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Abstract

In this work, optimizations of the Spectral Element Solver Nek5000 on single
and multiple GPUs were investigated. In particular, in the proxy app Nekbone,
the main computation was optimized for a single GPU with a mixed OpenACC
and CUDA approach. Additionally, measurements were taken to asses the scal-
ing of the code for multiple GPUs. The results showed that a close to optimal
single GPU implementation of Nekbone had been achieved. For future perfor-
mance increases however, it was concluded that the current communication ker-
nel is the main bottleneck for scaling on multiple GPUs.
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Chapter 1

Introduction

Nek5000 is a scientific solver for Computational Fluid Dynamics (CFD) based on the Spec-
tral Element Method (SEM) that is highly scalable and used extensively in academia. One
important and the most computationally expensive aspect of the solver is solving the Pois-
sion equation to calculate the pressure. This part of the solver is solved in the Proxy app
Nekbone to illustrate the scalability and performance of the whole Nek5000 solver. In Nek-
bone the Poission equation is solved with the Conjugate Gradient Method with an optional
multigrid preconditioner and has successfully scaled to millions of MPI ranks. However, both
Nek5000 and Nekbone have only to a limited extent been ported to multiple Graphics pro-
cessing units (GPUs). Using multiple GPUs could potentially increase the performance of
the solver by a large margin and this work aims to illustrate the possible performance gains
in Nek5000 by optimizing the important math operations in Nekbone on GPUs.

1.1 Problem statement
A large issue with older numerical codes is portability and modifying the codebase to fit new
hardware such as GPUs. In recent times with the advent of machine learning and therefore
also an increased number of GPU clusters, the e�ort to utilize GPUs for other numerical
calculations has increased tremendously. In this report we discuss the performance of Nek-
bone on single and multiple GPUs. In particular we look at optimizing the performance of
Nekbone on a single GPU and use previous work by Jing et. al. [4] to evaluate the bottlenecks
when scaling to multiple GPUs.

The research questions are as follows,

• What performance can be achieved and is currently achieved in Nekbone on single and
multiple GPUs?

• What performance limiting factors are there for Nekbone?

7



1. Introduction

1.2 Previous work
In the area of utilizing GPUs for scientific computing, work has been done to some extent
since the early 2000s by using shaders and other constructs made for graphical applications.
However, with the advent of CUDA and OpenCL it has been possible to utilize GPUs for
general-purpose programming or so called GPGPUs [7]. Because of the inherent parallelism
in the GPU architecture, compute-intensive applications such as matrix multiplication have
successfully been able to utilize GPUs well. One such application is the Spectral Element
Method and it is, therefore, an ongoing work to improve this method for GPUs and in par-
ticular multiple GPUs.

Previous work on Nekbone specifically has been done by J Gong et. al.[4] where the main
conjugate gradient method was parallelized for multiple GPUs with OpenACC and CUDA
Fortran. In their work, it was shown that using a simple pragma based approach such as Ope-
nACC for simpler operations and then parallelizing the main computation subroutine, Ax, a
good trade-o� between portability and performance could be achieved. However, it was also
noted that the communication between di�erent nodes and elements posed a major bottle-
neck for scaling the code on more GPUs. In a workshop following this, N Jansson, J Gong
and A Peplinski tried to optimize the computation subroutine Ax further and improved the
performance with improved use by shared memory and the utilization of CUDA C instead.
Further work on optimizing Ax was also recently done in a paper by Świrydowicz et. al. [11],
where they used the accelerator framework OCCA and managed to achieve performance at
or very close to the maximal performance based on the bandwidth.

1.3 Contributions
In this work we combine the work by Gong and Świrydowicz et.al. to obtain a near-optimal
single GPU implementation of Nekbone, based on the measured GPU memory bandwidth
and roofline analysis. In addition to this, we investigate the performance impact of the cur-
rent communication kernel in preparation for further improvements of Nek5000.

1.4 Delimitations
Certain assumptions were made to make it feasible to complete the project in the allotted
time. In particular, we only focus on Nekbone as a way of illustrating possible changes in
Nek5000. We never implement any optimizations in Nek5000. In addition to this, the work
optimizes and investigates the performance of Nekbone without a preconditioner, the pre-
conditioner is never optimized.
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Chapter 2

Background

In this chapter, we present the mathematical theory behind Nek5000/Nekbone and the ex-
act formulation of the algorithm. We will also cover the most important aspects of a GPU,
especially the key di�erences compared to a conventional Central Processing Unit (CPU).

2.1 Nekbone
Nekbone aims to capture the main computational parts of the larger CFD code Nek5000.
This is done by solving the Poisson equation with Dirichlet boundary conditions through
the Spectral Element Method (SEM) on a cubic domain. Solving the Poisson equation is
the most time-consuming part of Nek5000 and showcasing performance improvements in
Nekbone can, therefore, showcase future improvements to the entire solver. We will now
look into the mathematical background behind SEM and illustrate how the method works.

2.1.1 The Spectral Element Method
The Spectral Element Method is a combination of the Finite Element method with higher-
order base functions. In other words, the method revolves around decomposing the compu-
tational domain into small elements and then solving the smaller problem on each element
with a Spectral solver with high order polynomials as base functions. The solution along the
boundary of each element is then communicated to the bordering elements. Using high order
polynomials lead to a relatively high computational intensity per element which makes the
method a good candidate for acceleration with GPUs.

