
MASTER’S THESIS 2020

Classification of Short Text
Messages Using Machine
Learning
Alexander Goobar, Daniel Regefalk

ISSN 1650-2884
LU-CS-EX: 2020-47

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-47

Classification of Short Text Messages Using
Machine Learning

Alexander Goobar, Daniel Regefalk

Classification of Short Text Messages Using
Machine Learning

Alexander Goobar
ine15ago@student.lu.se

Daniel Regefalk
ine15dre@student.lu.se

August 10, 2020

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Pierre Nugues, pierre.nugues@cs.lth.se
Jianhua Cao, jianhua.cao@sinch.com

Michael Truong, michael.truong@sinch.com

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:ine15ago@student.lu.se
mailto:ine15dre@student.lu.se
mailto:pierre.nugues@cs.lth.se
mailto:jianhua.cao@sinch.com
mailto:michael.truong@sinch.com
mailto:jacek.malec@cs.lth.se

Abstract

In this master’s thesis, we evaluate the classification performance of several ma-
chine learning models on very short texts, up to 160 characters in length. We
evaluate both traditional machine learning algorithms and state-of-the-art deep
learning models on binary, multi-class, and multi-label datasets. We also per-
form benchmarks to compare prediction times. The evaluation was performed
on two public datasets and one dataset provided by Sinch Sweden AB, where this
project was carried out. Sinch o�ers services for companies to send business-
to-consumer SMS messages, and wants to investigate the possibility of using
machine learning to automatically classify messages sent via their platform, to
identify messages containing prohibited content. We also compare the machine
learning models to Sinch’s current solution for message blocking, which is based
on regular expressions. Our results show that state-of-the-art deep learning mod-
els based on transformers, such as BERT, perform the best on the public datasets.
However, some traditional algorithms, such as random forest and support vec-
tor machine, perform similarly to these models on the Sinch dataset. We also
find that the machine learning models outperform Sinch’s current solution for
message blocking.

Keywords: natural language processing, machine learning, short text classification, SMS

2

Acknowledgements

We would like to thank Sinch Sweden AB for giving us the opportunity to carry out our
thesis work there. Without access to their systems and data, this project would not have
been possible. We would also like to thank our supervisors at Sinch, Michael Truong and
Jianhua Cao, for their guidance and practical help. Finally, we would like to thank Pierre
Nugues at the Department of Computer Science for his continuous supervision and guidance
throughout this project.

3

4

Contents

1 Introduction 7
1.1 Problem Background . 7
1.2 Purpose . 8
1.3 Contributions . 8

2 Background 9
2.1 Natural Language Processing . 9

2.1.1 Working with Text . 10
2.2 Traditional Machine Learning . 10
2.3 Deep Learning . 11

2.3.1 Transfer Learning . 12
2.3.2 Recurrent Neural Networks . 12
2.3.3 Flair . 13
2.3.4 Transformer . 13
2.3.5 BERT . 14
2.3.6 DistilBERT . 15
2.3.7 XLNet . 15

3 Related work 17
3.1 Traditional vs. Deep Transfer Learning . 17
3.2 Datasets . 17

4 Data 19
4.1 AG News . 19
4.2 Wikipedia Toxic Comments . 19
4.3 Sinch Data . 20

4.3.1 Exploratory Data Analysis . 21

5 Methodology 25
5.1 Pre-processing . 25

5

CONTENTS

5.2 Exploration . 26
5.3 Annotation . 26
5.4 Finding Data and Bootstrapping . 27
5.5 Merging and Exclusion of Categories . 29
5.6 Model Setup . 29
5.7 Model Evaluation . 30
5.8 Comparison to Regular Expressions . 31
5.9 Prediction Time Benchmarking . 31

6 Results 33
6.1 AG News . 33
6.2 Wikipedia Toxic Challenge . 34
6.3 Sinch Data . 35

6.3.1 Comparison to Regular Expressions 37
6.4 Prediction Time Benchmarks . 38

7 Discussion 41
7.1 Finding and Annotating Data . 41
7.2 Data Imbalance . 42
7.3 Message Length and Split Messages . 42
7.4 Domain Language . 42
7.5 Classification Performance . 43
7.6 Prediction Time . 45
7.7 Comparison to Regular Expressions . 45

7.7.1 Empirical Results . 45
7.7.2 General Comparison . 46

7.8 Annotation Ambiguity . 47
7.9 Classification Pipeline . 47

8 Further Work 49
8.1 Taking Metadata Into Account . 49
8.2 More Robust Annotating Process . 49
8.3 Data Augmentation . 50
8.4 Pre-training on Domain Data . 50

9 Conclusions 51

References 53

Appendix A 59

6

Chapter 1

Introduction

In this thesis, carried out at Sinch Sweden AB, we evaluate di�erent methods of text classi-
fication of short messages. Text classification is a task within machine learning, where cat-
egories are assigned to texts. A machine learning model is first trained to classify texts, by
feeding the model input texts and desired output labels. The trained model can then be used
on new data, where new texts serve as the input and the model then attempts to predict the
most appropriate output label.

1.1 Problem Background

Sinch Sweden AB, hereinafter referred to as Sinch, provides services for companies to send
SMS messages to consumers. A large quantity of their customers are based in the U.S., where
there are certain regulations and guidelines regarding the content of SMS messages. Examples
of regulated content are messages that fall within the following categories: Sexual, Hateful,
Alcohol, Firearms, Tobacco (SHAFT), as well as controlled drugs, sweepstakes, and contests.

Sinch sends several million SMS messages per day, at a rate of approximately 1,000 mes-
sages per second. While many messages come from large trusted customers, Sinch also gets
new customers every day, some of which act as an intermediary and are not the original
sender.

To prevent their services from being used to send prohibited content, Sinch wants to
be able to identify the messages in the categories above. In addition to blocking unwanted
messages, they also want to be able to identify which category they belong to for data insight
purposes.

7

1. Introduction

1.2 Purpose
The purpose of this thesis is to evaluate di�erent machine learning models and their suit-
ability for classification of short texts. In addition to the general case, we investigate which
models perform the best in the case of Sinch’s data: business-to-consumer SMS messages. We
also compare the current solution used by Sinch, based on regular expressions, to a potential
solution based on a machine learning model.

1.3 Contributions
The contributions have been evenly distributed between the two authors. However, the main
responsibilities for certain parts of the project have been split. D. Regefalk evaluated the
traditional machine learning models and Flair, while A. Goobar had the responsibility for
the evaluation of the transformer-based deep learning models. A. Goobar performed the
annotation of data, dataset bootstrapping, and the experiment for comparison to regular
expressions. D. Regefalk carried out the exploratory data analysis. The remaining parts of
the project have had shared responsibility between the two authors.

8

Chapter 2

Background

In this chapter, we will introduce subjects and theory relevant to this project. Starting with a
broader perspective, we describe natural language processing in general, and then narrowing
the scope, ending with a short description and theory behind the models used. This chapter
is intended to give the reader a high-level overview of the techniques and models used. For
more in-depth explanations we refer the reader to the cited research papers.

2.1 Natural Language Processing
Natural language processing (NLP) is a field at the intersection of linguistics, computer sci-
ence, and artificial intelligence that strives to process, interpret, and understand written and
spoken human language. NLP is used in a large variety of contexts such as translation, tran-
scription, summarization, language generation, classification, and more.

The epithet natural is meant to distinguish human language from more structured lan-
guages, such as computer code and mathematical notation, where the syntax follows a stricter
ruleset and the vocabulary is much smaller. One of the fundamental challenges with natural
language is that it does not always follow strict and well-defined rules, and it varies greatly
by both context and language.

The first research in the field dates back to the late 1940s, and machine translation is
considered to be one of the first computer-based NLP applications (Joseph et al., 2016). The
initial approaches in the field were focused on manually creating grammar-based rules in
an attempt to understand natural language. Starting with the statistical revolution (Johnson,
2009) in the late 1980s, the focus instead moved to utilizing machine learning to implicitly
learn these rule sets from training data. For decades, the machine learning approaches focused
on simpler models such as logistic regression and support vector machines. With the rise and
success of deep learning in related fields over the past few years, the NLP field is increasingly
focusing on deep learning and has made impressive advances.

9

2. Background

2.1.1 Working with Text
To utilize mathematical models to analyze and understand natural language, the input text
must be converted to some numerical representation. There have been numerous approaches
for this, from simple one-hot encoding to advanced pre-trained embeddings that take context
into account. There are also various methods for determining which words in a sentence are
the most important, and which can be discarded. The following sections will explore some
of these challenges in more depth.

Embeddings. A token refers to a string of characters that form a meaningful unit,
typically a word. A naive approach of converting a token to a numerical representation is
one-hot encoding. In this case, each token is represented by a vector of the same size as
the vocabulary, with the vector containing only zeroes except one element with the value
1, representing the token. However, using pre-trained embeddings is generally much more
e�ective. Common pre-trained word embeddings, such as word2vec and GloVe, are instead
pre-trained on large text corpora and produce vector representations where similar words
(e.g. cat and lion) have similar numerical representations (Mikolov et al., 2013; Pennington
et al., 2014). There are also more advanced embedding approaches that embed homographs
(di�erent words that are spelled the same way) di�erently based on context (Akbik et al.,
2018).

TF-IDF. Term frequency-inverse document frequency is a metric used to reflect the impor-
tance of a token in a document. The TF-IDF value for a token is proportional to the number of
occurrences in the document divided by the total number of documents that contain the to-
ken in the full corpus. By increasing the weight of less frequent and thus more specific tokens,
a machine learning model can better separate signal from noise. The use of TF-IDF scoring
shows considerable improvements in many natural language processing tasks (Rajaraman and
Ullman, 2011; Jones, 1972). Another common approach to improve the signal-to-noise ratio
is to simply remove common words that do not contribute much to a sentence’s meaning
such as and, the, and of. These words are commonly referred to as stopwords. By using TF-IDF
these words’ weights are usually reduced automatically.

2.2 Traditional Machine Learning
Machine learning refers to the process of a computer learning from data. While the concept
of machine learning is not new, it has grown rapidly in popularity over the past decade.
Deep learning is a subfield of machine learning, and as such a solid foundation in traditional
machine learning is important to understand deep learning.

Machine learning models excel in tasks that are di�cult to explain as a set of fixed rules.
One such task is text classification. While we humans can classify text easily, it is very hard to
explicitly create a set of rules that enables a computer to do the same. This is one of the key
challenges machine learning was developed to solve. By instead providing a machine learning
model a large dataset of labeled messages, the machine learning model can implicitly learn
these rules without the need of an explicitly defined ruleset. For further explanations, see
Machine Learning by Mitchell (1997) and Deep Learning by Goodfellow et al. (2016).

10

2.3 Deep Learning

In this project, we utilize four traditional machine learning classifiers, namely random
forests, support vector machines, naive Bayes, and logistic regression.

Random Forests. Random forest classifiers consist of a large number of individual
decision trees, each of which outputs a class prediction based on the input features. By utiliz-
ing a large number of diverse, uncorrelated decision trees, the classifier can create predictions
that are more reliable than each individual decision tree (Breiman, 2001).

Support Vector Machines. Support vector machines (SVM) are non-probabilistic
binary classifiers. SVMs can be used to perform either linear or non-linear classification. For
non-linear classification the input features are non-linearly transformed into high-dimensional
space. The support vector machine then finds the hyperplane that best separates the classes
in the training dataset. By non-linearly transforming the features of the dataset the model’s
generalization ability can be improved (Cortes and Vapnik, 1995).

