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Figure 4.1: The 13 application categories, with shortened names, and
the 27 tools placed in their category or categories. Tools belonging
to one category only are placed on the top rows, whereas tools be-
longing to several categories are placed on the bottom rows in cor-
responding categories.
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Table 4.2: The functionality and application categories, and the
number of tools belonging to each category.

Functionality category Nbr of tools Application category Nbr of tools
Instance termination
attacks

18 Applications containerized
with Docker

4

Network attacks 11 Applications managed with
Kubernetes

8

Machine-stressing
attacks

4 Applications managed with
Spinnaker

1

Security attacks 1 Applications managed with
OpenShift

1

Implementation
attacks

5 Applications running on
Cloud Foundry

3

Applications running on
AWS

4

Applications running on
Azure

2

Applications running on
GCP

2

Applications running in
private cloud environments

1

Applications running on
DC/OS

1

Java applications 5

Go applications 1

Applications relying on
other services

4
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4.2 Tool Selection
To eliminate tools used to test application types not developed at ICA, which was the first
activity of the tool selection phase, the 13 application categories shown in Figure 4.1 were
used as a starting point. The rule for elimination was: if a tool belongs only to irrelevant
application categories, eliminate the tool. Here, the term “irrelevant application categories”
refers to the application categories which represent application types that are not currently
developed at ICA. The irrelevant categories were defined in collaboration with an IT archi-
tect at ICA, based on his knowledge and opinions. The irrelevant categories were defined to
be:

• Applications managed with Spinnaker. This tool is not used at ICA.

• Applications running on Cloud Foundry. The consulted IT architect suspected that
some limited number of teams might use Cloud Foundry in some limited way, but it
is not a widespread cloud computing platform at the company.

• Applications running on GCP. Google does not provide any cloud computing services
to ICA.

• Applications running onDC/OS. This distributed operating system is not used at ICA.

• Go applications. No applications are currently developed in the Go language. There
exists, however, an interest in the programming language at the company, and it has
been planned to investigate its uses at a future point in time.

This resulted in eliminating four tools: T1, T6, T17 and T26. As shown in Figure 4.2, these
tools are used only for applications in the irrelevant categories that are listed above. Another
category, “Applications managed with OpenShift”, was also considered for elimination due
to the same reasons as the ones described above for eliminating “Applications running on
CloudFoundry”. However, the consulted IT architect still thought Chaos Engineering tools
for OpenShift environments could be of use in the organization. It was decided to trust his
judgement and thus keep “Applications managed with OpenShift” as one of the categories to
investigate further.
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Figure 4.2: The first activity of the tool selection phase: eliminating
tools used to test application types that are not developed at ICA.
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Next, the prerequisites of the remaining 23 tools were examined to find subjects of fur-
ther elimination. During this activity it was found that most tools lacked specific limitations
apart from the types of applications they can be used to test. Some tools for Kubernetes en-
vironments only required the use of a certain version or later of Kubernetes, and tools for
other environments had similar requirements. Likewise, tools written in a certain program-
ming language, such as Python, sometimes required a certain version of the language, such as
Python 3.5 or later. Such requirements were not considered to be problematic for ICA. How-
ever, it was discovered that the main part of the documentation of T18 was in Chinese, thus
making it impractical to use at ICA. It was therefore eliminated. The activity thus resulted
in eliminating only one of the 23 tools on the tool list, as depicted in Figure 4.3.
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Figure 4.3: The second activity of the tool selection phase: eliminat-
ing tools with prerequisites which cannot be satisfied at ICA.

The remaining 22 tools proceeded to the last activity of the tool selection phase, which
was to use the functionality and application categories to identify overlapping tools. The
aim of this was to examine whether or not some of the tools only had a subset of the func-
tionality of another tool. If that was the case, the smaller tool in terms of functionality was
eliminated. This was based on the assumption that a framework consisting of as few tools
as possible, while not making any compromises regarding the total number of attacks the
tools can perform, would be both easier to use for someone who is responsible for configur-
ing Chaos Experiments as well as easier to introduce in the organisation for someone who is
responsible for managing the discipline. The activity was performed in iterations, which are
described in Table 4.3. An iteration had an application category as a starting point, and the
logic was to start with comparing tools which can be used to test applications in that appli-
cation category only. Then, in the following iteration, the tools which were not eliminated
in the previous iteration were compared with tools which can be used to test applications
not only in the category under consideration but at least one other category as well. If the
exact functionality of one of the remaining tools from the first iteration was found in a tool
included in the second iteration, the tool remaining from the first iteration was eliminated.
An exception from this logic was made for the category “Applications running on Azure” for
which only two tools were suitable, making only one iteration necessary. Exceptions from
the logic were also made for the categories “Applications written in Java” and “Applications
relying on other services”, since all remaining tools in those categories belonged to no other
categories. Only one iteration was therefore needed in those cases as well. Also, the last it-
eration had the purpose of comparing appropriate tools with T3 specifically, since T3 was
found to be the widest tool in terms of application types it can be used to test.

In total, the activity eliminated ten tools, as shown in Figure 4.4.
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Figure 4.4: The third activity of the tool selection phase: eliminating
tools with only the subset of the functionality of another tool.

Table 4.3: Adescription of the iterations of the third and last activity
of the tool selection phase. The categories in the second columnwere
chosen from the lists of functionality and application categories in
Table 4.2. The fourth and last column of the table lists the tools
eliminated in each iteration.

Iteration Application
Category

Description Eliminated
Tool(s)

1 Applications
managed
with Kuber-
netes

Tools used solely in Kubernetes environments
were identified to be T2, T5, T8 and T23. All
four tools can terminate pods. T5 can also ter-
minate nodes. T2, T8 and T23 are thus subsets
of T5 and were therefore eliminated.

T2, T8, T23

2 Applications
managed
with Kuber-
netes

T5 (the remaining tool from iteration 1) was
compared with tools which can be used in both
Kubernetes environments and other environ-
ments, namely T3, T19 and T21. The function-
ality of T5 was found to be a subset of the func-
tionality of T3 since T3 can terminate pods and
nodes and also perform other types of attacks.

T5

3 Applications
running on
AWS

Tools used solely in AWS environments were
identified to be T4 and T13. It was concluded
that their functionalities do not overlap.

None

4 Applications
running on
AWS

T4 and T13 (the remaining tools from iteration
3) were compared with tools which can be used
in both AWS environments and other environ-
ments, namely T3 and T19. The functionality
of T13 was found to be a subset of the function-
ality of T3 and it was therefore eliminated.

T13
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5 Applications
running on
Azure

The only tool used solely in Azure environ-
ments, T24, was compared with the only tool
which can be used in both Azure environments
and other environments, namely T3. T24 can
stop and restart Azure VMs and VMSS, which
T3 also can, in addition to performing other
types of attacks. T24 was therefore eliminated
as a subset of T3.

T24

6 Java appli-
cations

Tools used solely to test Java applications were
identified to be T14, T15, T20 and T22. T14
is used for Spring Boot applications specifi-
cally and is alone in that, and so it was decided
not to eliminate it. The other three tools can
all throw exceptions and introduce latency on
method calls. T15 can also nullify arguments,
making T20 and T22 subsets of T15. It was
also found that T20 has a main purpose sepa-
rate from Chaos Engineering, which also con-
tributed to its elimination.

T20, T22

7 Applications
relying on
other
services

Tools used solely to test applications relying on
other services were identified to be T7, T9, T10
and T27. T7 is a tool for mocking, whereas the
other three are tools for proxying. The di�er-
ence between mocking and proxying is that a
mock server simulates responses from the re-
quested service itself, whereas a proxy server
only acts as an intermediary between a client
and the server which provides the client with
the services it requests. T9 is a proxy for HTTP,
transport and TCP. T10 is a proxy for TCP. T27
is a proxy for HTTP. The functionalities of the
tool were found to overlap, but no complete
subsets were found.

None

8 Applications
container-
ized with
Docker

Tools used solely to test applications in Docker
environments were identified to be T11 and
T12. Both tools can terminate Docker contain-
ers and inject network delays, and T12 can also
simulate other types of network problems. T11
was thus concluded to be a subset of T12.

T11

9 Applications
container-
ized with
Docker

T12 (the remaining tool from iteration 8) was
compared with the only tool which can be used
in both Docker environments and other envi-
ronments, namely T21. T12 was not concluded
to be a subset of T21.

None
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10 One or
more of the
following:
Appli-
cations
running on
AWS / Ap-
plications
running on
Azure / Ap-
plications
managed
with Kuber-
netes

It was deduced that the tool which can test the
most number of application types is T3, and
iteration 10 therefore compared T3 with tools
which can test at least one of the application
types that T3 can test. The tools to compare
with T3 were identified to be T4, T19 and T21.
The three tools were compared with T3 indi-
vidually. T4 and T21 were not considered to be
subsets of T3, but T19 was and it was therefore
eliminated.

T19

At the end of the tool selection phase, twelve tools remained on the so-called reduced tool
list. In other words, the tool selection phase managed to eliminate 15 of the 27 initial tools
in total, thus more than halving the number of tools. Figure 4.4, which shows the remaining
tools after the third and last activity of the tool selection phase, also shows the reduced tool
list which was the output of the entire tool selection phase. The twelve tools which have not
been crossed out in the figure symbolize the ones on the reduced tool list and the ones which
proceeded to the tool experimentation phase.

4.3 Tool Experimentation
Since the tool experimentation aimed to fill out the protocol in Appendix B for each of the
remaining twelve tools, the phase was carried out in precisely twelve iterations. The find-
ings from the iterations are described in subsections 4.3.1 through 4.3.12, which act as textual
descriptions of parts of the experiment protocols. The protocols gathered information of
five types: general information (such as name and age), availability (links to code and docu-
mentation), functionality (such as types of attacks and how to install and control the tool),
environment (such as prerequisites and suitable infrastructure components for applications
to test with the tool), and finally community (answers to whether or not the project has been
deprecated and if additional community material, such as finished Chaos Experiments that
are ready to use, exists). The textual descriptions in the subsections below give information
related to at least one of these types for every tool. Since the majority of ICA’s process for
introducing new tools lies outside of the scope of this thesis, as described in section 3.2, no
recommendations will be given regarding whether or not the information stated belowmakes
a tool especially appropriate, or inappropriate, at ICA.

4.3.1 T3: Chaos Toolkit
One of the first findings when experimenting with T3 was that it was designed to be exten-
sible for any system, since it defines an open API. As a result, there now exists a range of
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publicly available drivers for the tool, making it possible to use for testing several types of
applications. This is the reason why T3 was the widest tool in terms of application types in
Table 4.1. When installing the tool (which is done using pip, the Python installer), it is up to
the user to select which drivers to install along with the tool’s core library.

Apart from making the tool widely useful, the fact that it defines an open API has also
resulted in drivers for several other Chaos Engineering tools. What this means is that the
functionality of other open source tools can be accessed using T3 as the main tool. In fact,
drivers have been made publicly available for three of the other tools on the reduced tool list
outputted from the tool selection phase: T7, T10 and T14.

The Chaos Experiments of T3 are configured in so-called experiment files, which are
JSON-encoded. An experiment file can define some general information about the exper-
iment, such as title, description, tags and version, but its main parts are the steady state
hypothesis and the method. In turn, the steady state hypothesismust declare probes, which are
activities to measure and observe the system’s health. The probes contain a property on their
own called tolerance, which defines what the results of the probing should be compared to
in order to conclude whether or not the system currently is in its steady state. The method
can also contain probes, but most importantly it contains actions, which interact with the
system to simulate the actual problems that are to be injected into the system.

T3 also provides a command line interface (CLI). The typical workflow of using T3 is to
use the CLI to do the following:

1. Execute “chaos discover” and specify any of the tool’s publicly available drivers as input.
This generates a file listing probes and actions in the specified driver which can be used
for the system under test.

2. Execute “chaos init”, which takes the file generated in step 1 and asks the user to specify
which parts of it to include in an experiment file.

