
hello this is random text

Door Simulator
Creating automated tests

Annie Ydström

2020

Master thesis in
Electrical Measurements

Supervisors: Christian Antfolk, Johan Nilsson
Anders Löfgren

ASSA ABLOY

Department of Biomedical engineering





Abstract
This report describes the development of a simulator for the simula-
tions if industrial doors. The project has been conducted at ASSA
ABLOY Entrance Systems, industrial door solutions in Landskrona.

The purpose of this thesis project was to design and implement a sys-
tem that can replicate the behaviour of an industrial door on a test-
rig. The design should follow requirements set by ASSA ABLOY
such as function, ease of use and potential for further development
and should include the result from measurements on real indus-
trial doors at ASSA ABLOY’s R&D department. The development
process includes determining specifications, taking measurements,
generating a concept, implementation of said concept, testing and
further development.

For the measurements on the doors the position of the door was
recorded using a magnetic encoder while the torque was measured
using a strain gauge. The simulator was a program made for a
preexisting rig that utilises the same type of encoder used during
measurements on the doors and a servo motor to limit the torque
on the rig. Encoder values read on the simulator rig was connected
to torque values from the measurements and transformed into a
torque limit set on the servo. Thus the rig could emulate the same
behaviour as a real door.

The thesis has resulted in a simulation program that can simulate
three doors, a process for making measurements on real doors that
could then be simulated and a base which can be further developed
by ASSA ABLOY. The program can be extended to include other
doors within ASSA ABLOY and the program can also be extended
to include more types of movements on the simulated doors.

Keywords: Python, Simulator, PicoScope, Industrial door, Torque
measurements, MATLAB, LabView, Instrument control



this is just filler



Preface
The master thesis sought to develop a door simulator for ASSA
ABLOY Entrance Systems, Industrial Door Solutions in the spring
of 2020. This thesis concludes the engineering studies in Engineering
Physics for Annie Ydström at LTH, Lund University.

Acknowledgements
Thank you to ASSA ABLOY for the opportunity to do my master
thesis at their company and a big thanks to the R&D Team at
IDDS for all their help with this project. A special thanks to my
supervisor at ASSA ABLOY, Anders Löfgren for all the discussions
and suggestions to make this project successful.

Also thanks to Mitsubishi Electric for their support during the setup
of the simulation rig.

Finally, a thank you to the supervisors Christian Antfolk and Johan
Nilsson, Lars Wallman, the examiner. Also, thanks to the opponent
of this master thesis for your comments on this work.



Contents
1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose and goal . . . . . . . . . . . . . . . . . . . . 1
1.3 Disposition . . . . . . . . . . . . . . . . . . . . . . . 1

2 Method 3
2.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Torque Measurement . . . . . . . . . . . . . . . . . . 4

2.2.1 Theory . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Measurements . . . . . . . . . . . . . . . . . 10

2.3 Door Simulator . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Theory . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Calibration . . . . . . . . . . . . . . . . . . . 19
2.3.4 Coding . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Feedback . . . . . . . . . . . . . . . . . . . . 23

3 Result 24
3.1 Torque Measurement . . . . . . . . . . . . . . . . . . 24

3.1.1 Calibration . . . . . . . . . . . . . . . . . . . 24
3.1.2 Matlab results . . . . . . . . . . . . . . . . . 25

3.2 Door Simulator . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Calibration . . . . . . . . . . . . . . . . . . . 34
3.2.2 Simulation program . . . . . . . . . . . . . . 35
3.2.3 Results from feedback . . . . . . . . . . . . . 35

4 Discussion and Conclusions 38
4.1 Torque measurements . . . . . . . . . . . . . . . . . 38
4.2 Simulation program . . . . . . . . . . . . . . . . . . 39
4.3 Further development . . . . . . . . . . . . . . . . . . 40
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Final thoughts . . . . . . . . . . . . . . . . . . . . . 41

A Code: MATLAB 43



B Code: Door Simulator 47
B.1 Simulation runner . . . . . . . . . . . . . . . . . . . 47
B.2 Installation runner . . . . . . . . . . . . . . . . . . . 48
B.3 Simulator . . . . . . . . . . . . . . . . . . . . . . . . 49
B.4 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.5 Servo . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.6 Communication . . . . . . . . . . . . . . . . . . . . . 69
B.7 Help functions . . . . . . . . . . . . . . . . . . . . . 73



Chapter 1

Introduction
1.1 Background
This master thesis is written for ASSA ABLOY Industrial Door
Solutions. ASSA ABLOY manufactures industrial doors, some of
which uses operators/motors to open and close the doors. The op-
erators needs to meet certain requirements and therefore the oper-
ators/motors needs to be tested for different prerequisites such as
different temperatures or insufficient power supply. As it can be
cumbersome to build an entire door for testing, simulating a door
would be a good solution. Simulations for doors that vary in size,
weight and speed is necessary since ASSA ABLOY manufactures
doors of different sizes and speeds.

ASSA ABLOY has a test-rig intended to be used for door simu-
lations. The motor/operator is mounted on an axle and a servo
motor is then used to add an external torque to this axle. This
torque should be dynamically set depending on the position of the
”door”, thus simulating a door opening and closing.

1.2 Purpose and goal
The purpose of this project is to create a program which will handle
the torque setting and keep track of the door position. The goal is
to recreate a behaviour on the test-rig that resembles that of a real
door.

1.3 Disposition
In order to achieve the goal the project and the report is split into
three main tasks:

1



• The collecting and presenting of data from real doors.

• The creation of a simulation program using results from the
measurements.

• The evaluation of the test-rig and simulation program.

2



Chapter 2

Method
The two main parts of the project, apart from the evaluation, are the
torque measurements and the construction and coding of the simu-
lation program. The torque measurements will serve as both input
to the simulation program and as a way to evaluate the outcome of
the door simulator.

Figure 2.1: Figure shows an overview of the system.

Figure 2.1 shows a block diagram of the system with the simulator
system and the feedback system and how they are connected to
the DUT (device under test). Please note that the servo and the
DUT are mounted on one drive shaft. The feedback system and
the simulator system are not connected to each other, rather the
feedback is evaluated manually.

3



2.1 Limitations
As the project spans over several areas some limitations will be
necessary. These include:

Control of the DUT will be omitted since the program will be too
complex to finish during this project.

What type of door-movements are to be included in the simulation.
Some movements can be more complicated and hard to implement,
such as reversing of the door and response to stop command. There-
fore the type of movements that are to be included in this project
are up (door opening) and down (door closing).

Enable code to run from Rasberry Pi and creating a GUI. This is not
necessary for the simulator and is left as a possible improvement.

Automation of the feedback and incorporation of it into the simu-
lator in order to improve the results. This will be left as a possible
improvement for future development.

2.2 Torque Measurement
The purpose of the torque measurements is to fit a torque-value
to a specific position as the door opens and closes. To read the
position an encoder will be mounted on the same axle as the mo-
tor/operator and a sensor, a tension load cell, will be mounted in
place of the ”torque bracket”, which holds the motor/operator in
its place. For further information about the mounting of the sensor
and the encoder see section ”Mounting”.

2.2.1 Theory

Sensors

The sensors used for torque measurements are of a strain gauge
type in a tension compression load cell. It is used to measure the
force the motor/operator puts on the ”torque bracket” when opening
and closing the door. The results can be used to calculate the
torque. The gauge factor for a strain gauge k is given by equation
2.1 with resistance R end length L. This is then rewritten as relative

4



resistance r divided by the elongation [1].

k =
∆R
R

∆L
L

= r

ε
(2.1)

In general strain gauges are inclined to be affected by changes in
temperature. To avoid this problem it is advised that the strain
gauge is mounted in a Wheatstone-bridge to compensate for any
variations in temperature [1]. The output of a strain gauge tend to
be small which is why during measurements an amplifier is used.
Figure 2.2a shows the load cell used. Note that two sensors are
mounted on it, one on each side. The wiring of these sensors is
shown in figure 2.2b which is a Wheatstone bridge composed of
strain gauges and the additional sense wires, marked ”brown” and
”blue” in figure 2.2b, are installed do compensate for temperature
effects and/or cable extension [2].

(a) Figure shows transducer
used for measurements [2].

(b) Figure shows the Wheatstone
bridge for the transducer 2.2a, [2].

Figure 2.2: These figures shows information about the transducer used
for torque measurements [2].

Since the output from the sensors is measured in voltage rather than
actual torque values it will be necessary to measure the output for
a number of known torque values in order to calibrate the mea-
surement arrangement and acquire a transformation constant. It is
assumed that ratio between measured output from the sensors and

5



the torque value is linear (according to previous measurement done
by ASSA ABLOY).

