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Abstract

In this project, calculations for the total binding energy of all even-even nuclei available
from experimental data are performed using the HFBTHO (axially deformed con�gu-
rational Hartree-Fock-Bogoliubov calculations with Skyrme-forces and zero-range pairing
interaction using Harmonic-Oscillator and/or Transformed Harmonic-Oscillator states [1])
program. An arti�cial neural network is applied to train the information obtained from
the HFBTHO calculations and predict the binding energy for the nuclei. The results show
impressive improvements to the HFBTHO program. In recent years, the combination of
scienti�c research and machine learning algorithms has become a popular and successful
practice. Although it is hard to judge whether an algorithm is good enough, especially
with the rapid development of computer science, the application of machine learning in
nuclear models can be reliable and promising in predicting the nuclear properties.



List of abbreviations

SCMF Self-consistent mean-�eld

EFT E�ective �eld theory

QCD Quantum chromodynamics

CI Con�guration interaction

DFT Density functional theory

HFB Hartree-Fock-Bogoliubov

BE Binding energy

ML Machine learning

NN Neural network

RMS Root-mean-square



Contents

I Introduction 1

1 Nuclear physics 1

1.1 Nuclear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Hartree-Fock-Bogoliubov method . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 The Hartree-Fock approach . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Pairing correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 The BCS theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 The Bogoliubov transformation . . . . . . . . . . . . . . . . . . . . 6
1.2.5 The HFB equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.6 Solution to the deformed nuclei . . . . . . . . . . . . . . . . . . . . 8

2 Machine learning 9

2.1 Arti�cial neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

II Method 13

3 HFBTHO program 13

4 NN con�guration 14

III Results 16

5 Investigations on the HFBTHO program 16

5.1 Selection of the input parameters . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Calculations on 82Pb isotopes . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Calculations on all even-even nuclei . . . . . . . . . . . . . . . . . . . . . . 22

6 Results from the NN 23

6.1 Predictions on total BE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Predictions on BE/A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Predictions on BEHFBTHO −BEexp . . . . . . . . . . . . . . . . . . . . . . 29

IV Summary and outlook 31



Chapter I

Introduction

The topic of discovering new elements remains popular in recent decades. Studies of these
new superheavy elements are on the forefront of nuclear, atomic physics and chemistry
research. With the capability of the new generation accelerators to detect events with
picobarn cross sections, such as the facilities in Superheavy Element Factory (SHEF)
in Dubna, new elements are not far from unraveled. The binding energies of the new
elements are especially important because one can use the energies to determine the α
decay lifetimes and therefore the stability of the new elements. In this project, an energy
density functional (EDF) model is combined with a neural network to predict the binding
energies for all even-even nuclei, which have even numbers of protons and neutrons, that
are experimentally available. The neural network, as a popular approach in modern
research, serves as an improvement to the original theoretical model.

In section 1, the theories behind the nuclear program HFBTHO used in this project
are illustrated, mainly focusing on the Hartree-Fock-Bogoliubov approach. Section 2
introduces the basic concept of the arti�cial neural network which is widely used in nuclear
investigations. The detailed parameters of the HFBTHO program and the network are
explained in chapter II, where for the neural network, the python machine learning library
Keras based on Tensor�ow [2] is used and the main codes of the network are generated
from Idini's work [3]. The investigations based on the HFBTHO program are shown
in section 5. Theses results have a root-mean-square deviation of 6.4597MeV over all
even-even nuclei and the implementation of the network leads to a lowest deviation of
0.218308MeV in section 6. A �nal summary and outlook is given in chapter IV.

1 Nuclear physics

1.1 Nuclear models

The nucleus was �rst discovered by the Geiger-Marsden experiment between 1908 and
1913 [4]. Since then, di�erent nuclear models had been proposed to understand the
behavior of nuclei and nucleons inside. One can divide these models into four cate-
gories: models based on ab initio description; macroscopic models; models based on a
self-consistent mean �eld (SCMF) and shell models [5].

Ab initio methods focus on the given nucleon-nucleon potential while solving the non-
relativistic Schrödinger equation. This e�ective �eld theory (EFT) favors the application
of quantum chromodynamics (QCD) in the low-energy regime of the nuclear interaction
[6, 7]. However, a three-body interaction term should be included to give a quantitative
description of the nuclear matter rather than only the nucleon-nucleon interaction. The
problem of how to implement this term is still under debate.

In macroscopic models, such as the nuclear liquid-drop model [8], global properties of
a nucleus are investigated. An energy correction for the quantum shell structure is often
applied, leading to the microscopic-macroscopic (mic-mac) method. This method tends
to have good results on the calculations of nuclear binding energies, but for unknown
exotic nuclei, the mic-mac method can have low reliability.

In the nuclear shell model, one can calculate the properties of a nucleus by constructing
the Hamiltonian of the Schrödinger equation with a one-particle operator Ĥ1 and a two-
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particle operator Ĥ2(1.1) ,

Ĥ = Ĥ1 + Ĥ2 =
N∑
i=1

[− ~2

2m
∇2
i + V (r)] +

1

2

N∑
j 6=i

U(ri, rj), (1.1)

where N is the number of nucleons, m is the mass of the nucleon, ~ is the Planck con-
stant and ∇ is the laplacian operator. Ĥ1 is constituted of the kinetic energy and mean
�eld potential of the particle contributed by nuclear forces and Ĥ2 represents the inter-
action between nucleons. The eigenfunction of this Hamiltonian will be a single Slater
determinant, which describes the wavefunctions. To solve a many-body problem, the
wavefunction should be expanded into a linear combination of several states which mix
with each other to minimize the energy. The calculation then turns into solving a matrix
of Slater determinants [9]. This method is called con�guration interaction (CI) method
and the dimension of the matrix can grow rapidly with more and more nucleons involved.