3. Execute “chaos run” which executes the experiment file from step 2 while logging its
steps in a journal file.

4. Execute “chaos report”, which takes the journal from step 3 and produces a report in
either a PDF or HTML format.

As mentioned in Table 4.1, the exact functionality of T3 depends on which drivers are
installed. However, the attacks the tool can perform fall under the instance termination, net-
work and machine-stressing categories. By installing appropriate drivers, attacks belonging
to at least one of these categories can be executed in AWS, Azure and Kubernetes environ-
ments. Table 4.4 contains a matrix illustrating the exact functionality in these environments.
This matrix includes only Chaos Engineering attacks, which represent the actions, as they are
called in T3 terminology, used to simulate a problem in the system under test. Other types
of actions have been omitted, as have probes.

When experimenting with T3, an appropriate format was decided upon for the map
which was to be outputted from the tool evaluation. It was decided to construct it in the
form of a matrix, with tools on the y-axis and functionality on the x-axis. The tools’ func-
tionalities on the x-axis would on the highest level consist of the five functionality categories
defined in Table 4.2. Below these five categories, they would be divided into columns rep-
resenting application types, based on the 13 application categories also defined in Table 4.2
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but naturally disregarding the five categories defined as irrelevant. To give two examples,
this would create matrix columns for instance termination in Kubernetes environments and
machine-stressing in Azure environments. The columns would then be decomposed into
subcolumns, for instance splitting Kubernetes into, at least, Kubernetes nodes and pods. The
matrix cells, representing the intersection between a tool on the y-axis and an attack in a
specific environment on the x-axis, would in the map be highlighted if the tool is able to per-
form an attack of the corresponding attack type in the corresponding environment. The cells
could also contain a specification of the exact attack possible in this subcolumn. Table 4.4
gives an idea of what these types could be, such as termination, detachment and draining.
This is technical and completely dependent on the environment. Figure 4.5 illustrates the
intended appearance of the map.

Instance termination
Column 1 Column 2 Column 3 ... Column n
Subcolumns Subcolumns Subcolumns Subcolumns Subcolumns

Tool 1
Tool 2
Tool 3

...
Tool n

xxx xxx xxx xxx xxx
xxx xxx xxx

xxx
xxx xxx xxx xxx xxx xxx xxx xxx

xxx xxx

Figure 4.5: An illustration of how the instance termination part of
the tool map could look. The other types of attacks would complete
themap in its horizontal direction. In the actual map, the column la-
bels would be replaced with application categories. The subcolumns
would have individual labels describing decomposed components of
corresponding application category. The “xxx” cell texts would be
replaced by attack specifications.

It was decided to build the map progressively during the tool experimentation phase, one
tool at a time, starting with a blank map and letting each tool add one row to the map along
with a varying number of columns and subcolumns, depending on the number of attacks it
can perform, application types it is suitable for, components in those application types it
can target, and columns and subcolumns already added by previous tools. The total number
of possible columns can be calculated to be 5x9=45, for five functionality categories in nine
relevant application categories. However, far from all types of attacks can be performed in all
environments, which reduces the number of actual columns drastically. By building the map
progressively, the intention was to not add more columns — or, by similar argumentation,
subcolumns — than necessary.

In the case of T3, it added six columns: instance termination in Kubernetes, AWS and
Azure, network attacks in Azure and machine-stressing attacks in AWS and Azure. The
columns were decomposed into one or several subcolumns corresponding to the boldface
words in Table 4.4. When it comes to instance termination in Kubernetes, the added sub-
columns were for pods, nodes, StatefulSets and deployments of microservices. For instance
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Table 4.4: The functionality of tool T3, Chaos Toolkit, for applica-
tions managed with Kubernetes, applications running on AWS and
applications running on Azure.

Instance termination Network Machine-
stressing

Kubernetes Pods can be terminated. Nodes can be
deleted, cordoned and drained. State-
fulSets (workload objects for deploying
and scaling pods) can be deleted. Mi-
croservices’ deployments can be deleted.

None None

AWS EC2 instances can be terminated,
restarted and stopped. The ECS service
can have clusters and services deleted,
tasks stopped and container instances
deregistered. EKS clusters can be
deleted. IAM roles can be detached
from policies. CloudWatch rules can
be deleted and disabled and can also
have their targets removed. ELBV2
loadbalancers can be deleted and have
their targets deregistered. RDS database
clusters, instances and endpoints can be
deleted, clusters and instances can be
stopped, cluster failovers can be forced
and instances can be forced to reboot.

None EC2 instances
can have their
EBS volumes
detached.
Lambdas
can have
their concur-
rency limits
removed.

Azure VMs can be deleted, restarted and
stopped. VMSS instances can be deleted,
restarted, stopped and deallocated.
Nodes in AKS can be deleted, restarted
and stopped. Web Apps can be deleted,
restarted and stopped.

VMs can
have latency
added.

VMs can have
their number
of I/O op-
erations per
second in-
creased, their
disks filled
with random
data and their
CPUs stressed
up to 100 %
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termination in AWS, they were for the EC2, ECS, EKS, IAM, CloudWatch, ELBV2 and RDS
services. For instance termination in Azure, they were for VMs, VMSS, AKS nodes and Web
Apps. For network attacks in Azure, it was for VMs. For machine-stressing attacks in AWS,
they were for the EC2 and Lambda services. For machine-stressing attacks in Azure, it was
for VMs.

4.3.2 T4: ChaoSlingr
T4 is the only tool out of the examined ones to explicitly have security-based Chaos Engi-
neering as its main aim. T4 runs serverlessly in AWS and thus relies heavily on the cloud
service provider’s Lambda feature. It is completely AWS-native, meaning that it is scheduled
and executed fully in AWS utilizing the Lambda feature.

The key part of T4 is an open and extensible framework, aimed to be a structure which
enables anyone to implement their own security-based Chaos Engineering functionality. It
was the goal of the developers of T4 to build a wide open-source community, where the exten-
sible design of the tool would encourage new developers to contribute with additional tool
functionality to the tool repository. The project has, however, since then been deprecated;
the code behind the tool is still available, but it is not actively maintained or monitored.
Therefore, the repository has been left with functionality for only one security-based Chaos
Engineering attack, in spite of the ambitions of the original developers. This functionality
is called PortSlingr, and what it does is to perform unauthorized firewall port changes to
see if a firewall, or some other monitoring, alerting or correction mechanism in the AWS
environment, is able to detect and preferably block the event. More specifically, the attack
consists of opening or closing a port randomly. The target of the attack is an AWS security
group, which is a feature of the Virtual Private Cloud (VPC) service. Such a security group
acts as a firewall for the AWS EC2 instances it has been associated with. Users can limit the
range of their Chaos Experiments by tagging security groups with opt-in and opt-out tags.
The targeted security group will then be chosen from the pool of groups tagged as opt-in.

T4 thus added one column to the tool map, namely security attacks in AWS environ-
ments. Its only subcolumn was for VPC Security Groups.

4.3.3 T7: WireMock
T7 is a tool for mocking HTTP services, and it can be used in two ways: either as a Java
library, to which it is possible to add a dependency, or as a stand-alone process, running
independently of the system under test. In the first case, the dependency to add is:

<dependency>
<groupId>com.github.tomakehurst</groupId>
<artifactId>wiremock</artifactId>
<version>2.25.1</version>
<scope>test</scope>

</dependency>

The alternative of running it as a stand-alone process is accomplished by downloading a
stand-alone JAR for the tool and then executing:
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java -jar wiremock-standalone-2.25.1.jar

The use case for T7 in terms of Chaos Engineering is to simulate what happens when an
API which the system under test is reliable on stops working. It is therefore probable that
injecting such faulty behavior in the real API would be di�cult. The problems WireMock
can generate are to send back any HTTP response code that indicates an error, add a latency
to the response and create di�erent sorts of corrupted (“bad”) responses. When adding la-
tencies to responses, the latencies can be of several types. Firstly, they can be configured to a
response-specific fixed value. Secondly, it is also possible to set all latencies to a fixed global
value. Thirdly, the latencies can be generated randomly, following a lognormal or uniform
distribution. Fourthly, consecutive responses can be grouped into chunks and returned all at
once, which aims to simulate a slow network.

The corrupted, or bad, responses can also be of four di�erent types. The first one is a
fully empty response. The second one is a malformed response, corresponding to sending a
header with an OK status but following it with random meaningless data and then closing
the connection. The third one is like the second one, but without the initial OK status header.
Finally, the fourth one is to simply close the connection. The typical consequence of this is
that a “Connection reset by peer” error is thrown. Noteworthy is that the tool documentation
warns for using this fourth type of response on Windows, where it is probable to fail in
making the connection reset and instead cause it to hang.

To the tool map T7 added one column, representing network attacks in applications
relying on other services. The subcolumn T7 added was named HTTP.

4.3.4 T9: Muxy
T9 is a proxy, and the documentation of T9 defines the tool’s functionality in terms of the
layers it can operate at in the OSI model. The OSI model, where OSI stands for Open Sys-
tems Interconnection, is a framework describing how a networking systemworks, or, in other
words, how data can be transmitted from one point to another [34]. The model consists of
seven layers, working in collaboration to transmit the data and ranging from the physical
layer at Layer 1 (responsible for the actual connection between devices, containing informa-
tion in the form of bits) to the application layer at Layer 7 (responsible for producing the
data to be transmitted and displaying it to the user).

T9 operates at Layers 4, 5 and 7, named the transport, session and application layers,
respectively. The responsibility of the application layer is described above. The transport layer
is often called the heart of the OSI model since is responsible for the end-to-end delivery of
the full message, by being in the middle of the bottom three layers (often called hardware
layers) and the top three layers (often called software layers). The session layer establishes the
connections and is also responsible for maintaining them, as well as ensuring authentication
and security.

The desired configuration of T9 can be declared in a YAML file, where two components
can be defined: proxies and middlewares. The proxies can be of HTTP or TCP type. The
middlewares, which are able to intervene with the requests that are sent to actually inject
the problems, can be of the following types: delay, logger, HTTP tamperer, network shaper
and TCP tamperer. The delay middleware is the most basic one, simply adding latencies to
di�erent requests or responses. Logger simply logs messages and does not inject any problems.
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The remaining three middlewares take di�erent perspectives of the problems they inject.
The HTTP tamperer, working at Layer 7, can modify the headers or bodies of responses as
well as their status codes. The network shaper (working at Layer 4) takes the perspective of
interfering with the network tra�c. It does this by limiting bandwidth, causing packet losses
and introducing jitters. Finally, the TCP tamperer (working at Layer 5) modifies the bodies of
TCP packets, and can truncate final message characters and also randomize characters.

In the tool map, T9 thus added two subcolumns to the column representing network
attacks in applications relying on other services, where there previously was only one subcol-
umn for HTTP added by T7. The two new subcolumns were named TCP and Transport. To
align the tool map with the OSI model, the names of the three subcolumns were then altered
to include their corresponding layer numbers: 7, 5 and 4, for HTTP, TCP and Transport,
respectively.

4.3.5 T10: Toxiproxy
T10 is a TCP proxy, which can be expressed in OSI model terminology as Layer 5 to make it
more comparable to T9. The tool consists of two parts: the TCP proxy itself and a client for
communicating with it, which is done over HTTP. After downloading the tool, it needs to
be populated, which the documentation refers to as letting the tool know which endpoints
to proxy and where to proxy them. Such configurations can be written in a JSON file and
mainly contains information about appropriate endpoint names, addresses to listen on and
address of the upstreams.

After populating T10, it can be used by configuring the application under test to con-
nect through the tool. Then, so-called toxics are what injects problems. The following toxics
exist: latency, bandwidth, slow_close, timeout, slicer and limit_data. Their names suggest
the problems they inject. Latency adds a delay to the requests. Bandwidth limits a connec-
tion’s bandwidth, in the sense of the amount of data which can be transmitted per second.
Slow_close delays a TCP socket (an endpoint instance) from closing for a specified amount of
time. Timeout prevents data from passing through, and it can also be configured to close the
connection altogether after a certain amount of time. Slicer slices TCP data into smaller pack-
ets and can add an optional delay between each packet. Finally, limit_data allows a certain
number of bytes of data pass through before it closes the connection.

