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Abstract

In today’s data driven society the world is at a point of information overload. As people rely
on Google for information and other platforms such as Netflix and Spotify for entertainment,
the need for relevant filtering of content has never been higher. As a result, recommendation
systems have seen a great surge in demand. One can divide the space of recommendation
algorithms into primarily two approaches. In the context of music,a collaborative based one
where underlying correlations between users dictate the model, and the content based ap-
proach which examines the more specific relationship each user has to the songs. This paper
aims to highlight the issues many collaborative models face when there is a lack uneven
amount of interactions with the songs; this is usually the case for less popular or new items.
To address this, a content based approach is suggested based on music feature data with the
goal to distinguish unique user distributions based on song characteristics. After evaluating
this method against a popularity based baseline model, there was a small but not significant
difference in the error. This suggested that there are a lot of room for improvement in the
approximation of user distributions, leading to the conclusion that with more elaborative
methods one could most likely expand upon this research and build strong recommendations
based on the idea of probabilistic user distributions.

Keywords— Content-Based Recommendations, Collaborative Filtering, Matrix Factoriza-
tion, User-Feature distribution
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1. Introduction

1.1 Background

In today’s data driven society we are at a point of information overload. The availability of
information has created an environment where haystacks are everywhere and user’s barely
know how to spot the needle. This has generated a surge of recommendation systems with
the task to filter relevant content for the user. Tech-companies such as Amazon, Spotify,
Netflix and Youtube are constantly developing algorithms to identify user behavior and cre-
ate relevant content for each consumer. "Recommendation systems are defined as decision
making strategy for users under complex information environments" [11]. This paper aim to
elaborate on the algorithms used in today’s industry, more specifically the two approaches
known as collaborative filtering and content based filtering which will be discussed in detail in
the upcoming sections. Collaborative filtering aims to use the ratings provided by a network
of users to make predictions for what to recommend, refereed to as user-to-user. On the other
hand, a content based approach looks at the specific user and the attributes of each item she
prefers, i.e user-to-item [15]. Today, collaborative filtering is the most popular technology
used and has seen a lot of success due to the power of user profiling and big platforms such
as Spotify, having 124 million paid subscriptions and 271 million active monthly users, all
with their own unique profiles [1] [3].

The authors of the article "Current challenges and visions in music recommender systems
research" [16] identifies many important particularities with music recommendations, and
the following are especially relevant for this paper:

1. "Consumption behavior": A lot of music is consumed passively as background music,
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which we pay no attention to. This can cause a problem to identify actual preference
and implicit feedback, leading to false assumption about the users taste.

2. "Listening context": A user can have very different taste for any given situation. On
one hand creating a calm playlist for studying but then also a death-metal album for
working out. User may also change their preferences over time.

1.2 The cold start problem

A well known obstacle with many recommendation systems is the cold start problem, where
the lack of information makes it difficult to create proper assumptions of user preference
[10] [16]. Collaborative models tend to have a strong bias towards music with a lot of user
interaction and thus favor more popular music. In the article "A collaborative filtering
approach to mitigate the new user cold start problem" [6], the authors identifies three types
of cold start problems:

1. New Community: Difficulties obtaining data when first creating a recommendation sys-
tem environment. With a few users and bad recommendations, keeping them becomes
difficult and further weakens the models.

2. New User: The problem of limited information from new users is one of the more
difficult problems, which in some cases can be addressed by asking a new user to
provide information upon entering the platform.

3. New item: Newly created songs or not popular ones lack interactions from users and
will therefore have a hard time being labeled.

Another complication of music recommendations is sparsity : "the inverse ratio between given
and possible ratings" [16]. With a lot of content available and millions of users, individuals
will only be able to rate a fraction of available songs. This also leads to more unreliable
recommendations [12].

Nevertheless, in order to address the cold start problem, a lot of research has been done
on Ensemble Based Recommender Systems. The idea is to combine collaborative models
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and content models by different methods and thus address their respective weaknesses with
the others strengths [16] [8]. There are many approaches to combine these models such as
computing weighed averages between predictions or switching between models in a scenario
based setting [4]. As this paper mainly will elaborate on the use of the models separately,
combining them to a hybrid would be an intriguing topic for further research.

1.3 Goal and scope of this paper

In this paper I aim to do the following:

1. Give an overview of the state of the art collaborative filtering approaches being used
in the industry today, then create and evaluate a collaborative model.

2. Attempt to address the cold start problem (mainly the new item) recommendation
systems face by proposing a content based solution.

3. Introduce a method to objectively evaluate the content model for each user.

The collaborative filtering model is a technique utilizing Matrix Factorization and is a well
known approach within recommendation systems. The goal is to predict user ratings given
other user behavior by exploiting hidden correlations between users and their respective rat-
ings. Further details of this are provided in later sections of this paper (see 3.1.1).

As previously mentioned, it will be difficult for the above method to recommend songs that
that many users have yet to interact with, known as the Cold start problems of new items.
The main focus of this paper will therefore be on the content based approach and its evalua-
tion. Content based methods do not require ratings of other users to recommend and instead
extract features from the songs themselves. [16]. The paper suggests a probabilistic model
based on identifying underlying user distributions. The intuition is the rather simple idea
that, given the set of song features, each user has their own distribution which would corre-
spond to one’s taste. A user frequently listening to dance music would correspondingly see
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the features clustering towards high scores in characteristic features of that genre, like danca-
bility and energy. By approximating the feature distribution for songs that a user prefers to
a multivariate Gaussian distribution (see 3.2.2=, and then computing the likelihood of other
songs in the dataset, new songs with similar features would be recommended. Consequently,
ignoring aspects such as popularity and other user preferences that are the main sources of
bias when dealing with the new item problem.