The SCMF approach in nuclear physics is based on the nuclear density functional
theory (DFT) [10]. In the Hohenberg-Kohn theorems, a many-fermion system has a
universal energy density functional of the local density distribution [10]:

ĤΨ = [T̂ + V̂ + Û ]Ψ = [
N∑
i

(− ~2

2mi

∇2
i ) +

N∑
i

V (ri) +
N∑
i<j

U(ri, rj)]Ψ = EΨ, (1.2)

where T̂ , the kinetic energy and Û , the fermion-fermion interaction energy, are the uni-
versal operators which keep the same for any N-fermion system. V̂ is the potential energy,
depending on the certain system. The universal operators T̂ , Û and non-universal opera-
tor V̂ can be written into a functional of the fermion density n(r). Then, the solution of
(1.2) becomes the minimization of the functional:

E[n] = T [n] + U [n] +

∫
V (r)n(r)d3r. (1.3)

Therefore, one can determine the nuclear energy density functional E[n] with the prop-
erties of nucleons, such as spins, momentum and kinetic energy. Then, the approximate
solution to the Schrödinger equation requires calculations of a self-consistent mean �eld.
The SCMF approach is successful in nuclear calculations, especially rotational bands in
heavy nuclei, and also seems promising in superheavy nuclei with developing corrections
to the mean �eld term. In this project, one focuses speci�cally on one of the nuclear
SCMF models, the Hartree-Fock-Bogoliubov (HFB) method.

1.2 The Hartree-Fock-Bogoliubov method

SCMF models in the particle basis (e.g. Hartree-Fock approach) only take the particle-
hole interaction into account, where there is a clear di�erence between occupied and
unoccupied states [11]. This leads to a successful approximation in nuclei with closed shell,
but for most nuclei, one also needs to consider the particle-particle or pairing interaction.
For these nuclei, the mean �eld without taking pairing correlations into consideration
does not perform well. Therefore, the HFB method is introduced to solve this problem
for the mean �eld.
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1.2.1 The Hartree-Fock approach

The Hartree-Fock method was introduced to solve the ground state of many-body prob-
lems [12, 13, 14] and was mostly applied in atomic physics at �rst. In nuclear physics,
the problem is formalated in terms of the Schrödinger equation with the Hamiltonian,

Ĥ = − ~2

2m

A∑
i=1

∇2
i +

∑
i<j

V (xi − xj), (1.4)

where A = N +Z is the sum of N , the number of neutrons and Z, the number of protons.
V is the given potential and xi is the generic point in R3. The wavefunctions are chosen
to be

Φ(x1, . . . , xA) =
1√
A!

∑
σ

(−1)|σ|
A∏
i=1

ψσ(i)(xi) =
1√
A!
det(ψi(xj)), (1.5)

where σ is the permutation of the nucleon and ψ1, . . . , ψA are A functions in R3, in
this case, the wavefunctions of a certain nucleon. This expression is also called a Slater
determinant. The �nal energy obtained from the Hartree-Fock minimization is expressed
as [15],

EHF = Inf

{
E(ψ1, . . . , ψA),

∫
ψiψ

∗
jdx = δij for 1 6 i, j 6 A

}
, (1.6)

where E(ψ1, . . . , ψA) has the form,

E(ψ1, . . . , ψA) =
~2

2m

A∑
i=1

∫
|∇ψi|2 dx+

1

2

A∑
i,j

∫ ∫
|ψi(x)|2 V (x− y) |ψj(y)|2 dxdy

− 1

2

A∑
i,j

∫ ∫
ψi(x)ψ∗j (x)V (x− y)ψ∗i (y)ψj(y)dxdy. (1.7)

In equation (1.7), the second term is called the direct term and the third term is the
exchange term. In nuclear physics calculations, the interaction term in E(ψ1, . . . , ψA) can
have slight di�erences according to what forces are used.

In the expression of the Hartree-Fock minimization, one usually denotes the density
of kinetic energy

∑A
i=1 |∇ψi|

2 by τ ,
∑A

i=1 |ψi(x)|2 by ρ and the density matrix ρ(x, y) =∑A
i=1 ψi(x)ψ∗i (y). Due to the fact that

∫
ψiψ

∗
jdx = δij, one can write the energies as

E(ψ1, . . . , ψA) =
~2

2m

∫
τdx+

1

2

∫ ∫
ρ(x)V (x− y)ρ(y)dxdy

− 1

2

∫ ∫
V (x− y) |ρ(x, y)|2 dxdy.

This shows the energy of a many-body system can be written as a functional of the
density, which is the underlay of density-functional theory (DFT).
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1.2.2 Pairing correlations

According to the Pauli exclusion principle, each nuclear state can only be occupied by one
nucleon or two nucleons with opposite spins. The short-range nuclear force contributes to
the mean �eld potential and the residual interaction between nucleons as well. Therefore,
two nucleons can minimize their energy by moving time-reversed orbits due to the residual
interaction. For example, in the nuclear shell model, two neutrons or two protons will
move into the orbit with the same total angular momentum j but opposite m, where m
is the eigenvalue of the z component of j, which means the total angular momentum of
the pair is 0.

For nuclei with an even number of neutrons and protons, which is also called even-
even nuclei, the ground state is a linear combination of the nucleon pairs coupled in the
states near the Fermi energy. The excited states are obtained by breaking the pairs,
as �gure 1 shows. Including the pairing correlations, quasiparticle states are concerned.
The excitation energy is about 2∆, where ∆ is the pairing gap. For nuclei with an odd
number of neutrons or protons, the excitation states have an order of ∆ with the pairing
correlations.

Figure 1: An example of the breaking of a nucleon pair with the extremal single-particle
con�guration.

The nucleon separation energy is de�ned as the energy required to separate the last
nucleon,

Sn(N,Z) = B(N,Z)−B(N − 1, Z); (1.8)

Sp(N,Z) = B(N,Z)−B(N,Z − 1). (1.9)

Sn(N,Z) is the separation energy for the last neutron and Sp(N,Z) is the separation
energy for the last proton. B(N,Z) is the binding energy (BE) of a nucleus with Z
protons and N neutrons. Figure 2 shows the experimental neutron separation energies
of nuclei with N − Z = 21, 23 around the N = 82 shell with the data from [16]. The
di�erence in the separation energy of an odd-N nucleus and the even-N nucleus shows one
of the evidence of the existence of pairing correlations, which is known as the odd-even
staggering. This means it is always more di�cult to separate a nucleon from the nucleus
when it is in a pair.
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Figure 2: The neutron separation energies [17].

1.2.3 The BCS theory

For the ith nucleon in the single-particle state ψi(x), one can write the creation operator
â+
i as,

â+
i =

∫
d3r
∑
στ

ψi(x)â+
x , (1.10)

where â+
x is the creation operator for the eigenstate at the certain position, and x =

(r, σ, τ) with σ = ±1 for spin and τ = ±1 for isospin indices [5]. One can then describe
the occupied states by â+

i |Φ〉 (1 ≤ i ≤ A) and unoccupied states âi |Φ〉 = 0 (i > A),
where |Φ〉 = det{ψi(x), i = 1, . . . , A} is the Slater determinant and A is the number of
nucleons.