T10 did not add any new column or subcolumn to the tool map, since the network attacks
in applications relying on other services column already existed, as did a subcolumn for TCP.

4.3.6 T12: Blockade
T12 is used to test applications containerized with Docker. This containerization tool was
introduced in section 2.9 on precisely application containerization, where a container was
described as a unit in which everything an application needs to run can be gathered. T12
targets such Docker containers. The tool is configured in a YAML file, in which all containers
needed for a specific distributed system can be described, as can the links between them and
the problems to inject. The configuration file consists of twomain sections, one for specifying
the system’s containers and one for specifying the problems to inject. The container section
specifies how each container should be launched, which can be described by using a number
of parameters such as how many copies of a container to launch or how many seconds T12
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should wait before launching it. However, only one parameter is mandatory to enter, namely
the one where the Docker image to use for the container is specified. A Docker image can be
thought of as a blueprint or a mold, since it acts as a template for how to create the actual
Docker containers. A container is thus like a running instance of an image. The problem
section of the configuration file, which is referred to as the network section, can specify how
two types of network problems should be injected. One is called slow, and it adds a delay with
a certain value and distribution (uniform, normal, pareto or paretonormal) to the network,
and the other is called flaky, which simulates how often packets should be lost (described as
a percentage).

T12 then provides a command line interface (CLI) for activating the problems. The
Docker containers specified in the first section of the configuration file are started by run-
ning the “up” command. The commands “slow” and “flaky” can then be used to activate the
problems specified in the second section of the configuration file. Apart from these two
problems, the CLI can also be used to stop and kill some or all containers that are running.
It can also introduce packet duplication and partition the network, which simulates a lost
network connection. What the partition does is to split the running containers into groups,
so that containers in one group cannot communicate with containers in another. The tool
documentation mentions a typical usage for this problem, namely testing a leader election
system, in which one of the containers acts as a leader and the others answer to this leader.
The partition problem could then isolate the leader from the other containers, to ensure that
a reliability mechanism such as forcing another container to take over as the leader works as
intended.

T12 added two columns to the toolmap, corresponding to instance termination inDocker
and network attacks in Docker. Both columns contained the same subcolumn for Docker
containers.

4.3.7 T14: Chaos Monkey for Spring Boot
T14 is a tool developed specifically for testing Spring Boot applications. Spring Boot is a
Java framework, aiming to simplify the process of building an application. Spring Boot is
part of the wider Spring framework, which has a main aim of enabling enterprises to eas-
ily create Java applications for their businesses. One of Spring Boot’s core features is its
auto-configuration feature, which makes configuring Spring more simple from a developer’s
point of view. This is due to the fact that the configuration is done automatically, based on
a project’s added dependencies. Spring Boot applications also rely on the so-called Spring
Boot annotations. Such an annotation is a form of metadata added above methods or classes,
indicating that the corresponding method or class has a special purpose in the Spring frame-
work. Scanning a Spring Boot application for a specific part of it can thus be made based on
these annotations.

The tool T14 was, as described in subsection 3.1.4, used to demonstrate the principles of
Chaos Engineering to various stakeholders at ICA. It was decided that repeatedly holding
this demonstration su�ced in terms of experimenting with T14, and so the iteration of the
tool experimentation phase for T14 simply consisted of transferring the learnings from the
demonstrations to the tool map.

The tool itself consists of a Java library. Installing the tool is therefore done by adding a
dependency to the library. The dependency to add is:
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<dependency>
<groupId>de.codecentric</groupId>
<artifactId>chaos-monkey-spring-boot</artifactId>
<version>2.1.1</version>

</dependency>

where version can denote any of the tool’s releases or snapshots. In order for the tool to work,
the application to test also has to be started with the Spring profile called “chaos-monkey”
set to active. This can be done in two ways: running the application with the line

java -jar your-app.jar --spring.profiles.active=chaos-monkey

or adding the line

spring.profiles.active=chaos-monkey

to the application’s property file. In this file, it is also possible to configure which Spring Boot
components to target during the Chaos Experiment. This is done by utilizing the Spring Boot
annotation feature, by adding the line

chaos.monkey.watcher.<annotation>=[true/false]

to the file, where <annotation> can be replaced with any of the five Spring Boot annotations
supported by the tool: @Controller, @RestController, @Service, @Repository or @Compo-
nent. The Chaos Monkey Watcher mentioned in the line above is the tool component which
scans the application for the annotations set to true, for the purpose of knowing which parts
of the application to attack. Three types of attacks can be performed with T14: injecting
latency, throwing exceptions and killing the application. These attacks can be configured
during runtime by HTTP requests, assuming that one final change has been made to the
application’s properties file, namely adding the line

management.endpoint.chaosmonkey.enabled=true

and ensuring that the line of the file describing which endpoints to expose either includes
the Chaos Monkey one or is set to exposing all endpoints, which is denoted by a star (*).

T14 added three columns to the tool map: instance termination in Java applications,
network attacks in Java applications and implementation attacks in Java applications. All
three columns had only one subcolumn, for Spring Boot applications.

4.3.8 T15: Byte-Monkey
T15 is used to test Java applications. It works on the bytecode level, on compiled code, in
other words the machine code in a .class file which has been generated by the compiler from
the source code in a .java file. T15 works by introducing small changes in this bytecode, which
will simulate the tool’s Chaos Engineering problems. The tool is started by downloading its
latest release and executing the following line:

java -javaagent:byte-monkey.jar=mode:<mode>,rate:<rate>,
filter:<filter> -jar your-java-app.jar
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As can be seen in the line above, the tool has three options: mode, rate and filter. Mode
symbolizes the problems to inject and <mode> can thus be replaced with either fault, latency,
nullify or scircuit (for short-circuit). These names correspond to the problems that are in-
jected. Fault throws the first exceptionwhich is declared in amethod signature, assuming that
there exists an exposed public default constructor to use to instantiate it. If not, a generic
ByteMonkeyException is thrown instead. Latency forces a method to do nothing for a num-
ber of milliseconds, before its actual instructions are executed. Nullify replaces a method’s
first argument which is not primitive with null, assuming that the method has arguments
and that they are not all primitive. In those cases, nothing happens to the method. Finally,
scircuit attacks try-catch blocks by throwing exceptions in the beginning of the try block to
intentionally force execution of one of the catch blocks. If the mode is not specified when
running the tool, the default is the fault mode.

The second option, rate, specifies a decimal number which represents the percentage of
eligible methods to attack. For instance, if mode is set to latency and rate is set to 0.75,
it means that 75 % of the method calls will include an initial pause before executing the
method’s instructions. If no rate is given the default is 1, which will result in attacking 100 %
of the method calls. Finally, the third option, filter, enables users to specify a string repre-
senting which parts of the file package to attack. The tool documentation gives the example
of setting the filter option to “uk/co/probablyfine”, which will only activate the attacks in
the package tree below precisely uk.co.probablyfine. It is possible to be as specific as filter-
ing down to a single method name, by appropriately customizing the string “package/path/-
ClassName/MethodName”. Again, there exists a default if no filter is given, which is “*”,
representing all methods in the package.

If the mode is set to either latency or scircuit, the command line starting the tool can be
extended by adding one more option. This option is called “latency” for the latency mode
and “tcindex” for the scircuit mode, specifying the number of milliseconds the injected delay
should last and the index of the catch block to force execution of, if a try-catch block consists
of multiple catch blocks. Defaults are 100 ms and -1 (which represents the first catch block).

T15 did not add any column since a column for implementation attacks in Java applica-
tions was added by T14. It did add a new subcolumn however, named Bytecode.

4.3.9 T16: GomJabbar
T16 is explicitly meant for testing applications running in a private cloud environment,
meaning a cloud environment dedicated for the use of one organization only. Such a cloud
environment is typically also managed by the company in question itself. T16 is integrated
with the tool Consul, which is a software for connecting separate services with each other
that is usable in various environments, naturally including private cloud environments. Such
services are in T16 terminology mapped to so-called modules, which are organized into clus-
ters and can be given tags. These three levels (cluster, module and tag) are used to select the
targets to attack with T16.

Installing T16 is a question of cloning its repository and then running the standard build
command

mvn clean install

in it. The tool is then configured in a YAML file consisting of three main sections: executor
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class, filters and commands. The executor class section simply allows users to choose between
one of the two available command executor classes, or replace them both with an own im-
plementation if that is preferred. The filters section allows users to specify clusters, modules
and tags which should be included and excluded as targets during the Chaos Experiments.
Finally, the commands section is where it is specified which attacks to perform. Here it is also
possible to add own functionality, if it is desired to use the tool for other types of attacks than
the two which exist out-of-the-box. These two existing attacks are to gracefully or gracelessly
terminate a running service. Here, “gracefully” refers to shutting down the service with init.d,
whereas “gracelessly” refers to terminating the service with pkill -9 instead.

T16 added one column to the tool map corresponding to instance termination in private
cloud environments, divided into a single subcolumn for Consul modules.

4.3.10 T21: Litmus
T21 is a framework used for testing Kubernetes environments. Its functionality is available
in the form of finished Chaos Experiments, and the framework is also extensible, allowing
users to implement their own additional experiments. To install the core components of T21,
the line

kubectl apply -f https://litmuschaos.github.io/pages/
litmus-operator-v1.0.0.yaml

needs to be run. These core components are then complemented by installing the actual
Chaos Experiments, which is done on a Kubernetes cluster as Kubernetes Custom Resources.
Finally, a Service Account needs to be created for the tool, the application needs to be anno-
tated with

litmuschaos.io/chaos="true"

and a YAML file called chaosengine.yml configuring the so-called ChaosEngine, which con-
nects the application under test with the actual Chaos Experiments, needs to be created.
Then, the experiment can be run with

kubectl create -f chaosengine.yaml

and running the command

kubectl describe chaosresult <chaos-engine-name>-
<chaos-experiment-name>

afterwards will let the user know if the experiment passed or failed.
The finished Chaos Experiments which are available along with the tool provide the fol-

lowing functionality. A Docker container in a pod can be killed. A pod can be deleted, its
disk storage can be filled, latency can be injected into its network, its network can be lost
altogether and network packet corruption can be injected. A pod can also have its CPU
stressed, which a node also can. A node can furthermore su�er from disk loss and be drained.

If the tool Kafka is used for the application under test and it is deployed as a Kubernetes
StatefulSet, two additional Chaos Experiments are available for introducing failures in Kafka
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Broker pods and disks. Also, if the tool CoreDNS is used as a DNS server, one additional
Chaos Experiment exists for deleting a CoreDNS pod.

T21 can also attack OpenEBS components. OpenEBS is used for attaching storage to
containers in Kubernetes environments. If OpenEBS is used for the application under test,
T21 can inject failures in pods and containers in OpenEBS pools and targets. It can also
introduce network delays and network losses in OpenEBS targets.

In the tool map, T21 contributed to the already existing column for instance termination
in Kubernetes environments in the pod and node subcolumns, while adding subcolumns for
CoreDNS pods, Kafka broker pods, OpenEBS pods andOpenEBS containers to the same col-
umn. It also contributed to the column and subcolumn for instance termination in Docker
containers. It added a column for network attacks in Kubernetes environments, with two
subcolumns for pods and OpenEBS targets. It also added a column for machine-stressing at-
tacks in Kubernetes environments, with three subcolumns for pods, nodes and Kafka broker
disks.

