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Abstract

Time series prediction is the use of amodel to predict future data based on previ-
ously observed data. Time series prediction and anomaly detection is important
for many businesses in the world today. In this report, we experiment with three
di�erent models for time series prediction and anomaly detection on data about
mobile message tra�c volume and Successful Delivery Rate (SDR). The data are
provided by Sinch, which is a telecommunications and cloud communications
platform as a service company. We compare and analyze the experiment re-
sults and find that themodel architecture that includes a LSTM encoder-decoder
could improve the model performance on Sinch data, but not in all cases, due to
the di�erence of the datasets.
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Chapter 1

Introduction

In this chapter, we give the background of our work, state the research questions, and give
an overview of the previous relevant works.

1.1 Background
Time Series forecasting is the use of a model to predict future values based on previously
observed values (Chatfield, 2000). Time series forecasting and estimation of the prediction
uncertainty are important for anomaly detection, which is important for many businesses
in the world, such as banks and hedge funds (Zhu and Laptev, 2017). Recently, time series
modelling based on the long short term memory (LSTM) model became more and more
popular (Assaad et al., 2008). It has been shown that a model which includes an LSTM
encoder-decoder performs well on time series prediction and anomaly detection with the
trips data at Uber (Zhu and Laptev, 2017).

The thesis work has been done in collaboration with Sinch, which is a telecommunica-
tions and cloud communications platform as a service (PaaS) company. The main service
of the company is to deliver mobile messages for its client companies. These client compa-
nies use Sinch’s platform to send mobile messages to their customers. Most top10 fortune
100 companies are Sinch’s client companies and Sinch is trusted by major banks in the U.S,
Germany, and Nordic countries. Every month, billions of messages are sent through Sinch.

Figure 1.1 shows the flow of the mobile messages. The client company’s messages are sent
to Sinch’s platform first, and then they are routed to di�erent suppliers and operators, and
finally operators send them to the mobile phones of the client company’s customers.

Since the services Sinch provides are commodity services, it is very important to control
the cost and the quality of the service in order to keep on being competitive in the market.
So it is necessary to keep a close watch on the key metrics such as mobile message tra�c
volume and Successful Delivery Rate (SDR). When a client company’s tra�c volume behaves
anomaly, it could indicate that the client company might switch to use a competitor’s plat-
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Figure 1.1: The flow of the mobile messages
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form to deliver its messages. When the SDR behaves anomaly, it could possibly be caused
by some technique failure, which will reduce the quality of service provided to the client
company. Therefore, there is a need to detect the tra�c volume anomaly and SDR anomaly.
Currently, Sinch has no method to do this.

In this master’s thesis, we implement three di�erentmodels and compare their prediction
results to find which one could perform better than others, given datasets provided by Sinch.

1.2 Contributions
The contributions of this thesis, we implemented the models with LSTM encoder-decoder
proposed by Laptev et al. (2017) and Zhu and Laptev (2017), and tested them on Sinch’s data.
This gives an insight on how these models work with real data in the telecommunication sec-
tor. We compared the performance of these two models which were not compared with each
other before and we found out that the model Zhu and Laptev (2017) proposed outperform
the model proposed by Laptev et al. (2017) given the dataset we have. This thesis also will
help Sinch better detect its tra�c volume anomaly and SDR anomaly since currently there
is no mechanism in the company to do this.

1.3 Research Question
Time series prediction is usually carried out with linear regression (Tim et al., 1996). There
are recent works using deep learning in the form of LSTM that were also applied to time
series prediction. Given the di�erence in datasets, it is not completely clear how the di�erent
algorithms will behave on specific data.

The goal of the research is as follows:
Implement three di�erentmachine learningmodels for time series prediction and anomaly

detection:

• A regression model

• A model which includes a LSTM encoder-decoder and a regression forecaster

• A model which includes a LSTM encoder-decoder and a LSTM based forecaster

Given the datasets provided by Sinch as training data and test data, the prediction results
and anomaly detection results are compared to tell whichmodel works better for the datasets
from Sinch.

1.4 Related Works
Tim et al. (1996) compared time series forecasts based on regression model with forecasts
from traditional statistical time series method. They found that regression model generally
perform better than traditional statistical method when forecasting real time series.

Laptev et al. (2017) has published a neural network forecasting model which could per-
form better than classical time series methods when dealing with interdependent, long time
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1. Introduction

series (Zhu and Laptev, 2017). However this model does not provide any information about
the uncertainty, therefore, it caused a large false anomaly rates when themodel prediction has
large variance such as during holidays (Zhu and Laptev, 2017). The prediction uncertainty
could be used to assess how much to trust the prediction produced by the model, therefore
it is useful to anomaly detection (Zhu and Laptev, 2017).

Gal and Ghahramani (2015) proposed a Monte Carlo dropout (MC dropout) framework,
which provides uncertainty estimation without requiring any change of the existing model
architecture. This framework is not only generic, but also easy to implement, so it could be
directly applied to an existing neural networks (Gal and Ghahramani, 2015). In the thesis,
we will apply this MC dropout framework to all the models.

Zhu and Laptev (2017) adapted The MC dropout framework to conduct time series pre-
diction and anomaly detection. Zhu and Laptev (2017) proposed a novel model architecture
that provides time series prediction and quantify the prediction uncertainty using Bayesian
neural network. They did experiments on the proposed model on trips data, and success-
fully applied this model to time series anomaly detection at Uber (Zhu and Laptev, 2017).
This model could handle extreme event (e.g., holidays, festivals) prediction better than many
classical time series models (Zhu and Laptev, 2017).

