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POPULAR SCIENTIFIC ARTICLE

Investigation of the Fibre Content in the
Promising New Food Ingredient, Alfalfa Protein Powder
Christina A Andersen

Sustainable food is a key topic becoming more important with time. Trends within the food sector are pointing in directions
of locally grown plant based food solutions, but consumers do not want to compromise regarding nutritional qualities. In
Denmark, the climate is perfectly suited for cultivation of alfalfa, a legume also known by lucerne and Medicago sativa. For
centuries harvested alfalfa has been used as feed for cows being able to digest a large amount of fibres within alfalfa. Alfalfa
does however also contain greater amounts of essential amino acids than for example the popular food ingredient soy, making
alfalfa an interesting subject for research within the area of potential human food resources. In order to make the best use of
the wanted and advantageous amino acids within the fibrous alfalfa, as much of the protein content as possible needs to be
extracted from the legume. This is done by pressing harvested and wetted stems, leaves and flowers of alfalfa into a protein
rich green juice, and a fibrous pulp, see Figure 1. The pH of this green juice is decreased to lower the water solubility of the
wanted proteins, and thus precipitate them. The green juice is then centrifuged resulting in a pellet containing proteins
amongst other alfalfa compounds. This pellet is freeze dried into a protein powder in order to concentrate the wanted
proteins. This process is performed 10 times in total, the first time untreated raw wetted alfalfa is pressed into green juice as
mentioned, the following nine times the fibrous pulp from the prior press is wetted and pressed into more green juice. The aim
of re-pressing the fibrous pulp is to extract the highest total amount of protein from one batch of alfalfa. This protein powder
production from raw untreated alfalfa to protein powder, does increase human digestibility of alfalfa by increasing the amount
of protein per weight.

Figure 1 The protein powder production from raw untreated alfalfa to protein powder. Harvested and wetted stems, leaves and
flowers of alfalfa are pressed into a protein rich green juice, which is further processed to a freeze dried protein powder. Photos:
Jonas M Thomasen [1] and Christina A Andersen, 2020.

The produced protein powder might have potential to be used as a food ingredient on the market when its compound
composition has been further outlined. The compound composition also has to be outlined in order to extract and use the
protein from alfalfa in the most cost e�cient and sustainable way. Due to the composition of raw alfalfa, dietary fibres are
suspected to be found in high amounts in the protein powder. Since dietary fibre determination with traditional chemical
analysing methods is very time consuming, this project investigates the fibre fractions of alfalfa protein powder, and a
potential method for rapid determination of the fibre content.

In this project, the possibility to develop a model for determination of the amount and type of fibre fractions within the
protein powder produced from alfalfa in a fast and cheap manner without performing traditional chemical experiments, is
thus investigated. The model will be developed from near infrared (NIR) spectra of the protein powder related to
enzymatically determined nutrient contents of the protein powder. NIR spectra are fingerprints of a given food sample,
representing the unique physical and chemical composition of it, because the measured spectra reflect the amount of certain
molecular bonds in various types of molecules, such as fibre molecules. Since NIR spectra are a↵ected by all compounds of an
analysed sample, protein, fibre, carbohydrate and ash contents are determined for each of the 10 presses leading to produced
protein powder. These results are also used with the purpose of outlining the protein powder contents in general. The NIR
spectra of the protein powder are preprocessed in order to produce the best correlation between the spectra and the measured
fibre contents. When the best suited preprocessing methods are found, a model being able to predict the fibre content in the
10 di↵erent samples was successfully developed. The model is not validated, and therefore it is challenging to draw a
conclusion regarding the model quality. For higher chances of success, and in order to produce a more robust model, big
datasets, and independent validation sets are required. The results of this project do, however, encourage further investigation
and optimisation of this kind of model development.
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MASTER THESIS DISSERTATION

Development of a Near Infrared Spectroscopy Model
for Prediction of Fibre Compounds in Alfalfa
Christina A Andersen

Abstract

Background: This project investigates if it is possible to develop a calibration model from near infrared (NIR)
spectroscopic measurements, for determination of the amount and type of fibre fractions within protein powder produced
from the legume alfalfa, without performing wet experiments. Alfalfa is also known as Medicago sativa and lucerne, but
is in this project further referred to as alfalfa. Such a model would be applicable as a protein powder production process
control, by scanning a small amount of sample during the production process, immediately resulting in a fibre content
value. With this result, one will know when the process should be stopped by means of nutritional values. Except from
fibres, alfalfa contains large amounts of nutrients, for example essential amino acids. The advantageous amino acids are
thus extracted from the fibrous alfalfa during the protein powder production process.
The alfalfa protein powder is produced from stems, leaves and flowers of intact, freshly harvested alfalfa plants. The
raw alfalfa was frozen during storage, then thawed and wetted prior to the first press, which is resulting in a protein
rich green juice, and a fibrous pulp. The pH of the green juice is decreased to precipitate proteins. The green juice is
then centrifuged resulting in a pellet consisting of the total water soluble solid content extracted from alfalfa. The pellet
is freeze dried into a protein powder in order to concentrate the protein content. This process is performed 10 times in
total, the first time untreated raw wetted alfalfa is pressed into green juice as mentioned, the following nine times the
fibrous pulp from the prior press is wetted and pressed into new samples of green juice. The aim of re-pressing the fibrous
pulp is to extract the highest total amount of protein from one batch of alfalfa.
This protein powder production from raw untreated alfalfa to protein powder, does increase human digestibility of alfalfa
by increasing the amount of protein per weight. Protein powder derived from each of the 10 presses was collected in
separate fractions to determine to which extent the fibre profile is changing using an enzymatic gravimetric method.
The amounts of protein, insoluble dietary fibre (IDF), soluble dietary fibre (SDF), total dietary fibre (TDF), available
carbohydrates (ACH) and ash were determined, since NIR spectra are a↵ected by all compounds of the protein powder.
NIR spectra from all 10 presses are related directly to the determined TDF contents, which are used as reference values
in order to calibrate a partial least squares (PLS) model that produces predicted TDF values.
Attempts were also made to conduct NIR spectra earlier in the protein powder production process, from the green juice
prior to centrifugation and from the pellet prior to freeze drying. A cellulose gluten powder dilution series comparable to
the 10 presses of protein powder was prepared, to test if a calibration model could be developed from NIR spectral data
of powder containing cellulose as one of the main components. The cellulose gluten spectra were also compared with
protein powder spectra during spectral compound analyses.

Results: The nutrient profile determination resulted in a total decreasing amount of protein from 43.12% w/w
for press 1 to 37.84% w/w for press 10. The TDF content increased from 22.80% w/w for press 1 to 47.47% w/w for
press 10. ACH decreased from 5.43% w/w for press 1 to 1.10% w/w for press 10, while the amount of determined ash
decreased from 8.24% w/w for press 1 to 2.70% w/w for press 10. Usable and promising NIR spectra were conducted
from all measured protein and cellulose gluten powder samples. A calibration model predicting TDF contents for each of
the 10 presses was developed with a wavenumber range from 6,800 cm-1 to 4,100 cm-1 and R2 = 0.98. For all 10 presses,
the mean deviation from the reference TDF contents was 0.76% w/w. NIR spectra from the green juice and pellet could
not be conducted with the available NIR instrument and presetting options.

Conclusions: It is challenging to convert complex NIR spectra into usable information. Since a broad wavenum-
ber spectrum was chosen for the model development, it was easy to fit the spectra to almost any kind of reference
values, even though the spectra do not describe those reference values. It also has to be kept in mind that the model is
not validated. Therefore it is hard to draw conclusions regarding the model quality. It can be concluded though, that
NIR spectra obtained from the protein powder of alfalfa look promising for further investigation, since a good correlation
between the TDF amounts and NIR spectra could be seen. Of future work the first priority should be to validate this
produced model. If that looks promising, both a new independent validation set and a larger data set to produce a new
calibration model is required to further test the model robustness.
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Svensk Sammanfattning

Bakgrund: Detta projekt undersöker om det är möjligt att utveckla en kalibreringsmodell utifr̊an spektroskopiska
mätningar i det nära infraröda (NIR) omr̊adet, för bestämning av mängden och typen av fiberfraktioner i proteinpulver
producerat fr̊an baljväxten alfalfa, utan att utföra v̊atexperiment. Alfalfa benämnas även Medicago sativa och lucerne,
men kallas inom detta projekt alfalfa. En s̊adan typ av modell skulle kunna tillämpas som en kontroll av proteinpulvrets
produktionsprocess, genom att skanna en liten mängd prov fr̊an ett steg i produktionsprocessen, vilket omedelbart resul-
terar i ett fiberinneh̊allsvärde. Med ett s̊adant resultat f̊ar man reda p̊a när processen ska stoppas enligt näringsvärdena.
Förutom fibrer, inneh̊aller alfalfa en hög andel essentiella aminosyror. Aminosyrorna skall därför gärna extraheras fr̊an
den fibrösa alfalfa under produktionen av proteinpulver.
Proteinpulvret produceras fr̊an stjälkar, blad och blommor av intakta, nyskördade alfalfa baljväxter. Den r̊aa alfalfa har
av lagringsskäl frysts ner. Frusen alfalfa har därför tinats, fuktats och blivit pressad med en skruvpress, vilket resulterade
i en proteinrik grön juice och en fibrös massa. pH-värdet i den gröna juicen sänktes för att fälla ut proteiner. Den gröna
juicen centrifugeras sedan, vilket resulterade i en pellets best̊aende av det totala vattenlösliga fasta inneh̊allet extraherat
fr̊an alfalfa. Pelleten frystorkades till ett proteinpulver för att koncentrera upp proteininneh̊allet. Denna process utfördes
totalt 10 g̊anger, första g̊angen med r̊a alfalfa som pressades till grön juice, följande nio g̊anger återfuktades den fibrösa
massan fr̊an den tidigare pressen och pressades sedan till nya separata prover av grön juice.
Syftet med att pressa den fibrösa massan fr̊an den tidigare pressen, är att extrahera den högsta totala mängden protein
fr̊an en batch av alfalfa. Detta sätt att producera proteinpulver p̊a, ökar smältbarheten av alfalfa genom att öka mängden
protein per vikt. Proteinpulver fr̊an var och en av de 10 pressarna uppsamlas i separata fraktioner för att bestämma i
vilken utsträckning fiberprofilen förändrades med användning av en enzym metod. Mängderna protein, olösliga kostfibrer
(IDF), lösliga kostfibrer (SDF), totala kostfibrer (TDF), tillgängliga kolhydrater (ACH) och ask bestämdes, eftersom
NIR-spektra p̊averkas av alla föreningar i proteinpulvret. NIR-spektra fr̊an alla 10 pressar relaterades direkt till det
bestämda TDF-inneh̊allet, som används som referensvärden för att kalibrera en partial least squares (PLS) modell, som i
sin tur skall producera förutsagda TDF-värden.
Försök gjordes ocks̊a för att möjliggöra mätning av NIR-spektra tidigare i proteinpulvrets produktionsprocess. NIR-spektra
fr̊an den gröna juicen innan centrifugering, och fr̊an pelleten före frystorkning försöktes mätas. En utspädningsserie av
cellulosa-glutenpulver jämförbar med de 10 pressarna av proteinpulver framställdes för att testa om en kalibreringsmodell
kunde utvecklas utifr̊an NIR-spektra med pulver inneh̊allande cellulosa som en av huvudkomponenterna. Cellulosa-
glutenspektra jämfördes ocks̊a med proteinpulver spektra för att jämföra förekomsten av kemiska föreningar i spektrumen.

Resultat: Bestämning av näringsprofilen resulterade i en total minskande mängd protein fr̊an 43,12% w/w för
press 1 till 37,84% w/w för press 10. TDF-inneh̊allet ökade fr̊an 22,80% w/w för press 1 till 47,47% w/w för press 10.
ACH minskade fr̊an 5,43% w/w för press 1 till 1,10% w/w för press 10, medan mängden bestämd ask minskade fr̊an
8,24% w/w för press 1 till 2,70% w/w för press 10. Användbara och lovande NIR-spektra togs fram för alla uppmätta
prover för b̊ade proteinpulver och cellulosa-glutenpulver. En kalibreringsmodell som producera förutsagda TDF-värden
för var och en av de 10 pressarna utvecklades fr̊an v̊agtalet 6.800 cm-1 till 4.100 cm-1 med R2 = 0,98. För alla 10
pressar var den genomsnittliga medelavvikelsen fr̊an referens-TDF-inneh̊allet 0,76% w/w. Uppmätta NIR-spektra med
det tillgängliga NIR-instrument och dess förinställningsalternativ fr̊an grön juice och pellet kunde inte användas.

Slutsatser: Det är sv̊art att konvertera komplexa NIR-spektra till användbar information. Eftersom ett brett
v̊agtalsspektrum valdes för modellutvecklingen, är det enkelt att anpassa spektra till nästan alla typer av referensvärden,
även om spektrumen inte beskriver just dessa referensvärden. Modellen är inte validerad, och det är därför sv̊art att
dra slutsatser ang̊aende modellkvaliteten. Slutsatsen att NIR-spektra erh̊allna fr̊an proteinpulvret i alfalfa ser lovande
ut för ytterligare undersökningar, kan dock dras, eftersom en god korrelation mellan TDF-värdena och NIR-spektrumen
kunde ses. För framtida arbete bör första prioritet vara att validera denna producerade modell. Om det ser lovande
ut, krävs b̊ade en oberoende validering av denna modell, och sedan en större datauppsättning för att producera en ny
kalibreringsmodell, för att öka modellens robusthet.
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Dansk Resumé

Baggrund: Dette projekt undersøger om det er muligt at udvikle en kalibreringsmodel ud fra spektroskopiske
målinger i det nær infrarøde (NIR) omr̊ade, for at bestemme mængden og typen af fiberfraktioner i proteinpulver
produceret fra bælgplanten alfalfa, uden at udføre klassiske kemiske laboratorieeksperimenter. Alfalfa, ogs̊a kendt
under navnene Medicago sativa og lucerne, vil fortsat refereres til som alfalfa. En s̊adan model kan anvendes som
proceskontrol ved at scanne en lille mængde proteinpulverprøve under produktionsprocessen, hvilket umiddelbart vil
resultere i en fiberindholdsværdi. Dette resultat vil give en indikation af, hvorn̊ar processen skal stoppes i forhold til
proteinpulverets næringsværdier. Udover fibre indeholder alfalfa en høj andel essentielle aminosyrer. Disse essentielle
aminosyrer ekstraheres fra den fiberholdige alfalfa under produktionsprocessen af proteinpulver.
Proteinpulveret er produceret af stængler, blade og blomster fra intakte, friskhøstede alfalfa-planter. Friskhøstet alfalfa
blev nedfrosset for at muliggøre en længere opbevaringstid. Ved projektets start, blev den frosne alfalfa tøet op, fugtiggjort
og presset til en proteinrig grøn juice med en skruepresse, hvilket desuden resulterede i en fiberholdig grøn pulp. pH i
den grønne juice sænkes for at udfælde proteinerne. Derefter centrifugeres den grønne juice, hvilket resulterer i en pellet
best̊aende af det samlede vandopløselige faste indhold ekstraheret fra alfalfa. Pelleten frysetørres til et proteinpulver
for at opkoncentrere de ønskede proteiner. Denne proces udføres i alt 10 gange. Første gang udføres den med optøet
ubehandlet alfalfa, og de følgende ni gange med den fiberholdige grønne pulp fra det forudg̊aende pres, der fugtiggøres
og presses til nye prøver af grøn juice.
Målet ved at genpresse den fiberholdige grønne pulp, er at ekstrahere den højeste samlede mængde protein fra en
portion presset alfalfa. Denne slags proteinpulverproduktion øger fordøjeligheden af alfalfa ved at øge mængden af
protein pr. vægt. Proteinpulver afledt fra hver af de 10 pres blev opsamlet i separate fraktioner for at bestemme i
hvilket omfang fiberprofilen ændrede sig ved anvendelse af en enzymatisk gravimetrisk metode. Mængderne af protein,
uopløselige kostfibre (IDF), opløselige kostfibre (SDF), totale kostfibre (TDF), tilgængelige kulhydrater (ACH) og aske
blev undersøgt, da NIR-spektre p̊avirkes af hele proteinpulverets indhold. NIR-spektre fra alle 10 pres blev relateret
direkte til det undersøgte TDF-indhold, der bruges som referenceværdier for at kalibrere en partial least squares (PLS)
model, der forudsiger TDF-værdier.
Det blev ogs̊a forsøgt at muliggøre måling af NIR-spektre tidligere i proteinpulverproduktionsprocessen. Der blev forsøgt
at måle NIR-spektre af den grønne juice før centrifugering, og p̊a pelleten før frysetørring. En fortyndingsserie med
celluloseglutenpulver sammenlignelig med proteinpulver fra de 10 pres af alfalfa, blev fremstillet for at teste, om der
kunne udvikles en kalibreringsmodel ud fra NIR-spektre målt p̊a pulver med cellulose som en af hovedbestandsdelene.
Celluloseglutenspektrene blev ogs̊a sammenlignet med proteinpulverspektrene for at sammenligne tilstedeværelsen af
kemiske forbindelser i spektrene.

Resultater: Den enzymatiske næringsprofilbestemmelse resulterede i en total faldende mængde protein fra 43,12% w/w
for pres 1 til 37,84% w/w for pres 10. TDF-indholdet steg fra 22,80% w/w for pres 1 til 47,47% w/w for pres 10. ACH
faldt fra 5,43% w/w for pres 1 til 1,10% w/w for pres 10, mens mængden af aske faldt fra 8,24% w/w for pres 1 til 2,70%
w/w for pres 10. Brugbare og lovende NIR-spektre fra alle målte protein- og cellulosegluten-pulverprøver blev indsamlet.
En kalibreringsmodel, der forudsagde TDF-indhold for hvert af de 10 pres, blev udviklet med et bølgetalsomr̊ade fra 6.800
cm-1 till 4.100 cm-1 med R2 = 0,98. For alle 10 pres var den gennemsnitlige middelafvigelse fra reference-TDF-indholdet
0,76% w/w. NIR-spektre med det tilgængelige NIR-instrument og forindstillingsmulighederne fra den grønne juice og
pellet var ikke brugbare.

Konklusioner: Det er svært at konvertere komplekse NIR-spektre til brugbar information. Eftersom der blev valgt
et bredt bølgetalspektrum til modeludviklingen, er det potentielt set let at tilpasse spektrene til enhver form for
referenceværdier, selvom spektrene ikke beskriver disse referenceværdier. Da modellen ikke er valideret er det svært at
drage endelige konklusioner vedrørende modelkvaliteten. Det kan imidlertid konkluderes, at de producerede NIR-spektre
fra alfalfa proteinpulveret ser lovende ud i forhold til igangsættelse af relevante yderligere undersøgelser, da en god
sammenhæng mellem TDF-værdierne og NIR-spektrene kunne ses. Ved et eventuelt fremtidigt arbejde bør første prioritet
være at validere denne model. Hvis det ser lovende ud, kræves b̊ade en uafhængig validering og herefter et større datasæt
for at producere en ny kalibreringsmodel med en øget modelrobusthed.





Page VI of 76

Preface
This thesis has been prepared at the National Food Institute at the Technical University of Denmark, DTU, for the

degree Master of Science in Engineering, M.Sc. Eng.

It is assumed that the reader has a basic knowledge in the areas of chemistry and food science.

The following software is used throughout the project: LaTeX as text editing program, MATLAB, Unscrambler and

MS Excel as data handling programs, MS Word for creating figures and Mendeley Desktop for reference handling.

Further, the thesis follows the guidelines of the journal Biotechnology for Biofuels based on the LaTeX tem-

plate BioMed Central Tex Template v1.06 retrieved from www.biotechnologyforbiofuels.biomedcentral.com. Relevant

changes are made to fit the master thesis setup according to Lund University standards.

Finally I would like to thank my supervisor at Lund University, Jenny Schelin for her help and guidance through

my thesis project. I also would like to thank my assistant supervisors at the Technical University of Denmark (DTU),

Peter Rudahl Jensen and Mikkel Hansen for letting me be part of their project, and for all kinds of practical help and

guidance in the labs. Furthermore, I am really grateful for each of many questions Bo Munk Jørgensen, Heidi Olander

Petersen, Timothy John Hobley and Ida Kallehauge Nielsen has helped me answer during my time at DTU. And last,

but not least, the time spend at DTU would not have been as fun without co-student Therese Mollwitz Heltved.

Finally, I would like to thank all my friends and family for believing in and supporting me throughout my degree.



Page VII of 76

Contents

Popular Scientific Article II

Abstract III

Svensk Sammanfattning IV

Dansk Resumé V
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1 Introduction
Sustainable food is a key topic becoming even more important with time. InnoGrass is a highly relevant newly started

project at the Technical University of Denmark, amongst other partners, with professor Peter Ruhdal Jensen as project

leader, looking at a sustainable use of proteins from the green biomass Medicago sativa, a legume also known by

lucerne and alfalfa. In this project, alfalfa is used for further references.

With the use of protein powder produced from raw alfalfa, InnoGrass wants to enrich plant based foods and be

competitive considering comparable plant protein sources, especially regarding amino acid profiles. Alfalfa shows an

amino acid profile similar to that of milk and meat, which with its low environmental impact makes it a competitive

protein source on the market. Seen from a food ingredient perspective, it is also a cheap resource [2].

The protein powder, also suspected to contain high amounts of dietary fibre, is not yet approved by the European

Food Safety Authority (EFSA) to be used as human food and is therefore still defined as novel food. Novel food

is defined as food that had not been humanly consumed in the European Union (EU) before May 1997, where the

first novel food regulation was developed. Novel food is more commonly known as newly developed innovative food,

which chia seeds and UV treated milk are examples of [3].

During the production process from raw untreated alfalfa to protein powder, which is applied to increase human

digestibility, as much of the high value protein as possible should be extracted. Thus a high amount of dietary fibre

is seen as being negative. But dietary fibres still account for a large part of the protein powder, and are not only

considered negative related to human health benefits. In order to extract and use the protein in the most cost e�cient

and sustainable way, the protein powder compound composition has to be outlined. Since dietary fibres are suspected

to be found in high amounts due to the plant composition, and since dietary fibre determination with traditional

chemical analyses is very time consuming, this project investigates the fibre fractions of alfalfa protein powder.

Protein powder derived from alfalfa is not only interesting for future human consumption, but also as a highly

relevant sustainable feed source as protein supplement in Denmark eventually replacing imported soy [4].

1.1 Overall Aim, Specific Objectives and Hypothesis

The overall aim of this project is to develop a model for determination of the amount and type of fibre fractions

within the protein powder produced from alfalfa in a fast and cheap manner without performing wet experiments, if

that is found to be possible. The model will be developed from near infrared (NIR) spectra related to enzymatically

determined nutrient contents of the protein powder.

The specific objectives are to produce protein powder from alfalfa, determine the nutrient profile of the protein

powder, and relating the nutrient profile to NIR spectra from di↵erent steps of the protein powder production process,

by producing a calibration model. By relating the nutrient profile to NIR spectra, a model for determination of the

total dietary fibre (TDF) content could probably be made.

The protein powder production process from raw alfalfa is roughly divided into three steps, see Figure 2. After each

of the first nine presses, the pulp is rewetted and re-fed into the screw press with the purpose of extracting as much

protein from a batch of alfalfa as possible.

Previous determinations of TDF within food samples using preprocessed NIR spectra have shown promising results.

One example by Kim et al, is the determination of TDF in homogenised meals containing similar amounts of protein

as the protein powder analysed in this project [5]. The same enzymatic reference method as in this project was used.

With that knowledge, the hypothesis for this project is that NIR spectra of the protein powder will be usable and

could be related to the TDF content.

1.2 Applications for a Fibre Compound Prediction Model

Determination of fibre fractions in alfalfa and the extent of them is essential for getting a novel food product on the

market with regards to the rate of digestion, and for labelling purposes [6, 7]. A routine method for determination of

the fibre fractions, being both sustainable, time and cost e�cient, would thus be ideal. Fibres of many plant tissues
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Figure 2 Flow chart of alfalfa protein powder production. Step 1) Frozen alfalfa is thawed by wetting it. Thawed alfalfa is put into a
screw press, producing pulp and green juice. The pulp is re-extracted and re-wetted nine times before it is discarded, containing more
fibre after each press. At some point the pulp consists of a fibre to protein ratio that is too high to be worth continuing the process
of rewetting and pressing the pulp. Each of the nine presses of the pulp results in new pulp and green juice. The green juice consists
of the total water soluble solid content. Step 2) pH of the green juice is decreased, and the resulting green juice is centrifuged to
precipitate the wanted proteins. This step produces a pellet and a supernatant, further referred to as brown juice being discarded.
Soluble compounds, such as carbohydrates are expected to be of high concentration in the brown juice, while the precipitated
proteins and insoluble compounds such as fibres are expected to be of high concentration in the pellet. Step 3) The protein pellet was
freeze dried into the resulting protein powder in order to concentrate the nutrient compounds. Photos: Christina A Andersen, 2020.

are nowadays determined using NIR spectroscopy. To be able to use NIR spectroscopy as routine method, a sample

specific calibration model has to be built. Samples are scanned within the near infrared light region. These spectra

are preprocessed and correlated to reference fibre contents obtained by a traditional chemical analysis method. This

correlation shows if the spectra might contain relevant and usable information regarding the fibre contents. If that

is the case, a calibration model can be developed, which should afterwards be validated. A validated model could be

able to predict fibre contents from a simple NIR spectrum of new alfalfa samples, see Figure 3.

This type of model is applicable as a protein powder production process control. The model allows for determining

the fibre content by scanning a small amount of sample during the production process, immediately resulting in a

fibre content value. By knowing the amount of fibre at a given time in the process, one will know when the process

should be stopped by means of nutritional values, since the amount of fibre is indirectly related to the protein content

for each of the 10 presses. Thus a model will be beneficial for optimising the production process in order to obtain as

much of the protein within alfalfa as possible while still being cost e�cient.