Naive Bayes. Naive Bayes classifiers are probabilistic classifiers based on Bayes theo-
rem with strong assumptions regarding independence between features. The probability of
a document belonging to a specific class is computed based on the tokens contained in that
document. Tokens that commonly occur in documents of that specific class in the training
dataset increase the likelihood of classifying the document as belonging to that class (Man-
ning et al., 2008).

Logistic Regression. Logistic regression is the baseline supervised machine learning
algorithm for classification in NLP and is closely related to neural networks. Logistic regres-
sion is, like naive Bayes, a probabilistic classifier based on supervised learning. The algorithm
fits a logistic function to the training data which can then be used to output a probability
of a sample corresponding to each class. By introducing a threshold value, such as 0.5, the
probability is converted to a binary classification (Jurafsky and Martin, 2000).

2.3 Deep Learning
Traditional machine learning models perform well on many problems in a wide variety of
domains. Due to their relatively simple architecture, they do however struggle with more
complex AI tasks such as image and speech recognition. Working with complex and high-
dimensional data, these traditional models struggle to generalize well to new examples, and
the di�culty and computational cost increases exponentially with increased complexity. This
shortcoming of the traditional methods motivated the development of deep learning.

Deep learning is a subfield of machine learning, where the models are built as sequences
of separate layers. Using this architecture, complex tasks can be broken down into simpler,
more manageable sub-tasks at each layer. This structure of multiple sequential layers has
given name to the term Deep Learning.

While traditional machine learning still depends largely on features manually extracted
from the dataset, deep learning enables features to be automatically extracted. This both
makes the process less time-consuming by avoiding task-specific feature engineering, and
avoids the use of manually extracted features which might be incomplete (Young et al., 2017).

11

2. Background

Deep learning has produced state-of-the-art results in many domains, and these models
have shown great results in the context of NLP (Young et al., 2017). Even simple deep learning
approaches have been shown to outperform the best performing traditional machine learning
methods on various NLP tasks such as part-of-speech tagging and named-entity recognition
(Collobert et al., 2011).

It is worth noting that deep learning typically requires vast amounts of training data to be
able to implicitly learn the rules needed at each layer to perform the task, whereas traditional
machine learning can perform better if the training dataset is limited in size. The next section
addresses some methods for overcoming these problems.

In this project, we utilize four deep learning classifiers, namely Flair, BERT, DistilBERT,
and XLNet.

2.3.1 Transfer Learning
Transfer learning is a method within machine learning, where the knowledge that has been
acquired by solving a certain problem is used to help solve another problem. In practical
terms, it often means that a model that has been trained on a particular dataset is used as a
starting point for a model on another dataset.

In the natural language processing field, transfer learning has seen significant progress
over the past three years. The introduction of fine-tuning approaches, similar to what had
previously been done in computer vision, is one of the main drivers of this trend. For this
approach, a base model is first pre-trained and later fine-tuned for the target task. The base
model is typically very large, with over 100 million parameters, and takes significant resources
to train. However, the fine-tuning is usually a quick task, and is typically done by adding a
single layer (Usherwood and Smit, 2019).

Domain adaptation. Domain adaptation refers to the process of adapting a model
trained on one task to a new, similar task. In NLP, this can refer to taking a pre-trained
general language model and then fine-tuning it for some specific task. It can also be used to
take a model that has been trained on the same task, but in another context. There has been
much work in the field of spam detection, and by utilizing these models on a new dataset
much of the groundwork can be avoided.

2.3.2 Recurrent Neural Networks
Recurrent neural networks (RNN) is a deep learning network architecture used to model
temporal relationships in data. This is particularly useful in the NLP domain as previous
words and sentences are crucial for understanding the context of following words and sen-
tences. In recurrent neural networks, some output from the network is fed back as input to
the network in next time-step, creating a recurrent connection that enables the network to
model relationships over time.

A popular RNN architecture used in the NLP domain is long short-term memory. The
LSTM architecture, initially introduced in 1997, is an e�cient architecture for modelling
temporal relationships over extended time periods. One key improvement over previous

12

2.3 Deep Learning

RNN architectures is the concept of constant error flow, which helps prevent the vanish-
ing/exploding gradient problem inherent in training recurrent neural networks through back-
propagation. The LSTM architecture is also able to truncate the error gradient where appro-
priate, making the training process much more e�cient while not considerably lowering
prediction performance (Hochreiter and Schmidhuber, 1997).

2.3.3 Flair
Flair is an NLP library originally developed by Zalando Research in 2018, and it achieved
state-of-the-art results on numerous NLP tasks when it was released. The main idea behind
the framework was to provide a simple, unified interface for conceptually di�erent types
of word and document embeddings (Akbik et al., 2019). As such, much of the embedding-
specific engineering complexity is hidden and the user can test and use di�erent embeddings
easily. Flair is based on a “vanilla bidirectional LSTM” architecture (Akbik et al., 2018), indi-
cating that the state-of-the-art performance is achieved mainly through e�cient embeddings
rather than advanced network architecture.

One of the novel improvements with Flair is the notion of contextual string embeddings.
These embeddings have the advantage that the same word or token will be embedded dif-
ferently based on its surrounding context. This is achieved utilizing a bidirectional LSTM
architecture, where one LSTM network is looking at the context before the token and one
LSTM network is looking at the context after the token (Akbik et al., 2018). This is in contrast
to e.g. word2vec which always produces the same representation for a given word, regardless
of its context. Flair also enables the use of stacked embeddings. By stacking di�erent embed-
ding types, such as contextual string embeddings and traditional word2vec embeddings, the
unique strengths of each approach can be combined to achieve state-of-the-art results on
various NLP tasks (Akbik et al., 2018).

Another improvement is how Flair tokenizes the input text. Instead of splitting text at
word boundaries, the Flair embeddings were trained without an explicit notion of words and
as such they model text as a sequence of characters, instead of as a sequence of words. This
both helps reduce the likelihood of out-of-vocabulary words, and can improve the correct
detection of misspellings (Akbik et al., 2018).

2.3.4 Transformer
The transformer, introduced in 2017, is a deep learning model that laid the foundation for
several modern NLP architectures. Like RNNs, they model temporal relationships in data.
Unlike recurrent neural networks however, the sequences do not need to be processed in
order when using transformers, which allows for more parallelization during training. This
facilitates the use of larger datasets for training the model. As a result, systems pretrained on
huge corpora have been developed based on the transformer model (Vaswani et al., 2017).

Another improvement of transformers over RNNs is that they have been shown to better
model long term dependencies. In theory, RNNs are also capable of this, but in practice they
have been shown to struggle in this regard (Bengio et al., 1994).

Transformers are based entirely on an attention mechanism, and as such do not require
recurrent or convolutional neural network architectures. Experiments on machine trans-

13

2. Background

lation tasks have shown that this approach produces superior results while also requiring
significantly less time to train (Vaswani et al., 2017).

2.3.5 BERT
Bidirectional Encoder Representations from Transformers (BERT) is a language representation
model introduced by Google in 2018. The model architecture is a multi-layer bidirectional
Transformer encoder. It has been pre-trained on a huge training corpus, consisting of the
BooksCorpus with 800M words and English Wikipedia with 2500M words (Devlin et al.,
2019).

BERT is able to represent a word-based on both previous and upcoming context, hence
the “bidirectional” notation. To achieve this, two strategies have been used during pre-
training. The first one is the masked language model, where some words are masked in the
pre-train data and the model tries to predict the missing words by looking at the context
before and after. In practice, this means that 15% of the words are replaced with a [MASK]
token during pre-training (Devlin et al., 2019).

The second strategy used during pre-training is next sentence prediction, where the
model learns how sentences relate to each other. During the training, the model is presented
with a pair of sentences and then has to predict whether the second sentence comes after the
first sentence in the original document or not (Devlin et al., 2019).

Pre-training the model is very resource-intensive, but since this has already been done
and Google has published the model weights, anyone can use the pre-trained model and then
fine-tune it for a specific task. During fine-tuning, typically only one additional output layer
has to be added, which is significantly less resource-intensive to train (Devlin et al., 2019).

When pre-processing data for training and prediction using BERT, the messages have to
converted to the format expected by the model. The beginning of every input should be a
[CLS] token, and sentences are separated using a [SEP] token, as seen in Figure 2.1. BERT
uses WordPiece embeddings, with a 30,000 token vocabulary, as token embeddings (Devlin
et al., 2019). WordPiece embeddings improve the handling of rare words by dividing them
into a limited set of common sub-words. This method provides a good balance between
the e�ciency of word-delimited models and the flexibility of character-delimited models,
improving the overall performance of the network. This process also removes the possibility
of out-of-vocabulary words (Wu et al., 2016).

Figure 2.1: Representation of BERT input. After Devlin et al. (2019)

14

2.3 Deep Learning

In addition to token embeddings, segment embeddings indicate which sentence the word
belongs to and position embeddings indicate its position in the sequence. For every token,
the input representation is constructed by summing the corresponding three embeddings, as
seen in Figure 2.1 (Devlin et al., 2019).

2.3.6 DistilBERT
As previously mentioned, BERT is very resource-intensive to train and use, especially when
compared to simpler machine learning models. To reduce the resource usage, the Hugging
Face team introduced the DistilBERT model, a distilled version of BERT. To achieve this, the
authors used knowledge distillation. This is a compression technique where a smaller model
is trained to reproduce the results and behaviour of a large model. DistilBERT is 40% smaller
and 60% faster than BERT, but still retains 97% of the performance (Sanh et al., 2019).

2.3.7 XLNet
XLNet is another model based on the transformer approach, more specifically TransformerXL.
The creators of XLNet argue that using [MASK] tokens during pre-training create a discrep-
ancy between pre-training and fine-tuning, since masks are not present in the real data during
the fine-tuning process (Yang et al., 2019).

To capture bidirectional context, XLNet uses permutation language modeling, where the
idea is to train the model on all possible permutations of words in a sentence. Instead of fixed
right-left or left-right modeling, XLNet works by maximizing the expected log likelihood
over all di�erent permutations of a sequence. The authors claim that XLNet can capture more
long-term dependencies compared to BERT, using this approach. In the article introducing
XLNet, the model is shown to outperform BERT on 20 tasks, including sentiment analysis
(Yang et al., 2019).

15

2. Background

16

Chapter 3

Related work

Text classification is a common task within natural language processing, which has led to
a large quantity of research in this field. Approaches for classification of very short texts
have previously been investigated. However, the datasets for short text classification usually
come from online comments, tweets, or reviews. There is very limited previous work on SMS
messages, specifically in the context of business-to-consumer communication.

3.1 Traditional vs. Deep Transfer Learning
The comparison of traditional machine learning algorithms against newer models that utilize
deep transfer learning was performed in the paper Low-Shot Classification: A Comparison of
Classical and Deep Transfer Machine Learning Approaches (Usherwood and Smit, 2019). In this
paper, the authors investigate how di�erent models perform, more specifically in the context
of low-shot classification, meaning that one or more classes have a significantly low sample
count. The traditional algorithms used were support vector machines and naive Bayes, which
were compared to the transfer learning models ULMFiT and BERT. They reached conclusive
results, where BERT performed the best in every case.