According to the BCS theory (proposed by Bardeen, Cooper and Schrie�er [18]),
nucleons can be treated in pairs moving in time-reversal states, analogous to Cooper
pairs in superconductivity which are bound together [19]. The trial wavefunction for a
single nucleon in the state µ outside a closed inert core |0〉 is

Φµ =
∏

ν>0,ν 6=µ

(Uν + Vν â
+
ν̄ â

+
ν )â+

µ |0〉 , (1.11)

where â+
ν̄ is the creation operator for a nucleon in the time-reversed state |ν̄〉 = (−1)j−m |j −m〉

correlated to the single-particle state |ν〉 = |jm〉. Uν and Vν are coe�cients that keep the
wavefunction normalized. To obtain the best wavefunction, one needs to minimize the
expection value 〈Φµ| Ĥ |Φµ〉, which is equivalent to minimize 〈Φµ| Ĥ − λN |Φµ〉, where λ
is the Fermi energy and N is the number of particles. The Hamiltonian is consisted of a
single-particle term and a pairing interaction term,

Ĥ =
∑
ν>0

εν(â
+
ν âν + â+

ν̄ âν̄)−
∑
νν′>0

Gνν′P
+
ν Pν′ , (1.12)
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where the pair-creation operator P+
ν = â+

ν â
+
ν̄ and the pair-annihilation operator Pν =

âν âν̄ . Gνν′ is called the pairing strength, which is an amplitude for a nucleon pair to
transfer from the state |ν ′〉 and |ν̄ ′〉 to the other state |ν〉 and |ν̄〉.

One can simplify the result of the expection value to,

〈Φµ|H − λN |Φµ〉 − 〈Φ|H − λN |Φ〉 = Eµ =
√

(εµ − λ)2 + ∆2
µ, (1.13)

where Φ is the wavefunction of the core with even N nucleons, εµ is the single-particle
energy at the state µ and ∆µ is the pairing gap. Eµ can also be regarded as the energy
needed to add an odd nucleon at the state µ. In equation (1.13), the pairing gap ∆ and
fermi energy λ are assumed not to change when the extra nucleon is added. However,
for a nucleus, the changes in ∆ and λ exist indeed. These changes in wavefunctions and
excitation energies are called blocking e�ects.

1.2.4 The Bogoliubov transformation

If one neglects the blocking e�ects, the Bogoliubov transformation can be introduced for
quasiparticles as [11],

b̂+
n =

∑
i

(Ui,nâ
+
i + Vi,nâi),

b̂n =
∑
i

(U∗i,nâi + V ∗i,nâ
+
i ),

(1.14)

where b̂+
n represents the creation operator of quasiparticle states and the annihilation

operator is b̂n. U and V are the coe�cients that transform the single-particle states (i)
into quasiparticle states (n). The quasiparticle operators obey the anti-commutation rule,{

b̂+
µ , b̂

+
ν

}
= 0;

{
b̂µ, b̂ν

}
= 0;

{
b̂µ, b̂

+
ν

}
= δµν , (1.15)

where the subscripts µ and ν refer to the quasiparticle creation or annihilation operator
at the state µ and ν. Applying the transformation (1.14) to the rule (1.15), one can get,∑

k

(Uk,µU
∗
k,ν + Vk,µV

∗
k,ν) = δµ,ν∑

k

(Uk,µVk,ν + Vk,µUk,ν) = 0
. (1.16)

The inverse of (1.14) leads to,∑
µ

(Uj,µU
∗
k,µ + V ∗j,µV

∗
k,ν) = δk,j∑

µ

(Uj,µV
∗
k,µ + V ∗j,µUk,µ) = 0

. (1.17)

Here, j and k are single-particle states. The transformation matrix between single-particle
states and quasipartical states can be written as,

Bi,n ≡
(
Ui,n V ∗i,n
Vi,n U∗i,n

)
, (1.18)

and
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[BB+]k,j = δj,k
[B+B]µ,ν = δµ,ν

. (1.19)

Therefore, in the BCS theory, at the state µ,

b̂+
µ = Uµâ

+
µ − Vµâµ̄,

b̂+
µ̄ = Uµâ

+
µ̄ + Vµâµ,

b̂µ̄ = Uµâµ̄ + Vµâ
+
µ ,

b̂µ = Uµâµ − Vµâ+
µ̄ .

(1.20)

The ground state
∣∣∣Õ〉 is assumed to be a vacuum for quasiparticle's operators: b̂µ

∣∣∣Õ〉 = 0.

A one-quasiparticle state with a quasiparticle in the state µ is Φµ = b̂+
µΦ.

1.2.5 The HFB equation

To obtain the ground state of a nucleus, one applies the variational principle which min-
imizes the energy,

E(U, V ) = 〈Õ|H |Õ〉 . (1.21)

For quasiparticles, one should consider the one-body density matrix ρ and the pairing
tensor κ,

ρj,k = 〈Õ| â+
k âj |Õ〉 =

∑
µ

Vk,µV
∗
j,µ, (1.22)

κj,k = 〈Õ| âj âk |Õ〉 =
∑
µ

Uj,µV
∗
k,µ. (1.23)

In coordinate space, the density matrix and pairing tensor are expressed as,

ρ(x,x′) =
∑
n

ψ(V )
n (x)ψ(V )∗

n (x′), (1.24)

κ(x,x′) =
∑
n

ψ(U)
n (x)ψ(V )∗

n (x′), (1.25)

where

(
ψ

(V )
n (x)

ψ
(U)
n (x)

)
=


∑
i

Vi,nψi(x)∑
i

Ui,nψi(x)

 (1.26)

are quasiparticle wavefunctions in coordinate space.
To satisfy (1.16) and (1.17), the generalized density matrix is de�ned as

R =

(
ρ −κ
κ∗ I − ρ∗

)
, (1.27)

where I is the identity matrix. By introducing the Lagrange parameters for the constraint
on the neutron and proton number and considering the unitary condition R2 = R [20],
the Bogoliubov Hamiltonian is denoted as