In this thesis, we will implement a regression model and the above two model architec-
tures proposed by Laptev et al. (2017) and Zhu and Laptev (2017) respectively. Wewill explain
more about these model architectures in Chapter 4.

1.5 Outline
The rest of the thesis is organized as follows:

Chapter 2 contains the theoretical background needed to understand the thesis.
Chapter 3 describes the datasets and model architectures that we use for our solution.
In Chapter 4, we provide detailed experiments to evaluate the model performance on

Sinch data.
Finally, Chapter 5 concludes the report and give the possible future work could be done.
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Chapter 2

Theory

This chapter contains the theoretical background needed to understand our solutions.

2.1 Time Series Prediction
Time series is a sequence of data points measured at consistent time intervals over a period
of time (Konar and Bhattacharya, 2017). Examples of time series datasets are the daily price
of the Sinch stock, daily temperature in Lund, etc.

Time series prediction is the use of a model to predict future values based on previously
observed values (Chatfield, 2000). Time series prediction has become a popular topic for
many businesses such as banks, hedge funds, etc, since it can help the businesses make better
investment strategies and decisions (Konar and Bhattacharya, 2017).

Classical time series models, e.g. Auto-Regressive Integrated Moving Average (ARIMA),
are the models that do not use machine learning techniques. They have some limitations such
as they can only work on univariate data. They do not support multiple variables to be taken
as inputs. (Laptev et al., 2017).

2.2 Long Short Term Memory (LSTM)
Recurrent neural networks (RNN) are a family of neural networks for processing sequential
data (Goodfellow et al., 2016). RNN can keep contextual information from the input data
sequence due to its recurrent connections (hoon Oh et al., 2017). RNN can make good use
of its input information since the loops within RNN help it memorize previous events, but
RNN cannot handle long term correlations (Tang et al., 2016).

LSTM is an improved version of RNN. LSTM is able to increase the e�ective context size
of RNN by replacing each hidden unit with a memory block (Mulder et al., 2015). Figure 2.1
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Figure 2.1: RNN and LSTM layout with Cell Connections (Mohan
and Gaitonde, 2018). The top figure is RNN and the bottom figure
is LSTM

shows RNN and LSTM Layout with cell connections (Mohan and Gaitonde, 2018). In addi-
tion to the outer recurrence of the RNN, LSTM cells have an internal recurrence (Goodfellow
et al., 2016). This makes LSTM can handle long term correlations better than RNN.

A LSTM cell contains a system of gating unit that is applied on it (Goodfellow et al.,
2016). The LSTM controls the input information flow through these three kinds of gates by
selectively removing information (forget gate), adding information (input gate), or letting
it through to the next cell (output gate) (Mohan and Gaitonde, 2018). The forget gate can
reduce over-fitting since it does not retain all information from the previous time steps (Mo-
han and Gaitonde, 2018). The function of the gates and selective information control are the
main reason that LSTMs can retain contextual information for a longer time (Mohan and
Gaitonde, 2018).

Figure 2.2 shows the internal structure of an LSTM cell (Mohan and Gaitonde, 2018).
The forget gate is denoted by ft , input gate by it and output gate by ot (Mohan and Gaitonde,
2018). The cell input is denoted by xt , the cell output is represented by ht and the cell state is
given as Ct (Mohan and Gaitonde, 2018). Below are the equations to calculate the gates and
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Figure 2.2: Architecture of a LSTM Cell (Mohan and Gaitonde,
2018)

states, whereW denote the weights for the corresponding gate (Mohan and Gaitonde, 2018).

ft = σ(W f · [ht−1, xt] + b f )
it = σ(Wi · [ht−1, xt] + bi)
C̃t = tanh(Wc · [ht−1, xt] + bC)
Ct = ft ∗Ct−1 + it ∗ C̃t
ot = σ(Wo · [ht−1, xt] + bo)
ht = ot ∗ tanh(Ct)

(2.1)

LSTM has been found successful in many applications, such as speech recognition (Graves
and Jaitly, 2014) and machine translation (Graves and Jaitly, 2014).

During recent years, time series modeling based on the LSTM technique became popular
(Hochreiter and Schmidhuber, 1997). It is probably because it can incorporate exogenous
variables easily and extract feature automatically (Assaad et al., 2008). For instance, when
fed with multi-variable historical observations of the target and exogenous variables, LSTM
can blend the information of all variables into the memory cells and hidden states which are
used for prediction (Assaad et al., 2008).
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2. Theory

2.3 Prediction Uncertainty
Let f Ŵ (.) represents a trained neural network, where Ŵ denote the fitted parameters (Zhu
and Laptev, 2017). If we are given a new sample x∗, themodel prediction could be represented
as ŷ∗ = f Ŵ (x∗) (Zhu and Laptev, 2017).

A prediction interval is an estimate of an interval in which a future observation will fall,
with a certain probability, given what has already been observed.