Encoder

The encoder used is a magnetic multi-turn absolute rotary encoder
[3] and the general structure is shown in figure 2.3. Similarly to most
rotary encoders the encoder used allows the shaft to rotate inside
the housing where electronics are housed [4]. The magnetic encoder
uses a series of magnetic poles (2 or more) to represent the encoder
position to a magnetic sensor (typically magneto-resistive or Hall
Effect) [3]. Being a multi-turn absolute encoder each new position
read represents a number of complete turns in combination with
the current angular position [5]. The magnetic sensor reads the
magnetic pole positions to data values in this case the green and
yellow data wires. The data wires, green and yellow, are connected
to a RS485 to USB converter which converts the data using RS485
interface [6]. Values from the encoder are read through LabView
(or using Python serial communication).

Figure 2.3: Figure shows the encoder used [7].

The functionality needed for this project is to read the current posi-
tion of the encoder. According to the specification [7] this function-
ality is called Position request which is a byte consisting of ”A0”
written in hexadecimal form. The response to this request consists
of 5 bytes; 0 (LSB) to 4 (MSB) represents the current position as

6



an unsigned integer (int32) written in hexadecimal form. The last
byte represents the checksum of the previous bytes. A visual repre-
sentation of the response can be seen below.

LSB MSB Xor Checksum
?? ?? ?? ?? ??

As the encoder has both a maximum speed of rotation of 6000 RPM
and a maximum acceleration of 100 Rad/s2 there is a resolution
of 720 steps per turn [7]. There is also a limit to how often you
can request the encoder value. According to the specification [7]
the minimum time between requests is 6.4 ms which means the
sample rate of the LabView program and the Door Simulator has
its limits. However, this limit should be small enough not to affect
the measurements as the top speed of the doors, 1 m/s or 117 RPM ,
is slow in comparison to the maximum RPM of the encoder.

7



Mounting

The strain gauge sensor is mounted as the ”torque bracket” as shown
in figures 2.4a and 2.4b. The reason for mounting the sensor this
way is to measure the resulting force from the motor/operator.

(a) Figure shows installation of
the operator before mounting the
sensor.

(b) Figure shows the complete
mounting of the sensor

Figure 2.4: These figures shows the before and after of mounting the
sensor.

Figure 2.5 shows the resulting forces on the load cell during opening
and closing, please note that the figure only shows the resulting
forces on the load cell and not the inner forces which are pointed in
the opposite direction. In the figure red arrows show the resulting
forces on the load cell, the black, curved arrows represents the torque
of the motor and the blue arrows represents the door movement.
Opening results in a negative voltage due to extension of the load
cell. On the other hand the load cell will give a positive response
during closing due to compression of the load cell.

8



Figure 2.5: Figure shows the resulting forces on the load cell from
door movements (not the inner forces). Part of the figure comes from the
product sheet for overhead sectional doors [8].

The encoder is mounted on the axis as shown in figure 2.6. As the
start-position is set by the user it is set to when door is in its opened
position and set to zero, the position values as the door closes will
be defined as negative. It is important to keep the encoder from
rotating with the axle therefore a metal band is fastened to the
apparatus and strapped to the structure holding the door.

Figure 2.6: Figure shows the mounting of the encoder.

9



2.2.2 Measurements
When performing torque measurements the equipment specified in
section ”Equipment” below needs to be installed as described in
section 2.2.1 and then a calibration measurement is performed. Af-
terwards the measurement is taken in accordance with the mea-
surement protocol described below in the section ”Measurement
protocol”.

The doors used during torque measurements are A10, A20 and A60,
all of type ”Overhead Sectional Door” an example of which can be
seen in figure 2.7. All of the doors are part of the test-hall for ASSA
ABLOY in Landskrona. A table containing interesting data about
the different doors is shown below in table 2.1.

Figure 2.7: Figure shows a general sketch of an Overhead Sectional
Door [8].

Door Size (WxH mm) Weight (kg) Operator
A10 8000x4500 800 HD
A20 8000x3500 400 STD
A60 5000x5000 301 MIO

Table 2.1: Information about the doors that are tested in this project.

The operators works with different speeds while opening and closing

10



the doors which will affect the outcome of the torque measurements.
The HD (heavy duty) operator has a top speed of 0.18 m/s both up
and down, STD (standard) has a top speed of 0.25-0.3 m/s up and
down and the MIO operator has a top speed of 1 m/s going up and
0.7 m/s going down.

Equipment

The following is a list of all equipment used during the torque mea-
surements.

• LabView 2015

• Dalmatic: Magnetic Multi-turn encoder with RS485 to USB
converter

• Tension Compression Load Cell; Model 616; Tedea-Huntleigh

• Amplifier

• PicoScope 2205A

• PicoLog 6 Beta program

• Laptop computer

The encoder values were taken using a LabView program which
utilises code from preexisting test-rigs at ASSA ABLOY. The ex-
isting VI’s are used to set up the communication, write commands
and read the current encoder value using LabViews inbuilt VISA
VI’s. Figure 2.8 shows the block diagram of the LabView program.

Figure 2.8: Figure shows main program from the VI which is designed
for reading of encoder values.

11



Experiments during the first measurement will determinate the sam-
pling rate to use for reading encoder values and reading with Pico-
Scope. After running tests on A20 it was decided that the PicoScope
should sample every 10 ms and the encoder reading program should
sample every 20 ms. This is to avoid an unnecessary amount of
duplicates of encoder values.

Calibration measurement

The torque measurements are given in mV and in order to present
these values as torque one must measure the voltage for a couple of
known torque values and then calculate the conversion factor. As
the ratio is assumed to be linear, symmetric values on either side of
zero will be used for the known torque values.

The measurement process is as follows: while measuring with the
PicoScope a torque of known quantity is applied to the axle. The
resulting voltage is noted for four different torques, at zero and two
values during compression and extension respectively.

Measurement protocol

Perform the following steps when measuring the data for torque file.

• Make sure door is installed and at the top position

• Reset the amplifier

• Start recording encoder values

• Start PicoScope recording (5 min)

• Repeat the following sequence twice:

– Close the door and hold closed position for 3 s

– Open the door and hold opened position for 3 s

– Close the door, at the 2m mark press STOP, hold for 3 s

– Close the door and hold closed position for 3 s

– Open the door, at the 2m mark press STOP, hold for 3 s

– Open the door and hold opened position for 3 s

12



– Close the door, at the 2m activate SAFETY to reverse
the door

• Save the data in files marked as:
”door name”_meas_”measurement number”

Creating the torque files

Measurements from the PicoScope is gathered in CSV files and the
encoder values are collected in a text file. Both uses a timestamp
on each value, making it possible to connect the encoder values to a
torque value. In order to make vectors for each movement MatLab
will be used.

During measurements it was observed that the measurements con-
tained a lot of noise. The question asked was if an average of the
torque values should be constructed and it was decided that an av-
erage from four measurements should be used.

Primarily the interest lies in the up- and down-movement therefore
this part was separated from the rest. An average of four up- and
down-movements was created to get a general picture and reduce
noise. The values for the torque measurement was then filtered
using a low pass filter due to high frequency noise on the signal. In
order to select the cut-off frequency, a plot showing the FFT of the
signal was made and the constants of the filter were then tweaked
until the noise was reduced to an acceptable level. It was this result
that was then used to evaluate results from the simulator rig. The
filtered signal was then matched to an encoder value and written
into a text file.

2.3 Door Simulator

In short the door simulator will work by letting the operator (DUT)
run a ”door” up and down at the same time as the encoder values
are read to the computer. Using the encoder value and direction
of movement the program looks up what torque should be set in
a torque file and then writes a command to the servo. Every
time the encoder value reaches the specified top value a counter for
number of cycles should be increased by one. The user should be

13



able to specify the wanted number of cycles and when the simulator
has reached this the program should automatically stop.

2.3.1 Setup
The mechanical setup for the door simulator consists of a rig, see
figure 2.9, a general-purpose AC servo from Mitsubishi Electric [9]
and an external encoder of the same type as used during the torque
measurements. A laptop is used for controlling the system using
a script written in Python3. The reason for writing the code in
this language is to enable the program to be run this code from a
Rasberry Pi through a gui similar to existing test-rigs at ASSA
ABLOY.

The servo engine is controlled by sending commands with RS232C
serial communication and the encoder will also be controlled through
serial communication although using RS485 interface. The encoder
will use code which should work similarly to the code used during
torque measurements since it is the same type of encoder.

Figure 2.9: Figure shows an overview of the structure for the door
simulator rig, curtesy of ASSA ABLOY Entrance Systems IDDS R&D.
Other components such as the DUT and the Servo is mounted onto the
structure.

Mounting

In the following figures the mounting of important components to
the door simulator system are shown. These include the DUT, the

14



Servo and the load cell which is used for feedback.