7



H =

(
e ∆
−∆∗ −e∗

)
, (1.28)

where

ej,k = hj,k − λqjδj,k, hj,k = δE
δρk,j

= h∗k,j
∆j,k = δE

δκ∗j,k
= −∆k,j

. (1.29)

Here, λqj is the Lagrange parameter for the constraint on the neutron or proton number.
The density matrix can be decomposed into spin-isospin terms:

ρ(x,x′) = ρ(rστ, r′σ′τ ′). (1.30)

σ and τ are spin and isospin states as mentioned in section 1.2.3.
If one includes Skyrme's e�ective interaction [21] in the HFB method, the local energy

density functional will be constituted by two components: the mean-�eld and pairing
energy densities,

H(r) = H(r) + H̃(r), (1.31)

where H(r) and H̃(r) depend on the following nuclear properties: local particle density
ρ(r), local pairing density ρ̃(r), kinetic energy density τ(r) and spin-current density Jij(r).
In the HFBTHO program used in this project, one only considers the spin-dependent one-
body density matrices, which leads to the time-even pairing density matrix ρ̃(rσ, r′σ′) =
−2σ′κ(r, σ, r′,−σ′) to replace the time-odd pairing tensor κ. Finally, the Skyrme HFB
equations have the form of

∑
σ′

(
h(r, σ, σ′) h̃(r, σ, σ′)

h̃(r, σ, σ′) −h(r, σ, σ′)

)(
U(E, rσ′)
V (E, rσ′)

)
=

(
E + λ 0

0 E − λ

)(
U(E, rσ)
V (E, rσ)

)
.

(1.32)
In simple words, equation (1.32) presents a clear form on how the HFB energy de-

pends on the original mean-�eld and further nucleon interactions. For more details in the
components and properties of the Skyrme force, one can refer to the HFBTHO program
description [1] and a review on SCMF models [5].

1.2.6 Solution to the deformed nuclei

For spherical nuclei, a mean �eld is already enough to describe the nuclear properties
with spherical symmetry. The Skyrme HFB equations also give the best performance in
the calculations for these spherical nuclei in coordinate space [22]. However, an incom-
plete �lling of a shell can lead to nuclear deformation. The deformation parameter is
phenomenologically de�ned as,

βl =
4π

3ARl
0

〈
rlYl0

〉
, (1.33)

where R0 is the nucleus radius: R0 = 1.2A1/3 and Yl0 is a spherical harmonic. In this
case, a deformation should also be applied to the mean-�eld potential to describe the
nuclei better. In 1973, Vautherin [23] proposed a method to calculate axially deformed
nuclei, which solves the deformed HFB equation by diagonalizing the HFB Hamiltonian
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in the con�gurational space of wavefunctions with the application of certain symmetry
and determines the potentials and densities in coordinate space. To shorten the compu-
tation time of the nuclear calculations, a restriction on axially-symmetric deformation is
imposed in the HFBTHO program. Then, one can use the standard cylindrical coordi-
nates r = (r cosϕ, r sinϕ, z) with z as the symmetry axis and the quasiparticle states can
be expressed by,

(
Uk(r, σ, τ)
Vk(r, σ, τ)

)
= χqk(τ)

[(
U+
k (r, z)

V +
k (r, z)

)
eiΛ
−ϕχ+1/2(σ) +

(
U−k (r, z)
V −k (r, z)

)
eiΛ

+ϕχ−1/2(σ)

]
,

(1.34)
where the third component Jz of the total angular momentum is a good quantum number
and has the eigenvalue Ωk for the kth state and Λ± = Ωk ± 1/2. The quasiparticle states
are also assumed to be the eigenstates of the third component τz of the isospin operator
and the eigenvalues are qk = −1

2
for neutrons and qk = +1

2
for protons. If one substitutes

equation (1.34) into equation (1.32), only r and z will be involved in the �nal equations
and local densities [23]. Furthermore, for kth state and its time-reversed state k̄, their
contributions to the densities are identical. If one restricts the summations to positive
Ωk, total results will be multiplied by a factor of 2.

2 Machine learning

2.1 Arti�cial neural network

The HFB approach considers pairing correlations on the basis of the SCMF method, which
already complicates the Hamiltonian to a large content. However, there still exists some
deviations between the theoretical results and experimental data, which is inadequate for
the study of exotic nuclei, especially when one wants to extrapolate the model to the
neutron drip line. The drip line is a boundary with extremal ratio of the proton number
to the neutron number, where no more protons or neutrons can be added into the nucleus.
For example, in [24, 25] the deviations of di�erent nuclear approaches are discussed. One
way to improve the existing models even further is to introduce machine learning (ML)
algorithms. A typical ML algorithm contains a set of �samples� as the input parameters
with a certain number of �features� or �attributes�. For example, if one wants to train the
ML codes to predict the total BE of all even-even Pb isotopes with only the neutron and
proton numbers as the input, the 22 even-even isotopes form 22 samples and the features
include N and Z.

The input set, output set and training process are assigned in di�erent layers. These
layered presentations are learned via neural networks (NN). One can de�ne a number of
neurons in each layer. The neurons are interconnected, depending on the input values,
weights and biases, and they generate new values for the next layer together. A typical
NN is shown in �gure 3, where dji are weights for the input neutrons to be transformed
into hidden neurons, bj are weights for the hidden neurons to be transformed into the
output neuron and cj and a are biases for the input and output.
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Figure 3: A typical NN with 4 input neurons, 1 bias input neuron and 1 output neuron
[26].

For one layer in an arti�cial NN, the output y can be achieved by the following ex-
pression with the input vector x(x1, x2, . . . , xn),

y = a+
M∑
j=1

bjφ(cj +
∑
i

djixi), (2.1)

where M is the number of hidden neurons in one hidden layer and φ is a nonlinear
activation function to allow a neuron to transfer from an inactivated low value to an
activated high value. a and cj are biases and bj, dji are the weights for the corresponding
layer. If more hidden layers are involved, the outputs from the former hidden layer will
serve as inputs to the next hidden layer, as shown in �gure 4.

Figure 4: A typical deep NN with 8 input neurons, 4 output neurons and 3 hidden layers
[27].