Evaluating a music recommendation system presents many problems as it becomes difficult
to objectively address each user’s unique taste. A good recommendation for one might be
poor for another. Furthermore, the content model will not output a predictive and compa-
rable rating for each song but rather rank them in terms of likelihood that it fits the user
distribution. This means that there are originally no true label to evaluate on. There are no
natural translation between the likelihood of a song in a user distribution and the amount
of times the user has listened to a given song. The paper therefore suggest an alternative
approach where the goal is to compute the distance from each song to the user-distribution.
Since the model will, given a certain amount of mixed songs, recommend strictly based on
likelihood, one can compare how much the user’s preferences matches the user distribution.
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2. Spotify and EchoNest Datasets

There will be two data sets be used to build the models and make recommendations. The
first is raw data obtained from Spotify’s API. Due to user privacy, only public playlists are
available here and no user data could be gathered. The dataset consists of 83 450 songs
which are divided into 1453 public playlists. In addition to general info such as title, release
date and artists, Spotify has also enabled a feature extraction for each song. This introduces
the following variables, who are continuous if not otherwise mentioned. Further note that
these values were later normalized from [0, 1]. [18]:

1. Danceability - how suitable a track is for dancing in range [0, 1].

2. Acousticness - a confidence measure in range [0.0, 1.0] of whether the track is acoustic.

3. Energy - represents a perceptual measure of intensity and activity in range [0.0, 1.0].

4. Instrumentalness - predicts whether a track contains vocals or not from [0.0, 1.0]. Higher
values indicate less presence of vocals.

5. Key - the key the track is in. Categorical using standard Pitch Class notation. −1

indicates no pitch detected.

6. Liveness - detects the presence of an audience in the recording, higher values indicate
a higher probability that the track was performed live, range: [0, 1].

7. Loudness - the overall loudness of a track in decibels (dB), usually in range [−60, 0].

8. Mode - the modality (major or minor) of a track (binary), the type of scale from which
its melodic content is derived.
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9. Tempo - the overall estimated tempo of a track in beats per minute (BPM).

10. Valence - a measure in range [0.0, 1.0] describing the musical positiveness conveyed by
a track.

Due to the lack of user data in the Spotify dataset another one was obtained which is a subset
of the Million Song Dataset (MSD) from the Echo Taste Profile subset [5] [19]. The MSD is
a very extensive dataset and widely used within research on recommendation systems since
it has real and authenticated user data. Since the processing of the full 280 GB dataset and
even the full Echo subset would have required further data management, it is outside of the
scope of this paper, and the final data gathered consists of 2 · 106 entries, containing 10000

unique songs and 76353 unique users. Each entry holds:

1. User ID

2. Listen Count

3. Song ID

4. Title

5. Release Date

6. Artist Name

Table 2.1: General data information

Unique songs Unique users Features Total Rows

EchoNest 10000 76353 User listen count 2000000
Spotify Set 83 450 No user data Song features 83450

Table 2.1 displays the initial information obtained from each dataset. Using Spotify’s query
method in their web API, the feature extraction was made for the EchoNest subset as well,
leaving 1550027 rows. Since the focus mainly will be on the new item problem, and not
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the new user problem, users who had listened to fewer than ten songs were then removed
in order to better estimate the user-feature-distributions, resulting in 1347089 entries. The
EchoNest set will be used to build the models since it contains the user information needed.
The recommendation library can then be expanded by the songs in the Spotify Set.

Figure 2.1 displays the distributions of the different features for users who have listened to
more than ten songs. As can be observed, some are Gaussian-like and will fit the generated
distribution properly while others will not. For this model binary and categorical values
presents an issue, therefore the categorical key and the binary mode will be removed for the
approximation.
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Figure 2.1: Distribution of full dataset with only users who has listened to more than ten
songs

Furthermore, figure 2.2 displays the co-variances between the features for a sample user. It
also becomes clear that a transformation is required to better approximate each user-feature
distribution. Due to the limitations of non negative inputs in a Box-Cox transformation this
paper suggests a Yeo-Johnson transformation [21] which is explained further in detail later.

Table 2.2 contains the most popular songs by users and how many percentage that accounts
for in the aggregated listen count and table 2.4 is the cumulative percentage of n songs.
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Figure 2.2: Raw sample user feature data
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Table 2.2: Top-10 most listened songs by users in dataset

Title Listen Count Percentage of the aggregated listen count
1 Undo 7032 0.453614
2 You’re The One 6729 0.434068
3 Revelry 6145 0.396396
4 Secrets 5841 0.376786
5 Fireflies 4795 0.309312
6 Tive Sim 4548 0.293378
7 Use Somebody 3976 0.256480
8 Drop The World 3879 0.250223
9 Marry Me 3578 0.230806
10 Canada 3526 0.227452

Table 2.3: Cumulative Percentage

Songs 10 20 30 40 50
Cumulative Percentage 3.4 5.4 6.9 8.3 9.6

As displayed in Table 2.3, the first 50 songs account for 10% of the total 155027 for the full
dataset, where the top 10 is 3.4%. Figure 2.3 then illustrates the distribution of the listen
count. The x-axis displays how many times a single song has been listened to mapped to the
y-axis by the amount of users. As seen roughly in Figure 2.3, the majority of listen counts
are users who have listened to a song a fewer times. This is also confirmed by the listen
count distribution in Table 2.4. This can present problems, especially for the collaborative
model, since the recommendations in a environment could lead to overfitting and minimize
the error by rating all songs as one.
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Table 2.4: Distribution of Listen Counts

Listen Count 1 2 3 4 5 6 7 8 9 10 <10

Total (thousands) 890 242 110 63 71 35 23 17 12 14 71
Total (%) 57 16 7 4 4.5 2.2 1.5 1.1 0.8 0.9 4

Figure 2.3: Listen Count

After removing the users with less than ten songs, this resulted in 1347089 entries with 42288

unique users. Table 2.5 displays the new distribution which is similar to Table 2.4 and thus
will not change any other aspect of the analysis.
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Table 2.5: Distribution of Listen Counts for users with >10 songs.

