
MASTER’S THESIS 2020

Optimizing Machine Learning
Inference for MCU:s
Josefine Myllenberg, Jens Johansson

ISSN 1650-2884
LU-CS-EX: 2020-46

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-46

Optimizing Machine Learning Inference
for MCU:s

Josefine Myllenberg, Jens Johansson

Optimizing Machine Learning Inference
for MCU:s

Josefine Myllenberg
josefine@myllenberg.se

Jens Johansson
dat15jj1@student.lu.se

July 30, 2020

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Flavius Gruian, flavius.gruian@cs.lth.se
Supervisor: Johan Björnstedt, johan.bjornstedt@acconeer.com

Supervisor: Martin Löwegren, martin@lowegren.nu

Examiner: Jörn Janneck, jorn.janneck@cs.lth.se

mailto:josefine@myllenberg.se
mailto:dat15jj1@student.lu.se
mailto:flavius.gruian@cs.lth.se
mailto:Johan.Bjornstedt@acconeer.com
mailto:martin@lowegren.nu
mailto:jorn.janneck@cs.lth.se

Abstract

Deep neural networks come with high demand for storage and computational
resources, which makes it di�cult to deploy deep convolutional neural networks
on limited resource devices. This thesis investigates di�erent approaches of how
to reduce the size of a network in order to run it on limited resource devices,
while keeping the accuracy close to the original network. The network used
is a gesture detection network consisting of six convolutional layers, which is
converted to C code using X-CUBE-AI and Keras2C in order to run on an MCU.
The pruning techniques channel-based pruning and magnitude-based pruning
are then applied to reduce the network size and inference time. Results show
that the execution time can be reduced by up to 8× and memory usage by up
to 4.5× for flash and 2.8× for RAM. Quantization is also applied, reducing the
network parameters from 32-bit floating points to 8-bit integers which results
in a reduction in execution time by 2.5× and memory usage by 4× for flash and
3.7× for RAM. Both the pruning and quantization optimizations are applied
while losing no more than 1.5 percentage points of accuracy compared to the
original network.

Keywords: Convolutional Neural Networks, Embedded Systems, Micro Controller Unit
(MCU), Inference, Memory optimization, Speed optimization

2

Acknowledgements

We would like to thank Acconeer for letting us write our master’s thesis here. Helpful, sup-
portive, and interested colleagues has made this a great place to write our thesis. We also want
to thank our supervisors at Acconeer, Martin Löwegren and Johan Björnstedt, for showing
great dedication and eagerness to help. You always took the time to answer our questions
and help us when we got stuck.

Finally, we want to thank our supervisor at LTH, Flavius Gruian, for always pointing us in the
right direction and providing us with relevant sources of information. We really appreciate
your advice.

3

4

Contents

1 Introduction 7
1.1 Problem Description . 7

1.1.1 Trade-o�: Cost - Performance . 7
1.1.2 Research Questions . 8

1.2 Contributions . 8
1.3 Division of Work . 8
1.4 Outline of the Report . 9

2 Background 11
2.1 Convolutional Neural Networks . 11

2.1.1 Convolutional layers . 11
2.1.2 Filters, Kernels, and Channels . 12

2.2 Pruning . 13
2.2.1 Magnitude-Based Weight Pruning 13
2.2.2 Channel-Based Pruning Using L1-norm 14

2.3 Quantization . 14

3 Related Work 17
3.1 Pruning . 17
3.2 Quantization . 18

4 Method 21
4.1 Approach . 21

4.1.1 Optimizing the X-CUBE-AI Model 22
4.1.2 Optimizing the Keras2C Model . 22

4.2 Methods for Measuring . 23
4.3 Tools . 23

4.3.1 Nucleo F722ZE . 24
4.3.2 Acconeer Python Exploration Tool 24

5

CONTENTS

4.3.3 TensorFlow and Keras . 24
4.3.4 STM32CubeIDE and X-CUBE-AI 25
4.3.5 Keras2C . 25
4.3.6 Keras-surgeon . 25
4.3.7 Perf . 25

5 Experiments 27
5.1 Setup . 27

5.1.1 Our Model . 27
5.1.2 Tool Versions . 29
5.1.3 Optimization Techniques Setup . 30
5.1.4 Experiments Setup . 32

5.2 Results . 33
5.3 Discussion . 39

5.3.1 Answer to Research Questions . 41
5.3.2 Ethical Aspects . 41
5.3.3 Threats to Validity . 42

6 Conclusions 43
6.1 Summary . 43
6.2 Future Work . 44

Bibliography 47

Appendix A Data tables 53

Appendix B Counting clock cycles on the Cortex M7 59

Appendix C Model 61

6

Chapter 1

Introduction

Convolutional Neural Networks (CNNs) are becoming more and more popular due to their
high accuracy and machine e�ciency for performing image predictions [6]. Moreover, with
deep neural networks becoming more sophisticated, their size and complexity increase as
well. An ongoing challenge is to bring machine learning inference to embedded devices with
limited computational power and memory size. Storage complexity as well as computational
complexity and energy consumption has become important considerations when designing
neural networks, particularly when deploying the network at limited resource devices.

1.1 Problem Description
Acconeer is a radar company in Lund, Sweden, that o�ers high range resolution radar sensors
with low power consumption. They o�er products such as radar sensors, radar modules, and
development kits. In previous work, Acconeer has developed machine learning models for
gesture-based control [4]. These models were only run on a PC, which usually has su�cient
flash memory and RAM as well as overall computing power. We want to run these models
on a Micro Controller Unit (MCU), which have limited resources when it comes to memory
and computing power. To run these models in products with limited resources it needs to be
investigated if and how the models can be optimized to make good enough predictions on
lower spec MCU:s.

1.1.1 Trade-off: Cost - Performance
The MCU cost and MCU performance are connected in the terms that when the performance
requirements increase, the price of the MCU increases as well. In this case, performance
requirements correspond to CPU clock frequency, as well as RAM and flash memory. The

7

1. Introduction

result will therefore be a trade-o� between MCU cost and inference performance. Metrics
to consider:

• Cost: The MCU cost shall be kept as low as possible. This will impact the performance
of the MCU, specifically in terms of CPU performance and memory size

• Inference Performance: The user experience shall be similar to the model used before
the MCU optimizations. The prediction accuracy shall be about the same

1.1.2 Research Questions
This master’s thesis will investigate if it is possible to reduce the size of a machine learning
model and the resources needed for inference without losing too much accuracy. This means
that the machine learning model should still be able to predict gestures correctly and in real
time, however, it is acceptable if the network loses some certainty about its decision.

In order to achieve this, the following research questions are composed:

RQ1: How does pruning impact inference regarding performance and memory footprint?

RQ2: How does quantization impact inference regarding performance and memory foot-
print?

RQ3: How is the accuracy a�ected when applying pruning and quantization to a neural
network?

1.2 Contributions
This master’s thesis contributes to:

• Knowledge in using tools for pruning and quantization to optimize Keras machine
learning models for embedded systems

• A better understanding of system requirements, such as CPU speed and memory usage,
when running machine learning algorithms on resource limited edge devices

• Finding a suitable MCU for gesture-based control with Acconeer radars

1.3 Division of Work
Most of the work in this Master’s Thesis has been carried out in close collaboration between
the authors. In the experiment phase, both authors have been working on the di�erent op-
timizations. Sometimes pair programming was applied, and sometimes di�erent approaches
were tested in parallel, particularly when we did not exactly know how to take on a task and
needed to try di�erent approaches until success. The result of this is that Jens Johansson has
been more responsible for the TensorFlow/Keras code, and Josefine Myllenberg more respon-
sible for the C code. In the end, however, both of the authors have ultimately been involved
in all parts of the experiments and coding.

8

1.4 Outline of the Report

In the report writing phase, Jens Johansson has mainly been responsible for writing the re-
lated work, results, and appendices. Josefine Myllenberg wrote most of the abstract, intro-
duction, and background theory. Discussion and conclusions have been written together, as
well as the method chapter and the setup section.

1.4 Outline of the Report
Here in the introduction chapter, we have explained the background to the problem as well as
our research questions. We have stated what our work can contribute to, and how we divided
the work during this project. In the second chapter, Background, we introduce the background
theory used in this thesis. The third chapter, Related Work, talks about other work in the field
of optimizing neural networks that is somehow related to our work. In chapter 4, Method,
we explain the approach we used to answer the research questions and the tools used in our
experiments. Chapter 5, Experiments, shows the setup for all experiments that were carried
out, the results, and discuss them and any threats to validity that may have occurred. The
final chapter, Conclusions contains a summary, our conclusions from the experiments, and
points out some future work.

9

1. Introduction

10

Chapter 2

Background

In this chapter, we introduce the theoretical background and theories used in this thesis. We
start with the concepts of Convolutional Neural Networks in section 2.1, which are needed
for understanding the optimizations that follow. Pruning is explained in section 2.2, which
is a way of reducing the size of the network by removing parameters that adds little to the
classification result. In section 2.3 the optimization technique called quantization, which
mainly aims to reduce the memory usage of the model, is explained.

2.1 Convolutional Neural Networks
Convolutional Neural Networks are networks specialized in processing data with a grid-like
topology [5], and are therefore commonly used in image recognition. The input to the CNN
can typically be an image, and each convolutional layer in the network will then extract
certain features from this image. In this thesis, the radar data is converted to colored images
by a preprocessing algorithm, before being fed to the network. Convolutional layers are
explained in section 2.1.1. The feature extraction is done by a filter, this is further explained
in section 2.1.2.

2.1.1 Convolutional layers
All neural networks consist of layers, but what di�ers in CNNs are that they use convolu-
tional layers. Convolutional layers convolve the input - hence the name - and pass the result
to the next layer [13].

Convolution is a mathematical operation on two integrable functions f and g that creates a
third integrable function h. The function h can be seen as a weighted average of the function

11

2. Background

f at the moment t where the weighting is given by g. As t changes, the weighting function
emphasizes di�erent parts of the input. However, t does not have to represent the time
domain.