In order to evaluate the uncertainty of the model prediction ŷ∗, we need to first quantify
the prediction standard error η, then an approximate α-level prediction interval is

[ŷ∗ − Zα/2η, ŷ∗ + Zα/2η] (2.2)

where Zα/2 represents the upper α/2 quantile of a standard normal (Zhu and Laptev, 2017).
The prediction interval is very useful for anomaly detection (Zhu and Laptev, 2017). For

example, anomaly will be reported when the observed value lies outside the constructed 95%
prediction interval (Zhu and Laptev, 2017). We can see that underestimating η could cause
high false positive rates (Zhu and Laptev, 2017).

According to the MC dropout framework, proposed by Gal and Ghahramani (2016), if
we apply stochastic dropouts after each hidden layer, then we can approximate the model
output as a random sample generated from the posterior predictive distribution (Gal and
Ghahramani, 2016). This means we can estimate the model uncertainty by the sample vari-
ance of the model predictions in a few repetitions (Gal and Ghahramani, 2016). For example,
given a new input x∗, we compute the neural network output with random dropout with a
certain probability p at each layer (Zhu and Laptev, 2017). We repeat this stochastic feed
forward B times and the prediction results are {ŷ∗(1), ..., ŷ

∗
(B)} (Zhu and Laptev, 2017). The

sample variance can be calculated as (Zhu and Laptev, 2017):

η2 = V̂ar( f W (x∗)) = 1
B
∑B

b=1 (ŷ∗b − ¯̂y∗)2

¯̂y∗ = 1
B
∑B

b=1 ŷ∗b
(2.3)

We can use the sample variance to approximate the model uncertainty (Zhu and Laptev,
2017).

According to the empirical rule, for data that is distributed normally, about 95% of the
data fall within two standard deviations on each side of the mean (see Figure 2.3) (Ozdemir,
2016). In the thesis, we assume our data are normally distributed.

The z-score, also called standard score, is the number of standard deviations from the
mean a data point is (Ott and Longnecker, 2008):

z =
y − µ
σ

(2.4)

where µ is the mean, σ is the population standard deviation and y is the measurement (Ott
and Longnecker, 2008). For example, if a data point z-score less than 2, then it fall into the
95% prediction interval.

14
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Figure 2.3: the empirical rule (Ozdemir, 2016)

2.4 Tools

2.4.1 Python
Python (Python Software Foundation, 2019) is a popular language used for machine learning.
In the thesis, the implementation is in Python.

2.4.2 Keras
We use Keras to implement the machine learningmodels. Keras is a deep-learning framework
for Python that provides a good way to define and train deep-learningmodels (Chollet, 2017).
Initially, Keras was developed for enabling fast experimentation (Chollet, 2017). Its user-
friendly API makes it easy to quickly prototype deep-learning models.

Keras can be freely used in commercial projects since it is distributed under the permissive
MIT license (Chollet, 2017).

Keras is a model-level library, which means it provide high-level building blocks for de-
veloping deep-learning models (Chollet, 2017). It relies on a specialized, optimized tensor
library to handle low-level operations, which serves as the backend engine of Keras (Chol-
let, 2017). Several di�erent backend engines can be plugged seamlessly into Keras, such as
TensorFlow backend, Microsoft Cognitive Toolkit (CNTK) and Theano backend (Chollet,
2017).

15



2. Theory

2.4.3 Pandas
Pandas (Wes McKinney, 2018) is a machine learning library for data manipulation and anal-
ysis. We use Pandas to preprocess the data.

2.4.4 Matplotlib
We used Matplotlib library (Hunter, 2007) to visualize the data. It helped us know the data
and find important trends.

2.4.5 Scikit-Learn
Scikit-Learn (Pedregosa et al., 2011) is an open source library. Neural network are sensitive to
unscaled data (Hochreiter and Schmidhuber, 1997), thereforewe use sklearn.preprocessing.
StandardScaler to transform our data such that its distribution will have a mean value 0
and standard deviation of 1 (Sammut and Webb, 2011).

We also use sklearn.metrics.mean_absolute_error. Mean Absolute Error (MSE)
of a machine learning model is the mean of the absolute values of the individual prediction
errors on over all data points in the test set (Sammut andWebb, 2011). Individual prediction
error is the di�erence between the true value and the predicted value for the data point
(Sammut and Webb, 2011).

16
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Chapter 3

Approach

In this chapter, we will give a detailed description of the datasets given by Sinch. We will
also explain the three models we use.

3.1 Terms
Before we talk about the datasets, first we define some terms that we will use. Here is the
definition for the following terms:

• Client: The client company which sends messages to its customers mobile devices
through Sinch. For a client to conduct business with Sinch, the client must have an
account.

• Operator: A provider of the wireless communication services. The end user’s mobile
device always belongs to one of the operators.

• Count: The message tra�c volume, that is, the number of messages.

• Successful Delivery Rate (SDR): The percentage of messages that were actually deliv-
ered to the end user’s mobile devices, calculated by dividing the number of messages
that have been successfully delivered to the end user’s mobile devices by the total num-
ber of messages sent. The reason that a message is not delivered successfully could be
bad routing setup or supplier connections failure.

3.2 Dataset
For each client company, we got three CSV files: the daily count file, the hourly successfully
delivered count file, and the hourly total count file.