3.2 Datasets
The public datasets used in this project, AG News and Wikipedia Toxic Challenge, have been
part of previous research. However, in contrast to our work, the datasets have been used in
their original state without filtering by text length. The paper that introduced the XLNet
model, XLNet: Generalized Autoregressive Pretraining for Language Understanding, used the AG
News dataset to benchmark the model, achieving state-of-the-art results for this particular
dataset (Yang et al., 2019).

17

3. Related work

The dataset from the Wikipedia Toxic Challenge was used in the paper Towards non-toxic
landscapes: Automatic toxic comment detection using DNN (D’Sa et al., 2019). In this paper, the
authors compared how multiple deep learning models, such as BiLSTM and CNN, compared
to BERT in a binary toxic vs non-toxic classification task. They also used the models with
di�erent word embeddings. Using BERT embeddings yielded the best results for the smaller
deep learning models, but the overall best performing option was BERT fine-tuning.

18

Chapter 4

Data

The foundation for all machine learning is the dataset used to train the model. This project
has utilized three main datasets: AG News, Wikipedia Toxic Comments, and Sinch’s mes-
sages.

First AG News and Wikipedia Toxic Comments, two public and pre-annotated datasets,
were used to evaluate di�erent models and approaches. However, these were modified to
better represent the challenges of short text messages and limited annotated dataset size, as
described below. Finally, Sinch’s message data was manually annotated and used to train the
final models.

4.1 AG News
The original AG News dataset is a collection of more than 400,000 categorized articles, col-
lected from over 2000 news sources. A modified version of this dataset contains 120,000
articles from the four largest categories: world, sports, business, and sci/tech. Each category
has 30,000 messages. We used the modified version for this project.

To make the dataset more suitable for a comparison with Sinch’s actual dataset, we only
included the news articles with a length of up to 160 characters (the limit of a single SMS
message). We finally sampled 1,250 articles of each category to get a final dataset of 5,000
articles. This way, the property of being a completely balanced dataset, with an equal number
of samples of each class, was preserved. 5,000 was chosen as we expected the final annotated
Sinch dataset to be of approximately this size.

4.2 Wikipedia Toxic Comments
Toxic Comment Classification Challenge is a Kaggle challenge launched at the end of 2017. The
dataset contains 159,571 manually annotated comments from Wikipedia, each of which is

19

4. Data

annotated according to six categories: toxic, severe toxic, obscene, threat, insult, and identity
hate. The dataset is multi-label, meaning that each comment belongs to zero or more of the
above categories. (Kaggle, 2017)

Just as with the AG news dataset, we removed all comments with a character count higher
than 160, and then randomly sampled 5000 comments to be used to train the models. The
category distribution of the sampled comments is shown in Figure 4.1. This imbalanced
distribution is relatively similar to that of Sinch’s messages and as such served as a good
benchmark for multi-label classification.

Figure 4.1: Class distribution of comments with a max length of 160
characters from the Wikipedia Toxic Comment dataset.

4.3 Sinch Data
The data from Sinch was extracted from their logs of sent SMS messages in the U.S. This
data was only accessible via equipment provided by Sinch. Each data file contained messages
from a specific time interval, and was provided in a CSV format. Each row had a total of four
columns, separated by a semicolon, which contained:

• How many times this exact message was sent within the logged time interval

• The sender name

• The sender short code (number)

• The message’s text content

For this project, we decided only to factor in the message text content as input to our
models. Sinch initially provided a set of logs that was used in the starting phase of the

20

4.3 Sinch Data

project. Later on during the project, we were provided with two additional sets of messages,
containing more data. Sinch also provided logs of messages that were flagged as containing
prohibited content by the current filter, based on regular expression.

As SMS messages are limited to 160 characters, this was the maximum length of the text
content for each row. Messages that exceed this limit are split into multiple rows, as they are
technically sent out as multiple SMS messages. However, since the data was not organized in
chronological order, there was no way to e�ciently identifying split messages and merging
them, so each row was handled as a standalone message even though this is not always the
case.

4.3.1 Exploratory Data Analysis

To get an overview of the dataset, we analyzed both the raw and annotated Sinch dataset. By
exploring the characteristics of the dataset, we could later make informed decisions regarding
feature selection, model selection, and model parameters.

Raw Data. As shown in Figure 4.2, the word count has two peaks at 12 words and 28
words respectively. The peak at 12 words was examined and was found to be due to many of
the messages being verification codes and similar messages that often are in that word count
range.

Figure 4.2: Word count and character count distribution of the raw
data.

The character count graph shows that over 25% of the messages are exactly 160 charac-
ters, indicating that a large portion of the raw messages have been cut o�. As previously
mentioned, there was no good way to identify split messages given the raw data we were
provided.

21

4. Data

Figure 4.3: Word cloud of the 100 most common words and bigrams
(a few sensitive words/bigrams have been removed).

The word cloud in Figure 4.3 gives a good high-level overview of the type of language
being used in the messages. As can be seen the words used are typical of business-to-consumer
SMS messages, and give a hint that using domain adaptation, e.g. utilizing prediction models
trained on other datasets, might be problematic as the language used is very domain-specific.

Annotated Data. One key challenge with any classification task utilizing machine
learning is getting enough training data for each class. For this dataset we manually annotated
4,862 of Sinch’s messages and used these to train and evaluate our models. Our process for
finding and annotating this data is explained in detail in Section 5.3 (Annotation) and 5.4
(Finding Data and Bootstrapping).

Figure 4.4: Class distribution of the annotated messages.

22

4.3 Sinch Data

The class distribution in the annotated dataset is shown in Figure 4.4. As can be seen
some categories, such as alcohol and giveaway/competition, have hundreds of examples. Firearms
on the other hand has 12. This gives a clear indication that some categories will be very
challenging for any machine learning model to correctly classify. Furthermore, we were not
able to find any examples of phishing and hateful messages in the 4,862 labeled messages.

To better understand the class distributions, we also looked into the co-occurrence of
classes as shown in Figure 4.5. For all messages of each of the classes on the Y -axis, we cal-
culated the fraction of those messages that also contained each of the classes on the X-axis.
This shows that for example out of all messages of class hookah, 63% of them also belong to
the class alcohol. For the reverse, messages of class alcohol also belonging to the class hookah,
the number is instead 17%. This graph helped us reason about how di�erent classes might be
combined to reduce the number of classes in an e�ort to simplify both the annotation and
classification process.

Figure 4.5: Heatmap showing co-occurrence of classes.

23

4. Data

As one of the key use cases for Sinch is to classify a message as either clean or dirty, we also
examined this binary distribution as shown in Figure 4.6. It is interesting to note that a large
part of the messages we annotated were extracted from a RegEx currently used by Sinch to
find dirty messages. As our annotated dataset consisted of 61% clean and 39% dirty messages,
this indicates that the current solution captures many false positives. The true positives and
false positives of the RegEx is further examined in Section 6.3.1.

Figure 4.6: Binary class distribution of the annotated messages.

To get a better understanding of the language di�erence between the categories, we also
generated the most correlated N-gram (N = 1, 2, 3) for each class. It should be noted that
often the most correlated trigrams and bigrams were the name of the organization sending
the SMS, e.g. the name of a bar in the alcohol category. A few examples of bigrams are shown
in Table 4.1. Finally, we generated word clouds for each class to give a high-level overview of
the language used, see Figure 4.7 for examples.

Giveaway/Competition Tobacco Sexual
enter win cigar lodge free entry
entered win happy hour grown sexy
chance win cigar event til 12

Table 4.1: Most correlated bigrams per class, a few examples.

Figure 4.7: Word clouds of the 100 most common words and bi-
grams, for clean and alcohol respectively.

24

Chapter 5

Methodology

In this chapter, we describe the methodology used for this project. The project has required
multiple steps and processes, especially in regard to obtaining and handling data. Some of the
processes have been performed in parallel to others, while some required the other processes
to be completed beforehand. Initially we explored public datasets, with the objective to find
pre-annotated classification datasets with language characteristics similar to that of Sinch’s
messages. We then set up testing pipelines for each model, and benchmarked them on the
public datasets.

After this, we started to work with the Sinch dataset. Initially we explored di�erent
strategies to e�ciently annotate the messages given our limited time frame. Our initial ap-
proach was based on the logs from Sinch’s regular expression filter. With this initial data
to work with, we transitioned into using bootstrapping to find further messages to anno-
tate. The annotated dataset was continuously expanded, until we reached a point where the
decision of setting a dataset baseline was made. This decision was based on the size of the
annotated dataset, the benchmarked performance, and the remaining time of the project.

5.1 Pre-processing
For the AG News and Wikipedia Toxic Comments dataset, the only pre-processing step was
to remove any entries that exceeded 160 characters in length.

By the nature of Sinch’s customers’ sending behaviour, a vast majority of the raw messages
are duplicates. One typical example is verification codes. These duplicates were removed
during pre-processing, with the exception of a few cases explained in Section 5.4. The removal
was performed by comparing each message from the same sender. The filtering was based on
the number of words shared between two messages, and the word order. It is worth noting
that while this process was e�cient and had good results, it was not perfect. A good example
is that messages that all end with “Reply STOP to stop receiving updates. Message rates may apply.”
might be considered duplicates even though they are unique. As this was a relatively rare

25

5. Methodology

occurrence, we deemed this filtering approach to work well enough for our use case. Table
5.1 shows the reduction amount.

Reduction
Logs A (1st set) *98.8%
Logs B (2nd set) 99.5%
Logs C (3rd set) 99.7%
RegEx filter log *95.9%

Table 5.1

*Not all duplicates were removed, as explained in Section 5.4.

5.2 Exploration
To get an overview of the raw data, we calculated the character counts, word counts, URL
counts, average word lengths, capitalization statistics and more. Since all messages are short
and relatively similar, most of the statistics were not very insightful. In the end, character
counts and word counts were the two features that we found most relevant. We used a word
cloud of the most commonly used words to help get an overview of the text content while
not revealing any sensitive information.

For the annotated dataset, we calculated the class distributions, both for each individual
class, and also after combining the class labels into a binary representation of either clean
or dirty. For each class, we also calculated the most correlated N-gram (N = 1, 2, 3) and
generated a word cloud.

5.3 Annotation
The public datasets, AG News and Wikipedia Toxic Comments, already had labels and there-
fore did not require any additional annotation. The first step of annotation of the Sinch
dataset was to decide which labels to use. We did this after conversations with representatives
at Sinch. They wanted to be able to identify messages according to the SHAFT guidelines,
as well as some additional categories. After this discussion and getting an overview of the
dataset, we decided to use the following labels during annotation:

Sexual Hateful Alcohol

Firearms Tobacco Drugs

Sweepstakes Giveaway/competition Gambling

Hookah Vaping Phishing

Loan

26

5.4 Finding Data and Bootstrapping

We also had a clean label for any message that did not belong to any of the above cate-
gories, as well as an uncertain label. More specifically, messages promoting or attempting to
sell items or services within these categories, or having a positive sentiment towards them,
were classified within the appropriate category. However, messages that condemned or dis-
couraged the use of items or services within the categories were tagged as clean. For example,
advice to stop smoking was not categorized as tobacco, but as clean.

The uncertain label was used when the annotator did not feel confident in the label as-
signment for the particular message. It was also used when messages in other languages than
English had not been successfully filtered out before being imported to the annotation tool.