Listen Count 1 2 3 4 5 6 7 8 9 10 <10

Total (thousands) 772 212 97 56 60 30 20 15 11 12 608
Total (%) 57 15.8 7.2 4.1 4.4 2.2 1.5 1.1 .8 .9 4.4
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3. Methodology

The methods used in this paper are divided into several subsections covering the statistical
methods and the proposed implementation. The more detailed mathematical notations of
optimization using stochastic gradient decent and the idea behind regularization can be found
in the Appendix (see A).

3.1 Collaborative filtering - a model based method

Collaborative filtering usually falls into two types of techniques, Memory-Based and Model-
Based. As the name suggests, Memory based stores a lot of information which it then maps
to each user. This is effective but in many cases not scalable enough for a substantial amount
of users. The model based technique implies that a generalized model will be implemented to
predict good songs. The focus of the collaborative section will be on model based approaches
and for further readings on memory based approaches the reader is referred to [11]. To better
explain the intuition behind these methods, the listen count is being defined as rating.

3.1.1 Matrix factorization models - Singular Value Decomposition

As previously mentioned, many of the other techniques have difficulties in terms of scala-
bility. Latent factor models or matrix factorization models uses a dimensionality reduction
technique called matrix factorization to efficiently create a model which will be introduced
below. The full approach is known as singular value decomposition (SVD). So given a matrix
containing all users and all songs, we approximate the scalar product between these vectors
and thus fill in the ’blanks’ as displayed in Table 3.1.
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Table 3.1: User-Song Matrix (R)

S1 S2 S3 S4

User 1 3 1 3

User 2 1 4 1

User 3 3 1 1 3

User 4 3 5 4

Matrix R displayed in Table 3.1 is what one wish to compute. Realistically this matrix
is missing values since most users have not listened to all songs. The goal is to predict these
missing entries and recommend those with high scores to respective user. The problem is
that matrix R quickly gets very large, for the data set consisting of 10000 songs and 76353

users it would be a 76353 × 10000 matrix. This is dealt with by matrix factorization. The
idea is to exploit the fact that there exists high correlations between the rows and columns
in the matrix.

Now we introduce a user matrix U and an song matrix S. The user matrix is of size Nu×Nh

where Nu is the amount of users and Nh is the amount of so called hidden features we choose
(the idea behind these features will be explained in the next paragraph). The song matrix S
is similar and of dimension Ns ×Nh where Ns is the number of songs. The goal of singular
value decomposition is to compute:

U · ST ≈ R (3.1)

In words, finding the optimal matrix multiplication between two feature matrices that ap-
proximates the whole user-song matrix R the best. This is done by finding hidden features
that exploits the correlations as previously mentioned. These hidden features are not intu-
itively easy to explain since they are generated to find the best fit and might be the genre of
the song, the popularity or something uninterpretable. [15].
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Table 3.2: Factor Matrix example - Songs

Hidden Feature 1 (e.g. Genre) Hidden Feature 2 (e.g. key) ... Hidden feature Nh

Song 1 0.4 0.6 ... 0.5

Song 2 0.2 0.8 ... 0.2

... ... ... ... ..

... ... ... ... ..

Song Ns 0.5 0.3 ... 0.3

The user factor matrix looks similar with users {1, 2, ..., Nu} instead of songs. In the graph
above each song j has its own vector that suggests how well the song j possesses these fea-
tures. In the user matrix, corresponding interpretation for user i would be the level of interest
the user has shown in songs with high values for given features [15]. An example would be
that a user has high values of hidden features that could corresponds to Pop or Dance music,
meaning he tends to rate those songs high.

To quote from C.Aggrawal’s book on recommender systems [4], the inner dot product of
matrices U and S, ui · sj "captures the interaction between user i and item j, the overall
interest of the user in characteristics of the item." The vectors ui and sj thus both has di-
mension 1×Nh. From 3.1 it follows that rating ri,j can be approximated by the dot product
of the jth song vector and ith user vector in their respective matrix. So the basic prediction
for the rating ri,j on song j by user i would be:

ri,j = uTi · sj. (3.2)

In the models used for this paper we will also incorporate baseline predictors as suggested
by [4] on their model for Netflix recommendations. The baseline predictors are meant to
capture systematic biases, like some users giving too high ratings. However, our ratings are
based on listens which are less likely to be biased in such a way (or a user could listen to
an extensive amount of music compared to the rest and boost a song too much). To explain
these baselines used for dealing with bias, let µ be the average rating for all songs, vi and wj

15



be the observed standard deviation of user i and song j from the average. Then the baseline
prediction bi,j for an unknown rating ri,j is:

bi,j = µ+ vi + wj (3.3)

Hence, to find the baseline for ex Happy with Pharell Williams one would do as follows: If
the average rating (listen count) for all songs was 3, but given the popularity of the song
users listen to it on average 1.5 times more. Then user X barely listen to music at all, on
average he only listens to any song 1 time, 2 less than average. The baseline would therefore
be bi,j = 3 + 1.5− 2.

The updated rating for song j by user i will accordingly be computed by:

r̂i,j = bi,j + uTi sj = µ+ vi + wj + uTi sj. (3.4)

We wish to estimate vi, wj, uj, si, using a regularized (see A.2) squared error as our cost
function, as recommended by [4]. We first define a set with the known rating pairs (i, j) as
η. So: η = {(i, j)|ri,j is known}. Then we minimize the cost function:

min
b∗,u∗,s∗

∑
i,j∈η

(rj,i − bi,j − uTj si)2 + λ(v2i + w2
j + ||sj||2 + ||ui||2). (3.5)

The minimization is done by stochastic gradient decent [A.2.1]. A very successful SGD
approached created by Funk [17] is used to update the parameters:

• wj := wj + γ(ei,j − λwj)

• vi := vi + γ(ei,j − λvi)

• ui := ui + γ(ei,j · sj − λui)

• sj := sj + γ(ei,j · ui − λsj)

The error term is defined by computing the prediction r̂i,j and then comparing it to the true
rating ri,j which is possible since we are optimizing a training set with the true ratings known
in η [15]:

ei,j = ri,j − r̂i,j, (i, j) ∈ η. (3.6)
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3.2 Content Based filtering methods

Content based models are using the analysis between user item rather than user to user. The
approach suggested in this paper originates from the idea that each user has a corresponding
feature distribution which, independent of popularity and previous ratings, can be used
to make more individual recommendations. The features are transformed by Yeo-Johnson
transformation with the goal to better fit the approximated multivariate normal distribution
for each user and then the likelihood of each song is computed to recommend the songs
fitting the distribution the best.Below follows the methodology necessary to perform these
computations. The last section contains the proposed method to evaluate these results.