4.3.11 T25: Monkey-Ops
T25 is the only tool explicitly meant for testing applications that are managed with Open-
Shift, which can be described as an alternative to Kubernetes. At ICA it is Kubernetes which
is themost widely used tool out of the two, but it was nonetheless the belief of the IT architect
who was consulted as part of the tool selection phase that OpenShift is in use in some parts
of the company’s software development. T25 can target two OpenShift components, namely
pods and DeploymentConfigs, which are templates used to describe the applications that are
to be deployed, for instance specifying replica counts and deployment strategies. When tar-
geting an OpenShift pod, T25 can terminate it. When targeting a DeploymentConfig, T25
can only scale the number of replicas, not attack it in another way.

T25 can be installed in two ways, either with the use of Docker, by downloading and run-
ning a Docker image, or as a separate OpenShift project, by following a set of steps starting
with creating a service account and ending with creating a new application for the tool in an
OpenShift project. Regardless of how the tool is installed, it can be configured to run in two
di�erent modes, called the background mode and the rest mode. In the background mode,
the tool runs until it is stopped. In the rest mode, it runs only for a certain amount of time.
T25 can also be configured with an interval time, defined as the number of seconds between
attacks.

To the tool map, T25 added a column corresponding to instance termination in Open-
Shift with a subcolumn for pods.

4.3.12 T27: Chaos HTTP Proxy
T27 is an HTTP proxy, operating at OSI Layer 7. Installing T27 consists of downloading
one of its releases from the tool repository and then building it. It runs as a stand-alone
process and is configured in a configuration file with the extension .conf. The tool has the
functionality of modifying headers in the form of swapping upper-case and lower-case letters
and corrupting them, and in responses the tool can also reorder the headers. Furthermore,
it can cause timeouts and redirects and simulate server errors. Finally, it can also simulate a
server connection break.
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T27 did not add any column or subcolumn to the tool map, since a column and subcol-
umn already existed for network attacks in applications relying on other services and HTTP,
respectively.

4.4 Tool Comparison
This section presents the final tool map outputted from the tool evaluation activity. The tool
map can be found in Figure 4.6, and explanations of the attacks specified in the map’s cells
are given in Table 4.5. In total, the tool map shows 87 di�erent attacks, placed in a total of
17 columns divided into a total of 40 subcolumns. The tool map is also available as a PDF file
here: https://drive.google.com/file/d/1vM6V9ysGPsHi5RYQiYbQtM2ug1O5SoIc/
view?usp=sharing.

The first activity of the tool comparison phase, to compare the experimentation protocols
with each other, mainly consisted of homogenizing the terms in the tool map. Since the
map was built iteratively during the previous phase, several terms were accidentally used to
describe the same functionality, which was fixed during this activity. The second activity,
to eliminate redundant tools, resulted in no changes to the tool map, as it was found that
no tool was a complete combination of the other tools in the map. The final tool map thus
contained all twelve tools which were examined during the tool experimentation phase.
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Table 4.5: Specification of Chaos Engineering attacks.

Instance termination attacks
Termination Terminates a component. Can also be referred to as

Deletion.
Restart As Termination, but also restarts the component.
Stopping Stops a running process.
Detachment Used for components which are connected to other

components. Detaches the targeted component
from the ones it is connected to.

Disabling Used for rules. Sets the targeted rule as inactive.
Target removal Used for rules. Makes components previously af-

fected by the targeted rule una�ected by it.
Failover Used for databases. Makes a database unavailable.
Blocking Prevents further scheduling on components that

other components or processes are scheduled on.
Draining As Blocking, but also evicts currently scheduled

components and processes.
Network attacks
Delay Adds a latency to a network connection.
Network loss Temporarily detaches a network connection.
Network partition Splits a network of components into groups.
Bandwidth limitation Limits the number of transmitted bytes per second.
Data limitation Limits the total number of transmitted bytes.
Closing delay Prevents an endpoint from closing for a time.
Data stop Prevents data from passing through.
Data slicing Slices data into smaller separate packets.
Packet loss Loses packets being transmitted.
Packet duplication Duplicates packets being transmitted.
Jitter introduction Introduces timing errors.
Error Returns an error.
Content change Modifies a header or a body.
Redirection Temporarily or permanently redirects packets.
Connection break Closes a network connection.
Machine-stressing attacks
CPU stress Stresses a CPU value.
I/O increase Increases the number of I/O operations per second.
Disk storage fill Fills a disk storage with random data.
Disk loss Detaches a disk from the rest of the machine.
Security attacks
Unauthorized port change Opens or closes a firewall port.
Implementation attacks
Exception Forces an exception to be thrown.
Method call delay Pauses execution in the beginning of a method call.
Argument nullification Replaces an argument with null.
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Figure 4.6: The tool map. The horizontal axis contains columns for
specific functionalities in specific application categories, which are
further decomposed into subcolumns describing the component or
service which is attacked. The vertical axis contains tool IDs and
tool names. Every filled cell contains a textual description of the
attacks which corresponding tool can perform in the environment
that is specified by the horizontal axis.
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Chapter 5

Proposed Chaos Engineering Framework

This chapter presents the framework for Chaos Engineering in its full form, completing the
project’s solution design which started by producing the tool map as described in the previous
chapter. The framework represents a suggested way to work continuously and iteratively
with Chaos Engineering at ICA, from the perspective of the company’s development teams.
It aims to contain all the necessary building blocks in order for the teams to start using
Chaos Engineering to test the applications they develop. The recommended way of working
has been split into activities to perform, where each activity contains sets of steps, support
documents and outputs. The steps are the actual actions to perform, the support documents are
the resources needed to carry out the steps, and the outputs are the results of the steps.

As illustrated in Figure 5.1, there are four proposed activities in the framework: dis-
covery, implementation, sophistication and expansion. They are described individually in
sections 5.1 through 5.4 and are then combined into the full framework in section 5.5. This
section also gives an explanation to the arrows in Figure 5.1, which aim to illustrate how the
activities are suggested to be repeated. The last section of the chapter, section 5.6, presents
how tools are introduced at ICA, a topic of interest when it comes to applying the framework
to ICA’s applications.

1. Discovery 2. Implementation 3. Sophistication 4. Expansion

Figure 5.1: The four activities of the framework. The documents in
the picture illustrate the number of support documents which are
meant to be used when performing the di�erent activities.
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5. Proposed Chaos Engineering Framework

5.1 Activity 1: Discovery
The discovery activity builds a backlog of Chaos Experiments which are possible and suitable
to run for the application under test. It also starts to build on a set of improvement opportu-
nities for the application, which succeeding activities will continue to build on. Apart from
the experiment backlog and improvement opportunities outputs, the discovery activity also
consists of five steps and five support documents, as illustrated in Figure 5.2.
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Experiment
Backlog
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Support
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Support
Document 3:

Tool Map

Support
Document 4:
Experiment
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Support
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Prioritization
Guidelines

Improvement
Opportunities

Figure 5.2: The first activity of the framework: discovery.

The steps that are recommended to follow during the discovery activity are:

1.1 Prepare. The first step consists of getting familiar with the framework and Chaos En-
gineering in general, since it is important that the development team who is to start
using Chaos Engineering is aware of what the discipline consists of and what its ben-
efits and challenges are before they get started. Resources to facilitate this have been
gathered in the first support document, named Chaos Engineering Resources. These
resources include this report, a description of the framework activities, all support
documents and links to Chaos Engineering literature. Since Microsoft O�ce is widely
used at ICA, it was decided to give the first support document the physical form of a
SharePoint site. SharePoint is a web-basedMicrosoftO�ce application for connecting
teams with content and information. It can also be integrated with Microsoft Teams,
another Microsoft O�ce application which is heavily used at ICA.

1.2 Define the application under test. This step consists of defining the application under
test in terms of the eight application categories which were defined in Chapter 4 and
which are present in the tool map. The second support document, Application Cate-
gories, lists and describes these eight categories, and it states conditions which have to
be fulfilled by the application in order for it to belong to each of the eight categories.
For instance, the first condition is: “Some part of the application is containerized with
Docker”. An application which fulfils this condition belongs to the Docker application
category.

1.3 Find relevant experiments. Based on the Tool Map support document and the appli-
cation categories which the application belongs to, as determined in the previous step,
this step consists of finding all the experiments that are relevant to the application un-
der test. In the tool map, the relevant experiments are the ones which are specified in
the cells that have columns corresponding to one of the application categories which
the application belongs to.
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1.4 Categorize the experiments. Every experiment found in the previous step is now to be
categorized into one of the five categories that are listed and described in the fourth
support document, ExperimentCategories. The experiments in the first two categories
should no longer be considered. The experiments in categories three and four should
be added to the improvement opportunities output, in two separate columns: experi-
ments for which the application lacks monitoring solutions and experiments for which
the application lacks resilience mechanisms, respectively. Finally, experiments in the
fifth category should be added to the experiment backlog. The five categories are:

• Category 1: The experiment does not apply technically to the application under
test

• Category 2: The experiment is not of interest to the team and will probably not
bring value to the application under test

• Category 3: The experiment will probably a�ect the application under test in
ways it is not currently possible to monitor

• Category 4: The experiment should not be handled well by the application under
test

• Category 5: The experiment should be handled well by the application under test

1.5 Prioritize. This step is an optional step which can be performed if the number of
experiments in the backlog is considered to be too large after the previous step. The
fifth support document, Prioritization Guidelines, presents two ways of prioritizing:
one where the experiments are assigned estimations of likelihood and impact, and one
where the most valuable experiments are distinguished based on intuition.

After the discovery activity, first versions of two outputs have been generated, namely
the improvement opportunities and the experiment backlog. The improvement opportuni-
ties output can suggest weak areas in the application under test, in terms of the way it is
monitored as well as the way it attains its level of resilience. The experiments listed in this
output, in two separate columns, should not be run for the application under test as it cur-
rently is. The opposite can be said for the experiments in the experiment backlog; as the
name suggests, all experiments listed in this document should, when performed, bring value
to the application when it comes to testing its resilience.

To prepare for the following activities, a third column should be added to the improve-
ment opportunities output, for experiments which have been run but resulted in a disproved
hypothesis. Such a column will be needed already for the framework’s second activity, imple-
mentation.

The framework has been designed with loops which intend to repeat the implementa-
tion, sophistication and expansion activities regularly. However, unlike these activities, the
discovery activity should only have to be performed once. Only if the infrastructure of the ap-
plication under test changes, so that the set of application categories the application belongs
to changes, does the discovery activity need to be repeated.
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5.2 Activity 2: Implementation
Adhering to the Chaos Engineering principle of starting small, it is not advisable to imple-
ment all experiments in the backlog simultaneously. Therefore, the implementation activity
consists of setting up and running only one Chaos Experiment. The implementation activity
should be performed every a time a new Chaos Engineering tool is about to be used for the
application under test. The first time the implementation activity is performed, no tools or
experiments should be in place for the application under test. When the implementation
activity is revisited, any number of tools and experiments may be in place, depending on the
number of previous iterations and the number of experiments which previously implemented
tools are used for.

The implementation activity is illustrated in Figure 5.3. Users of the framework should
know that their choices made in steps 2.2 and 2.3 of the implementation activity do not need
to be final, because the third activity of the framework, sophistication, will give them a chance
to adjust their choices in order to improve their Chaos Engineering practice gradually. The
most important part of the implementation activity is to just get started with a new tool and
to learn how to use it manually.
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experiment 2.4 Access tool2.2 Define 

steady state

Support
Document 6:
Steady State
Guidelines

Support
Document 7:

Tool
Information
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backlog 2.5 Run the
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If experiment is
selected from failed

experiments Improvement
Opportunities
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is disproved

Figure 5.3: The second activity of the framework: implementation.

As illustrated in Figure 5.3, it is not recommended to move on from the implementa-
tion activity unless it ends with a successful experiment where the hypothesis is proved to
be correct. If the hypothesis is instead disproved, the implementation activity should be
restarted, either with a new experiment or with the same experiment. This is described more
thoroughly below.