Ideally, a model is developed for the green juice, since it is the earliest outcome of the production process, then for

the pellet and lastly for the powder. A determination of the fibre content in the green juice, would allow for a rapid

answer to whether one should continue pressing the pulp further to obtain a useable product or not. Finally that

would result in a faster, cheaper and more sustainable production process. Compared with traditional fibre analysis

of food products, for example an enzymatic analysis method taking four days and generating chemical waste, a NIR

model analysis is preferred especially for big scale productions [5].

1.3 The Green Biomass Alfalfa

Alfalfa shown in Figure 4, is part of the legume family and currently one of the most important forage crops worldwide

due to its high protein content [9, 10]. Historically alfalfa has been used as forage crop in Denmark since the 18th

century. The Danish climate conditions are thus very favourable for cultivation of alfalfa. Alfalfa is a sustainable
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Figure 3 The basic steps of building a NIR calibration model. A selected set of calibration samples is scanned with a NIR instrument.
The spectral data is preprocessed, and related to reference values obtained by, in this project, an enzymatic reference method with a
PLS calibration model. When a calibration model is built, an independent validation set should be used to validate the calibration
model [8]. This figure is modified and adapted from Agelet and Hurburgh [8].

protein source. The growth areas in Denmark are big, it is densely grown without the use of pesticides, and can be

harvested up to four times a year.

Alfalfa is grown in large parts of the world. 70% of the worldwide production area is accounted for in USA, eastern

Europe, and Argentina, while 20% is in France, Spain, Italy, Canada, China and Australia [9]. Alfalfa easily adapts

to di↵erent environments and shows a high draught tolerance due to its deep root system improving the e�ciency of

water usage [10].

Figure 4 Flowering alfalfa grown on a field in Denmark [1].

Alfalfa has a capacity to fix nitrogen through symbiosis with the soil bacteria rhizobia, ensuring a high protein level,

mainly within the leaves. Alfalfa changes quickly in quality during growth. It is found that from the second week of
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growth, the protein content of alfalfa starts to decrease while the fibre content increases, which decreases the total

plant digestibility [10]. If alfalfa is cut early, the nutritional value is high, but the chance of regrowth and the amount

of harvested biomass is low. If cut late, more biomass can be harvested, but of a lower nutritional value [10]. As a

results accurate and rapid nutrient quality evaluations are crucial [11].

The sudden change of nutritional value is correlated with alfalfa flowering. Photosynthetic resources are shifted

away from the leaves to production of new plant structures. With the flowering transition follows an increase in

tissue lignification as well as in the ratio of stem to leaf tissue. The highest combined amount of biomass yield and

nutritional quality of alfalfa is considered at a 10% blooming stage, which results in alfalfa being cut approximately

four times a year [10].

1.3.1 Molecular Compounds of Alfalfa

Dry matter derived from alfalfa as a whole plant consists of 30% w/w cellulose, 20% w/w protein, 14% w/w sugars

and starch, 11% w/w pectin, 10% w/w lignin, 9% w/w ash/minerals, 3% w/w hemicellulose and 2% w/w oils/lipids

[12, 13, 14]. Available carbohydrates account for sugars and nonresistant starch.

Fibres within Alfalfa Dietary fibres are defined as the edible plant cell wall components being resistant to digestion

and hydrolysation by endogenous enzymes during absorption in the human small intestine [15]. One way of grouping

dietary fibres is by their chemical, physical, and functional properties. Thus they are divided into water soluble and

water insoluble dietary fibres, which is applied in this project. Soluble dietary fibres (SDF) bypass digestion in the small

intestine and are fermented in the large intestine. Within alfalfa, they consist mainly of pectins [16]. Insoluble dietary

fibres (IDF) within alfalfa consist of mainly cellulose, hemicellulose and lignin [15]. Lignin is a major anti-nutritional

compound of grasses and the prime factor for limiting cell wall material digestibility. The digestibility is limited by

cross-linking of cellulose and hemicellulose, and in turn lignin acts as a physical barrier to microbial attack and

digestibility of these polysaccharides [6]. A study conducted by Holloway et al determining the digestion of dietary

fibre fractions in humans, shows that approximately 80% of cellulose and 96% of hemicellulose is digested in the

human small intestine, while lignin is undigestible in both the small and large intestine [17]. Lignin thus accounts for

the largest indigestible part of alfalfa.

The molecular structure of cellulose is presented in Figure 5.

Figure 5 Molecular structure of cellulose [18]. n is a number between several hundreds and many thousand, indicating the total size
of cellulose. * indicates attachment places.

When producing protein powder in this project, the aim is set for the highest protein amounts possible, and thus a

high amount of dietary fibre is seen as being negative. But dietary fibres still account for a large part of the protein

powder, and are not only considered negative related to human health benefits. Dietary fibres do not bind to vitamins

and minerals, which leads to a higher absorption of those. Dietary fibre also accounts for slowly digestible energy [16].
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Protein within Alfalfa Compared with the protein quality of isolated protein powder derived from crops like soy,

whey and pea with similar amino acids profiles, see Table 1, alfalfa protein powder stands out due to its wide range

of high content essential amino acids [14, 19, 20]. The amino acid requirements from the World Health Organisation

(WHO) are all met only by the alfalfa protein powder presented in this table.

Table 1 Contents of essential amino acids of various protein sources. Amino acid requirements for adults per day by the World Health
Organisation (WHO) are stated as comparable values. All numbers are presented as (g/100 g protein).

Essential amino acid Alfalfa 1 Soy 2 Whey 2 Pea 2 WHO

Threonine 5.6 3.03 6.92 3.17 2.3

Methionine 2.1 0.39 2.31 0.38 1.6

Phenylalanine 5.6 4.21 3.21 4.68 3.8

Histidine 2.4 1.97 1.80 2.03 1.5

Lysine 6.2 4.47 9.10 5.95 4.5

Valine 6.6 2.89 4.49 3.42 3.9

Isoleucine 5.2 2.50 4.87 2.91 3.0

Leucine 9.0 6.58 11.03 7.22 5.9

Cysteine 1.3 0.26 1.03 0.25 0.6
1 Values are derived from alfalfa leaf protein powder. 2 Calculated from the mean of a presented protein content range in protein powder
by Gorissen et al, 2018. The used mean values were 76%, 78% and 79% for soy, whey and pea respectively [19].

1.4 Analyses Applied in this Project

The used set of protein powder samples is analysed by both a traditional chemical enzyme analysis method being

the reference method, and by the NIR instrument producing spectral data. When selecting the set of samples, a

su�cient number of samples must be chosen to cover all types of variations within the sample. The used samples

must represent the amount of total sample [21].

Three di↵erent enzymatic methods are commonly used for determining the amount of TDF [7]:

1 The Prosky/Lee method (AOAC 985.29/991.43), which is used in this project and further described below

(AOAC 991.43). Shortly, this method was introduced in 1985. Bacterial a-amylase combined with harsh condi-

tions forms the enzymatic incubation step. This method underestimates the amount of resistant starches, when

determining fibre contents.

2 The McCleary method (AOAC 2009.01/2011.25) was introduced in 2009. For the enzymatic incubation step

pancreatic a-amylase is used combined with conditions being close to physiological (pH 6, 37°C). All compounds

of dietary fibre are measured.

3 The rapid integrated total dietary fiber method (AOAC 2017.16) was introduced in 2015, and only di↵ers from

the McCleary method by a slightly more precise determination of dietary fibre compounds.

1.4.1 Enzymatic Analysis used as Reference Method

The enzymatic gravimetric method, Available Carbohydrates/Dietary Fiber Assay Kit provided by Megazyme is used

for chemically determining the nutritional contents SDF, IDF, TDF, protein, ACH and ash, see Figure 6 [22]. In an

enzymatic gravimetric method, the amount of respective analyte is determined through the measurement of mass,

which is based on the Prosky/Lee method.

Available and unavailable carbohydrates are being analysed, the available ones accounting for carbohydrates digested

and absorbed by the human small intestine, and the unavailable ones generally referred to as dietary fibre [22]. Legumes

such as alfalfa also contain physically inaccessible starch being resistant to hydrolysis by the enzymes of the small

intestine, also known by the term resistant starch (RS).

Figure 6 contains of three steps, step 1 accounting for the enzymatic incubation, step 2 describes the determination

of dietary fibres, while step 3 determines available carbohydrates.
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Figure 6 Enzyme assay procedure for determination of the protein power composition. In step 1, the protein powder is exposed to
enzymatic incubation with use of the orange marked enzymes. In step 2, the enzymatic digest is analysed, leading to the final
determined IDF (Insoluble Dietary Fibre) and SDF (Soluble Dietary Fibre) amounts. In step 3, available carbohydrates (ACH) are
determined from the enzymatic digest with the use of solutions containing the active substances marked with orange. This figure is
modified and adapted from Megazyme [23].

In step 1, dublicates of a food sample, in this case the protein powder, are treated with enzymes in enzymatic incu-

bation processes mimicking the digestion process in the human small intestine. Enzymes used are a-amylase, protease

and amyloglucosidase. Thermostable a-amylase depolymerises nonresistant starch and facilitates their hydrolysis into

dextrins. Protease hydrolyses proteins into peptides. Amyloglucosidase facilitates starch dextrin hydrolysis into simple

sugars. Resistant starch is hydrolysed during the a-amylase incubation at 95°C, which leads to an underestimation of

resistant starch [7].

From the resulting enzymatic digest, a small sample is removed for further analysis of available carbohydrates,

accounting for step 3 described below [22]. In step 2, the remaining part of the enzymatic digest is then washed. The

resulting residue is dried, whereafter one of the duplicate residues is analysed for protein using the DUMAS method,

whereas the other is incubated for at least five hours at 525°C to determine the ash content. The determined amounts

of protein and ash are subtracted from the total residue weight, resulting in the weight of IDF [22]. The filtrate is

treated with ethanol in a filtering and washing process to precipitate soluble fibre and remove depolymerised protein

and D-glucose. The resulting filtrate is discarded, and the final residue is dried. The residue containing soluble dietary

fibres as well as protein and inorganic material being ash/minerals. Protein and ash is determined for one of the

duplicate each as for the IDF determination. The determined amounts of protein and ash are again subtracted from

the total residue weight, resulting in the weight of SDF [7, 22].

In step 3, the sample removed for available carbohydrate analysis, which might contain glucose and sucrose, is

diluted with a sodium maleate bu↵er, and filtered to avoid turbidity. The sample is then incubated with sucrase and

b-galactosidase, with the aim to hydrolyse sucrose into D-fructose. This resulting mixture is analysed for D-glucose and

D-fructose using hexokinase, phosphoglucose isomerase and glucose-6-phosphate dehydrogenase combined with added

water, ATP and NADP+ to facilitate the reactions. Absorbances are measured following the reaction stages, using a

spectrophotometer set at 340 nm. Absorbance di↵erences result in calculated concentration values for D-glucose and

D-fructose. The amount of ACH is the sum of D-glucose and D-fructose [22].
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1.4.2 Near Infrared Spectroscopy

NIR spectroscopy is a fast, accurate and robust analysis method for determining forage quality amongst many other

applications that requires no or minimum pretreatment of the analysed sample. It has also shown to previously be a

suitable method for determining the TDF content in dried food samples [5].

A NIR spectrum is a fingerprint of a given food sample. It represents the unique physical and chemical composition

of it, because the measured spectrum reflects the amount of certain molecular bonds in various types of molecules such

as cellulose [24]. A sample is exposed to light at di↵erent wavelengths, which leads to a combination of absorption,

reflection and transmission of light energy, the proportions depending on the light wavenumber and sample properties

such as chemical bonds, composition and thickness [24]. The light path expressed by either one of absorption, reflection

or transmission as a function of the wavelength is then collected as a spectrum. NIR is part of the infrared region

located in the middle of the electromagnetic spectrum, see Figure 7. The NIR wavelength region from 800-2500 nm,

corresponding to a wavenumber range of 12,500-4000 cm-1, and has shown to be very useful for food research [8, 25].

Throughout this project, wavenumber is further used as unit for representing the wavelength. Wavenumber is defined

as the number of wavelengths per distance, most often represented by the unit cm-1, and is thus a synonymous for

wavelength, but presented in another unit.

Figure 7 NIR region in the electromagnetic spectrum. The NIR region is marked with red. In addition the X-ray, UV (ultra violet),
visible, MIR (mid infrared) and FIR (far infrared) and microwave regions are shown. This figure is modified and adapted from FOSS
[26].

NIR Instruments Di↵erent NIR instruments exist on the market today. A short overview of four of the most used

NIR instruments, mainly di↵ering in how they generate spectra, is presented [27]:

1 Fourier Transform NIR (FT-NIR, also known by FT-IR) instruments is the kind being used in this project, and is

described in more detail below. In short, FT-NIR instruments provide a higher resolution, a better wavenumber

accuracy and a higher signal energy than many comparable NIR instruments, for example the dispersive NIR

instruments [28]. In FT-NIR a light beam consisting of all wavenumbers of the NIR region approaches the

sample at once [8].

2 Dispersive NIR instruments have been used for a longer time compared to FT-NIR. Each wavenumber is

measured one at a time, directed individually to the detector, resulting in a constructed spectrum by a computer

being used as signal processor.

3 Diode array spectrophotometers illuminate a sample with only white light. The reflected part of the light is

separated by wavenumber and converted into a spectrum. Each wavenumber is measured by a separate diode

detector, making it possible to measure all wavenumbers simultaneously.

4 MEMS (micro electro mechanical systems) introduced portable handheld NIR instruments onto the market,

making it possible and easy to obtain sample spectra at many points within a process. They collect spectra

fast, but with a smaller wavenumber coverage and lower resolution compared to lab-based NIR instruments.

Due to the properties of the measured protein powder, the FT-NIR instrument in this project is used in reflectance

mode, see Figure 8. Basically the FT-NIR instrument consists of six parts [8]:
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1 A sample compartment.

2 A lamp as light source.

3 A light wave selection system, known as the interferometer that is able to record signal values at specific

wavenumbers. In this system the initial light beam is split in two, one beam is reflected in a fixed mirror while

the other is reflected in a moving mirror. The beams are again recombined as an interference pattern in the

beam splitter before approaching the sample. This kind of interference pattern is called an interferogram. The

moving mirror produces di↵erent light frequencies between the two reflected beams, leading to a resulting light

beam consisting of all wavenumbers of the NIR region approaching the sample at once.

4 A detector, which transforms the collected light energy to an electric analog signal that is further transformed

to a digital signal. Detectors are the most common source of non-systematic instrument noise. This random

noise can be manually reduced by taking averages of several spectra from the same sample, thereby improving

the signal to noise ratio.

5 The detected digital signal being in a time domain, is turned into an actual spectrum in a frequency domain

due to Fourier transform processing. The result is a spectra with a high accuracy [8].

6 A computer being used as signal processor.

Figure 8 The principles of FT-NIR reflectance analysis. NIR light is originating from the light source, split in two, one beam being
reflected in a fixed mirror while the other is reflected in a moving mirror. The beams are again recombined as an interference pattern
in the beam splitter before approaching the sample, and lastly being reflected into the detector. This figure is modified and adapted
from Harris et al [25].

Before conducting NIR spectra, a relevant background measurement should be obtained, and subtracted from each

sample spectra. The purpose of subtracting the same background measurement from all measures samples is to correct

for detector sensitivity, and the light source intensity not being equal at all wavenumbers. Without a background

correction, the measured samples would be a combination of detector sensitivity, varying light source intensities and

sample absorbance, which would not be usable. A background measurement should consist of a uniform sample that

is not optically active, for example the powder teflon (PTFE) preferred for NIR measurements in reflectance mode and

used for this project, since it e↵ectively reflects light. The background measurement will thus subtract any unwanted

residual peaks from the sample spectra.

Reflection Measurements NIR has been widely used as reflectance spectroscopy of powders, which requires an

understanding of the two possible ways of reflection, di↵use and specular reflection. Specular reflection is a mirror-like
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reflection with no energy loss, and the incoming light beam angle corresponding to the outgoing angle of reflection.

Di↵use reflection can be considered as a beam of photons where every single one of the photons will have a di↵erent

fate, see Figure 9. When striking the first particle layer, a photon is either reflected at the surface or passing into the

particle. The photon is then travelling through the particle and might be absorbed by a molecule that contains an

appropriate bond with the appropriate energy state to accept the energy from the photon. If the photon is absorbed,

it does not exist anymore. If it is not absorbed, it will continue passing through the particle until it reaches another

boundary, where it will either be reflected or transmitted. If it is reflected, it continues to move until it is transmitted,

absorbed or escaping the sample surface opposite to the original direction at any angle from 0°to 90°. Di↵use reflection
therefore is defined as reflection of part of the incident energy at a range of angles in all 0°to 90°directions from the

incident beam [21]. This kind of reflection leads to information about the given sample surface, since samples are

only measured until a certain depth. By collecting the amount of light that is di↵usely reflected from solid samples

compound concentrations can be predicted.

When performing reflection spectroscopy, a given amount of light energy is directed onto the sample, whereafter

the amount of reflected energy is measured. The result can consist of energy that is reflected, absorbed or absorbed

and then reemitted or transmitted, which makes it complex and hard to quantify [24, 21].

Figure 9 Pathways of di↵use reflection within particles in a sample. Each line indicates the path of a single photon. 1) Specular
reflection, not detected. 2) Specular reflection, detected. 3) Di↵use reflections. 4) Absorption. Specular reflection will always be
present in measurements of di↵use reflection [21].

Interpretation of NIR Spectra Within the NIR spectra in this project, the wavenumbers measure the energy of the

radiation, while the reflected light measures the relative amount of energy absorbed by the sample [21]. NIR spectra

are formed from molecular bond vibrations. Each individual bond within a molecule can be seen as a weak spring that

naturally vibrates in a given way. Detection of intermolecular vibrations makes it possible to look directly at a sample,

since absorption of the light energy is caused by bond vibration. Vibrations will arise in several directions, requiring

di↵erent energy amounts. Only molecules with an electric dipole moment, and bonds vibrations that do not cancel

out each other, will absorb infrared light and vibrate, see Figure 10. [21]. Such bonds are further referred to as R-H

bonds.

Furthermore, molecules follow the rules of quantum mechanics, which means energy changes occur between discrete

energy states. This will in turn lead to absorptions at di↵erent wavenumbers, which can be related to the type of

molecular bond and in turn the type of molecule [21].

Vibrations of molecular bonds leading to light energy absorption can be explained by the harmonic and anharmonic

model for potential energy, see Figure 11. Molecules do not behave exactly according to the spring model as harmonic



Page 10 of 76

Figure 10 Typical atom vibration of a triatomic molecule. Only molecules with an electric dipole moment, and bonds vibrations that
do not cancel out each other, will absorb infrared light and vibrate. These requirements are met by H2O, but not by CO2 [21]. This
figure is modified and adapted from Jasco [29].

oscillators, but the harmonic model can be used to explain the anharmonic model [21]. Chemical bonds between

atoms hold a potential energy depending on the bond length. Diatomic molecules vibrate with a given frequency

more or less following the harmonic model. When the frequency of light matches the frequency of a given bond,

the bond will absorb energy and move into a higher vibrational energy level (v). Harmonic transitions are defined by

vibrational energy level changes of ± 1. For a given wavenumber range, some light frequencies are absorbed, some

are partly absorbed and some are not absorbed, which are the ones not matching any of the energy di↵erences for a

given sample of molecules. This intensity of absorption versus wavenumber is the foundation for the NIR spectrum

of a sample [30].

The model of the harmonic and anharmonic oscillator describes this transition, with the potential energy (U) as a

function of the interatomic distance from equilibrium, which is the minimum energy position of a molecular bond. A

diatomic molecule absorbing light energy is able to transition into energy levels that are not contiguous. Therefore, the

molecular vibrations are described with the more realistically anharmonic potential instead of the harmonic potential

[30].

The dissociation energy accounts for the required energy to break a given diatomic chemical bond. R-H bonds

contain a high dipole moment and a large mass di↵erence between the atoms, which causes little energy needed for

the bond to break and show anharmonic tendencies. This property causes R-H bonds to be highly anharmonic and

dominate NIR light induced transitions. Especially H2O stands out, which makes it preferable to analyse completely

dry products when looking at other molecules than water. Thus NIR is well suited for measuring substances containing

R-H bonds in food in relatively high amounts like fibres [24].

Basically molecular vibrations arise due to two mechanisms known by overtones and combination bands, which

require anharmonic behaviour [21]. A NIR spectrum consists of these overtones and combination bands of R-H

bonds, see Figure 12.

Overtones are by definition electron excitations to higher energy levels, a transition from the ground state (v=0) to

the second energy level (v=2) or a higher level, see Figure 11. Up to four overtones can occur, the fourth overtone

being very weak and ignored. Every NIR overtone is repeating information, but with decreasing absorption bands when

the overtone level increases, which produces less intense peaks in a NIR spectrum the higher the wavenumber gets. In

other words, the chemical information in a NIR spectrum is repeated and overlapped through all of its wavenumber

range [8].

Combination bands occur when one molecule shares the energy of a photon between two or more absorptions

simultaneously, in other words if two overtones are excited at the same time. One peak in a spectrum thus represents

two molecular bonds instead of one [8].
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Figure 11 The harmonic and anharmonic model for potential energy of a diatomic molecule. The potential energy (U) is shown as a
function of the interatomic distance from equilibrium (de), which is the minimum energy position of a molecular bond. When the
frequency of light matches the frequency of a given bond, the bond will absorb energy and move into a higher vibrational energy level
(v). The dissociation energy accounts for the required energy to break a given diatomic chemical bond. [30].

Figure 12 Absorption bands in the NIR area, presenting overtone regions, the combination region and possible detected compounds
[25].

A complex molecular structure of an analysed sample will lead to complex broad and highly overlapping peaks

and valleys within the NIR spectrum [31]. This makes it crucial to look only at the most relevant peaks within a

wavenumber range for the given analysed sample.

NIR samples are known for no need of sample preparation. Within this project the analysed protein powder is

prepared from raw alfalfa, but that is accounting for the final product from alfalfa and should have been prepared

independently of NIR spectral measurements. Thus, often there is no need for additional sample preparation prior to
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the NIR measurements. One exception though, is that particle size di↵erences could lead to di↵erences in spectral

data, which potentially makes sample preparation crucial for NIR measurements as well. If this is an issue, grinding

and sieving of powders is widely used as sample preparations [21].

1.4.3 Multivariable Data Analysis

A NIR spectra consists of many wavenumbers resulting in hundreds of variables for each analysed sample. Therefore,

multivariable data analysis is well suited for this kind of data, since it is made for handling big data sets. The goal

for use of multivariable data analysis in this project is to build a calibration model from a spectrum with a given

wavenumber range x and chemically determined fibre contents y, based on the simple relationship in Equation 1 [24]:

y = f(x) (1)

In order to build a model, it has to be examined how the di↵erence in spectral x-values a↵ect the di↵erence in the

y-values. A large part of the variation in the spectral x-values might not be related to the variation in the y-values.

Therefore raw spectra most often have to be preprocessed in relevant ways. A transformation of the x-values then

results in a new set of x-values, whose variation might correlate better to the variation in y [24]. Which preprocessing

methods are the correct ones to apply, depends on the spectral data and the y-values. Therefore di↵erent methods

of preprocessing have to be tested by trial and error, with the aim to be left with preprocessed spectra, which are

able to produce a perfectly fitted model with the determined fibre reference values, y [21, 24]. Relevant preprocessing

methods are described in the following, where the spectral data is presented by matrix X, each row corresponding to

an individual measured spectrum.

The spectral data is mean centered as part of the preprocessing methods. Mean centering accounts for a calculated

mean spectrum of all analysed spectra being subtracted from each spectrum. Since the interest lies in the di↵erence

between the samples, and not in the actual values, mean centering is used. A normalisation with for example standard

deviation of the spectral data is not required, since the spectral data is not compared with datasets of di↵erent origin.

Initial Removal of Spectral Noise Raw NIR data contains a large amount of noise, overlapping of data and inter-

ferences. To remove irrelevant interferences, the initial preprocessing consists of subjectively discarding wavenumber

ranges clearly containing noise. In some measured wavenumber ranges, no transmitted light is detected resulting in

very fluctuating spectra with no information in the given area and thus no useful result. Only noise from the instru-

ment is detected. In other noisy wavenumber ranges all light is transmitted, which also leads to no useful information.

Both parts of the spectra are discarded [24].

Principal Component Analysis Principal component analysis (PCA) reduces the original big spectral variables set,

matrix X, to fewer variables by constructing new variables grouped into principal components (PCs). These variables

within the PCs still explain the entire original data variation. The maximum number of computed PCs is determined

by the number of samples-1 or spectral variables-1, which ever is the lowest. PC1 explains most of the data variation

in the observed matrix X while the last PC explains the least [32].

Each PC consists of independent loadings and scores matrixes, which are two matrices the original matrix X has

been decomposed into. The correlation is shown in Equation 2, where matrix P contains loadings and matrix T

contains scores:

X ⇥ P ⇡ T (2)

The row vectors of T correspond to the row vectors of X, which are the wavenumber values, but are projected down

onto a space defined by the column vectors of P. Each vector in matrix T corresponds to one analysed sample. The
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more equal the T vectors are, the more identical are the analysed samples. A di↵erence between the samples can thus

be determined by comparing the T vectors graphically.

Likewise, a projection of the column vectors in X onto a space defined by the column vectors of T, will result in

the loadings matrix P, again narrowing down the number of data points. The more equal the P vectors, the more

identical are the measurements for the given dataset. The loading matrix describes in that sense the relation between

the wavenumbers for the same sample.

Thus one way of using a PCA plot is by determining how well the score values of PC1 correlate with the given

reference values. Such a PCA plot is able to visualise the correlation among all analysed samples, and thus can be

used to show if the spectra will allow for the correct triplicate samples to cluster in groups due to their theoretically

similar score values. A given number of PCs showing are showing a close triplicate clustering. The remaining PCs are

most likely describing some kind of spectral noise. A more quantitative way of determining whether the data seems to

fit a one component model or is described by additional components, is by looking at the percentage of total variance

explained by each principal component [21].