17
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Table 3.1: The daily count file for a client company, to protect client
company’s privacy, the operator and count is not the real operator
and count of the client company. It is just an example to give reader
a sense how the data was given

Index Date Operator Count
1 2013-05-06 1 200000
2 2013-05-06 2 100000
3 2013-05-06 3 100000
4 2013-05-07 1 250000
5 2013-05-07 2 120000
6 2013-05-07 3 90000
7 2013-05-08 1 210000
8 2013-05-08 2 110000
9 2013-05-08 3 110000
... ... ... ...
6883 2019-08-17 1 120000
6884 2019-08-17 2 220000
6885 2019-08-17 3 150000
6886 2019-08-18 1 210000
6887 2019-08-18 2 170000
6888 2019-08-18 3 150000

The daily count file has three columns, namely, Date, Operator and Count. An example
of a daily count file is shown in Table 3.1. The dataset consists of all the data that have been
collected from May 6,2013 to August 18, 2019. The time interval is 1 day. Each operator is
represented by a unique integer ID. The count is the number of messages sent by this operator
for this client during this day.

The hourly successfully delivered count file has three columns, namely, date time, oper-
ator and successful-count (see Table 3.2). The dataset consists of all the data that have been
collected fromOctober 3, 2017 to August 18, 2019. The time interval is 1 hour. Each operator
is represented by a unique integer ID. The successful-count is the number of messages sent
by this operator for this client during an hour starting from the datetime stated and were
successfully delivered.

The hourly total count file (see Table 3.3) is similar to the hourly successfully delivered
count file. The columns about datetime and operator are exactly the same as the hourly
successfully delivered count file. The only di�erence is that the the column about successful-
count is replaced by count, which indicate the total number of messages sent by this operator
for this client during an hour starting from the time stated.

3.3 Models
We have implemented three models and use them for the experiments. Model I is a multi
layer regression model, while both model II and model III include an encoder-decoder which

18



3.3 Models

Table 3.2: The hourly successfully delivered count file for a client
company, to protect client company’s privacy, the operator and
successful-count is not the real operator and successful-count of the
client company. It is just an example to give reader a sense how the
data was given

Index datetime Operator successful-count
1 2017-10-03 00:00:00 1 9900
2 2017-10-03 00:00:00 2 5000
3 2017-10-03 00:00:00 3 4820
4 2017-10-03 01:00:00 1 7800
5 2017-10-03 01:00:00 2 6000
6 2017-10-03 01:00:00 3 4500
7 2017-10-03 02:00:00 1 10000
8 2017-10-03 02:00:00 2 4900
9 2017-10-03 02:00:00 3 4960
... ... ... ...
16723 2019-08-18 22:00:00 1 6000
16724 2019-08-18 22:00:00 2 11000
16725 2019-08-18 22:00:00 3 7500
16726 2019-08-18 23:00:00 1 10000
16727 2019-08-18 23:00:00 2 6000
16728 2019-08-18 23:00:00 3 7000

is implemented by two-layer LSTM cells.

3.3.1 Model I
Model I is a regression model which has three fully connected layers, with 128, 64, 16 hidden
units, respectively (see Figure 3.1). This architecture is chosen because the supervisors rec-
ommended. The input is a sequence of values, daily or hourly.The output could be the value
of next day or next hour.
### DEFINE REGRESSION MODEL ###
inputs = Input(shape =( X_train .shape [1], X_train .shape [2]))
flat = Flatten ()( inputs )
dense1 = Dense (128)(flat)
dense2 = Dense (64)( dense1 )
dense3 = Dropout (0.3)( dense2 )
dense4 = Dense (16)( dense3 )
dense5 = Dropout (0.3)( dense4 )
out = Dense (1)( dense5 )

model = Model(inputs , out)
model. compile (loss=’mse ’, optimizer =’adam ’, metrics =[’mse ’])

### FIT MODEL ###
history = model.fit(X_train , y_train , epochs =2, batch_size =128)

19
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Table 3.3: The hourly total count file for a client company, to pro-
tect client company’s privacy, the operator and count is not the real
operator and count of the client company. It is just an example to
give reader a sense how the data was given

Index datetime Operator count
1 2017-10-03 00:00:00 1 10000
2 2017-10-03 00:00:00 2 5000
3 2017-10-03 00:00:00 3 5000
4 2017-10-03 01:00:00 1 8000
5 2017-10-03 01:00:00 2 6000
6 2017-10-03 01:00:00 3 6000
7 2017-10-03 02:00:00 1 10000
8 2017-10-03 02:00:00 2 5000
9 2017-10-03 02:00:00 3 5000
... ... ... ...
16723 2019-08-18 22:00:00 1 6000
16724 2019-08-18 22:00:00 2 11000
16725 2019-08-18 22:00:00 3 8000
16726 2019-08-18 23:00:00 1 10000
16727 2019-08-18 23:00:00 2 8000
16728 2019-08-18 23:00:00 3 7000

3.3.2 Model II
Zhu and Laptev (2017) proposed the following neural network architecture for time series
prediction (see Figure 3.2). Given an input time series, the encoder constructs the learned
embedding, and concatenate it with external features, and then feed the final input to the
final prediction network (Zhu and Laptev, 2017).

The neural network can be divided into two components:

• an encoder-decoder framework that is used to capture the inherent pattern in the time
series that is learned during pre-training (Zhu and Laptev, 2017)

• a prediction network that takes the learned embedding from encoder-decoder and
potential external features as input (Zhu and Laptev, 2017)

We adopted this architecture. The input and output is the same as model I. The external
features are the features that relate to the target. For example, Zhu and Laptev (2017) use
previous 28 days daily completed trips to predict the completed trips of the upcoming day,
one of the external features could be the temperature of the upcoming day. Since we do not
have any external features in our dataset, we will not concatenate any external features.