As mentioned, we solve the Poisson equation with Dirichlet boundary conditions

−∇2u = f , u ∈ Ω
u = 0, u ∈ ∂Ω

(2.1)
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2. Background

where Ω is the computational domain and ∂Ω is the domain boundary. In the case of Nek-
bone the domain is a cube, but the domain Ω can take many shapes. The strong formulation
is the most common, but for SEM we consider the weak formulation of (2.1) defined as:

Find u ∈ H1
0 (Ω) such that

(∇u,∇v) = ( f , v) ∀v ∈ H1
0 (Ω), (2.2)

where

(u, v) =
∫

Ω
u · vdΩ, ∀u, v ∈ L2 (2.3)

and the spaces are defined as L2 = {v :
∫

Ω vdΩ < ∞} and H1
0 = {v : v(∂Ω) = 0, v ∈ L2,∇v ∈

L2} [6]. In addition, we used the identity that (∇2u, v) = (∇u,∇v) in L2 when rewriting to
weak form [9]. Putting the formulation in words, we are looking for u that solves the Poisson
equation in H1

0 , which is the square-integrable Sobolev space that is disappearing on the
boundary ∂Ω [4]. However, since this is an infinite function space, we need to approximate
the solution by containing it to a finite-dimensional subspace XN

0 ⊂ H1
0 . In SEM we do not

look for the exact solution of u in H0
1 , but rather an approximation in the discrete space

XN
0 [9].

Let us then introduce XN
0 . First o� we need to choose base functions for each element.

The ones used in Nekbone are the Nth Legendre polynomial, LN , interpolated with Lagrange
interpolation on the so-called Gauss-Lobatto-Legendre(GLL) points[4]. The GLL points and
the one dimensional Legendre polynomials are closely related and defined on the interval
ω = [ −1, 1] . The Legendre polynomials can be computed according to the recurrence [9]

L0(ξ) = 1, L1(ξ) = ξ,

Lk(ξ) =
1
k

((2k − 1)ξLk−1(ξ) − (k − 1)Lk−2(ξ))
(2.4)

and the GLL points are defined as the zeros of

(1 − ξ2)L′N (ξ), (2.5)

which we will refer to as ξi, i ∈ {0, . . . ,N}.
With this we can now form the one-dimensional base functions li in ω

li(ξ) =
N(1 − ξ2)L′N (ξ)

(N + 1)(ξ − ξi)L′N (ξi)
(2.6)

where ξi is the ith GLL point. This gives us a set of base functions li that are orthogonal in
one dimension and where the relation li(ξ j) = 0, i 6= j holds. We now need to extend these
base functions into three dimensions, which is done by taking the tensor product of the base
functions to obtain ψi jk(ξ, µ, γ) = li(ξ)l j(µ)lk(γ) where (ξ, µ, γ) ∈ ω3 [6]. When we now
have a base in this normalized space, we have connect to the problem on our original domain
Ω.

This is done by making a non-overlapping partition of Ω =
⋃E

e Ωe where each element
Ωe and its coordinates (x1, x2, x3) = x ∈ Ωe are mapped to a corresponding set of local
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2.1 Nekbone

coordinates r(x) = (r1, r2, r3) ∈ ω3 [4]. By now taking the intersection H1
0 ∩ V = span(ψi jk)

we obtain XN
0 . Each function on each element can then be expressed as [9]

ue(x1, x2, x3) =
N∑

i=0

N∑
j=0

N∑
k=0

ue
i jkψi jk(r1, r2, r3) =

N∑
i, j,k=0

ue
i jkψi jk. (2.7)

With this we can now define scalar product and di�erentiation in XN
0 by reformulating

the weak problem statement into discrete form. First, however we need to define scalar
product and di�erentiation in XN

0 . Scalar product, (u, v)N is defined as [9]

(u, v)N =

E∑
e=1

N∑
i, j,k=0

ue
i jkψi jkve

i jkψi jk. (2.8)

Next we need to evaluate the ∇ = ( ∂
∂x1
, ∂
∂x2
, ∂
∂x3

) operator. Following from equation (2.7)
we get

∂u
∂xi
=

3∑
j=1

∂u
∂r j

∂r j

∂xi
. (2.9)

Now, we can express (∇u,∇v)N as

(∇u,∇v)N =

E∑
e=1

3∑
i=1

3∑
j=1

∫∫∫
ω3

∂u
∂ri
Gi j

∂v
∂r j

dr1dr2dr3 (2.10)

where we have introduced the geometric factors Gi j as

Gi j =

3∑
k=1

∂ri

∂xk

∂r j

∂xk

∣∣∣∣∣∂x
∂r

∣∣∣∣∣ (2.11)

which are essentially coe�cients dependant on the derivatives of the global position x relative
to the local position in the element r [4]. These factors are therefore also constant for a
constant geometry. As for the di�erentials of u and v, they also only depend on the base
functions and its own weight according to

∂u
∂rl
=

N∑
i, j,k=0

ue
i jk
∂ψi jk(r1, r2, r3)

∂rl
. (2.12)

With these definitions we now have our final problem statement: find u ∈ XN
0 such that

(∇u,∇v)N = (u, v)N , ∀v ∈ XN
0 . (2.13)

Discretization
To numerically solve the SEM system we need to rewrite the equations on matrix form and
introduce a global numbering. The alert reader may have noticed that we have so far not
spent any time explaining how we deal with shared nodal points between the elements and
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2. Background

how continuity is enforced. We start by introducing the global weight vectors u and v which
are the global value vectors containing every unique weight ue

i jk , i.e. we only have one value
for each position x ∈ Ω [6]. To maintain that each weight is mapped to its corresponding
element we, therefore, need to introduce the gather-scatter matrix Q which is the global to
local map of u. In other words, Q is a boolean matrix where a 1 at index i, j in Q indicates
that the weight at index j in u belongs in the ith element [6].

For the boundary conditions though, we must introduce another matrix as well, the so
called restriction matrix R which zeros our any weight along the boundary. It is similar to Q,
but only zeros out the values along the boundary.