Convolution is written as the following h(t) = f (t)∗g(t) where the ∗ denotes the convolution
operation, and f (t) ∗ g(t) =

∫ ∞
−∞

f (t − τ)g(τ)dτ.

In convolutional networks the first argument (the function f described above) is often re-
ferred to as input, and the second argument (function g described above) as the kernel [5].

2.1.2 Filters, Kernels, and Channels
Each input to a layer in a CNN has a height and width, but also one or several channels, where
each channel contains some part of information about the input. Only together, the channels
will represent the input. As an example, a colored image may contain three channels: R (red),
G (green), and B (blue). Hence, we can view input data as 3D-objects that each layer operates
on, with the dimensions H ×W × C, where H = image height, W = image width, and C =
number of channels. Depending on layers used in the network, the height, width, and number
of channels can reduce or expand when moving from one layer to another [23].

Every convolutional layer acts as a detection filter, which searches for specific patterns (usually
called features) in the input image. A feature can typically be angles, straight lines, or corners,
and the deeper the network, the more sophisticated the filters become. Once the filter have
been applied on the input image, we get an output which is called feature map [5][13]. The
concept of a convolutional layer with kernel, input, and feature map is shown in figure 2.1.

Figure 2.1: The convolution operation for one channel in a CNN.

Sometimes the word filter and kernel are used interchangeably, but here we view a filter as a
concatenation of one or more kernels, which are stacked on top of each other. They can be
viewed as a pile of papers where each kernel is represented by a single paper, the whole pile
then represents the filter, and hence the filter is also a 3D-object. All kernels in a filter have

12

2.2 Pruning

the same width and height, and the number of kernels decides the depth of the filter. Kernels
are w×h sized matrices containing weights (where h ≤ H and w ≤ W , and each kernel slides
over the corresponding input channel to compute the feature map using convolution. The
depth of the convolution filter (number of kernels) must be equal to the number of channels
in the input feature map, since each kernel is assigned to a corresponding channel in the input
[12].

2.2 Pruning
When it comes to neural networks, pruning refers to the action of removing or compressing
layers in a network with the goal of reducing the model while losing as little of the original
accuracy as possible. This allows the network to become smaller and faster[14] which results
in fewer computations in inference and a reduced physical size [26]. For this experiment,
we have explored two di�erent approaches to pruning called channel-based pruning [7] and
magnitude-based weight pruning [26].

2.2.1 Magnitude-Based Weight Pruning
Magnitude-based pruning is the simplest weight pruning algorithm and uses an element-
wise approach; it applies a threshold function on each weight tensor in each layer. After each
training epoch, the link with the smallest weight is removed. It is possible to apply di�erent
thresholds on di�erent layers if needed. See figure 2.2 for a visual explanation of how the
network can be illustrated before and after removing the weights.

It has the benefit over the other pruning technique explored in this thesis, channel-based
pruning, being more generally applicable, and does not depend on the network structure.
This is because the weights to be removed are chosen by their significance to the final result
of inference [26].

(a) Not pruned (b) Pruned

Figure 2.2: Illustration of a CNN that is pruned with magnitude-
based weight pruning. Connections with a weight lower than 3 are
removed.

13

2. Background

2.2.2 Channel-Based Pruning Using L1-norm
Channel-based pruning is when channels are physically removed from layers in a model. In
this thesis, the L1-norm is used to select the layers to be removed. The L1-norm is equivalent
to summarizing the absolute value of a filter’s weights. This tells us that the filter with the
lowest value of the L1-norm contributes the least to our final result and is therefore most
appropriate to remove. See figure 2.3 for a visual explanation of how channels are removed
from a filter, where the rectangles represent kernels in a filter and the kernels with the lowest
L1-norm are removed.

Channel-based pruning has the advantage over weight-based pruning that the benefits of
lower computation times can be exploited in more cases since special libraries or implemen-
tations of layers are not needed. This is because the general structure of the network stays
the same. In the case of weights pruning the weights that are removed are often selected
in an irregular order, which makes it more di�cult to physically remove the weights while
exploiting the benefits of a sparse matrix. For example, a tensor where only some of the
weights are set to 0 by weight pruning, cannot be removed from the network structure. Cor-
respondingly, if all weights in the tensor are set to 0 it can be removed from the network,
resulting in a smaller network that executes faster. There will therefore be a need for special
libraries that exploit sparse matrices or modifications to the inference back-end when using
magnitude-based weight pruning [15].

(a) Not pruned (b) Kernels to be removed (c) Pruned

Figure 2.3: Illustration of channel pruning a filter in a neural net-
work.

2.3 Quantization
Quantization is the process of converting a continuous, often large, range of numbers to a
smaller constrained range of discrete numbers. This means that several numbers from the
continuous range can be represented by the same number in the discrete range.

The most commonly used numerical format in neural network models are 32-bit floating
points. However, using 16-bit floating points or even 8-bit integers to represent weights

14

2.3 Quantization

and activation functions has proven to be possible without a significant loss in accuracy for
inference [9]. For the methods used in this thesis, the model is quantized after training and
some of the training data is used for optimizing the quantization parameters. There is also
an option to retrain the quantized model to achieve a higher inference accuracy. However,
retraining is not used for the quantized model in this thesis since the accuracy was kept high
after quantization [11].

With decreasing bit-width, the memory storage requirements decrease as well since fewer bits
are needed to store the information. By using 8-bit integers instead of 32-bit floating points,
the storage requirements for a model can theoretically be reduced by 4×. Furthermore, the
number of computations during inference decrease, making the execution time faster, since
integer computations often are less resource-demanding for the processor than floating point
computations. The results will depend on the platform used and how well that platform
operate using floating points compared to integers [3].

15

2. Background

16

Chapter 3

Related Work

In this chapter, we present some previous research conducted in the fields of optimizing
machine learning models for inference, and running machine learning inference on MCUs.
There have been many studies in these fields and we choose to present some that are relevant
to our optimization methods, pruning and quantization, in sections 3.1 and 3.2 respectively.

3.1 Pruning
Various studies have explored the results of pruning neural networks in order to lower the
computation power and memory usage required for inference. To prune, or not to prune: ex-
ploring the e�cacy of pruning for model compression by Zhu et al. [26] is one of them. It confirms
that pruning a model using weight pruning can reduce the execution time and model size
significantly without losing much accuracy. The study was conducted with the aim to com-
pare how a previously large model that is pruned, compares to a smaller dense model in terms
of execution time, memory usage, and accuracy. One important conclusion was that a large
model that has been pruned to become sparse, outperforms the smaller dense model in terms
of accuracy and e�ciency on a wide range of existing network architectures. This means
that it is possible to achieve better results by pruning a large model than training a small
model from the start. This is useful for the work carried out in our thesis, since it proves that
pruning can be useful even though you have the possibility to design your model from the
beginning. If the model is designed to perform with as high accuracy as possible and then
is pruned, it can outperform a model that was optimized more in the design stage. In the
pruning experiments carried out in our thesis, both channel pruning and magnitude-based
weight pruning are conducted. The conclusions from this paper argue for the advantages
of magnitude-based weight pruning over channel-based pruning since channel pruning does
not produce sparse matrices.

17

3. Related Work

Convolution-Weight-Distribution Assumption: Rethinking the Criteria of Channel Pruning by Huang
et al. [7], which compares di�erent techniques for the pruning criteria in channel pruning,
is another study on the area of pruning that connects to our thesis. The report finds that
the filters in a convolutional layer approximately follows a Gaussian-like distribution, which
means that most of the primary pruning criteria that exist today will achieve similar pruning
results. The L1-norm criteria used for channel pruning in our thesis is included in those.
Furthermore, for networks with a large number of filters, and therefore a lot of redundancy
between the convolutional layers, the tested criteria can not determine the importance of
the filters. This paper was used in our work when selecting the pruning criteria for channel
pruning. It confirms that our method of using the L1-norms for selecting the channels to be
pruned has no significant impact on the pruning results compared to using di�erent criteria.

We read other papers about pruning as well, they were however not very useful for us in this
work. One of those papers is Runtime Neural Pruning by Ji Lin et al [17], where they use a
decision network that decides at runtime how a second neural network should be pruned.
This is not applicable in our case since our platform is an embedded system with a very small
memory space.

Another paper addressing the same area, but not applicable in our case, is Pruning by Explain-
ing: A Novel Criterion for Deep Neural Network Pruning by Yeom et al. [25], where a new pruning
criterion for CNN pruning is proposed. The criteria use the activations from each layer in
inference to determine the relevance of an element in the network. However, the machine
learning model used in our thesis is simple enough that simpler and more widely used criteria
for pruning will lead to good results. Our thesis is not about finding the optimal criteria for
pruning, as much as studying the e�ects of pruning on our machine learning model when
deployed on an MCU.

3.2 Quantization
There have been several di�erent studies on quantization of neural networks, that explore
the possibility to improve the execution time and memory usage of inference using di�er-
ent quantization techniques. One of them is Quantizing deep convolutional networks for e�cient
inference: A whitepaper by Raghuraman Krishnamoorthi [11], where di�erent quantization
techniques are benchmarked. Some conclusions were that quantization, in general, can re-
duce the execution time by up to 3× and memory usage by 4× when quantizing from 32-bit
floating points to 8-bit integers.

Another article, FQ-Conv: Fully Quantized Convolution for E�cient and Accurate Inference by
Verhoef et al. [24], shows that specific techniques can be applied, to reduce the drop in accu-
racy when performing a full model quantization. The network is quantized during training
in order to achieve an accuracy as high as possible. To achieve this they introduce a technique
called gradual quantization, which gradually lowers the bit-width of the quantized weights
and connections for the network to more easily recover from the accuracy loss of quanti-
zation during training. The results showed that the accuracy was very close to the original
accuracy and that quantization therefore can be applied, if done correctly, without impacting
the accuracy of a network significantly.