Encoder-Decoder
We introduced an encoder-decoder in model II and model III.

20
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Figure 3.1: Model I

LSTM LSTM LSTM LSTM

𝑿𝟏

𝑿𝑻+𝟏 𝑿𝑻+𝑭

𝑿𝑻 𝑿𝑻−𝑭+𝟏 𝑿𝑻

External 
Features

Prediction Net

Forecast

Learned 
Embedding

Encoder Decoder
Pre-training

Inference

… …

Figure 3.2: Model II. After Zhu and Laptev (2017)
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The encoder is trained to extract the representative features from a time series and the
decoder is used to reconstruct the time series from the encoded space (Zhu and Laptev, 2017).
During pre-training, we fit the encoder that can extract representative embeddings from a
time series, which could provide useful features for prediction (Zhu and Laptev, 2017).

When predicting the test set, the quality of encoding of every sample will give informa-
tion about how close it is to the training set.

Following Cerliani (2019), we implemented the encoder-decoder framework using two-
layer LSTM cells, with 128 and 32 hidden states, respectively (Cerliani, 2019).

Here is a code snippet for the Encoder-Decoder structure (Cerliani, 2019).
### DEFINE LSTM AUTOENCODER ###
inputs = Input(shape =( sequence_length , 1))
encoded = LSTM (128 , return_sequences =True , dropout =0.3)(inputs ,

training =True)
decoded = LSTM (32, return_sequences =True , dropout =0.3)(encoded ,

training =True)
out = TimeDistributed (Dense (1))( decoded )

autoencoder = Model(inputs , out)
autoencoder . compile ( optimizer =’adam ’, loss=’mse ’, metrics =[’mse ’])

### TRAIN AUTOENCODER ###
autoencoder .fit(X_train , X_train , batch_size =64, epochs =12, shuffle

=True)

### ENCODE INPUTS ###
encoder = Model(inputs , encoded )
XX = encoder . predict (X)

Prediction Network
The encoder-decoder could be seen as an intelligent feature-extraction black box after it is
pre-trained. We extract the last LSTM cell states of the encoder as learned embedding (Zhu
and Laptev, 2017). Using the learned embedding as features, we can train the prediction
network to do forecasting (Zhu and Laptev, 2017). External features can be concatenated to
the embedding vector and passed together to the final prediction network (Zhu and Laptev,
2017). Since external features are not available in our datasets, wewill just pass the embedding
vector to the final prediction network (Zhu and Laptev, 2017).

We use the same regression model as model I as the prediction network.

Inference
After we trained the full model, we only need to involve the encoder and the prediction
network for the inference (Zhu and Laptev, 2017).

The model uncertainty η can be estimated by applying MC dropout to both the encoder
and the prediction network (Zhu and Laptev, 2017). We can construct an approximateα-level
prediction interval by [ŷ∗ − Zα/2η, ŷ∗ + Zα/2η] where Zα/2 represents the upper α/2 quantile
of a standard normal (Zhu and Laptev, 2017).

According to Zhu and Laptev (2017), the uncertainty estimation is relatively stable across
a range of the drop out probability, p, so we could just choose the one that achieves the best
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Figure 3.3: Model proposed by Laptev et al. (2017)

performance. The standard error of the estimated prediction is proportional to 1/
√

B, where
B is the number of iterations (Zhu and Laptev, 2017). Zhu and Laptev (2017) pointed out that
to achieve a stable estimation, a few hundreds of iterations are enough. In our experiments,
we find that 100 iterations is enough to reach a stable estimation for our datasets.

3.3.3 Model III

Laptev et al. (2017) proposed another model architecture (see Figure 3.3), which is quite sim-
ilar to what Zhu and Laptev (2017) proposed.

The model first primes the network by auto feature extraction, which is important to
catch complex time series dynamics (Laptev et al., 2017). This is di�erent from the standard
feature extraction methods where the features are manually derived (Laptev et al., 2017).
Then we use an ensemble technique (e.g., averaging) to aggregate the feature vectors (Laptev
et al., 2017). The new input are then concatenated with the final vector before they are fed
to LSTM Forecaster to predict the results. Laptev et al. (2017) found that it produced better
results to have a separate auto-encoder module.

Following Cerliani (2019), we implemented the model in the following way. The input
and output is the same as model I.
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Encoder-Decoder
LSTM encoder-decoder first trained on the training data, then we only use the encoder as a
feature creator (Cerliani, 2019). The encoder could provide a good feature extraction that is
useful for later (Laptev et al., 2017).

We implement the Encoder-Decoder the same way as we did for model II.

Prediction
We implement the prediction part with a LSTM model instead of a regression model (Cer-
liani, 2019). This is the only di�erence between model II and model III. The LSTM model
consists two-layer stacked LSTM cells, with 128 and 32 hidden states, respectively, followed
by a fully connected layer for the final output. The following is a code snippet for the pre-
diction model (Cerliani, 2019).
### DEFINE FORECASTER ###
inputs3 = Input(shape =(XX[: train.shape [0]]. shape [1], XX[: train.

shape [0]]. shape [2]))
lstm1 = LSTM (128 , return_sequences =True , dropout =0.3)(inputs3 ,

training =True)
lstm1 = LSTM (32, return_sequences =False , dropout =0.3)(lstm1 ,

training =True)
dense1 = Dense (50)(lstm1)
out3 = Dense (1)( dense1 )

model3 = Model(inputs3 , out3)
model3 . compile (loss=’mse ’, optimizer =’adam ’, metrics =[’mse ’])

### FIT FORECASTER ###
history = model3 .fit(X_train1 , y_train1 , epochs =15, batch_size =256 ,

verbose =2, shuffle =True)
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Chapter 4

Evaluation

This chapter will first present the experiment results one by one, and then we will discuss
the results.