The next matrix we need is the di�erentiation matrix. If we look at (2.12) we see that the
partial derivative ofψ is reused in every element together with the geometric derivativeG. By
pre-computing these matrices and approximating the integral in (2.10) with the quadrature
over the GLL nodal points we have two constant matrices that only depend on the geometry
and the base functions. Starting with the di�erentiation of u, v, we get the di�erential matrix

D =

Dξ

Dµ

Dγ

 =
I ⊗ I ⊗ D̂
I ⊗ D̂ ⊗ I
D̂ ⊗ I ⊗ I

 (2.14)

where D̂ik = l′k(ξi). As for the matrix with the geometric factors, we get a symmetrical matrix

Ge =

G
11 G12 G13

G21 G22 G23

G31 G32 G33

 (2.15)

with values Glm
i jk = G

lm
i jkρiρ jρk . The last matrix we need for our system is for simply comput-

ing the scalar product (v, f ) which is the diagonal mass matrix Be which is defined for each
element as Be

i jk =
∣∣∣∂x
∂r

∣∣∣ ρiρ jρk i.e. the jacobian evaluated and multiplied with the correspond-
ing GLL weights at local index i, j, k [4].

Now we can assemble our system. To make use of the restriction and gather-scatter matrix
R,Q we need to assemble the local matrices into global matrices. This is done by taking the
block-diagonal of all the local element matrices and assembling them into one. This is simply
done by defining the global matrices G = G1 ⊕ G2 . . . ⊕ GE and repeating for the other
matrices. If this notation is unfamiliar, the result is a matrix with each element matrix as a
block along the diagonal.

With this, we can rewrite our system in (2.13) as

vTRQT DTGDQRTu = vTRQT B f (2.16)

which after rewriting and simplifying gives us

Au = RQT B f
A = RQT DTGDQRT .

(2.17)

In other words it all comes down to solving a very large, sparse linear system of equations.
It should be pointed out that the matrix A is never explicitly formed and that actually con-
structing A would also be too expensive to be feasible. Everything is rather computed for
each element and then communicated in a gather-scatter operation that performs the action
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2.1 Nekbone

of Q. The level of parallelism is therefore very high since each element can be operated on
independently except for the communication along the boundary.

Now that we have formalized our problem into a linear system of equations we move on
to how to actually solve the linear system.

2.1.2 The Conjugate Gradient Method

A large issue with conventional explicit solvers for linear systems Ax = f is that the inverse
of the matrix A becomes too computationally expensive to compute. That is why for systems
dealing with millions of degrees of freedom, as in our case, iterative or Krylov methods are
used [5]. Another issue in our case is that we never actually form A at all, but this is also
avoided by using Krylov methods for which we only need to compute the product Ax. They
are not dependent on the actual formation of A.

In the case of Nekbone, the Conjugate Gradient (CG) method specifically is used to solve
the system Ax = f [4]. The general idea of the CG method is to approximate the solution as a
composition of base vectors vi and minimize the function ri = kAv−ri−1, k ∈ R, r0 = f [5]
at each step i. Then, the approximate solution of x at iteration i can be written as xi =

xi−1+kvn. This is then repeated until the residual ri is below some threshold. To improve the
rate of convergence, a preconditioner can be applied to the system, M . In pseudocode the
algorithm is defined as in algorithm 1 below. In the pseudocode the procedure is explicitly
stated in matrix form, but it corresponds well with how it is formulated in Nekbone. In this
work we will focus on the method without the preconditioner, i.e. M = I .

Algorithm 1 Pseudocode for the Conjugate Gradient Method
procedure Conjugate Gradient Method
Input: A ∈ Rn×n, f ∈ Rn

Output: x ∈ Rn

r0 ← f , x ← 0
p0 ← r0
while ||ri ||2 > ε do

zi ← M−1ri

βi ←
rT

i zi

rT
i−1zi−1

pi ← zi + βipi−1
wi ← Api

αi ←
rT

i zi

pT
i wi

xi ← xi−1 + αipi
ri ← ri − αiwi
i ← i + 1

end while
end procedure

13



2. Background

2.1.3 Cost analysis
To asses the performance of Nekbone we need to analyze the number of operations performed
in each iteration in Nekbone and make an analysis of the data movement involved. As for
the analysis we have two factors that contribute to the total number of degrees of freedom
n. These are the number of elements E as well as the number of GLL points, N , required for
the polynomial approximation. From this we get that n = EN3. N is therefore always one
higher than the degree of the polynomial approximation.

In Nekbone, the only large scale operations that are performed are adds and mults and
we will therefore not make any detailed analysis of which Floating Point Operation (flop)
that is performed. We will in other words not distinguish between the di�erence between a
mult and an add even-though their latency and throughput di�ers slightly.

Let us now consider the cost of each iteration of Nekbone. The cost analysis of the CG
method, if we do not consider the matrix multiplication of A and do not utilize a precon-
ditioner, is not very costly. It is mostly vector additions and subtractions that are made and
the total number of flops performed are

CCG(n) = 15n. (2.18)

As for the Matrix multiplication Ax, the number of computations, in this case, will be higher
since the number of operations also scale with the number of nodal points N . If we consider
the matrices from section 2.1.1 and count the number of operations we get

CSEM(N, n) = n(12N + 19). (2.19)

The total cost then becomes

C(N, n) = n(12N + 34) (2.20)

for each iteration in Nekbone. Another factor that we need to consider is also the data
transfers and the computational intensity of the code. Since we will port it to GPU, with
higher computational intensity, we hope to achieve higher performance.

As for the number of reads and writes we have a total of 24n loads and 6n stores in
Nekbone and therefore a total of 30n load/store operations. The total amount of memory
per iteration is therefore 8 · 30n since all computations are made in double precision.

Combining these two measures we can calculate the computational intensity T [flops/byte]
as

T (N) =
n(12N + 34

8 · 30n
=

12N + 34
240

(2.21)

and we can, therefore, expect our performance on GPU to increase as the polynomial order
is increased.