18

3.2 Quantization

These two papers were helpful since they both show that quantization has a positive impact
on execution time and memory usage of inference. This is one of the reasons we decided to
use quantization despite the possible negative impacts on the accuracy of the model. Other
articles, also confirming the benefits of quantization, are Quantization and Training of Neural
Networks for E�cient Integer-Arithmetic-Only Inference by Benoit Jacob et al. [8] and Low-bit
Quantization of Neural Networks for E�cient Inference by Yoni Choukroun et al. [3]. They both
show that quantization has a positive impact on the memory usage of the model as well as
the execution time of inference.

Another paper on quantization, Fixed Point Quantization of Deep Convolutional Networks by
Darryl D. Lin et al. [16], explores the benefits of using fixed point implementations of CNNs
to optimize them for deployment on embedded hardware. The results were promising with
no reduction in accuracy for the CIFAR-10 benchmark. However, this study was not useful
for us since our model is simple enough to use integer quantization.

19

3. Related Work

20

Chapter 4

Method

In this chapter, we describe the method used in this thesis. The approach to which the exper-
iments were conducted is described in section 4.1, how we measure the results is described
in section 4.2, and the tools used are described in section 4.3.

4.1 Approach
The neural network used in this thesis is equivalent to the network designed in the master’s
thesis Hand Gesture Classification using Millimeter Wave Pulsed Radar by Eda Dagasan [4], which
is designed specifically for gesture prediction on Acconeer radar data. Since the focus of this
thesis is optimizations, our approach was to use an already defined model design for gesture
detection with Acconeer radar and train it to fit data collected by us. Hence we chose the
hand gesture model by Dagasan. We collect training, test, and validation data and train the
model using the Acconeer Exploration Tool with a Keras backend. This approach is chosen
by us in order to have complete knowledge and control of the gestures when conducting the
experiments.

We then save the trained model as a Keras model that has to be converted to C code to run
on the selected MCU. We explore di�erent options and their strengths and limitations, by
selecting two di�erent ways of converting the model, X-CUBE-AI and Keras2C. These are
two di�erent approaches to run a Keras model on an MCU, and a further description of
them can be found in section 4.3.4 and 4.3.5. We also explored other options but found that
Keras2C and X-CUBE-AI are the most well-documented as of today. A flowchart of our
approach can be seen in figure 4.1. The work in Acconeer Exploration Tool is done once, to
get a baseline. The main work in this thesis is done in Python with Keras and Tensorflow,
and in STM32CubeIDE with X-CUBE-AI and Keras2C.

21

4. Method

Figure 4.1: A flow chart of the workflow in this project.

For the models to run more e�ciently and reduce the execution time and memory footprint,
the optimization techniques mentioned in chapter 2 are explored. The approaches of these
optimizations vary between the X-CUBE-AI and Keras2C models and the approach of these
optimizations are further described in sections 4.1.1 and 4.1.2

For all optimizations, execution time and memory usage data are collected and calculated
according to section 4.2. The results are then presented, compared, and discussed in
chapter 5.

4.1.1 Optimizing the X-CUBE-AI Model
Since X-CUBE-AI is an already compiled library there are no possibilities for manual opti-
mizations of the C code of the model. Both pruning and quantization apply to this approach.
It is, however, not possible to apply further optimizations by manually altering the C code.

The pruning techniques tested by us are magnitude-based weight pruning in TensorFlow,
and channel-based pruning using Keras-surgeon. However, since there is no access to the C
code of the model, the benefits of magnitude-based weights pruning can not be exploited.
We test various pruning parameters, and evaluate the execution time and memory footprint
of the models.

In order to quantize the models from 32-bit floating points to 8-bit integers, we use the
TensorFlow Lite conversion tool. We quantize all of the pruned models, and evaluate the
execution time and memory footprint. At last, we compare the quantized models to the
non-quantized models to achieve an understanding of how an 8-bit model compares to the
32-bit model.

4.1.2 Optimizing the Keras2C Model
It is possible to modify the generated C code from the Keras2C library, which means that
the inference can be optimized after conversion. We profile the model using perf [18] while
running the model on a Linux PC, to give a clear hint of where the optimizations should be
applied. Since perf shows that over 98% of the total amount of computations are done in the

22

4.2 Methods for Measuring

convolutional layers, time is spent on optimizing the convolution function. We also profile
the model on the MCU by counting clock cycles for each layer, as explained in section 4.2.

The model is not quantized for Keras2C since we were not able to find any ready-to-use tools
to quantize a Keras model, and because of the time frame of this thesis, we do not have time
to implement one ourselves.

The pruning techniques we use are both weight-based pruning using the TensorFlow Opti-
mization Tool, and channel-based pruning using Keras-surgeon.

4.2 Methods for Measuring
We measure the execution time and memory footprint of a model using STM32CubeIDE
when connected to the MCU.

The build analyzer in STM32CubeIDE displays the statically allocated memory of both flash
and RAM. In order to measure the memory used by only the model, we create a reference
project containing all features except the features related to the model. The memory usage
for that project is then subtracted from the final memory usage of the projects containing the
models. The memory usage of a model is also available from X-CUBE-AI in the configuration
section.

Using 20 test frames from the validation data, five for each gesture, we calculate the execu-
tion time by counting the average clock cycles during their execution. We use the same 20
test frames for all experiments, to give a fair comparison between the di�erent setups. The
number of 20 test frames is chosen since it allows for a wide enough spread between the ges-
tures while not consuming too much of the MCU memory. We count the clock cycles using
the DWT_CYCCNT register, described in appendix B, and calculate the execution time accord-
ing to equation 4.1, where the clock speed is equal to 216 · 106 Hz for the Cortex M7 CPU
used in all experiments. The execution time is interesting when compared with the real-time
inference requirements mentioned in section 5.1.1.

execution time =
clock cycles
clock speed

(4.1)

In order to determine the accuracy of the Keras models, we use the TensorFlow python mod-
ule function evaluate(). The accuracy is measured before the models are converted to C
code. For the TensorFlow Lite quantized models the evaluate function is not available and
an equivalent method to calculating the accuracy is provided by TensorFlow [23] and is im-
plemented by us.

4.3 Tools
There are a lot of di�erent tools for machine learning available on the market, many of them
are open-source. In this thesis we use TensorFlow with Keras for the CNN since it is building
on the Keras models constructed in a previous thesis at Acconeer, Hand Gesture Classification
using Millimeter Wave Pulsed Radar by Eda Dagasan [4]. The CNN is deployed on an ST board

23

4. Method

called Nucleo F722ZE. To be able to run the model on a microcontroller, such as the Nucleo
F722ZE, we use two di�erent converters, one from ST called X-CUBE-AI, and another called
Keras2C that is open-source. All of the tools used are described in the subsections below and
referenced from chapter 5.

4.3.1 Nucleo F722ZE
The Nucleo F722ZE is a development board from ST equipped with Arms Cortex M7 CPU,
running with a clock frequency of 216 MHz. It has a 512 kB flash memory and a 256 kB RAM,
as well as an L1-cache with 8 kB I-cache and 8 kB D-cache [21].

4.3.2 Acconeer Python Exploration Tool
The Acconeer Python Exploration Tool is a tool developed by Acconeer AB used for stream-
ing radar sensor data to a local machine with the help of a graphical user interface. Using
the -ml option a, currently experimental, machine learning toolbox is available. Using this
toolbox it is possible to create, train, and use Keras machine learning models together with
the radar sensor data [1].

4.3.3 TensorFlow and Keras
TensorFlow is an open-source machine learning platform created and developed by Google.
In recent years TensorFlow has launched a compressed version called TensorFlow Lite for
usage on smaller devices, such as mobile phones or embedded devices [23].

Keras is an open-source neural-network library created as a high-level neural networks API
capable of running on top of TensorFlow, amongst others. As opposed to using TensorFlow
directly, Keras is considered more user friendly [10]. Keras is also implemented in and used
as a light-weight API by TensorFlow [23].

TensorFlow Model Optimization Toolkit
TensorFlow provides a pruning API that uses magnitude-based pruning. This API is used
throughout the pruning experiments that focus on magnitude-based weight pruning. The
tool iteratively removes connections, by setting them to zero based on their magnitude while
training the model. It is important to note that creating sparse tensors by setting weights to
zero does not result in faster execution time or lower memory footprint, without an imple-
mentation of the inference with the capability to skip calculations when the weights are set
to zero.

When using the pruning API the parameters Epochs, Initial Sparsity, Frequency, Begin Step and
Final Sparsity needs to be set. Epochs decides for how many epochs the network is re-trained
after each pruning step. Initial Sparsity decides how much of the network should be pruned
in the first pruning iteration, before any re-training. Frequency states how often the pruning
should be applied. Begins Step decides at which step in the pruning process to start the actual
pruning. Finally, Final Sparsity determines the sparsity at which the pruning ends, i.e. how
much of the total network that is discarded during pruning.

24

4.3 Tools

The TensorFlow Model Optimization toolkit provides a quantization technique for already
trained models, that is performed during a TensorFlow Lite conversion. Weights are quan-
tized from 32-bit floats to 16-bit floats or 8-bit integers [23]. This quantization technique
quantizes the weights of the model before runtime. In addition to this, quantization and
dequantization of the input and output data are applied for each layer during inference.

4.3.4 STM32CubeIDE and X-CUBE-AI
STM32CubeIDE is a development platform based on the Eclipse CDT framework and GCC
toolchain for development and GDB for debugging. It enables the configuration of STM32
MCU:s and the development of C and C++ projects to be generated and deployed on the
MCU [20]. Most important for this thesis is that it enables the use of the X-CUBE-AI tool.

X-CUBE-AI is an STM32CubeIDE extension package that allows for automatic conversion
of Neural Network inferences and generation of optimized libraries for integration into an
STM32CubeIDE project. It supports conversion from various deep learning frameworks such
as Keras and TensorFlow Lite [22].