As an annotation tool we used Doccano, which provides a web interface where a message
is presented and the annotator can choose appropriate labels (Nakayama et al., 2018). Since
this was a multi-label task, it was possible to choose multiple labels for the same message.

When exporting the data from the tool, it produced a JSON file with the messages and
annotation data. We wrote a script to produce CSV files with the desired format. For multi-
label, we used one-hot encoding. We also produced files for binary classification using this
data, where the clean category remained, but all the other categories were merged to a dirty
category.

We decided to only use one annotator to prioritize dataset size during the limited time of
the project. Using multiple annotators, where every annotator works with di�erent subsets
of the dataset, would require roughly the same amount of time but could introduce inconsis-
tencies as the interpretation between humans often vary for some messages.

On the other hand, using multiple annotators where everyone annotates the entire dataset
is a better method to achieve high annotation quality, as any inconsistencies between annota-
tors can be found and reconsidered. This approach would however require more man-hours
for the same dataset size. Since we are not domain experts and the SHAFT guidelines are not
clearly manifested, the annotator used the uncertain label frequently in an attempt to avoid
individual interpretation errors for uncertain cases. These messages, which made up 24% of
the total annotated messages, were not included in our final dataset and were instead left for
future review.

5.4 Finding Data and Bootstrapping
Messages within the “SHAFT” or other categories listed previously are very rare among all
the messages that Sinch’s customers send. Simply sampling and annotating the regular log
data would therefore be a very ine�cient way of gaining samples in the categories of interest.
Instead, we used the log data from their current method of identifying unwanted messages,
which is based on regular expressions, as a starting point. The regular expression script uses
blacklisted keywords along with a blacklist and whitelist of senders, to determine if a message
is unwanted or not. It does not provide any categorization, just a simple binary dirty/clean
output.

After the annotation of the pre-processed RegEx logs, we had 3,117 labeled messages,
where 2,198 did not have the uncertain label and would therefore be used for the first ex-
perimentation with models. The uncertain messages required closer inspection by a domain
expert, and was consequently left for further work.

To expand our labeled dataset, we used bootstrapping after the initial annotation of

27

5. Methodology

RegEx data. Bootstrapping in this context means that we use the current labeled data to
train a model that we use to predict on new data. We used these predictions to find messages
that are likely to be in our wanted categories. These messages were then annotated to expand
our dataset (Cui et al., 2016).

To perform this kind of dataset bootstrapping, we used DistilBERT, for a number of
reasons. First of all, it had shown good results in our early testing. We also hoped that utilizing
the initial knowledge transformers models have from pre-training could lead to it finding a
more diverse set of messages. Due to limited access to GPU resources during the time of
bootstrapping, the larger models could not be used. We also saw DistilBERT as potentially a
good middle ground between model size and the potential benefits of transfer learning.

We trained a DistilBERT binary classifier on the first version of the labeled RegEx data
and then predicted the first version of the full logs (Logs A). 1,288 messages were predicted
as dirty. These messages were then manually reviewed and annotated, resulting in a total
dataset size of 3,333 messages after the uncertain entries were removed.

We later received another set of logs, Logs B, which had much more unlabeled data. Again,
we used bootstrapping to expand our labeled dataset, but this time we set the threshold
probability to 0.2 for a dirty message, instead of the previously used standard value of 0.5. In
addition to expanding the dataset, we could also possibly reduce the number of false negatives
using this data, as some of the messages in the 0.2-0.5 range could be falsely predicted to be
clean with the standard threshold. We chose the threshold of 0.2 to get a good chance of
finding false negatives without requiring a huge amount of time for annotation, as a large
majority of the predictions were below 0.2. Out of all messages in Logs B, roughly 2% had
a predicted dirty probability of over 0.2. We then reviewed and annotated the messages
above this threshold, which resulted in a total dataset size of 4,638 messages after removing
uncertain entries.

After receiving the final set of logs, Logs C, we created our own script to find messages
containing certain keywords. The script targeted categories that currently had relatively few
samples, and flagged a total of 436 messages. These messages were then manually annotated.
The dataset size was now 5,029 messages, excluding uncertain entries.

At this point, we removed remaining exact duplicates that had been accidentally included
in the input to the annotation tool. Because the logs consisted of multiple files, and we only
initially removed duplicates on a per-file basis, some duplicates had been included when the
same message occurred in multiple files (this problem only a�ected Logs A and RegEx filter
logs). We also annotated some more data for a specific type of messages, news alerts, that had
been generating many false positives during testing of a DistilBERT binary predictor.

After the removal of duplicates and the addition of some news alert messages, the dataset
now contained 4,523 messages. This data was used in the comparison to regular expressions in
Section 5.8. Since the comparison required us to further annotate some messages, we decided
to include these in the final dataset used during training and benchmarking of the models.
Since the comparison resulted in 339 additional annotated messages, the final dataset size
became 4,862 messages without uncertain entries.

28

5.5 Merging and Exclusion of Categories

5.5 Merging and Exclusion of Categories
With the final dataset completed, we had no messages in the hateful and phishing categories
and only 12 in the firearms category. For this reason, we decided to exclude these categories
when evaluating the models and leave expansion of these categories as further work.

We also decided to merge some categories due to limited amounts of messages in some
categories, and similarity between them. Tobacco, vaping, and hookah were all merged to a
TVH category, as they all technically fall under the tobacco classification of SHAFT. We also
merged sweepstakes, giveaways/competition and gambling into an SGG category. Sweep-
stakes are a form of giveaway and the sweepstakes label was only used when the message
specifically mentioned sweepstakes or had the word sweeps or similar in a provided URL,
as the annotator could not otherwise separate the two. Since a message can be ambiguous
whether or not it required some form of paid entry to win a certain prize, it was sometimes
hard to determine if it was gambling or giveaway/competition. Another argument for merg-
ing these categories is the semantic similarity, as all of these categories are about winning a
prize.

5.6 Model Setup
To set up the models and perform training and evaluation, we used Python together with sev-
eral libraries. To train the models, 80% of the data was used (70% training and 10% validation
set for the deep learning models), and the remaining 20% was used for model evaluation. For
the traditional machine learning algorithms, we used the implementations from the scikit-
learn library, together with their default hyperparameters (Pedregosa et al., 2011). Scikit-
learn’s TfidfVectorizer was used to convert the raw messages to matrices of TF-IDF features.
The parameters used with the TfidfVectorizer are shown in Table A.1 in the Appendix. For
multi-label classification using these models, the problem was transformed into a number of
independent binary tasks (one per label) using Scikit-multilearn’s BinaryRelevance problem
transformation.

The Flair library was used to train and evaluate the Flair model (Akbik et al., 2018). The
parameters and embeddings used are shown in Table A.2 in the Appendix, and they were
chosen based on recommended values from the Flair authors, as well as experimentation on
the public datasets.

Lastly, we used the Huggingface’s Transformers library together with the TensorFlow
implementation and the ktrain library to set up, train, and evaluate the transformer models
BERT, DistilBERT, and XLNet (Wolf et al., 2019). The Huggingface’s Transformers library
also provided the pre-trained model weights for the transformer models. These models are
capable of performing multi-label classification using a single model. We used the default
classification setup from the library, which has a sequence classification head (linear layer)
on top of the pooled output.

The maximum sequence length for the transformer models was set to 32 tokens, as almost
all messages were below this threshold, see Section 4.3.1 (Exploratory Data Analysis). The
hyperparameters used for these models can be found in Table A.3 in the Appendix. These
were chosen based on a combination of recommended values from their research papers and
Github repositories, as well as some minor experimentation.

29

5. Methodology

For the AG News dataset, we set up models for multi-class classification. For the Wikipedia
Toxic Challenge and the Sinch data, we set up both multi-label and binary models, where the
latter examined the case of clean vs. dirty.

To perform an extensive evaluation of the models on Sinch data, we did some further
experimentation. For the case of multi-label using transformer-based models, we tried both
the default setup of a single model, as well as having multiple independent binary models for
each class. We also evaluated the multi-label performance of each model when the dataset
consisted of only dirty messages, in addition to evaluating them on the entire dataset. This
was done to evaluate if a potential solution should consist of a single multi-label classification
step, or consist of a classification pipeline with an initial binary classifier, followed by a multi-
label classifier for the predicted dirty messages.

5.7 Model Evaluation
The main metrics to evaluate the models were decided to be F1-score along with macro-
averaging, after discussions with representatives at Sinch and our supervisor. F1-score is the
harmonic mean of the precision and recall. These metrics have the following definitions:

precision =
true positives

true positives + f alse positives
(5.1)

recall =
true positives

true positives + f alse negatives
(5.2)

F1 = 2 ·
precision · recall
precision + recall

(5.3)

In classification tasks with multiple classes, Macro F1 score is a widely used metric. Oc-
casionally, Micro F1 scores are also calculated. The Micro F1 score is calculated by counting
the global true positives, false positives, and false negatives—regardless of class. This means
that Micro F1 does not take class imbalance into account, which is why it can give a skewed
performance estimate on imbalanced datasets. However, we have decided to include Micro
F1 scores in the evaluation of multi-label models for additional insight.

Macro F1 on the other hand does take class imbalance into account, and is therefore
often the preferred metric. There are two di�erent definitions of Macro F1, yielding slightly
di�erent results. The first one is the “F1 of averages”, where the harmonic mean is computed
over the arithmetic means of precision and recall for each class. The second definition is the
“averaged F1”, where F1 scores are computed for each class and then averaged via arithmetic
mean. Since the second definition has proven to be more robust (Opitz and Burst, 2019),
and is also the standard adopted by the scikit-learn package, we have used the “averaged F1”
definition in this project.

As mentioned in Section 5.6, 20% of the data was used for model evaluation, hereinafter
referenced to as the test set. This data was not used while training the models, but used
only to evaluate the models after training. To get the F1 scores, predictions on the test set
were made, which were then fed together with the ground truth labels to scikit-learn metrics
library (Pedregosa et al., 2011), which produced an output with multiple scores and metrics.

30

5.8 Comparison to Regular Expressions

5.8 Comparison to Regular Expressions
To compare a machine learning solution to the existing regular expression solution at Sinch,
we set up an experiment to compare certain metrics between these alternatives. Sinch repre-
sentatives were particularly interested in the comparison of false positives and false negatives.
Since the occurrence of SHAFT messages is very rare, we decided not to sample “real” data.
Sampling 500 of these messages would likely give us less than 5 dirty messages, as the occur-
rence of dirty messages has been less than 1% according to our findings. While this could give
us an understanding of the performance on clean messages and an estimation of false posi-
tives, it would likely not allow us to draw any certain conclusions regarding dirty messages
and false negatives. This is because the performance of the model and RegEx on these dirty
messages could vary significantly depending on the particular messages that were sampled,
and not give a general understanding of its performance. To get an accurate estimation of
false negatives, one would have to annotate a very large amount of randomly sampled mes-
sages. Given the limited scope and time frame of the project, we were unable to perform such
experiments.

Instead of sampling 500 random messages, we let a trained binary DistilBERT model pre-
dict on thousands of new messages, and then we sampled 10 messages for every two-percent
interval of the predicted dirty probability, meaning 10 messages in the interval 0.00-0.02, 10
messages in 0.02-0.04 and so on, adding up to 500 messages. This gave a uniform distribution
of “dirty” probability among the messages. While this dataset does not represent a realistic
scenario, this provides a di�cult challenge with many “dirty” messages while not giving the
ML model any apparent inherent advantage. DistilBERT was chosen as a model, for the same
reasons mentioned in Section 5.4, and for the sake of consistency.