4.1 Results
In this chapter, we present the results in figures and tables to provide a good overview. The
discussion will provide our thoughts on the experiment results.

4.1.1 Prediction for a client’s traffic next day
First we preprocessed the daily count file by grouping theCount byDate (see Table 4.1 below).
We divide the data into training sets and test sets, with an 80-20 split, which is a normal
practice.

We constructed the samples by using a sliding window with step size one, where each
slidingwindow contains the previous 20 days as input, and intended to forecast the upcoming
day (Zhu and Laptev, 2017). In fact, we have tried di�erent window size and find that 20 days
works best among them. Following Cerliani (2019), we transform the raw data using scikit
learn standard scaler. At test time, we reverted the transformations to obtain predictions at
the original scale.

Then we apply model I, model II and model III respectively to the data for 100 times. As
we explained before, we can achieve a stable estimation for our datasets with 100 iterations.
Figure 4.1 shows the training data used for this experiment. Figures 4.2, 4.3 and 4.4 visualize
the true values and our predictions of a client’s tra�c next day based on its tra�c during last
20 days. True values are shown with the yellow line, and predictions are shown with the blue
line, where the 95% prediction band is shown as the light blue area.

Table 4.2 show the mean of the mean absolute error for this 100 times prediction, as well
as how many percentage of the ground truth values lie outside the 95% prediction interval.
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Figure 4.1: Training data for predicting for a client’s tra�c next day
The horizontal (x) axis represent time in days, and the vertical (y)
axis represent the count in units
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Figure 4.2: Prediction for a client’s tra�c next day model I
The horizontal (x) axis represent time in days, and the vertical (y)
axis represent the count in units
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Figure 4.3: Prediction for a client’s tra�c next day model II
The horizontal (x) axis represent time in days, and the vertical (y)
axis represent the count in units
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Figure 4.4: Prediction for a client’s tra�c next day model III
The horizontal (x) axis represent time in days, and the vertical (y)
axis represent the count in units
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Table 4.1: The daily count file for a client company has been prepro-
cessed by aggregating the count of di�erent operators on the same
date. This new file is used for Prediction for a client’s tra�c next
day

Index Date Count
1 2013-05-06 400000
2 2013-05-07 460000
3 2013-05-08 430000
... ... ...
2295 2019-08-17 490000
2296 2019-08-18 530000

Table 4.2: Prediction for a client’s tra�c next day

Model Model I Model II Model III
Mean error 0.3014 0.09840 0.2412
Percentage 0% 0% 2.273%

4.1.2 Prediction for a client’s traffic through an op-
erator next day

We preprocess the daily count file by filtering the entries by operators. For example, Table
4.3 shows the preprocessed data for one operator.

Then we did a 80-20 split on the data and created samples and target the same way as in
Sect. 4.1.1, apply model I, model II and model III respectively to the data each for 100 times.

Figure 4.5 shows the training data for this experiment. Figures 4.6, 4.7 and 4.8 show the
prediction results of a client’s tra�c through this operator next day based on its tra�c during
last 20 days. True values are shown with the yellow line, and predictions are shown with the
blue line, where the 95% prediction band is shown as the light blue area.

Table 4.4 show the mean of the mean absolute error for this 100 times prediction, as well
as how many percentage of the ground truth values lie outside the 95% prediction interval.

4.1.3 Prediction for a client’s traffic next month
We use the preprocessed data from Table 4.1 and split the first 80% of it into a training set,
and the last 20% into a test set. In other words, the first 80% of the data is training set and
the last 20% of the data is test set.

We constructed the samples by using a sliding window with step size one, where each
sliding window contains the previous 20 days as input, and intended to forecast the sum of
the count of the upcoming 30 days (Zhu and Laptev, 2017). We tried to use di�erent window
size for the prediction, and find that 20 days is the best choice. Following Cerliani (2019),
the raw data are transformed using scikit learn standard scaler (Zhu and Laptev, 2017). At
test time, we reverted the transformations to obtain predictions at the original scale.
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Figure 4.5: Training data for predicting a client’s tra�c through an
operator next day
The horizontal (x) axis represent time in days, and the vertical (y)
axis represent the count in units
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Figure 4.6: Prediction for a client’s tra�c through an operator next
day model I
The horizontal (x) axis represent time in days, and the vertical (y)
axis represent the count in units
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Figure 4.7: Prediction for a client’s tra�c through an operator next
day model II
The horizontal (x) axis represent time in days, and the vertical (y)
axis represent the count in units
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Figure 4.8: Prediction for a client’s tra�c through an operator next
day model III
The horizontal (x) axis represent time in days, and the vertical (y)
axis represent the count in units
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4.1 Results

Table 4.3: The daily count file for a client company preprocessed to
be used for prediction for a client’s tra�c through an operator next
day

Index Date Operator Count
1 2013-05-06 1 200000
2 2013-05-07 1 250000
3 2013-05-08 1 210000
... ... ... ...
2295 2019-08-17 1 120000
2296 2019-08-18 1 210000

Table 4.4: Prediction for a client’s tra�c through an operator next
day

Model Model I Model II Model III
Mean error 0.2256 0.1367 0.1888
Percentage 2.954% 2.727% 7.727%

Then we apply models I, II and III respectively to the data each for 100 times. Figures 4.9,
4.10 and 4.11 show the prediction results of a client’s tra�c next month based on its tra�c
during last 20 days. True values are shown with the yellow line, and predictions are shown
with the blue line, where the 95% prediction band is shown as the light blue area.