The steps that are recommended to follow during the implementation activity are:

2.1 Select an experiment to implement. If the implementation activity is performed for
the first time, it is only possible to select experiments from the experiment backlog.
Otherwise, there is a chance that experiments can be selected from the third column
of the improvement opportunities output as well, which contains previously executed
experiments where the hypothesis was disproved, since such experiments would benefit
from being run again. If the experiment is selected from the backlog, the following
should be considered:

• The backlog can contain experiments for which tools that have not yet been in-
troduced at ICA need to be used. Already introduced tools should always be
considered first. If this is impossible, it might also be impossible to continue
with the next steps and activities until more tools have been introduced.
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5.2 Activity 2: Implementation

• If a prioritization was made during the discovery activity, one of the highest pri-
oritized experiments can be selected.

• If a prioritization was not made during the discovery activity, the experiment
which seems most simple is a good first choice.

If the experiment is selected from the improvement opportunities instead of the back-
log, the following should be considered:

• An improvement in the application’s resiliencemechanismsmust have beenmade
since the experiment was executed the last time. Otherwise, it is pointless to
repeat the experiment.

• Since all necessary experiment configurations should have been made the last
time the experiment was executed, steps 2.2, 2.3 and 2.4 of the implementation
activity can be skipped.

2.2 Define steady state. Defining steady state consists of characterizing the application’s
normal behavior in a measurable way. To define steady state, the sixth support docu-
ment, Steady StateGuidelines, instructs the development team to answer the following
questions:

• Which part(s) of the application do we need to monitor to know how the appli-
cation under test behaves during the experiment?

• Which metrics characterize the application’s behavior in this part/these parts of
the application?

• For these metrics, what are the acceptable values? “Acceptable values” here refers
to the values of the metrics which represent the application’s normal behavior.

• How can these metrics be monitored and logged during the experiment — with
a tool or manually?

The Steady StateGuidelines support document also states theChaos Engineering prin-
ciple that it is preferable to define the steady state in terms of both technical metrics
and business metrics. When this step has been performed, the experiment’s hypothesis
can be phrased as: “Running the experiment <Selected experiment> will not cause the
application’s behavior to change from <Steady state definition>”.

2.3 Configure the experiment. In this step, there are three choices which need to be made,
regarding the tool to use for the experiment, the environment of the experiment, and
the experiment’s blast radius. When it comes to the tool to use, there will be either one,
two or three tools which can be used for the selected experiment. One of them has to
be selected, obviously giving precedence to tools which have been introduced at ICA.
The seventh support document, Tool Information, presents information on all tools in
the tool map and how to configure them, taken from their documentation or website.
Links to the each tool’s documentation and website are also given, along with links to
their repositories. When it comes to the experiment’s environment, it is advised to set
up some sort of safe testing environment and not experiment in production from the
start. Finally, the blast radius should according to the principles of Chaos Engineering
be minimized when it comes to ICA’s business. Deciding how to not end up with
devastating consequences is therefore part of configuring the experiment.
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2.4 Access tool. How to get access to the tool to use for the selected experimentwill depend
on how it is decided to introduce the tool at ICA. This is not part of this thesis’s scope.
See section 5.6 for more information on this.

2.5 Run the experiment. When access to the tool has been granted, the next step is to
execute the experiment according to the configurations made in step 2.3 and the hy-
pothesis defined in step 2.2. The experiment should be run manually to learn how the
tool works.

2.6 Evaluate. When the experiment has been run, the next step consists of either proving
or disproving the hypothesis based on the experiment’s results. If the hypothesis is
disproved, the experiment should be added to the third column of the improvement
opportunities output, and an improvement of the application’s resilience mechanisms
should be planned. Then, the implementation activity should be restarted. If the hy-
pothesis is proved, this should be marked in the backlog. Then it is possible to move
on to the sophistication activity. Note that if it is concluded that the hypothesis can be
proved based on the experiment’s results, performing the implementation activity has
verified that at least one of the application’s resilience mechanisms works as intended.

5.3 Activity 3: Sophistication
The name of the sophistication activity is inspired by theChaosMaturityModel, or theChMM,
which was introduced in section 2.6. To recapitulate, the ChMM is a model for mapping
how extensively Chaos Engineering is implemented in an organization and it aims to pro-
vide insights into how to improve such an implementation. The model’s two metrics are
sophistication and adoption, where sophistication refers to the validity and safety of the
Chaos Experiments and adoption refers to their sanctioning and reach in the organization.
From the perspective of a single development team, the most relevant aspect to consider for
improvement is therefore the experiments’ sophistication. Sophisticating the team’s current
Chaos Engineering practice is also the aim of the third activity of the framework, illustrated
in Figure 5.4.

3.1 Map the current
Chaos Engineering

practice

3.3 Improve
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Document 8:
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Figure 5.4: The third activity of the framework: sophistication.

The steps that are recommended to follow during the sophistication activity are:

3.1 Map the current Chaos Engineering practice. Inspired by the sophistication metric of
the ChMM, described in the eight support document which is named ChMM Guide-
lines, the following three aspects should be considered for every experiment which is
currently in use for the application under test:
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5.4 Activity 4: Expansion

• Experiment environment. Is the experiment (1) not run in production, (2) run
with production-like tra�c or (3) run in production?

• Automation. Is the experiment (1) run and monitored manually, (2) either run
or monitored automatically, or (3) both run and monitored automatically?

• Metrics. Is the steady state defined by (1) technical metrics only, (2) technical
metrics and some aggregated business metrics, or (3) technical metrics and dis-
aggregated business metrics?

Each experiment should, when this step has been performed, bemapped to three values
between 1 and 3 in a sophistication map output.

3.2 Identify aspect(s) of experiment(s) to sophisticate. Aspects answered with (1) in the
previous step should be prioritized for sophistication over aspects answered with (2),
which, in turn, should be prioritized over aspects answered with (3). By similar logic, if
several experiments are implemented for the application under test, experiments with
many 1’s should be prioritized to sophisticate over experiments with many 2’s and 3’s.

3.3 Improve aspect(s). How to sophisticate the experiments’ environment, degree of au-
tomation and metrics will be highly dependent on the application under test and thus
on the development team’s knowledge of the application.

3.4 Update map. Before moving on from the activity, the 1’s and 2’s which were sophisti-
cated in the previous step should be updated to 2’s or 3’s in the sophistication map, to
ensure that it is updated the next time the activity is performed.

5.4 Activity 4: Expansion
The fourth activity, expansion, adds the principle of increasing a Chaos Engineering imple-
mentation incrementally to the framework. The activity is based on the assumption that it is
always easier to expand the current usage of a Chaos Engineering tool to include more of its
functionality than it is to start using a completely new tool. Only if the already implemented
tools have been totally exhausted in terms of the experiments they can be used for, or if it
for some reason is prioritized to implement a Chaos Experiment which the already imple-
mented tools cannot provide, should a new tool be considered for the application under test.
The expansion activity is illustrated in Figure 5.5.

The steps that are recommended to follow during the expansion activity are:

4.1 Find experiments possible to run with tools that are already in use. Experiments can
be found in the experiment backlog or in the third column of the improvement op-
portunities output, for experiments which resulted in a disproved hypothesis. If no
experiments are found, or if priority is given to other experiments which the tools that
are in use cannot perform, the rest of the expansion activity is not relevant. Instead,
the implementation activity should be revisited to find a new tool to use.

4.2 Select one of the experiments. If the experiment is selected from the improvement
opportunities, step 4.3 can be skipped.
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Figure 5.5: The fourth activity of the framework: expansion.

4.3 Define steady state for the new experiment. This step is the same as step 2.2 of the
implementation activity and the same support document, Steady State Guidelines,
can be used for it.

4.4 Update tool configuration and, if execution is still manual, run+evaluate the new ex-
periment. If the usage of the tool in question has been automated previously and there
is a wish to not add a non-automated usage of it, this step consists of updating the tool
configuration to include the new experiment. If the usage is still manual since the tool
was first used during the implementation activity, this step merely consists of repeat-
ing steps 2.3, 2.5 and 2.6 of the implementation activity for the new experiment. When
the step has been performed, the next action depends on the outcome of the experi-
ment. If the hypothesis is proved, the experiment should be marked as implemented
in the backlog before the sophistication activity is revisited. If the hypothesis is dis-
proved, the experiment should be added to the improvement opportunities output’s
third column for experiments which resulted in a disproved hypothesis, an improve-
ment of the application’s resilience mechanisms should be planned and the expansion
activity should be restarted.

5.5 The Full Framework
When combining the four activities described in sections 5.1 through 5.4, the suggested way
for a development team at ICA to work with Chaos Engineering to test their application
can be illustrated as in Figure 5.6. Essentially, the framework becomes two loops: one outer
loop and one inner loop. The outer loop contains the implementation, sophistication and
expansion activities, and it introduces a new Chaos Engineering tool, initially for a single
experiment. Then, the inner loop repeats the sophistication and expansion activities until
the newly introduced tool has been exhausted in terms of the experiments it can be used for.
Not until then should the next iteration of the outer loop continue to introduce yet another
tool. Apart from these loops, there are times when single activities (more specifically, the
implementation and expansion activities) should be repeated or restarted.

By applying the framework, three outputs are produced, namely the experiment backlog,
the improvement opportunities and the sophistication map. None of them is meant to be
static; instead, they should be updated for as long as Chaos Engineering is in use for the ap-
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Figure 5.6: All four activities in the framework, combined into the
full framework.

plication under test. The experiment backlog will be updated whenever new experiments are
successfully introduced. It is a way to keep track of the Chaos Engineering implementation
for the application under test. The improvement opportunities will contain experiments which
cannot be executed since the application is not resilient enough and experiments which were
executed but failed, also because the application was not resilient enough when the experi-
ment was run. The improvement opportunities output will thus be updated whenever new
e�orts are made in improving the application’s resilience and experiments are rerun. It will
also contain parts of the application that are not currently being monitored in a satisfying
way, which will be updated if new monitoring solutions are implemented. Finally, the so-
phistication map will be updated whenever the sophistication activity leads to an improved
sophistication for one or several experiments. It can be seen as an overview of how mature
the current Chaos Engineering practice is.

Exactly how the activities of the framework are performed is up to every user; they can
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use whatever tool or solution they feel comfortable with to keep track of their progress. The
framework’s support documents and a description of the framework itself should be enough
to accomplish this. However, a suggestion is to use the Excel file available at the SharePoint
site which constitutes theChaos EngineeringResources support document. In this file, Visual
Basic for Applications (VBA) has been used to automate some of the steps, which should
make the process of applying the framework faster and less labor-intensive. The framework’s
support documents have also been included in this Excel file.

5.6 Introducing Tools at ICA
The activities of the framework are based on the following fact: introducing new tools at large
companies, such as ICA, is not always trivial. It is a process which can a�ect multiple teams
in the organization, and exactly how the process is carried out at ICA depends on a variety
of factors, some of which are described in this section. Because of this, it is not feasible to
introduce all twelve tools in the framework’s tool map at the exact same time, meaning that
when a specific development team wants to apply the framework to their application, there
is a high probability that only a few of the twelve tools are ready to use at ICA. Therefore, the
framework is based on the recommendation to give precedence to already introduced tools
before other tools are considered. This recommendation mainly a�ects the implementation
and expansion activities of the framework, described in sections 5.2 and 5.4, respectively.

There exists a rather standardized process for introducing new tools at ICA. This process
contains the following conceptual steps, here paraphrased rather than stated exactly:

1. Proof of Concept (PoC). Test the tool together with a development team, to explore
the value of introducing it. If it is found to be of some value, continue; otherwise, there
is no need to.

2. Find a team at ICA to be responsible for the tool. Determine which resources they
would need to be able to manage the tool.

3. Calculate the tool’s total costs. The total costs for a general tool include costs for
purchasing, licensing, management and the necessary infrastructure.

4. Decide if the tool should be provided as a bought service or as a self-service. It was
mentioned in section 5.2 that how to access the tool depends on how the tool is intro-
duced, and this mainly referred to this step of the introduction process. Bought ser-
vices are accessed by placing an order in HelpICA, ICA’s system for ordering resources
of di�erent kinds. Self-service tools are administered by ICA’s center for continuous
delivery.