2.2 Acceleration on Graphics Processing Units
GPUs are increasingly popular in scientific computing as accelerators for certain applica-
tions. Nekbone and SEM are contenders for utilizing GPUs well because of the relatively
high computational intensity compared to finite volume methods in CFD [7]. However, even
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2.2 Acceleration on Graphics Processing Units

Figure 2.1: A greatly simplified scheme over a GPU architecture. In
particular we show how all thread blocks have access to L2 cache and
global memory while the threads in a thread block have one shared
memory.

if the polynomial degree increases the computational intensity linearly, most applications
use N between 6 and 10 as a trade-o� between accuracy and performance [8]. The trade-o�
being that having more points leads to a finer grid and a higher rate of convergence, but it
also makes the computation take longer time because of the CFL condition, which relates
the granularity of the grid to the time step [1]. Another important issue is the problem of
scalability. Even if one GPU can greatly improve performance compared to a CPU, the com-
munication overhead between multiple GPUs can make a significant performance impact.
In this section we will present the architecture of GPUs and introduce the roofline model as
a way of measuring achievable performance for GPUs.

2.2.1 GPU architecture
A GPU di�ers from a CPU in that instead of having a few high performing threads, it has
several hundreds of cores and processes several thousands of simpler threads at the same time.
The focus is therefore on parallelism. All of these threads share a large global memory, but
have their own individual registers. An important aspect of General Purpose GPU computing
is to eliminate as much data movement between CPU and GPU as possible since the transfer
speed between the two is comparably slow. A simplified picture of a GPUs architecture is
provided in Figure 2.1. We will now go through the parts and functions of a GPU that will
be relevant in the future discussion.

• Kernel, a function executed on the GPU. In general, it is a function executed by mul-
tiple threads that operate on small amounts of data in parallel.

• Thread, exactly like a thread on a CPU. Each thread executes the kernel sequentially
and has its own registers.

15



2. Background

• Warp/Thread block, is made up of several threads that share certain resources, illus-
trated in Figure 2.1, and can perform certain operations independently from other
blocks,

– Shared memory, is shared among all threads in a thread block and is faster than
global memory but slower than registers.

– Syncing, a warp can sync its own threads without stopping all other warps when
executing a kernel.

• Global memory, shared among all thread blocks and is similar to Random Access
Memory(RAM) for CPUs. It is slower than shared memory and registers, but faster
than RAM on a CPU. Shown in Figure 2.1.

• L2 cache, global shared cache among all threads. It is usually not very large, but for
smaller inputs it can make a large impact on read/write speed compared to global
memory.

2.2.2 The Roofline Model
The roofline model has for a long time been used to assess what performances can be achieved
depending on the computational intensity of a program on a specific CPU [10]. Because the
bandwidth for the CPU and each level of cache and memory is limited, the peak performance
of a CPU is often not achievable. For GPUs a similar approach can be taken where one takes
into account the bandwidth of each level of memory. In our case we will focus on the Global
memory, similarly to Świrydowicz et. al. [11].

The idea of the roofline model then is that the maximal performance of a CPU is not
always achievable because of limited bandwidth. This means that the computational intensity
combined with the bandwidth B of some level of memory can be used to assess the maximal
performance can be achieved according to

Roofline = min{T · B,P} (2.22)

where T is the computational intensity and P theoretical peak performance of the comput-
ing unit. The roofline model is therefore a simple and practical for rough estimates, but to
consider how close one is to reaching maximal performance it poses some issues. The largest
issue is posed by the bandwidth, which for GPUs largely depends on the problem size. The
more thread blocks that are in use, the higher the bandwidth. This is unlike CPUs where the
problem can be relatively small and still utilize all ports. Therefore it is important to make
measurements of the actual bandwidth for any given input size.

Since the computational intensity, that we computed earlier, is not particularly large for
reasonable polynomial degrees it is unlikely we will be close to the maximal performance of
the GPU P. We, therefore, expect the results to always be in the so-called memory-bound
region where Roofline = T ·B where B is the empirically measured bandwidth for each input
size.
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2.2 Acceleration on Graphics Processing Units

2.2.3 Reasons for Performance
It should also be mentioned why performance in this domain is important. To the bystander
it might not seem like a large di�erence if a computation takes more or less time other than
that you might have to wait a second or two longer. However, for large experiments and
computations that take hours, or even days, a small increase in performance can save large
amounts of research time. Additionally, high performance computers utilize a lot of power
[3], so being able to make the computations faster also saves money and energy.
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Chapter 3

Implementation

In this chapter, we present Nekbone more in detail as well as what programming languages
and standards that are used. In particular we go though the optimizations performed on the
matrix free Ax subroutine and the reasoning behind them. The code is available on Github
at https://github.com/MartinKarp/Nekbone/tree/cuda-openacc.

3.1 Programming standards
The original Nekbone was entirely implemented in Fortran77 with a communication kernel
in C and pure MPI for parallelization. From previous work by Gong et.al. most of the code
has already been ported to GPU with OpenACC, however, this gave suboptimal performance
compared to a mixed approach where the main computational kernel Ax was ported with
CUDA Fortran [4]. GPUs can be programmed in several di�erent ways, but in this report we
will continue with utilizing CUDA and OpenACC as Gong did in their previous work.

3.1.1 OpenACC
OpenACC is a pragma based approach to GPU programming mainly developed by PGI and
works similarly to OpenMP, but for GPUs. It is relatively simple to learn and does not require
large changes in the original program. One simply adds pragmas around regions one wants
to run on the GPU and then the compiler creates an autogenerated CUDA kernel that can
be run on the GPU.