A PCA plot will always consist of the same amount of data points as analysed samples no matter how many initial

wavenumber variables were chosen, and can be used after each kind of spectral preprocessing to visualise if the

preprocessing method indicates a structured separation of the samples [21].

Standard Normal Variate Standard normal variate (SNV) transformation can be used when one parameter being

for example a given nutrient concentration, shall be predicted from more than one similar sample measurement with

known identical compound concentrations, for example if triplicate measurements are used. If the light path length

through the similar samples di↵ers, but should be identical, which is indicated by linear o↵set identical looking raw

spectra, SNV transformation can be applied, see Equation 3. Both additive and multiplicative e↵ects in the spectra

can be removed. Di↵erences in light path lengths could arise from di↵erences in particle size and particle distribution,

and SNV transformation thus also e↵ectively corrects for scatter corrections [33, 24].

SNV corrects the given spectrum with only itself, see Equation 4, which is then being scaled by the corresponding

standard deviation, see Equation 5:

g(x) = kf(x) + b, k > 0 (3)

g(x)� < g > = a(f(x)� < f >) (4)

(g(x)� < g >)/s(g) = (f(x)� < f >)/s(f) (5)

where x is the wavenumber, and g and f are vectors of spectral data originating from the same sample, k, a and b

are constants. Assuming that the light path length is not identical, k is representing this constant. <> is the average

over the spectral values, and s() is the standard deviation. SNV transformation of f and g thus will results in the

same value and a ”perfect” correction is made.

Multiple Scatter Correction Multiple scatter correction (MSC) is similar to SNV transformation, but instead of

correcting a spectrum with only itself, MSC produces one reference spectrum, which is the mean spectrum of all

measured spectra, that is used to correct every spectrum. When using the average of all measured spectra, it is

assumed that this spectrum has the most representative general shape of the type of samples in question, which

might not be the case, if for example a dilution series is measured in triplicates, as for this project [24].

First and Second Derivatives Derivatives, also known as Savitzky–Golay filters are commonly used to minimise

interference when not only a constant, but also a linear baseline separates the spectra from each other, see Equation

6. Derivation with respect to the wavenumber x increases random noise, and the spectrum should thus be smoothed



Page 14 of 76

before calculating derivatives. The first derivative, also referred to as Der1, measures the rate of change of the signal

and can be used if only a change of the o↵set point on the y-axis is of interest, Equation 7. This is seldom the case

though, and the second derivative is therefore more used [21, 24].

The second derivative, also referred to as Der2, measures the rate of change of the first derivative and can be

used to eliminate a systematical increase of a linear baseline in the data, since a two fold derivation of a straight line

becomes zero, see Equation 8. Afterwards, SNV transformation could be applied if the di↵erence in the constant k

should be eliminated [21, 24].

g(x) = kf(x) + ax+ b (6)

g0(x) = kf 0(x) + a (7)

g00(x) = kf 00(x) (8)

where x is the wavenumber, and g and f are vectors of spectral data, k, a and b are constants.

When applying smoothing followed by either Der1 or Der2 preprocessing, it is required to choose the degree of

fitted polynomium and a window size, the latter being the number of wavenumber data points used for estimating

the smoothed data, see Figure 13.

Figure 13 Choice of window size a↵ecting spectral smoothing. The width of the smoothing window corresponds to the number of
wavenumber data points used for estimating the smoothed data [34].

Development of a Calibration Model When the spectral data is su�ciently preprocessed, and an acceptable PCA

plot correlation between the spectra and measured reference values is seen, a calibration model is built. A calibration

model uses the relation between spectra and reference values to predict new reference values, which theoretically

should be identical to the measured reference values. A well suited method for development of a calibration model

with NIR data is the linear regression method partial least squares (PLS), which combines the techniques of PCA and

multiple regression [5]. PLS produces a linear regression model with the least error in the sum of squares between a

predicted regression line and observed reference variables projected into a new space, see Figure 14 [35].
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Figure 14 Basics behind PLS regression. PLS produces a linear regression model with the least error in the sum of squares between a
predicted regression line and observed reference variables projected into a new space. This figure is modified and adapted from
Davies [21].

From the spectral wavenumber values x put into a PLS model, new predicted variables yi can be calculated according

to Equation 9 [24]:

yi = b0 + b1xi1 + b2xi2 + ...+ bnxin (9)

where xi1, xi2, ...xin is the vector of spectral values for sample i, the index number corresponding to each of the

measured wavenumbers. b0, b1, ...bn is the vector of regression coe�cients common to all samples determined from

the PLS regression and the observed reference values, and also calculated for each wavenumber. b0 should be close to

zero, in order to get the best possible regression line. In this way a new predicted value for each sample is calculated.

The predicted variables will be presented in a vector containing as many predicted values as initial measured reference

values. The initial measured reference values are put into the model as observed variables [35].

A plot of b-coe�cients against the wavenumbers will indicate which wavenumbers a↵ect the PLS model most, that

is the b-coe�cients being farthest away from zero, according to Equation 9.

From the PLS model, the correlation coe�cient, R2 is used to indicate how good the model correlates to the straight

line y = x, since for a perfect fit within this project, that should be the regression line [21].

Using the Calibration Model for Prediction When a linear PLS model is built from known reference values, the

proposed model should be validated and tested with a complete new and independent set of samples according to

Figure 3 [21]. Any new measured spectra analysed with a PLS model, is preprocessed the same way as the original

calibration spectra, by subtracting the original preprocessed mean spectra from the new spectra inserted into the

model. In this way new spectra should be able to predicting new usable results with the PLS model.

1.5 Statistics

The standard error and precision of the reference method should be taken into consideration, since results predicted

with a NIR model never will be better than the reference method. A common way to reduce the standard error, is to

analyse more samples [21].

Outliers within the chemically determined contents are detected by the standard deviation method. Outliers are

identified if deviating more than two standard deviations from the mean.

Outliers within the model data are detected by the median absolute deviations method (MAD). If a value is more

than three scaled median absolute deviations (MAD) away from the median of the data, an outlier is detected [36].
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Theoretically, no outliers should exist, since the triplicate spectra are all measured on the same kind of sample,

but due to human errors amongst others they could exist. To increase the robustness of a model, big outliers are

discarded, but smaller di↵erences between samples will results in a more robust model. A possible source of error is

that an outlier is detected, which actually corresponds to a true variation in data [24].
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2 Materials and Methods
All chemical analyses were performed in laboratories of The National Food Institute at the Technical University of

Denmark in Copenhagen.

2.1 Protein Powder Production

According to the supplier of alfalfa for the InnoGrass project, Pauli Kiel from Biotest ApS in Middelfart, Denmark, the

used alfalfa was manually cultivated with a scythe by farmer Arne Hviid at his farm on Å Strandvej 33, 5631 Ebberup

in Denmark. The used batch of alfalfa was harvested the 20th of October 2019 at a length of 25-30 cm, being one

of four yearly harvests. Immediately the harvested alfalfa plants were placed in sealed plastic bags, transported to

DTU and directly put into storage in a -22°C freezer still in sealed plastic bags. Thus the alfalfa plants were put into

storage in the freezer approximately two hours after harvest. The whole plant, that is stems, leaves and flowers are

used for the protein powder production.

Prior to the protein powder production, see Figure 2, frozen alfalfa is collected from storage in the -22°C freezer

and submerged in room tempered water in an open plastic container to defrost it. The initial amount of frozen alfalfa

and all steps of the production process are documented through weighing, see Table 4 in Results. For weighing in

larger scales, that is the raw alfalfa and the pulp in the first protein powder production process, the scale Signum 1

from Sartorius Mechatronics, Germany with a 0.0001 kg resolution, measuring up to 35 kg was used. For weighing

in smaller scales, that is the green juice, the brown juice and the protein pellet, the scale LE6202S from Sartorius

Mechatronics, Germany with a 0.01 g resolution, measuring up to 6,200 g was used.

Defrosted alfalfa is then pressed 10 times in total at a frequency of 40 Hz into a green juice consisting mainly

of protein and fibre amongst other nutrients, using the screw press CP-4 from Vincent Corporation, Florida, U.S..

This accounts for step 1 in Figure 2, presented in the Introduction, and describing the steps of the protein powder

production process.

For the first press, thawed and wetted alfalfa is fed into the screw press. For the following presses, the pulp from the

prior press is fed into the screw press. Each press results in a fibrous pulp that is being rewetted with room tempered

water of double its weight to hydrolyse it and easier obtain the proteins. The rewetted pulp is then fed into the screw

press as the ”new alfalfa”. The last and 10th portion of pulp is not looked at further in this project, since the fibre

to protein ratio is too high to be worth continuing the process of rewetting and pressing the pulp. The high amounts

of raw alfalfa being pressed in relation to the size if the screw press, did not allow for performing all 10 presses in

one single day, thus two production days were needed. During the night in between, the pulp was stored in a -22°C
freezer, which potentially could lead to a higher protein content in the final powder, since the plant cells could be

damaged due to the cold environment, thus leading to easier obtainable protein.

In step 2, the pH of the green juice from step 1 is decreased to the isoelectric point pH = 3.5 of the proteins

within the green juice mainly consisting of the protein RuBisCO, to precipitate the proteins in order to get the highest

possible amount of protein in the produced powder [37]. For the pH decrease, 1M HCl from the producer Sigma-

Aldrich, Germany is used. With each press, less HCl is required to reach pH 3.5, since the amount of protein with

a high bu↵er capacity decreases. For pH measurements, the used pH meter is a CHECKER® - pH Tester 0-14 pH

from Hanna Instruments, Italy with a 0.1 pH resolution and an accuracy of ± 0.2 pH. The green juice is stored in a

+1°C refrigerator for maximum 24 hours before being centrifuged.

A centrifugation at 4200 ⇥ g and 4°C for 10 minutes results in a protein rich pellet and a supernatant, being

a brown juice. The Heraeus Multifuge X3R centrifuge from Thermo Fisher Scientific, Massachusetts, U.S., with a

capacity of 4 ⇥ 1000 mL is used. The brown juice will not be looked at further and is discarded. The pellet is collected

and frozen at -40°C prior to freeze drying it into the final protein powder, step 3 in Figure 2. To achieve sublimation

during freeze drying, the freeze drying process is proceeded at a pressure below 0.612 kPa, the triple point of water

[38]. A pressure of 0.08 kPa at a temperature from -40°C to 20°C within 72 hours within a Heto PowerDry DW8

Freeze Dryer by Thermo Fisher Scientific, Massachusetts, U.S., was used. See Table 4 in Results for specific amounts

of evaporated moisture during freeze drying.
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The protein powder is homogenised, by milling it down to a particle size of 1 mm prior to the following analyses.

For this process, a DLFU universal laboratory disk mill from Bühler, Switzerland is used. The protein powder milled

down to 1 mm is further referred to as the original protein powder. It is stored in a -18°C freezer in sealed plastic

bags. When taking out samples for analysis, the amount of needed protein powder is transferred in 50 ml tubes from

Sarstedt, Germany.

For the NIR spectra measurements, the original protein powder was examined, but also further divided into particle

sizes by sieves of the sizes 1 mm, 0.5 mm, 0.25 mm, 0.125 mm and < 0.125 mm using a MLUA universal laboratory

sieve from Bühler, Switzerland. Further throughout the project, these protein powder fractions are referred to by the

size of the sieve instead of a particle size interval. Stacked sieves were set to a vibrational speed of 300 rpm for 5

minutes, following procedures according to ISO 8130-1:2019 [39]. The protein powder was thus divided into di↵erent

particle sizes, since the NIR spectra potentially could be particle size sensitive. Table 9 in Appendix A1 presents the

distribution of particle fractions.

Since model building depends on the location of clear spectral peaks, similar peak locations of these measured

spectra might result in similar derived models. Whether clear peak locations in a mean spectrum from each di↵erent

particle size significantly di↵ers from each other is being determined with a one way ANOVA, since the data set is

found to be normally distributed. A significance level of a= 0.05 was used, with a null hypothesis H0 stating that

the di↵erences between the mean spectral peaks are not statistically significant.

During the protein powder production, all green juice was centrifuged, and the entire amount of pellet was freeze

dried, to produce as much protein powder as possible. Later during the project process, it was decided to look into

NIR spectra of the green juice and pellet. Therefore, new batches of alfalfa were pressed 10 times, but in smaller

amounts. All steps of the process are documented through weighing, see Table 10 in Appendix A1. For weighing

all amounts of this smaller production, the scale LE6202S from Sartorius Mechatronics, Germany, with a 0.01 g

resolution, measuring up to 6200 g was used.

The same procedures and amounts of added water as for the first batch were followed, but there was no need of

freeze drying the pellet, and a smaller screw press, an electric juice extractor of the model Angel Juicer Angelia 8500S

was used, which operates with only an on/o↵ and reverse button, if material is stuck. Both green juice and pellet was

stored in a -18°C freezer until used for NIR measurements one week later.

A list of all used alfalfa samples is presented in Table 2:

Table 2 Overview of analysed alfalfa samples. The type of sample and method of analysis is presented. Original particle size refers to
freeze dried protein powder milled down to 1 mm. The presented particle size of the remaining protein powder samples refer to the size
of the sieve used for particle division, instead of presenting the particle sizes as intervals.

Type Method of analysis

Powder, original NIR and enzymatic analysis

Powder, 1 mm NIR

Powder, 0.5 mm NIR

Powder, 0.25 mm NIR

Powder, 0.125 mm NIR

Powder, < 0.125 mm NIR

Liquid, green juice NIR

Semi solid, pellet NIR

2.2 Determination of Protein Powder Contents

The enzymatic gravimetric method, Available Carbohydrates/Dietary Fiber Assay Kit provided by Megazyme, Ireland

is used for chemically determination of the nutritional contents, SDF, IDF, protein, ACH and ash [22]. Procedures of
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this method are strictly followed, as well as materials used are strictly identical to what is stated in the assay, except

from deviations stated in this section.

Moisture The moisture content of the protein powder was determined separate from the assay, by determining the

dry weight of duplicate samples of 1.0 g. Each sample was exposed to 140°C for 10 minutes using the infrared moisture

determination balance AD-4714A general-purpose moisture determination balance by A&D Weighing, Tokyo, Japan.

Lipids The content of lipids in the protein powder was determined prior to this project, ensuring that less than 10%

w/w of the protein powder consists of lipids. Furthermore, the greatest part of the lipid content in raw alfalfa is

soluble and washed out with the brown juice during production of the protein powder. The powder is thus suitable

for use in the assay.

General Deviations and Comments The general deviations and comments are stated following the order of occurrence

in the assay. Throughout the assay, the scale AG204 DeltaRange from Mettler Toledo, Ohio, U.S., with a 0.1 mg

resolution, measuring up to 81 g was used for weighing in small scales, while the scale LE6202S from Sartorius

Mechatronics, Germany with a 0.01 g resolution, measuring up to 6200 g was used for weighing in larger scales.

Furthermore, the Finnpipette™ F2 GLP kit from Thermo Fisher Scientific, Massachusetts, U.S., was used for all

pipetting. For all magnetic stirring, the magnetic stirrer MIXdrive 15, 40015 with 15 stirring positions was used together

with the MIXcontrol 20, 90200, both from 2mag magnetic emotion, Germany. The filter paper used throughout the

enzyme assay are Fisherbrand™ microglass fiber filter discs, Ø 47 mm from Thermo Fisher Scientific, Massachusetts,

U.S.. Chemicals from Sigma-Aldrich, Germany are used as reagents not provided as part of the enzyme assay.

Sodium azide as a preservative was not used for stabilising the content of the provided bottle 1 or the sodium

maleate bu↵er, since an extended shelf life for more than three years and more than one year respectively was not

required.

Throughout the assay, filter paper is used for filtration steps instead of proposed fritted crucibles, due to availability

reasons. This deviation is expected to not a↵ect the final result. For the ash determination though, regular crucibles

are used prepared as stated in part A.a.2.a., A.a.2.e., A.a.2.f. and A.a.2.g. in the enzyme assay. The proposed micro

cleaning solution in part A.a.2.c. is not used for additional cleaning of crucibles, since it is expected that they are

delivered su�ciently clean into the laboratory.

In part A.b.2.b. the solutions were stirred for 10 minutes at 350 rpm. In part A.b.3.a. the solutions were stirred for

2 minutes at 150 rpm.

Prior to performing this enzyme assay, di↵erent available water bath opportunities were tested, in order to find the

best suited, since no available water bath fitted the exact description of the assay. A mashing bath with 8 beakers

of the model LB8 from Lochner, Labor + Technik, Germany was chosen, see Figure 26 in Appendix A1 [40]. The

assay states that the bottles in the water bath should be completely sealed, which the LB8 mashing bath does not

allow due to the placement of stirrers, see Figure 15. Thus the bottles are weighed before and after exposed to the

water bath, at part A.b.3.b. and A.b.8.b. respectively, in order to determine the amount of evaporated water, which is

then added in part A.b.8.b. to be able to still use dilution factors and calculations as they are stated in the assay. An

average of 3.40 g demineralised water was added to each bottle. Furthermore, shaking could not be applied during

the water bath, but continuous agitation was applied at 100 rpm. The temperatures and times were controlled by a

program following the enzyme assay and specifically made for these analyses.

In part A.b.6.b. the solutions were stirred at 300 rpm. In part A.b.8.e. it was chosen to store the solutions below

-10°C before determination of ACH. For heating added water and ethanol to 60°C, in between part A.b.8. and A.b.9.,

see page 11 in the enzyme assay procedure, and in part A.b.9. respectively, a water bath was heated by the DT

Hetotherm Heating circulator, type 21 DT-2 from Heto Holten Lab Eqiupment.

In part A.b.9. the solutions were stirred for 5 minutes at 400 rpm. In part A.b.10.a. filter paper was weighed instead

of crucibles, and part A.b.10.b. and A.b.10.c. were thus ignored. The vacuum pump, Diaphragm vacuum pump, VP
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Figure 15 Water bath with 8 beakers of the model LB8 from Lochner, Labor + Technik, Germany. The cups are not completely
sealed due to the placement of stirrers. Photo: Christina A Andersen, 2020.

820 from VWR™, U.S., was used for filtering purposes in part A.b.11. and A.b.12.. In part A.b.13. a 105°C air oven

with reference number S.680315 from Elektrohelios, Sweden was used to dry the resulting filter papers placed on

weighed tin foil. Directly after part A.b.14. the weighed dried filter paper including tin foil was stored in a -18°C
freezer until used for further analyses.

Protein The DUMAS method, as proposed by ISO 16634-2:2009, is used for determining the total nitrogen content

instead of the Kjeldahl method as stated in the enzyme assay. Compared with the Kjeldahl method, DUMAS is less

time consuming, which is preferred when analysing the amounts of samples looked into in this project. The DUMAS

method was the easiest protein determination method available. The rapid MAX N exceed from elementar, Germany

is used as N/protein analyser according to the DUMAS method. The conversion factor 6.25 is used for protein content

calculations [41]. The presented total protein contents are determined separate from the enzyme assay with less risk

of human errors.

Since filter paper is used for filtrations in the assay, the DUMAS measurements within the assay will include one filter

paper each. Thus a separate blank measurement containing only the filter paper is conducted, in order to determine

how the filter paper a↵ects the determined nitrogen content. It was seen that the blank filter paper would not a↵ect

the sample measurements, since the collected nitrogen area was below the detectable area. Unfortunately, the DUMAS

results of the protein powder samples within the assay divided into soluble and insoluble samples, could not be used,

since the samples representing insoluble material showed too high nitrogen area values, while the samples representing

soluble material showed too low nitrogen area values, in order to be measurable with this DUMAS method.

Since the protein representing the insoluble and soluble material should be used in order to calculate the amounts

of SDF and IDF respectively, it was decided to use the initial separately determined protein contents, and conclude

by subjectively looking at the amount of residue on the filter paper containing the soluble material, that the soluble

material might not have contained any significant amounts of protein. This decision was made after performing the

enzyme assay, and having seen that the soluble material in average weighed 0.02 g, while the insoluble material

weighed 0.46 g. Figure 16 presents the ethanol precipitated soluble material before the filtering step, indicating that

the amount of soluble material is limited.
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Figure 16 Ethanol precipitated soluble material before filtration within the enzyme assay. Photo: Christina A Andersen, 2020.

Ash Ash is determined in the same way as proposed by the assay, but since filter paper is used for filtrations, the

filter paper is dried together with the residues. For ash determination, crucible, kieselguhr (SiO2) and filter paper

weight is subtracted. Kieselguhr (SiO2) is referred to as celite in the assay and for further references in this project. A

separate blank measurement containing only the filter paper is conducted in order to accurately subtract the weight

of the filter paper.

Separate from the assay, additional triplicate ash determinations were performed. The moisture content of the

protein powder was determined to 0.00%, which allowed for further use of regular crucibles and no need for fritted

crucibles. The same procedures as for the ash determination in the assay were used, with the same deviations as

mentioned here, except that for these measurements, the protein powder was directly placed on celite since filter

paper could be left out.

For all ash determinations, the ash oven D6450, type M110 from Heraeus, Germany was used. Presented ash

contents within the protein powder are mean values of detected ash in the assay and separate from the assay.

Available Carbohydrates Available carbohydrates (ACH) are determined according to the procedures in the assay.

50 ml tubes and 15 ml tubes from Sarstedt, Germany are used for the liquid transfer and handling of the samples. For

all ACH determinations, the UV-VIS spectrophotometer Genesys 10S from Thermo Fisher Scientific, Massachusetts,

U.S., was used.

Dietary Fibre Dietary fibre divided into SDF and IDF are determined according to the procedures in the assay, but

a↵ected by the mentioned deviations.

2.3 Cellulose Gluten Samples

As part of the preparations for NIR measurements and data handling, NIR spectra were measured from samples with a

10 fold dilution series of gluten powder derived from wheat diluted with cellulose powder to produce powder samples

comparable to the protein powder. Both cellulose and gluten powder are from Sigma-Aldrich, Germany. The dilutions

contain 50% cellulose and 50% gluten, 60% cellulose and 40% gluten, 70% cellulose and 30% gluten, 80% cellulose

and 20% gluten and 90% cellulose and 10% gluten respectively. A spectra of 100% cellulose was measured as well.

See Table 11 in Appendix A1 for exact weighed amounts.
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The cellulose gluten samples were prepared in 50 ml tubes from Sarstedt, Germany using the scale AG204 DeltaRange

from Mettler Toledo, Ohio, U.S., with a 0.1 mg resolution, measuring up to 81 g. They were well mixed by manually

shaking for 1 minute, ensuring that the samples at hand are representative of the batch, before they were transferred

to 20 ml scintillation glass vials provided by Q-Interline, Denmark, further referred to as glass vials, used for NIR

measurements. The measured NIR spectra were preprocessed in MATLAB while the needed programs for multivariable

data analysis were developed, making them comparable with preprocessed spectra from the protein powder.

2.4 NIR Measurements

For each sample measured by the NIR instrument, triplicate NIR spectra have been conducted if possible, to be able

to look at intra-sample variation. The largest, 1 mm (for press 1 and 3) and smallest, < 0.125 mm (for press 1, 2,

4, 6, 7, 8, 9, and 10) fractions of the protein powder particle sizes did not contain su�cient amounts of powder in

order to measure NIR spectra in triplicates.

The used NIR instrument is a FT-IR model FTLA2000-154 analyser with serial number 1331416-001 from ABB,

Switzerland provided by Q-Interline, Denmark. At least four hours prior to the measurements, the NIR instrument

was turned on to allow the cooling detector to reach its set point and the system to be stable. Prior to all mea-

surements, it was manually checked that the instrument had a clean window. When placing the background glass

vial on the NIR instrument, it was also ensured that a peak% between 20% and 80% was detected. The instrument

automatically subtracts the measured background spectrum from all analysed spectra. A glass vial containing PTFE

(polytetrafluoroethylene), also known as teflon, from ABB, Switzerland provided by Q-Interline, Denmark, was used

as background.

NIR measurements require correct presettings to obtain usable spectral quality explained and presented in the

following and summarised in Table 3.

Sample Vial Solid powder samples were placed in a 20 ml scintillation glass vial provided by Q-Interline, Denmark with

an internal diameter of 27.4 mm. Glass vials are used for all measurements in this project due to their light properties.

Glass has a refractive index of 1.5, leading to reflection losses at the surface, only resulting in an approximately 4%

decrease in light intensity [42].

Sample Placement A sample placed in the NIR instrument used in this project when in reflectance mode, can be

either still standing or rotating. For this project, rotating samples were analysed. Glass vials were filled up at least to

the required minimum sample level to cover the entire light beam, see Figure 17. The vials were rotated at an angle

of 45°using a spinner mounted on the NIR instrument. This analysing method allows for the sample to tumble inside

the vial, and thus measures a bigger area of the sample than a stationary method, leading to a more representative

spectrum when looking at heterogenous samples.

Resolution The resolution corresponds to the number of scans, which shall be identical for the background measure-

ment and all samples that shall later be compared. A lower resolution leads to more scans. The resolution is chosen

separately for each di↵erent kind of measured sample, see Table 3.

Scans When rotating a sample, a number of scans corresponding to one or more complete rotations of the glass vial

were chosen, for the spectrum to cover the entire circumference of the sample. The number of scans corresponding

to the time one rotation of the glass vial took, was read from the computer software program FTIR Control Panel,

and used as presetting.
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Figure 17 Rotating glass vial on FT-NIR. The glass vial is filled up at least to the minimum required sample level to cover the entire
light beam. Photo: Christina A Andersen, 2020

Gain Gain that is also known as the signal amplification, is adjusted according to the peak% signal of the background

sample, and according to the expected peak% variation during all measured samples. Identical gain settings have to

be used for all samples that shall be compared. Accordingly, the peak% was tested for the two most extreme samples

in each of the two powder experiments. The peak% was read from live spectra with the software program FTIR

Control Panel, and should be between 20% and 80% for ensuring optimum performance. A peak% higher than 80%

is not preferred, since the detected light signal could easily reach the 100% limit and thus the measured spectrum

is not usable. A too low peak% leads to a too low detected light signal is, and thus a low signal to noise ratio. The

highest peak% is seen for the sample reflecting most of the light.