5. Package the service. This includes defining the tool, how to use it, how to access it and
how to receive help if problems arise when using the tool.

6. Go through ICA’s handover process to transfer the responsibility for the tool to the
team found in step 2.

7. Find possible users of the tool and perform demonstrations to roll out the tool in the
organization. This should start small and then increase incrementally.
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New tools also need to be evaluated from a security and risk perspective before they are
introduced. This process can sometimes be long and complicated, perhaps particularly if the
tools in question are open source. The main reason for this is that ICA lacks specific secu-
rity guidelines when it comes to open source tools, meaning that proposed tools need to be
evaluated individually, on a case-to-case basis, before they can be approved and subsequently
introduced.

ICA’s process for introducing new tools mostly lies outside of the scope of this project,
but it is, however, recommended to introduce tool T3, Chaos Toolkit, at ICA first. T3 is the
widest tool in in terms of the number of application categories it belongs to, belonging to
three categories while the other tools belong to only one or, in the case of T21, two. Because
of this, it can be assumed that out of the twelve tools, T3 should be the one which can be used
for the largest number of ICA applications. No recommendations are made here regarding
which tools to consider after T3, but a reasonable approach could be to interview users of the
framework at a later point in time and base the decision on how they would like to expand
their current Chaos Engineering practice. By recommending to start with T3, however, the
idea is that all development teams interested in Chaos Engineering can get started with the
same tool, and while they loop through the sophistication and expansion activities with T3,
the process of introducing more of the tool map’s tools can be given time to progress.
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Chapter 6

Framework Evaluation

The validation of the framework was two-fold: the framework was applied iteratively to
sample applications at ICA as it was built, and the finished version of it was used by stake-
holders at ICA during an evaluation exercise. The findings from applying the framework are
presented in section 6.1 and the findings from the final evaluation exercise are presented in
section 6.2. Section 6.3 presents the results of the questionnaire in Appendix C regarding
how employees at ICA perceive the need for Chaos Engineering. Finally, section 6.4 presents
findings from the interviews which were conducted during the Why Chaos Engineering in-
terview theme.

6.1 Applying the Framework
As described in subsection 3.1.5, only the discovery activity and the first step of the imple-
mentation activity were applied during this project. The activities were applied to ica.se
and the back-end of ICA’s e-commerce at separate meetings with participants from the ap-
plications’ development teams. The participants were observed during this process to draw
qualitative, but subjective, conclusions regarding the usability of the activities, as described
in subsection 3.1.5. The participants were also encouraged to give oral feedback on how they
perceived the activities. It was found that applying the discovery activity was helpful in two
ways: it initially made adjustments and additions to the activity and its support documents,
and the last time the activity was applied can be seen as a confirmation that the finished
version of the activity is feasible. Examples of the changes applying the framework resulted
in include:

• Adding the prioritization step when both participants considered the numbers of ex-
periments in their applications’ backlogs to be large (the backlogs contained 19 and 17
experiments, for ica.se and the e-commerce respectively)

• Rephrasing the conditions describing which application categories an application be-
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longs to, from the form “The application is written in Java” to “Some part of the appli-
cation is written in Java” as it was realized that the applications were large enough to
use several cloud service providers and programming languages

• Adding a category for experiments that are not of interest to the development team to
the Experiment Categories support document as the need for this was realized when
the participants categorized the experiments

The examples of findings above show that the initial versions of the activity needed to be
tailored to fit ICA’s applications. After that, applying the framework for the third and last
time successfully generated experiment backlogs for both ica.se and the back-end of the
e-commerce as well as nine improvement opportunities for the back-end of the e-commerce,
corresponding to nine experiments which the participant from ICA’s e-commerce believed
would be problematic for the application to handle. When it comes to improvement oppor-
tunities for ica.se, however, this output was blank.

Noteworthy is that during the fourth step of the discovery activity, where relevant ex-
periments are to be categorized into one of five experiment categories, both applications had
relatively large numbers of experiment to categorize (33 and 59 experiments, respectively).
However, the participants were still able to categorize the experiments quickly and needed
only a few seconds per experiment to decide which category it should belong to.

The full framework consists of nineteen steps, three outputs and eight support docu-
ments, and so the activity of applying the framework managed to test and thus validate ap-
proximately one-third of all steps, two-thirds of all outputs and five-eights of all support
documents. The rest have not yet been evaluated on any ICA application.

6.2 Evaluation Exercise
At the evaluation exercise, a total of 17 people participated. They all work as process man-
agers or as managers to process managers, except for four of them who have other managerial
roles in related parts of the organisation. In other words, none of the participants have work
tasks related directly to software development or software testing; instead, the process man-
agers work to develop and maintain processes which are to be followed by the rest of the
company, for instance regarding changes in the software, handovers between di�erent parts
of the organization and requests for new functionality. They were thus considered to be suit-
able participants when it comes to the logic, structure and accessibility of the framework,
but it was understood that they perhaps would have less to say regarding the tools and Chaos
Engineering principles which were included in the framework.

As mentioned in subsection 3.1.6, the exercise could not take place as planned and it was
held over a video call instead. During the exercise, none of the attending process managers
found any missing or redundant parts of the proposed Chaos Engineering framework, and all
pieces of feedback received during the exercise agreed that the proposed framework seemed
feasible. None of the participants sent in any additional feedback after the meeting.
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6.3 Employee Attitudes Towards Chaos En-
gineering

Employees in ICA’s IT department seem to have a generally positive attitude towards Chaos
Engineering, both in general and applied at ICA specifically. After getting an introduction
to Chaos Engineering, and in most cases also a demonstration of how Chaos Engineering can
be implemented using the Chaos Monkey for Spring Boot tool, 23 people who work with
IT at ICA were asked to state their level of agreement with two statements, ranging from 1
(I do not agree in the slightest) to 5 (I completely agree). The two statements were: “I see
the benefits of Chaos Engineering in general” and “I see the benefits of Chaos Engineering
somewhere at ICA”. Figure 6.1 gives the distribution of the answers, showing a clearly positive
ranking of the perceived benefits of Chaos Engineering. The average answers were 4.65 and
4.57, respectively, and 74 % and 65 % of the respondents answered 5 on the two questions,
respectively.

A clear majority of the respondents (74 %) saw the same need for Chaos Engineering at
ICA as at other companies. Some respondents (17 %) saw that the need for Chaos Engineering
might not be as extensive at ICA as at other companies. Others (9 %) disagreed and saw
more value of Chaos Engineering at ICA specifically than at an arbitrary company. This
was, in some cases, motivated by the high degree of complexity in ICA’s applications; that
was, according to some respondents, why Chaos Engineering was specifically needed at ICA
rather than at other companies.

Figure 6.1: Distribution of how IT employees at ICA perceive the
benefits of Chaos Engineering.

6.4 Employee Attitudes Towards Incidents
The obvious reason for implementing Chaos Engineering is that it aims to improve a software
application’s resilience, which has the potential of reducing the application’s number of inci-
dents. The interviews which were conducted during the Why Chaos Engineering interview
theme revealed several examples of why the interviewees considered this to be of importance
to ICA. These examples can be grouped into the following qualitative categories:

• Economic reasons. Some incidents are critical enough to severely hinder ICA’s business
and lead to not only decreased incomes but also increased costs, for instance if they
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cause stores and warehouses to malfunction or if they make ICA’s e-shop go down. It
is also perceived that such losses are di�cult to recover; in grocery retail, customers
can be assumed to often choose a competitor rather than wait if they for some reason
cannot purchase their groceries.

• Branding reasons. Severe incidents can damage how ICA is perceived as a company by
media and the general public.

• Loyalty reasons. Incidents which a�ect ICA’s end customers can cause frustration and
thus a tendency for the customers to favour competitors over ICA. Frustration can,
naturally, also be experienced by the store owners who so heavily rely on ICA.

• Legal reasons. Since ICA contains a segment for banking operations, it answers to
the Swedish Financial Supervisory Authority. This supervising organization has legal
reliability requirements which ICA is obliged to fulfil.

• Psychological reasons. Incidents can cause stress and dramatically increase workloads
for employees. Frequent incidents can also decrease general employee motivation, and
long-lasting incidents come with problematic matters of importance such as appropri-
ately switching o� employees and adhering to the Swedish Working Hours Act.

• Competitive reasons. The employees who handle the incidents have other tasks dur-
ing the incident-free times. This means that when major incidents occur, the general
development at ICA will halter and slow down, which by extension can delay releases
and thus introduce a risk of falling behind competitors.

• Political reasons. Stakeholders in the ICA IT department find it a possibility that the
IT department will be outsourced if a su�cient quality cannot be maintained in the IT
services that are delivered. There is thus a perceived need tomotivatemanagement why
the current structure should be trusted to continue with their operations, for instance
by minimizing the number of incidents.

During several of the interviews therewere explicitmentions of a general desire to go from
being reactive to being proactive when it comes to handling incidents. Chaos Engineering
was numerous times mentioned as a good step in this direction.
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Chapter 7

Discussion and Conclusions

This chapter discusses and concludes the results presented in this report. As mentioned in
the introduction of the report, the project had the purpose of examining how the resilience
of the software systems developed at ICA could be improved by using tools and techniques
for Chaos Engineering. In line with this, the report aimed to gather how principles for Chaos
Engineering are best implemented at ICA in a so-called framework, which can be used by
separate development teams in the organisation to implement Chaos Engineering for the
software applications they develop. The framework proposes a recommended way to work
with Chaos Engineering that is continuous and also extensible, which makes it possible for
development teams to start small and then increase their practices gradually. The way of
working is based on a total of twelve open source Chaos Engineering tools, which can be used
for di�erent purposes since the tools di�er in terms of functionality and which applications
they can be used to test. As presented in Chapter 5, the framework consists of four activities
to perform to start using Chaos Engineering: discovery, which defines a backlog of Chaos Ex-
periments suitable for a specific application as well as initial improvement opportunities for
the application’s resilience and monitoring, implementation, which helps to implement one
experiment from the backlog using one of the twelve tools of the framework, sophistication,
which matures already implemented experiments, and finally expansion, which adds more ex-
periments to the current Chaos Engineering practice. It is recommended to regularly repeat
all activities except discovery; implementation should be repeated when a new tool is about
to be used for the application under test, and sophistication should be repeated between ev-
ery pair of experiments that is added when the expansion activity is performed. The way of
working is only a suggestion and has been produced as a sort of lighthouse project, aiming
to introduce the discipline of Chaos Engineering in the organization. There are, naturally,
other ways to work with Chaos Engineering as well, and the results presented in this report
should only be viewed as recommendations.

This chapter starts with section 7.1 which contains a discussion on this project’s contri-
bution in relation to previous and related work. Section 7.2 discusses the validation activities
performed during the project, before section 7.3 reflects further on related work and presents
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an evaluation of the information they contain. Section 7.4 states some recommendations for
future work when it comes to implementing Chaos Engineering at ICA, before answers to
the thesis’s research questions are summarized in section 7.5.

7.1 The Framework’s Contribution
Related work on Chaos Engineering, some of which is summarized in Chapter 2 of this re-
port, presents several principles of Chaos Engineering, such as minimizing the blast radius
of Chaos Experiments and experimenting directly on production tra�c. Related work also
gives information on howChaos Experiments can be carried out in four steps: defining steady
state, hypothesizing about steady state, simulating real-world events and finally, proving or
disproving the hypothesis. What the framework proposed in this report contributes is a way
to combine these principles and Chaos Experiments into a more long-term way of working
with Chaos Engineering that is tailored to suit the operations of a specific company. The
framework has its focus on a higher level than single Chaos Experiments, and it can answer
questions such as which experiments to perform, in which order they should be performed,
and how and when they can be improved.