We manually annotated the 500 messages, and removed uncertain entries. Messages that
were very similar but had not been removed by our duplicate detection script were also re-
moved. This resulted in 339 annotated messages that could be used in the comparison. Fi-
nally, the regular expressions script was run on these messages. Messages that were flagged
by the script were called “predicted positives” in our comparison, and messages that were not
flagged were called “predicted negatives”. For the comparison, the predicted positives and
negatives of both the ML model and the RegEx script were compared to the true label of the
message, which had been determined during annotation.

For a further comparison, we also ran the RegEx script on the same test set that we used
to evaluate the machine learning models. Again, this is not representative of real data, but it
is useful for a comparison of the two approaches.

A particular metric that can be estimated well for realistic data is the dirty precision of
the RegEx script. Since we have annotated RegEx logs, and have the true positives and false
positives for this data, the dirty precision can be easily calculated. This was included as a
reference when evaluating the data for the comparison.

5.9 Prediction Time Benchmarking
Since Sinch sends approximately 1,000 messages per second, prediction time is a factor to
consider. To benchmark the prediction times of the various models, we used trained binary
predictors of each model and predicted samples from the Logs C dataset. We used time

31

5. Methodology

module in Python to measure the time before and after the predictions, and the di�erence
in time was then part of the output. Pre-processing required by each model, i.e. tokenization
and vectorization, was included in the time span. The predictions were done in batches of 1
and 1,000 messages. The predictions were repeated 1,000 times with di�erent messages and
an average was calculated.

We performed the benchmarks, as well as the training of the large models, on a server at
Sinch. It was equipped with an Nvidia RTX 2080 Ti 11 GB GPU, an Intel i7 9800X CPU and
64 GB RAM. The deep learning models used the GPU while training and predicting, while
the traditional algorithms only used the CPU.

32

Chapter 6

Results

In this chapter, we present the results from the various models trained and evaluated on the
three datasets. Each dataset is presented in a separate section. As our main metric, Macro
F1 scores are presented for each case, while additional metrics are presented when appro-
priate. For the Sinch dataset, we have a more comprehensive results section, including the
comparison to the current regular expressions solution as well as performance benchmarks
for prediction time.

6.1 AG News

Macro F1
Logistic Regression 0.82
Naive Bayes 0.83
SVM 0.80
Random Forest 0.75
Flair 0.86
DistilBERT 0.88
BERT 0.88
XLNet 0.88

Table 6.1: Macro F1 for each model on the AG News dataset.

The classification results for the multi-class AG News dataset are shown in Table 6.1.
The deep learning based models outperformed the traditional machine learning models by
quite a large margin on the modified AG News dataset, with all transformers-based models
achieving a Macro F1 score of 0.88. Figure 6.1 shows the confusion matrix for the BERT
model, showing that it struggled especially with separating the world and sports classes from
each other.

33

6. Results

Figure 6.1: Confusion matrix for BERT on the AG News dataset.

6.2 Wikipedia Toxic Challenge

Macro F1
Logistic Regression 0.70
Naive Bayes 0.78
SVM 0.84
Random Forest 0.85
Flair 0.86
DistilBERT 0.93
BERT 0.93
XLNet 0.94

Table 6.2: Macro F1 for each model on the binary Wikipedia Toxic
Comment dataset.

The results for the binary Wikipedia Toxic Comments dataset are shown in Table 6.2.
The transformers-based models again outperformed the other models, just as on the AG
News dataset. This time, XLNet performs slightly better than both DistilBERT and BERT
with a Macro F1 score of 0.94.

The results for the multi-label Wikipedia Toxic Comments dataset are shown in Table 6.3.

34

6.3 Sinch Data

Macro F1 Micro F1
Logistic Regression 0.24 0.43
Naive Bayes 0.23 0.45
SVM 0.44 0.66
Random Forest 0.36 0.66
Flair 0.35 0.67
DistilBERT 0.48 0.83
BERT 0.47 0.80
XLNet 0.45 0.80

Table 6.3: Macro and Micro F1 for each model on the multi-label
Wikipedia Toxic Comment dataset.

As expected, the Macro F1 scores are much lower on the multi-label version of the dataset
compared to the binary version. Again, the transformers based models perform the best, with
DistilBERT achieving the highest Macro F1 and Micro F1 scores of 0.48 and 0.83 respectively.

Toxic Severe Toxic Obscene Threat Insult Identity Hate
Logistic Regression 0.48 0.07 0.55 0.00 0.34 0.00
Naive Bayes 0.54 0.00 0.56 0.00 0.26 0.00
SVM 0.71 0.25 0.78 0.00 0.56 0.33
Random Forest 0.70 0.07 0.75 0.00 0.65 0.00
Flair 0.78 0.00 0.62 0.00 0.69 0.00
DistilBERT 0.90 0.29 0.87 0.00 0.82 0.00
BERT 0.90 0.33 0.83 0.00 0.78 0.00
XLNet 0.90 0.20 0.81 0.00 0.79 0.00

Table 6.4: F1 score per class and model on the multi-label Wikipedia
Toxic Comment dataset.

The per-class performance is shown in Table 6.4. Several models perform decently on the
toxic, obscene, and insult classes, but they all struggle with severe toxic, threat, and identity hate
classes. This corresponds directly with the number of samples of each class in the training
dataset as shown in Figure 4.1. All models performed worse on the classes with fewer training
samples. For the class with the fewest samples, threat, all models got an F1 score of 0.00.

6.3 Sinch Data
As shown in Table 6.5, Random Forest, DistilBERT, and BERT performed the best on the
binary Sinch dataset, achieving a Macro F1 score of 0.89. Flair, which performed in the
middle of the pack on the previous two datasets, performs the worst with a Macro F1 score of
0.80. For each model the performance on the dirty messages was considerably worse than the
performance on the clean samples, with an average reduction in F1 score of -0.065 between
clean and dirty. Out of the models with the highest Macro F1 scores, BERT had the highest
F1 score for the dirty class, while DistilBERT had the highest recall for this class. Random
Forest and BERT had the highest F1 scores for the clean class.

35

6. Results

Cln P Cln R Cln F1 Dty P Dty R Dty F1 Macro F1
Logistic Reg 0.83 0.96 0.89 0.92 0.72 0.81 0.85
Naive Bayes 0.83 0.92 0.87 0.85 0.73 0.79 0.83
SVM 0.88 0.93 0.90 0.88 0.81 0.84 0.87
Random Forest 0.88 0.96 0.92 0.92 0.80 0.86 0.89
Flair 0.85 0.82 0.84 0.75 0.78 0.77 0.80
DistilBERT 0.90 0.93 0.91 0.88 0.84 0.86 0.89
BERT 0.89 0.95 0.92 0.92 0.82 0.87 0.89
XLNet 0.88 0.90 0.89 0.84 0.82 0.83 0.86

Table 6.5: Precision, Recall, and F1 scores for each model on the
binary Sinch dataset.

Cln = Clean, Dty = Dirty

For multi-label performance, we can make a general observation when comparing Ta-
ble 6.6 and Table 6.7. We observe that the performance for every model is increased when
excluding clean messages, consequently only training and predicting on dirty messages.

Table 6.7 shows that SVM performs the best on the “only dirty” multi-label dataset with
a Macro F1 score of 0.92, closely followed by DistilBERTMB and Random Forest at 0.91 and
0.90 respectively. Flair again performs the worst with a Macro F1 score of 0.50. On a per-
class basis the top performances are spread among six di�erent models. It should be noted
that Flair, DistilBERTS, and XLNetS all got 0.00 in F1 scores on the sexual class, bringing
their Macro F1 score down considerably. By utilizing multiple binary models (MB) instead of
a single multi-label model (S) the Macro F1 scores improved for DistilBERT (+0.15), BERT
(+0.07), and XLNet (+0.11), in large part thanks to improved performance on the sexual class.

Sexual Alcohol Drugs Loan TVH SGG Macro Micro
Logistic Reg 0.12 0.67 0.48 0.53 0.58 0.67 0.51 0.63
Naive Bayes 0.32 0.63 0.10 0.65 0.59 0.65 0.49 0.60
SVM 0.77 0.79 0.81 0.81 0.92 0.83 0.82 0.82
Random Forest 0.48 0.76 0.79 0.63 0.87 0.82 0.72 0.78
Flair 0.00 0.66 0.00 0.48 0.11 0.37 0.27 0.21
DistilBERTS 0.00 0.85 0.69 0.67 0.79 0.86 0.64 0.81
BERTS 0.00 0.86 0.80 0.76 0.79 0.87 0.68 0.83
XLNetS 0.00 0.82 0.78 0.83 0.49 0.80 0.62 0.75
DistilBERTMB 0.72 0.83 0.82 0.84 0.84 0.86 0.81 0.84
BERTMB 0.75 0.86 0.87 0.82 0.84 0.84 0.83 0.85
XLNetMB 0.57 0.82 0.70 0.76 0.70 0.83 0.73 0.79

Table 6.6: F1 scores for each class and model on the multi-label
Sinch dataset, including clean messages.

S = Single model for multi-label, MB = Multiple binary models for multi-label

36

6.3 Sinch Data

Sexual Alcohol Drugs Loan TVH SGG Macro Micro
Logistic Reg 0.25 0.90 0.71 0.67 0.62 0.93 0.68 0.85
Naive Bayes 0.42 0.89 0.84 0.74 0.77 0.91 0.76 0.86
SVM 0.88 0.93 0.91 0.91 0.93 0.95 0.92 0.93
Random Forest 0.88 0.93 0.88 0.84 0.94 0.93 0.90 0.92
Flair 0.00 0.83 0.48 0.61 0.26 0.81 0.50 0.72
DistilBERTS 0.00 0.93 0.84 1.00 0.87 0.92 0.76 0.90
BERTS 0.25 0.93 0.86 1.00 0.91 0.93 0.81 0.91
XLNetS 0.00 0.93 0.86 0.93 0.59 0.89 0.70 0.86
DistilBERTMB 0.75 0.94 0.94 0.98 0.90 0.94 0.91 0.93
BERTMB 0.67 0.94 0.86 1.00 0.88 0.94 0.88 0.92
XLNetMB 0.48 0.90 0.91 0.96 0.70 0.90 0.81 0.86

Table 6.7: F1 scores for each class and model on the “only dirty”
multi-label Sinch dataset, excluding clean messages.

S = Single model for multi-label, MB = Multiple binary models for multi-label

6.3.1 Comparison to Regular Expressions
The results of the comparison between the RegEx filter and DistilBERT model on the dataset
based on uniform distribution of dirty probabilities is shown in Table 6.8. Out of the 339 mes-
sages used in the comparison, 122 were actual positives (dirty) and 217 were actual negatives
(clean), as determined by annotation. The binary DistilBERT model predicted roughly half
of these messages as clean and half as dirty, which was the expected outcome as the messages
were chosen with a uniform distribution of dirty probabilities. The removal of uncertain
entries after annotation skewed the prediction to not be an exact 50/50 split. The regular
expressions script on the other hand matched only 8 of the messages, out of which 4 were
correct, meaning that it missed a total of 118 dirty messages.

When running the regular expressions script on the test set used for the ML model eval-
uation, the DistilBERT model outperformed the script on every metric, as seen in Table 6.9.
The actual positives (dirty) were 392 and actual negatives (clean) were 581 in the test set.