4.3.5 Keras2C
Keras2C is an open-source python library licensed under the GNU GPLv3 license that can be
used for converting Keras neural network inference to C99 code, using only standard libraries
[19].

4.3.6 Keras-surgeon
Keras-surgeon is a python library used for modifying trained Keras models. It allows for the
user to delete neurons or channels, and delete, insert or replace layers [2].

4.3.7 Perf
Perf is a performance analyzing tool for Linux (version 2.6+) based systems which is capable
of statistical profiling of the entire system. The tool supports e.g. CPU performance coun-
ters, tracepoints, software performance counters, and dynamic probes. The tool uses several
di�erent subcommands and comes with a terminal user interface [18].

25

4. Method

26

Chapter 5

Experiments

In this chapter, we first explain the model used and the setups for the various experiments,
which can be read about in section 5.1. In section 5.2 we show the results for the di�erent
experiments and setups. Finally, we discuss the results in section 5.3

5.1 Setup
The model we use was developed at Acconeer as described in section 4.1, and the setup will
be further described below. We decided to use Acconeer Exploration Tool since it provides
us with a simple GUI which makes it easy to both train models, connect with the sensor
to collect data, and try out an NN inference in real-time on a PC. STM32CubeIDE has been
used before at Acconeer, which provides us with useful experience with the IDE when setting
up and debugging the project. We had a range of MCU:s to chose between, and decided to
start with an MCU with a large amount of flash memory and RAM, to surely be able to fit
the inference on it. The articles mentioned in chapter 3 motivated us to try out the pruning
and quantization techniques, since they seemed somewhat used before but still can give very
di�erent results depending on the network they are used on. All of our chosen setups are
further described in the sections below.

5.1.1 Our Model
The model used in this master’s thesis is a CNN with 13 layers, as seen in figure 5.1. A de-
tailed summary of all the layers in this model can be seen in appendix C. This network is
used to di�erentiate between three di�erent hand gestures and one empty, or non-gesture,
background:

27

5. Experiments

• Swipe: the hand moves quickly from one side to another over the sensor

• Press: an open hand moves down and up once above the sensor, as to press an imaginary
button

• Pick: the hand is held steadily above the sensor while the thumb and index finger meet
once

• Empty: there is no hand or other object above the sensor

Figure 5.1: The layers of the CNN used in this thesis.

Each batch of data from the sensor, called a sweep, consists of a series of integers, where a
higher number indicates a stronger reflector in front of the sensor. This means that a piece
of metal will generate a higher number than pure air.

In order to perform inference on the radar data, it has to be preprocessed. Without prepro-
cessing the sensor data, the network would not be able to classify the gestures correctly, no
matter how good accuracy it had in the validation state. This is due to that the network was
trained at data that was preprocessed this way, which is decided by Acconeer Exploration
Tool [1].

In the preprocessing step, we use a bu�er where sensor data is saved. This bu�er can be seen
as a sliding window; each time the sensor produces new data, the oldest sweep is removed,
replaced with the second oldest data, and so on. The bu�er has space for 20 sweeps. 20
sweeps together are called a frame. The frame passes through a Hanning window and an FFT
to build an image of the sensor data.

Examples of what the di�erent gestures look like as images can be seen in figure 5.2. Lighter
pixels mean stronger reflector (i.e. a hand or object in front of the sensor at that position)
relative to darker pixels which indicates a weaker reflector (e.g. such as air). The brightness
of the pixels does however depend on what information the sensor data contains; as seen in
figure 5.2(d) the empty air reflects roughly the same no matter where you look at the data,
hence the whole picture lights up.

We use the sensor with an update rate of 18 Hz, which means that every 1
18 second we get new

data from the sensor. This means that an image represents a time frame of 1
18 · 20 ≈ 1.111

seconds. Hence, we capture an image of a gesture, by rebuilding sensor data from a small
time series of 20 sweeps.

A processed frame gets a width of 20 and a height of 30, and just 1 channel. This is the input
image for our network. In the convolution layers, the input will get 32 channels, and the
height and width will shrink with each max pooling that it passes. This is defined by how
Dagasan [4] built the network. Each image will then pass through the CNN inference, and the
output result will be a classification of what gesture the network thinks the image contained.

28

5.1 Setup

(a) Pick (b) Press

(c) Swipe (d) Empty

Figure 5.2: Illustration of the four gestures that can be classified by
our network.

Since the sensor is configured with an update rate of 18Hz, we have approximately 1
18 =

0.05556 seconds to preprocess the data and identify a gesture without missing any new data.
The preprocessing takes around 27077 clock cycles (0.00013 seconds) when running on a
Cortex M7 CPU. This means that the inference cannot be slower than 0.05543 seconds in
order to perform inference in real-time and not miss new sensor data.

5.1.2 Tool Versions
In this section, the versions of operating systems and tools used during the experiments are
presented.

Operating Systems
During the experiments, we used two operating systems: Windows 10 and Ubuntu 18.04 LTS.
Acconeer Exploration Tool and all python scripts regarding the model are mainly executed
in the Windows environment. STM32CubeIDE is run on both operating systems. Profiling
with perf is done in the Linux environment. GCC version 7.4.0 was used.

Acconeer Exploration Tool
We use Acconeer Exploration Tool with version 2.0.0. However, since this version can only
save models in a numpy format, we altered the source code to be able to save the models as
Keras files as well.

Python Versions
We use Python 3.6 together with TensorFlow and Keras. When we use them together with
Acconeer Exploration Tool, TensorFlow version 1.15.2 and Keras version 2.2.4 are needed. For

29

5. Experiments

quantization, we use TensorFlow 2.1.0. We use Keras-surgeon version 0.1.3 throughout the
experiments.

IDE and Converter Versions
Throughout all experiments with the Keras2C converter, we use the version with the latest
commit from February 20th, 2020 (commit df61022). For the X-CUBE-AI experiments, we
use X-CUBE-AI version 5.0.0 to convert the Keras and TensorFlow Lite models to C code.
Throughout all experiments with STM32CubeIDE, we use IDE version 1.2.1 in combination
with STM32CubeMX 5.5.0-RC6 to be able to build and run the code on chosen MCU.

5.1.3 Optimization Techniques Setup
The following subsections will describe the detailed setup for each optimization technique
used.

Magnitude-Based Weights Pruning
We use the TensorFlow tool for magnitude-based weight pruning with re-training in Keras,
described in section 4.3.3, in the magnitude-based weight pruning experiments. Di�erent
settings for the parameters Epochs, Initial Sparsity and Frequency are tested for the optimal
setup of pruning our model. The final settings are shown in table 5.1.

Setting Value
Epochs 15
Initial Sparsity 0
Begin Step 0
Frequency 50

Table 5.1: Magnitude-based pruning settings.

It is decided that Begin Step is set to 0 since the model is already trained. The Final Sparsity,
corresponding to how much of the network to remove, is varied over the experiments to test
how it a�ects the accuracy.

Channel-Based Pruning
We use KerasSurgeon version 0.1.3, described in section 4.3.6, for channel-based pruning.
Channels with the lowest L1-norm are removed, according to section 2.2.2, using the method
delete_channels(). In order to explore how many channels can be removed without
losing accuracy, we remove channels in an iterative manner, one by one. We do channel-based
pruning both with and without re-training in our experiments. At last, we apply re-training
to all pruned models to examine how the models recover from the accuracy loss.

30

5.1 Setup

Quantization
We perform quantization using the TensorFlow model optimization toolkit, described in
section 4.3.3, while converting the model to TensorFlow Lite. In order to achieve a better
understanding of how quantization a�ects a model, we quantize the initial model as well
as all models pruned with channel pruning. At last, we import the quantized models into
X-CUBE-AI and run them on the MCU. Keras2C does not support converting TensorFlow
Lite models.

Optimizing Model C Code
First, we import the C code generated with Keras2C to a STM32CubeIDE project configured
for the Nucleo-F722ZE. When we have converted a Keras model to C code, we modify the
code to store all the weights in the flash memory instead of RAM, since the weights are static.
This is done to save some space in the RAM, which is needed for other (volatile) variables.
It is not possible to flash our chosen MCU with the inference software without applying this
modification, for the simple reason that we otherwise run out of RAM.

Furthermore, the generated C code from Keras2C uses unique output arrays for each layer to
store the result, before sending it to the next layer. This means that a new array is allocated
for each layer, resulting in 14 arrays for our model. Since the output from one layer can be
removed after it has been used as input to the next layer, we optimize the code to alternate
between two arrays instead. For example, the first layer of a model can use the first array to
store its output, and the second layer can use the second array, the third layer can now use
the first array since the output of the first layer is no longer needed, and so forth. This means
that only two arrays need to be allocated, instead of 14. This optimization was also necessary
for the model to fit in the RAM of the MCU used in this thesis. Now the code is runnable
on the Nucleo-F722ZE.

Using the compiler settings O0, OFast, and O3 we determine how they a�ect the perfor-
mance. We choose to test with these compiler settings since, in order to meet the real-time
inference requirements mentioned in section 5.1.1, the execution time is the biggest obstacle.
OFast and O3 are the optimization levels that optimize the cost most and there is, therefore,
no need to test with optimization levels that are not as fast. O0 is used as a baseline for
comparing the results.

Optimizing Convolution Layer C Code
We optimize the convolution layer to take advantage of the magnitude-based weight pruned
model. We do this, by removing the weights that are set to zero from the arrays in which they
are stored, and reduce the array size correspondingly. This allows for smaller arrays which
reduce the computations needed for inference and consume less memory.

When the convolutional layer performs the convolution, it loops over the kernel array one
time for each index in the output array. The convolutional layer then calculates output values,
by using the kernel value and input value for each value in the kernel array. This corresponds
to a convolution as described in section 2.1.1.