Data Type The data output type is decided by how the instrument is set up, that is if the NIR instrument is

assembled for use in the reflectance or transmission mode. For this project, the reflectance mode is chosen. It was

possible to choose between absorbance or transmission in the computer settings. When reflectance should be measured

in this project, the chosen computer setting was transmission (%trans). Choosing %trans as computer setting implied

that the measured reflectance spectra were constructed according to the instrument set up, which could thus either

have been a reflectance setup or a transmission setup. %trans was chosen due to its higher, but not too high peak%

values leading to a lower signal to noise ratio, compared to the absorbance setting.

Wavenumber Range The standard wavenumber range setting from 12,000 - 2,000 cm-1 was initially chosen, since

the same setting showed to cover the entire informative spectral range during a protein powder test run. Although

this setting was chosen, the actual total wavenumber range covers 15,792 - 15 cm-1, which was found by opening the

raw spectra spc-files in Unscrambler, see Figure 27 in Appendix A1.

For NIR measurements of the green juice and pellet the same presettings as for the protein powder measurements

were tested when measuring the reflectance, as well as a setup measuring transmission using a smaller 1 ml glass vail

with the dimension 40x8 mm, provided by Q-Interline, Denmark was tested. In addition, the green juice was shaken

manually directly before the measurement to minimise sedimentation e↵ects. Samples from the green juice and the

pellet were tested at both extremes, the first and tenth press, in order to determine the peak% and thus choose the

correct gain presetting.
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Table 3 Summary of used NIR presettings. The presented presettings are used for all samples of cellulose gluten powder and protein
powder.

Cellulose gluten powder Protein powder

Sample vial 20 ml scintillation glass vial, Ø 27.4 mm 20 ml scintillation glass vial, Ø 27.4 mm

Sample placement Still standing Rotating

Background sample PTFE PTFE

Spectral resolution 8 cm-1 16 cm-1 1

Number of scans 16 2 36

Gain High E High E

Data output type Reflectance (%trans) Reflectance (%trans)

Wavenumber range 15,792 - 15 cm-1 15,792 - 15 cm-1

All samples are measured at room temperature. 1 Most powders will be su�ciently sampled at 16 cm-1 or 32 cm-1, which was not known
for the cellulose gluten sample measurements. 2 The standard setting of the used FT-NIR.

Finally, all spectra were collected by a provided computer connected to the NIR instrument using the software

program Grams AI. The spectral values were exported in txt format, aligned in MS Excel with its corresponding

wavenumbers detected with Unscrambler, and imported to MATLAB where they were further analysed.

2.5 Multivariable Data Analysis

The conducted raw NIR data was analysed by initially creating an MS Excel sheet containing all spectral data as

rows and the corresponding wavenumbers as columns. This sheet was uploaded to MATLAB, where it was further

analysed by multivariable data analysis roughly following these steps:

1 An initial zoomed wavenumber range is chosen as the first preprocessing. Areas clearly containing too much

noise and no information are discarded. For spectra that shall be initially compared, identical wavenumber

ranges are chosen.

2 It is determined whether a linear correlation between the areas under the zoomed NIR spectra and the reference

values exists, in which case there would be no need for further preprocessing. For the cellulose gluten samples,

a clear pattern is detected, but in order to get comfortable with the multivariable data analysis, further prepro-

cessing was still performed. For the protein powder samples, no clear pattern was seen, and further preprocessing

has to be applied.

3 With an ANOVA test, it was determined that the particle sizes did not lead to any significant di↵erence in

spectral data. Therefore, MSC does not seem to be a suitable preprocessing and is not used. A linear o↵set in

the theoretically identical triplicate sample spectra of the original protein powder was on the other hand seen,

which is why SNV is used, and expected to be the most promising preprocessing. Smoothing combined with

both Der1 and Der2 were tested as well, with the presettings; window size = 11, degree of fitted polynomium

= 2. This leaves three di↵erent preprocessing opportunities tested one at a time, which are compared with PCA

plots and resulting PLS models.

4 The preprocessing method with the combined best PCA clustering of triplicates and PLS model according to

the R2 value, is chosen to look further into.

5 Having found the best suited preprocessing method, an initial PLS plot covering a large part of the wavenumber

range, is made to examine calculated b-coe�cients plotted against the wavenumber, in order to see which

wavenumber ranges explain the PLS model. Additionally, the best suited cellulose gluten spectral peaks are

compared with similar peaks of the protein powder, to determine which wavenumbers seem to explain relevant

compounds. From this data analysis, the wavenumber used further is narrowed down.

6 Having narrowed down the wavenumber spectrum su�ciently, a final PLS plot is made, and predicted new mean

TDF values are calculated and presented.
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7 An outlier detection of the predicted values is made, that is whether there are outliers in between the triplicate

predictions. If outliers are detected, they are not used in calculation of the mean predicted reference value.

MATLAB code developed for data handling of the cellulose gluten samples is presented as text in Appendix A3.

MATLAB code developed for data handling of the protein powder samples is presented as text in Appendix A4.

Copyright used MATLAB code is presented as text in Appendix A5.

2.6 Feasibility Studies

Prior to the actual measurements, feasibility studies were performed to see if the protein powder would result in usable

NIR spectra using the available NIR instrument. Furthermore, the cellulose gluten samples were used to prepare the

model development, and all parts of the reference enzymatic method were tested several times to minimise errors

when conducting the actual reference value results.
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3 Results
All collected results in this project are presented in this section of the report. The results are divided into representable

subsections reflecting the research question and objectives of the study.

3.1 Protein Powder Contents

Raw alfalfa was subjected to repeated presses in order to extract the protein content. The presses were performed on

freshly harvested plants and the 10 presses were performed immediately after each other. From each press, the obtained

green juice was collected, pH was decreased to precipitate proteins, and the juice was centrifuged, whereafter the

resulting pellet was stored at -18°C until freeze drying it into the resulting protein powder, which lastly was analysed

for di↵erent compounds. The pulp was repeatably pressed for 10 times before being discarded. The weighed amounts

of pulp, green juice, brown juice, protein pellet, protein powder and the amount of evaporated moisture during freeze

drying is presented in Table 4.

Table 4 Protein powder production using the screw press CP-4 from Vincent Corporation. For each press from 1-10, weighed amounts
of pulp (g), green juice (g), brown juice (g), protein pellet (g), protein powder (g) and the amount of evaporated moisture during freeze
drying (% w/w) is presented. ND for pulp of press 1 indicates that press 1 started with the use of raw alfalfa. Initially the weight of frozen
alfalfa was 50,823 g, and the weight of alfalfa including water for thawing was 81,498 g. The leftover pulp after press 10 was 5,827 g.

Press 1 2 3 4 5

Pulp ND 16,221 12,449 9,549 8,769

Green juice 53,131 33,703 26,566 34,220 17,578

Brown juice 47,938 42,101 25,020 32,297 16,814

Protein pellet 4,834 3,959 969 1,810 693

Protein powder 818.4 511.0 136.9 268.5 99.70

Evaporated moisture 83.07 87.09 85.87 85.16 85.61

Press 6 7 8 9 10

Pulp 7,494 7,108 6,587 6,183 5,849

Green juice 14,514 15,244 13,175 12,749 15,900

Brown juice 13,572 13,696 12,091 11,789 14,653

Protein pellet 874 1,003 1,027 974 1,113

Protein powder 126.8 134.8 133.6 120.3 120.8

Evaporated moisture 85.49 86.56 86.99 87.65 89.15

The results of the laboratory work leads to uncertainties regarding exact amounts of conducted raw material when transferring the green
juice from buckets to weighing glass. Also, a source of error is that the last part of each pulp fastened inside the screw press and was used
for the following press.

One set of 1-10 presses with one batch of alfalfa plants (n=1) was performed for producing the protein powder,

which was analysed in duplicates, that is two samples from each of the 10 presses. In order til calculate IDF and

SDF amounts, one of each duplicate determined the ash content, and the other determined the protein content (the

protein determinations within the enzyme assay could unfortunately not be used, see Section 2.2). Thus duplicate

measurements resulted in one IDF and SDF value respectively. Independent of the enzyme assay, ash and protein

contents were determined in triplicates, and within the assay D-glucose, D-fructose and thus ACH was determined

in duplicates. Standard deviations (SD) are included if more than one measurement was performed. They do not

exist for the determined fibre contents, since IDF and SDF was only determined once. The moisture content was

experimentally found to be 0.00% w/w by drying the protein powder. The determined protein powder contents of

each of press 1-10 are summarised in Table 5. IDF, SDF and the sum of IDF and SDF, presented as TDF is included

in the table, as well as D-glucose, D-fructose and the sum of D-glucose and D-fructose, presented as ACH. Thus, the

sum of all presented components is higher than 100% w/w.
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Table 5 Enzymatically determined protein powder contents (% w/w) ± SD. The determined protein powder contents of press 1-10 are
presented as protein (n=3), IDF (insoluble dietary fibre) (n=1), SDF (soluble dietary fibre) (n=1), TDF (total dietary fibre) (n=1),
D-glucose (n=2), D-fructose (n=2), ACH (available carbohydrates) (n=2) and ash (n=4). Standard deviations are included if n > 1.
IDF, SDF and the sum of IDF and SDF, presented as TDF is included in the table, as well as D-glucose, D-fructose and the sum of
D-glucose and D-fructose, presented as ACH. Thus, the sum of all presented components is higher than 100% w/w.

Press 1 2 3 4 5

Protein 43.12 ± 0.26 44.08 ± 0.83 47.40 ± 0.93 40.07 ± 0.68 42.14 ± 1.06

IDF 21.13 24.83 29.34 35.03 34.62

SDF 1.67 1.21 2.17 2.22 2.41

TDF (IDF + SDF) 22.80 26.04 31.52 37.25 37.03

D-glucose 3.15 ± 0.63 2.27 ± 0.48 1.79 ± 0.76 1.20 ± 0.65 2.14 ± 0.00

D-fructose 2.29 ± 0.47 0.30 ± 0.30 0.04 ± 0.06 0.38 ± 0.53 0.00 ± 0.00

ACH (D-glucose + D-fructose) 5.43 ± 1.10 2.57 ± 0.18 1.83 ± 0.82 1.58 ± 1.18 2.14 ± 0.00

Ash 8.24 ± 0.28 3.15 ± 0.55 3.07 ± 0.37 2.72 ± 0.28 2.40 ± 0.18

Press 6 7 8 9 10

Protein 41.29 ± 0.77 39.08 ± 0.13 38.69 ± 0.59 38.24 ± 0.82 37.84 ± 0.80

IDF 39.36 41.56 42.16 44.94 45.61

SDF 1.51 1.71 1.82 1.77 1.86

TDF (IDF + SDF) 40.87 43.27 43.98 46.70 47.47

D-glucose 1.61 ± 0.12 1.00 ± 0.12 1.06 ± 0.07 0.77 ± 0.12 0.55 ± 0.18

D-fructose 0.34 ± 0.36 0.38 ± 0.30 0.04 ± 0.06 0.17 ± 0.00 0.55 ± 0.78

ACH (D-glucose + D-fructose) 1.95 ± 0.24 1.38 ± 0.42 1.10 ± 0.13 0.94 ± 0.12 1.10 ± 0.61

Ash 3.16 ± 0.61 2.95 ± 0.50 2.95 ± 0.57 2.52 ± 0.25 2.70 ± 0.29

Generally the enzymatically determined protein powder contents are as expected. The samples being rewetted and

pressed most times contain less protein and more fibre. The produced pellet from each press, being freeze dried into

the protein powder, consists of the total water soluble solid content extracted from each press of alfalfa. The first

press is derived from raw alfalfa, while the remaining presses are derived from the pulp of the prior press, the pulp

containing more fibre after each press. At some point the pulp consists of a fibre to protein ratio that is too high to

be worth continuing the process of rewetting and pressing the pulp. The proteins of alfalfa are more water soluble

than the fibres, thus existing in the largest extent in the first presses.

Looking closer at the determined protein contents, the protein powder of press 2 and 3 contains the most protein,

which deviates from the general picture. This could be explained by a mechanical destruction of the product by

the screw press that had only happened to a minimal extent in press 1. By mechanically destructing the plant cells

of alfalfa, the proteins are easier obtainable. A double screw press would have been more e�cient and might have

resulted in a high amount of proteins already after the first press.

IDF which according to theory contains mostly of water insoluble cellulose, hemicellulose and lignin is according to

theory accounting for the largest parts of TDF in alfalfa. Even though the protein powder is derived from the water

soluble solid content extracted from each press of alfalfa, the TDF content accounts for large parts of the powder,

according to findings in this project. This can be explained by the mechanical destruction of the product due to the

screw press, and thus a destruction of the fibre molecules. Within the screw press the biggest particle size of the

produced green juice is a↵ected by a filter. If a filter with a lower particle size allowance had been used, the amounts

of fibre would be expected to be lower, but so would the desired amount of protein.

Throughout the absorbance measurements used for ACH determination, very low changes in the di↵erences of the

measured absorbance values due to facilitated reactions were detected for each sample. The di↵erences in absorbance



Page 28 of 76

values were too low, to determine su�ciently accurate results according to the enzyme assay. Especially the determined

amounts of D-fructose were a↵ected hereby, leading to barely any detection of D-fructose compared to D-glucose.

The high ash content in press 1 compared to the rest of the presses might be due to minerals and other compounds

found on the surface of the unwashed raw alfalfa prior to the protein powder production.

All determined contents sum up to between 75% w/w and 90% w/w, the lowest determined amount for the first

presses and the highest determined amount for the last press. In these calculations, lipids are not included, and as

the calculated standard deviations indicate, method uncertainties also have to be taken into account.

3.2 NIR Measurements

Throughout this subsection, all collected NIR spectra and relevant spectral preprocessing is presented.

3.2.1 Cellulose Gluten Spectra

As part of the preparations for NIR measurements and data handling, NIR spectra were measured from samples with

a 10 fold dilution series of gluten powder diluted with cellulose powder to produce samples comparable to the protein

powder. Figure 23B in Section 3.3.2, presenting clear spectral peaks for raw zoomed cellulose gluten spectra, is used

as comparable spectral data, when analysing the protein powder spectra.

It was determined that a wavenumber range of 5,290 - 3,960 cm-1 combined with SNV preprocessing resulted in

the highest degree of PCA clustering and best PLS model regarding linearity, Figure 18. Since the cellulose gluten

powder mainly consists of cellulose, it is expected, that the clear peaks of the spectra within the chosen wavenumber

range mainly reflect the cellulose contents, which might also be confirmed by the close to perfect PLS model of

these spectra, see Figure 18B. The corresponding PCA plot is presented in Figure 18A. Mean spectra from SNV

preprocessed triplicate data are calculated, and with a PLS model related to the reference cellulose content, see

Figure 18B.

Appendix A2 presents raw NIR spectra obtained from the cellulose gluten powders in Figure 28 and 29. The SNV

preprocessed spectra are presented in Figure 30 in Appendix A2. Table 12 in Appendix A2 presents the predicted

cellulose contents from the PLS model related to the reference cellulose contents.
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Figure 18 The triplicate sample clustering presented by a PCA (principal component analysis), and a PLS (partial least squares) plot
with cellulose as reference contents and SNV preprocessed spectra. Both plots are based on the zoomed NIR spectra (5,290 - 3,960
cm-1) of cellulose gluten powder for all 6 cellulose gluten powder triplicates. (A) The PCA plot with PC1 (Principal Component 1)
plotted against the reference content cellulose. PC1 is PCA constructed variables that explains most of the data variation in the
observed wavenumbers. (B) PLS model of cellulose gluten powder. Determined R2 of the PLS model was 1.00, calculated with
respect to a x=y line. Error bars are showing the variation in predicted cellulose content from the PLS model, while the coloured dots
represent mean predicted values.

3.2.2 Freeze Dried Protein Powder of Di↵erent Particle Sizes

As particle size is known to have an impact on the outcome of measured NIR spectra, the original protein powder was

sieved into fractions of di↵erent particle sizes, which were analysed and compared. The freeze dried protein powder

milled down to 1 mm is further referred to as the original protein powder. Figure 19 presents a visual overview of the

di↵erent sieve sizes used for dividing the particle fractions, including the original particle size. Raw spectra containing

protein powder of these di↵erent particle sizes are presented in Figure 31, 32, 33, 34 and 35 in Appendix A2.

Figure 19 Visual overview of the di↵erent protein powder fractions obtained by sieving with sieve sizes presented in the figure.
Original particle size refers to freeze dried protein powder milled down to 1 mm. Photos: Christina A Andersen, 2020.
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Since the kind of model building performed in this project depends on the location of clear spectral peaks, similar

peak locations of these di↵erent spectra, might result in similar derived models. Whether seven clear peak locations

in a mean spectrum from each di↵erent particle size significantly di↵er from each other, is determined with a one way

ANOVA test, since the data set is found to be normally distributed. Table 13 in Appendix A2 presents these spectral

peak locations. An ANOVA test with a significance level of a= 0.05 was used. A P-value of 1.00, being larger than

a means that the null hypothesis H0 is accepted, and that the di↵erences between the mean spectral peaks of the

di↵erent particle sizes are not statistically significant. Since particle size di↵erences do not significantly a↵ect spectral

peak locations, it is decided to develop the model of this project from the original particle size, since that is the

easiest obtainable size. The MSC preprocessing method is not looked further into, since it is found that particle size

does not a↵ect the interesting information.

Protein Powder of Original Particle Size Raw spectra containing protein powder of the original particle size (freeze

dried protein powder milled down to 1 mm) are presented in Figure 20. The received peak% signal when obtaining

these spectra was between 30% and 40%, which meets the requirements for for optimum performance, since it is

inbetween 20% and 80%.

At both ends of the spectral data, > 8,000 cm-1 and < 3,500 cm-1, the raw NIR data contains a large amount of

noise. Either no light or all light is detected resulting in fluctuating spectra with no information in the given area, and

thus no useful result. Only noise from the instrument is detected. Such parts of the spectra are discarded, as well as

the wavenumber range 4,000 - 3,500 cm-1, since NIR spectroscopy does not cover this area, and thus no potential

compounds are found here. Also, the wavenumber range 8,000 - 7,300 cm-1 is discarded, since this area does not

represent any compounds of special interest, and at the same time contains some extent of noise.

Figure 20 Raw NIR spectra of original particle size protein powder. Reflectance as a function of wavenumber is presented for all 10
presses of rewetted alfalfa pulp in triplicates. Original particle size refers to freeze dried protein powder milled down to 1 mm.

An initially zoomed part of the raw spectra is presented in Figure 21. Peaks of interest and spectral di↵erences

within measured triplicate samples, and between each of the 10 presses do now appear clearer. The triplicate samples,

presented by identical colours in Figure 21 are similar in curve appearance, with the biggest di↵erence being the light

path length di↵erence. No triplicate sample clearly stands out in another way. The di↵erent presses deviate mostly

between 5,600 - 4,600 cm-1.
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Figure 21 Zoomed NIR spectra (7,300 - 4,000 cm-1) of original particle size protein powder. Reflectance as a function of
wavenumber is presented for all 10 presses of rewetted alfalfa pulp in triplicates. Original particle size refers to freeze dried protein
powder milled down to 1 mm.

3.2.3 Green Juice and Pellet

In addition to the freeze dried protein powder, samples of green juice and pellet were analysed with NIR spectroscopy.

Using the presettings obtained during measurement preparations, it was however determined that spectral data from

the green juice and pellet were not usable. For the green juice, the received peak% signal was 1-2%. For the pellet,

the received peak% signal was 5-8%.

3.3 Model Development

Since no triplicate sample stands out, and the biggest di↵erence between the triplicate samples lies in the light path

length di↵erence, it was decided to continue data preprocessing with all triplicate samples as presented in Figure 21.

3.3.1 Comparing Preprocessing Methods

From the initial zoomed spectral data, it was compared how well no preprocessing, SNV preprocessing, Der1 prepro-

cessing and Der2 preprocessing respectively would fit to a PLS model, with reference values being the determined

TDF. How these preprocessing methods a↵ect the spectral data is shown in Figure 36 in Appendix A2. It was seen

that the initial clear peaks represented in the zoomed spectra in Figure 21 are all represented in all three preprocessed

spectra. From these preprocessed spectra, it can also be seen that SNV preprocessing separates the triplicate samples

to the highest extent, also when taking the spectra with no preprocessing into account.

The highest extent of triplicate separation seen for SNV preprocessing, is thus confirmed by Figure 22, showing

the triplicate sample clustering in PCA plots of respective compared spectral data. PC1 explains most of the data

variation in the observed spectral matrix X of all four compared spectral data, the percentage being shown in each

respective figure text. All score values of PC1 separate the triplicate samples, but not in a structured way relating to

the TDF reference values. Score values di↵ering most from 0 represent the NIR spectra of samples standing out to

the highest extend from the rest. The score values of PC2 were looked at as well (data not shown), but no usable

separation of triplicates was seen. These unstructured results might indicate that these NIR spectra do not contain

the relevant information in order to fit a model to the TDF contents. The same tendencies were found for the rest of

the measured nutrient contents used as reference values (data not shown).

A PLS model is developed for each of the compared spectral data. Table 6 explains the accuracy of each of these

PLS models. A good PLS model is represented by a low number of PLS components combined with a high percent
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Figure 22 The triplicate sample clustering presented by PCA (principal component analysis) plots of PC1 (principal component 1)
from spectra with di↵erent preprocessing methods, plotted against TDF (total dietary fibre) as reference contents. PC1 is PCA
constructed variables that explains most of the data variation in the observed wavenumbers. Each PCA plot is based on the zoomed
NIR spectra (7,300 - 4,000 cm-1) of original particle size protein powder, for all 10 presses of rewetted alfalfa pulp. Original particle
size refers to freeze dried protein powder milled down to 1 mm. (A) Represents spectra with no preprocessing. PC1 explains 93.9% of
the observed spectral matrix X. (B) Represents SNV (standard normal variate) preprocessed spectra. PC1 explains 85.0% of the
observed spectral matrix X. (C) Represents 1st derivative preprocessed spectra. PC1 explains 81.6% of the observed spectral matrix
X. (D) Represents 2nd derivative preprocessed spectra. PC1 explains 53.0% of the observed spectral matrix X.

variance explained in reference matrix Y and a high R2 value that is related to the straight line x = y. The results

in Table 6 indicate that the SNV preprocessed spectra produce a PLS model with the highest accuracy for all three

parameters.

From here, it was decided to further continue with SNV preprocessed spectra, since that shows the best PCA

clustering, and with the least PLS components produces the best PLS model.
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Table 6 Accuracy of tested PLS models with di↵erent preprocessing methods. Zoomed NIR spectra of original particle size protein
powder from 7,300 - 4,000 cm-1 that are not preprocessed are compared to the preprocessing methods SNV (standard normal variate),
1st derivative and 2nd derivative. The number of used PLS (partial least squares) components are presented together with the percentage
of variance explained in reference matrix Y, and R2 values for each PLS model.

Method Number of PLS components 1 R2

No preprocessing 5 (97.5%) 2 0.9744

SNV 3 (98.2%) 2 0.9812

1st derivative 4 (97.7%) 2 0.9763

2nd derivative 4 (97.9%) 2 0.9784
1 Should be as low as possible to not risk overfitting. 2 Percent variance explained in reference matrix Y. As more components are added
to the model, the model will do an apparently better job fitting the original data Y, simply because at some point most of the important
predictive information in Y will be present in the components.

3.3.2 Choosing Wavenumber Range

To be able to decide which wavenumber range is best suited for the reference TDF values, it is determined where com-

pounds of interest might show spectral peaks, combined with determining which wavenumbers PLS model determined

b-coe�cients a↵ect the model.

Spectral Compound Determination Since the protein powder is a complex sample containing many di↵erent com-

pounds, the peaks in the protein powder spectra are compared with the peaks in the less complex cellulose gluten

spectra, see Figure 23. Exact peak locations are determined from a mean spectrum of all spectra in respective figure.

Table 7 presents the potential compounds related to the peak numbers.

Figure 23 NIR spectra (7,300 - 4,000 cm-1) of (A) original particle size protein powder and (B) cellulose gluten powder respectively
including peaks. Reflectance as a function of wavenumber is presented, with peaks marked with numbers corresponding to their
occurrence. (A) All 10 presses of rewetted alfalfa pulp in triplicates are presented. Original particle size refers to freeze dried protein
powder milled down to 1 mm. (B) All 6 cellulose gluten powder triplicates are presented.

From the cellulose gluten powder spectra in Figure 23B, it is observed that the reflectance measurements at peak

5, 6, 10, 11 and 12 strictly follow the sample composition, whereas the remaining peaks do not correlate as good to

the sample composition. Peak 5 and 10 could be potential water peaks, but since such a good sample composition

correlation is seen, it might indicate, that water does not dominate the spectra. Since the raw cellulose gluten powder

spectra explain the sample composition to this great extend, they are directly used regarding compound explanation.



Page 34 of 76

Table 7 Spectral peak similarities of protein powder and cellulose gluten powder samples. Peak numbers are correlated to at which
wavenumber they are detected, the corresponding overtones and combination bands, and to possible detected molecular bonds.

Peak Wavenumber (cm-1) Overtones and combinations Possible detected bonds

1 6,700 NH R-NH2

2 6,000 CH CH3, CH2

3 5,800 CH, SH CH3, CH2, CH, SH

4 5,400 C=O R-COOH

5 5,200 C=O, OH H2O, R-COO-R, POH, CONH2

6 4,950 C=O, OH CO

10 4,500 NH+OH, CH+CH H2O, CH3, CH2

11, 12, 13, 14 4,400, 4,300, 4,250, 4,150 CH+CH, CH+CC CH3, CH2, CH

The protein powder though, does not show similarly clear raw spectra, thus when having determined the clear peak

locations from Figure 23A, Figure 25A is looked at further, regarding compound explanation at these relevant peaks.

The TDF (and IDF) amounts containing cellulose, in the protein powder do not strictly follow the number of

presses. The TDF (and IDF) amounts increase in the order; press 1, 2, 3, 5, 4, 6, 7, 8, 9 and 10. If this order is

detected at peaks expressing compounds relatable to cellulose, they would account for the most suited peaks for at

model predicting the TDF content. Peak 5, 6, 10, 11 and 12 strictly follow the sample composition of the cellulose

gluten powder are therefore further looked at for the protein powder as well.