For a layer, a dropout rate can be added, which is an important regularization tech-
nique. Dropout represents randomly setting a number of output features of the layer to
zero during the training process, while a dropout rate is the fraction of the zeroed features.
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The objective of an training process is to minimize a loss function, which computes a
distance score between the predictions given by the NN and true targets,

Loss =
n∑
i=1

(yi − ti)2, (2.2)

where the output y is now a vector with n points and t refers to the target value. In
some networks, a process called backpropagation also participates in the determination
of weights. After one iteration, the NN will propagate the loss back to adjust the weights
to minimize the loss function again. Figure 5 shows the summary of how a complete NN
works in a �ow chart.

Figure 5: A �ow chart of NN mechanism [28].

In recent years, various ML methods are applied not only in software engineering, but
also in scienti�c research projects. One of algorithms, so-called deep learning, is practical
and still promising. The �deep� term in the name of deep learning refers to the model
with successive layers constructed, which means more types of NN architecture and more
hidden layers are included. A more systematical introduction to deep learning can be
found in [28].

2.2 Cross validation

Usually when one runs a speci�c NN, besides the training set, a validation set should also
be included. This validation process is important for a model to show whether it still
performs well with unknown inputs. However, for the NN used in this project, nuclei in
the training are limited to the even-even ones and the number of these nuclei is �xed.
Therefore, it is not realistic to �nd enough �unknown� nuclei for the validation. One has
to use another technique in ML called cross validation to solve this problem.

The mechanism of cross validation is quite simple. The main idea is to make full use of
the training set itself. One can divide the set into e.g. 5 subsets and in each model-�tting
process, one of the subsets is used as the validation set and the rest 4 subsets are used
as the training set together. As a result, 5 NN models can be generated with 5 totally
di�erent validation sets. The mission is to �nd the best validation deviation among the
5 runs and save the corresponding model as the best model to �t the data set. Figure 6
visualizes the cross validation method with 5 splits.
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Figure 6: An example of how cross validation works [29].
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Chapter II

Method

3 HFBTHO program

The HFBTHO program is named after axially deformed con�gurational Hartree-Fock-
Bogoliubov calculations with Skyrme-forces and zero-range pairing interaction using Harmonic-
Oscillator and/or Transformed Harmonic-Oscillator states [1]. To apply the HFB theory
into solving the nuclear many-body problem numerically, there are usually three ways.
The �rst method is focused on the diagonalization of the particle-particle part in the
Hamiltonian, which is called two-basis method [30, 31, 32]. The second one is called
canonical-basis HFB method, which uses the spatially localized eigenstates of the one-
body density matrix and the last one is an approach to axial coordinate-space HFB using
a basis-spline method [1]. However, the two-basis method can result in a large number of
positive-energy free-particle states and the other two consume too much time and compu-
tational capability. In the HFBTHO program, Stoitsov et al. proposed a con�guration-
space approach to the deformed HFB equations instead of the coordinate-space approach.
In other words, the HFB solution is expanded in the basis of a harmonic oscillator (HO) or
a transformed harmonic oscillator (THO). An HO basis is constituted by eigenfunctions
of a single-particle Hamiltonian for an axially deformed harmonic oscillator potential [1].
The number of states in the HO basis equals to (Nsh + 1)(Nsh + 2)(Nsh + 3)/6, and for a
spherical basis, all the shells with N=0 . . . Nsh are included, where Nsh is the number of
shells. Codes based on HFB+HO are successful in most nuclear calculations, but near the
nuclear drip lines, they tend to converge slowly, needing a large basis to calculate loosely
bound states. One can achieve the THO set where the quasiparticle HFB wavefunctions
are expanded by certain means of coordinate transformation. HFB+THO can serve as
an alternative to the HFB+HO approach and there are various choices of the THO basis
[33, 34]. However, the projection into the THO basis is not used for this project.

In this project, the 2.00d version of the code HFBTHO [35] is used to calculate the
binding energies and single-particle states under di�erent quadrupole constraints of even-
even nuclei. The energies of the single-particle states are calculated by diagonalizing the
mean-�eld Hamiltonian, and the overlap between the single-particle wave function and
the quasiparticle wave function indicates the direction of the single-particle state. Figure
7 shows a typical input �le for the HFBTHO program calculating the nucleus 138

82 Pb. The
number of shells can be varied by the user; the heavier the target nucleus is, the more shells
are needed to make the calculation converge. A spherical HO basis is used in this project,
and the oscillator length b0 is determined by the HO frequency b0 =

√
~/mω0, where

~ω0 = 1.2 × 41/A1/3 is already de�ned in the code by default. The accuracy also has a
huge impact on the speed of HFBTHO calculations. It is de�ned as the di�erence between
the result from the current iteration and that from the last iteration. A lower accuracy
means a faster convergence, which needs the user to consider the equilibrium in between.
In this project, an accuracy of 10−6 is used. One can also choose the Skyrme functional
to be used in the code, which in this case, is SLy4. Details of the parameters used in
SLy4 can be found in [1]. The pairing correlations are also included which add a small
number to the pairing matrix elements initially. The Coulomb type chosen to be 2 means
both the direct and exchange Coulomb potentials are included. Quardrupole moment
constraints are imposed in this project, with the the expectation value of the constraint
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calculated by equation (1.33). The �nite-temperature HFB equations are also included in
the code, where the mean �eld is described as temperature-dependent [36]. The selection
of the input temperature can also a�ect the converging speed. The investigation into
the in�uence of the number of shells and temperature on the time of calculations will be
shown in section 5.1.

Figure 7: Typical input parameters for the HFBTHO program.

4 NN con�guration

The library Keras based on Tensor�ow [2]is used to build the NN for nuclear BE predic-
tion. One can usually customize the con�guration of a certain NN to achieve the best
performance. The con�guration parameters of the NN in this project include:

• number of input and output layers, which is taken as 50 and 1 respectively ;

• number of hidden layers and neurons in each hidden layer, which is chosen to be 2
and 650 for the training on all 859 even-even nuclei experimentally measured (The
range of the selection is based on the investigation by Idini [3]);

• epochs: number of iterations performed to minimize the loss function;

• activation functions for input and hidden layers, which are chosen to be �sigmoid�
and �ReLU� respectively, shown in �gure 8;
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(a) Sigmoid (b)Recti�ed Linear Unit (ReLU)

Figure 8: Di�erent shapes of the activation functions used.

• dropout rate, 0 chosen for this project since there are only 2 hidden layers;

• initialization of weights and biases, which is chosen as a random number from the
normal distribution with a mean value of 0 and standard deviation of 0.05;

• optimizer: rmsprop, to speed up the training and reduce the loss by making use of
the gradient of the batch;

• size of the cross validation set and number of validation times: 1/10 of the input
samples, performed 10 times. A Python library called scikit-learn [29] is used for
the data processing in cross validation.