In order to speed up the convolutional layer, we now loop over the reduced kernel array,

31

5. Experiments

instead of the original kernel containing the zeros. The convolutional layer uses data from
where in the kernel array the current weight is stored, for calculating the index to the input
and output array where data should be stored and retrieved. This data is now lost since we
only loop over the weights that were not zero. In order to still save and collect data from the
correct indices in the input and output arrays, these index parameters have to be stored for
each weight, in an additional array corresponding to the new, reduced, kernel array. An addi-
tional array containing information about the corresponding indices for the input and output
tensor for each weight not set to zero, is therefore stored for each convolution layer. This op-
timization allows for fewer computations since we now skip all computations with zero. A
visual example of how the weight arrays are reduced can be seen in figure 5.3. In this figure, the
array weights contains the original kernel weights. The array reduced_weights contains
the reduced kernel array, and the array index_parameters contain the index parameters
needed for calculating the indices for the input and output arrays. In this case idx_params_0
contains the index parameters for the first weight, idx_params_1 contains the index param-
eters for the second weight, etc. This means that the length of the reduced_weight array
and index_parameters array are equal.

Figure 5.3: A visual explanation of how kernel arrays are reduced.

It is important to note that, while we reduce the number of computations performed in the
convolutional layer, we also increase the number of memory accesses. This could potentially
result in higher execution time. If the time for memory accesses increases more than the time
for the weight calculations decrease, the execution time becomes higher.

5.1.4 Experiments Setup
Each experiment conducted can be seen in table 5.2. Setups 1-6 are experiments carried
out with X-CUBE-AI. Setups 7-10 are experiments carried out with Keras2C. An ”initial
model” (i.e. not optimized original model) was used in both X-CUBE-AI and Keras2C to
set a baseline for the rest of the experiments (see Setup 1 and 7 respectively). The model is
evaluated and measured according to section 4.2 in all experiments.

32

5.2 Results

Setup
Weight Channel Quant- C-code Array

Cube-AI Keras2c
Pruning Pruning ization Opt. Opt.

1 X
2 X X
3 X X
4 X X
5 X X X
6 X X X
7 X
8 X X X
9 X X X
10 X X X X

Table 5.2: The setup for all techniques and tools used.

5.2 Results
Here we present the results for each setup described in table 5.2.

Results for Setup 1 - Baseline for X-CUBE-AI

The result of Setup 1 serves as a baseline for the other experiments with X-CUBE-AI. The
original model, no optimizations applied, uses 265.06 kB flash memory and 84.74 kB RAM.
It executes one inference at 0.2239 seconds and has an accuracy of 1.0 on the test data set,
meaning that 100% of the predictions were correct.

Results for Setup 2 - Channel Pruning

In Setup 2, channel pruning was used. When re-training is not applied, it is possible to
remove 8 channels (25% of the convolutional layers) without losing a significant amount of
accuracy. Furthermore, with re-training, it is possible to remove 20 channels (62.5% of the
convolutional layers) before the accuracy starts to decline. With re-training, we loose at most
4% points when pruning almost 94% of the channels. The accuracy concerning the channel
pruning is shown in figure 5.4. Measured numbers are available in appendix A.

Another result of channel pruning is that when the number of channels decreases, the execu-
tion time decrease as well as memory usage. This is expected since fewer parameters require
fewer computations and less memory. When removing 8 channels (without re-training), the
inference executes at 0.1230 seconds with an accuracy of 0.9916. The memory uses 164.74 kB
of flash and 63.55 kB of RAM. When removing 20 channels (with re-training) the inference
executes at 0.0265 seconds, with an accuracy of 0.9976. The memory uses 57.46 kB of flash
and 31.78 kB of RAM. The execution time and memory usage are displayed in figure 5.5.

33

5. Experiments

Figure 5.4: Accuracy after pruning for setup 2 and 8. The baseline
model has 32 channels.

Results for Setup 3 - Weight Pruning

With Setup 3, it is possible to prune up to 90% of the network using weight-based pruning
without losing a significant amount of the original accuracy. However, it is not possible to
take advantage of the pruned model with X-CUBE-AI, since there is no access to modify the
source code. The pruning tool only sets the values of the pruned weights to zero, they are
not removed physically. This means that it is not possible to reduce clock cycles needed for
inference or memory usage by pruning since all calculations in the convolution layer will be
done, and weights are stored regardless if they are zeros or not. Hence, the result regarding
memory usage and execution time equals the baseline. The accuracy of the 90% weight pruned
model is 0.9855. The results for 5 tested sparsities can be seen in table 5.3.

Final Sparsity (%) Accuracy
82 0.9927
86 0.9843
90 0.9855
94 0.7063
98 0.3213

Table 5.3: Accuracy of the weight pruned model at di�erent sparsity
levels.

34

5.2 Results

(a) Execution Time

(b) Memory Usage

Figure 5.5: Execution time and memory usage after pruning and
quantization for the models converted with X-CUBE-AI in setup
2, 4 and 5. The baseline model has 32 channels.

35

5. Experiments

Results for Setup 4 - Quantization
In Setup 4, quantization was successfully applied to the original model. This means that it is
possible to quantize from 32-bit floating point to 8-bit integers without losing more than 1%
of the original accuracy. Quantization reduced the memory requirements to 67.15 kB flash
and 22.78 kB RAM. It also reduced the inference execution time to 0.0900 seconds.

In figure 5.5 the quantization results can be seen both on its own, and combined with dif-
ferent stages of channel pruning. Pruning zero channels correspond to no pruning at all,
hence quantization combined with pruning zero channels represents quantization alone. All
numbers can be seen in appendix A.

Results for Setup 5 - Quantization and Channel Pruning Combined
In Setup 5, when applying quantization together with channel pruning, the execution time
for i number of channels (i ∈ N : i mod 2 6= 0) is longer than for i+1 numbers of channels,
as can be seen in 5.5(a). This is interesting and connected to that some optimizations the ST
team have done only apply to layers with an even number of channels. However, since we
cannot access the X-CUBE-AI source code, we cannot confirm how this works.

Results for Setup 6 - Quantization and Weight Pruning Combined
In Setup 6, weight pruning is combined with quantization. Since it is not possible to take
advantage of the weight pruning with X-CUBE-AI, the improvements for experiment 6 re-
garding memory usage and execution time rely on the quantization alone which was presented
for Setup 4 above. The accuracy of this combination is 0.9795.

Results for Setup 7 - Baseline for Keras2C
The results of Setup 7 serves as a baseline for the other experiments with Keras2C. The orig-
inal model, no optimizations applied and compiled with -O0, uses 312.89 kB flash memory
and 167.83 kB RAM. It executes one inference at 17.61 seconds with an accuracy of 1.0.

Results for Setup 8 - Channel Pruning
In Setup 8, the original model is channel pruned. Since the accuracy is measured before
conversion to C code, the accuracy is the same as presented for Channel Pruning with X-
CUBE-AI in the results for Setup 2, and as can be seen in figure 5.4.

When pruning 8 channels without re-training, the model needs 231.38 kB flash memory and
130.09 kB RAM, and needs 0.6418 seconds to execute one inference. When pruning 20 chan-
nels, with re-training, the memory needed decreases to 126.62 kB flash and 68.97 kB RAM,
while executing one inference in 0.1524 seconds. The memory usage and execution time for
di�erent levels of channel pruning can be seen in figure 5.6. All the numbers from this ex-
periment can be found in appendix A.

36

5.2 Results

(a) Execution Time

(b) Memory Usage

Figure 5.6: Execution time and memory usage after pruning and
quantization for the models converted with Keras2C in setup 8. The
baseline model has 32 channels.

37

5. Experiments

Results for Setup 9 - Weight Pruning
In Setup 9, weight pruning is applied to the original model. Since the weight pruning is done
before the conversion to C code, the accuracy of the weight pruned model is the same as for
the X-CUBE-AI converted model, which is 0.9855. The results can be seen in table 5.3.

On its own, it is not possible to take advantage of the weight pruning with Keras2C, since all
computations in the convolution layer are done regardless of whether the numbers are zero
or not. This means that the memory usage and execution time for an inference equals the
original model (baseline). However, in Keras2C there is access to the source code which can
be modified to take advantage of weight pruning. The results of this are elaborated below, in
the results for Setup 10.

Results for Setup 10 - Weight Pruning and Optimizing C code
arrays
In this setup, weight pruning is combined with further optimizations in the convolution
layer in the C code, which when compiled with -O3 decreases the execution time to 0.4905
seconds. The accuracy is the same as presented in section Magnitude-Based Weight Pruning
above, 0.9855, and the memory usage is reduced to 166.30 kB for flash and 166.26 kB for
RAM. A summary of the execution time for the di�erent compiler optimizations can be
seen in table 5.4.

Model O0 OFast O3
Initial 17.6062 1.8016 1.1476
Weight pruned 17.6062 1.8015 1.1406
Optimized for weight pruning 2.1253 0.5816 0.4905

Table 5.4: Execution time of the optimizations for the di�erent com-
piler settings tested in setup 7, 9, and 10.

Using this C code optimization, we can see that the clock cycles are reduced from roughly 383
million to 98 million for one inference. Correspondingly only 96% of the inference time is
used in the convolution layer, as opposed to without optimizations where 98% of the inference
time is spent in the convolution layer. The profiling can be seen in table 5.5.

No optimizations Optimized for pruning
Layer Clock Cycles Quota Clock Cycles Quota

Padding 4895120 0.01254 1104568 0.01086
Convolution 383225162 0.98149 98045158 0.96393
Maxpool 1503385 0.00385 1736898 0.01708
Flatten 27872 0.00007 6751 0.00007
Dropout 23 0.00000 23 0.00000
Dense 800979 0.00205 821030 0.00807

Table 5.5: Perf profiling result of the Keras2C model.

38

5.3 Discussion

5.3 Discussion
Here we extend the discussion of some of the results further. The research questions will be
answered and some ethical aspects, as well as threats to validity, will also be discussed.