As a reference, the real dirty precision of the regular expressions can be estimated from
the true positives and false positives of the annotated RegEx log data. These were 1,002
and 1,195 respectively, resulting in a dirty precision of 0.46. Similar values can be seen in this
experiment, where dirty precisions of 0.50 and 0.53 were measured from the experiment data
and the test set respectively.

37

6. Results

DistilBERT RegEx
Predicted Positives 173 8
Predicted Negatives 166 331
False Positives 97 4
False Positive Rate 0.45 0.02
False Negatives 46 118
False Negative Rate 0.38 0.97
Clean Precision 0.72 0.64
Clean Recall 0.62 0.98
Clean F1 0.63 0.78
Dirty Precision 0.44 0.50
Dirty Recall 0.62 0.03
Dirty F1 0.52 0.06
Macro F1 0.57 0.42

Table 6.8: Comparison of DistilBERT and Regex on the selected
experiment data.

DistilBERT RegEx
Predicted Positives 373 451
Predicted Negatives 600 522
False Positives 43 213
False Positive Rate 0.07 0.37
False Negatives 62 154
False Negative Rate 0.16 0.39
Clean Precision 0.90 0.70
Clean Recall 0.93 0.63
Clean F1 0.91 0.67
Dirty Precision 0.88 0.53
Dirty Recall 0.84 0.61
Dirty F1 0.86 0.56
Macro F1 0.89 0.62

Table 6.9: Comparison of DistilBERT and Regex on the test set used
for ML model evaluation.

6.4 Prediction Time Benchmarks
Figure 6.2 shows the average prediction time of the di�erent models for predicting a single
message, while Figure 6.3 shows the average prediction time for batches of 1,000 messages.
The traditional machine learning models are orders of magnitude faster than the deep learn-
ing models at predicting single messages. Support vector machines, logistic regression, and
naive Bayes all take less than 0.6 milliseconds to predict a single message, whereas XLNet
takes almost 100 times longer at 55 milliseconds.

Looking at the time for batches of 1,000 messages show a di�erent pattern. Here the
deep learning models are roughly 2 to 3 times slower than most traditional models. It is also

38

6.4 Prediction Time Benchmarks

worth noting that Random Forest seems to scale well with an increased batch size.

Figure 6.2: Average prediction time with batches of a single message.

Figure 6.3: Average prediction time with batches of 1,000 messages.

39

6. Results

40

Chapter 7

Discussion

In this chapter, we discuss the results and potential shortcomings of our methodology. We
attempt to explain certain results in regard to the theory behind the models as well as prop-
erties of the datasets, such as class imbalance, short text length and specific domain language.

7.1 Finding and Annotating Data
One of the key challenges with the Sinch dataset is that it is very imbalanced. As shown in
Section 4.3.1 (Exploratory Data Analysis), a vast majority of all messages sent are clean, and
out of the remaining messages the class distribution is also imbalanced.

Out of the thousands of messages that were classified using DistilBERT for the compari-
son to RegEx in Section 5.8, roughly 0.8% were predicted to be dirty. This can give us a rough
estimate of the prevalence of dirty messages in the message logs when duplicates are excluded.
This estimate is however based entirely on the prediction performance of the model, and as
such should not be considered entirely accurate. The 0.8% figure does however align well
with our experience from manually looking through the message logs without duplicates.

This presented a challenge in how to e�ciently annotate enough messages of each cat-
egory to train our models. If we randomly annotated messages we would, on average, have
to annotate 1,000 messages to get 8 dirty messages. This is not a feasible method, especially
considering the limited timeline and scope of the project. To get around this we used a boot-
strapping method based on Regular Expressions as mentioned in Section 5.4 (Finding Data
and Bootstrapping). Using this method, the dataset we annotated contained 40% dirty mes-
sages, making the annotating process much more e�cient. It is however important to note
that this biases the annotated dataset towards messages that the RegEx script could find.
However, during multiple steps of the bootstrapping process, many messages that would not
have been flagged by the RegEx script were annotated, making this bias less severe.

41

7. Discussion

7.2 Data Imbalance
The class imbalance creates challenges on a model level. If the training dataset is heavily im-
balanced the model will have to take this into account to perform well. Due to the bootstrap-
ping technique we used to find training data, the training dataset was much more balanced
than the raw data. This instead creates a challenge in making sure that the trained model
generalizes well to the raw, more unbalanced dataset, it will later be used on.

Usherwood and Smit (2019) discuss the pros and cons of deep transfer learning versus
traditional machine learning models in low-shot NLP classification tasks. The authors con-
cluded that if there is a pre-trained language model available for the task, the deep learning
methods perform better than the traditional methods. Our results on the other hand show
that SVMs perform on par, if not slightly better, than the deep learning models on the Sinch
dataset. Usherwood and Smit emphasise the importance of a pre-trained language model for
the specific task, and we discuss some of the extra challenges Sinch’s messages might produce
in this regard in Section 7.4 (Domain Language). The authors end by saying that there is still
much work to be done in obtaining high-quality classifiers for low-shot classification, which
is something we also experienced.

7.3 Message Length and Split Messages
By their nature, SMS (Short Message Service) messages are short in length. In our dataset
the maximum length was 160 characters, the standard maximum length of an SMS message.
Longer messages, that are technically sent as multiple messages behind the scenes, were split
into multiple messages in the raw dataset. Approximately a quarter of all messages had been
cut into multiple parts, and as previously mentioned we did not have any e�cient way of
pairing them back together.

This creates two big challenges for our models in both that context is lost between the
parts, and also in that one part of the message might be considered clean while the other part
is dirty. It is reasonable to assume this loss of context between parts hurts the deep learning
models more than the traditional models as they are better at understanding context. Our
models are still able to get decent results, but working with split messages creates unnecessary
complexity. To use any of these models in a production environment Sinch should make sure
the models have access to the full message content.

7.4 Domain Language
When using pre-trained models, one has to consider the corpus that they have been pre-
trained on, and how that might di�er from the task-specific corpus. All deep learning models
we used have been trained on external corpora, often the English Wikipedia corpus.

As shown in Section 4.3.1 (Exploratory Data Analysis), the language used in Sinch’s mes-
sages is very specific to business-to-consumer SMS messaging. Furthermore, all messages are
short. Due to the character limit, there are also heavy use of abbreviations, which is not as
common in e.g. the Wikipedia corpus. This likely played a role in the performance of the
complex deep learning models. They performed better than the traditional models on both

42

7.5 Classification Performance

the AG News and Wikipedia Toxic Comments datasets, where the language used is closer to
the natural language in the corpora used during pre-training. However, since the language is
quite di�erent in the Sinch dataset, the acquired knowledge from the pre-training corpora
could likely not be applied to the same extent. Not only is the occurrence of rare and spe-
cific words, abbreviations, and codes common in business-to-consumer text messages, but
the sentence structure is often di�erent as well. Many business-to-consumer text messages
do not even have full sentences, and the occurrence of multiple full sentences is even rarer.

There is also a di�erence in how the di�erent models handle out-of-vocabulary words.
As the occurrence of abbreviations, unusual words, and codes are rather common in Sinch’s
messages the handling of these can be assumed to have a noticeable e�ect on prediction per-
formance. In the case of the traditional, TF-IDF based models, out-of-vocabulary words are
simply ignored. Theoretically, the deep learning models are able to take these into account us-
ing character-delimited and subword-delimited embeddings. However, further pre-training
on in-domain data might be needed to see significant improvements from this capability.

Much of the latest research in the field of NLP has been focused on using deep learning
approaches to better understand context and long-range dependencies between clauses and
sentences. It is worth considering to which degree these advances can be utilized for this
specific task. Our traditional models, using only TF-IDF-based features, produced results
that are on par or slightly better than the deep learning models, indicating that the deep
learning models are not being utilized to their full extent. It should also be noted that the
traditional machine learning models are able to produce good results using only TF-IDF
features that do not contain information about word order (except for local order in the case
of bigrams and trigrams), indicating that advanced approaches that take context and word
order into account might not be necessary.

Using transformer models and embeddings pre-trained on large amounts of Sinch’s own
data might however produce better results, but one has to weigh the increased complexity
and computational cost of such an approach. Even though Sinch could potentially use a large
number of past messages for the pre-training, the dataset might not be large and diverse
enough to considerably improve the models.

7.5 Classification Performance
The AG News and Wikipedia Toxic Comment datasets were used to evaluate and compare
di�erent models and setups. The AG News dataset is multi-class and as such not directly
comparable to the Sinch dataset. Wikipedia Toxic Comments however was used both in a
binary and multi-label setting, and the class imbalance is relatively similar to that of the
Sinch dataset. As such it is a suitable dataset to benchmark against.

For both datasets, the transformers-based models consistently outperformed the other
models by a relatively large margin. This is not surprising as they are the current state-of-
the-art models for similar NLP tasks. The classification performance on the Sinch dataset
however paints a di�erent picture. On the binary dataset, random forest achieves an F1
score of 0.89, on par with DistilBERT and BERT. On the multi-label dataset, SVM achieves
the highest Macro F1 score, slightly outperforming DistilBERTMB. As previously discussed in
both Section 7.2 (Data Imbalance) and Section 7.4 (Domain Language), a large contributing
factor to the decreased performance of the deep learning based models is believed to be the

43

7. Discussion

unique language characteristics of Sinch’s messages, with messages being short and containing
unusual words, abbreviations, and sentence structures.

Another aspect to take into account is classification performance in relation to dataset
size. In our experiments, we had an annotated dataset of 4,862 Sinch messages, which is rather
small in the context of deep learning. This is especially apparent in the multi-label classifi-
cation task, where some classes (e.g. firearms) only contained 12 example messages, making
us decide to remove that as a category to classify. As visualized in Figure 7.1, deep learning
models often scale better with increased training dataset size, and often start outperforming
traditional machine learning models once the training set is large enough in size. If e�ort
is put into annotating many more messages in an attempt to create more accurate models,
it is reasonable to assume that deep learning will be better at utilizing this additional train-
ing data. Deep learning can also utilize unsupervised pre-training on vast amounts of past
messages as discussed in Section 7.4 (Domain Language).

Figure 7.1: Prediction performance as a function of amount of train-
ing data available for deep and classical machine learning. After
Zappone et al. (2019).

One more factor to consider is hyperparameter setup. We have not thoroughly experi-
mented with di�erent hyperparameters for the models. For the traditional machine learning
models, we used the default hyperparameters. For the deep learning models, we started with a
baseline of default or recommended hyperparameters and performed some minor experimen-
tation and tweaking. However, to optimize the performance of each model, more tweaking
can be done.

As a side note, the dataset used in the comparison of DistilBERT to RegEx, as described
in Section 5.8, can also be used to gain an understanding of how reliable the predictions are
in di�erent intervals of “dirty probability”, for specifically the DistilBERT model. We can ob-
serve that it makes the most wrong predictions when it predicts 0.6-0.7 in dirty probability,
see Figure A.1 in the Appendix. This could be taken into account in the event of preparing
the model for use in a production pipeline, as one can consider the dirty probability to set
custom thresholds for blocking messages as well as flagging certain messages for manual re-
view. However, as these results are specific to the DistilBERT model, we cannot draw any
general conclusions that apply to all models.