Root-mean-square (RMS) deviation is calculated to evaluate the theoretical or computa-
tional total BE of the nuclei (yi) with the experimental data (ti):

RMSD =

√√√√√ n∑
i=1

(yi − ti)2

n
, (4.1)

where n is the number of samples.
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Chapter III

Results

5 Investigations on the HFBTHO program

5.1 Selection of the input parameters

To perform the calculations on a large range of even-even nuclei, one needs to investigate
under which circumstances the codes perform both good and fast calculations. A lighter
nucleus 48Ca and a heavier one 200Hg are chosen. Among the input parameters, the
number of shells (Nsh) and the temperature (T ) imposed in the calculations play a crucial
role on the performance of the program.

Figure 9 shows how the total binding energies of the two nuclei vary with the number
of shells and the temperature. Nsh is selected in the range from 8 to 20 for 48Ca and
from 10 to 20 for 200Hg. T is changed from 0 to 0.1MeV with an interval of 0.01MeV at
Nsh = 10 for 48Ca and Nsh = 16 for 200Hg. The total BE continues to decrease rapidly
until around 16 shells for both nuclei. For 48Ca, the total BE does not change with the
temperature in the range of [0, 0.1MeV] and for 200Hg, the total BE begins to rise when
the temperature reaches about 0.04MeV.

Figure 10 shows how the average time for the HFBTHO calculations varies with the
number of shells and the temperature. When the number of shells increases, the time
increases almost exponentially. However, when a certain temperature is added, the cal-
culation will converge much faster for both nuclei.

The di�erence between the absolute value of the lowest total BE from the HFBTHO
program and from atomic mass evaluation 2016 (AME16) [37, 38] (|∆E|) and average
calculation time (t) with di�erent con�gurations of Nsh and T are listed in Table 1.

For light nuclei such as 48Ca, lower Nsh brings both a better theoretical result on the
total BE and less time consumed. Larger temperatures lead to smaller t and don't change
the value of BE. However, for heavier nuclei like 200Hg, the deviation between theoretical
and experimental total BE is too high for a low Nsh. Thus, one has to increase Nsh

to achieve lower |∆E|, which slows down the convergence in the calculation to a large
degree. An increment on T can accelerate the convergence, but will also make |∆E| larger
for 200Hg. Since the energy di�erence is much larger in 200Hg compared to that in 48Ca,
one should pay more attention to improve the results from heavy nuclei. This means a
relatively larger Nsh and a moderate T should be chosen in the range of the investigations
on 48Ca and 200Hg.

Therefore, the conclusion is that for a balance in the quality and the speed of the
calculations based on the HFBTHO codes, one should choose the number of shells around
14 and a temperature less than about 0.04MeV as the input parameters.
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Nsh T/MeV |∆E|/MeV t/min
8 0.05 0.027847 0.666333
9 0.05 0.192279 0.71781
10 0 0.873151 2.76348
10 0.01 0.873151 1.01567
10 0.02 0.873151 0.905238
10 0.03 0.873151 0.86619
10 0.04 0.873151 0.864524
10 0.05 0.873151 0.845571
10 0.06 0.873151 0.839714
10 0.07 0.873151 0.843381
10 0.08 0.873151 0.836095

48Ca 10 0.09 0.873151 0.833524
10 0.1 0.873151 0.839857
11 0.05 1.471553 1.02719
12 0.05 1.584425 1.19033
13 0.05 1.647911 1.4721
14 0.05 1.734281 1.75957
15 0.05 1.756517 2.20152
16 0.05 1.855457 2.55305
17 0.05 1.887971 3.72738
18 0.05 1.894493 4.73486
19 0.05 1.897041 6.30729
20 0.05 1.897293 9.87405
10 0.05 14.95328 0.982238
11 0.05 13.756422 1.20771
12 0.05 12.403921 1.4581
13 0.05 10.174596 1.7801
14 0.05 9.084211 2.23167
15 0.05 8.836724 3.10167
16 0 8.558827 7.24352
16 0.01 8.558827 4.29024
16 0.02 8.558828 4.07714

200Hg 16 0.03 8.558923 4.14314
16 0.04 8.559893 4.21233
16 0.05 8.563437 4.07281
16 0.06 8.571241 3.81148
16 0.07 8.584285 3.96457
16 0.08 8.602787 3.93971
16 0.09 8.626407 3.82143
16 0.1 8.654492 3.69833
17 0.05 8.270328 4.82052
18 0.05 8.112228 5.95905
19 0.05 7.965679 8.25238
20 0.05 7.754098 10.6089

Table 1: |∆E| and t with di�erent con�gurations of Nsh and T for 48Ca and 200Hg.
The green cells show the best result and related parameter in each investigation and the
limitation with this con�guration is shown in the red cells.
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(a) (b)

(c) (d)

Figure 9: The total binding energies from HFBTHO calculations with a temperature of
0.05MeV and di�erent numbers of shells of: (a) 48Ca; (b) 200Hg, and the total binding
energies from HFBTHO calculations with di�erent temperatures: (c) 48Ca with 10 shells;
(d) 200Hg with 16 shells.
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(a) (b)

(c) (d)

Figure 10: The total CPU times of the HFBTHO calculations with a temperature of
0.05MeV and di�erent numbers of shells of: (a) 48Ca; (b) 200Hg, and the total CPU times
of the HFBTHO calculations with di�erent temperatures of: (c) 48Ca with 10 shells; (d)
200Hg with 16 shells.

5.2 Calculations on 82Pb isotopes

With the parameters concluded from section 5.1, all even-even Pb isotopes are calculated
by the HFBTHO program. The number of the even-even isotopes is 22 and 21 di�erent
deformations for each nucleus are considered. Figure 11 shows the total BE vs β spectra
of these nulcei. The red line in �gure 11 represents the total BE spectrum of the doubly
magic nucleus 126

82 Pb. When the nucleon number gets closer to the magic number, the total
BE spectrum becomes more curved. This means the β and BE with di�erent deformations
from HFBTHO codes can be good parameters in the NN training, which indicates the
information of relatively big energy gaps in the region around 126

82 Pb.
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Figure 11: Total binding energies with di�erent deformations of all even-even Pb nuclei.