3.1.2 CUDA
CUDA gives the programmer more control and is developed by NVIDIA for their GPUs.
It is currently the dominating GPU programming approach and very similar syntax to C.
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3. Implementation

In this approach the developer needs to write their own kernel in CUDA and then call it
in their original program. This leads to more control over the kernel and execution on the
GPU, but at the expense of ease of use and portability. There exists a CUDA Fortran version
developed by PGI, and it supports writing CUDA kernels in a Fortran-like language. CUDA
Fortran however, lacks certain functionality compared to CUDA C and certain pragmas such
as #pragma unroll which specifies to the compiler to unroll a specific loop, enabling more
compiler optimizations.

Algorithm 2 Naive Ax implementation.
procedure AxNaive
Input: G ∈ R6×n,D ∈ RN×Nu ∈ Rn

Output: w ∈ Rn

Spawn a thread block for each element e with x number of threads and indices i, j, k.
Calculate stride needed to go through element of size N3 with x threads.
for each thread do

while {i, j, k} ∈ [1,N]3 do
Calculate first derivatives of u(i, j, k, e) with G and D.
i, j, k ← i, j, k + stride.

end while
Call syncThreads().
Reset i, j, k.
while {i, j, k} ∈ [1,N]3 do

Calculate second derivatives of u(i, j, k, e) with D.
Store result in w(i, j, k, e).
i, j, k ← i, j, k + stride.

end while
end for
Perform the Gather-Scatter operation Q and the restriction operation R.

end procedure

3.2 Optimizations
First, an initial implementation in CUDA was made and we then moved on to optimizing the
Ax kernel, especially for locality, similar to the work by Świrydowicz et. al. [11], but on the
original Nekbone code and not using OCCA, which they used. Some work on optimizing the
kernel has already been done by Gong et. al. by utilizing shared memory to a larger extent.
However, in this work we took the optimizations one step further and revised the thread
structure as well as optimized the kernel for registers and shared memory.

3.2.1 Initial implementation
The first approach was simply to port the Ax subroutine from OpenACC to CUDA Fortran.
There was already an implementation by Jing et al. available, but as to familiarize oneself
with the code and subroutine, another one was made. This first approach is described with
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3.2 Optimizations

pseudocode in algorithm 2. In the algorithm, the notation is consistent with the Cost anal-
ysis section where the number of GLL points is N and the number of elements is E. The
total number of points is then n = N3 · E. To illustrate the optimizations performed it is
not necessary to exactly describe the matrix operations and those operations are therefore
omitted from the pseudocode. As can be seen in the code, the di�erent threads compute the
element with some stride. This means that one thread can work on several seemingly random
positions in the element, making data reuse hard.

3.2.2 Shared memory

The most obvious flaw with algorithm 2 is, therefore, the lack of data locality. In its current
form, the data from global memory is accessed several times. By instead loading the data into
shared memory in the beginning of the algorithm, performance gains can be made. In other
words, you load u,D and w into shared memory and then do the exactly same algorithm
with them instead. This is an optimization performed by Gong et al. However, this runs into
some issues as well, mostly because storing all of these arrays in shared memory is not feasible.
There is simply to much data when the polynomial degree increases. Our next optimization
is therefore to avoid some of this by changing the structure of the thread block.

Algorithm 3 Ax subroutine with 2D-thread structure
procedure Ax2D
Input: G ∈ R6×n,D ∈ RN×Nu ∈ Rn

Output: w ∈ Rn

Spawn a thread block for each element e with N × N threads and indices i, j .
Load D into shared memory.
Load u(i, j, :, e),w(i, j, :, e) into register arrays ur ,wr .
for each thread do

Go layer by layer, k ← 1.
while k ≤ N do

Load ur(k) into shared memory.
Call syncthreads().
Calculate first derivatives of ur(k) with G and D.
Call syncthreads().
Calculate second derivatives of ur(k) with D.
Store results in wr(k).
k ← k + 1.

end while
Load wr back into global memory.

end for
Perform the Gather-Scatter operation Q and the restriction operation R.

end procedure
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3.2.3 2D-thread structure and registers
Interesting from the paper by Świrydowicz et. al. [11] is especially the idea of using a 2D-
thread structure for each element. This means that instead of allocating as many threads as
possible per element and then computing each point in the elements with some stride, as is
shown in Algorithm 2, each thread block instead uses a layer of N × N threads. This enables
us to restructure the algorithm somewhat as can be seen in algorithm 3. Each thread then
goes through its own specific pile of points and the thread block computes the element layer
by layer in sync. This executes more syncthreads() operations that sync all the threads
in a warp than before, but with the benefit that each thread executes more computations on
its own column of nodal points. These points can be saved in a threads individual registers
and higher performance can be achieved. Another thing worth noting is that the amount of
data in shared memory is vastly decreased since we at any time only keep one layer of u in
shared memory. The reason that we need some points in shared memory at all is that they
are necessary to calculate the di�erentials of neighboring points.

Algorithm 4 Optimized CUDA C Ax subroutine.
procedure AxOpt
Input: const double* __restrict__ G ∈ R6×n,D ∈ RN×N , u ∈ Rn

Output: double* __restrict__ w ∈ Rn

Spawn a thread block for each element e with N × N threads and indices i, j .
Load D into shared memory.
Load u(i, j, :, e),w(i, j, :, e) into register arrays ur ,wr .
for each thread do

Go layer by layer, k ← 1.
#pragma unroll.
while k ≤ N do

Load ur(k) into shared memory.
Call syncthreads().
Calculate first derivatives of ur(k) with G and D.
Call syncthreads().
Calculate second derivatives of ur(k) with D.
Store results in wr(k).
k ← k + 1.

end while
Load wr back into global memory.

end for
Perform the Gather-Scatter operation Q and the restriction operation R.

end procedure

3.2.4 Unrolling and read-only arrays
The last part of the optimizations was for the CUDA C version where the code was compiled
with #pragma unroll to specify loops where loop unrolling was permitted. This combined
with specifying constant input arguments as read-only with the keywords const __restrict__
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3.3 Communication kernel

enabled for more compiler side optimizations. The final pseudocode over the algorithm can
be seen in algorithm 4. In these final optimizations some changes to the calculations were
made as well, such as using #pragma unroll for vector/di�erential operations and chang-
ing the order of some operations. The main performance gains though were already made
from the 2D thread structure and using shared memory and registers.