(a) Mounting of load cell used for
feedback measurements.

(b) Example of how a DUT is at-
tached to the simulation rig.

(c) Mounting of the Servo.

Figure 2.10: Mounting of vital components on the simulation rig.

2.3.2 Theory
Serial communication

The in-built Python library for serial communication will be used
for control of the servo and the encoder. Data-sheets for each instru-
ment specifies which settings will be used when establishing contact
trough serial communication. The communication with each in-

15



strument will be kept in separate threads using Python threading
in order for the communication not to overlap each other. The
data-sheets also specifies the communication protocol for each in-
strument, see section ”Communication protocol”.

Communication protocol

The protocol for communication with the encoder using RS485 is
described in previous chapter 2.2.1. The code for the door simulator
is written to be used in a similar fashion to the LabView code used
during the torque measurements.

The protocol for communication with the servo uses RS232C where
the computer acts as the master to the slave (the servo). There are
two types of messages that can be sent to the servo, each with its
own response, the transmission of data from the master to the slave
and the request of data transmission from the slave to the master.
Figure 2.11 shows the structure for sending data to the servo and its
answer which contains an error code showing if the servo was able
to process the message and/or if an error occurred. Figure 2.12
shows how the data request message and the answer are structured.
Please note that the answer in figure 2.12b also contains an error
code similarly to figure 2.11b.

(a) Figure shows data
transmission from master.

(b) Figure shows data
transmission answer from slave.

Figure 2.11: These figures shows data transmission from master to
slave [9].

16



(a) Figure shows data request
from master.

(b) Figure shows answer for data re-
quest.

Figure 2.12: These figures shows data transmission from slave to mas-
ter [9].

Every number/symbol correlates to a data frame in the message
transmitted or received. The command and the data number is rep-
resented by two frames each whereas the transmitted data can con-
sist of 4, 8, 12 or 16 frames depending on the command. A list of all
parameters and their functionality is described in section 5.1.2 of the
instruction manual [9]. Each number/symbol must be transmitted
in hexadecimal (ASCII code). For example if the decimal number
155 is to be transmitted it must be converted into hexadecimal, 9B,
and then all symbols must each be converted into ASCII numbers,
39 and 42. The translation will be as follows 155→ 9B → 39, 42.

The method for calculating the checksum is to add up all numbers
of the message (in hexadecimal form), taking the two lower digits of
the sum and convert each character into its hexadecimal equivalent.
See section 14.5 of the instruction manual [9].

A lot of the data transmitted from computer to servo is the setting
of parameters, command [8][4] and data number [0][0] to [5][4]. The
data transmitted is to be written in accordance with figure 2.13 [9].
An important thing to take into consideration is the write mode.
If a parameters needs to be set more than once every hour it is
recommended to write to RAM rather than EEPROM [9].

17



Figure 2.13: Figure shows the structure for data when writing to a
parameter [9].

Using results from torque measurements

Torque values are stored in a file were a torque value is assigned to
an encoder value. The script should continuously read the current
position and direction of movement and use this value to collect the
corresponding torque value from the torque file.

Setup on Servo

The purpose of the servo is to limit the torque on the drive shaft,
in practice the servo will create a torque to counteract that of the
DUT such that the total torque on the drive shaft resembles that
measured on the real doors. To do so some settings needs to be made
by setting the parameters 0, 19, 20 and 28 [9]. Parameter 0 sets the
mode of operation which in this case is speed mode. Parameter 19
limits which parameters can be set, by default only parameters 0 to
19 can be set. Therefore the parameter needs to be set to 000C in
order to enable the setting of additional parameters 20 to 49. While
the servo is running and the shaft is stationary the default operation
is to have the servo maintain the stop position. This is not ideal
since this position may not be the current. Instead you can select
parameter 20 so that the stop position is not maintained and the
speed of 0 r/min is performed. Finally, in order to limit the torque
parameter 28, internal torque limit is set. These settings were done
according to recommendations from Mitsubishi Electric.

18



The torque limit is set in percentage form, 0 to 100%, were 100 % is
the maximum torque and 0 means that no torque is produced, [9].

2.3.3 Calibration

As mentioned, the internal torque limit of the servo is set in per-
centage levels and in order to convert the measurements from the
previous chapter, a calibration is required. This is done by setting
an inner torque limit, in percent, and measure the torque needed to
rotate the axle using a torque wrench, values given in Nm. These
values were plotted and a linear equation was fitted to them.

Using this equation combined with the translation constants from
the calibrations on the doors a torque value can be translated from
mV to %, see equation 2.2.

torque_limit =

∣∣∣∣∣ torque · 1
c + b

a

∣∣∣∣∣ (2.2)

Here torque is the measured torque value in mV , a and b are the
coefficients to the linear equation from the rig-calibration and c
is the translation constant from the door calibrations. The torque
limit is rounded of to the nearest integer due to restrictions in setting
range on the servo [9].

2.3.4 Coding

The code is developed continuously throughout the duration of the
project. For the purpose of debugging small unit tests will be cre-
ated for each class, testing the different functionalities of each class.

19



Figure 2.14: Figure shows a UML diagram of the code structure.

The simulation program consists of these five parts each written as
separate Python files.

• Simulation runner

• Simulator Class

• Encoder Class

• Servo Class

• Communication Class

• Help Functions

An important part of the simulation program are the torque files
which connects a torque value to a specific door position i.e. encoder
value. The torque files are written as a text-file and split into two
parts to represent the two directions in which a door can move; up
and down.

Set the right torque value

In order to set the correct torque value the program uses the torque
files created from the torque measurements. When creating the
Simulator object a local dictionary (list) is created by running
the help function load_torque_file which reads a torque file de-
pending on the defined operator- and door-type. While the sim-
ulator is running, it will continuously read the current value and
direction of movement from the encoder, using these values and
to read the correct torque value from the created dictionary using
get_torque_val.

20



Communication between computer and instruments

Since the encoder and the servo utilises RS485 and RS232C respec-
tively the communication is better kept separate. Each instrument
defines its own class, Servo and Encoder, setting up the communica-
tion on a separate thread in the Communication class. Both classes
will contain basic functions for reading and writing to the instru-
ments as well as some more complex functions which are meant to
be used for handling exceptions, encoding messages etc.

Running a simulation

When starting a simulation the user should use the
Simulation_runner.py file, not forgetting to set the variables door,
operator, encoder portname, servo portname and
nbr_of_cycles. The Simulator runner will create an Encoder ob-
ject, a Servo object and a Simulator using these set variables. If
the user has specified it the simulator will do an installation of the
door, otherwise the simulator will clear the E24 error code (which
occurs when the power to the DUT is toggled) by running the DUT
to it’s top position. A simulation will then be run for the specified
number of cycles. The program will accept a keyboard interrupt
and in that case stop the running of the simulator.

In figure 2.15 a sequence chart over the system can be seen. The
process displayed is that of a user starting to run the simulator from
the Simulation_runner.py file.

21



Figure 2.15: Sequence chart.

22



2.3.5 Feedback
In order to evaluate how well the simulator program can emulate
the behaviour of an actual door, a tension load cell will be mounted
on the rig and used similarly to the previous torque measurements,
see figure 2.10a. The load cell will be connected to an amplifier
and the output signal will be measured through a picoscope. This
means it will measure the output from the simulation rig during the
running of the program. The output will then be compared to the
average of the movements which was calculated during the creation
of the torque files.

23



Chapter 3

Result
3.1 Torque Measurement
The following is results from calibration of doors on which the torque
was measured, the torque measurements and the handling of the
measurement data.

3.1.1 Calibration
Tables 3.1 to 3.3 shows the result from calibrating the different
doors. The known torque was varied due to differences in measure-
ment results.

Torque [Nm] Voltage [mV ]
0 1.7 ..3.5
+25 128
-25 -153.79
+50 260.87
-50 -283

Table 3.1: Calibration
measurement on A20.

Torque [Nm] Voltage [mV ]
0 0
+50 83.17
-50 -56.29
+100 303.64
-100 -325.16

Table 3.2: Calibration
measurement on A10.

Torque [Nm] Voltage [mV ]
0 0
+50 107.33
-50 -200.63
+100 427.76
-100 -454.63

Table 3.3: Calibration
measurement on A60.

A plot was done for each calibration measurement and with Mat-
Lab’s basic fit functionality a linear fit was done. The function for
the linear fit can be seen in equation 3.1. The constants to each

24



fitted function for each measurement are displayed in the table 3.4.

y = a · x + b (3.1)

Door a b
A10 2.7941 1.072
A20 5.4781 -9.244
A60 4.1455 -24.034

Table 3.4: Result from basic fit - linear function

When constructing the code these values for a were used in order
to calculate the torque in percent, see equation 2.2.