44

7.6 Prediction Time

The idea of setting custom thresholds can be further developed to improve the perfor-
mance of the models. To potentially further improve on our results, one could create a func-
tion to optimize the performance of the models, by finding the ideal threshold for each class
and model. However, one factor to consider when doing so is the importance of precision
and recall for the use case, and which one to prioritize, as tweaking the threshold often means
a trade-o� between these two.

7.6 Prediction Time
Sinch sends millions of messages each hour on behalf of their customers. Therefore, any
filtering implementation has to take prediction time into account if it is to be used in real-
time in a production setting. As shown in Figure 6.2 and Figure 6.3, there is a large di�erence
in prediction time between models and batch sizes. The traditional machine learning models
are generally orders of magnitude faster than the deep learning approaches to predict single
messages. This is expected as they are less complex and have less overhead to setup.

When looking at the prediction times for batches of 1,000 messages, the di�erence in
prediction time is much smaller, likely due to the fact that any overhead during startup has a
smaller impact. Larger batch sizes also allow the transformer-based models to better utilize
the parallel processing capabilities of the GPU.

These numbers should be considered when deciding on how these models can be used in
a production environment. If Sinch can batch multiple messages together before prediction,
the di�erence is small. If they have to be predicted one-by-one, the prediction time can be a
major factor in deciding which models are viable.

7.7 Comparison to Regular Expressions
7.7.1 Empirical Results
The experiment to compare the DistilBERT binary predictor to the regular expressions filter
does have some drawbacks. First of all, after the removal of uncertain entries the distribution
of dirty probabilities is not perfectly uniform. It should still be somewhat evenly distributed,
under the assumption that uncertain entries are also somewhat uniformly distributed in this
dataset. There were 173 predicted dirty and 166 predicted clean messages after removal of
uncertain entries, which is a small indication that this is the case.

The experiment itself with a dataset from a uniform distribution of dirty probabilities
certainly does not represent a realistic scenario. Out of the thousands of unique messages
sampled from Logs C, 98.9% were predicted with a dirty probability of less than 0.2. 0.6%
were predicted with a probability above 0.8, and consequently the remaining 0.5% were in
the interval 0.2-0.8.

Since the RegEx script only flagged 8 messages as dirty, the false positive and false negative
rates assume extreme values. As mentioned in Section 5.8, one would have to sample real data
to e�ectively measure the actual values for these metrics. However, for the false negative rate,
one would need to annotate a huge amount of randomly sampled data to get statistically
reliable estimates as the occurrence of dirty messages is very rare. The remarkably high false

45

7. Discussion

negative rate for the RegEx script resulted in a very low recall for the dirty class, 0.03, which
in turn resulted in a very low F1 score for dirty messages, 0.06. This is the main reason why
the Macro F1 score for the RegEx script is lower than the DistilBERT model for the selected
experiment dataset.

The results from the test set also have their limitations. Once again, this dataset is not
representative of the raw Sinch dataset as it is based on a bootstrapping method as discussed
in Section 5.4. Instead, this can be used as an additional baseline to compare each model
against. The DistilBERT model is specifically trained on similar data, so its dominant scores
should not come as a surprise. However, the dataset used is heavily based on the RegEx logs,
which explains the decent performance of the script, in particular when compared to the
experiment dataset.

When comparing the machine learning models to the regular expressions approach, the
machine learning models outperform the RegEx filter in both experiments in regard to Macro
F1 as shown in Table 6.8 and Table 6.9. On the test set, DistilBERT outperforms the RegEx
approach on every metric, achieving a Macro F1 of 0.89, compared to 0.62 for the RegEx
model. On the dataset with uniformly distributed dirty probabilities, the results are less
conclusive. As previously mentioned, with only 8 messages flagged as dirty by the RegEx filter,
the metrics assume extreme values. One of the more interesting findings is the disparity in
the number of positive predictions, with DistilBERT predicting 51% as dirty and RegEx only
predicting 2%. Looking at Macro F1 DistilBERT outperforms the RegEx approach with a
Macro F1 score of 0.57 to 0.42 on this dataset.

7.7.2 General Comparison
Aside from the empirical results, one should also consider the fundamental di�erences be-
tween ML models and the RegEx script. One advantage of the machine learning models is that
most of them are probabilistic, or can be transformed into probabilistic classifiers. As such,
message prediction probability can be taken into account, e.g. messages with a dirty proba-
bility in a certain range can automatically be sent to manual review. This also enables Sinch
to easily tune the machine learning models by adjusting the thresholds for classification, al-
lowing them to make the trade-o� between e.g. precision and recall. This is something our
supervisors at Sinch emphasised the importance of for their use case. For the RegEx model,
the classification is binary, with no simple way of producing probabilities.

The current RegEx approach is also unable to perform multi-label classification, mean-
ing that it cannot provide any data insights like an ML model can. However, this could tech-
nically be solved by splitting the RegEx script into multiple scripts, each with a matching
pattern corresponding to a category.

Another aspect to consider is the prediction time, as this could be a crucial factor when
processing messages in real-time, as discussed in Section 7.6. The RegEx solution is extremely
fast and can easily process over 1,000 messages per second, while some transformer-based
models could potentially struggle to keep up with this rate, at least with the current hardware
configuration.

The ability to backtrack and explain the results of a classification should also be consid-
ered. This is particularly important when working with false classifications and attempting
to reduce them. With a RegEx script, one can easily explain why a certain message has been
flagged or not. If any part of the message matches the RegEx pattern, it will be flagged and

46

7.8 Annotation Ambiguity

vice versa. For ML models, explaining a classification is harder. However, there are explana-
tion techniques that can help with this task, such as LIME (Ribeiro et al., 2016).

The workflow for maintaining and improving the classification performance of the two
approaches is also a significant di�erence. With a RegEx script, one can make changes to
the pattern and directly see results. However, the changes could introduce new false clas-
sifications. To handle specific cases, one would need an increased number of conditionals,
adding to the complexity and worsening the maintainability of the script. For ML models,
the performance is improved by expanding the dataset by annotation. However, the pro-
cess of resolving specific false classifications is more complex and can involve exploring and
tweaking the dataset.

7.8 Annotation Ambiguity
An important source of error to consider is the ambiguity for some messages, as it is some-
times not clear which category it should belong to. For the most part, this has been temporar-
ily solved by using the uncertain label, so that a domain expert can review these messages in
the future. However, there are still some messages that could be wrongly labeled, as a result
of ambiguity in the language used in the messages as well as in the SHAFT guidelines and the
information we received from Sinch prior to labeling. There is also a factor of human error,
as an ambiguous message could be labeled di�erently by the same person on two di�erent
occasions.

To get a rough estimate of the impact of the aforementioned factor, we took advantage
of the fact that some duplicates had been included in the annotation process, as mentioned
in Section 5.4. At this stage of annotation, there were 637 excess duplicates (excluding the
first occurrence) of the messages. Out of these messages, 20 had di�ering labels compared to
the original. This means that 3.1% of the times the annotator labeled a message that he had
seen before, he ended up picking di�ering labels compared to the original message. When
considering the binary case of clean and dirty, only 11 or 1.7% of the duplicates had been given
a contradictory label.

As mentioned in Section 5.3, we only used one annotator to prioritize dataset size given
our limited time frame. Ideally, several annotators should be used for increased data quality,
and to get a better understanding of what kind of messages are more likely to be mislabeled.
When using multiple annotators, one can get a measurement of the agreement between an-
notators by using Krippendor�’s alpha (Krippendor�, 2013). This measurement could then
be used to draw further conclusions of the reliability of the annotated data.

7.9 Classification Pipeline
As we can clearly observe that the models performed much better when only using dirty
messages for the multi-label case, we propose using a pipeline approach consisting of an
initial binary clean/dirty classifier, and then a multi-label classifier for only the predicted dirty
messages. This approach breaks the task into two separate, simpler tasks and each of them can
be optimized independently using di�erent hyperparameters or models. This separation also
makes sense from a business perspective as a binary filter can be used in the message sending

47

7. Discussion

pipeline, corresponding to the current regular expressions solution, whereas the multi-label
classifier would be used for further insight. The multi-label classification would also not be
as performance-critical in terms of both accuracy and prediction time.

Since the categories hateful, firearms, and phishing are currently not handled, these would
have to be dealt with separately until su�cient data within these categories has been col-
lected. Until then, the parts of the RegEx script that attempts to identify these messages
could still be used in conjunction with the binary classifier.

48

Chapter 8

Further Work

In this chapter, we discuss the potential further work that could be carried out to expand
and improve on this project. We take the shortcomings of our project into account, as well
as unexplored areas.

8.1 Taking Metadata Into Account
In our dataset, we had access to three metadata parameters: the number of times the same
exact message was sent within a specific time interval, the sender name, and the sender short-
code. We did not take any of these parameters into account (except while removing duplicate
messages during pre-processing). Including this data might improve the classification in some
cases, especially in regard to phishing as these messages are crafted to be as similar as possible
to legitimate messages. It would also be interesting to take a sender’s past sending behaviour
into account, with the hypothesis being that a sender who has sent questionable messages in
the past should be more closely scrutinized.

8.2 More Robust Annotating Process
One of the fundamental truths in any machine learning task is that a model will only be as
good as the data used to train it. As such there should be further work to get high quality
annotated data at a larger scale, as discussed in Section 7.8.

One challenge was that the guidelines for how a message should be classified were not
clearly defined. This led to 24% of the annotated messages being labeled as uncertain, and thus
not included in the training dataset. One way to get around this would be to use annotators
who are well versed in the various guidelines. Another approach would be to have multiple
annotators annotate each message and then apply only the labels used by a majority of the

49

8. Further Work

annotators. This process would also reduce the likelihood of mislabeled messages due to
human error.

As shown in Section 4.3.1, on exploratory data analysis, the class distribution of the
labeled messages is imbalanced. While the alcohol class has over 750 annotated examples,
firearms has only 12. For a model to be able to classify messages reliably, more training exam-
ples are needed. The process explained in Section 5.4 (Finding Data and Bootstrapping) could
be used to specifically target the underrepresented classes. While this process is e�cient, im-
provements or alternative methods that reduce the RegEx bias should also be investigated.

8.3 Data Augmentation
An approach that should be considered is data augmentation. By automatically creating
altered versions of each annotated message, more training data can be artificially created,
which in turn can help the model’s generalization performance. This is particularly useful
when the training dataset is small, such as in our case. While augmenting the messages, it
is crucial that the messages are altered enough to help improve generalization performance,
while not being altered enough to change the label of the message or to create nonsensical
messages. A common approach for this is back-translation. Recent studies have shown that
performing data augmentation on unlabeled data can significantly improve semi-supervised
learning performance in the NLP domain (Xie et al., 2019).

8.4 Pre-training on Domain Data
As discussed in Section 7.4 (Domain Language), the language used in Sinch’s messages is very
specific to business-to-consumer SMS messaging. As such, using models and embeddings pre-
trained on corpora with di�erent language characteristics (e.g. BERT, Flair) will not perform
optimally. As the pre-trained deep learning models outperformed the traditional models on
both the AG News and Wikipedia Toxic Comments dataset, but not on the Sinch dataset, it
is reasonable to assume that the language characteristics in Sinch’s messages is hard for these
models to understand. Given that Sinch has logs of many millions of past messages, it would
be interesting to look into further pre-training these models on this dataset. This approach
has been shown to boost text classification performance with BERT, even with small domain-
specific datasets (Sun et al., 2019).