Peak 5 and 6 are detected as wavenumbers assigned to the combination band of OH bonds. This place in the

spectra should thus detect if samples contain di↵erences in compounds containing a large extend of OH bonds, for

example cellulose. Both peak 5 and 6 of the protein powder though, do not show the same clear tendencies of ordering

the samples according to their cellulose content as does the cellulose gluten powder.

Peak 10, 11 and 12 are detected as wavenumbers assigned to the combination band of CH bonds amongst others.

This place in the spectra should thus detect if samples contain di↵erences in compounds containing a large extend

of CH bonds. Cellulose was therefore expected to be more expressed at peak 5 and 6, but could also be expressed at

peak 10, 11 and 12. Peak 10, 11 and 12 in Figure 25A are again not ideally sorted according to the cellulose contents.

By looking subjectively at the discarded brown juice of the protein powder production process, it was seen that its

colour changed with the number of presses from light brown, to light green, to being clear. This might indicate that a

changing parameter for press 1-10 and for the model development, other than the measured nutrient contents, could

be colour compounds like chlorophyl.

b-Coe�cient Determination A large wavenumber range from 10,000 - 4,000 cm-1 is chosen and SNV preprocessed,

see Figure 24A. To see at which wavenumbers the PLS b-coe�cients a↵ect the PLS model, a corresponding plot

showing the b-coe�cients of each wavenumber is shown in Figure 24B. Figure 24B confirms that the wavenumber

range used to initially compare preprocessing methods from 7,300 - 4,000 cm-1 was suitable, since wavenumbers from

10,000 - 7,300 cm-1 show a b-coe�cient value close to 0. The PLS model is mostly a↵ected by high b-coe�cients,

the relevant clear ones seen at 7,000, 6,000, 5,000, 4,500 and 4,000 cm-1. At 7,000 cm-1 no clear known peak is seen

according to Figure 23A, this wavenumber is therefore not included in the chosen range, which is started at 6,800

cm-1 to include peak 1, and stopped at 4,100 cm-1, since also no known peak is seen after peak 14 at 4,150 cm-1 in

Figure 23A.

Had more time been available, it would have been possible to develop software for cutting out middle parts of

the spectra. In this project it is thus only possible to look at a complete wavenumber range. The SNV preprocessed

spectra, b-coe�cients and PLS plot for this chosen final wavenumber range is shown in Figure 25. From Figure

25B it is seen that close to the entire chosen wavelength range explains the produced PLS model, since almost all
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Figure 24 (A) SNV preprocessed NIR spectra of original particle size protein powder, and (B) the corresponding b-coe�cients plot
derived from a PLS model (10,000 - 4,000 cm-1). (A) Reflectance as a function of wavenumber is presented for all 10 presses of
rewetted alfalfa pulp in triplicates. Original particle size refers to freeze dried protein powder milled down to 1 mm. (B) Number of
used PLS components = 3, with 98.2% variance explained in Y. Determined R2 of the PLS model was 0.9812.

b-coe�cients deviate from 0. Clear peaks in the spectra can be seen where known water bands often occur. This

might indicate that the samples have not been completely dry when measured. Although they were determined to

be completely dry before the NIR measurements, they could have absorbed water from air humidity during storage

and transfer into the NIR glass vials. Also, some parts from some presses of the freeze dried protein powder showed

resistance when being milled down into the original protein powder of 1 mm. If water within samples were an issue,

it could have been checked by measuring the moisture content directly after the NIR measurements. Potential clear

water peaks in the spectra are seen at peak 5 and 10 at 5,200 and 4,500 cm-1 respectively. The peak at 5,200 cm-1

does not seem to a↵ect the PLS model much, since the b-coe�cients around that wavenumber are close to zero.

At 4,500 cm-1 the model is a↵ected more. High b-coe�cients at known water band wavenumbers could result in a

poor model quality. Figure 25C shows the produced PLS model, with triplicate samples occurring close to each other,

which is preferred. Press 5 and 9 show the highest degree of triplicate sample gathering.

From the produced PLS model in Figure 25C, predicted mean TDF values are calculated. The predicted values from

22.84 % w/w TDF to 45.75 % w/w TDF, as well as the deviation from the actual reference values are presented in

Table 8. In Table 8 two outliers are detected with the used method, the median absolute deviations method (MAD),

one from press 5 and 9 respectively. If a value is more than three scaled median absolute deviations (MAD) away from

the median of the data, an outlier is detected [36]. As mentioned, press 5 and 9 show the highest degree of triplicate

sample gathering in the PLS plot in Figure 25C. Thus a potential outlier is detected even though the actual deviation

is smaller than for triplicate samples in the remaining presses, and this outlier detection does not highly a↵ect the

outcome of the comparison between predicted mean values and reference values. It could even be, that keeping these

theoretical outliers would result in a more robust model, since a possible source of error is that an outlier is detected,

which actually corresponds to a true variation in data [24].
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Figure 25 (A) SNV preprocessed NIR spectra of original particle size protein powder, (B) the corresponding b-coe�cients plot
(6,800 - 4,100 cm-1) derived from (C) the PLS model. (A) Reflectance as a function of wavenumber is presented for all 10 presses of
rewetted alfalfa pulp in triplicates. Original particle size refers to freeze dried protein powder milled down to 1 mm. (B) b-coe�cients
plot with peaks a↵ecting the PLS model. (C) PLS model with number of used PLS components = 3, with 98.4% variance explained
in Y. Determined R2 of the PLS model was 0.9835.
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Table 8 Predicted TDF (total dietary fibre) contents (% w/w) from the PLS model including standard deviations. For each of the 10
presses the PLS model has predicted a mean value of the TDF content within the analysed protein powder, as well as standard
deviations (SD), the deviation from the actual measured reference values and lastly, the actual measured reference values are presented.

Sample Predicted mean values ± SD Deviation from reference Reference

Press 1 22.84 ± 0.54 0,04 22.79

Press 2 25.93 ± 0.17 0.11 26.04

Press 3 31.26 ± 0.38 0.26 31.52

Press 4 38.00 ± 0.50 0.75 37.25

Press 5 36.22 ± 0.02 1 0.81 37.03

Press 6 42.79 ± 0.31 1.92 40.87

Press 7 44.32 ± 0.50 1.05 43.27

Press 8 43.98 ± 0.31 0.00 43.98

Press 9 45.73 ± 0.01 1 0.97 46.70

Press 10 45.75 ± 0.28 1.72 47.47
1 One detected outlier for this press is not considered in the mean calculations.
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4 Discussion
Throughout this section, the presented results are discussed and evaluated according to theory, and against other

findings and future work within this area of research.

Determination of TDF by traditional methods such as the enzymatic determination used as reference method in this

project, is very time consuming, taking several days to complete. Thus a rapid method for determination of TDF would

be preferable. The result of this project was a model, derived from NIR measurements and reference enzymatically

obtained TDF values, which was able to predict TDF values of alfalfa protein powder. A lack of available model

validation software and time to produce independent validation sets, made it not possible to validate the model.

NIR model evaluation of TDF in protein powder derived from re-presses of the legume alfalfa has not yet been

published. The obtained results thus contribute to existing NIR studies on alfalfa by increasing the knowledge within

the field of NIR modelling possibilities.

An interesting result when visually comparing the spectra of di↵erent protein powder particle sizes, is that a decrease

in particle size, shows a higher reflectance signal, and thus a smaller absorbance, which is a known phenomenon in

NIR measurements. This observation could be explained by the increased particle density due to the smaller particle

size [21]. In a NIR study by Ramalho et al, specifically evaluating particle size influence on NIR reflectance spectra,

a higher reflectance signal due to a decrease in particle size were confirmed. Also, the claim that spectral peaks were

not influenced by particle size were confirmed, which was claimed in the Results part and leading to the decision to

continue data handling with only the original particle size of the protein powder [43].

Ramalho et al obtained di↵erent particle sizes by using sieves distinguishing between the particle sizes 0.42 mm,

0.25 mm, 0.15 mm and < 0.15 mm. A slightly better NIR model accuracy was shown for the < 0.15 mm particle

size, which might indicate that these particles are more evenly distributed and better homogenised [43]. Looking at

the spectra in this project in Figure 31, 32, 33, 34 and 35 in Appendix A2 with this knowledge, the lowest particle

sizes do tend to show more evenly distributed spectra over the total spectral range of reflection. Especially this trend

is seen in Figure 34. These findings might indicate that the produced model in this project could be more accurate, if

derived from samples of a lower particle size. That would require a larger extent of sample preparation, which might

not compensate for the extent of increased accuracy.

Since a broad wavenumber range is used for the prediction of TDF in this project, a risk exists that it is easy to

fit the spectra to almost any kind of reference values, even though the spectra might not actually describe those

reference values. Had a smaller part of the spectrum been chosen instead, a risk of excluding important information

would have existed. In a study by Kim et al using NIR measurements to look into the TDF contents in complex

homogenised, dried and defatted meals, a wavenumber range from 9,090 - 4,000 cm-1 is analysed [5]. This study

includes a validation, and states that the developed model could be further used for screening TDF within the exam-

ined homogenised meals, which might indicate that the used wavelength range for this project is not too broad.

NIR spectra from complex samples such as this protein powder, are often hard to interpret compared to spectra

only containing one or few compounds. The resulting model prediction might thus be less precise, since the spectra

are results of many compounds existing in the sample, which is also found to be an issue in a study by Kim et al

looking into the fibre amounts of homogenised meals with NIR [5].

Within this project, just one batch of alfalfa was analysed. The produced model is developed to fit a powder derived

from a legume containing a complex biological system that changes both due to geographical and seasonal changes.

Thus it has to kept in mind that therefore, amongst other mentioned factors, the robustness of the model might be

limited.
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4.1 Sources of Error

The collected NIR spectra and the determined TDF values do not relate perfectly. Sources of error to take into

account for future similar studies are stated in this part.

The used glass vials for the NIR measurements might not have been completely clean, although when manually

checked they seemed clean. Traces of washing liquid not removed by the lab dish washer could be a source of error

[21]. By wiping of every used glass vial with ethanol, this source of error could be minimised.

The glass vials should ideally be filled by spooning samples into them, since pouring could lead to particle size

separations and orientation of non spherical particles [21]. This was not taken into consideration at time of sample

measurement, and could thus be a source of error.

When using a reference method together with NIR modelling, it is indirectly assumed that the reference method

is free from errors. The enzyme assay reference method used in this project was performed using a limited amount

of replicate measurements. The protein powder NIR spectra are presented in triplicates, an additional source of

error might be varying compound concentrations within the triplicates, leading to non-systematical triplicate spectra.

Additional replicate measurements would have minimised result deviations in general.
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5 Conclusions
From theoretical obtained knowledge prior to the start of this project, within the research area of relating NIR spectra

to sample compounds similar to this alfalfa protein powder, it was decided to determine if NIR spectra of the actual

protein powder would be usable and could be related to the TDF content.

Based on the results obtained in this project, it was possible to develop a calibration model for determination of

TDF contents of alfalfa. The NIR spectra derived from the protein powder of alfalfa were successfully related to

the enzymatically obtained TDF reference values. The final PLS model of this project shows a good correlation of

reference TDF values and predicted TDF values. It has to be kept in mind though, that the model is not validated,

and therefore it is hard to draw a conclusion regarding the model quality. For higher chances of success, and in order

to produce a more robust model, big datasets, and independent validation sets are required.

The results of this project supports the use of NIR equipment to determine the composition and quality of alfalfa

in a nondestructive way. The results also encourage further investigation and optimisation of this kind of model

development. Suggested future work with the data obtained in this project and in this area of research are thus

outlined below.

5.1 Future Work

Of future work the first priority should be to validate this produced model, ideally first by cross validating it, by taking

out a triplicate sample measurement, developing the model without it and determine to which extend this triplicate

sample fits the model. If that looks promising, both a new independent validation set and a larger data set to produce

a new calibration model is required to further test the model robustness.

The second priority should be to test additional NIR instrument presettings, di↵erent wavenumber ranges, additional

data preprocessing methods and combinations of these held up against each other, in order to see which combinations

would match the TDF content in the best possible way.

Additional suggested future work, in order to better determine which kind of molecular compounds are being looked

at in the protein powder NIR spectra, is to relate the NIR spectra to the rest of the determined protein powder

contents, and for each di↵erent content fit a separate model. Also, it could be tested to save the brown juice from

each press, dry it and analyse it with NIR as well. Theoretically that would result in spectra with inverse peaks

compared to the protein powder spectra, since soluble compounds of high concentration in the brown juice, would be

of corresponding low concentration in the protein powder derived from the pellet. Carbohydrates would for example

be represented in a larger degree in the brown juice, while dietary fibres would show opposite results.

Lastly, when the exact extend of molecular compounds of the protein powder are determined, NIR spectra could be

obtained from pure powder representing each compound separately, to see which spectral peaks in the total protein

powder NIR spectra should be looked at for each respective compound.
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Appendices
A1 - Materials and Methods

Table 9 Particle size distribution as a result of sieving the protein powder. For each press from 1-10, the initially weighed original protein
powder, the amounts of respective sieved particle size, the final protein powder as a sum of all determined particle size amounts, and the
loss during sieving is presented.

Press 1 2 3 4 5 6 7 8 9 10
Initial protein powder (g) 40.23 30.01 24.41 17.02 18.35 16.31 15.61 16.17 14.12 12.30
1 mm (g) 0.95 2.22 1.69 3.23 2.76 3.67 5.33 3.59 2.31 2.30
1 mm (% w/w) 2.57 7.82 9.49 20.57 16.14 25.88 38.18 25.46 20.25 21.40
0.5 mm (g) 3.64 3.97 3.28 3.40 3.48 3.36 2.97 3.51 2.70 2.52
0.5 mm (% w/w) 9.86 13.99 18.43 21.66 20.35 23.70 21.28 24.89 23.66 23.44
0.25 mm (g) 9.74 9.84 4.37 4.06 4.47 3.21 2.89 3.37 3.15 2.96
0.25 mm (% w/w) 26.40 34.67 24.55 25.86 26.14 22.64 20.70 23.90 27.61 27.53
0.125 mm (g) 15.10 8.39 4.26 2.89 3.45 2.11 1.70 2.16 1.93 1.85
0.125 mm (% w/w) 40.92 29.56 23.93 18.41 20.18 14.88 12.18 15.32 16.91 17.21
< 0.125 mm (g) 7.47 3.96 4.20 2.12 2.94 1.83 1.07 1.47 1.32 1.12
< 0.125 mm (% w/w) 20.24 13.95 23.60 13.50 17.19 12.91 7.66 10.43 11.57 10.42
Final protein powder (g) 36.90 28.38 17.80 15.70 17.10 14.18 13.96 14.10 11.41 10.75
Loss 1 (g) 3.33 1.63 6.61 1.32 1.25 2.13 1.65 2.07 2.71 1.55
Loss 1 (% w/w) 8.28 5.43 27.08 7.76 6.81 13.06 10.57 12.80 19.19 12.60

1 During grinding and sieving of fine particles with a high total surface area leading to a high charge-to-mass ratio, electrostatic charges
were observed, which caused adhesion to the walls of the equipment, leading to the relatively high loss of protein powder [44].

Table 10 Green juice and pellet production using the angel juicer. All amounts are presented in (g). The production was made in two
batches at two di↵erent days. For batch 1 the initial frozen sample weight was 1,198.1 g and the sample weight when thawed was 1,940
g. The leftover pulp after press 10 was 69 g. For batch 2 the initial frozen sample weight was 1,060 g and the sample weight when
thawed was 1,749 g. The leftover pulp after press 10 was 51 g. Green juice was conducted in 50 ml samples from batch 2, while protein
pellet from pressing 1, 2 and 3 was conducted from batch 1 and the rest of protein pellets were conducted from both batches.

Press 1 1 2 1 3 4 5 6 7 8 9 10
Pulp ND 398 136 108 97 81 83 78 71 68
Green juice 1,457 962 274 361 183 160 162 152 135 179
Brown juice 451 512 247 325 164 141 157 137 123 164
Protein pellet 71 31 27 36 19 14 15 13 12 16

Press 1 2 3 4 1 5 6 7 8 9 10
Pulp ND 400 114 82 71 65 58 55 47 46
Green juice 1,158 995 240 294 138 126 122 109 93 130
Brown juice ND ND ND 141 79 71 67 56 42 73
Protein pellet ND ND ND 13.4 8.6 6.7 6.5 5.9 3.9 7.5

1 The weighed amount of brown juice and protein pellet does not correspond to the amount of green juice, since not all green juice was
centrifuged.

Figure 26 (A) Front and (B) back view of the LB8 mashing bath used as water bath [40].
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Table 11 Production of cellulose gluten samples. For each sample mentioned in this table, triplicates has been prepared and analysed.

Dilutions 50 50 C G 60 40 C G 70 30 C G 80 20 C G 90 10 C G 100 0 C G
Cellulose (g) 5.0241 6.0195 7.0601 8.0443 8.976 10.00
Gluten (g) 5.0326 3.9978 2.9967 2.0278 0.992 0.000
Cellulose (% w/w) 49.96 60.09 70.20 79.87 90.05 100.0

Figure 27 Determination of NIR wavenumber range using Unscrambler. The wavenumber range is determined to be 15 - 15,792
cm-1 described by First X and Last X found by opening the raw spectra spc-files in Unscrambler. A data point spacing of 8 cm-1

between all measured data points was used.
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A2 - Results

Figure 28 Raw NIR spectra of cellulose gluten powder. Reflectance as a function of wavenumber is presented for all 6 cellulose
gluten powder triplicates.

Figure 29 Spectral preprocessing of cellulose gluten powder presented for all 6 cellulose gluten powder triplicates. (A) Zoomed NIR
spectra (5,290 - 3,960 cm-1.) with reflectance as a function of wavenumber. (B) correlation between area below each NIR spectrum
and reference cellulose content.



Page 46 of 76

Figure 30 SNV preprocessed zoomed NIR spectra (5,290 - 3,960 cm-1) of cellulose gluten powder. Reflectance as a function of
wavenumber is presented for all 6 cellulose gluten powder triplicates.

Table 12 Predicted cellulose contents (% w/w) from the PLS model. For each of the 6 cellulose gluten powders the PLS model has
predicted a cellulose content, which is presented related to the actual known reference values.

Dilutions 50 50 C G 60 40 C G 70 30 C G 80 20 C G 90 10 C G 100 0 C G
Predicted cellulose 49.85 60.28 70.10 80.30 89.36 100.28
Reference cellulose 49.96 60.09 70.20 79.87 90.05 100.0

Figure 31 Raw NIR spectra of 1 mm particle size protein powder. Reflectance as a function of wavenumber is presented for all 10
presses in triplicates of rewetted alfalfa pulp, if su�cient powder was available.
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Figure 32 Raw NIR spectra of 0.5 mm particle size protein powder. Reflectance as a function of wavenumber is presented for all 10
presses in triplicates of rewetted alfalfa pulp, if su�cient powder was available.

Figure 33 Raw NIR spectra of 0.25 mm particle size protein powder. Reflectance as a function of wavenumber is presented for all 10
presses in triplicates of rewetted alfalfa pulp, if su�cient powder was available.
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Figure 34 Raw NIR spectra of 0.125 mm particle size protein powder. Reflectance as a function of wavenumber is presented for all
10 presses in triplicates of rewetted alfalfa pulp, if su�cient powder was available.

Figure 35 Raw NIR spectra of < 0.125 mm particle size protein powder. Reflectance as a function of wavenumber is presented for all
10 presses in triplicates of rewetted alfalfa pulp, if su�cient powder was available.
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Table 13 Determined locations of clear spectral peaks (cm-1) for respective protein powder particle size. Peak numbers are correlated to
the spectral occurrence, at which wavenumber they are detected.

Peak Number 1 2 3 4 5 6 7
1 mm 6079 5369 4984 4791 4498 4297 4158
0.5 mm 6079 5369 4984 4791 4498 4297 4166
0.25 mm 6079 5369 4976 4791 4498 4297 4166
0.125 mm 6079 5369 4976 4783 4498 4297 4166
< 0.125 mm 6079 5369 4976 4791 4498 4289 4166

Figure 36 Preprocessing of zoomed NIR spectra (7,300 - 4,000 cm-1) with reflectance as a function of wavenumber of original
protein powder presented for all 10 presses in triplicates of rewetted alfalfa pulp. Original particle size refers to freeze dried protein
powder milled down to 1 mm. (A) SNV preprocessing. (B) 1st derivative preprocessing. (C) 2nd derivative preprocessing.
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A3 - MATLAB Cellulose Gluten Spectra

Own MATLAB code used for data handling of the cellulose gluten samples:

Main.m

1 %% Ce l l u l o s e g l u t e n t e s t sample data hand l i n g
2 c l e a r a l l ;
3 c l o s e a l l ;
4 c l c
5

6 % Loads raw data from Exce l
7 run HarnessRaw .m
8

9 % P lo t s raw NIR data
10 f i g u r e , ho ld on
11 p501 = p l o t ( wave length , a ( 1 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
12 p502 = p l o t ( wave length , a ( 2 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
13 p503 = p l o t ( wave length , a ( 3 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
14 p601 = p l o t ( wave length , a ( 4 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
15 p602 = p l o t ( wave length , a ( 5 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
16 p603 = p l o t ( wave length , a ( 6 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
17 p701 = p l o t ( wave length , a ( 7 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
18 p702 = p l o t ( wave length , a ( 8 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
19 p703 = p l o t ( wave length , a ( 9 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
20 p801 = p l o t ( wave length , a ( 1 0 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
21 p802 = p l o t ( wave length , a ( 1 1 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
22 p803 = p l o t ( wave length , a ( 1 2 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
23 p901 = p l o t ( wave length , a ( 1 3 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
24 p902 = p l o t ( wave length , a ( 1 4 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
25 p903 = p l o t ( wave length , a ( 1 5 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
26 p1001 = p l o t ( wave length , a ( 1 6 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
27 p1002 = p l o t ( wave length , a ( 1 7 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
28 p1003 = p l o t ( wave length , a ( 1 8 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
29 x l a b e l ( ’Wavenumber (cmˆ{�1}) ’ ) , y l a b e l ( ’ R e f l e c t a n c e ’ )
30 l e g end ( [ p501 p601 p701 p801 p901 p1001 ] , . . .
31 { ’\approx 50% w/w c e l l u l o s e ’ , ’\approx 60% w/w c e l l u l o s e ’ , . . .
32 ’\approx 70% w/w c e l l u l o s e ’ , ’\approx 80% w/w c e l l u l o s e ’ , . . .
33 ’\approx 90% w/w c e l l u l o s e ’ , ’ 100% c e l l u l o s e ’ })
34 y l im ( [ 0 200 ] )
35 x l im ( [ min ( wave l ength ) max( wave l ength ) ] )
36 x0=10;
37 y0=10;
38 width =1000;
39 h e i g h t =400;
40 s e t ( gcf , ’ u n i t s ’ , ’ p o i n t s ’ , ’ p o s i t i o n ’ , [ x0 , y0 , width , h e i g h t ] )
41 s e t ( gca , ’ x d i r ’ , ’ r e v e r s e ’ )
42

43 % Loads data f o r a s p e c i f i c wavenumber range and r e f e r e n c e v a l u e s
44 run HarnesData .m
45

46 % P lo t s zoomed NIR data
47 f i g u r e , ho ld on
48 p501 = p l o t ( wave length , a ( 1 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
49 p502 = p l o t ( wave length , a ( 2 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
50 p503 = p l o t ( wave length , a ( 3 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
51 p601 = p l o t ( wave length , a ( 4 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
52 p602 = p l o t ( wave length , a ( 5 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
53 p603 = p l o t ( wave length , a ( 6 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
54 p701 = p l o t ( wave length , a ( 7 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
55 p702 = p l o t ( wave length , a ( 8 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
56 p703 = p l o t ( wave length , a ( 9 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
57 p801 = p l o t ( wave length , a ( 1 0 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
58 p802 = p l o t ( wave length , a ( 1 1 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
59 p803 = p l o t ( wave length , a ( 1 2 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
60 p901 = p l o t ( wave length , a ( 1 3 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
61 p902 = p l o t ( wave length , a ( 1 4 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
62 p903 = p l o t ( wave length , a ( 1 5 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
63 p1001 = p l o t ( wave length , a ( 1 6 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
64 p1002 = p l o t ( wave length , a ( 1 7 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
65 p1003 = p l o t ( wave length , a ( 1 8 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
66 x l a b e l ( ’Wavenumber (cmˆ{�1}) ’ ) , y l a b e l ( ’ R e f l e c t a n c e ’ )
67 l e g end ( [ p501 p601 p701 p801 p901 p1001 ] , . . .
68 { ’\approx 50% w/w c e l l u l o s e ’ , ’\approx 60% w/w c e l l u l o s e ’ , . . .
69 ’\approx 70% w/w c e l l u l o s e ’ , ’\approx 80% w/w c e l l u l o s e ’ , . . .
70 ’\approx 90% w/w c e l l u l o s e ’ , ’ 100% c e l l u l o s e ’ })
71 y l im ( [ 6 5 150 ] )
72 x l im ( [ 3964 5293 ] )
73 s e t ( gca , ’ x d i r ’ , ’ r e v e r s e ’ )
74



Page 51 of 76

75 % Ca l c u l a t e s and p l o t s a r e a s under data cu r v e s
76 Xa=wave l ength ;
77 Ya=a ’ ;
78 run NIRarea .m
79

80 %% Pre t r ea tment PCA
81 % Loads p r e p r o c e s s i n g s
82 run P r e p r o c e s s i n g .m
83