3.1.2 Matlab results
This section contains results from Matlab calculations of the mea-
surements. Both raw and processed are displayed.

A20

The following results are presentation and calculations from mea-
surements on door A20. Figure 3.1 and 3.2 shows the raw measure-
ment data. The figure 3.4 is a mean of all sequences in 3.2 that
corresponds to the door closing and opening, there are 4 of them.
These values are then filtered using a FIR-filter with an order of 100,
a passband-edge frequency of 100 Hz and a sampling frequency of 96
kHz. These settings where decided upon by first plotting the FFT
for one of the torque measurements and then some experimentation
was done until the filtered values looked alright. The magnitude
response of the filter can be seen in figure 3.3, and plotted in figure
3.5.

A comparison was made for down and up movements between unfil-
tered and filtered measurement data. This comparison can be seen
in figure 3.6. Finally a plot consisting of encoder values and torque
values can be seen in figure 3.7. Please note that since the num-
ber of encoder values was twice that of the torque values for each
encoder value a mean of two torque values was calculated.

25



Figure 3.1: Figure shows the encoder value for each sample.

Figure 3.2: Figure shows the torque value in mV for each sample
from the two measurements which followed the measurement protocol in
section 2.2.1.

26



Figure 3.3: Figure shows the magnitude response for the filter used.

Figure 3.4: Mean of all up and down movements for each sample from
measurements in figure 3.2.

27



Figure 3.5: Filtered signal from figure 3.4 using the filter in figure 3.3.

Figure 3.6: Comparison between filtered and unfiltered mean of up
and down movements for every sample.

28



Figure 3.7: Torque versus encoder values for each sample.

A10

In figure 3.9 the mean of up and down movements from measure-
ments on A10 can be seen. These values were filtered using the filter
in figure 3.3 and the result is displayed in figure 3.10. Finally the
encoder values from figure 3.8 and the torque values from figure 3.10
which were used to create the torque file for door A10 are displayed
in figure 3.11.

29



Figure 3.8: Figure shows the encoder value for each sample.

Figure 3.9: Mean of all up and down movements for each sample.

30



Figure 3.10: Filtered signal from figure 3.9 using the filter in figure
3.3.

Figure 3.11: Torque versus encoder values for each sample.

31



A60

In figure 3.13 the mean of up and down movements from measure-
ments on A10 can be seen. These values were filtered using the
filter in figure 3.3 and the result is displayed in figure 3.14. Finally
the encoder values from figure 3.12 and the torque values from fig-
ure 3.14 which were used to create the torque file for door A10 are
displayed in figure 3.15.

Figure 3.12: Figure shows the encoder value for each sample.

32



Figure 3.13: Mean of all up and down movements for each sample.

Figure 3.14: Filtered signal from figure 3.13 using the filter in figure
3.3.

33



Figure 3.15: Torque versus encoder values for each sample.

3.2 Door Simulator

The following are results from calibration of the simulator rig, the
result of the simulation program and also the results from the feed-
back. All results comes from running tests on a STD motor and
therefore the torque file from measurements on A20 was used.

3.2.1 Calibration

In table 3.5 the measured values for the specified internal torque
limit can be seen. These were plotted and a linear equation was
fitted to the values, equation 3.2. The torque was also measured
while the servo was turned off and a load voltage corresponded to
13 Nm.

34



Internal torque
limit [%] 1 2 3 4 5 6 7 10 15

Output on torque
wrench [Nm] 13.2 20 27 33 39 44 51 71 104

Table 3.5: Internal torque limit and the corresponding output on the
torque wrench.

yrig = 6.434 · x + 6.7997 (3.2)

The constants from equation 3.2 where used as a and b in equation
2.2.

3.2.2 Simulation program
The final version of the code for the door simulator can be found in
appendix B. While testing the code could finish the wanted number
of iterations without any false positives. Interesting information
and instructions to the user are continuously written in the terminal
window.

The code works as intended with some limitations such as the reso-
lution of the set torque function on the servo and the resolution of
the sampled encoder values. The latter can be partly improved by
using a higher sampling rate. The resolution of the encoder values
is also dependant on the DUT as different DUTs can either have a
higher or a lower speed of rotation.

Initial findings when running the code showed that the DUT could
have difficulties opening the door due to the torque limit being set
too high when the DUT tried to open the ”door”. This problem
was addressed by introducing a constant resistance for the first 20
000 encoder values from the bottom position.

3.2.3 Results from feedback
The results from the feedback system will be used to evaluate how
well the simulation program emulates the behaviour of a door.

35



Calibration

In table 3.6 the calibration of the tension load cell used on the
simulation rig for feedback can be seen.

Nm mV
0 29
25 -813
-25 958
50 -1710
-50 1800

Table 3.6: Results from calibration of the tension load cell on the
simulation rig.

Feedback measurements

Two problems occurred while trying to use the feedback system.
Firstly, the amplifier intended for the feedback system had a too
narrow bandwidth to be able to capture the behaviour of the simu-
lator rig. In order to solve this the amplifier was replaced with the
same one used during the torque measurements.

Figure 3.16: An example of a wanted output from the feedback system
while running the simulator.

36



Figure 3.17: Output from feedback system while simulating door A20
with STD motor.

The results from the feedback measurements incited smaller changes
to the code. A result from running a simulation of six cycles on the
simulator using the final version of the code can be seen in figure
3.17. This can the be compared with the wanted signal seen in
figure 3.16. The wanted signal is an example of an down and up
movement from torque measurements on A20. Output from the
feedback system can also be compared with the mean of movement
in figure 3.4.

One big difference is the scale of the the y-axle which can be ex-
plained with the different mounting of the load cell. As to the look
of the curve there are three main differences; the plateau after the
the peak is at different levels, the bumps are more flat during the
simulation compared to in real life and the big dip as the door starts
to move upwards is not present in the real life measurements.

37



Chapter 4

Discussion and Conclusions
4.1 Torque measurements
When analysing the torque measurements there are some questions
to keep in mind:

• What are the main differences and similarities?

• What does the torque measurements say about the behaviour
of the door?

• What could be improved?

Some behaviours that can be observed for all of the torque measure-
ments are the peaks that represents the sections of the door going
through the bend of the door, compare all figures representing the
mean of movement, figure 3.9, 3.4 and 3.13. As the control unit of
the doors are programmed to keep a consistent torque throughout
the movements the measured torque values for up and down move-
ments are steady with some minor peaks due to the door-sections.
Another similarity is the thin peak right before the plateau which
represents the floor. This is the engine/motor breaking.

Looking back to the calibration measurements, the values for nega-
tive torque values (compression) are generally larger than the pos-
itive torque values (expansion). This is likely an inbuilt behaviour
of the sensor.

When looking at the differences between measurements on differ-
ent doors one can make a link to the behaviour of the door itself.
Comparing figures displaying the encoder, figure 3.8, 3.1 and 3.12,
the length of time it takes for the door to open and close is implied.
Since the sample rate is the same, the more values there are, the
movement takes longer to terminate. The maximal velocity of the
door could also affect the amount of disturbances and the smooth-
ness of the transitions between moving and standing still.

38



As to the improvements that could be made, firstly the LabView
program used could be remade using the created encoder class from
the simulator program to do the encoder/position measurement in-
stead. This because ASSA ABLOY wants to use Python instead
of LabView. Potentially the resolution of the time-stamps could be
improved with coding through Python rather than LabView.

4.2 Simulation program
The three main questions asked when evaluating the simulation pro-
gram are;

• Is the program easy to use?

• How well is it working?

• What can be improved?

In answer to the first question; the Simulation runner is kept sim-
ple so the user can set up a simulation with the wanted variables.
Throughout the simulation instructions and useful information is
written in the terminal window. This makes the program fairly
easy to use to those who has some programming experience. An
executable file would make it easier for those who are not familiar
with using either a terminal window or Visual Studio Code (the
editor of choice at ASSA ABLOY).

The second question relates to the reliability of the program; mean-
ing if the code produces consistent results. This is important as
the user will want to know if the simulator actually emulates the
same behaviour every time. In order to answer this question one
must look at the result in figure 3.17 and compare it to figure 3.16.
What can be seen is the graph is similar although the simulator
fails to deliver the exact same behaviour every simulation. This is
likely due to limitations in both reading the encoder values and,
more importantly, the limitations in the setting of the torque on
the servo. However the simulator makes a good approximation of a
door movement.

The improvements that could be made include, apart from those
already mentioned above, enabling the setting of parameters such
as the waiting time between each setting of the torque, refer to

39



run_simulator in the Simulator class.