The benefits of gathering recommendations for practice in a framework like the one pro-
posed in this report may for instance include a more simple way for separate development
teams to get started with Chaos Engineering even if they have no prior experience in the
discipline. It also forms a common base for discussion and reference, and can thus enable
people from di�erent parts of the company, for instance di�erent development teams, to
speak the same language regarding the discipline. By establishing a common way of working,
an opportunity is furthermore created to maintain and evolve a quality in the way the disci-
pline is implemented throughout the organization, which perhaps can decrease the number
of misinterpretations of what the discipline consists of and how it should be implemented.
In addition to this, the activities of the framework were designed with the aim of fulfilling as
many of the Chaos Engineering principles found in related work as possible. For instance, the
discovery activity ensures that the overall principle of only running experiments which the
application under test should handle is followed, and it also introduces the principle of pri-
oritizing Chaos Experiments based on likelihood and impact. The implementation activity
gives guidelines on how to define steady state with both technical metrics and business met-
rics at the system boundary, and instructs framework users to consider the experiments’ blast
radius when configuring them. The way the implementation, sophistication and expansion
activities are recommended to be repeated enables teams to adhere to the principle of start-
ing small and increasing incrementally. The sophistication activity adds the Chaos Maturity
Model to the framework, and it also helps teams to constantly aim to automate experiments
and run them in the application’s production environment. Finally, if the steady state was not
defined with both technical metrics and business metrics in the implementation activity, the
sophistication activity also helps development teams to correct this. Without a framework,
it is plausible that at least some of these principles would have been missed by teams who
unaided had to implement Chaos Engineering for their application.

When it comes to Chaos Engineering tools, the results presented in Chapter 4 can be
useful as an overview of some of the currently available open source tools. The tool map in
Figure 4.6 answers questions such as which problems it is possible to simulate using Chaos
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Engineering and which applications it is possible to simulate these problems for. It can in
other words concretize what the discipline actually consists of, from an operational and prac-
tical point of view.

The interview results presented in section 6.4 in the previous chapter suggest that any
discipline or practice which is successful in reducing the number of incidents in ICA’s soft-
ware system would be welcomed by ICA employees. Furthermore, the introductory chapter
of this report mentioned that ICA has a long-term goal of completely eliminating critical
incidents in ICA’s applications while at the same time maintaining a fast software develop-
ment, and a desire to go from being reactive to being proactive could be seen as a part of this
goal. As explicitly mentioned in several of the interviews, Chaos Engineering is positively
associated with this change, and the questionnaire results presented in section 6.3 seem to
confirm that Chaos Engineering is perceived as valuable at ICA. These results can, naturally,
be considered to be promising when it comes to future work with Chaos Engineering at ICA.
For instance, as mentioned in section 5.6, new tools or concepts are at ICA tried in real devel-
opment teams to investigate the value of them before they are introduced; perhaps a positive
employee attitude can help this process progress after the end of this master’s thesis project.

7.2 Validation of the Framework
As described in section 6.1, applying progressive versions of the discovery activity three times
resulted in experiment backlogs for both ica.se and ICA’s e-commerce but improvement op-
portunities for only the e-commerce. The lack of improvement opportunities for ica.se can
be interpreted in di�erent ways. It can for instance mean that the participant from ica.se
overrated the website’s resilience or simply believed that no experiment in the framework
would be able to challenge it, but it can also mean that the framework is unable to gener-
ate improvement opportunities for some types of applications. Why the output was blank
will remain unanswered in this report, but the fact that the framework found some improve-
ment opportunities for the back-end of the e-commerce (in the form of nine experiments
for which the application lacks resilience mechanisms) is interpreted as an indication that
improvement opportunities can be found for at least some software applications when the
activity is performed.

Also as described in section 6.1, it was found that the process of categorizing experiments
into the five categories in the Experiment Categories support document could be finished
quickly for both applications. This could indicate that the total number of experiments
presented in the tool map, 87, is not large enough to make the proposed activities impossible
or impractical to perform. Even if an application belongs to all eight application categories,
meaning that all 87 experiments have to be categorized, it should be possible to finish this
process in a matter of minutes.

The main conclusions drawn from the activity of applying the framework were thus that
the five steps of the discovery activity and the first step of the implementation activity are
feasible, that they can generate outputs successfully for at least some software applications
and that their five support documents are possible to use. Regarding the rest of the activities
and their outputs and support documents, no validating conclusions can be drawn.

When it comes to the evaluation exercise, it seems highly plausible that holding the exer-
cise digitally rather than physically negatively a�ected the amount of feedback the exercise
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was able to generate, since none of the participants were able to perform the activities of the
framework themselves. With that said, the clear majority of the participants work as process
managers and can thus be assumed to be familiar with what is required in order for a pro-
posed process to be feasible. It is therefore arguable that at least one of themwould have been
able to spot an obvious mistake in the logic behind a process when it is presented to them,
and in this case, none of them saw any lacking or redundant parts in the proposed frame-
work, regarding neither the steps of the activities nor their support documents and outputs.
This can be seen as an indication that the framework’s logic will work as an ICA process.
However, due to the way the exercise had to be carried out, no further interpretations of its
results will be made.

7.3 Information Evaluation

This section presents some aspects of source criticism regarding the related work on Chaos
Engineering which this report builds on. Note that while it is always appropriate to be critical
when reading and using sources of information, it was decided to trust all pieces of related
work used in this report, at least when it comes to the specific way in which they were used.
This section merely presents some possible objections to this, objections which were taken
into account during the project.

Firstly, many resources treat Chaos Engineering from the perspective of Netflix, a sort
of pioneer when it comes to the discipline since Netflix is where it originated around ten
years ago. Aspects to take into account include whether or not their implementation of
Chaos Engineering is specific to just their organization, or if the results can be used from the
perspective of other organizations as well. Some pieces of related work explicitly argue for
the latter, and to quote one of them: “While the tools that we have written may be specific to
Netflix’s environment, we believe the principles are widely applicable to other contexts” [7]. It
was decided to agree with this point of view. However, when reading these pieces of literature,
it should be taken into account that Netflix can di�er from other applications, for instance
when it comes to their peak times in relation to common business hours.

Secondly, during the tool evaluation, information from each tool’s website and docu-
mentation was heavily used, in other words information written by the tool developers. An
obvious source of criticism is therefore that these pieces of information can be biased; it
should arguably lie in the best interest of the developers to highlight the most positive as-
pects of their own tools. However, since the tool evaluation was performed with a focus on
functionality and areas of use, in other words rather quantitative pieces of information, the
information was still deemed reliable enough to use.

Thirdly, not only books, journal articles and similar types of resources were used, but also
a few blog posts and news posts. However, they were not used in critical ways which a�ect
the results; instead, they were used as examples or to give some piece of trivia aiming to make
the report more readable. Therefore, they were still deemed possible to use.
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7.4 Recommendations for Future Work
As this project was conducted as a master’s thesis project, it was dimensioned to be finished
within 20 weeks. This limited the project in several ways and this section presents some
possible starting points for future work, continuing where this project left o�.

As described in section 3.2, this project only considered open source tools during the tool
evaluation. A future project may benefit from examining other types of tools as well. Also,
as mentioned in section 4.1, a total of 27 tools were considered during the tool evaluation,
and it was decided to conclude the search for additional open source tools when this number
had been reached in order to limit the scope of the project. In a future study, additional open
source Chaos Engineering tools might be discovered — perhaps tools which were missed
during this project, or tools which have been developed since — and it is possible that they
overlap the 27 examined tools and that they thus can have the potential of replacing any of
the twelve tools which were ultimately selected for the framework. They could also add new
application and functionality categories to the tool map.

In section 4.2, irrelevant application categories were defined to be GCP, Cloud Foundry,
DC/OS, Spinnaker and Go. However, the consulted IT architect believed it a possibility
that some development teams at ICA might use Cloud Foundry, thus introducing a risk
for an incorrect tool elimination. In a future project, the need for Chaos Engineering in
Cloud Foundry environments at ICA could be investigated further. Also, the IT architect
pointed out that while no ICA applications were written in Go at the time of the project,
there had been talk of starting to use it as a programming language sometime in the future.
If this happens, Chaos Engineering tools for testing Go applications could become useful,
indicating that this project’s definition of irrelevant categories should be reconsidered. It is
furthermore noteworthy that only one IT architect was available for consultation regarding
these matters, and there is thus of course a possibility that his colleagues would disagree with
the recommendations he made during the project.

Also, it was only possible to validate the discovery activity and the first step of the imple-
mentation activity during the project. It may be possible for the activities of the framework
to act as a foundation for a formal ICA process for Chaos Engineering in the future, but
before that, the rest of the activities should be evaluated on some sample ICA applications
as well. This work could be carried out for instance by one of the company’s process man-
agers, who could act as a functional owner of the discipline. He or she could then develop
the activities into a process and integrate it with necessary parts of the organization.

Finally, when it comes to introducing Chaos Engineering tools at ICA, it was only recom-
mended to start the process described in section 5.6 for the tool Chaos Toolkit. Therefore,
future projects need to actually initialize the process of introducing Chaos Toolkit, answer-
ing questions such as who should be responsible for it and how the tool best is provided to
development teams, and they also need to consider the other eleven tools which were selected
for the framework.

7.5 Answering the Research Questions
This section summarizes the project’s findings by giving answers to the three research ques-
tions defined in section 1.2.
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7.5.1 RQ1
Question: How can Chaos Engineering improve the resilience of software systems at ICA?

Answer: By following the way of working proposed in terms of the four activities in Chap-
ter 5, the following sets of findings can be defined:

1. Ideas for yet unimplemented resilience mechanisms. As illustrated in Figure 5.2, these
improvement opportunities come from the discovery activity, when experiments are
categorized as experiments for which the application lacks resilience mechanisms.

2. Ideas for how to improve monitoring solutions. As the previous set of findings, these
improvement opportunities also come from the discovery activity when experiments
are categorized, but when they are categorized as experiments for which the applica-
tion lacks monitoring solutions.

3. Problems in already implemented resilience mechanisms. These are found whenever
experiments result in disproved hypotheses.

4. Verification of working resilience mechanisms. These are generated whenever experi-
ments result in proved hypotheses.

The first set of findings can improve resilience by giving software engineers at ICA sugges-
tions of resilience mechanisms that might have been missed or unheard of when developing
the application under test. The third set of findings is a result of carrying out a Chaos Ex-
periment that failed; since a prerequisite for carrying out a Chaos Experiment is that it is
believed that the application under test should be able to withstand the performed Chaos
Engineering attack, a failed experiment should always come as a surprise and thus give a new
improvement opportunity. The second and fourth set of findings will not improve software
resilience on their own. However, the second set of findings can increase the number of Chaos
Experiments which can be run, which can improve resilience by extension, and the fourth set
of findings can verify that the software already has a certain degree of resilience.

Apart from this, adopting Chaos Engineering in an organization can come with general
benefits which also can improve software resilience, but in less tangible ways. A selection of
such advantages are discussed in subsection 2.7.1.

7.5.2 RQ2
Question: What are the necessary building blocks of a Chaos Engineering framework, and
how can they be implemented?

Answer: The proposed framework consists of four activities, divided into steps to follow,
support documents to use and outputs to produce. The activities provide support to discover
appropriate Chaos Experiments for a specific application, to implement such experiments by
using Chaos Engineering tools, to sophisticate the current Chaos Engineering practice to make
it more valid, and to expand the current Chaos Engineering practice to make it wider in terms
of number of experiments. In total, the four activities comprise a number of nineteen steps,
eight support documents and three outputs.

86



7.5 Answering the Research Questions

All of the framework’s support documents and a description of the framework itself have
been gathered as digital resources on a SharePoint site. This is considered to be su�cient
to follow the proposed way of working in any desired way. As an additional resource and a
suggested implementation of the framework, an Excel file was created and given functionality
using Visual Basic for Applications, and this file was also added to the SharePoint site. It
illustrates one way to implement the framework and has automated some of the activities’
steps.