3.3 Communication kernel
The communication kernel it is not the focus of this report regarding optimization, however,
we are very much interested in seeing how this a�ects the performance for multi GPU systems
as we move forward. The communication kernel executes the gather-scatter operation which
implicitly executes the multiplication of the gather-scatter matrix Q. It is implemented in C
and uses MPI for communication.
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Chapter 4

Evaluation

In this chapter, we first present the measurements made to asses the performance of Nekbone
as well as the experimental setup on the supercomputers Kebnekaise in Umeå and Piz Daint
in Switzerland. Following this we present the results from the measurements and discuss
the performance achieved. We also discuss possible future developments, bottlenecks, and
comment on the measurements themselves.

4.1 Measurements
The measurements of the code were performed on Nekbone running the Conjugate Gradient
solver for 100 iterations. Important for the roofline model was a proper analysis of the Band-
width of the GPU, which was done by running a cudaMemcpy for each essential load and
store of a variable and running this 100 times. With this the real utilized global bandwidth
could be computed and with this the roofline for the di�erent input sizes was also calculated.

Several di�erent versions of the code were tested. First, the the original OpenACC ver-
sion was tested to get the base case. The other version that were measured was the original
CPU version and Gong’s initial CUDA Fortran implementations as seen in Algorithm 2. Af-
ter this, the initial shared memory optimization by Gong et. el. was measured. Lastly, our
optimized versions of CUDA Fortran as well as CUDA C were measured. These implemented
the 2D thread structure and other optimizations, pseudocode is shown in Algorithm 3 for
the optimized CUDA Fortran and Algorithm 4 for CUDA C.

For the performance benchmarks, we compared the achieved performance for di�erent
number of elements in the range 28 − 213 with a polynomial polynomial order of 9 and
N = 10 GLL points. The reason for this was that measurements of di�erent polynomial
orders might be misleading and in Nek5000 polynomial orders above 10 is rarely used. The
main reason for this is that the timesteps become to small because of various constraints on
the dynamic system such as the CFL condition, which relates the size of the time step to the
spatial resolution [1].
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4. Evaluation

Measurements for multiple GPUs were also performed to evaluate the communication
kernel and its impacts on the scaling. Both weak and strong scaling benchmarks were made
and they were also compared to the peak performance for multiple nodes running in sync as
well as the peak performance on a single node. These measurements were also made for 10
GLL points.

4.2 Experimental Setup
The tests were first and foremost prototyped on the cluster Kebnekaise’s GPU nodes which
are equipped with one Intel Xeon Gold 6132 with 28 cores @ 2.6GHz and 2 Nvidia v100
GPUs. The code was then compiled with the PGI compiler version 18.7 and CUDA version
9.2.

The multi GPU measurements were made on Piz Daint in Switzerland which, at the time
of writing, is the 6th most powerful supercomputer in the world [2]. It is equipped with cray
XC50 compute nodes, each node equipped with a 12 core Intel Xeon E5-2690 v3 @ 2.6GHz
and one Nvidia Tesla P100 16GB GPU. On Piz Daint the version of the PGI compiler was
19.7 and the CUDA version was 10.1.

The theoretical peak performance for a V100 GPU (used at Kebnekaise) and a P100 GPU
(Piz Daint) are up to 7 Tflops and 4.7 Tflops of double-precision performance respectively.
In addition to this, the theoretical max bandwidth is 900 GB/s for a V100 and 732 GB/s
for a P100. This is only a theoretical maximum though and we will base all benchmarks on
empirical measurements.

4.3 Results
In this section we present the results from the single GPU measurements on both Piz Daint
and Kebnekaise as well as the rooflines. The scaling benchmarks from Piz Daint are also
presented.

4.3.1 Single GPU performance
First o�, we performed single GPU benchmarks to evaluate the actual performance increase
for each optimization on Kebnekaise. From this we obtained the plot shown in Figure 4.1.
Similar measurements were made on Piz Daint and the result is shown in Figure 4.2. The
versions plotted in Figure 4.1 is the original CPU version, OpenACC version as well as the
shared memory optimization by Gong et.al. (CUF sh. mem.) and our optimized CUDA C
(CUDAC) as well as our optimized CUDA Fortran version (CUF-opt). In Figure 4.2 the same
versions are measured except for the CPU version and instead the original CUDA Fortran
implementation by Gong was measured (CUF).

4.3.2 Roofline
The performance of our CUDAC version was compared to the measured roofline and is plot-
ted for both a V100 GPU at Kebnekaise and a P100 at Piz Daint in Figure 4.3 and 4.4 respec-
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Figure 4.1: Performance of di�erent versions on one V100 on Keb-
nekaise together with the performance of one CPU node run with
MPI for parallelization and 28 cores.
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Figure 4.2: Performance of di�erent versions on one P100 on Piz
Daint.
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Figure 4.3: Roofline over single GPU performance for one V100
GPU on Kebnekaise.

tively. Note that the communication in this comparison was disregarded as the roofline is
aimed to show how close to single GPU peak performance we are, not taking the communi-
cation into account.

4.3.3 Multi GPU Performance and Scaling
We also measured Multi GPU performance on Piz Daint. The performance of both strong
and weak scaling is shown in Figure 4.5 and 4.6. Another plot, however, is the normalized
performance increase per node compared to single GPU performance i.e. the parallel e�-
ciency and is shown in Figure 4.7 and 4.8. To compare this to the very minimum amount
of communication overhead needed between nodes, the same measurements were performed
but without the gather-scatter operation. The parallel e�ciency of those measurements can
be seen in Figure 4.9 and 4.10.