4.3 Further development
There are several things that can be done to improve and expand
the simulation program. The first thing that should be done is to
automate the control of the DUT to enable simulations that can
be run throughout the night. Secondly the ease of use could be
improved, a GUI could be created and the code could be adapted to
run on a Raspberry Pi. This would also make it possible to include
simulations of STOP and SE cycles.

Several interesting data points could be collected and logged to a
database. This could include opening and closing times, the feed-
back values, total number of cycles, what door type has been sim-
ulated and temperature of the DUT (if temperature sensors are
mounted). With the code running on a Raspberry Pi and logging
results on to a database these results could be displayed on Grafana
(like other tests at ASSA ABLOY).

A possible area for expansion is the inclusion of torque files which
have been measured on the same doors but for different setups of
these doors. This could include differences in balancing of the door,
torque setting of the operator/motor and other changes the engi-
neers find interesting.

4.4 Conclusion
The door simulation program can approximate the characteristic
behaviour of a door. Changes in the code could improve the ap-
proximation and the introduction of a servo and encoder with better
resolutions would improve the results further.

This master thesis project has also introduced a protocol for making
torque measurements on doors with results that can be used to
simulate the door.

40



4.5 Final thoughts
Notes on what has been done and how it was done were made
throughout this project which helped with the documentation pro-
cess and the planning of the project. The documentation of this
project is necessary for further development and continued use. It
also helped with establishing what needed to be done, and also the
order in which to do all the steps. All in all this project has helped
develop skills around planning, construction and testing of a system
for running automated tests.

41



Bibliography
[1] Grahm, L. Jubrink, H. Lauber, A. Modern Inustriell Mätteknik;

Givare Studentlittteratur AB, 1996, 2007

[2] Tension Compression Load Cells, Model 615 and Model 616,
Tedea-Huntleigh, Document No.: 12066, Revision: 25-Mar-2018

[3] Wikipedia. Rotary Encoder. Last update: 2020-03-06
https://en.wikipedia.org/wiki/Rotary_encoder
[2020-04-28]

[4] MachineDesign. E. Eitel, Basics of Rotary Encoders: Overview
and New Technologies, Written: APR 12, 2007
https://www.machinedesign.com/
automation-iiot/sensors/article/21831757/
basics-of-rotary-encoders-overview-and-new-technologies
[2020-07-30]

[5] MachineDesign. R. Repas, Multiturn absolute encoders,
Written: MAY 07, 2014
https://www.machinedesign.com/archive/article/
21813207/multiturn-absolute-encoders
[2020-07-30]

[6] Wikipedia RS-485. Last update: 2020-05-18
https://en.wikipedia.org/wiki/RS-485
[2020-05-26]

[7] MTM-E-V.0 MULTITURN MAGNETIC ABSOLUTE EN-
CODER, DALMATIC TNV, 2017

[8] Produktdatablad Takskjutport ASSA ABLOY OH1042P, ASSA
ABLOY Entrance Systems, Last revision: 2017

[9] General-Purpose AC Servo, MR-J2S-A Instruction manual, Mit-
subishi Electric, Last revision: Dec. 2007

42

https://en.wikipedia.org/wiki/Rotary_encoder
https://www.machinedesign.com/automation-iiot/sensors/article/21831757/basics-of-rotary-encoders-overview-and-new-technologies
https://www.machinedesign.com/automation-iiot/sensors/article/21831757/basics-of-rotary-encoders-overview-and-new-technologies
https://www.machinedesign.com/automation-iiot/sensors/article/21831757/basics-of-rotary-encoders-overview-and-new-technologies
https://www.machinedesign.com/archive/article/21813207/multiturn-absolute-encoders
https://www.machinedesign.com/archive/article/21813207/multiturn-absolute-encoders
https://en.wikipedia.org/wiki/RS-485


Appendix A

Code: MATLAB
close all
clear all

%% ---- Fetch values ------
delimiterIn = ’|’;
encoder_file = ’a60_meas_1.txt’;
E = importdata(encoder_file, delimiterIn);

E_v = E.data(:, 1);
figure(); plot(E_v); title(’Encoder values’)

%read data: Import columns as column vectors
meas_file = ’A60_meas_1.csv’;
T = readtable(meas_file);
T_v = T(2:end, 2);
T_v = table2array(T_v);
T_v = T_v.*-1;

meas_file = ’A60_meas_2.csv’;
T = readtable(meas_file);
T_v2 = T(2:end, 2);
T_v2 = table2array(T_v2);
T_v2 = T_v2(1:end);
T_v2 = T_v2.*-1;

figure, subplot(211), plot(T_v); title(’Meas 1’)
subplot(212), plot(T_v2); title(’Meas 2’)

%% ---- Filter -------
n = length(T_v);
T_v_fft = fft(T_v);

43



power = abs(T_v_fft).^2/n; % power of the DFT

figure;
plot(power);
xlabel(’Frequency’);
ylabel(’Power’);
%%
N = 100; % FIR filter order
Fp = 100; % passband-edge frequency
Fs = 96e3; % 96 kHz sampling frequency
Rp = 0.00057565; % Corresponds to 0.01 dB

peak-to-peak ripple
Rst = 1e-4; % Corresponds to 80 dB

stopband attenuation

% eqnum = vec of coeffs
eqnum = firceqrip(N,Fp/(Fs/2),[Rp Rst],’passedge’);
% Visualize filter
fvtool(eqnum,’Fs’,Fs,’Color’,’White’)
%%
figure;
hold on
output = filtfilt(eqnum,1,T_v);

subplot(211); plot(T_v,’b’); title(’Original Signal’)
subplot(212); plot(output,’r’); title(’Filtered Signal’)

figure;
output_fft = fft(output);
power2 = abs(output_fft).^2/n; % power of the DFT

plot(power2);
xlabel(’Frequency’);
ylabel(’Power’);

%% ---- Split -------
L = length(T_v)/2;
T_11 = T_v(1:L);
T_12 = T_v((L):end);

44



L = length(T_v2)/2;
T_21 = T_v2(1:L);
T_22 = T_v2((L):end);

figure();
hold on
nbr_of_samples = 2400;
plot(T_21(1:nbr_of_samples), ’b’)
plot(T_22(1:nbr_of_samples), ’r’)
plot(T_11(1:nbr_of_samples), ’g’)
plot(T_12(1:nbr_of_samples), ’m’)

T_mean = zeros(nbr_of_samples:1);
for ii = 1:nbr_of_samples

T_mean(ii) = (T_11(ii) + T_12(ii) +
T_21(ii) + T_22(ii))/4;

end

T_mean = circshift(T_mean, 20);

figure(); plot(T_mean); title(’Mean of movement’)
%% -------- Compare ------------
figure;
hold on
output = filtfilt(eqnum,1,T_mean);

plot(output,’r’); title(’Filtered Mean Signal’)

T_down_1 = T_mean(1:(nbr_of_samples/2));
T_down_2 = output(1:(nbr_of_samples/2));
T_up_1 = T_mean((nbr_of_samples/2):nbr_of_samples);
T_up_2 = output((nbr_of_samples/2):nbr_of_samples);

figure()
subplot(411); plot(T_up_1,’b’); title(’Up’)
subplot(412); plot(T_up_2,’r’); title(’Up-filtered’)
subplot(413); plot(T_down_1,’b’); title(’Down’)
subplot(414); plot(T_down_2,’r’); title(’Down-filtered’)

%% ---- Match -------

45



len = nbr_of_samples/2;
e_u_d = E_v(1:len);
e_u_d2 = E_v(4200:(4200+len-1));

for ii = 1:(len-1)
e_u_d(ii) = (e_u_d(ii) + e_u_d2(ii))/2;

end

e_u_d = filtfilt(eqnum,1,e_u_d);
figure();
plot(e_u_d);

matrix = zeros(2, len);
matrix(1, :) = e_u_d;
iter = 1;
for ii = 1:(len-1)

matrix(1, ii) = round(matrix(1, ii));
matrix(2, ii) = (output(iter) + output(iter+1)) /2;
iter = iter + 2;

end
C = matrix;

figure(); %hold on
grid on;
yyaxis left;
plot(C(1,:));
ylabel(’Encoder values’);
yyaxis right;
plot(C(2,:));
ylabel(’Torque values’)

%% ---- Write to file -------
%D = C’;
fileID = fopen(’a60_mio.txt’, ’w’);
fprintf(fileID, ’%6s :\n’, ’down’);
fprintf(fileID, ’%6.2f : %12.8f \n’, C(:, 1:600));
fprintf(fileID, ’%6s :\n’, ’up’);
fprintf(fileID, ’%6.2f : %12.8f \n’, C(:, 601:end));
fclose(fileID);

46



Appendix B

Code: Door Simulator
B.1 Simulation runner
#!/usr/bin/env python3
’’’
Created on 17 mars 2020