84 % P lo t s SNV p r e p r o c e s s e d s p e c t r a
85 f i g u r e , ho ld on
86 s501 = p l o t ( wave length , Xsnv18 ( 1 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
87 s502 = p l o t ( wave length , Xsnv18 ( 2 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
88 s503 = p l o t ( wave length , Xsnv18 ( 3 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
89 s601 = p l o t ( wave length , Xsnv18 ( 4 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
90 s602 = p l o t ( wave length , Xsnv18 ( 5 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
91 s603 = p l o t ( wave length , Xsnv18 ( 6 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
92 s701 = p l o t ( wave length , Xsnv18 ( 7 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
93 s702 = p l o t ( wave length , Xsnv18 ( 8 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
94 s703 = p l o t ( wave length , Xsnv18 ( 9 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
95 s801 = p l o t ( wave length , Xsnv18 ( 1 0 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
96 s802 = p l o t ( wave length , Xsnv18 ( 1 1 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
97 s803 = p l o t ( wave length , Xsnv18 ( 1 2 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
98 s901 = p l o t ( wave length , Xsnv18 ( 1 3 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
99 s902 = p l o t ( wave length , Xsnv18 ( 1 4 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;

100 s903 = p l o t ( wave length , Xsnv18 ( 1 5 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
101 s1001 = p l o t ( wave length , Xsnv18 ( 1 6 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
102 s1002 = p l o t ( wave length , Xsnv18 ( 1 7 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
103 s1003 = p l o t ( wave length , Xsnv18 ( 1 8 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
104 x l a b e l ( ’Wavenumber (cmˆ{�1}) ’ ) , y l a b e l ( ’SNV Pr ep r o c e s s ed Data ’ )
105 l e g end ( [ s501 s601 s701 s801 s901 s1001 ] , . . .
106 { ’\approx 50% w/w c e l l u l o s e ’ , ’\approx 60% w/w c e l l u l o s e ’ , . . .
107 ’\approx 70% w/w c e l l u l o s e ’ , ’\approx 80% w/w c e l l u l o s e ’ , . . .
108 ’\approx 90% w/w c e l l u l o s e ’ , ’ 100% c e l l u l o s e ’ })
109 x l im ( [ 3964 5293 ] )
110 y l im ([�3.2 3 . 2 ] )
111 s e t ( gca , ’ x d i r ’ , ’ r e v e r s e ’ )
112

113 % Shows PCA p l o t w i th r e f e r e n c e v a l u e s vs PC1
114 a = Xsnv18 ;
115 l o o k a t r e f p c 1 = t r u e ;
116 run PCAmodel .m
117

118 % Ca l c u l a t e s mean s p e c t r a from p r e p r o c e s s e d s p e c t r a
119 run MeanSpectra .m
120 X( 1 , : ) = [ ] ; % X=mean s p e c t r a mat r i x
121 [ Xsnv6 ]= snv (X) ;
122 a = Xsnv6 ;
123

124 %% PLS
125 X = Xsnv6 ;
126 Y = refmean ;
127 run PLSmodel .m
128

129 % Pre s en t s PLS f i t t e d r e s pon s e vs r e f e r e n c e v a l u e s
130 PLSResult = [ y f i tPLS Y]

HarnessRaw.m

1 %% Loads data f i l e
2 X AL = x l s r e a d ( ’ Spec t r a . x l s x ’ , ’ C G a l l ’ , ’B3 : T4096 ’ ) ;
3 X ALL = X AL . ’ ;
4

5 [ t , r ]= s i z e (X ALL) ;
6 % t i s the number o f samples , r i s the number o f v a r i a b l e s
7

8 % Array c r e a t e d f o r wavenumbers
9 wave l ength = X ALL ( 1 , 1 : r ) ;

10

11 % Array c r e a t e d f o r d a t a s e t
12 a=X ALL ( 2 : t , 1 : r ) ;
13

14 % I n i t i a l p r e p r o c e s s i n g � n e g a t i v e v a l u e s i n impor t to z e r o
15 a ( a<0)=0;
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HarnessData.m

1 %% Loads data f i l e
2 X AL = x l s r e a d ( ’ Spec t r a . x l s x ’ , ’ C G a l l ’ , ’B3 : T4096 ’ ) ;
3 X ALL = X AL . ’ ;
4

5 [ t , r ]= s i z e (X ALL) ;
6 % t i s the number o f samples , r i s the number o f v a r i a b l e s
7

8 % Choose wavenumber range
9 choose low = 5288 ;

10 chooseh i gh = 3959 ;
11

12 % Array c r e a t e d f o r wavenumber range
13 wave l ength1=X ALL ( 1 , 2 : r ) ;
14 low = mink ( f i n d ( abs ( wave length1�choose low ) < 2) ,1 ) ;
15 h igh = mink ( f i n d ( abs ( wave length1�chooseh i gh ) < 2) ,1 ) ;
16 wave l ength = X ALL (1 , low : h igh ) ;
17

18 % Array c r e a t e d f o r c o r r e s p ond i n g d a t a s e t
19 a=X ALL ( 2 : t , low : h igh ) ;
20

21 % I n i t i a l p r e p r o c e s s i n g � n e g a t i v e v a l u e s i n impor t to z e r o
22 a ( a<0)=0;
23

24 % Harness a l l r e f e r e n c e v a l u e s
25 r e f = x l s r e a d ( ’ Spec t r a . x l s x ’ , ’ C G a l l ’ , ’C2 : T2 ’ ) . ’ ;
26 re fmean = [ ] ;
27 i =1;
28 wh i l e i<(t�2)
29 re fmean=[ refmean , r e f ( i +1 ,1) ] ;
30 i=i +3;
31 end
32 re fmean = refmean ’ ;

NIRarea.m

1 %% Ca l c u l a t e s a r e a s under raw data cu r v e s
2 a r e a s = t r a p z ( f l i p l r ( wave l ength ) , f l i p l r (Ya) ) ;
3

4 % P lo t s c o r r e l a t i o n between a r ea and r e f e r e n c e v a l u e s
5 % with a l i n e a r r e g r e s s i o n l i n e
6 [ h , g]= s i z e (Ya) ;
7 f i g u r e , ho ld on
8 f o r i =1:g
9 i f g == 18

10 C = { [121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 1 4 2 / 2 5 5 ] , . . .
11 [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 5 3 / 2 5 5 ] , . . .
12 [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
13 [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0 / 2 5 5 ] , . . .
14 [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 7 9 / 2 5 5 ] , . . .
15 [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
16 e l s e i f g == 6
17 C = { [121/255 , 35/255 , 142/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
18 [ 153/255 , 0/255 , 0/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
19 end
20 p l o t ( r e f ( i , 1 ) , a r e a s (1 , g+1� i ) , ’∗ ’ , ’ Co l o r ’ ,C{ i }) ;
21 end
22 [ P18 , S18 ] = p o l y f i t ( r e f , f l i p ( a r eas ’ ) , 1 ) ;
23 y f i t 1 8 = P18 (1 ) ∗ r e f+P18 (2 ) ; % P(1)=s l ope , P(2 )=i n t e r c e p t
24 ho ld on
25 p l o t ( r e f , y f i t 1 8 , ’ k�. ’ )
26 x l im ( [ 4 5 105 ] )
27 x l a b e l ( ’ Re f e r en c e C e l l u l o s e Content (% w/w) ’ )
28 y l a b e l ( ’ Observed NIR Area from Raw Data ’ )
29 g r i d on
30 Rsqarea18 = 1 � ( S18 . normr/norm ( a r e a s � mean ( a r e a s ) ) ) ˆ2
31 t e x t (50 , 86000 , [ ’Rˆ2 = 0.95 ’ ] )
32

33 % P lo t s mean NIR a r ea vs r e f e r e n c e v a l u e s w i th a l i n e a r r e g r e s s i o n l i n e
34 Y = refmean ;
35 f i g u r e , ho ld on
36 f o r i =1:6
37 C = { [121/255 , 35/255 , 142/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
38 [ 153/255 , 0/255 , 0/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
39 amean = [ . . .
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40 ( a r e a s (1 , 1 )+a r e a s (1 , 2 )+a r e a s (1 , 3 ) ) . / 3 , . . .
41 ( a r e a s (1 , 4 )+a r e a s (1 , 5 )+a r e a s (1 , 6 ) ) . / 3 , . . .
42 ( a r e a s (1 , 7 )+a r e a s (1 , 8 )+a r e a s (1 , 9 ) ) . / 3 , . . .
43 ( a r e a s (1 , 10 )+a r e a s (1 , 11 )+a r e a s (1 , 12 ) ) . / 3 , . . .
44 ( a r e a s (1 , 13 )+a r e a s (1 , 14 )+a r e a s (1 , 15 ) ) . / 3 , . . .
45 ( a r e a s (1 , 16 )+a r e a s (1 , 17 )+a r e a s (1 , 18 ) ) . / 3 ] ;
46 amean = amean . ’ ;
47 p l o t (Y( i , 1 ) , amean(7� i , 1 ) , ’∗ ’ , ’ Co l o r ’ ,C{ i }) ;
48 end
49 [ P , S ] = p o l y f i t (Y, f l i p ( amean ) ,1 ) ;
50 s l o p e = P(1) ;
51 i n t e r c e p t = P(2) ;
52 y f i t = P(1) ∗Y+P(2) ; % P(1)=s l ope , P(2 )=i n t e r c e p t
53 ho ld on
54 p l o t (Y, y f i t , ’ k�. ’ )
55 x l im ( [ 4 5 105 ] )
56 x l a b e l ( ’ Re f e r en c e Va lue s ’ )
57 y l a b e l ( ’ Observed Response from Raw Data ’ )
58 g r i d on
59 Rsqarea = 1 � (S . normr/norm ( amean � mean ( amean ) ) ) ˆ2
60 t e x t (50 , 86000 , [ ’Rˆ2 = 0.9975 ’ ] )

Preprocessing.m

1 % SNV ( Standard Normal Va r i a t e t r a n s f o rma t i o n )
2 [ Xsnv18 ]= snv ( a ) ;
3

4 % MSC ( M u l t i p l i c a t i v e S c a t t e r C o r r e c t i o n )
5 [ xmsc18]=msc ( a , 1 , s i z e ( a , 2 ) ) ;
6

7 % S/G 1 s t de r ( Sav i t z ky�Golay 1 s t d e r i v a t i v e )
8 [ Xde118]= d e r i v ( a , 1 , 1 1 , 2 ) ;
9

10 % S/G 2nd de r ( Sav i t z ky�Golay 2nd d e r i v a t i v e )
11 [ Xde218]= d e r i v ( a , 2 , 2 5 , 2 ) ;
12

13 % S/G 2nd de r ( Sav i t z ky�Golay 2nd d e r i v a t i v e ) i n c l . MSC
14 [ Xde2msc18]= d e r i v ( xmsc18 , 2 , 2 5 , 2 ) ;
15

16 % S/G 2nd de r ( Sav i t z ky�Golay 2nd d e r i v a t i v e ) i n c l . SNV
17 [ Xde2snv18 ]= d e r i v ( Xsnv18 , 2 , 2 5 , 2 ) ;

PCAmodel.m

1 % PCA op t i o n s
2 l ookatPCs = f a l s e ;
3 l o o k a t r e f p c 2 = f a l s e ;
4 l o o k a t l o a d i n g = f a l s e ;
5 l o o k a t a r e a p c1 = f a l s e ;
6

7 %% P lo t s PC1 vs PC2
8 i f l ookatPCs == t r u e
9 [ c o e f f , s co r e , l a t e n t , t squa red , e x p l a i n e d ] = pca ( a ) ;

10 [ g , h]= s i z e ( a ) ;
11 f i g u r e , ho ld on
12 f o r i =1:g
13 i f g == 18
14 C = { [121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 1 4 2 / 2 5 5 ] , . . .
15 [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 5 3 / 2 5 5 ] , . . .
16 [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
17 [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0 / 2 5 5 ] , . . .
18 [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 7 9 / 2 5 5 ] , . . .
19 [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
20 T = { ’ 50 ’ , ’ 50 ’ , ’ 50 ’ , ’ 60 ’ , ’ 60 ’ , ’ 60 ’ , . . .
21 ’ 70 ’ , ’ 70 ’ , ’ 70 ’ , ’ 80 ’ , ’ 80 ’ , ’ 80 ’ , . . .
22 ’ 90 ’ , ’ 90 ’ , ’ 90 ’ , ’ 100 ’ , ’ 100 ’ , ’ 100 ’ } ;
23 e l s e i f g == 6
24 C = { [121/255 , 35/255 , 142/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
25 [ 153/255 , 0/255 , 0/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
26 T = { ’ 50 ’ , ’ 60 ’ , ’ 70 ’ , ’ 80 ’ , ’ 90 ’ , ’ 100 ’ } ;
27 end
28 s c a t t e r ( s c o r e ( i , 1 ) , s c o r e ( i , 2 ) ,75 , ’∗ ’ , ’ MarkerFaceCo lor ’ ,C{ i }) ;
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29 t e x t ( s c o r e ( i , 1 ) , s c o r e ( i , 2 ) ,T{ i })
30 end
31 x l i n e (0 , ’ : k ’ ) ;
32 y l i n e (0 , ’ : k ’ ) ;
33 expraw = e x p l a i n e d ;
34 x l a b e l ( ’PC1 ’ ) , y l a b e l ( ’PC2 ’ )
35

36 i f i s e q u a l ( a , Xsnv18 )
37 expsnv = e x p l a i n e d ;
38 end
39

40 i f ( e x i s t ( ’X ’ ) == t r u e )
41 i f i s e q u a l ( a ,X)
42 expmean = e x p l a i n e d ;
43 end
44

45 f i g u r e , ho ld on
46 f o r i =1: l e n g t h ( e x p l a i n e d )+1
47 G = cumsum( l a t e n t /sum( l a t e n t ) ) ;
48 G = [ 0 ;G ] ;
49 p l o t ( i �1,G( i , 1 ) , ’�bo ’ )
50 t i t l e ( ’ E xp l a i n ed Va r i ance ’ )
51 x l a b e l ( ’Number o f PCs ’ )
52 y l a b e l ( ’ Pe r cen t Va r i ance Exp l a i n ed i n X ’ )
53 end
54 end
55

56

57 %% P lo t s Ref vs PC1
58 e l s e i f l o o k a t r e f p c 1 == t r u e
59 [ c o e f f , s co r e , l a t e n t , t squa red , e x p l a i n e d ] = pca ( a ) ;
60 [ g , h]= s i z e ( a ) ;
61 f i g u r e , ho ld on
62 f o r i =1:g
63 i f g == 18
64 C = { [121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 1 4 2 / 2 5 5 ] , . . .
65 [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 5 3 / 2 5 5 ] , . . .
66 [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
67 [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0 / 2 5 5 ] , . . .
68 [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 7 9 / 2 5 5 ] , . . .
69 [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
70 p l o t ( r e f ( i , 1 ) , s c o r e ( i , 1 ) , ’∗ ’ , ’ Co l o r ’ ,C{ i }) ;
71 e l s e i f g == 6
72 C = { [121/255 , 35/255 , 142/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
73 [ 153/255 , 0/255 , 0/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
74 p l o t ( re fmean ( i , 1 ) , s c o r e ( i , 1 ) , ’∗ ’ , ’ Co l o r ’ ,C{ i }) ;
75 end
76 end
77 x l a b e l ( ’ Re f e r en c e C e l l u l o s e Content (% w/w) ’ ) , y l a b e l ( ’PC1 ’ )
78 i f i s e q u a l ( a , Xsnv18 )
79 y l a b e l ( ’PC1 ’ ) , x l a b e l ( ’ Re f e r en c e C e l l u l o s e Content (% w/w) ’ )
80 x l im ( [ 4 5 105 ] )
81 y l im ([�3.5 3 . 5 ] )
82 g r i d on
83 end
84 i f ( e x i s t ( ’X ’ ) == t r u e )
85 i f i s e q u a l ( a ,X)
86 y l a b e l ( ’PC1 ’ ) , x l a b e l ( ’ Re f e r en c e C e l l u l o s e Content (% w/w) ’ )
87 x l im ( [ 4 5 105 ] )
88 g r i d on
89 end
90 end
91

92

93 %% P lo t s Ref vs PC2
94 e l s e i f l o o k a t r e f p c 2 == t r u e
95 [ c o e f f , s co r e , l a t e n t , t squa red , e x p l a i n e d ] = pca ( a ) ;
96 [ g , h]= s i z e ( a ) ;
97 f i g u r e , ho ld on
98 f o r i =1:g
99 i f g == 18

100 C = { [121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 1 4 2 / 2 5 5 ] , . . .
101 [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 5 3 / 2 5 5 ] , . . .
102 [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
103 [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0 / 2 5 5 ] , . . .
104 [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 7 9 / 2 5 5 ] , . . .
105 [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
106 T = { ’ 50 ’ , ’ 50 ’ , ’ 50 ’ , ’ 60 ’ , ’ 60 ’ , ’ 60 ’ , . . .
107 ’ 70 ’ , ’ 70 ’ , ’ 70 ’ , ’ 80 ’ , ’ 80 ’ , ’ 80 ’ , . . .
108 ’ 90 ’ , ’ 90 ’ , ’ 90 ’ , ’ 100 ’ , ’ 100 ’ , ’ 100 ’ } ;
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109 s c a t t e r ( s c o r e ( i , 2 ) , r e f ( i , 1 ) ,75 , ’∗ ’ , ’ MarkerFaceCo lo r ’ ,C{ i }) ;
110 t e x t ( s c o r e ( i , 2 ) , r e f ( i , 1 ) ,T{ i })
111 e l s e i f g == 6
112 C = { [121/255 , 35/255 , 142/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
113 [ 153/255 , 0/255 , 0/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
114 T = { ’ 50 ’ , ’ 60 ’ , ’ 70 ’ , ’ 80 ’ , ’ 90 ’ , ’ 100 ’ } ;
115 s c a t t e r ( s c o r e ( i , 2 ) , re fmean ( i , 1 ) ,75 , ’∗ ’ , ’ MarkerFaceCo lor ’ ,C{ i }) ;
116 t e x t ( s c o r e ( i , 2 ) , re fmean ( i , 1 ) ,T{ i })
117 end
118 end
119 x l a b e l ( ’PC2 ’ ) , y l a b e l ( ’ Re f e r en c e %C e l l u l o s e ’ ) , t i t l e ( ’Raw Data PCA ’ )
120 i f i s e q u a l ( a , Xsnv18 )
121 x l a b e l ( ’PC2 ’ ) , y l a b e l ( ’ Re f e r en c e %C e l l u l o s e ’ ) , t i t l e ( ’SNV Prep r o c e s s ed Data PCA ’ )
122 end
123 i f ( e x i s t ( ’X ’ ) == t r u e )
124 i f i s e q u a l ( a ,X)
125 x l a b e l ( ’PC2 ’ ) , y l a b e l ( ’ Re f e r en c e %C e l l u l o s e ’ ) , t i t l e ( ’Mean Spec t r a from SNV Data PCA ’ )
126 end
127 end
128

129

130 %% P lo t s l o a d i n g s ( c o e f f 1 ) vs Wavenumber
131 e l s e i f l o o k a t l o a d i n g == t r u e
132 [ c o e f f , s co r e , l a t e n t , t squa red , e x p l a i n e d ] = pca ( a ) ;
133 [ g , h]= s i z e ( a ) ;
134 wave l ength = wave length ’ ;
135 f i g u r e , ho ld on
136 p l o t ( wave length , c o e f f ( : , 1 ) ) ;
137 x l a b e l ( ’Wavenumber [ cm�1] ’ ) , y l a b e l ( ’ Load ing 1 ’ ) , t i t l e ( ’Raw Data PCA ’ )
138 i f i s e q u a l ( a , Xsnv18 )
139 x l a b e l ( ’Wavenumber [ cm�1] ’ ) , y l a b e l ( ’ Load ing 1 ’ ) , t i t l e ( ’SNV Prep r o c e s s ed Data PCA ’ )
140 end
141 i f ( e x i s t ( ’X ’ ) == t r u e )
142 i f i s e q u a l ( a ,X)
143 x l a b e l ( ’Wavenumber [ cm�1] ’ ) , y l a b e l ( ’ Load ing 1 ’ ) , t i t l e ( ’Mean Spec t r a from SNV Data PCA ’ )
144 end
145 end
146

147

148 %% P lo t s a r ea vs PC1
149 e l s e i f l o o k a t a r e ap c 1 == t r u e
150 [ c o e f f , s co r e , l a t e n t , t squa red , e x p l a i n e d ] = pca ( a ) ;
151 [ g , h]= s i z e ( a ) ;
152 f i g u r e , ho ld on
153 f o r i =1:g
154 i f g == 18
155 C = { [121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 1 4 2 / 2 5 5 ] , . . .
156 [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 5 3 / 2 5 5 ] , . . .
157 [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
158 [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0 / 2 5 5 ] , . . .
159 [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 7 9 / 2 5 5 ] , . . .
160 [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
161 T = { ’ 50 ’ , ’ 50 ’ , ’ 50 ’ , ’ 60 ’ , ’ 60 ’ , ’ 60 ’ , . . .
162 ’ 70 ’ , ’ 70 ’ , ’ 70 ’ , ’ 80 ’ , ’ 80 ’ , ’ 80 ’ , . . .
163 ’ 90 ’ , ’ 90 ’ , ’ 90 ’ , ’ 100 ’ , ’ 100 ’ , ’ 100 ’ } ;
164 s c a t t e r ( s c o r e ( i , 1 ) , a r e a s (1 , i ) ,75 , ’∗ ’ , ’ MarkerFaceCo lor ’ ,C{ i }) ;
165 t e x t ( s c o r e ( i , 1 ) , a r e a s (1 , i ) ,T{ i })
166 e l s e i f g == 6
167 C = { [121/255 , 35/255 , 142/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
168 [ 153/255 , 0/255 , 0/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
169 T = { ’ 50 ’ , ’ 60 ’ , ’ 70 ’ , ’ 80 ’ , ’ 90 ’ , ’ 100 ’ } ;
170 s c a t t e r ( s c o r e ( i , 1 ) , amean (1 , i ) ,75 , ’∗ ’ , ’ MarkerFaceCo lo r ’ ,C{ i }) ;
171 t e x t ( s c o r e ( i , 1 ) , amean (1 , i ) ,T{ i })
172 end
173 end
174 x l a b e l ( ’PC1 ’ ) , y l a b e l ( ’ Area ’ ) , t i t l e ( ’Raw Data PCA ’ )
175 i f ( e x i s t ( ’ Xsnv6 ’ ) == t r u e )
176 i f i s e q u a l ( a , Xsnv6 )
177 x l a b e l ( ’PC1 ’ ) , y l a b e l ( ’ Area ’ ) , t i t l e ( ’Mean Raw Data PCA ’ )
178 end
179 end
180

181 e l s e
182 % do noth i ng
183 end
184

185 wave l ength = wave l ength ;
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PCAmodel.m

1 % PCA op t i o n s
2 l ookatPCs = f a l s e ;
3 l o o k a t r e f p c 2 = f a l s e ;
4 l o o k a t l o a d i n g = f a l s e ;
5 l o o k a t a r e a p c1 = f a l s e ;
6

7 %% P lo t s PC1 vs PC2
8 i f l ookatPCs == t r u e
9 [ c o e f f , s co r e , l a t e n t , t squa red , e x p l a i n e d ] = pca ( a ) ;

10 [ g , h]= s i z e ( a ) ;
11 f i g u r e , ho ld on
12 f o r i =1:g
13 i f g == 18
14 C = { [121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 1 4 2 / 2 5 5 ] , . . .
15 [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 5 3 / 2 5 5 ] , . . .
16 [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
17 [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0 / 2 5 5 ] , . . .
18 [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 7 9 / 2 5 5 ] , . . .
19 [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
20 T = { ’ 50 ’ , ’ 50 ’ , ’ 50 ’ , ’ 60 ’ , ’ 60 ’ , ’ 60 ’ , . . .
21 ’ 70 ’ , ’ 70 ’ , ’ 70 ’ , ’ 80 ’ , ’ 80 ’ , ’ 80 ’ , . . .
22 ’ 90 ’ , ’ 90 ’ , ’ 90 ’ , ’ 100 ’ , ’ 100 ’ , ’ 100 ’ } ;
23 e l s e i f g == 6
24 C = { [121/255 , 35/255 , 142/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
25 [ 153/255 , 0/255 , 0/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
26 T = { ’ 50 ’ , ’ 60 ’ , ’ 70 ’ , ’ 80 ’ , ’ 90 ’ , ’ 100 ’ } ;
27 end
28 s c a t t e r ( s c o r e ( i , 1 ) , s c o r e ( i , 2 ) ,75 , ’∗ ’ , ’ MarkerFaceCo lo r ’ ,C{ i }) ;
29 t e x t ( s c o r e ( i , 1 ) , s c o r e ( i , 2 ) ,T{ i })
30 end
31 x l i n e (0 , ’ : k ’ ) ;
32 y l i n e (0 , ’ : k ’ ) ;
33 expraw = e x p l a i n e d ;
34 x l a b e l ( ’PC1 ’ ) , y l a b e l ( ’PC2 ’ )
35

36 i f i s e q u a l ( a , Xsnv18 )
37 expsnv = e x p l a i n e d ;
38 end
39

40 i f ( e x i s t ( ’X ’ ) == t r u e )
41 i f i s e q u a l ( a ,X)
42 expmean = e x p l a i n e d ;
43 end
44

45 f i g u r e , ho ld on
46 f o r i =1: l e n g t h ( e x p l a i n e d )+1
47 G = cumsum( l a t e n t /sum( l a t e n t ) ) ;
48 G = [ 0 ;G ] ;
49 p l o t ( i �1,G( i , 1 ) , ’�bo ’ )
50 t i t l e ( ’ E xp l a i n ed Va r i ance ’ )
51 x l a b e l ( ’Number o f PCs ’ )
52 y l a b e l ( ’ Pe r cen t Va r i ance Exp l a i n ed i n X ’ )
53 end
54 end
55