Exploiting Sparse Matrices With TensorFlow Lite
TensorFlow states in the guide of how to prune a network with their tool that "By itself, a sparse
model will not be faster to execute. It just enables backends with such capability. In the near future,
however, TensorFlow Lite will take advantage of the sparsity to speed up computations" [23]. This
confirms our result that there was no di�erence in execution time or memory usage between
the initial model and the magnitude-based weights pruned model when using X-CUBE-AI.
X-CUBE-AI has not implemented a way to exploit the sparse matrices yet.

As shown by the study To prune, or not to prune: exploring the e�cacy of pruning for model compres-
sion by Zhu et al. [26] creating a large model and pruning it to become sparse can outperform
a dense model in terms of accuracy. It will, therefore, be interesting to investigate the Ten-
sorFlow Lite optimization that will be available in the future. If X-CUBE-AI implements a
backend that can exploit the sparse TensorFlow Lite models it will probably outperform our
Keras2C solution since X-CUBE-AI has proven to be faster than Keras2C in all of the exper-
iments carried out in this thesis. Furthermore, it may very well be the case that the weight
pruned model can outperform the channel pruned model on inference accuracy, execution
time, and memory usage.

Increased Execution Time for Small Models
In figure 5.5 and table A.2 we can see that the execution time for the 32-bit floating point
model is about as short or shorter than the quantized 8-bit integer model when the number
of channels removed exceeds 25. This can be explained by the quantization technique used by
TensorFlow Lite, where the input data is quantized and dequantized for each layer at runtime,
as mentioned in section 4.3.3. This technique allows for a more accurate quantization of the
model but will have an impact on the execution time if the layers are small. The time saved
by using integer operations will be lost to the quantization and dequantization of the inputs
and outputs between layers. It is therefore important to take this aspect into consideration
when quantizing a smaller model using the TensorFlow Lite tool.

Even Number of Channels Provides Faster Inference
in X-CUBE-AI
As shown in figure 5.5 the execution time for the quantized model varies greatly when chan-
nels are removed, and for cases when the channels are decreased from an even number to an
odd the execution time increase. This does not comply with the theory that removing chan-
nels and creating a smaller model will lead to faster inference time. For instance, removing
one channel from 32 to 31 the execution time should theoretically decrease since the model
has fewer parameters and therefore should require fewer computations. However, on the
contrary, we can see that the execution time increase.

39

5. Experiments

Furthermore, we can see that the execution time does not decrease at the same rate between
the even channels. Removing 2 channels from 32 to 30 results in an execution time that
is fairly close to using 32 channels. However, removing 2 channels from 30 to 28 results
in a bigger di�erence in execution time. This means that removing channels when using a
quantized model does not always provide a speedup that is worth the possible loss in inference
accuracy. One has to be careful and measure how the optimizations a�ect the model to be
sure that the optimization is as e�cient as requested.

A possible explanation for this is that X-CUBE-AI uses an optimization that only applies to
convolutional layers with an even number of channels. This optimization could potentially
be loop unrolling, where the feature maps are calculated two and two in parallel, instead of
one and one, combined with using bitshift whenever possible. We can not see this result for
the Keras2C converted models because Keras2c does not use this optimization.

Overdimensioned Models
As can be seen in the graph of accuracy after pruning, in figure 5.4, the accuracy starts to
drop after around 20-25 channels are removed with retraining. Furthermore, about 90% of
the weights were removed in the experiments with magnitude-based weight pruning, without
losing any significant accuracy. This makes us suspect that the model used in this thesis is
over-dimensioned and that a smaller model could have been trained from the beginning. It
could also mean that our training and test data set is not large and diverse enough and that
a larger data set would have resulted in an earlier accuracy drop. Since all people are unique
and would perform the gestures somewhat di�erent from each other, it is possible that data
collected with people not used in the original data set would result in lower accuracy. It
is possible that the smaller model only performs well on the test data used in the accuracy
measurements for our model.

In order to investigate this further when designing, training, and optimizing a model there
is a need for more testing on more data. When testing it in real time the larger model may
make better predictions of hand gestures that produce data not similar to those in the train
and validation data set. By using a well-defined data set when training the model and vali-
dating the accuracy, the impacts of pruning and quantization can be determined with greater
certainty.

Comparing X-CUBE-AI With Keras2C
X-CUBE-AI and Keras2C were both able to convert the model to C code and perform infer-
ence successfully on the MCU. However, the tools are di�erent in both usability, as well as
the resulting inference execution time and model memory usage.

Our results in this thesis show that the X-CUBE-AI converted models are faster and consume
less memory than the Keras2C converted models. For instance, the Keras2C converted model
needs to prune around half of the channels in the convolutional layers in order to perform as
well as the baseline X-CUBE-AI converted model, in terms of execution time. Furthermore,
the memory usage is around 85% of flash and 50% of RAM for the X-CUBE-AI converted
models compared to Keras2C.

40

5.3 Discussion

That being said, Keras2C still has the advantage over X-CUBE-AI in the case that the C code
used for inference is modifiable. If the converted model has possibilities of being optimized
in a unique way that is not implemented in X-CUBE-AI, the user can optimize the code by
hand which may result in improvements, making the Keras2C converted model inference
more e�cient than X-CUBE-AI.

5.3.1 Answer to Research Questions
In section 1.1.2 the research questions of this thesis are stated.

RQ1: How does pruning impact inference regarding performance and memory footprint?

RQ2: How does quantization impact inference regarding performance and memory foot-
print?

RQ3: How is the accuracy a�ected when applying pruning and quantization to a neural
network?

The work carried out in this thesis has shown two possible ways of converting machine learn-
ing models to run on an MCU: X-CUBE-AI and Keras2C. Furthermore, two optimization
techniques have been explored, pruning and quantization. The results from these experi-
ments lead to the answers of RQ1 and RQ2 as follows. Using pruning, the inference time can
become up to 8× faster, flash memory usage up to 4.5× lower, and RAM memory usage up
to 2.8× lower. Similarly, quantization can improve the execution time by up to 2.5×, reduce
flash memory usage by up to 4×, and RAM memory usage by up to 3.7×.

Considering the accuracy as mentioned in RQ3, the pruning and quantization that was ap-
plied to the model used in this thesis are considered. The magnitude-based weight pruning
experiments showed that pruning 90% of the network result in an accuracy loss of 1.5 per-
centage points. Channel-based pruning only a�ects the accuracy marginally when retraining
is applied, dropping at most 4 percentage points when pruning almost 94% of the channels.
If no re-training is applied the accuracy starts to decrease after around 25% of the channels
are removed. Finally, quantization from 32-bit floating points to 8-bit integers only had a
minor e�ect on the accuracy with a drop of at most 1%.

5.3.2 Ethical Aspects
When using the optimization techniques discussed in this thesis it is important to consider
the possible e�ects of a decreased accuracy. If the users are unaware of the e�ects on accuracy,
and a network that is used in some existing application is pruned and quantized, it is possible
that the accuracy drop causes the application to behave di�erently. For example, an applica-
tion used for image recognition might start to classify images di�erently after pruning and
quantization is applied.

Furthermore, these techniques allow for neural networks to become smaller and therefore
also deployable on smaller devices. This allows for usage in areas not thought about before,
as well as an extended area of use of applications that previously required larger hardware. For
example, a face recognition application that previously was deployed at one location because

41

5. Experiments

of hardware constraints, can now be deployed at numerous di�erent locations on smaller
devices.

5.3.3 Threats to Validity
In this master’s thesis, only one model has been used and evaluated. The results for this
model do not necessarily apply to other models since other networks potentially could be
more fragile to quantization and pruning than the one used in this thesis.

The size of the data set which the models are trained and re-trained on, as well as validation
and test data sets, are relatively small. The accuracy of the di�erent optimized models and
the original model could probably be lower when using larger data sets, but we believe the
proportions would stay relatively the same when it comes to the results. However, collecting
data and training the model was outside the scope of this thesis, and was done just enough
to be able to carry out the experiments.

As mention in section 5.3, the over-sizing of the model could potentially also be the reason
for being able to prune the network by 90%.

42

Chapter 6

Conclusions

In this master’s thesis, we have successfully reduced a network regarding memory footprint
and execution time. We used the Acconeer Exploration tool to train a gesture classification
network. This network was then successfully pruned both with magnitude-based weight
pruning and channel-based pruning. It was also successfully quantized. All the network
reducing techniques was carried out in a Python environment using Tensorflow Lite and
Keras. In order to deploy the network on an MCU, STM32CubeIDE was used to set up a
C code project. To be able to convert the Python written network to C code, two di�erent
approaches were used: X-CUBE-AI and Keras2C. The di�erent network reducing techniques
was the main focus of this thesis.

6.1 Summary
X-CUBE-AI and Keras2C are two viable ways of converting a Keras machine learning model
to run on an MCU. As mentioned before, Keras2C is a good choice if one wants to optimize
the inference by altering the C code. On the other hand, our baselines show that using X-
CUBE-AI will give a faster inference before even applying any optimizations. A consequence
of not being able to modify the X-CUBE-AI inference source code is that the network is
not able to take advantage of any weight pruning. This means that magnitude-based weight
pruning does not have an impact on the execution time and memory usage unless the backend
supports it. Exploiting a weight pruned model is possible in Keras2C and can improve the
execution time by 2.3× and reduce the flash memory usage by 2×. RAM memory usage is
however una�ected.

Applying channel-based pruning was able to reduce the execution time by up to 8×, flash
memory usage by up to 4.5×, and RAM memory usage by up to 2.8× without having a nega-

43

6. Conclusions

tive impact on the accuracy. However, when performing pruning, re-training the model can
significantly improve the accuracy of the pruned model. Channel-based pruning only a�ects
the accuracy marginally when re-training is applied, and, in our case, only dropped at most
4 percentage points when pruning almost 94% of the channels.

The quantization technique we used proved to be able to reduce execution time by 2.5×,
flash memory usage by 4×, and RAM memory usage by 3.7×. This shows that quantization
is a good choice both when it comes to reducing execution time, but mainly when one wants
to reduce the memory footprint of a network.