@author: annyds
’’’
from help_functions import load_torque_files
from Servo import Servo
from Encoder import Encoder
from Simulator import Simulator

import time

#Setup of variables
door = ’a20’
operator = ’std’
nbr_of_cycles = 6
run_installtion = False
encoder_dict = {’portname’:’COM6’}
servo_dict = {’portname’:’COM5’, ’door’:door}

#Main
e = Encoder(encoder_dict)
s = Servo(servo_dict)

try:
simulatot_dict = {’operator_type’:operator,

’door_type’: door,
’nbr_of_cycles’:nbr_of_cycles}

simulator = Simulator(simulatot_dict)

47



if run_installtion:
simulator.run_installation(e,s)
input(’Installation done, press any key to continue’)

else:
simulator.clear_e24(e,s)
print(’---------------------------------------’)
input(’E24 cleared, press any key to continue’)
print(’---------------------------------------’)
s.set_torque(0)

simulator.run_simulator(e,s)
except KeyboardInterrupt:

simulator.stop_simulator()
simulator.print_statistics()
s.set_torque(0)

finally:
e.stop()
s.stop()

print(’Simulation stoped/finished’)

B.2 Installation runner

#!/usr/bin/env python3
’’’
Created on 29 June 2020

@author: annyds
’’’
from help_functions import load_torque_files
from Servo import Servo
from Encoder import Encoder
from Simulator import Simulator

import time

#Setup of variables
door = ’a20’
operator = ’std’
encoder_dict = {’portname’:’COM6’}
servo_dict = {’portname’:’COM5’, ’door’:door}

48



nbr_of_cycles = 1

#Main
e = Encoder(encoder_dict)
s = Servo(servo_dict)

try:
simulatot_dict = {’operator_type’:operator,

’door_type’: door,
’nbr_of_cycles’:nbr_of_cycles}

simulator = Simulator(simulatot_dict)
simulator.run_installation(e,s)

except KeyboardInterrupt:
simulator.stop_simulator()
s.set_torque(0)

finally:
e.stop()
s.stop()

print(’Door {} with motor type {} installed
on DUT’.format(door, operator))

B.3 Simulator

#!/usr/bin/env python3
’’’
Created on 4 mars 2020

@author: annyds
’’’
import sys
#import pydevd
import time
import logging

from help_functions import get_torque_val
from help_functions import load_torque_files

class Simulator(object):
’’’

49



classdocs
’’’

def __init__(self, in_dict):
’’’
Constructor
’’’
self.operator_type = in_dict[’operator_type’]

if(’operator_type’ in in_dict)
else None

self.door_type = in_dict[’door_type’]
if(’door_type’ in in_dict)
else None

self.nbr_of_cycles = in_dict[’nbr_of_cycles’]
if(’nbr_of_cycles’ in in_dict)
else 0

self.torque_file = load_torque_files(self.operator_type,
self.door_type)

self.stoped = False
self.door_opened = False
self.door_closed = False
self.nbr_of_iter = 0

def run_simulator(self, encoder, servo):
’’’
Run the simulator for set operator- and door-type

args:
*encoder: the encoder to fetch values from.

Controlls the torque value
*servo: the servo on which to set the torque value

’’’
minimum_up = min(self.torque_file[’up’])
minimum_down = min(self.torque_file[’down’])
bottom_val = min(minimum_up, minimum_down)
print(’bottom val = {}’.format(bottom_val))

print(’-----------------------------’)
print(’Run the door down and up once’)
input(’Press any key to continue script’)

50



print(’-----------------------------’)

self.stoped = False
self.nbr_of_iter = 0
finished_iterations = False
encoder.set_start_pos()
old_ev = 0
been_at_bottom = False

while not self.stoped and not finished_iterations:
ev = encoder.get_encoder_val()
direction = encoder.get_direction()
print(’Moving {}’.format(direction))
print(’encoder value: {}’.format(ev))
#debugprint
if ev != old_ev and direction != ’still’:

tv = get_torque_val(self.torque_file,
direction, ev)

#print(’torque value: {}’.format(tv))
#debugprint
if been_at_bottom and ev<(bottom_val+20000)

and direction == ’up’:
#TODO should be dynamically set
#dependent on the door and motor type
servo.set_torque(200)

else:
servo.set_torque(tv)

if abs(ev)<=300 and direction==’up’
and been_at_bottom:
self.nbr_of_iter += 1
print(’-------------------------------’)
print(’Number of cycles {}’.format(

self.nbr_of_iter))
print(’-------------------------------’)
been_at_bottom = False

if self.nbr_of_iter == self.nbr_of_cycles:
finished_iterations = True

if ev <= (bottom_val + 10000)
and direction == ’still’ and not been_at_bottom:

51



been_at_bottom = True
print(’-------------------------------’)
print(’Bottom reached’)
print(’-------------------------------’)

#TODO make the time between samples
#a variable that can be set by the user
time.sleep(0.2)

#end while

self.print_statistics()

def clear_e24(self, encoder, servo):
’’’
Clear E24 on DUT,
please follow instructions printed in terminal

args:
*encoder: the encoder to fetch values from.

Controls the torque value
*servo: the servo on which to set

the torque value
returns:

None
’’’
self.stoped = False
minimum_up = min(self.torque_file[’up’])
minimum_down = min(self.torque_file[’down’])
minimum = min(minimum_up, minimum_down)
start_ev = 0.5 * minimum
encoder.set_start_pos()
servo.set_torque(0)
ev = 1

print(’-----------------------------’)
print(’Press UP button to clear E24’)
input(’Press any key to continue script’)
print(’-----------------------------’)

while not self.stoped and ev != 0:
ev = abs(encoder.get_encoder_val()) + start_ev

52



direction = encoder.get_direction()
print(’Current position: {}’.format(ev))
if abs(ev) <= 5000:

servo.set_torque(1600.00) #mV
if direction == ’still’:

self.stop_simulator()
#TODO make the time between samples a
#variable that can be set by the user
time.sleep(0.1)

def run_installation(self, encoder, servo):
’’’
Install wanted door on DUT,
please follow instructions printed in terminal

args:
*encoder: the encoder to fetch values from.

Controls the torque value
*servo: the servo on which to set

the torque value
returns:

None
’’’
minimum_up = min(self.torque_file[’up’])
minimum_down = min(self.torque_file[’down’])
minimum = min(minimum_up, minimum_down)
percentage_1m = 80
passed_1m = False
percentage_bend = 70
passed_bend = False

self.clear_e24(encoder, servo)
print(’-----------------------------’)
print(’Activate SW1 to start installation’)
input(’Press any key to continue’)
print(’-----------------------------’)

self.stoped = False
encoder.set_start_pos()
servo.set_torque(0)

53



ev = 1

print(’-----------------------------’)
print(’Press and hold Up-button’)
input(’Press any key to continue’)
print(’-----------------------------’)
while not self.stoped and ev != 0:

ev = encoder.get_encoder_val()
direction = encoder.get_direction()
print(’moving {}, position: {}’.format(direction,

ev))
if ev <= (percentage_1m/100)*minimum

and not passed_1m:
print(’-----------------------------’)
print(’Release Up-button’)
print(’Press SE’)
print(’Press Down-button’)
print(’-----------------------------’)
input(’Press any key to continue’)
passed_1m = True

if direction == ’up’
and ev >= (percentage_bend/100)*minimum
and not passed_bend and passed_1m:

print(’-----------------------------’)
print(’Press STOP’)
print(’Press Up-button’)
print(’-----------------------------’)
passed_bend = True
input(’Press any key to continue’)

if direction == ’down’ and ev <= (minimum+100):
servo.set_torque(1600.00)
print(’-----------------------------’)
print(’Press SE’)
print(’Bottom position reached’)
print(’-----------------------------’)
time.sleep(0.2)
servo.set_torque(0)
input(’Press any key to continue’)

if direction == ’up’ and abs(ev) <= 20000
and passed_bend:

54



if abs(ev) <= 400:
servo.set_torque(1600.00)
print(’-----------------------------’)
print(’Top position reached’)
print(’-----------------------------’)
input(’Press any key to continue’)
time.sleep(2)
servo.set_torque(0)

elif abs(ev) <= 1000:
servo.set_torque(600.00)

elif abs(ev) <= 5000:
servo.set_torque(300.00)

elif abs(ev) <= 10000:
servo.set_torque(250.00)

else:
servo.set_torque(200.00)

if direction == ’still’ and abs(ev) <= 100
and passed_1m:

self.stop_simulator()
#TODO make the time between samples a
#variable that can be set by the user
time.sleep(0.02)

time.sleep(3)
servo.set_torque(0)
print(’-----------------------------’)
print(’Deactivate SW1’)
print(’-----------------------------’)

def stop_simulator(self):
’’’
Stop the running of the simulator

args:
None

returns:
None

’’’
self.stoped = True
return 1

55



def print_statistics(self):
’’’
Print statistics from the simulation

args:
None

returns:
None

’’’
msg1 = ’ Goal: {} cycles \n Ran: {} cycles

\n Stoped:{}’.format(self.nbr_of_cycles,
self.nbr_of_iter, self.stoped)

print(’-----------------------------’)
print(’-----------------------------’)
print(msg1)
print(’-----------------------------’)
print(’-----------------------------’)
return None