3.2.1 The Yeo-Johnson Transformation

Examining the initial data it was clear that some transformation was necessary to better
allow for normality. The Yeo-Johnson transformation was suggested by In-Kwon Yeo and
Richard A. Johnson as a way to deal with the limitations of the Box-Cox transformation, as
it only allows for strictly positive numbers [22]. The transformation was chosen as a way to
deal with potential skewness and allow for better analysis. The transformations on a feature
vector X with parameter λ is given by:

ψ(λ, x) =


((x+ 1)λ − 1)/λ, if λ 6= 0, x ≥ 0

log (x+ 1), if λ = 0, x ≥ 0

−
[
(−x+ 1)2−λ − 1)

]
/(2− λ), if λ 6= 2, x < 0

− log (−x+ 1), if λ = 2, x < 0

(3.7)

The transformation is used to better allow for normality in the feature data and lambda is a
hyper-parameter used for selecting the set of transformation on X. The optimal lambda (λ)
for each feature is determined by the following method [2]:

L(X;λ, σ) =
N

2
log(σ̂2) + (λ− 1)

∑
i

sign (xi) log(|xi|+ 1).
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3.2.2 Multivariate Gaussian Distribution

The multivariate normal distribution is said to be defined when the random variable Z =

[Z1, ..., ZN ]T with mean µ ∈ Rn and the co-variance matrix Σ ∈ Sn++ have the probability
density function:

p(z;µ,Σ) =
1

(2π)
n
2 |Σ| 12

exp

(
−1

2
(z − µ)TΣ−1(z − µ)

)
This is written as Z ∼ N (µ,Σ). The co-variance matrix Σ, for any random vector Z is
defined as:

Σ = E[(Z − µ)(Z − µ)T ] = E[ZZT ]− µµT .

The co-variance Σ for the multivariate Gaussian distribution, it is required to be positive
definite, meaning that all its corresponding eigenvalues are positive.

For the k given features, each user-feature distribution will be approximated with a k × 1

vector µi and k × k matrix Σi. Since songs has different listen counts, both the co-variance
matrix and µi will be weighted accordingly. Then, the likelihood of each song is calculated
for each user and the top ten recommendations will be given by the ten with the highest
likelihood, given that the user has not listened to the song previously.

3.3 Proposed evaluation method

The following definitions are introduced below to be referred to in this section:

• LetNu be the total amount of users and useri denote the i-th user where i = {0, 1, ....Nu}.

• Let Ns be the total amount of songs and songj refer to the j-th song where
j = {0, 1..., Ns}.

• Let k be the number of features evaluated.

• µi,Σi: The k × 1 weighted average vector and the k × k weighted co-variance matrix
for useri.
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• Si: The set of songs in the full dataset which useri has listened too.

• Li,j: The number of times useri has listened to songj assuming that songj ∈ Si.

1. Li: total listen count for useri ∈ Si.
Li =

∑Si
j=0 Li,j , j ∈ Si

• Fj: The k× 1 vector containing the corresponding k features for that song, so each Fj
consists of k numerical values representing the characteristics of that song.

• Pi: Refers to the overall listen count by all users in Si. Pi,j is then the overall listen
count for song j by all users in Si.

Due to the difficulties of measuring model performance for a user on songs he/she has not
given any information on, the evaluation will be performed on Si.

For useri, the idea is to compute the Mahalanobis squared distance (M2) from each song
vector Fj to µi, thus the center of useri’s approximated user distribution. Then the aim is to
examine the distribution of these distances in relation to the listening preferences for useri.
Mahalanobis Squared Distance is defined as follows: Let Fj be a k × 1-dimensional vector
corresponding to a song with k- features. Let µi,Σi be the mean vector and co-variance
matrix for user i between k features. Then the Mahalanobis squared distance between Fj
and µi is defined as [14]:

M2 = (Fj − µi)TΣ−1(Fj − µi). (3.8)

As Σ−1 is the inverse of the co-variance matrix it is assumed that the matrix is invertible
and positive definite. As a result, it is then possible to show that M2 ∼ χ2(k), for k degrees
of freedom corresponding to the number of song features1.

By using that M2 ∼ χ2
k we compute the decentiles for that distribution and construct

intervals to check the total listen count for that user in each decentile interval. By definition,
the distribution of the songs from our likelihood model will be 0.1 in each decentile. Let Li,m

1The actual derivation is out of scope of this paper, see [20]
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be the listen count for useri in decentile m. The squared error for useri in decentile m is
then then defined as:

SEModel
i,m =

[
0.1− Li,m

Li

]2
(3.9)

The mean squared error for useri and the total for all users then becomes:

MSEModel
i =

1

10

10∑
m=1

SEModel
i,m ,m = {1, ..., 10} (3.10)

=⇒ MSEModel =
1

Nu

Nu∑
i=0

MSEModel
i (3.11)

For comparison, a popularity model is also introduced. Defined as follows:

SEPopularity
i,m =

[
0.1− Pi,m

Pi

]2
(3.12)

MSEPopularity
i and MSEPopularity are determined similarly as (3.12) and (3.13).