Figure 12 shows the di�erence between the lowest total BE calculated by HFBTHO
and the BE from AME16 for all Pb even-even nuclei. It also presents a local minima at
126
82 Pb. This quantity can also serve as the target value in a NN.

Similar phenomenon happen to the spectra of the neutron pairing energy and the
lowest neutron quasiparticle state when BE is the lowest, shown in �gure 13 and 14.
However, for Pb isotopes, the proton number stays the same so the proton pairing energy
in �gure 13 does not change either.

All the outputs from HFBTHO discussed in this section can be used as the features
in the �nal NN part because they all show the properties of the nuclei and the trend on
how the BE varies to some extents. Then, the investigation can be made on how many
features should be fed to the network to get the best result.
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Figure 12: The di�erence between HFBTHO calculations and AME16 data for even-even
Pb nulcei. A local minimum can be observed at N = 126.

Figure 13: Pairing energy calculated by HFBTHO for neutrons (left) and protons (right).
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Figure 14: The lowest quasiparticle state at the lowest total BE calculated by HFBTHO
for even-even Pb nuclei.

5.3 Calculations on all even-even nuclei

After con�rming which parameters need to be tested as the features into the NN, the
HFBTHO calculation is performed over all 859 even-even nuclei available from AME16.
Figure 15 displays the absolute di�erence between HFBTHO calculations and AME16
data with di�erent colors labeled in the right bar. The RMS deviation for SLy4 interaction
is 6.4597MeV. The HFBTHO has a good performance for nuclei with Z,N <∼ 90, but
for superheavy nuclei, the deviation can go very high with the magnitude of 10MeV. The
poor performance in the superheavy region can be an essential limitation of the HFBTHO
code, which makes it unreliable to predict the properties of other heavy nuclei. Therefore,
it is necessary to employ the ML means to help improve the results from HFBTHO and
extrapolate the algorithm to the whole nuclear chart.
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Figure 15: Absolute BE di�erence between the results for the SLy4 interaction calculated
with the HFBTHO program and experimental data.

6 Results from the NN

A test of NN is �rst applied in the region of even-even Pb isotopes. In one line in
the input matrix, proton number Z, neutron number N, a certain deformation β and
the corresponding pairing energy , 10 quasiparticle states for neutrons and protons are
included to predict the BE corresponded to the β. With 2 hidden layer, 400 hidden
neurons and 100 epochs, the training RMS deviation can reach around 4MeV, which is
already better than the number from the HFBTHO calculations on all even-even nuclei.

6.1 Predictions on total BE

With the con�guration chosen in section 4, the total binding energies from AME16 is �rst
used as the training target. Figure 16 shows how the NN performs with only Z and N as
the input features, which means it has no relation to the HFBTHO outputs. The training
took 30000 epochs and leads to a training RMS deviation to 3.842949MeV. It improves the
HFBTHO results by 40.51%, which means the NN is indeed a possible way to improve the
model. However, for some nuclei, the deviations can still reach the magnitude of 10MeV.

However, if one continues to include more features from the HFBTHO codes as the in-
put into the NN, the results tend to be worse. Figure 17(a) shows the results with the low-
est HFBTHO total BE added to the features. The RMS deviation reaches 11.922695MeV
now. If all the deformations and corresponding BE are added instead of BEmin, the RMS
deviation turns into an extreme high value around 518MeV. This actually refers to the
condition that the NN produces the same value for all outputs, which can also be seen in
�gure 17(b). The NN remains broken if one tries to add more features.

The reason for the malfunction of the NN is the scaling of the features. The BE used

23



in the input set is too large compared to the other features. Considering �gure 17(a)
again, for light nuclei, the BE is smaller and comparable with other feature values, so the
overall performance in the light nuclei region is relatively better than that in the heavier
region.

Figure 16: BE di�erence between the NN and AME16. Training x set: Z, N; training y
set: total BE from AME16.

(a) Training x set: Z, N, BEmin (b) Training x set: Z, N, β, BEβ

Figure 17: BE di�erence between the NN and AME16 with two di�erent input sets (a)
and (b).
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6.2 Predictions on BE/A

To solve the problem in section 6.1 , one can simply use the BE per nucleon (BE/A) to
substitute the total BE in the NN. Figure 18∼22 show the results with di�erent con�gu-
rations of the input sets where BE is replaced by BE/A. In these �gures, the di�erences
and RMS deviations are still calculated by the theoretical and experimental total BE. In
captions, Epn represents the vector of neutron pairing energy, Epp the vector of proton
pairing energy, Eqpn the vector of neutron quasiparticle states and Eqpp the vector of pro-
ton quasiparticle states. The lowest RMS deviation 1.422205MeV comes from the input
set with Z, N, BEmin/A.

Figure 18: BE di�erence between the NN and AME16. Training x set: Z, N; training y
set: BE/A from AME16.

The BE/A is introduced in the NN to improve the scale of features, as mentioned
in section 6.1. This means the appearance of a list of relatively large numbers (from
total BE) can be avoided by dividing BE with the number of nucleons. Therefore, the
investigations on the NN are based on BE/A in this section.
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Figure 19: BE di�erence between the NN and AME16. Training x set: Z, N, BEmin/A;
training y set: BE/A from AME16.

Figure 20: BE di�erence between the NN and AME16. Training x set: Z, N, β, BEβ/A;
training y set: BE/A from AME16.
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Figure 21: BE di�erence between the NN and AME16. Training x set: Z, N, β, BEβ/A,
Epn, Epp; training y set: BE/A from AME16.

Figure 22: BE di�erence between the NN and AME16. Training x set: Z, N, β, BEβ/A,
Epn, Epp, Eqpn, Eqpp; training y set: BE/A from AME16.

If one increases the number of features, the RMS deviation will increase rapidly. The
training RMS deviation (train_rmsd), validation RMS deviation (rmsd) and total BE
RMS deviation (total_rmsd) from the best model in each NN are listed in table 2. For
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more features included, the train_rmsd and total_rmsd decrease, while the validation
rmsd grows too rapidly. Also from �gure 21 and 22, one can observe that the nuclei with
large deviations locate closely in one area. This phenomenon results very likely from the
cross validation, which means the NN has the over�tting within the training set where
the model can �t the training set in a too good way to raise the error in the validation
set. Another performance is run on the set from �gure 22, where the validation set from
the best model is marked with the red frame on the plot, shown in �gure 23. This veri�es
the over�tting guess.