B.4 Encoder

#!/usr/bin/env python3
’’’
Created on 4 mars 2020

@author: annyds
’’’
import sys
import time
import logging
from Communication import Host

class Encoder(object):
’’’
classdocs
’’’

def __init__(self, in_dict):
’’’

56



Constructor
’’’
self.last_ev = 0
self.new_ev = 0
self.start_val = 0
self.portname = in_dict[’portname’]

if(’portname’ in in_dict) else None
self.host = Host(self.portname, ’rs485’)
self.host.start()
self.clear()
self.start_val = self.set_start_pos()

def get_encoder_val(self):
’’’
Get the current encoder value

args:
None

returns:
*encoder_val: (double) the

current encoder value
’’’
message = b’\xA0’ #hex byte
self.host.write(message)
time.sleep(0.05)
out = self.host.read()
self.clear()
e_string = ’’
if len(out) == 5:

encoder_val = int.from_bytes(map(ord,out[:4]),
byteorder=’little’, signed=True)

encoder_val = -1*abs(encoder_val-self.start_val)
if abs(encoder_val - self.new_ev) < 100000:

self.last_ev = self.new_ev
self.new_ev = encoder_val

else:
if (self.new_ev < self.last_ev):

a = -10
else:

57



a = 10
self.last_ev = self.new_ev
encoder_val = -1*abs(self.new_ev + a)
self.new_ev = encoder_val

else:
encoder_val = 1
print(’you are here’)

return encoder_val

def get_direction(self):
’’’
Check the direction of movement

args:
None

returns:
*direction: (string) up/down

’’’
new_ev = self.new_ev
if new_ev > self.last_ev:

direction = ’up’
elif new_ev < self.last_ev:

direction = ’down’
elif new_ev == self.last_ev:

direction = ’still’
return direction

def set_start_pos(self):
’’’
Check the direction of movement

args:
None

returns:
*start_pos: (double) start value

’’’
message = b’\xA0’ #hex byte

58



self.host.write(message)
time.sleep(0.1)
out = self.host.read()
self.clear()
e_string = ’’
if len(out) == 5:

encoder_val = int.from_bytes(map(ord,out[:4]),
byteorder=’little’, signed=True)

self.start_val = encoder_val
self.new_ev = 0

return self.start_val

def stop(self):
’’’
Stop the running of the encoder

args:
None

returns:
None

’’’
self.host.stop()
return 0

def clear(self):
’’’
Clear the input and output buffer of the device

args:
None

returns:
None

’’’
self.host.reset()
return 0

59



B.5 Servo

#!/usr/bin/env python3
’’’
Created on 4 mars 2020

@author: annyds
’’’
import sys
import time
import logging
from Communication import Host

class Servo(object):
’’’
classdocs
’’’

def __init__(self, in_dict):
’’’
Constructor
’’’
self.portname = in_dict[’portname’]

if(’portname’ in in_dict) else None
self.door = in_dict[’door’]

if(’door’ in in_dict) else ’a20’
self.door = self.door.lower()
self.host = Host(self.portname, ’rs232’)
self.host.start()
self.reset()

# ------------ Basic functionality -------------
def reset(self):

’’’
Reset the Servo and clear the alarm history
args:

None
reurns:

None
’’’

60



self.host.reset()

def stop(self):
’’’
Stop the running of the servo
args:

None
returns:

None
’’’
self.host.stop()
return 0

def write_msg(self, msg):
’’’
Write a message to the servo
args:

msg: (str) command string to write to Servo
returns:

None
’’’
#print(msg) #debugprint
self.host.write(msg)
return 0

def read_msg(self):
’’’
Read a message from the servo
args:

None
returns:

result: result from reading from the servo
’’’
result = self.host.read()
return result

# ------------- Set-functions -------------
def set_i_devices(self, in_dict):

’’’
Enable/disable input devices

61



(in test operation mode)
args:

in_dict: (list) list with bit:1/0 => {12:1}
to enable bit 12

returns:
None

’’’
data = [’30’, ’30’, ’30’, ’30’, ’30’, ’30’, ’30’, ’30’,

’30’, ’30’, ’30’, ’30’, ’30’, ’30’, ’30’, ’30’,
’30’, ’30’, ’30’, ’30’, ’30’, ’30’, ’30’, ’30’,
’30’, ’30’, ’30’, ’30’, ’30’, ’30’, ’30’, ’30’]

for x, y in in_dict.items():
data[x] = hex(y).replace(’0x’, ’’)

data.reverse()
cmd_dict = {’cmd’:[39, 32],

’data_nbr’:[30, 30],
’data’:data}

cmd = self.encode_cmd(cmd_dict)
self.write_msg(cmd)
time.sleep(0.1)
return self.check_error(self.read_msg())

def set_operation_mode(self, mode=’T’):
’’’
Set the operation mode for the servo
args:

mode: (string) mode of operation,
DEFAULT = T (torque)

returns:
None

’’’
raise Exception(’Placeholder, function not implemented’)
mode_dict = {’T’:’0004’, ’P’:’0000’,

’PS’:’0001’, ’S’:’0002’,
’ST’:’0003’, ’TP’:’0005’}

if (mode.upper() in mode_dict):
mode_str = mode_dict[mode.upper()]

else:

62



raise Exception(’Invalid choice of
operation mode: {}’.format(mode))

self.write_msg(mode_str)
return 0

def set_torque(self, torque=100):
’’’
Set the torque value
args:

torque: (double) the torque value
returns:

None
’’’
torque = self.transform_torque(torque)

data = [’33’, ’30’, ’30’, ’30’, ’30’, ’30’, ’30’, ’30’]
torque = hex(torque)
torque = torque.replace(’0x’, ’’)

ii = 0
for letter in torque:

tv = hex(ord(torque[ii].upper()))
tv = tv.replace(’0x’,’’)
data[len(data) - len(torque) + ii] = tv
ii+=1

param = 28
return self.write_param(param, data)

# -------------- Read-functions --------------
def read_error(self):

’’’
Read the current alarm/error
args:

None
returns:

alarm: (str) the current error on the servo
’’’
in_dict = {’cmd’:[30, 32], ’data_nbr’:[30, 30]}
cmd = self.encode_cmd(in_dict)

63



self.write_msg(cmd)
time.sleep(0.1)
error = self.read_msg()
self.check_error(error)
error_code = error[2].decode(encoding=’UTF-8’)
if error_code == ’a’:

alarm = error[5].decode(encoding=’UTF-8’) +
error[6].decode(encoding=’UTF-8’)

else:
alarm = ’No alarm’

return alarm

# ------------- Message handling ---------------------
def write_param(self, param, data):

’’’
Write data to the parameter param
args:

param: (int) the parameter
data: (list of str) the data,

needs to be written correctly
returns:

0 if successful
’’’
data_nbr = []
param = hex(param)
param = param.replace(’0x’, ’’)
ii = 0

if len(param) == 1:
param = ’0’ + param

for letter in param:
p_hex = hex(ord(param[ii].upper()))
p_hex = p_hex.replace(’0x’,’’)
data_nbr.append(p_hex)
ii +=1

in_dict = {’cmd’:[38, 34],
’data_nbr’:data_nbr,
’data’:data}

cmd = self.encode_cmd(in_dict)
self.write_msg(cmd)

64



time.sleep(0.1)
return self.check_error(self.read_msg())

def read_param(self, param):
’’’
Read the param value
args:

param: (int) param number to read
return:

value: (int) param value
’’’
data_nbr = []
param = hex(param)
param = param.replace(’0x’, ’’)
ii = 0

if len(param) == 1:
param = ’0’ + param

for letter in param:
p_hex = hex(ord(param[ii].upper()))
p_hex = p_hex.replace(’0x’,’’)
data_nbr.append(p_hex)
ii +=1

in_dict = {’cmd’:[30, 35], ’data_nbr’:data_nbr}
cmd = self.encode_cmd(in_dict)
self.write_msg(cmd)
time.sleep(0.1)
response = self.read_msg()
self.check_error(response)
return response

def encode_cmd(self, in_dict):
’’’
Encode a command
args:

in_dict: (dict) should contain cmd,
data_nbr, data

returns:
msg: () encoded command

’’’