56

57 %% P lo t s Ref vs PC1
58 e l s e i f l o o k a t r e f p c 1 == t r u e
59 [ c o e f f , s co r e , l a t e n t , t squa red , e x p l a i n e d ] = pca ( a ) ;
60 [ g , h]= s i z e ( a ) ;
61 f i g u r e , ho ld on
62 f o r i =1:g
63 i f g == 18
64 C = { [121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 1 4 2 / 2 5 5 ] , . . .
65 [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 5 3 / 2 5 5 ] , . . .
66 [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
67 [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0 / 2 5 5 ] , . . .
68 [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 7 9 / 2 5 5 ] , . . .
69 [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
70 p l o t ( r e f ( i , 1 ) , s c o r e ( i , 1 ) , ’∗ ’ , ’ Co l o r ’ ,C{ i }) ;
71 e l s e i f g == 6
72 C = { [121/255 , 35/255 , 142/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
73 [ 153/255 , 0/255 , 0/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
74 p l o t ( re fmean ( i , 1 ) , s c o r e ( i , 1 ) , ’∗ ’ , ’ Co l o r ’ ,C{ i }) ;
75 end
76 end
77 x l a b e l ( ’ Re f e r en c e C e l l u l o s e Content (% w/w) ’ ) , y l a b e l ( ’PC1 ’ )
78 i f i s e q u a l ( a , Xsnv18 )
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79 y l a b e l ( ’PC1 ’ ) , x l a b e l ( ’ Re f e r en c e C e l l u l o s e Content (% w/w) ’ )
80 x l im ( [ 4 5 105 ] )
81 y l im ([�3.5 3 . 5 ] )
82 g r i d on
83 end
84 i f ( e x i s t ( ’X ’ ) == t r u e )
85 i f i s e q u a l ( a ,X)
86 y l a b e l ( ’PC1 ’ ) , x l a b e l ( ’ Re f e r en c e C e l l u l o s e Content (% w/w) ’ )
87 x l im ( [ 4 5 105 ] )
88 g r i d on
89 end
90 end
91

92

93 %% P lo t s Ref vs PC2
94 e l s e i f l o o k a t r e f p c 2 == t r u e
95 [ c o e f f , s co r e , l a t e n t , t squa red , e x p l a i n e d ] = pca ( a ) ;
96 [ g , h]= s i z e ( a ) ;
97 f i g u r e , ho ld on
98 f o r i =1:g
99 i f g == 18

100 C = { [121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 1 4 2 / 2 5 5 ] , . . .
101 [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 5 3 / 2 5 5 ] , . . .
102 [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
103 [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0 / 2 5 5 ] , . . .
104 [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 7 9 / 2 5 5 ] , . . .
105 [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
106 T = { ’ 50 ’ , ’ 50 ’ , ’ 50 ’ , ’ 60 ’ , ’ 60 ’ , ’ 60 ’ , . . .
107 ’ 70 ’ , ’ 70 ’ , ’ 70 ’ , ’ 80 ’ , ’ 80 ’ , ’ 80 ’ , . . .
108 ’ 90 ’ , ’ 90 ’ , ’ 90 ’ , ’ 100 ’ , ’ 100 ’ , ’ 100 ’ } ;
109 s c a t t e r ( s c o r e ( i , 2 ) , r e f ( i , 1 ) ,75 , ’∗ ’ , ’ MarkerFaceCo lor ’ ,C{ i }) ;
110 t e x t ( s c o r e ( i , 2 ) , r e f ( i , 1 ) ,T{ i })
111 e l s e i f g == 6
112 C = { [121/255 , 35/255 , 142/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
113 [ 153/255 , 0/255 , 0/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
114 T = { ’ 50 ’ , ’ 60 ’ , ’ 70 ’ , ’ 80 ’ , ’ 90 ’ , ’ 100 ’ } ;
115 s c a t t e r ( s c o r e ( i , 2 ) , re fmean ( i , 1 ) ,75 , ’∗ ’ , ’ MarkerFaceCo lo r ’ ,C{ i }) ;
116 t e x t ( s c o r e ( i , 2 ) , re fmean ( i , 1 ) ,T{ i })
117 end
118 end
119 x l a b e l ( ’PC2 ’ ) , y l a b e l ( ’ Re f e r en c e %C e l l u l o s e ’ ) , t i t l e ( ’Raw Data PCA ’ )
120 i f i s e q u a l ( a , Xsnv18 )
121 x l a b e l ( ’PC2 ’ ) , y l a b e l ( ’ Re f e r en c e %C e l l u l o s e ’ ) , t i t l e ( ’SNV Prep r o c e s s ed Data PCA ’ )
122 end
123 i f ( e x i s t ( ’X ’ ) == t r u e )
124 i f i s e q u a l ( a ,X)
125 x l a b e l ( ’PC2 ’ ) , y l a b e l ( ’ Re f e r en c e %C e l l u l o s e ’ ) , t i t l e ( ’Mean Spec t r a from SNV Data PCA ’ )
126 end
127 end
128

129

130 %% P lo t s l o a d i n g s ( c o e f f 1 ) vs Wavenumber
131 e l s e i f l o o k a t l o a d i n g == t r u e
132 [ c o e f f , s co r e , l a t e n t , t squa red , e x p l a i n e d ] = pca ( a ) ;
133 [ g , h]= s i z e ( a ) ;
134 wave l ength = wave length ’ ;
135 f i g u r e , ho ld on
136 p l o t ( wave length , c o e f f ( : , 1 ) ) ;
137 x l a b e l ( ’Wavenumber [ cm�1] ’ ) , y l a b e l ( ’ Load ing 1 ’ ) , t i t l e ( ’Raw Data PCA ’ )
138 i f i s e q u a l ( a , Xsnv18 )
139 x l a b e l ( ’Wavenumber [ cm�1] ’ ) , y l a b e l ( ’ Load ing 1 ’ ) , t i t l e ( ’SNV Prep r o c e s s ed Data PCA ’ )
140 end
141 i f ( e x i s t ( ’X ’ ) == t r u e )
142 i f i s e q u a l ( a ,X)
143 x l a b e l ( ’Wavenumber [ cm�1] ’ ) , y l a b e l ( ’ Load ing 1 ’ ) , t i t l e ( ’Mean Spec t r a from SNV Data PCA ’ )
144 end
145 end
146

147

148 %% P lo t s a r ea vs PC1
149 e l s e i f l o o k a t a r e ap c 1 == t r u e
150 [ c o e f f , s co r e , l a t e n t , t squa red , e x p l a i n e d ] = pca ( a ) ;
151 [ g , h]= s i z e ( a ) ;
152 f i g u r e , ho ld on
153 f o r i =1:g
154 i f g == 18
155 C = { [121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 1 4 2 / 2 5 5 ] , . . .
156 [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 5 3 / 2 5 5 ] , . . .
157 [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
158 [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0 / 2 5 5 ] , . . .
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159 [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 7 9 / 2 5 5 ] , . . .
160 [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
161 T = { ’ 50 ’ , ’ 50 ’ , ’ 50 ’ , ’ 60 ’ , ’ 60 ’ , ’ 60 ’ , . . .
162 ’ 70 ’ , ’ 70 ’ , ’ 70 ’ , ’ 80 ’ , ’ 80 ’ , ’ 80 ’ , . . .
163 ’ 90 ’ , ’ 90 ’ , ’ 90 ’ , ’ 100 ’ , ’ 100 ’ , ’ 100 ’ } ;
164 s c a t t e r ( s c o r e ( i , 1 ) , a r e a s (1 , i ) ,75 , ’∗ ’ , ’ MarkerFaceCo lor ’ ,C{ i }) ;
165 t e x t ( s c o r e ( i , 1 ) , a r e a s (1 , i ) ,T{ i })
166 e l s e i f g == 6
167 C = { [121/255 , 35/255 , 142/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
168 [ 153/255 , 0/255 , 0/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
169 T = { ’ 50 ’ , ’ 60 ’ , ’ 70 ’ , ’ 80 ’ , ’ 90 ’ , ’ 100 ’ } ;
170 s c a t t e r ( s c o r e ( i , 1 ) , amean (1 , i ) ,75 , ’∗ ’ , ’ MarkerFaceCo lor ’ ,C{ i }) ;
171 t e x t ( s c o r e ( i , 1 ) , amean (1 , i ) ,T{ i })
172 end
173 end
174 x l a b e l ( ’PC1 ’ ) , y l a b e l ( ’ Area ’ ) , t i t l e ( ’Raw Data PCA ’ )
175 i f ( e x i s t ( ’ Xsnv6 ’ ) == t r u e )
176 i f i s e q u a l ( a , Xsnv6 )
177 x l a b e l ( ’PC1 ’ ) , y l a b e l ( ’ Area ’ ) , t i t l e ( ’Mean Raw Data PCA ’ )
178 end
179 end
180

181 e l s e
182 % do noth i ng
183 end
184

185 wave l ength = wave l ength ;

MeanSpectra.m

1 % Crea t e s mean s p e c t r a
2 % Code i s made f o r t r i p l i c a t e s
3

4 %S i z e o f d a t a s e t
5 [m, n]= s i z e ( a ) ;
6

7 o=n�n+1;
8 x1 =[1:m/ 3 ] ’ ;
9 wh i l e o<=n

10 y1 = [ ] ;
11 i =1;
12 j =2;
13 k=3;
14 f o r i =1:m/3
15 l=nnz ( a ( i , o ) )+ nnz ( a ( j , o ) )+ nnz ( a ( k , o ) ) ;
16 % nnz = number o f nonzero mat r i x e l ement s
17 y1=[y1 ; ( ( a ( i , o )+ a ( j , o )+ a ( k , o ) ) / l ) ] ;
18 i=i +3;
19 j=k+3;
20 k=k+3;
21 end
22 x1=[x1 , y1 ] ;
23 o=o+1;
24 end
25 x1 ( : , 1 ) = [ ] ;
26

27 X=[wave l ength ; x1 ] ;
28 X( 1 , : )=round (X( 1 , : ) ) ;

PLSmodel.m

1 % PLS model
2

3 % INPUT :
4 % X mat r i x o f i ndependen t v a r i a b l e s ( e . g . s p e c t r a ) ( n x p )
5 % Y ve c t o r o f y r e f e r e n c e v a l u e s ( n x 1)
6 % A number o f PLS f a c t o r s to c o n s i d e r
7

8 i f i s e q u a l (X,X)
9 X = Xsnv18 ;

10 Y = r e f ;
11 ncomp = l e ng t h (Y)�1;
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12 [ n , p ] = s i z e (X) ;
13 [ X load ings , Y load ings , Xscores , Yscores , beta , PLSPctVar ] = p l s r e g r e s s (X,Y, ncomp) ;
14 PLSPctVarp lot = [ z e r o s (2 , 1 ) , PLSPctVar ] ;
15 f i g u r e
16 p l o t ( 1 : ncomp , cumsum(100∗PLSPctVar ( 2 , : ) ) , ’�bo ’ ) ;
17 y l im ([� i n f 100 ] )
18 x l a b e l ( ’Number o f PLS components ’ ) ;
19 y l a b e l ( ’ Pe r cen t Va r i ance Exp l a i n ed i n Y ’ ) ;
20 t i t l e ( ’Model Qua l i t y by Number o f Components i n Y ’ )
21 % Shows pe r c en t ag e o f Y�v a r i a n c e e x p l a i n e d by each PLS f a c t o r
22

23 A = 4 ; % Has manua l l y been chosen from the f i g u r e above
24

25 % Compute the f i t t e d r e s pon s e v a l u e s f o r the model
26 [ X load ings , Y load ings , Xscores , Yscores , betaPLS ] = p l s r e g r e s s (X,Y,A) ;
27 y f i t P L S a l l = [ ones (n , 1 ) X]∗ betaPLS ;
28

29 % Shows h i s tog ram wi th y f i t v s e r r o r ba r s
30 fo rmat bank
31 yf i tPLSmean = [ ( y f i t P L S a l l ( 1 , : )+y f i t P L S a l l ( 2 , : )+y f i t P L S a l l ( 3 , : ) ) /3 ; . . .
32 ( y f i t P L S a l l ( 4 , : )+y f i t P L S a l l ( 5 , : )+y f i t P L S a l l ( 6 , : ) ) /3 ; . . .
33 ( y f i t P L S a l l ( 7 , : )+y f i t P L S a l l ( 8 , : )+y f i t P L S a l l ( 9 , : ) ) /3 ; . . .
34 ( y f i t P L S a l l ( 1 0 , : )+y f i t P L S a l l ( 1 1 , : )+y f i t P L S a l l ( 1 2 , : ) ) /3 ; . . .
35 ( y f i t P L S a l l ( 1 3 , : )+y f i t P L S a l l ( 1 4 , : )+y f i t P L S a l l ( 1 5 , : ) ) /3 ; . . .
36 ( y f i t P L S a l l ( 1 6 , : )+y f i t P L S a l l ( 1 7 , : )+y f i t P L S a l l ( 1 8 , : ) ) / 3 ] ;
37 e r r h i g h = [ maxk ( y f i t P L S a l l ( 1 : 3 ) ,1 )�yf i tPLSmean ( 1 , : ) ; . . .
38 maxk ( y f i t P L S a l l ( 4 : 6 ) ,1 )�yf i tPLSmean ( 2 , : ) ; . . .
39 maxk ( y f i t P L S a l l ( 7 : 9 ) ,1 )�yf i tPLSmean ( 3 , : ) ; . . .
40 maxk ( y f i t P L S a l l ( 1 0 : 1 2 ) ,1 )�yf i tPLSmean ( 4 , : ) ; . . .
41 maxk ( y f i t P L S a l l ( 1 3 : 1 5 ) ,1 )�yf i tPLSmean ( 5 , : ) ; . . .
42 maxk ( y f i t P L S a l l ( 1 6 : 1 8 ) ,1 )�yf i tPLSmean ( 6 , : ) ] ;
43 e r r l ow = [ yf i tPLSmean ( 1 , : )�mink ( y f i t P L S a l l ( 1 : 3 ) , 1 ) ; . . .
44 yf i tPLSmean ( 2 , : )�mink ( y f i t P L S a l l ( 4 : 6 ) , 1 ) ; . . .
45 yf i tPLSmean ( 3 , : )�mink ( y f i t P L S a l l ( 7 : 9 ) , 1 ) ; . . .
46 yf i tPLSmean ( 4 , : )�mink ( y f i t P L S a l l ( 1 0 : 1 2 ) ,1 ) ; . . .
47 yf i tPLSmean ( 5 , : )�mink ( y f i t P L S a l l ( 1 3 : 1 5 ) ,1 ) ; . . .
48 yf i tPLSmean ( 6 , : )�mink ( y f i t P L S a l l ( 1 6 : 1 8 ) ,1 ) ] ;
49 Xname = c a t e g o r i c a l ({ ’ 49 .96 ’ ; ’ 60 .09 ’ ; ’ 70 .20 ’ ; ’ 79 .87 ’ ; ’ 90 .05 ’ ; ’ 100 .00 ’ }) ;
50 Xname = r e o r d e r c a t s (Xname ,{ ’ 49 .96 ’ ; ’ 60 .09 ’ ; ’ 70 .20 ’ ; ’ 79 .87 ’ ; ’ 90 .05 ’ ; ’ 100 .00 ’ }) ;
51 y l a b e l ( ’NIR F i t t e d Response ’ ) ;
52 x l a b e l ( ’ Re f e r en c e Va lue s ’ ) ;
53 t i t l e ( ’ F i t t e d Response V a r i a b l e s ’ )
54 bar1 = bar (Xname , yf i tPLSmean ) ;
55 bar1 . FaceCo lo r = ’ f l a t ’ ;
56 bar1 . CData ( 1 , : ) = [1 1 1 ] ;
57 bar1 . CData ( 2 , : ) = [1 1 1 ] ;
58 bar1 . CData ( 3 , : ) = [1 1 1 ] ;
59 bar1 . CData ( 4 , : ) = [1 1 1 ] ;
60 bar1 . CData ( 5 , : ) = [1 1 1 ] ;
61 bar1 . CData ( 6 , : ) = [1 1 1 ] ;
62 y l im ( [ 4 5 105 ] )
63 ho ld on
64 e r = e r r o r b a r (Xname , yf itPLSmean , e r r l ow , e r r h i g h ) ;
65 e r . Co l o r = [0 0 0 ] ;
66 e r . L i n e S t y l e = ’ none ’ ;
67 x t i p s = bar1 . XEndPoints ;
68 y t i p s = yf i tPLSmean+e r r h i g h +0.5 ;
69 fo rmat bank
70 p l o t l a b e l s = s t r i n g ( bar1 . YData ) ;
71 t e x t ( x t i p s , y t i p s , p l o t l a b e l s , ’ Ho r i z on t a lA l i g nmen t ’ , ’ c e n t e r ’ , . . .
72 ’ V e r t i c a l A l i g nmen t ’ , ’ bottom ’ )
73 % The e r r o r ba r s d i s p l a y the minimum and max v a l u e s o f the d a t a s e t s
74 end
75

76 X = Xsnv6 ;
77 Y = refmean ;
78 ncomp = l e ng t h (Y)�1;
79 [ n , p ] = s i z e (X) ;
80 [ X load ings , Y load ings , Xscores , Yscores , beta , PLSPctVar ] = p l s r e g r e s s (X,Y, ncomp) ;
81 PLSPctVarp lot = [ z e r o s ( 2 , 1 ) , PLSPctVar ] ;
82 f i g u r e
83 p l o t ( 1 : ncomp , cumsum(100∗PLSPctVar ( 2 , : ) ) , ’�bo ’ ) ;
84 y l im ([� i n f 100 ] )
85 x l a b e l ( ’Number o f PLS components ’ ) ;
86 y l a b e l ( ’ Pe r cen t Va r i ance Exp l a i n ed i n Y ’ ) ;
87 t i t l e ( ’Model Qua l i t y by Number o f Components i n Y ’ )
88 % Shows pe r c en t ag e o f Y�v a r i a n c e e x p l a i n e d by each PLS f a c t o r
89

90 A = 4 ; % Has manua l l y been chosen from the f i g u r e above
91
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92 % Computes f i t t e d r e s pon s e v a l u e s f o r the model
93 [ X load ings , Y load ings , Xscores , Yscores , betaPLS ] = p l s r e g r e s s (X,Y,A) ;
94 y f i tPLS = [ ones (n , 1 ) X]∗ betaPLS ;
95

96

97 %% P lo t s f i t t e d vs ob s e r v ed r e s pon s e f o r the PLS f i t s
98 [ h , g]= s i z e (Y ’ ) ;
99 f i g u r e , ho ld on

100 f o r i =1:g
101 i f g == 18
102 C = { [121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 1 4 2 / 2 5 5 ] , . . .
103 [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 5 3 / 2 5 5 ] , . . .
104 [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
105 [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0 / 2 5 5 ] , . . .
106 [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 7 9 / 2 5 5 ] , . . .
107 [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
108 % Makes X=Y l i n e f o r r e f e r e n c e and r2 v a l u e
109 x l i n e = [ 5 0 ; 50 ; 50 ; 60 ; 60 ; 60 ; 70 ; 70 ; 70 ; . . .
110 80 ; 80 ; 80 ; 90 ; 90 ; 90 ; 100 ; 100 ; 1 0 0 ] ;
111 y l i n e = [ 5 0 ; 50 ; 50 ; 60 ; 60 ; 60 ; 70 ; 70 ; 70 ; . . .
112 80 ; 80 ; 80 ; 90 ; 90 ; 90 ; 100 ; 100 ; 1 0 0 ] ;
113 e l s e i f g == 6
114 C = { [121/255 , 35/255 , 142/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
115 [ 153/255 , 0/255 , 0/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 252/255 , 118/255 , 52/255 ]} ;
116 % Makes X=Y l i n e f o r r e f e r e n c e and r2 v a l u e
117 x l i n e = [ 5 0 ; 60 ; 70 ; 80 ; 90 ; 1 0 0 ] ;
118 y l i n e = [ 5 0 ; 60 ; 70 ; 80 ; 90 ; 1 0 0 ] ;
119 end
120 p l o t (Y( i , 1 ) , y f i tPLS ( i , 1 ) , ’∗ ’ , ’ Marke rS i ze ’ , 10 , ’ Co l o r ’ ,C{ i }) ;
121 e = e r r o r b a r (Y, y f i tPLS , e r r l ow , e r r h i g h , ’ o ’ ) ;
122 e . Marker = ’ none ’ ;
123 e . Co l o r = ’ k ’ ;
124 end
125

126 p l o t ( x l i n e , y l i n e , ’ k�. ’ ) ;
127 x l a b e l ( ’ Re f e r en c e C e l l u l o s e Content (% w/w) ’ ) ;
128 y l a b e l ( ’ P r e d i c t e d C e l l u l o s e Content (% w/w) ’ ) ;
129 g r i d on
130 x l im ( [ 4 5 105 ] )
131 y l im ( [ 4 5 105 ] )
132 t e x t (52 , 95 , [ ’Rˆ2 = 1.00 ’ ] )
133 x0=10;
134 y0=10;
135 width =1000;
136 h e i g h t =400;
137 s e t ( gcf , ’ u n i t s ’ , ’ p o i n t s ’ , ’ p o s i t i o n ’ , [ x0 , y0 , width , h e i g h t ] )
138

139 Rsq y l i n e = 1 � sum ( ( y f i tPLS � y l i n e ) . ˆ 2 ) /sum ( ( y f i tPLS � mean ( y f i tPLS ) ) . ˆ 2 )

PeakLocs.m

1 %% Sepa ra t e program f o r peak l o c a t i o n s
2 c l e a r a l l ;
3 c l o s e a l l ;
4 c l c
5

6 %% Load data f i l e
7 X AL = x l s r e a d ( ’ Spec t r a . x l s x ’ , ’ C G a l l ’ , ’B3 : T4096 ’ ) ;
8 X ALL = X AL . ’ ;
9

10 [ t , r ]= s i z e (X ALL) ;
11 % t i s the number o f samples , r i s the number o f v a r i a b l e s
12

13 % Choose wavenumbers
14 choose low = 7300 ;
15 chooseh i gh = 4000 ;
16

17 %Array c r e a t e d f o r wavenumber
18 wave l ength1=X ALL ( 1 , 2 : r ) ;
19 low = mink ( f i n d ( abs ( wave length1�choose low ) < 2) ,1 ) ;
20 h igh = mink ( f i n d ( abs ( wave length1�chooseh i gh ) < 2) ,1 ) ;
21 wave l ength = X ALL (1 , low : h igh ) ;
22

23 %Array c r e a t e d f o r d a t a s e t
24 a=X ALL ( 2 : t , low : h igh ) ;
25
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26 % I n i t i a l p r e p r o c e s s i n g � n e g a t i v e v a l u e s i n impor t to z e r o
27 a ( a<0)=0;
28

29 % P lo t s zoomed NIR data
30 f i g u r e , ho ld on
31 p501 = p l o t ( wave length , a ( 1 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
32 p502 = p l o t ( wave length , a ( 2 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
33 p503 = p l o t ( wave length , a ( 3 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
34 p601 = p l o t ( wave length , a ( 4 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
35 p602 = p l o t ( wave length , a ( 5 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
36 p603 = p l o t ( wave length , a ( 6 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
37 p701 = p l o t ( wave length , a ( 7 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
38 p702 = p l o t ( wave length , a ( 8 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
39 p703 = p l o t ( wave length , a ( 9 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
40 p801 = p l o t ( wave length , a ( 1 0 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
41 p802 = p l o t ( wave length , a ( 1 1 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
42 p803 = p l o t ( wave length , a ( 1 2 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
43 p901 = p l o t ( wave length , a ( 1 3 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
44 p902 = p l o t ( wave length , a ( 1 4 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
45 p903 = p l o t ( wave length , a ( 1 5 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
46 p1001 = p l o t ( wave length , a ( 1 6 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
47 p1002 = p l o t ( wave length , a ( 1 7 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
48 p1003 = p l o t ( wave length , a ( 1 8 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
49 x l a b e l ( ’Wavenumber (cmˆ{�1}) ’ ) , y l a b e l ( ’ R e f l e c t a n c e ’ )
50 l e g end ( [ p501 p601 p701 p801 p901 p1001 ] , . . .
51 { ’\approx 50% w/w c e l l u l o s e ’ , ’\approx 60% w/w c e l l u l o s e ’ , . . .
52 ’\approx 70% w/w c e l l u l o s e ’ , ’\approx 80% w/w c e l l u l o s e ’ , . . .
53 ’\approx 90% w/w c e l l u l o s e ’ , ’ 100% c e l l u l o s e ’ })
54 x l im ( [ 4000 7300 ] )
55 s e t ( gca , ’ x d i r ’ , ’ r e v e r s e ’ )
56

57 % Ca l c u l a t i n g and p l o t t i n g peak l o c a t i o n s
58 nonan = rmmiss ing ( a ) ;
59 meanvector = mean ( nonan ) ;
60 [ pks , l o c s ] = f i n d p e a k s ( f l i p ( meanvector ) , f l i p ( wave l ength ) ) ;
61 f i g u r e
62 f i n d p e a k s ( f l i p ( meanvector ) , f l i p ( wave l ength ) )
63 s e t ( gca , ’ x d i r ’ , ’ r e v e r s e ’ )
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A4 - MATLAB Protein Powder Spectra

Own MATLAB code used for data handling of the protein powder samples:

Main.m

1 %% Sta r t
2 c l e a r a l l ;
3 c l o s e a l l ;
4 c l c
5

6 % Loads raw data from e x c e l and makes you choose s p e c t r a
7 run HarnesData .m
8

9 % P lo t s raw NIR data
10 run PlotRawNIR .m
11

12 % Crea t e s raw zoomed data w i th i n i t i a l o u t s o r t i n g o f n o i s e
13 % Makes you choose new wavenumbers
14 run Wavenumber .m
15

16 % P lo t s zoomed raw NIR data and peak l o c a t i o n s
17 run PlotZoom .m
18

19 % Ca l c u l a t e s and p l o t s chosen a r ea under zoomed data c u r v e s vs r e f v a l u e
20 run Re fVa lue s .m
21 run NIRarea .m
22

23 % Loads p r e p r o c e s s i n g p o s i b i l l i t i e s
24 run P r e p r o c e s s i n g s .m
25