�gure train_rmsd/MeV rmsd/MeV total_rmsd/MeV

18 0.025222 0.035019 3.389649
19 0.011053 0.016452 1.105979
20 0.027252 0.012571 1.794534
21 0.008954 0.116615 1.286227
22 0.005812 0.252907 0.662288

Table 2: The training RMS deviation, validation RMS deviation and total BE RMS
deviation from the best model during the cross validation process in each NN.

Figure 23: BE di�erence between the NN and AME16. Training x set: Z, N, β, BEβ/A,
Epn, Epp, Eqpn, Eqpp; training y set: BE/A from AME16. The validation set from the
�nal best model is marked in red square.

One of the ways to improve this kind of over�tting phenomenon is to decrease the
number of epochs and to reuse the weights from the last cross validation. If one uses the
parameters from last run directly, the NN will produce results shown in �gure 24 with
only 50 epochs. The RMS deviation can reach 2.866138MeV within very short time, which
is a great improvement to the results of 14.193862 MeV in �gure 22. The area with large
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deviations is somehow extrapolated. In the papers [24, 25], Bayesian neural network is
introduced with the similar attempt to reuse the parameters. This optimization deserves
more research into it.

Figure 24: BE di�erence between the NN and AME16 with 50 epochs for each cross
validation. Training x set: Z, N, β, BEβ/A, Epn, Epp, Eqpn, Eqpp; training y set: BE/A
from AME16.

6.3 Predictions on BEHFBTHO −BEexp

Among the investigations in the previous sections, the best RMS deviation on the total BE
is 1.422205MeV. Compared to the results from [24, 25, 26], it's still under the expectation.
One can then use the NN to give predictions on the energy di�erence ∆ = BEHFBTHO −
BEexp. For the input set of the NN, apart from Z, N and β, it's also interesting to include
the pairing energy because it plays an important role in binding energy, especially when
one compares the experimental data to the HFBTHO program which pays much attention
to the pairing correlation. The result is shown in �gure 25, where no sign of over�tting
is found as in �gure 22. The RMS deviation can reach 0.218308MeV, which is very small
compared to other previous tests. If one add the term ∆NN to BEHFBTHO, the total BE
RMS deviation can improve by 96.62% compared the original deviation from HFBTHO.
Therefore, this is a potentially good model to predict the BE of all even-even nuclei, but
further investigations are needed concerning the applicability of the model to regions with
few experimental data such as superheavy regions and neutron drip line.

However, the results from [24, 25, 26] on other theoretical models can bring the RMS
deviation below 0.2MeV or even better. Therefore, the NN still needs further modi�cations
and improvements and potential means include involving more features with attempts to
avoid over�tting, changing the con�gurations of the arti�cial NN or changing to a new
ML algorithm entirely.
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Figure 25: Energy di�erence between the ∆BENN and BEHFBTHO − BEexp with 10000
epochs for each cross validation. Training x set: Z, N, β, Epn, Epp, ; training y set:
BEHFBTHO −BEexp.
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Chapter IV

Summary and outlook

The �rst part of the project is focused on nuclear physics, using the HFBTHO program
to calculate all even-even nuclei. First, 48Ca and 200Hg are investigated with di�erent
numbers of shells Nsh and temperatures T as the input parameters into the program.
The best Nsh and T are chosen to be 14 and 0.04MeV to achieve the balance between
accuracy and speed of the calculations.

The next step is to have an insight to the code performance on all even-even Pb
isotopes. 22 nuclei with 21 deformations are calculated by the HFBTHO program with
the input parameters determined from the previous investigation. From the plots in �gure
11, 12, 13, 14, one can �nd that the parameters: BEHFBYHO with di�erent deformations,
the lowest BEHFBTHO/the di�erence between the lowest BEHFBTHOand experimental
BE from AME16, the pairing energies of neutrons and protons and the neutron/proton
quasiparticle states can re�ect the tendency on how the BE changes with di�erent nuclei.
Therefore, these parameters are chosen to be part of the input set into the NN. Finally,
the HFBTHO program is run over all 859 even-even nuclei available in AME16. The RMS
deviation comes to 6.4597MeV.

With the help of NN, the deviation improves. Di�erent investigations on di�erent
selections of the input features into the NN based on Idini's code [3] are summarized
through �gures 27∼30 in the appendix, where the x-axis is the A number. Compared to
�gure 26 with BEHFBTHO − BEexp, the NN predicting the total BE gives a better RMS
deviation of 3.842949MeV. However, this kind of NN is not successful when more features
are included. The reason is that the total BE is too large compared to other features.
Then, one can train the NN with BE/A. The best model has the input with Z, N and
BEmin shown in �gure 29, where the RMS deviation can reach 1.422205MeV. If one trains
the NN on the di�erence between the lowest BEHFBTHO and BEexp, the best model one
can get from this project is with the input of Z,N,β, Epn, Epp, which leads to the RMS
deviation of 0.218308MeV and improves the HFBTHO result with 96.62%.

The results show that the ML algorithms can largely improve the HFBTHO calcula-
tions. It is quite impressive to lower the RMS deviation from 6.4597MeV to 0.218308MeV.
This makes the combination of nuclear physics and ML possible to predict superheavy
nuclei and nuclei close to the neutron drip line. Further investigations are required to
extrapolate the model to these regions. However, the NN used in this project can still be
improved. How to deal with the feature scaling is an interesting topic which can a�ect the
output much. One can also try to solve the over�tting phenomenon with more features
involved by tuning the training parameters or changing the type of the NN. Examples
include [24, 25, 26].
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Appendix

Figure 26: BEHFBTHO −BEexp versus the atomic mass A. This refers to �gure 15.

Figure 27: BENN − BEexp versus the atomic mass A. Training set: x: Z,N; y: BEexp.
This refers to �gure 16.
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Figure 28: BENN −BEexp versus the atomic mass A. Training set: x: Z,N; y: BEexp/A.
This refers to �gure 18.

Figure 29: BENN − BEexp versus the atomic mass A. Training set: x: Z,N,Emin; y:
BEexp/A. This refers to �gure 19.
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Figure 30: BEHFBTHO−∆NN −BEexp versus the atomic mass A. Training set: x: Z,N,β,
Epn, Epp; y: BEHFBTHO −BEexp . This refers to �gure 25.
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