7.5.3 RQ3
Question: Where is Chaos Engineering suitable to use at ICA, and can it be provided as a
centralized service?

Answer: The answer this thesis can give to where Chaos Engineering is suitable to use at
ICA is somewhat limited by the project’s delimitations. Assuming that the usage of a tool
is necessary in order for Chaos Engineering to be suitable, and considering only the open
source tools which were considered during this project, the application under test needs to
fulfil at least one of the following conditions to be testable with Chaos Engineering:

• It has to be containerized with Docker

• It has to be managed with Kubernetes or OpenShift

• It has to be running on AWS or Azure, or in a private cloud environment

• It has to be written in Java

• It has to communicate with other services over the Internet

This is a necessary condition but not a su�cient one. In order for a Chaos Experiment to
be executable for the application under test, the application also has to have at least one
resilience mechanism which deals with the problem simulated by the experiment, it has to
have a way to monitor the e�ects of the experiment, and there has to be an interest in the
application’s development team to investigate what would happen to the application if the
problem simulated by the experiment happened in a real scenario in the application’s pro-
duction environment. If a future project examines other types of Chaos Engineering tools,
or a way to implement Chaos Engineering that is not dependent on using a tool, it is possible
that this answer can be widened. A common and general perception, however, is that the
only condition an application needs to fulfil in order for some form of Chaos Engineering to
be suitable is that it is a distributed application.

When it comes to the topic of providing Chaos Engineering as a centralized service, the
answer can be seen from two perspectives: a functional one and a technical one. Functionally,
the proposed framework constitutes a common way of working shared by all development
teams at ICA. By letting ICA process managers validate the framework’s contents, it seems
likely that the activities of the framework can be further developed into a formal ICA pro-
cess which can be used by various development teams. Technically, providing tool support
for Chaos Engineering in a centralized way can be done in several ways, for instance as a self-
service or a bought service, as discussed in section 5.6. The question as to which way is the
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most appropriate one is answered towards the end of ICA’s tool introduction process and is
thus not part of the scope of this project, but it can be concluded that it should be possible.
What to include in the service will depend on the specific tools of the framework; this is also
investigated late in ICA’s tool introduction process and is thus also outside of the scope of
this project.

To conclude, it seems that the discovery activity is feasible at ICA and that it can successfully
generate useful outputs for future resilience testing of specific software applications devel-
oped in the organization. The implementation, sophistication and expansion activities have
not yet been fully validated and no conclusions regarding their feasibility can therefore be
drawn. It is, however, considered to be reasonable that all four activities, after some future
validation work, can act as a foundation to develop a more formal ICA process for Chaos
Engineering.
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Appendix A

Interview Guides and Questions

This appendix contains the interview guides and interview questions used for the thesis’s in-
terviews, which were organized in terms of the interview themes ICA IT, Why Chaos Engi-
neering and Chaos Engineering Areas. While the ICA IT interviews were openly structured,
the interviews of the remaining two themes were semi-structured. Therefore, the ICA IT
interviews were led only by a interview guide containing a set of question areas, while the
interviews of the Why Chaos Engineering and Chaos Engineering Areas themes were guided
by sets of actual questions. All interviews were held in Swedish, but the guides and questions
have been translated into English in this appendix.

All interviews followed the same general structure and consisted of four phases: context
specification, opening part, main part and conclusion. The context specification was always
carried out in the same way, regardless of interview theme, and it followed the following
steps:

• Present the interview: a short summary of how the interview was to be structured

• Ask for questions or comments

• Present the interviewer

• Introduce Chaos Engineering, if the interviewee was not already familiar with the dis-
cipline

• Introduce the interview theme

• Explain how the results of the interview were to be used

• Ask for questions or comments

The opening part of every interview consisted the following steps:

• Ask about role at ICA, and, if not implicitly answered, ask about previous roles at and
outside of ICA
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• Ask about work tasks a regular day

• Ask about work tasks a critical day

• Ask about education

The conclusions of the interviews were carried out identically regardless of interview
theme as well. The conclusions started by repeating how the interviewee’s answers had been
interpreted while encouraging interruptions whenever there was a wish for a change in or an
addition to one of the answers. Then final comments were asked for, before the interviewee
was thanked for his or her time and the interview was ended.

The only part of the interviews where they di�ered depending on their theme was, in
other words, the main parts of the interviews. The sections A.1 through A.3 present these
main parts of all three interview themes.

A.1 ICA IT
The following question areas were discussed:

• The interviewee’s organization: what does it do?

• The organization’s place at ICA: how does it relate to the rest of the IT department?

• The organization’s products: what does it deliver?

• The organization’s customers: who use the delivered products?

• The organization’s size: how big is it, in terms of employees and/or budget?

• The organization’s structure: which roles exist in the organization?

A.2 Why Chaos Engineering
The following open questions were asked:

• What happens when a system you work with stops working? Who are a�ected? How
are you a�ected?

• What is the cost of downtime for ICA? What are the consequences?

• When Amazon’s website goes down it costs the company a tremendous amount of
money due to lost incomes. Is there any di�erence if ICA’s applications go down?

• How often do incidents occur? How are they prioritized? How do incidents of di�er-
ent priorities di�er?

• How long does it take, would you say, to handle a critical incident? What happens
during that time?

• As a user, how are you a�ected by an incident?
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A.3 Chaos Engineering Areas

• As an incident handler or general employee, how are you a�ected by an incident?

• What would an incident-free system mean, for you and for the users?

• Why is it di�cult to have a week free from critical incidents?

• Tell me about the worst incident you have experienced at ICA.

• Would you say that ICA has good incident handling? Does ICA have goodmechanisms
for reliability in their applications?

• What would the benefits be if the number of incidents was decreased?

• What is your impression of Chaos Engineering in relation to what we have discussed
today?

The following closed questions were asked:

• On a scale of 1-5, how much would you agree with the statement “I see the benefits
of Chaos Engineering in general”? (1 = I do not agree in the slightest, 5 = I completely
agree)

• On a scale of 1-5, how much would you agree with the statement “I see the benefits
of Chaos Engineering somewhere at ICA”? (1 = I do not agree in the slightest, 5 = I
completely agree)

A.3 Chaos Engineering Areas
As an introduction, the question areas given in section A.1 were discussed. Then, the follow-
ing open questions were asked:

• How are your software systems structured, in terms of architecture, platforms, tools,
cloud service providers and similar aspects?

• Which mechanisms for reliability have been implemented in the systems?

• How are the systems tested?

• Have there been any problems with the software systems? What caused them?

• What is your impression of Chaos Engineering in relation to what we have discussed
today?

• Which Chaos Engineering attacks do you consider to be suitable for ICA’s software
systems?

• What is your view on automated as opposed to manual Chaos Engineering at ICA?

• Should Chaos Engineering be included in many software systems at ICA or do you
consider its use more limited? If limited, why and to which systems?
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• If you were to search for suitable systems to test with Chaos Engineering, where would
you look?

The following closed questions were asked:

• On a scale of 1-5, how much would you agree with the statement “I see the benefits
of Chaos Engineering in general”? (1 = I do not agree in the slightest, 5 = I completely
agree)

• On a scale of 1-5, how much would you agree with the statement “I see the benefits
of Chaos Engineering somewhere at ICA”? (1 = I do not agree in the slightest, 5 = I
completely agree)
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Appendix B

Experimentation Protocol

This appendix contains the experimentation protocol used as part of the tool evaluation
process.
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Appendix C

Questionnaire

The questionnaire which accompanied the Chaos Engineering demonstrations held for var-
ious stakeholders at ICA contained five questions, to which answers where completely op-
tional. The reason for this was that not every person was considered relevant for all five
questions, because of their more operational roles. However, answers to the two last ques-
tions, regarding the perceived benefits of Chaos Engineering, were highly encouraged due to
the simple nature of the questions. Also, since the respondents had just been given a demon-
stration of Chaos Engineering, it was assumed that every respondent had a clear enough idea
of the principles of Chaos Engineering to give their opinions on its benefits.

The five questions were given in Swedish, but they have been translated into English in
this appendix. The questions were:

1. These areas or systems at ICA are the first ones that come to mind when I think of
reliability testing or Chaos Engineering:

2. I am aware of the following reliability mechanisms in those areas or systems:

3. These attacks are the first ones that come to mind when I think of Chaos Engineering
in relation to ICA: (The answer does not need to include any of the three attacks
demonstrated today)

4. I see the benefits of Chaos Engineering in general: (Circle a number between 1 and 5
where 1 = “I do not agree in the slightest” and 5 = “I agree completely”)

5. I see the benefits of Chaos Engineering somewhere at ICA: (Circle a number between
1 and 5 where 1 = “I do not agree in the slightest” and 5 = “I agree completely”)

101



INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-04-28

EXAMENSARBETE Building a Framework for Chaos Engineering
STUDENT Hugo Jernberg
HANDLEDARE Per Runeson (LTH), Michael Adis (ICA Gruppen AB)
EXAMINATOR Emelie Engström (LTH)

Chaos Engineering: Konsten att undvika
kaos genom att orsaka kaos med flit

POPULÄRVETENSKAPLIG SAMMANFATTNING Hugo Jernberg

Det kan låta som en dålig idé att med flit orsaka kaos i en programvaruapplikation.
Det är inte riskfritt, och att göra det på fel sätt kan få ödesdigra konsekvenser —
men om det görs på rätt sätt, kan belöningen vara en mer tillförlitlig applikation.

I en perfekt värld skulle det gå att förutspå ef-
fekterna av alla tänkbara problem, men i verk-
ligheten är det svårare — många system, kanske
framför allt programvarusystem, tenderar att vara
för komplexa för att det ska vara möjligt. På
grund av detta kan man välja att tillämpa dis-
ciplinen Chaos Engineering.
Chaos Engineering går ut på att utföra experi-

ment, där man med flit inför ett problem i sin pro-
gramvara för att se hur den beter sig. Om det visar
sig att programvaran slutar fungera när problemet
införs, då har man identifierat en svaghet. När den
svagheten sedan är åtgärdad är effekten att pro-
gramvaran är mer tillförlitlig och bättre förberedd
ifall problemet vi införde med flit någon gång in-
träffar naturligt.
I mitt examensarbete har jag föreslagit ett

ramverk för hur man på ett säkert sätt kan arbeta
med Chaos Engineering på ICA Gruppen AB, en
grupp av företag vars kärnverksamhet är daglig-
varuhandel. Ramverket består av fyra aktiviteter
som stöttas av stöddokument, och genom att följa
aktiviteterna och samtidigt ta hjälp av stöddoku-
menten är målet att definiera en lämplig Chaos
Engineering-metodik för en viss programvaruapp-
likation. En sådan metodik grundas i användan-
det av olika Chaos Engineering-verktyg. Ett tret-
tiotal verktyg utvärderades därför under examen-

sarbetets gång, varav tolv valdes ut till ramverket.
De fyra aktiviteterna i ramverket visas i figuren

nedan tillsammans med sina stöddokument. Den
första aktiviteten i ramverket (discovery) bygger
en lista av problem som är lämpliga att införa i
en viss applikation. Den andra aktiviteten (im-
plementation) påbörjar användandet av ett av de
tolv utvalda verktygen. Den tredje aktiviteten
(sophistication) grundas i en mognadsmodell för
Chaos Engineering och syftar till att förbättra hur
disciplinen används. Slutligen ämnar den fjärde
aktiviteten (expansion) att utöka antalet problem
som införs i applikationen. Det rekommenderas
att upprepa de tre sista aktiviteterna regelbundet,
och regler för när dessa upprepningar är passande
är också en del av det föreslagna ramverket.

1. Discovery 2. Implementation 3. Sophistication 4. Expansion

Tanken är att ramverket ska göra det enklare
att komma igång med Chaos Engineering. Kanske
kan det leda till att ICA:s applikationer blir bättre
förberedda — så att de kan stå emot vad de än
utsätts för i dagens turbulenta värld.
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