We were not able to use a less powerful MCU in this particular case with this model, despite
the results we received with the optimization techniques applied. However, we have shown
that pruning and quantization are two good alternatives, that can be used on its own or
together, in order to reduce a network.

6.2 Future Work
Here we present some ideas for future work that could build upon the results in this thesis.

Hardware Accelerated Architectures
One interesting way to optimize machine learning inference for MCUs is by using hardware
accelerated architectures designed specifically for the network deployed. For instance, if the
network used in this thesis were to use a hardware accelerated architecture it could be focused
on speeding up the convolutional layer since it constitutes more than 90% of the clock cycles
in inference. One could compare the execution time of a convolutional layer implemented
in hardware to the C code equivalent in this thesis.

Different Ways to Prune a Network
There are many ways to prune a network, channel pruning and magnitude-based weight
pruning are just two of them. It would be interesting to try out other pruning alternatives
to see how they behave.

TensorFlow Lite will have a back-end that supports speed-up for the weight pruned model
soon (according to TensorFlow). When that is possible and if X-CUBE-AI supports it one can
look at deploying the weight pruned model on X-CUBE-AI again. Since X-CUBE-AI is the
better alternative of the two approaches explored in this thesis when it comes to execution
time only, it would be very interesting to see how much faster a weight pruned model can
become when X-CUBE-AI supports it.

Quantize a Model to Use with Keras2C
Quantization was omitted for the Keras2C approach due to lack of time since there is no
simple way to perform the quantization. Implementing such a function would be out of the
scope for this thesis. If a good quantization technique is implemented for Keras models, it

44

6.2 Future Work

would be interesting to see how the Keras2C network would perform in comparison with
X-CUBE-AI. Today, there is no such quantization implemented.

45

6. Conclusions

46

Bibliography

[1] Acconeer AB. Acconeer Python Exploration docs. https://acconeer-python-
exploration.readthedocs.io. Accessed 2020-02-04.

[2] Ben Whetton. Keras-surgeon documentation. https://github.com/BenWhetton/keras-
surgeon. Accessed 2020-04-02.

[3] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit Quantization of
Neural Networks for E�cient Inference. In 2019 IEEE/CVF International Conference on
Computer Vision Workshop (ICCVW), pages 3009–3018, 2019.

[4] Dagasan Eda. Hand Gesture Classification using Millimeter Wave Pulsed Radar. Mas-
ter’s thesis, Lund University, Mathematical Statistics, 2020.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[6] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pellauer, and Christo-
pher Wardlaw Fletcher. UCNN: Exploiting computational reuse in deep neural net-
works via weight repetition. In Proceedings - 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture, ISCA 2018, pages 674–687. Institute of Electrical
and Electronics Engineers Inc., July 2018.

[7] Zhongzhan Huang, Xinjiang Wang, and Ping Luo. Convolution-Weight-Distribution
Assumption: Rethinking the Criteria of Channel Pruning. ArXiv, abs/2004.11627, 2020.

[8] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G.
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and Training of Neu-
ral Networks for E�cient Integer-Arithmetic-Only Inference. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2704–2713, 2017.

[9] Qing Jin, Linjie Yang, and Zhenyu Liao. Towards E�cient Training for Neural Network
Quantization. ArXiv, abs/1912.10207, 2019.

[10] Keras. Keras documentation. https://keras.io/. Accessed 2020-03-01.

47

BIBLIOGRAPHY

[11] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for e�cient
inference: A whitepaper. ArXiv, abs/1806.08342, 2018.

[12] Souvik Kundu, Saurav Prakash, Haleh Akrami, Peter A. Beerel, and Keith M. Chugg.
pSConv: A Pre-defined Sparse Kernel Based Convolution for Deep CNNs. In 2019
57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
100–107, 2019.

[13] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha�ner. Gradient-Based Learn-
ing Applied to Document Recogniziton. Proceedings of the IEEE, 86(11):2278 – 2324,
November 1998.

[14] Yann Lecun, John Denker, and Sara Solla. Optimal Brain Damage. In Advances in Neural
Information Processing Systems, volume 2, pages 598–605, January 1989.

[15] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
Filters for E�cient ConvNets. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017.

[16] Darryl Dexu Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed Point Quan-
tization of Deep Convolutional Networks. In ICML, 2016.

[17] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime Neural Pruning. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, NIPS’17, page
2178–2188, Red Hook, NY, USA, 2017. Curran Associates Inc.

[18] Linux Kernel Organization. perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/index.php/Main_Page. Accessed 2020-04-29.

[19] Rory Conlin. Keras2C documentation. https://github.com/f0uriest/keras2c. Accessed
2020-02-20.

[20] STMicroelectronics. Stm32CubeIDE. https://www.st.com/en/development-
tools/stm32cubeide.html. Accessed 2020-01-25.

[21] STMicroelectronics. STM32F722ZE. https://www.st.com/en/microcontrollers-
microprocessors/stm32f722ze.html. Accessed 2020-05-30.

[22] STMicroelectronics. X-CUBE-AI. https://www.st.com/en/embedded-software/x-cube-
ai.html. Accessed 2020-01-25.

[23] Tensorflow. Tensorflow documentation. https://www.tensorflow.org. Accessed 2020-
03-01.

[24] Bram-Ernst Verhoef, Nathan Laubeuf, Stefan Cosemans, Peter Debacker, Ioannis A. Pa-
pistas, Arindam Mallik, and Diederik Verkest. FQ-Conv: Fully Quantized Convolution
for E�cient and Accurate Inference. ArXiv, abs/1912.09356, 2019.

[25] Seul-Ki Yeom, Philipp Seegerer, Sebastian Lapuschkin, Simon Wiedemann, Klaus-
Robert Müller, and Wojciech Samek. Pruning by Explaining: A Novel Criterion for
Deep Neural Network Pruning. ArXiv, abs/1912.08881, 2019.

48

BIBLIOGRAPHY

[26] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the e�cacy of
pruning for model compression. ArXiv, abs/1710.01878, 2018.

49

BIBLIOGRAPHY

50

Appendices

51

Appendix A

Data tables

This chapter presents the raw data used for the graphs from the experiments with channel
pruning.

Table A.1 presents the accuracy for each step in the channel pruning process, both for the
models with no re-training and the models that were re-trained for 3 epochs.

X-CUBE-AI
Table A.2 presents the clock cycles and execution times of one prediction of a gesture as well
as the consumed flash and RAM for each step in the channel pruning process.

Table A.3 presents results from the quantization of the channel pruned models. The accuracy
for both the re-trained models and the models with no re-training, as well as the execution
time and memory usage.

Keras2C
Table A.4 presents the clock cycles and execution times of one prediction of a gesture as well
as the consumed flash memory and RAM for each step in the channel pruning process.

53

A. Data tables

Channels
Accuracy

Accuracy
removed (re-training)

0 1.0000 1.0000
1 1.0000 1.0000
2 1.0000 1.0000
3 1.0000 0.9988
4 1.0000 1.0000
5 0.9976 1.0000
6 0.9940 1.0000
7 0.9940 0.9988
8 0.9916 1.0000
9 0.8869 1.0000
10 0.8111 0.9988
11 0.7196 0.9988
12 0.6895 1.0000
13 0.4862 0.9988
14 0.3670 1.0000
15 0.3430 1.0000
16 0.3093 1.0000
17 0.2900 0.9964
18 0.2888 0.9964
19 0.2696 0.9988
20 0.2671 0.9976
21 0.2659 0.9940
22 0.2659 0.9976
23 0.2659 0.9940
24 0.2659 0.9952
25 0.2659 0.9819
26 0.2659 0.9904
27 0.2659 0.9819
28 0.2659 0.9711
29 0.2659 0.9723
30 0.2659 0.9579

Table A.1: Accuracy for channel pruning.

54

Channels Clock- Time Flash RAM
removed cycles (s) (kB) (kB)

0 48368230 0.2239 265.06 84.74
1 46143775 0.2136 251.26 82.09
2 44155595 0.2044 237.82 79.44
3 40809781 0.1889 224.74 76.79
4 38432933 0.1779 212.02 74.14
5 34927260 0.1617 199.06 71.50
6 31795139 0.1472 187.66 68.85
7 30250631 0.1400 176.02 66.20
8 26564211 0.1220 164.74 63.55
9 25095141 0.1162 153.82 60.90
10 22478782 0.1041 143.28 58.26
11 20995052 0.0972 133.06 58.26
12 18846673 0.0873 123.22 55.61
13 16663913 0.0771 113.74 52.96
14 14979988 0.0694 104.67 50.31
15 12871868 0.0596 95.86 45.02
16 11062079 0.0512 87.46 42.37
17 8943298 0.0414 79.42 39.72
18 8185565 0.0379 71.74 37.07
19 6994035 0.0324 64.42 34.42
20 5719290 0.0265 57.46 31.78
21 5114236 0.0237 50.86 29.13
22 4531161 0.0210 44.62 26.48
23 3772016 0.0175 38.74 23.83
24 3092222 0.0143 33.22 21.18
25 2449292 0.0113 28.06 18.54
26 2016701 0.0093 23.26 15.89
27 1557508 0.0072 18.82 13.24
28 1121035 0.0052 14.74 10.59
29 790803 0.0037 11.02 7.94
30 520389 0.0024 7.66 5.30

Table A.2: Execution time and memory usage for channel pruning.
X-CUBE-AI converted models.