For example, examining 8 features. Given the song vectors F1,F2,F3 for useri with a respec-
tive listen count of 10, 12, 20. mean vector µi and co-variance matrix Σi. The Public Count
for the songs are (1020, 950, 2000). AllM2 values were then calculated to 6.55, 6.6, 3.8. For
a chi square distribution with 8 degrees of freedom: both F1 and F2 belongs to P50 and F3

is in P20. Thus:

SEModel
i,2 = (0.1− 20

10 + 12 + 20 + rest
)2 ≈ 0.09

SEModel
i,5 = (0.1− 22

10 + 12 + 20 + rest
)2 ≈ 0.11

=⇒ MSEModel
i =

1

10

[
0.09 + 0.11 +

10∑
m=1

SEModel
i,m

]
,m 6= {2, 5}

Where the rest denotes the remaining listen count for useri.
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The step-by-step evaluation is done as follows:

1. Compute all decentiles for χ2
k.

2. For each user:

(a) Randomly split the dataset into a training set of 80% and a test set of 20%.

(b) Approximate the multivariate Gaussian user distribution (µi,Σi) on the training
set.

(c) Compute the Mahalanobis distance for each song vector Fj in the test set.

(d) For all decentiles, determine Li,m and Pi,m

(e) Calculate SEModel
i and SEPopularity

i

3. Calculate MSEModel and MSEPopularity

Given that the whole dataset is transformed to approximately be normally distributed, the
following key point is made regarding the aim of this method:

The goal off the evaluation method is to test if each user distribution is distinct
enough to make personalized recommendations based on feature data alone.
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4. Evaluation and Results

4.1 Collaborative filtering Results

To create meaningful recommendations the listen count was scaled down to ’ratings’ from
0 − 10.The initial scaling was just performed to merge values larger than 10. So the rating
for songj by useri would be computed:

Ri,j = min(Li,j, 10)

Table 4.1 contains the after training the model on first a sample of 100000 entries with default
values and a grid-search on number of epochs, hidden features,the overall learning rate and
overall regularization term. The optimal parameters where then used to train the full dataset
which is also displayed below.

Table 4.1: SVD results

Hidden Features Epochs LR RT MSE MAE

Sample
Default 100 20 0.005 0.02 6.243 1.816

Gridsearch 100 25 0.03 0.6 6.23 1.815

Full Gridsearch 100 25 0.03 0.6 4.8 1.4

LR: Learning Rate, RT: Regularization term

Examining the sample results, one can see that the after grid-search, the model did slightly
better after training for 5 more epochs with a different learning rate and regularization term.
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Given more data on the full training set the model improves further with the optimal grid-
search parameters from the sample. The final precision and recall scores for a five fold
cross-validated model was:

PRAll =
Recommended items that are relevant

Recommended items
= 0.845

RCAll =
Recommended items that are relevant

Relevant items
= 0.594

However, given the uneven distribution of the data these results might be misleading. Table
4.2 shows the best results for the full model. As seen the highest scores are all ones which
matches are assumptions given the highly skewed data. The common trend is that all songs
have all been ’rated’ by a large amount of users with an average Pi of 368.9 and Ii of 85.
Although some might be more of lucky guesses with a low Pi and also a not very active user
corresponding to a low Ii value.

Table 4.2: Best Predictions for SVD model

User ID Song ID TR Pr Ii Pi Error

1 54a3... spotify:track:0kXeKglrzFU3w5J9nQWX0N 1.0 1.0 113 1360 0.0
2 3cec... spotify:track:56mAv6TVHL4QXcD4B4Ezvg 1.0 1.0 178 468 0.0
3 4a25... spotify:track:7BukHDlNfu4Ql7NATH6YIz 1.0 1.0 42 61 0.0
4 c6dd... spotify:track:57PqYPpY9sB8IQlRlnDVnN 1.0 1.0 145 171 0.0
5 9442... spotify:track:1pJS4rS12iA5MryQSAP2kQ 1.0 1.0 70 268 0.0
6 90ee... spotify:track:5UWwZ5lm5PKu6eKsHAGxOk 1.0 1.0 22 814 0.0
7 67db... spotify:track:2GGnAVuaaKklRJ67QZClzW 1.0 1.0 21 81 0.0
8 b075... spotify:track:6Y6f7LSvHxUA61ItYiSMKE 1.0 1.0 118 118 0.0
9 c766... spotify:track:029O4HWI1pVXLfFdfQd1Jb 1.0 1.0 130 104 0.0
10 72e5... spotify:track:3gNynXzWWUBDm9u4FLywaC 1.0 1.0 11 244 0.0

Ii: the set of songs listened to by user i

Pi: The set of all users who have listened to the song
TR: True Rating, Pr: Prediction
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Looking further into one of the top predictions, the left histogram in in Figure 4.1, one can
see that the majority of listenings are one, which then gives the model a lot of incentive to
rate this song accordingly.

Figure 4.1: Listening pattern prediction

Examining the worst predictions in table 4.3 the trend is also very clear as the maximal error
will inevitable be when a low prediction corresponds to a high true rating and vice versa. All
songs displayed here also have a high average P̄ of 1020. The average Ī of 69 is also lower
than for the best predictions, implying less information and thus harder to predict. Since
most songs in the dataset are only listened to once we will examine one of the songs that was
predicted a high score.
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Table 4.3: Worst predictions for SVD model

User ID Song ID TR Pr Ii Pi Error

1 87f7... spotify:track:1NhPKVLsHhFUHIOZ32QnS2 10.0 1.0 53 3634 9.0
2 b8f6... spotify:track:2vO1wr5wIEHqQmY4jWbuhi 10.0 1.0 158 397 9.0
3 06c4... spotify:track:1R6lhY5PqoxQJU5hsMDvjg 10.0 1.0 130 488 9.0
4 3da9... spotify:track:2cOCunrzyHVpTrTwSIKRbt 1.0 10.0 65 195 9.0
5 567b... spotify:track:2CR62nxWDw8ZRmJLCpm5PD 1.0 10.0 50 122 9.0
6 e647... spotify:track:3MJdjsfekFs4kh04g2l6Zg 10.0 1.0 12 1518 9.0
7 2a1f... spotify:track:43OjswTQMkuvQQEP38Roxl 10.0 1.0 32 64 9.0
8 4e6d... spotify:track:11LmqTE2naFULdEP94AUBa 10.0 1.0 138 378 9.0
9 3604... spotify:track:05NMSR0sSrCZxTHDRV415A 10.0 1.0 39 2637 9.0
10 8f8c8... spotify:track:31I3Rt1bPa2LrE74DdNizO 10.0 1.0 14 335 9.0

Ii: the set of songs listened to by user i

Pi: The set of all users who have listened to the song
TR: True Rating, Pr: Prediction

The right histogram in 4.1 shows the song corresponding to index 5 in table 4.3. Again,
the majority has listened to the song once but here a lot of users has also listened to the
song more than 10 times and thus the model makes the prediction on the wrong side of the
spectrum.
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4.2 Content Based Results

The figures in Appendix B displays the features after the Yeo-Johnson transformation. Sev-
eral features are improved slightly to better fit a Gaussian distribution but many of them,
especially instrumentalness and acousticness (see B.2) are still facing problems due to its
non-symmetric properties.