50

Chapter 9

Conclusions

In this thesis, we explored the possibility of using machine learning to reliably classify short
text messages. We also compare our machine learning approaches to Sinch’s current regular
expression filter.

One of the key takeaways is that the language used in Sinch’s messages is very domain-
specific. This is likely an important factor in explaining why state-of-the-art deep learning
models pre-trained on external corpora do not perform better than certain traditional ma-
chine learning models, such as support vector machines using simple TF-IDF features, on
this dataset. This is in contrast to the results for both the AG News and Wikipedia Toxic
Comments datasets, where the deep learning models outperformed the traditional models
by a large margin.

We also found that splitting the prediction pipeline into a separate binary and multi-label
classification step improved prediction accuracy. This pipeline structure also a�ords Sinch
increased flexibility in tailoring the solution to fit their needs, as both tasks can be optimized
independently.

Another factor to consider is that the machine learning models are more informative as
they output predicted probabilities unlike the RegEx filter’s binary prediction. They also
allow multi-label prediction with decent accuracy. On the other hand, regular expressions
are easy to create, update, and it is straightforward to understand why a certain message is
flagged. With a machine learning solution there is more overhead, but we found the predic-
tions to be more accurate.

In this project, we have trained machine learning models that outperform Sinch’s current
regular expression filter at most metrics. While this shows great promise for the machine
learning approach, there is still further work that should be performed before using these
models in production. As with any machine learning task, annotating high quality data at a
larger scale is crucial for improved classification performance. There should also be e�orts
put into reducing the RegEx bias in the annotated dataset. Lastly, e�orts should be put into
achieving more accurate classification performance estimates, especially in regard to false
negatives.

51

9. Conclusions

In summary, our machine learning approach shows great promise, but there is still room
for further improvement. While regular expressions are hard to improve, machine learn-
ing models will keep improving given advances in model architecture and better annotated
datasets.

52

References

Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., and Vollgraf, R. (2019). FLAIR:
An easy-to-use framework for state-of-the-art NLP. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics (Demonstrations),
pages 54–59, Minneapolis, Minnesota. Association for Computational Linguistics.

Akbik, A., Blythe, D., and Vollgraf, R. (2018). Contextual string embeddings for sequence
labeling. In COLING 2018, 27th International Conference on Computational Linguistics, pages
1638–1649.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradi-
ent descent is di�cult. IEEE Transactions on Neural Networks, 5(2):157–166.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. P. (2011).
Natural language processing (almost) from scratch. CoRR, abs/1103.0398.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273–297.

Cui, Y., Zhou, F., Lin, Y., and Belongie, S. (2016). Fine-grained categorization and dataset
bootstrapping using deep metric learning with humans in the loop.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

D’Sa, A. G., Illina, I., and Fohr, D. (2019). Towards non-toxic landscapes: Automatic toxic
comment detection using dnn.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org. Checked 2020-04-10.

53

http://www.deeplearningbook.org
http://www.deeplearningbook.org

REFERENCES

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9:1735–80.

Johnson, M. (2009). How the statistical revolution changes (computational) linguistics. In
Proceedings of the EACL 2009 Workshop on the Interaction between Linguistics and Computa-
tional Linguistics: Virtuous, Vicious or Vacuous?, pages 3–11, Athens, Greece. Association for
Computational Linguistics.

Jones, K. S. (1972). A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation, 28(1):11–21.

Joseph, S., Sedimo, K., Kaniwa, F., Hlomani, H., and Letsholo, K. (2016). Natural language
processing: A review. Natural Language Processing: A Review, 6:207–210.

Jurafsky, D. and Martin, J. H. (2000). Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall PTR,
USA, 1st edition.

Kaggle (2017). Toxic Comment Classification Challenge. By: Jigsaw/Conversation AI. https:
//www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge.
Checked 2020-03-27.

Krippendor�, K. (2013). Content Analysis. An Introduction to Its Methodology. Sage Publications,
3rd edition edition.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval.
Cambridge University Press, USA.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed representa-
tions of words and phrases and their compositionality. In Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’13, page 3111–3119, Red
Hook, NY, USA. Curran Associates Inc.

Mitchell, T. (1997). Machine Learning. McGraw-Hill International Editions. McGraw-Hill.

Nakayama, H., Kubo, T., Kamura, J., Taniguchi, Y., and Liang, X. (2018). doccano: Text
annotation tool for human. Software available from https://github.com/doccano/doccano.

Opitz, J. and Burst, S. (2019). Macro f1 and macro f1.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.

Rajaraman, A. and Ullman, J. D. (2011). Data Mining, page 1–17. Cambridge University Press.

54

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge

REFERENCES

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “why should i trust you?”: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, page 1135–1144, New York, NY, USA.
Association for Computing Machinery.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. In NeurIPS EMC2 Workshop.

Sun, C., Qiu, X., Xu, Y., and Huang, X. (2019). How to fine-tune BERT for text classification?
CoRR, abs/1905.05583.

Usherwood, P. and Smit, S. (2019). Low-shot classification: A comparison of classical and
deep transfer machine learning approaches.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,
Louf, R., Funtowicz, M., and Brew, J. (2019). Huggingface’s transformers: State-of-the-art
natural language processing. ArXiv, abs/1910.03771.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,
Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L., Gouws,
S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young,
C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., and Dean, J.
(2016). Google’s neural machine translation system: Bridging the gap between human and
machine translation. CoRR, abs/1609.08144.

Xie, Q., Dai, Z., Hovy, E. H., Luong, M., and Le, Q. V. (2019). Unsupervised data augmenta-
tion. CoRR, abs/1904.12848.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhutdinov, R., and Le, Q. V. (2019).
Xlnet: Generalized autoregressive pretraining for language understanding. CoRR,
abs/1906.08237.

Young, T., Hazarika, D., Poria, S., and Cambria, E. (2017). Recent trends in deep learning
based natural language processing. CoRR, abs/1708.02709.

Zappone, A., Di Renzo, M., and Debbah, m. (2019). Wireless networks design in the era
of deep learning: Model-based, ai-based, or both? IEEE Transactions on Communications,
PP:1–1.

55

REFERENCES

56

Appendices

57

Appendix A

Parameter Value
ngram_range (1,3)
stop_words "english"
min_df 5
norm "l2"
sublinear_tf True

Table A.1: Parameters used for the TfidfVectorizer.

Classifier Parameters
learning_rate 0.1
max_epochs 40
Document Embeddings
type DocumentRNNEmbeddings
hidden_size 512
reproject_words True
reproject_words_dimension 256
Word Embeddings

WordEmbeddings(’glove’)
FlairEmbeddings(’news-forward-fast’)

FlairEmbeddings(’news-backward-fast’)

Table A.2: Hyperparameters used for the Flair model.

59

DistilBERT BERT XLNet
Learning rate 3e-5 3e-5 2e-5
Batch size 32 32 12
Epochs 4 4 4

Table A.3: Hyperparameters used for the transformer models.

Figure A.1: Wrongly predicted messages of the DistilBERT model
on the dataset used (339 messages) for comparison to regular ex-
pressions. Over 0.5 in probability is a false positive, and below 0.5
is a false negative.

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-12

EXAMENSARBETE Classification of Short Text Messages using Machine Learning
STUDENTER Alexander Goobar, Daniel Regefalk
HANDLEDARE Pierre Nugues (LTH), Jianhua Cao (Sinch), Michael Truong (Sinch)
EXAMINATOR Jacek Malec (LTH)

Identifiering av oönskade meddelanden
med maskininlärning

POPULÄRVETENSKAPLIG SAMMANFATTNING Alexander Goobar, Daniel Regefalk

Intresset för användning av maskininlärning för automatisk textklassificering har vuxit
i takt med de stora framstegen som gjorts inom området. Detta arbete undersöker
vilka modeller som passar bäst för att klassificera mycket korta texter, exempelvis för
identifiering av oönskade SMS.

Maskininlärning har under senare år fått en allt
större roll både inom forskning samt för kommer-
siellt bruk. Det finns olika typer av maskinin-
lärning, där djup maskininlärning med neurala
nätverk på senare tid hamnat i fokus. Det finns
även mer klassiska algoritmer, som i större grad
bygger på traditionell statistik. Inom djup mask-
ininlärning för språkbehandling har det skett stora
genombrott på kort tid, där mer komplexa mod-
eller kan tränas och lära sig generella språkegen-
skaper på stora textmassor, och sedan finjusteras
för det önskade användningsområdet.
I detta examensarbete har vi utvärderat olika

metoder för automatisk klassificering av korta tex-
ter, både med klassiska algoritmer och toppmod-
erna djupinlärningsmodeller. Som data för vår un-
dersökning har vi använt tre dataset. Två av dessa
är publika och innehåller nyhetsartiklar samt kom-
mentarer från Wikipedia. Vi använde även data
från företaget Sinch (där arbetet utfördes) som be-
stod av B2C SMS, d.v.s. SMS som skickas från
olika företag till konsumenter. Mer specifikt un-
dersökte vi hur modellerna kan identifiera medde-
landen med oönskat innehåll, t.ex. försäljning av
tobak eller alkohol. För alla dataset användes en-
dast texter med färre än 160 karaktärer, vilket är
begräsningen för ett enstaka SMS.

För varje dataset tränades modellerna först på
80% av den tillgängliga datan. När träningen
var klar utvärderades modellernas prestanda mot
resterande 20%, så att de testades mot för mod-
ellerna tidigare obekant data.

Resultaten visar att de moderna djupinlärn-
ingsmodellerna presterar bra på alla dataset. På
de två publika dataseten presterar de i särk-
lass bäst, medan vissa traditionella algoritmer
presterar likvärdigt på SMS-datan. Detta för-
modas bero på att de generella språkegenskaperna
från grundinlärningen hos de moderna modellerna
inte kan appliceras i samma utsträckning för B2C
SMS, där språkbruket avviker med exempelvis
förkortningar och sifferkoder. Alla modeller up-
pvisade en förbättring gentemot den nuvarande
lösningen för blockering av oönskade meddelanden
på Sinch, som baseras på nyckelord.

	Introduction
	Problem Background
	Purpose
	Contributions

	Background
	Natural Language Processing
	Working with Text

	Traditional Machine Learning
	Deep Learning
	Transfer Learning
	Recurrent Neural Networks
	Flair
	Transformer
	BERT
	DistilBERT
	XLNet

	Related work
	Traditional vs. Deep Transfer Learning
	Datasets

	Data
	AG News
	Wikipedia Toxic Comments
	Sinch Data
	Exploratory Data Analysis

	Methodology
	Pre-processing
	Exploration
	Annotation
	Finding Data and Bootstrapping
	Merging and Exclusion of Categories
	Model Setup
	Model Evaluation
	Comparison to Regular Expressions
	Prediction Time Benchmarking

	Results
	AG News
	Wikipedia Toxic Challenge
	Sinch Data
	Comparison to Regular Expressions

	Prediction Time Benchmarks

	Discussion
	Finding and Annotating Data
	Data Imbalance
	Message Length and Split Messages
	Domain Language
	Classification Performance
	Prediction Time
	Comparison to Regular Expressions
	Empirical Results
	General Comparison

	Annotation Ambiguity
	Classification Pipeline

	Further Work
	Taking Metadata Into Account
	More Robust Annotating Process
	Data Augmentation
	Pre-training on Domain Data

	Conclusions
	References
	Appendix