4.4 Discussion
In this section we discuss the results and also bring up future developments in the area. We
also compare the performance to previous work.

4.4.1 Single GPU performance and Roofline
First, if we look at the performance on Piz Daint and Kebnekaise in Figures 4.1 and 4.2 we
see a clear di�erence between the di�erent versions of the computing kernel. In both cases
our CUDAC version gives the best performance while the OpenACC version gives the worst
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Figure 4.4: Roofline over single GPU performance for one P100
GPU on Piz Daint.
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Figure 4.5: Strong scaling multi GPU performance on Piz Daint.
The number of nodes is increased while the number of elements per
node is constant.
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Figure 4.6: Weak scaling multi GPU performance on Piz Daint. The
number of nodes is increased while the total number of elements is
constant.
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Figure 4.7: Strong scaling as a fraction of what is achieved on one
node. This illustrates how the performance scaling is a�ected by
increasing the number of nodes.
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Figure 4.8: Weak scaling as a fraction of what is achieved on one
node. This illustrates how the performance scaling is a�ected by
increasing the number of nodes.
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Figure 4.9: Scaling as a fraction of what is achieved on one node
for the strong case, but without the gather-scatter operation. This
illustrates how the performance scaling is a�ected by increasing the
number of nodes.
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Figure 4.10: Scaling as a fraction of what is achieved on one node
for the weak case, but without the gather-scatter operation. This
illustrates how the performance scaling is a�ected by increasing the
number of nodes.

results. This is not a surprise since OpenACC creates an auto-generated CUDA kernel that
while our CUDAC kernel is optimized to use registers and shared memory as much as possi-
ble.

In particular the di�erence between using global and shared memory and registers is
clearly illustrated in both figures. If we look at the performance of Gong’s shared memory
version it is evident that large performance gains are made when you utilize the Global Mem-
ory bandwidth as little as possible. The extra performance when using registers then comes
as a result of having even less data movement than the shared memory version. In addi-
tion, adding unrolling and similar to the CUDAC version gives it a boost over the optimized
CUDA Fortran, however, for Piz Daint the performance di�erence is almost negligible. This
can likely be attributed to improvements in CUDA Fortran in newer versions of the PGI
compiler.

To see how close we are to peak performance, we need to look at the roofline as shown in
Figures 4.3 and 4.4. Here our optimized CUDA C kernel is compared to the theoretical peak
and for larger inputs than 1024 the performance is in the range 70-90% of the empirical peak
performance. This is aligned quite well with the results from Świrydowicz [11] where they,
with the similar optimizations, achieved performance on the roofline for polynomial degree
10 and 4096 elements. Since we utilize simple OpenACC kernels for all other functions as
well as for the masking of the boundary it is to be expected that we do not quite achieve
100% of the roofline. For the P100 and input size 4096 we do achieve 92% though. This is
comparable and very close to the theoretical maximum and close to optimal.

With this performance it is, therefore, expected that new optimizations for a single GPU
will not yield very much performance gains. One possible improvement that could be made
would be to improve the OpenACC computations and especially the masking of the bound-
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ary which lacks good data locality. Additionally, one could look more closely at the Hybrid
Schwarz Multigrid Preconditioner where similar improvements can be made [6].

We should also point out that the Roofline only considers the accesses to global memory.
We may be limited by shared memory or cache bandwidth instead. It is also possible that
for small input sizes and by operating on the same vectors repeatedly the performance can
be even higher because of an increased number of cache hits. The size of the cache on both
the V100 and P100 is limited to 4-6 MB though, so this e�ect would be most noticeable for
inputs smaller than 1024 elements in our case.

4.4.2 Multi GPU performance and Scaling
The performance on a single GPU then, is close to optimal. We will now instead look at how
the performance of our optimized CUDA C kernel is a�ected if we utilize more nodes. Let
us once again start by looking at the raw performance in Figures 4.5 and 4.6. In these plots
it is evident that having a high occupancy on the GPU is essential for high performance. It
is especially obvious in the strong scaling case that adding more GPUs does not necessarily
reduce the runtime if the number of elements per node is too low. This is to be expected
though and can partially be explained by looking at the single node performance in Figure
4.2 for di�erent input sizes.This is unavoidable and we are, therefore, more interested in the
communication overhead that is inflicted by adding more GPUs.

If we look at Figures 4.7 and 4.8 where the performance is plotted as a fraction of one
node performance it is evident that there is a overhead that increases with more nodes. The
impact of this is heavily a�ected by the number of elements on each GPU, but the impact
is major regardless. The question then is how much of this is unavoidable? There is an in-
herent latency that needs to be considered combined with the gather-scatter operation that
involves communication between the nodes. If we look at Figure s4.9 and 4.10 the di�erence
to the previous figures is immediately visible. In these figures the gather-scatter operation is
not computed so the performance impact here is purely related with the MPI calls needed
to perform the conjugate gradient routine in sync. This in and of itself also impacts the per-
formance, it is therefore not feasible to expect a better parallel e�ciency than this for the
current structure of the code. However, it can also be concluded that the communication
kernel imposes a severe degradation of performance as more nodes are added. The multi
GPU perfomance is limited by the latency between nodes to some extent, but compared to
the communication it has a negligible e�ect.

Another aspect of the scaling is that the current CPU version scales well for between
30-100 elements per core [8]. This would imply that the performance of a GPU must be
comparable or better for input sizes as low as 1000 per node. It is very hard to make a proper
performance comparison between GPU and CPU, but in future work this is something that
must be considered.