Figure 4.2 shows the same user with respective feature scatter plot but now with the trans-
formed values. As mentioned in the data exploration section (see 2), key and mode were
removed to better allow for the Gaussian approximation. Furthermore, all values that ac-
count for the users top ten most listened songs are plotted in terms of their listen count. In
addition, the top ten recommendations from the model are marked green in each plot. The
recommendations tend to cluster around the center together with the top songs which indicate
that the likelihood estimation will give recommendations that most likely will correspond to
the user distribution and by assumption then be good recommendations. Acousticness and
instrumentallness still have difficulties to fit the distributions but the recommendations still
lay relatively close to them to the center.
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Figure 4.2: Example of transformed variables with Recommendations. The diagonal dis-
plays the distribution for that user’s features. Green: Recommended songs. Orange: The
distribution of the users top ten songs. Blue: the rest of that user’s songs.
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Table 4.4 displays the overall results. As seen in the table, the model fails to outperform
the baseline over all the 35000 users. One important note is that the the users are sorted on
the number of songs in descending order. As seen, the difference is increasing between each
interval which calls for further analysis regarding relationship between the number of songs
(listen count) and the evaluation.

Table 4.4: Overall Results

MSE Likelihood Model MSE Popularity Model Difference
0-5000 0.0145 0.0098 0.0047
5000-10000 0.0276 0.0131 0.0145
10000-15000 0.0389 0.0131 0.0145
20000-25000 0.0493 0.0117 0.0375
20000-25000 0.0603 0.0098 0.0505
25000-30000 0.0699 0.0067 0.0633
30000-35000 0.09 0.0 0.09
Overall 0.0450 0.0088 0.0361

Figure 4.3 displays this relationships further, showing the users listening information in rela-
tion to the error. Again since the users are sorted from the most amount of songs and highest
listen count it can clearly be seen that the error increases linearly for the model in absence
of enough information.
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Figure 4.3: Error in relation to user information

Figure 4.4 evaluates this relationship further to determine if the strong linear trend comes
mainly from a lack of unique songs or listen count. Each dot represents a user with its
respective error, listen count and unique songs. As shown, the number of unique songs
strongly determine the error. This is expected from the definition of the evaluation method
since a decentile cannot have any listen count if there is no song there to begin with. This is
discussed further in the later sections of this paper.
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Figure 4.4: Likelihood model: Relationship between Error, Listen Count and Unique songs
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4.2.1 Results on users with more songs

Table 4.5 shows the first ten users average results after ten cross validations. The overall
error of the model has dropped significantly as a result of better on average approximations
due to more songs. Here the model outperforms the baseline with a decreased MSE of 7.2%

when examining the mean for both of them, the differences for all the 100-pairwise values is,
however not significantly different from zero with a t-value of 0.51.

Table 4.5: Results for users with most songs after 10 cross-validations

User MSE_model MSE_public Listen Count Songs (Test Set) Difference

0 0.00575 0.00562 556 113 -0.00012
1 0.00177 0.00153 196 106 -0.00025
2 0.00181 0.00284 178 96 0.00103
3 0.00248 0.00137 182 89 -0.00112
4 0.00179 0.0035 227 88 0.00171
5 0.00206 0.00105 165 84 -0.001
6 0.00188 0.00274 264 83 0.00086
7 0.00246 0.00247 178 83 1e-05
8 0.00185 0.0014 129 81 -0.00044
9 0.00158 0.00235 116 80 0.00076

Mean 0.0023 0.00248 219 90 0.00014

Table 4.6 is an example of one user’s decentile distributions. As shown, the model is fairly
accurate since the mean user frequency, which can be interpreted as the true label, is close to
0.1. Here the model manages to outperform the popularity baseline model with an average
error of 0.0011 compared to 0.0033.
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Table 4.6: Example of a decentile distribution for one user

User User LC Public LC Model Freq User Freq Public Freq Model SE Public SE

P10 30 7773 0.1 0.13393 0.27898 0.00115 0.02104
P20 15 986 0.1 0.06696 0.03539 0.00109 0.001
P30 29 2246 0.1 0.12946 0.08061 0.00087 0.00239
P40 31 3338 0.1 0.13839 0.1198 0.00147 0.00035
P50 20 3694 0.1 0.08929 0.13258 0.00011 0.00187
P60 25 2566 0.1 0.11161 0.0921 0.00013 0.00038
P70 15 1685 0.1 0.06696 0.06048 0.00109 4e-05
P80 10 1157 0.1 0.04464 0.04153 0.00306 1e-05
P90 25 1074 0.1 0.11161 0.03855 0.00013 0.00534

Mean 22 2931 0.1 0.098 0.1052 0.0011 0.0033

LC: Listen Count (Li),
Freq: Frequency

In this example it is also worth noting that the first decentile is very off for the Public Count,
creating a large error which affected the final result.
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5. Discussion

To start out, the dataset provides a realistic environment in terms of listen counts. In most
cases there will be information on songs but users will only have listened to the song once or
some will also have listened to a few songs many times. This creates a difficult environment
for especially the collaborative model where the fundamental idea is to make recommen-
dations based on user information only. Using baselines (3.1) to account for user specific
scenarios can partly help the model but not enough.This was displayed in the predictions as
the model did perform well on songs with a lot of ratings from other users where the user
rating matched the popular opinion. Also, the true conversion from listen counts to ratings
might not be completely accurate, a user can still enjoy a song he has listened to only once.
But the assumption that a users tend to listen more to song they like was made to enable
further analysis given the data.