55

A. Data tables

Channels
Accuracy

Accuracy
Clock

Time Flash (RAM
removed (re-training) (s) (kB) (kB)

0 1.0000 1.0000 19439494 0.0900 67.15 22.78
1 1.0000 1.0000 24987978 0.1157 63.70 22.08
2 1.0000 0.9988 18930209 0.0876 60.31 21.36
3 1.0000 0.9988 22016828 0.1019 57.04 20.65
4 0.9988 1.0000 15082635 0.0698 53.82 19.94
5 0.9976 1.0000 19245027 0.0891 50.73 19.23
6 0.9940 1.0000 14648251 0.0678 47.70 18.54
7 0.9940 0.9988 16793673 0.0777 44.78 17.85
8 0.9904 1.0000 11495013 0.0532 41.93 17.16
9 0.8869 1.0000 14483190 0.0671 39.20 16.47
10 0.8111 0.9988 10997723 0.0509 36.52 15.78
11 0.7160 0.9988 12389384 0.0574 33.97 15.09
12 0.6883 1.0000 8507728 0.0394 31.48 14.40
13 0.4777 0.9976 10446784 0.0484 29.10 13.71
14 0.3646 1.0000 7938166 0.0368 26.79 13.02
15 0.3394 0.9976 8696488 0.0403 24.60 12.33
16 0.3117 1.0000 5994612 0.0278 22.46 11.64
17 0.2900 0.9940 7093928 0.0328 20.45 10.95
18 0.2888 0.9952 5392248 0.0250 18.50 10.26
19 0.2708 09988 5689615 0.0263 16.67 9.57
20 0.2671 0.9976 3982400 0.0184 14.89 8.88
21 0.2659 0.9940 3982400 0.0206 13.24 8.19
22 0.2659 0.9928 4455056 0.0158 11.65 7.50
23 0.2659 0.9916 3411188 0.0157 10.18 6.79
24 0.2659 0.9916 3385856 0.0112 8.76 6.03
25 0.2659 0.9819 2481101 0.0115 7.47 5.28
26 0.2659 0.9880 2481101 0.0089 6.24 4.52
27 0.2659 0.9819 1914820 0.0081 5.12 3.78
28 0.2659 0.9663 1745611 0.0060 4.07 3.02
29 0.2659 0.9687 1302366 0.0055 3.14 2.27
30 0.2659 0.9567 986888 0.0046 2.26 1.51

Table A.3: Accuracy, execution time and memory usage of the quan-
tized channel pruned models. X-CUBE-AI converted models.

56

Channels Clock- Time Flash RAM
removed cycles (s) (kB) (kB)

0 247874028 1.1476 313.20 167.83
1 231007666 1.0695 299.72 161.16
2 216626937 1.0029 286.59 156.07
3 202355098 0.9368 273.82 150.97
4 188602601 0.8732 261.39 145.88
5 176213887 0.8158 249.32 142.37
6 163716500 0.7579 237.61 137.27
7 150874769 0.6985 226.24 132.18
8 138625832 0.6418 215.22 127.08
9 123860370 0.5734 204.56 121.99
10 111759095 0.5174 194.25 116.90
11 98220565 0.4547 184.29 110.22
12 88249353 0.4086 174.68 105.13
13 79390233 0.3675 165.42 100.04
14 71673998 0.3318 156.51 94.94
15 64161803 0.2970 147.96 91.43
16 57196006 0.2648 139.75 86.33
17 50207773 0.2324 131.90 81.24
18 44371145 0.2054 124.40 76.93
19 38127232 0.1765 117.25 71.05
20 32909865 0.1524 110.46 65.96
21 28036704 0.1298 104.01 60.87
22 24210872 0.1121 97.92 55.77
23 20430305 0.0946 92.18 49.10
24 16977202 0.0786 86.37 45.91
25 14008574 0.0649 81.75 40.49
26 11467006 0.0531 76.93 34.97
27 8725447 0.0404 72.59 2974
28 6195988 0.0287 67.74 23.68
29 4823184 0.0223 64.27 19.00
30 3842445 0.0178 61.82 15.02

Table A.4: Execution time and memory usage for channel pruning.
Keras2C converted models.

57

A. Data tables

58

Appendix B

Counting clock cycles on the Cortex M7

The di�erent defines and functions used for counting clock cycles on the Cortex M7 CPU
are shown below.

#include <stdint.h>

#define KIN1_DWT_CONTROL (*((volatile uint32_t*)0xE0001000))
#define KIN1_DWT_CYCCNTENA_BIT (1UL<<0)
#define KIN1_DWT_CYCCNT (*((volatile uint32_t*)0xE0001004))
#define KIN1_DEMCR (*((volatile uint32_t*)0xE000EDFC))
#define KIN1_TRCENA_BIT (1UL<<24)

#define KIN1_InitCycleCounter() \
KIN1_DEMCR |= KIN1_TRCENA_BIT

#define KIN1_ResetCycleCounter() \
KIN1_DWT_CYCCNT = 0

#define KIN1_EnableCycleCounter() \
KIN1_DWT_CONTROL |= KIN1_DWT_CYCCNTENA_BIT

#define KIN1_DisableCycleCounter() \
KIN1_DWT_CONTROL &= ~KIN1_DWT_CYCCNTENA_BIT

#define KIN1_GetCycleCounter() \
KIN1_DWT_CYCCNT

59

B. Counting clock cycles on the Cortex M7

60

Appendix C

Model

When running the command summary() on a Keras model, we get a summary of the di�erent
layers of the model. The summary tells which layer types the model has, the shape, and its
parameters. The shape refers to the shape of the output tensor for that specific layer. The
number of parameters refers to the number of weights for each layer.

Layer (type) Output Shape Param #
===
input_1 (InputLayer) [(None, 30, 20, 1)] 0

conv2d_1 (Conv2D) (None, 30, 20, 32) 320

conv2d_2 (Conv2D) (None, 30, 20, 32) 9248

max_pooling2d_1 (MaxPooling2 (None, 15, 10, 32) 0

conv2d_3 (Conv2D) (None, 15, 10, 32) 9248

conv2d_4 (Conv2D) (None, 15, 10, 32) 9248

max_pooling2d_2 (MaxPooling2 (None, 7, 5, 32) 0

conv2d_5 (Conv2D) (None, 7, 5, 32) 9248

conv2d_6 (Conv2D) (None, 7, 5, 32) 9248

max_pooling2d_3 (MaxPooling2 (None, 3, 2, 32) 0

flatten_1 (Flatten) (None, 192) 0

dense_1 (Dense) (None, 100) 19300

61

C. Model

dropout_1 (Dropout) (None, 100) 0

dense_2 (Dense) (None, 4) 404
===
Total params: 66,264
Trainable params: 66,264
Non-trainable params: 0

62

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-12

EXAMENSARBETE Optimizing Machine Learning Inference for MCU:s
STUDENT Josefine Myllenberg & Jens Johansson
HANDLEDARE Flavius Gruian (LTH), Johan Björnstedt (Acconeer AB), Martin Löwegren (Acconeer AB)
EXAMINATOR Jörn Janneck (LTH)

Optimizing machine learning
classification for edge devices

POPULÄRVETENSKAPLIG SAMMANFATTNING Josefine Myllenberg & Jens Johansson

Imagine that you are food shopping in the middle of the Covid-19 pandemic and
managed to avoid coming in contact with other people. At the register, however, you
need to touch the keypad on the card reader, potentially contracting the virus. But
what if we used radar based gesture detection and AI to create a contact free option?

Such technology as our example with the contact
free keypad, requires running machine learning
networks on data from the radar sensor to de-
tect which button has been pressed. Running a
machine learning network is often very resource
demanding and not suitable for smaller systems
that are mass produced, such as the keypad in
our example.

To actually be able to run a machine learning
network on a small device, it is beneficial to make
the network use as little memory as possible, since
these systems become very expensive when the
memory increase. It is also important to make
sure that we have a real-time gesture classifica-
tion, because who would want to wait several min-
utes before the network realizes that you pressed
button 3? Other benefits by reducing a network
could, for example, be that fewer computations
mean less power consumption, i.e. the environ-
ment would be happier.
In our thesis, we have applied two optimiza-

tion techniques for optimizing machine learning
networks, pruning and quantization. Pruning is
an optimization technique that prunes a network
by removing nodes, layers, or links between the

nodes, in order to make the network less memory
consuming and potentially faster. Quantization is
a technique where we reduce the size of the data
types used to store network information. This re-
sults in a potentially faster network with lower
memory consumption. Since the network infor-
mation now needs less memory to be stored, the
whole network needs to use less memory.

In our work we applied these optimization tech-
niques, both on their own and together, to reduce
a hand gesture classification network. The net-
work has learned to classify three different ges-
tures, as well as just empty space, with an accu-
racy of 100%, meaning that it never classify any
gesture wrong.

When we applied pruning, we managed to make
the network use 4.5× less memory, with an ac-
curacy of 96%. Quantization made the network
4× smaller with an accuracy of 99%. Our opti-
mizations also lowered the execution time for one
gesture classification by 10×. In other words, we
successfully managed to make the network both
smaller and faster, while keeping the accuracy not
lower than 96%.

	Introduction
	Problem Description
	Trade-off: Cost - Performance
	Research Questions

	Contributions
	Division of Work
	Outline of the Report

	Background
	Convolutional Neural Networks
	Convolutional layers
	Filters, Kernels, and Channels

	Pruning
	Magnitude-Based Weight Pruning
	Channel-Based Pruning Using L1-norm

	Quantization

	Related Work
	Pruning
	Quantization

	Method
	Approach
	Optimizing the X-CUBE-AI Model
	Optimizing the Keras2C Model

	Methods for Measuring
	Tools
	Nucleo F722ZE
	Acconeer Python Exploration Tool
	TensorFlow and Keras
	STM32CubeIDE and X-CUBE-AI
	Keras2C
	Keras-surgeon
	Perf

	Experiments
	Setup
	Our Model
	Tool Versions
	Optimization Techniques Setup
	Experiments Setup

	Results
	Discussion
	Answer to Research Questions
	Ethical Aspects
	Threats to Validity

	Conclusions
	Summary
	Future Work

	Bibliography
	Appendix Data tables
	Appendix Counting clock cycles on the Cortex M7
	Appendix Model
	Tom sida