65



cmd = in_dict[’cmd’]
if(’cmd’ in in_dict) else [30, 32]

data_nbr = in_dict[’data_nbr’]
if(’data_nbr’ in in_dict) else [30, 30]

data = in_dict[’data’]
if(’data’ in in_dict) else None

basecmd = [’01’, ’30’, ’00’,
’00’, ’02’, ’00’,
’00’, ’03’]

cmd_list = [’01’, ’30’, ’00’,
’00’, ’02’, ’00’,
’00’]

cmd_string = ’’

for ii in range(len(basecmd)):
if ii in [2, 3]:

cmd_string = cmd_string +
str(cmd[ii - 2]) + ’ ’

cmd_list[ii] = str(cmd[ii - 2])
elif ii in [5, 6]:

cmd_string = cmd_string +
str(data_nbr[ii - 5]) + ’ ’

cmd_list[ii] = str(data_nbr[ii - 5])
if ii == 6 and data != None:

for iter in range(len(data)):
cmd_string = cmd_string +

data[iter] + ’ ’
cmd_list.append(data[iter])

else:
cmd_string = cmd_string + basecmd[ii] + ’ ’

cmd_list.append(’03’)

checksum = self.calc_checksum(cmd_list)
cmd_string = cmd_string + checksum

msg = bytearray.fromhex(cmd_string)
return msg

def calc_checksum(self, msg):

66



’’’
Calculates checksum for msg
’’’
sum = 0
for ii in range(len(msg)):

if ii == 0:
continue

else:
sum += int((’0x’ + msg[ii]), 16)

sum = hex(sum)
sum = sum.replace(’0x’,’’)
if len(sum) > 2:

part1 = hex(ord(sum[len(sum)-2].upper()))
part2 = hex(ord(sum[len(sum)-1].upper()))

else:
part1 = hex(ord(sum[0].upper()))
part2 = hex(ord(sum[1].upper()))

checksum = part1.replace(’0x’,’’) + ’ ’ +
part2.replace(’0x’,’’)

return checksum

def check_error(self, msg_str):
’’’
Check if the msg_str reports any error,
used for checking if a message was
transmitted properly
args:

msg_str: (str) the string to be checked
returns:

None
raises:

Exception if error occured
’’’
msg = msg_str[2].decode(encoding=’UTF-8’)
error = None
if msg.lower() == ’a’:

pass
elif msg.lower() == ’b’:

error = ’Parity error’

67



elif msg.lower() == ’c’:
error = ’Checksum error’

elif msg.lower() == ’d’:
error = ’Character error’

elif msg.lower() == ’e’:
error = ’Command error’

elif msg.lower() == ’f’:
error = ’Data No. error’

if error:
if msg.islower():

raise Exception(’{} caused an
alarm on the
Servo’.format(error))

else:
raise Exception(’{}, no alarm

on Servo’.format(error))
else:

return 0

def transform_torque(self, torque):
’’’
Transform a torque value from mV to percent
’’’
a = 6.434
b = -6.7997
if self.door == ’a10’:

c = 2.7941
elif self.door == ’a20’:

c = 5.4781
elif self.door == ’a60’:

c = 4.1455
elif self.door == ’olle’:

raise Exception(’Placeholder olle
door is not implemented’)

else:
raise Exception(’Selected door {} is an

unknown type’.format(self.door))
t = round(1*(((torque * (1/c)) + b) / a))
t = abs(t)

68



#print(’Percentage: {}’.format(t)) #debugprint
return t

B.6 Communication

#!/usr/bin/env python3
’’’
Created on 4 mars 2020

@author: annyds
’’’
from threading import Thread
import serial, time, binascii
import serial.rs485

class Host(object):
state_dict = {1:"Idling ", 2:"Accepting ",

4:"Escrowed ", 8:"Stacking ",
16:"Stacked ", 32:"Returning",
64:"Returned", 17:"Stacked Idling ",
65:"Returned Idling "}

event_dict = {0:"", 1:"Cheated ", 2:"Rejected ",
4:"Jammed ", 8:"Full "}

def __init__(self, portname, com_type):
self.portname = portname
self.com_type = com_type.lower()
# Set to False to kill
self.running = True
self.bill_count = bytearray([0, 0, 0, 0,

0, 0, 0, 0])
# Background worker thread

self._serial_thread = None
self.ser = None

def start(self):
"""
Start Host in a non-daemon thread

69



Args:
None

Returns:
None

"""
self._serial_thread = Thread(args=(self.portname,))
self._serial_thread.daemon = False
self._serial_thread.start()
if self.com_type == ’rs232’:

self.create_connection_RS232()
elif self.com_type == ’rs485’:

self.create_connection_RS485()
else:

raise ValueError(’Communication type not set \
in {}’.format(__class__.__name__))

#self.ser.open()

def create_connection_RS232(self):
"""

Args:
None

Returns:
None

"""
self.ser = serial.Serial(

port=self.portname,
baudrate=9600,
bytesize=serial.EIGHTBITS,
parity=serial.PARITY_EVEN,
stopbits=serial.STOPBITS_ONE

)

def create_connection_RS485(self):
"""

Args:
None

Returns:
None

70



"""
self.ser = serial.Serial(

port=self.portname,
baudrate=19200,
bytesize=serial.EIGHTBITS,
parity=serial.PARITY_NONE,
stopbits=serial.STOPBITS_ONE
#termination char = xA

)

def write(self, msg):
"""

Args:
*msg: (string)

Returns:
None

"""
if self.ser.isOpen() and self.running:

try:
result = self.ser.write(msg)
return result

except serial.SerialException as e:
if e.args == (5,"WriteFile",

"Access is denied."):
# This occurs on win32 when a USB
#serial port is unplugged and
# replugged. It should be fixed by
# closing and reopening the port,
#which should happen in the
# error handling of our caller.
raise IOError(errno.ENOENT,

"Serial port \
disappeared.",
self.ser.portstr)

else:
raise Exception(’Error {} \

occured in \
{}’.format(e,

self.__class__))

71



def read(self):
"""

Args:
None

Returns:
None

"""
if self.ser.isOpen() and self.running:

out = []
while self.ser.inWaiting() > 0:

val = self.ser.read(1)
out.append(val)

return out
elif not self.ser.isOpen():

raise Exception(’Serial communication is closed’)
else:

print(’Communication is not running’)
return None

def stop(self):
"""
Blocks until Host can safely be stopped
Args:

None
Returns:

None
"""
self.running = False
self._serial_thread.join()
self.reset()
self.ser.close()

def reset(self):
"""
Reset the input and output buffer
Args:

None
Returns:

72



None
"""
self.ser.flushInput()
self.ser.flushOutput()
return 1

B.7 Help functions

#!/usr/bin/env python3
’’’
Created on 4 mars 2020

@author: annyds
’’’
import yaml
#import pydevd
import os
import time

def load_torque_files(operator_type, door_type):
’’’
Loads the torque file specified by
the operator type and the door type

args:
*operator type: (string) Type of operator
*door_type: (string) Type of door

returns:
*torque_file: (list) A list consisting of keys:

encoder values and
values: torque value

’’’
path = ’Program/torque_files/’
file_name = door_type.lower() + ’_’ +

operator_type.lower() + ’.yml’
file_path = os.path.join(path, file_name)
print(’--------------------------------’)
print(’Loading torque file: \n {}’.format(file_path))

73



print(’--------------------------------’)
with (open(file_path, ’r’)) as torque_stream:

loading = yaml.load(torque_stream,
Loader=yaml.FullLoader)

torque_file = {**loading}
print(’Torque file successfully loaded’)
print(’--------------------------------’)
return torque_file

def get_torque_val(torque_file, direction, encoder_val):
’’’
Loads the torque file specified by the
operator type and the door type

args:
*torque_file: (list)
*direction: (string)
*encoder_val: (double)

returns:
*torque_value: (double) A The torque value to

the specified encoder value
’’’
try:

val = torque_file[direction][encoder_val]
except Exception as e:

torque_list = torque_file[direction]
closest_key = min(torque_list,

key=lambda x:abs(x-encoder_val))
val = torque_file[direction][closest_key]

return val

74


	Introduction
	Background
	Purpose and goal
	Disposition

	Method
	Limitations
	Torque Measurement
	Theory
	Measurements

	Door Simulator
	Setup
	Theory
	Calibration
	Coding
	Feedback


	Result
	Torque Measurement
	Calibration
	Matlab results

	Door Simulator
	Calibration
	Simulation program
	Results from feedback


	Discussion and Conclusions
	Torque measurements
	Simulation program
	Further development
	Conclusion
	Final thoughts

	Code: MATLAB
	Code: Door Simulator
	Simulation runner
	Installation runner
	Simulator
	Encoder
	Servo
	Communication
	Help functions