Table 4.5 shows the mean of the mean absolute error for this 100 times prediction, as well
as how many percentage of the ground truth values lie outside the 95% prediction interval.

4.1.4 Prediction for a client’s successful delivery rate
next hour

First we use pandas to preprocess the hourly successfully delivered count file and the hourly
total count file to calculate the SDR for each datetime entry (see Table 4.6 below).

We split the dataset in a 80–20 ratio, meaning the first 80% of the data is used for training
and the rest of the data is used for testing. This is a common practice. We constructed the
samples by using a sliding window with step size one, where each sliding window contains
the previous 20 hours as input, and intended to forecast the upcoming hour (Zhu and Laptev,
2017). We actually tried di�erent window sizes, and find 20 hours produce the best prediction
results.

Then we apply models I, II and III respectively to the data for 100 times. Figure 4.12
shows the training data for this experiment. Figures 4.13, 4.14 and 4.15 show the prediction
results of a client’s SDR next hour based on its SDR during last 20 hours. True values are
shown with the yellow line, and predictions are shown with the blue line, where the 95%
prediction band is shown as the light blue area.

Table 4.7 shows the results the same way as before.
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Figure 4.9: Prediction for a client’s tra�c next month model I
The horizontal (x) axis represent time in months, and the vertical
(y) axis represent the count in units
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Figure 4.10: Prediction for a client’s tra�c next month model II
The horizontal (x) axis represent time in months, and the vertical
(y) axis represent the count in units
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Figure 4.11: Prediction for a client’s tra�c next month model III
The horizontal (x) axis represent time in months, and the vertical
(y) axis represent the count in units
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Figure 4.12: Training data for predicting a client’s successful delivery
rate next hour
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Figure 4.13: Prediction for a client’s successful delivery rate next
hour model I
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Figure 4.14: Prediction for a client’s successful delivery rate next
hour model II
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4.2 Discussion

Table 4.5: Prediction for a client’s tra�c next month

Model Model I Model II Model III
Mean error 0.4705 0.2037 0.3293
Percentage 1.460% 0% 17.76%

Table 4.6: The hourly successfully delivered Rate for a client com-
pany

Index datetime successful-count Count SDR
1 2017-10-03 00:00:00 19720 20000 0.986
2 2017-10-03 01:00:00 18300 20000 0.915
3 2017-10-03 02:00:00 19860 20000 0.993
... ... ... ... ...
5574 2019-08-18 22:00:00 24500 25000 0.98
5575 2019-08-18 23:00:00 23000 25000 0.92

4.1.5 Prediction for a client’s successful delivery rate
through an operator next hour

First we use pandas to preprocess the hourly successfully delivered count file and the hourly
total count file to filter the successful-count and count of this operator for each datatime
entry, thenwemerge the dataframe and calculate the SDR for each datetime entry by dividing
its successful-count with its count (see Table 4.8 below).

Then we created the samples the same way as in Sect. 4.1.4 and applied models I, II and III
respectively to the data for 100 times. Figure 4.16 shows the training data for this experiment.
Figures 4.17, 4.18 and 4.19 show the prediction results of a client’s SDR through an operator
next hour based on its SDR through the same operator during last 20 hours. True values
are shown with the yellow line, and predictions are shown with the blue line, where the 95%
prediction band is shown as the light blue area.

Table 4.9 shows the results the same way as before.

4.2 Discussion
We can see from Table 4.2, Figures 4.2, 4.3 and 4.4 that when predict for a client’s tra�c next
day, model II perform better than model III due to its smaller mean absolute errors. We can
also see that all the true values fall within 95% prediction interval of model I and model II.
While model III could detect some anomaly points which fall out side of its 95% prediction
interval.

We can see the similar situation from Table 4.4, Figures 4.6, 4.7 and 4.8 that Model II is
better than Model III when predict a client’s tra�c through an operator next day.

According to Table 4.5, Figures 4.9, 4.10 and 4.11 we can see the similar trend when
predict a client’s tra�c nextmonth. Comparing with Table 4.2, we can tell that all themodels
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Figure 4.15: Prediction for a client’s successful delivery rate next
hour model III
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Figure 4.16: Training data for predicting a client’s successful delivery
rate through an operator next hour
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Figure 4.17: Prediction for a client’s successful delivery rate through
an operator next hour model I
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Figure 4.18: Prediction for a client’s successful delivery rate through
an operator next hour model II
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Table 4.7: Prediction for a client’s successful delivery rate next hour

Model Model I Model II Model III
Mean error 0.05666 0.06955 0.08228
Percentage 0.3672% 0.5508% 3.274%

Table 4.8: The hourly successfully delivered Rate for a client com-
pany through an operator

Index datetime Operator successful-count Count SDR
1 2017-10-03 00:00:00 1 9900 10000 0.99
2 2017-10-03 01:00:00 1 7800 8000 0.975
3 2017-10-03 02:00:00 1 10000 10000 1
... ... ... ... ... ...
5574 2019-08-18 22:00:00 1 6000 6000 1
5575 2019-08-18 23:00:00 1 10000 10000 1

perform better in predicting next day than next month since all its mean absolute error in
Table 4.5 is higher than its correspond model in Table 4.2.