For future work an interesting aspect of the code to improve the communication kernel.
It is severely limited by the bandwidth and it imposes a significant drop in performance.
Rewriting the communication kernel is a key aspect to make Nek5000 run e�ciently on
GPUs for large scale simulations. Additionally, the communication problem can be expected
to be even worse when using a preconditioner, something that is always used in the produc-
tion code.
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4.4.3 Measurement comments
An interesting thing to note is once again that the PGI compiler versions are di�erent be-
tween Kebnekaise and Piz Daint. This is a likely explanation of why our optimized CUDA
Fortran version on Daint performs almost as good as the CUDAC version. It is likely that
newer versions of CUDA and better compiler optimizations for CUDA Fortran have made
a large impact on the performance of CUDA Fortran. This might have a�ected the other
measurements as well, but since the comparison between di�erent optimizations was always
made on the same machine this should not a�ect the general analysis.

Another aspect is that we limited our measurements to 10 GLL points in each direction,
i.e. polynomial degree 9. Measurements for higher or smaller degrees can also be of interest.
However, it is also important to take into account that using a too high polynomial can inflate
the results because we will get an artificial higher computational intensity. Degrees higher
than 11 or 12 are rarely/never used in real applications because of the severe impact on the
time step. The code in its current state is usually run with degrees 7-9, and that is why we
have focused on 10 GLL points in this report.
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Chapter 5

Conclusions

In summary the Spectral Element method without a preconditioner is memory bound, but for
large enough input sizes and reasonable polynomial degree a close to optimal implementation
on one GPU can be made. Going forwards the main obstacles are instead related to the scaling
on multiple nodes. The current communication kernel is not well fitted and imposes heavy
losses on the weak/hard scaling capabilities on the code.

5.1 Relating to other work
As mentioned we have made a highly performant single GPU version of Nekbone. Compared
to Gong et. al. this is a large performance increase. Comparing our work to Swirydowicz
et. al. we closely match their performance and with the added benefit that instead of using
OCCA we used CUDA and the real Nekbone application. In their work they optimized the
Ax subroutine, but did not measure or implement it in the overall application which we have
done here. In particular, the multi-node measurements and scaling evaluation presented in
this work is novel.

5.2 Research questions
In this section we answer the research questions that were presented in the beginning of the
report.

What performance can be achieved and is currently achieved in
Nekbone on single and multiple GPUs?
Performance close to the theoretical roofline can be achieved on one GPU through a op-
timized CUDA kernel for the matrix multiplication Ax and a simple OpenACC approach
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for most of the other operations. As for multi GPU performance, the GPUs are heavily af-
fected by the number of elements on the GPU as well as a communication overhead. This in
particular a�ects the weak scaling. Exact performance measurements are shown in section
4.3.

What performance limiting factors are there for Nekbone?
The main limiting factors for Nekbone on GPUs is currently the communication kernel
which has a significant impact on scaling performance. Making the communication more
e�cient is the most important next step to a highly performing GPU code for Nek5000.

5.3 Future Work
The most notable improvement that can be made is then a revision of the communication
kernel. Enabling better multi GPU scaling needs to be the focus of future work. Small im-
provements can also be made regarding the single GPU implementation of Nekbone, but
this would mostly be limited to the masking operation and other OpenACC operations. In
addition to this, making an extensive comparison of the performance of CPU versus GPU
would be interesting. Lastly, bringing the improvements made in the report into Nek5000
would tremendously improve the performance compared to a pure OpenACC approach for
GPU programming.
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Snabba Vetenskapliga Beräkningar med
Grafikkort

POPULÄRVETENSKAPLIG SAMMANFATTNING Martin Karp

Grafikkort, eller GPUer, används allt mer inom simulering och storskaliga beräkningar.
Det här arbetet syftar till att undersöka hur man använder den här datorkraften ef-
fektivt för att kunna göra beräkningar mycket snabbare och mer effektiva än tidigare.

Många simuleringar kan i dagsläget ta flera tim-
mar om inte dagar att genomföra. Även om
man använder världens kraftfullaste dator finns
det därför alltid ett behov av att optimera dessa
beräkningarna. Tidigare har högre prestanda kun-
nat uppnås till viss del genom att själva datorerna
blivit snabbare och bättre, men det är en trend
som avtagit på senare år. Därför har intresset
för att använda GPUer för vissa beräkningar ökat
markant. De har tidigare använts främst till spel
eller olika grafikberäkningar, men har på senare
tid fått en större roll för andra beräkningar då de
lämpar sig mycket bra till olika sorters matrisop-
erationer.
I det här arbetet utvärderas och optimeras en

kod, Nekbone, som använt sig av vanliga pro-
cessorer till att istället använda GPUer. Dock,
tack vare ett blandat användande av GPU-
programmerings metoderna CUDA och OpenACC
behövdes inte enorma ändringar i koden göras,
men mycket högre prestanda kunde uppnås ändå.
Resultatet av denna insats blev en version av ko-
den som på ett nästintill optimalt sätt utnytt-
jar datorkraften hos en GPU och vi visade också
empiriskt att det stämde. För rimliga storlekar
på problemen uppnådde vi över 80% av den em-
piriska högsta prestandan. Detta kan ses i bilden
till höger.
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För framtida arbeten med att optimera koden
behöver man dock göra mycket arbete med att
skala upp beräkningarna. Just nu är ett stort
problem att även om koden fungerar mycket bra
för en GPU så får man inte ut samma prestanda
när man använder flera stycken.
Koden testades på den, i skrivande stund,

sjätte starkaste superdatorn i världen, Piz Daint,
och där såg man tydligt hur prestandaökningen
man fick när man använder flera GPUer minskar
drastiskt. I ett optimal scenario hade prestandan
ökat linjärt med antalet GPUer, vilket vi inte ob-
serverade. I framtiden är det alltså aktuellt att
förbättre kommunkationen mellan flera GPUer så
att deras resurser kan utnyttjas på ett ännu effek-
tivare sätt.
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