This asymmetry of low ratings also creates difficulties to correctly assert high ratings, as dis-
played in 4.3. The example showcased in 4.1 for a specific user provides a good intuition for
this. When the relative frequency of top ratings are higher than usual the model determines
this to be a good song, despite the actual users opinion. This implies that there could be
a bias towards more popular songs and thus a need for a more objective recommendation
in some cases. Due to the nature of the model relying heavily on user interaction, in an
environment with a majority of the users who have listened to songs only once and therefore
given ’low ratings’, the model could in this case be accurate but still have a hard time making
any substantial recommendations.

After examining the content based results it is clear why the model performs poorly on users
with a few songs since the definition of the evaluation method does not take this into account.
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When calculating MSEModel
i in the test set for users with less than 50 total songs, hence

Si ≤ 50 =⇒ Testi ≤ 10 since the test set only will hold 20% of the data. Since the user
has not listened to enough songs there will not, per definition, be enough to understand the
user distribution and thus one can see that if, for user i in decentile m:

Li,m = 0 =⇒ SEModel
i,m = (0.1− 0)2 = 0.01.

Meaning that the model will be punished for not having enough information on each user.
This can be clearly observed in both table 4.4 but more clearly in figure 4.3 where the almost
linear trend between error and amount of songs is displayed. This is also confirmed in 4.4
where one can see that the set of unique songs for each user has a stronger impact on the
error. Listen count and unique songs are per definition correlated but referring to the above
implication, if Unique Songsi,m = 0 =⇒ Li,m = 0 per definition of the evaluation method.
This is not necessarily discouraging for the purpose of this paper, as the main focus was
on dealing with new items rather than new users. Furthermore, to comment on the trade
off between choosing the ratio between training and test set: a smaller training set allows
for better estimation of the true label1 but will worsen the approximation of the user dis-
tribution. Focusing optimization on this matter is on the verge of overfitting and therefore
standard practice of 80 : 20 split was chosen.

The cross-validated result for the users with the most songs (4.5) is approximating the true la-
bel well enough to give the model a chance to occasionally outperform the baseline popularity-
model. The purpose of the baseline model was not only to get comparable results, but in
some sense to tell how much a users listening preferences, in terms of features, matches the
mainstream opinion. If the true label and the public frequency are close it means that they
come from similar distributions.

Figure 4.2 illustrates the basic idea of this approach, that the recommendations will lie close
to the center of the user distribution. Thus representing features that the user on average
prefers. It is also intuitive to understand why this approach requires a lot of information

1Li,m, the listen count for user i in decentilem, for each m = {1, ..., 9} (3.9) will be refereed to as the true
label since this is the actual user distribution.
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about each user but does not, in comparison to the collaborative model, require any infor-
mation about other users. Since popularity is not a variable in the feature space, songs
will be assessed only based on ’closeness’ to the estimated distribution. The collaborative
struggles to recommend songs that a few users have interacted with but can spot underly-
ing correlations between users and thus make good recommendations based on user-to-user
profiling. One core assumption of this paper was the normality of each user distributions.
This assumption led to the removal of categorical and binary values that possibly could have
provided useful information if extracted properly. One could argue that both acousticeness
and instrumentalness neither are close to normal as well (B) and should thus be removed.
But examining the clustered recommendations in figure 4.2 and cross-validating the results
with and without the mentioned variables, they were kept as they actually provided some
additional information and created better results. Nevertheless, since the difference between
the model and the baseline average was not significantly different from zero one can argue
one of the following:

1. A majority of the user’s distributions are not significantly unique from that off the
general public.

2. Given that users do have a different taste in music, the feature approximation is not
fully captured by the methods used in this paper.

First, the reasoning that all users would have very similar taste and therefore existing a
strong bias towards more popular music cannot be disregarded. However, it is more likely,
given the results in this paper and previous research on collaborative models, that users
would rather have grouped preferences than all go with the popular opinion. Second, both
the method and evaluation has a lot of room for improvement. The Yeo Johnson transfor-
mation was arguably not the optimal method to use for this data. Both Box Cox and Yeo
Johnsson are primarily to deal with outliers and tails in the distributions [7]. In terms of
normality, the problem with the feature data was not necessarily the tails but rather that
some were not particularly close to normal to begin with. There are several other methods
one could use but this is currently outside the scope of this paper and left for further research.

Elaborating on further possibilities for improvement, as briefly mentioned in the introductory
section, there are a lot of other factors to consider rather than just the raw listen counts and
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features (1.1) outside the scope of dataset. Different consumption behaviour of users would
could have big impact on the current method, as a song listened to passively still would result
in false assumptions both by the likelihood and collaborative model. Moreover, the contextual
aspect of different playlists could imply a lot of inner distributions for each user, making the
assumption of a single distribution more difficult. This is followed by the aspect of time since
music taste can change a lot over short periods. One could included a more details time
series forecasting over listening patterns to further detect changing preference and thus also
a shifting distribution. Both timing and playlist contexts could potentially enable stronger
approximations and other, more substantial clustering-methods could be relevant to better
address the feature data [16].
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6. Conclusion and final words

This paper has been elaborating on two aspect of the recommendation system. First, the
user to user dimension, where clusters of users tell a lot of information and recommendations
are based on that basis. This approach requires a lot of user interaction to accurately build a
proper profile and cluster it with like-minded individuals. The collaborative model struggles
to recommend items that are not rated by many, but also in the environment of highly skewed
data. However, given its scalability and capability to map a large amount of users to each
other, one can understand how platforms such as Spotify can capitalize on detailed user data
and thus use these methods to their full potential.