From Table 4.7, Figures 4.13, 4.14 and 4.15 we can see that model II is still a bit better
than model III due to slightly lower mean absolute error. Model III has more true values
outside the 95% prediction interval, which means it can detect more anomaly points. This is
probably because it has a narrow prediction interval as we see from Figure 4.15. We can see
the similar trend from Table 4.9, Figures 4.17, 4.18 and 4.19 when predict a client’s successful
delivery rate through an operator next hour.

We have explored di�erent parameters for each model and the results presented here
are the best result for each model we found so far. Based on the experiment results, we
can see that adding a LSTM encoder-decoder for feature extraction is only slightly better
than the regression model given the datasets from Sinch. In fact for some datasets, adding
a LSTM encoder-decoder does not improve the prediction results. In general, when we use
the encoder-decoder structure, a regression forecaster give better prediction results than a
LSTM forecaster since the former usually has lower mean absolute error. However the latter
usually could detect more anomaly points. But it depends on the datasets, sometimes, the
latter could detect too many anomaly points and some of them are false anomaly.

We can also see that the models perform better in predict number of messages next day
than next month since all the mean absolute error is smaller when predict next day than next
month.

We also notice that more anomaly points are detected when predict tra�c volume or
SDR of a single operator of a client than the total tra�c volume or SDR of this client. This
is probably because the total tra�c volume and SDR of this client is more stable than its
individual operator.
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Figure 4.19: Prediction for a client’s successful delivery rate through
an operator next hour model III

Table 4.9: Prediction for a client’s successful delivery rate through
an operator next hour

Model Model I Model II Model III
Mean error 0.05960 0.03738 0.08691
Percentage 0.4365% 0.5373% 4.298%
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Chapter 5

Conclusion and future work

In the thesis we compare the performance of three di�erentmodels for time series prediction.
The first one is a regression model, the second one is a model with a LSTM encoder-decoder
and a regression forecaster, the third one is a model with a LSTM encoder-decoder and a
stacked LSTM forecaster.

We implemented these threemodels and apply themwith datasets about daily andmonthly
mobile message tra�c volume as well as hourly Successful Deliver Rate. The datasets are
provided by Sinch, which is a telecommunication and cloud communications platform as a
service company. We used the MC dropout technique to estimate uncertainty for the fore-
casting and detect anomaly.

Overall, the prediction results produced by the models are very good, since the mean
absolute error is very low and most of the real values lie within 95% prediction interval. Cur-
rently Sinch does not have any method to predict tra�c volume and SDR, and the company
can not detect anomaly neither, so this thesis will fulfill its need. The architecture that in-
cludes a LSTM encoder decoder could improve the model performance on Sinch data, but
not in all cases.

When the model already use a LSTM encoder decoder, a regression forecaster actually
could outperform a stacked LSTM forecaster in prediction since the former usually has lower
mean absolute errors. However the latter usually could detect more anomaly points, some-
times it could detect too many anomaly points and some of them are false anomaly.

The models can detect more anomaly points with a client’s single operator’s data than
its all operator’s data together. This is probably because a single operator’s data is more
fluctuated while a client’s total data is more stable. The models also perform better on next
day prediction than next month prediction.

Our future work will be centered around gross profit prediction using machine learning
models. We will continue to use these models to predict daily average revenue per message
and daily average cost per message and combine these to predict the gross profit. We will also
explore to predict the gross profit in a longer time span, such as next eighteen months.
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Time series prediction is the use of a model to predict future values based on previously
observed values. It has become more and more popular among businesses in the world.
This thesis was done in collaboration with a telecommunication company to help the
company to predict their mobile message traffic volume and Successful Delivery Rate.
This could help the company to control their cost and product quality.

Time series prediction is about predicting the fu-
ture based on the data we have about the past. It
has already been widely used in financial institu-
tions such banks, hedge funds, etc. Recently it be-
came more and more common among all the busi-
nesses. The thesis is done in collaboration with a
company called Sinch. The main business of Sinch
is to deliver mobile messages for its client compa-
nies to their customers. The figure on the right
shows the route of the messages. Sinch would like
to predict their client company’s daily traffic vol-
ume and hourly successful delivery rate.
Time series prediction could be carried out with

different machine learning models. It become pop-
ular to use deep learning models to do the predic-
tion.
In this thesis, we have applied three different

machine learning models to a dataset provided by
Sinch. The dataset contains daily and hourly mo-
bile message traffic volume during the last years.
After we preprocessed the data, we also get the
hourly successful delivery rate. One of the mod-
els we used is a regression model. The two other
models include a encoder-decoder.
The experiment results show that all the mod-

els perform well in traffic volume prediction and
anomaly detection. The model architecture that
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includes a encoder-decoder could outperform the
regression model but not in all cases, due to the
difference of the datasets. The results also show
that it is easier to predict next day than next
month.
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