Given the extensive research on collaborative models, this paper aimed to address some
of its issues by exploring the second dimension of user to item based recommendations.
The strength and weakness of the likelihood model lies in its ability to disregard other
user’s preferences to make more independent selection on the actual context of the songs.
These feature recommendations might not be songs one normally would have discovered,
but they still matches the characteristics of songs the user has interacted with, allowing for
more exploration in terms of both new ’under-the-radar’ songs and artists. In future work,
combining both models to a hybrid would present the opportunity to deal with the cold
start problem through feature data but at the same time exploit the hidden correlations
collaborative model identifies between users. Despite the non significant difference between
the popularity and likelihood model, the small difference in performance after cross-validation
suggests that with some improvements, one could still utilize the feature data to make more
personalized recommendations.
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A. Appendix - Optimization Algorithms

The point of many machine learning algorithms is to optimize a function f(x) of some sort.
This implies either minimizing or maximizing the function with respect to x in this example.
The optimization function is called the objective function. Usually referred to in terms of
minimization as the cost function [9]. This section aims to explain the concept of stochastic
gradient decent which is used for optimizing the Probabilistic Matrix Factorization model. A
brief explanation of gradient decent is given first to then ’explain’ how it is performed with
a stochastic approach.

A.1 Cost Function

A cost function as explain above is the function we seek to minimize, commonly written as
J(x,w) with the goal to minimize w. In words, the cost function tells us how far away the
prediction is from the actual value, and intuitively one want this function to be as small as
possible since this implies that our model predictions corresponds well to the actual reality.
A common cost function taught in early statistic courses is the mean squared error:

J(x,w) =
1

N

N∑
i=1

(yi − gw(xi))
2

N is the number of training examples, yi is the real value for training example i, xi is the
input parameters for the training example i and gw(xi) is the predicted value for training
example i using the parameter(s) w. The objective is then to solve: argminx J(x,w) which
is done using gradient decent.
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A.2 Gradient Decent

Let f(x) be a function defined on all R with derivative f ′(x). The derivative tells us how we
can scale the input to obtain corresponding change in output: f(x+ γ) ≈ f(x) + γf ′(x) for
a small enough γ [9]. With this in mind the following also holds:

lim
γ→0

f(x− γ sign(f ′(x))) < f(x).

We can thus reduce f(x) by subtracting the derivative, this is called gradient descent [13].
Gamma is used as the notation for the learning rate or the step-size, hence how much we will
’move’ the function in one direction. Even though practically impossible our goal is to find
the global minimum, where no change would result in a lower value of f(x).

In a multidimensional setting with several inputs one must take the the partial derivative
of each of the inputs at the current location. So δ

δxi
f(x) yields the change in f as only the

variable xi changes at point x. The vector consisting of all partial derivatives of all variables
evaluated at x is called the gradient and is written as ∇xf(x).

∇xf(x) =



δf

δx1
(x)

...

...

...
δf

δxn
(x)


(A.1)

The direction to move f(x) in order to descent the fastest is the gradient itself.
This can be showed if we let −→v be a unit vector (implying that |−→v |2 = 1) and project it on
∇xf(x).

−→v · ∇xf(x) = |∇xf(x)|2|−→v |2 cos θ = |∇xf(x)|2 cos θ =⇒ min(−→v · ∇xf(x)) = −∇xf(x).

Thus, to decent from point x to x* using a gradient based approach one would compute:

x∗ = x− γ∇xf(x)
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To describe how x is updated to x∗ we will use the notation := which implies that x will be
replaced by the computed value to the right.

x := x− γ∇xf(x)

Gamma, as previously mentioned, is the learning rate. This is a parameter usually set by the
researcher as a small constant in a trail- and error setting. If the learning rate is too big the
updated values would cover too large intervals, most likely skipping the minimum. With a
too big small learning rate the computations would take too much time. Figure 3.1 displays
a the gradient decent process with an appropriate learning rate.

Figure A.1: Gradient Decent Visualization

Figure 3.2 shows the trade-off and difficulties of selecting a proper learning rate.
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Figure A.2: The dilemma of choosing learning rate

A.2.1 Stochastic Gradient Decent

One problem with the general gradient decent approach is how it scales poorly on large
problems as the computational cost becomes too high. The idea of Stochastic Gradient
Decent (SGD) is to approximate the gradient using a uniformly drawn sample from the
training set, also referred to as a minibatch [9]. Instead of computing the gradient for
millions of examples we estimate the gradient with our minibatch of size n drawn from the
population of size N :

g =
1

n′
∇w

n∑
i=1

J(x(i), y(i),w)

Where n is the sample from the whole population of examples,J(x, y,w) is the cost function
which we want to minimize for w. As Figure 3.1 the gradient descent technique is applied
with the estimated gradient g:

w := w − γg

A.3 Regularization

Overfitting is a very common problem in all machine learning areas; creating a model that
is too adapted to the training data, consequently providing a model unable to generalize for
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any out of the sample observations. One of the means to reduce overfitting is regularization.
By introducing a bias in the cost function with the aim to stabilize the model by penalize big
values of the coefficients in our matrices U and V, which will be covered in detail later. By
adding the below regularization term to our cost function which we wish to optimize later:

λ(||U ||2 + ||V ||2), λ > 0. (A.2)

λ is the regularization parameter, a hyper parameter we tune ourselves as we try to find the
best model [4]. ||U ||2 is the squared Frobenius norm, or euclidean distance which is defined
as the square root of the sum of the squares of all the matrix entries. Let A be a matrix of
size n×m, then the norm is defined as:

||A|| =

√√√√ m∑
i=1

n∑
j=1

a2ij (A.3)
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B. Appendix - Yeo-Johnson transformations

Figure B.1: Transformation results: Energy (left) and Danceability (right)

Figure B.2: Transformation results: Acousticness (left) and Instrumentalness (right)
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Figure B.3: Transformation results: Loudness (left) and Liveness (right)

Figure B.4: Transformation results: Tempo (left) and Valence (right)
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