26 % I n i t i a l PCA p l o t s
27 run PCAmodel .m
28

29 %% Pr ep r o c e s s i n g o f data
30

31 c on t i n u e o r n o t = i npu t ( ’Do you want to p r e p r o c e s s data ? 1 = Yes , 2 = No ��> ’ ) ;
32 i f c o n t i n u e o r n o t == 1
33 p r e t r e a t = i npu t ( . . .
34 ’Which p r e t r e a tmen t ? 1 = SNV, 2 = MSC, 3 = S/G 1 s t der , 4 = S/G 2nd de r ��> ’ ) ;
35 i f p r e t r e a t == 1
36 a = snv ( a ) ;
37 e l s e i f p r e t r e a t == 2
38 a = msc ( a , 1 , s i z e ( a , 2 ) ) ;
39 e l s e i f p r e t r e a t == 3
40 a=X ALL ( : , h igh �5: low+5) ;
41 a i n i t i a l = p o l y d i f ( 11 , 2 , 1 , a ’ ) ;
42 a i n i t i a l 2 = a i n i t i a l ( : , : , 1+1 ) ’ ;
43 a = a i n i t i a l 2 ( : , 6 : l e n g t h ( a )�5) ;
44 e l s e i f p r e t r e a t == 4
45 a=X ALL ( : , h igh �5: low+5) ;
46 a i n i t i a l = p o l y d i f ( 11 , 2 , 2 , a ’ ) ;
47 a i n i t i a l 2 = a i n i t i a l ( : , : , 2+1 ) ’ ;
48 a = a i n i t i a l 2 ( : , 6 : l e n g t h ( a )�5) ;
49 end
50 run p r e t r e a t p l o t .m
51 % Looks at PCA aga in to s e e i f the c l u s t e r i n g i s now b e t t e r
52 run PCAmodel .m
53 e l s e i f c o n t i n u e o r n o t == 2
54 % con t i nu e program wi thout p r e p r o c e s s i n g
55 end
56

57 %% I n i t i a l PLS to choose number o f PLS components and l ook at p l o t t e d b c o e f f i c i e n t s
58 run P L S i n i t i a l .m
59 % Makes you choose zoomed s p e c t r a l a r ea aga in a f t e r l o o k i n g at p l o t t e d b c o e f f i c i e n t s
60 run Wavenumber .m
61

62 %% Pre t r ea tment o f data i n the same way as b e f o r e i f new wavenumber i s chosen
63 i f c o n t i n u e o r n o t == 1
64 i f p r e t r e a t == 1
65 a = snv ( a ) ;
66 e l s e i f p r e t r e a t == 2
67 a = msc ( a , 1 , s i z e ( a , 2 ) ) ;
68 e l s e i f p r e t r e a t == 3
69 a=X ALL ( : , h igh �5: low+5) ;
70 a i n i t i a l = p o l y d i f ( 11 , 2 , 1 , a ’ ) ;
71 a i n i t i a l 2 = a i n i t i a l ( : , : , 1+1 ) ’ ;
72 a = a i n i t i a l 2 ( : , 6 : l e n g t h ( a )�5) ;
73 e l s e i f p r e t r e a t == 4
74 a=X ALL ( : , h igh �5: low+5) ;
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75 a i n i t i a l = p o l y d i f ( 11 , 2 , 2 , a ’ ) ;
76 a i n i t i a l 2 = a i n i t i a l ( : , : , 2+1 ) ’ ;
77 a = a i n i t i a l 2 ( : , 6 : l e n g t h ( a )�5) ;
78 end
79 end
80

81 %% F i n a l PLS p l o t
82 run PLS f i n a l .m
83

84 % Resu l t : Mat r i x w i th f i t t e d r e f e r e n c e v a l u e s vs a c t u a l r e f e r e n c e v a l u e s
85 PLSResult = [ y f i tPLS Y]
86

87 % Manual o u t l i e r d e t e c t i o n : 1 = o u t l i e r , 0 = no o u t l i e r
88 % The mean p r e d i c t e d r e s u l t s a r e manua l l y c a l c u l a t e d o u t s i d e o f MATLAB
89 P1out = i s o u t l i e r ( PLSResult ( 1 : 3 , 1 ) )
90 P2out = i s o u t l i e r ( PLSResult ( 4 : 6 , 1 ) )
91 P3out = i s o u t l i e r ( PLSResult ( 7 : 9 , 1 ) )
92 P4out = i s o u t l i e r ( PLSResult ( 1 0 : 1 2 , 1 ) )
93 P5out = i s o u t l i e r ( PLSResult ( 1 3 : 1 5 , 1 ) )
94 P6out = i s o u t l i e r ( PLSResult ( 1 6 : 1 8 , 1 ) )
95 P7out = i s o u t l i e r ( PLSResult ( 1 9 : 2 1 , 1 ) )
96 P8out = i s o u t l i e r ( PLSResult ( 2 2 : 2 4 , 1 ) )
97 P9out = i s o u t l i e r ( PLSResult ( 2 5 : 2 7 , 1 ) )
98 P10out = i s o u t l i e r ( PLSResult ( 2 8 : 3 0 , 1 ) )

HarnessData.m

1 % Load wavenumber data
2 wave l ength = x l s r e a d ( ’ S p e c t r aA l l . x l s x ’ , ’ O r i g i n a l ’ , ’A2 : A2047 ’ ) . ’ ;
3

4 % Choose which s p e c t r a to l ook at
5 s p e c t r a c h o i c e = i npu t ( ’ Choose p a r t i c l e s i z e : Ente r 1 = Or i g i n a l , 2 = 1mm, 3 = 0 .5mm, 4 = 0.25mm, 5 =

0.125mm or 6 = < 0 .125mm ��> ’ ) ;
6 i f s p e c t r a c h o i c e == 1
7 % Load data f i l e � O r i g i n a l
8 X ALL = x l s r e a d ( ’ S p e c t r aA l l . x l s x ’ , ’ O r i g i n a l ’ , ’B2 : AE2047 ’ ) . ’ ;
9 e l s e i f s p e c t r a c h o i c e == 2

10 % Load data f i l e � 1mm
11 X ALL = x l s r e a d ( ’ S p e c t r aA l l . x l s x ’ , ’ 1mm’ , ’B2 : AE2047 ’ ) . ’ ;
12 e l s e i f s p e c t r a c h o i c e == 3
13 % Load data f i l e � 0 .5mm
14 X ALL = x l s r e a d ( ’ S p e c t r aA l l . x l s x ’ , ’ 0 . 5mm’ , ’B2 : AE2047 ’ ) . ’ ;
15 e l s e i f s p e c t r a c h o i c e == 4
16 % Load data f i l e � 0 .25mm
17 X ALL = x l s r e a d ( ’ S p e c t r aA l l . x l s x ’ , ’ 0 .25mm’ , ’B2 : AE2047 ’ ) . ’ ;
18 e l s e i f s p e c t r a c h o i c e == 5
19 % Load data f i l e � 0 .125mm
20 X ALL = x l s r e a d ( ’ S p e c t r aA l l . x l s x ’ , ’ 0 .125mm’ , ’B2 : AE2047 ’ ) . ’ ;
21 e l s e i f s p e c t r a c h o i c e == 6
22 % Load data f i l e � <0.125mm
23 X ALL = x l s r e a d ( ’ S p e c t r aA l l . x l s x ’ , ’ sma l l 0 .125mm’ , ’B2 : AE2047 ’ ) . ’ ;
24 end
25

26 [ t , r ]= s i z e (X ALL) ;
27 % t i s the number o f samples , r i s the number o f v a r i a b l e s
28

29 % I n i t i a l p r e p r o c e s s i n g � n e g a t i v e v a l u e s i n impor t to z e r o
30 X ALL(X ALL<0)=0;
31

32 % Crea t e s c o l o u r ma t r i c e s
33 Col30 = { [121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 142/255 ] , [ 121/255 , 35/255 , 1 4 2 / 2 5 5 ] , . . .
34 [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 0/255 , 136/255 , 5 3 / 2 5 5 ] , . . .
35 [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 234/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
36 [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0/255 ] , [ 153/255 , 0/255 , 0 / 2 5 5 ] , . . .
37 [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 3/255 , 15/255 , 7 9 / 2 5 5 ] , . . .
38 [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 52/255 ] , [ 252/255 , 118/255 , 5 2 / 2 5 5 ] , . . .
39 [ 232/255 , 53/255 , 72/255 ] , [ 232/255 , 53/255 , 72/255 ] , [ 232/255 , 53/255 , 7 2 / 2 5 5 ] , . . .
40 [ 31/255 , 208/255 , 130/255 ] , [ 31/255 , 208/255 , 130/255 ] , [ 31/255 , 208/255 , 1 3 0 / 2 5 5 ] , . . .
41 [ 0/255 , 0/255 , 0/255 ] , [ 0/255 , 0/255 , 0/255 ] , [ 0/255 , 0/255 , 0 / 2 5 5 ] , . . .
42 [ 246/255 , 208/255 , 77/255 ] , [ 246/255 , 208/255 , 77/255 ] , [ 246/255 , 208/255 , 77/255 ]} ;
43 Col10 = { [121/255 , 35/255 , 142/255 ] , [ 0/255 , 136/255 , 53/255 ] , [ 47/255 , 62/255 , 2 3 4 / 2 5 5 ] , . . .
44 [ 153/255 , 0/255 , 0/255 ] , [ 3/255 , 15/255 , 79/255 ] , [ 252/255 , 118/255 , 5 2 / 2 5 5 ] , . . .
45 [ 232/255 , 53/255 , 72/255 ] , [ 31/255 , 208/255 , 130/255 ] , [ 0/255 , 0/255 , 0 / 2 5 5 ] , . . .
46 [ 246/255 , 208/255 , 77/255 ]} ;
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PlotRawNIR.m

1 % P lo t s raw NIR data
2

3 f i g u r e , ho ld on
4 p1 1 = p l o t ( wave length , X ALL ( 1 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
5 p1 2 = p l o t ( wave length , X ALL ( 2 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
6 p1 3 = p l o t ( wave length , X ALL ( 3 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
7 p2 1 = p l o t ( wave length , X ALL ( 4 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
8 p2 2 = p l o t ( wave length , X ALL ( 5 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
9 p2 3 = p l o t ( wave length , X ALL ( 6 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;

10 p3 1 = p l o t ( wave length , X ALL ( 7 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
11 p3 2 = p l o t ( wave length , X ALL ( 8 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
12 p3 3 = p l o t ( wave length , X ALL ( 9 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
13 p4 1 = p l o t ( wave length , X ALL ( 1 0 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
14 p4 2 = p l o t ( wave length , X ALL ( 1 1 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
15 p4 3 = p l o t ( wave length , X ALL ( 1 2 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
16 p5 1 = p l o t ( wave length , X ALL ( 1 3 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
17 p5 2 = p l o t ( wave length , X ALL ( 1 4 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
18 p5 3 = p l o t ( wave length , X ALL ( 1 5 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
19 p6 1 = p l o t ( wave length , X ALL ( 1 6 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
20 p6 2 = p l o t ( wave length , X ALL ( 1 7 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
21 p6 3 = p l o t ( wave length , X ALL ( 1 8 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
22 p7 1 = p l o t ( wave length , X ALL ( 1 9 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
23 p7 2 = p l o t ( wave length , X ALL ( 2 0 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
24 p7 3 = p l o t ( wave length , X ALL ( 2 1 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
25 p8 1 = p l o t ( wave length , X ALL ( 2 2 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
26 p8 2 = p l o t ( wave length , X ALL ( 2 3 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
27 p8 3 = p l o t ( wave length , X ALL ( 2 4 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
28 p9 1 = p l o t ( wave length , X ALL ( 2 5 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
29 p9 2 = p l o t ( wave length , X ALL ( 2 6 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
30 p9 3 = p l o t ( wave length , X ALL ( 2 7 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
31 p10 1 = p l o t ( wave length , X ALL ( 2 8 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
32 p10 2 = p l o t ( wave length , X ALL ( 2 9 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
33 p10 3 = p l o t ( wave length , X ALL ( 3 0 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
34 x l a b e l ( ’Wavenumber (cmˆ{�1}) ’ ) , y l a b e l ( ’ R e f l e c t a n c e ’ )
35 l e g end ( [ p1 1 p2 1 p3 1 p4 1 p5 1 p6 1 p7 1 p8 1 p9 1 p10 1 ] , . . .
36 { ’ P r e s s 1 ’ , ’ P r e s s 2 ’ , ’ P r e s s 3 ’ , ’ P r e s s 4 ’ , ’ P r e s s 5 ’ , ’ P r e s s 6 ’ , . . .
37 ’ P r e s s 7 ’ , ’ P r e s s 8 ’ , ’ P r e s s 9 ’ , ’ P r e s s 10 ’ })
38 x l im ( [ min ( wave l ength ) max( wave l ength ) ] )
39 y l im ( [ 0 90 ] )
40 s e t ( gcf , ’ u n i t s ’ , ’ p o i n t s ’ , ’ p o s i t i o n ’ , [ 1 0 , 1 0 , 1000 , 400 ] )
41 s e t ( gca , ’ x d i r ’ , ’ r e v e r s e ’ )

Wavelength.m

1 % Choose which wavenumbers to l ook at
2 wavecho i ce low = inpu t ( ’ Choose wavenumber : Ente r the l owe r l i m i t , t h a t i s the v a l u e most to the l e f t on

the x a x i s ��> ’ ) ;
3 i f wavecho i ce low > max( wave l ength )
4 d i s p ( ’ Choose a number between 15729 and 16 cmˆ(�1) ’ ) ;
5 wavecho i ce low = inpu t ( ’ Ente r the l owe r l i m i t , t ha t i s the v a l u e most to the l e f t on the x a x i s

��> ’ ) ;
6 e l s e i f wavecho i ce low < min ( wave l ength )
7 d i s p ( ’ Choose a number between 15729 and 16 cmˆ(�1) ’ ) ;
8 wavecho i ce low = inpu t ( ’ Choose wavenumber : Ente r the l owe r l im i t , t h a t i s the v a l u e most to the

l e f t on the x a x i s ��> ’ ) ;
9 end

10

11 wavecho i c eh i gh = inpu t ( ’ Choose wavenumber : Ente r the h i g h e r l i m i t , t h a t i s the v a l u e most to the r i g h t
on the x a x i s ��> ’ ) ;

12 i f wavecho i c eh i gh > max( wave l ength )
13 d i s p ( ’ Choose a number between 15729 and 16 cmˆ(�1) ’ ) ;
14 wavecho i c eh i gh = inpu t ( ’ Choose wavenumber : Ente r the h i g h e r l i m i t , t h a t i s the v a l u e most to the

r i g h t on the x a x i s ��> ’ ) ;
15 e l s e i f wavecho i c eh i gh < min ( wave l ength )
16 d i s p ( ’ Choose a number between 15729 and 16 cmˆ(�1) ’ ) ;
17 wavecho i c eh i gh = inpu t ( ’ Choose wavenumber : Ente r the h i g h e r l i m i t , t h a t i s the v a l u e most to the

r i g h t 0n the x a x i s ��> ’ ) ;
18 end
19

20 %Array c r e a t e d f o r zoomed wavenumbers
21 low = mink ( f i n d ( abs ( wave length�wavecho i ce low ) < 5) ,1 ) ;
22 h igh = mink ( f i n d ( abs ( wave length�wavecho i c eh i gh ) < 5) ,1 ) ;
23 wavelengthzoomed = wave l ength (1 , h i gh : low ) ;
24
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25 %Array c r e a t e d f o r zoomed da t a s e t ;
26 a=X ALL ( : , h i gh : low ) ;

PlotZoom.m

1 % P lo t s zoomed raw NIR data
2

3 f i g u r e , ho ld on
4 p1 1 = p l o t ( wavelengthzoomed , a ( 1 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
5 p1 2 = p l o t ( wavelengthzoomed , a ( 2 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
6 p1 3 = p l o t ( wavelengthzoomed , a ( 3 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
7 p2 1 = p l o t ( wavelengthzoomed , a ( 4 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
8 p2 2 = p l o t ( wavelengthzoomed , a ( 5 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
9 p2 3 = p l o t ( wavelengthzoomed , a ( 6 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;

10 p3 1 = p l o t ( wavelengthzoomed , a ( 7 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
11 p3 2 = p l o t ( wavelengthzoomed , a ( 8 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
12 p3 3 = p l o t ( wavelengthzoomed , a ( 9 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
13 p4 1 = p l o t ( wavelengthzoomed , a ( 1 0 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
14 p4 2 = p l o t ( wavelengthzoomed , a ( 1 1 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
15 p4 3 = p l o t ( wavelengthzoomed , a ( 1 2 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
16 p5 1 = p l o t ( wavelengthzoomed , a ( 1 3 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
17 p5 2 = p l o t ( wavelengthzoomed , a ( 1 4 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
18 p5 3 = p l o t ( wavelengthzoomed , a ( 1 5 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
19 p6 1 = p l o t ( wavelengthzoomed , a ( 1 6 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
20 p6 2 = p l o t ( wavelengthzoomed , a ( 1 7 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
21 p6 3 = p l o t ( wavelengthzoomed , a ( 1 8 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
22 p7 1 = p l o t ( wavelengthzoomed , a ( 1 9 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
23 p7 2 = p l o t ( wavelengthzoomed , a ( 2 0 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
24 p7 3 = p l o t ( wavelengthzoomed , a ( 2 1 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
25 p8 1 = p l o t ( wavelengthzoomed , a ( 2 2 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
26 p8 2 = p l o t ( wavelengthzoomed , a ( 2 3 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
27 p8 3 = p l o t ( wavelengthzoomed , a ( 2 4 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
28 p9 1 = p l o t ( wavelengthzoomed , a ( 2 5 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
29 p9 2 = p l o t ( wavelengthzoomed , a ( 2 6 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
30 p9 3 = p l o t ( wavelengthzoomed , a ( 2 7 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
31 p10 1 = p l o t ( wavelengthzoomed , a ( 2 8 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
32 p10 2 = p l o t ( wavelengthzoomed , a ( 2 9 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
33 p10 3 = p l o t ( wavelengthzoomed , a ( 3 0 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
34 x l a b e l ( ’Wavenumber (cmˆ{�1}) ’ ) , y l a b e l ( ’ R e f l e c t a n c e ’ )
35 l e g end ( [ p1 1 p2 1 p3 1 p4 1 p5 1 p6 1 p7 1 p8 1 p9 1 p10 1 ] , . . .
36 { ’ P r e s s 1 ’ , ’ P r e s s 2 ’ , ’ P r e s s 3 ’ , ’ P r e s s 4 ’ , ’ P r e s s 5 ’ , ’ P r e s s 6 ’ , . . .
37 ’ P r e s s 7 ’ , ’ P r e s s 8 ’ , ’ P r e s s 9 ’ , ’ P r e s s 10 ’ })
38 y l im ( [ 0 90 ] )
39 x l im ( [ min ( wavelengthzoomed ) max( wavelengthzoomed ) ] )
40 s e t ( gca , ’ x d i r ’ , ’ r e v e r s e ’ )
41

42 % Ca l c u l a t i n g and p l o t t i n g peak l o c a t i o n s
43 nonan = rmmiss ing ( a ) ;
44 meanvector = mean ( nonan ) ;
45 [ pks , l o c s ] = f i n d p e a k s ( meanvector , wavelengthzoomed ) ;
46 f i g u r e
47 f i n d p e a k s ( meanvector , wavelengthzoomed )
48 s e t ( gca , ’ x d i r ’ , ’ r e v e r s e ’ )

RefValues.m

1 % Choose which r e f v a l u e to l ook at and ha rne s r e f e r e n c e v a l u e s
2 r e f c h o i c e = i npu t ( ’ Choose r e f e r e n c e n u t r i e n t : Ente r 1 = Pro te i n , 2 = IDF , 3 = SDF , 4 = TDF, 5 = ACH, 6 =

Ash ��> ’ ) ;
3 i f r e f c h o i c e == 1
4 re fmean = x l s r e a d ( ’ S p e c t r aA l l . x l s x ’ , ’ Re fVa lue s ’ , ’C2 : L2 ’ ) . ’ ;
5 e l s e i f r e f c h o i c e == 2
6 re fmean = x l s r e a d ( ’ S p e c t r aA l l . x l s x ’ , ’ Re fVa lue s ’ , ’C3 : L3 ’ ) . ’ ;
7 e l s e i f r e f c h o i c e == 3
8 re fmean = x l s r e a d ( ’ S p e c t r aA l l . x l s x ’ , ’ Re fVa lue s ’ , ’C4 : L4 ’ ) . ’ ;
9 e l s e i f r e f c h o i c e == 4

10 re fmean = x l s r e a d ( ’ S p e c t r aA l l . x l s x ’ , ’ Re fVa lue s ’ , ’C5 : L5 ’ ) . ’ ;
11 e l s e i f r e f c h o i c e == 5
12 re fmean = x l s r e a d ( ’ S p e c t r aA l l . x l s x ’ , ’ Re fVa lue s ’ , ’C6 : L6 ’ ) . ’ ;
13 e l s e i f r e f c h o i c e == 6
14 re fmean = x l s r e a d ( ’ S p e c t r aA l l . x l s x ’ , ’ Re fVa lue s ’ , ’C7 : L7 ’ ) . ’ ;
15 end
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16

17 % Making r e f mat r i x f o r a l l t r i p l i c a t e s p e c t r a
18 r e f = [ re fmean (1 , 1 ) ; re fmean (1 , 1 ) ; re fmean (1 , 1 ) ; . . .
19 re fmean (2 , 1 ) ; re fmean (2 , 1 ) ; re fmean (2 , 1 ) ; . . .
20 re fmean (3 , 1 ) ; re fmean (3 , 1 ) ; re fmean (3 , 1 ) ; . . .
21 re fmean (4 , 1 ) ; re fmean (4 , 1 ) ; re fmean (4 , 1 ) ; . . .
22 re fmean (5 , 1 ) ; re fmean (5 , 1 ) ; re fmean (5 , 1 ) ; . . .
23 re fmean (6 , 1 ) ; re fmean (6 , 1 ) ; re fmean (6 , 1 ) ; . . .
24 re fmean (7 , 1 ) ; re fmean (7 , 1 ) ; re fmean (7 , 1 ) ; . . .
25 re fmean (8 , 1 ) ; re fmean (8 , 1 ) ; re fmean (8 , 1 ) ; . . .
26 re fmean (9 , 1 ) ; re fmean (9 , 1 ) ; re fmean (9 , 1 ) ; . . .
27 re fmean (10 ,1 ) ; re fmean (10 ,1 ) ; re fmean (10 ,1 ) ] ;

NIRarea.m

1 % Ca l c u l a t e s and p l o t s a r ea under raw data cu r v e s r e l a t e d to chosen r e fV a l u e
2

3 a r e a s = t r a p z ( wavelengthzoomed , a ’ ) ;
4

5 f i g u r e , ho ld on
6 f o r i =1:30
7 C = Col30 ;
8 p l o t ( r e f ( i , 1 ) , a r e a s (1 , i ) , ’∗ ’ , ’ Co l o r ’ ,C{ i }) ;
9 end

10

11 % Makes l i n e a r r e g r e s s i o n l i n e
12 i = 1 ;
13 wh i l e i <= max( s i z e ( a r e a s ) )
14 i f i s n an ( a r e a s (1 , i ) ) == 1
15 a r e a s ( : , i ) = [ ] ;
16 r e f ( i , : ) = [ ] ;
17 i = i ;
18 end
19 i f i s n an ( a r e a s (1 , i ) ) == 0
20 i = i + 1 ;
21 end
22 end
23 maxindex = max( s i z e ( a r e a s ) ) ;
24 [ P30 , S30 ] = p o l y f i t ( r e f , a r ea s ’ , 1 ) ;
25 y f i t 3 0 = P30 (1 ) ∗ r e f+P30 (2 ) ; % P(1)=s l o p e and P(2)=i n t e r c e p t
26 ho ld on
27 p l o t ( r e f , y f i t 3 0 , ’ k�. ’ )
28 x l im ( [ min ( r e f )�max( r e f ) ∗0.025 max( r e f )+max( r e f ) ∗0 . 0 2 5 ] )
29 y l im ( [ min ( a r e a s )�2000 max( a r e a s ) +2000])
30 x l a b e l ( ’ Chosen Re f e r en c e Content (% w/w) ’ )
31 y l a b e l ( ’ Observed NIR Area from Zoomed Raw Data ’ )
32 g r i d on
33 Rsqarea30 = 1 � ( S30 . normr/norm ( a r e a s � mean ( a r e a s ) ) ) ˆ2 ;
34 t e x t (min ( r e f ) ,max( a r e a s ) �3000 ,[ ’Rˆ2 = ’ , num2str ( Rsqarea30 ) ] )
35

36 %% Ca l c u l a t e s and p l o t s a r ea under mean raw data cu r v e s r e l a t e d to chosen r e fV a l u e
37 meanarea = i npu t ( ’ Does the a r ea show a good c o r r e l a t i o n ( show mean a r ea p l o t ) ? 1 = Yes , 2 = No ��> ’ ) ;
38 i f meanarea == 1
39

40 a r e a s = t r a p z ( wavelengthzoomed , a ’ ) ;
41

42 i = 1 ;
43 j = 0 ;
44 m = 1 ;
45 n = 0 ;
46 amean = [ ] ;
47 wh i l e i <= maxindex
48 i f i s n an ( a r e a s (1 , i ) ) == 1 ;
49 a r e a s ( : , i ) = [ ] ;
50 i = i ;
51 e l s e i s n an ( a r e a s (1 , i ) ) == 0 ;
52 i = i +1;
53 n = n+1;
54 end
55 j = j +1;
56 i f j == 3
57 j = 0 ;
58 i f n == 1
59 amean (1 ,m) = a r e a s (1 , i �1) ;
60 end
61 i f n == 2
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62 amean (1 ,m) = ( a r e a s (1 , i �1)+a r e a s (1 , i �2)) /2 ;
63 end
64 i f n == 3
65 amean (1 ,m) = ( a r e a s (1 , i �1)+a r e a s (1 , i �2)+a r e a s (1 , i �3)) /3 ;
66 end
67 m = m+1;
68 n = 0 ;
69 end
70 end
71

72 f i g u r e , ho ld on
73 f o r i =1:10
74 C = Col10 ;
75 p l o t ( re fmean ( i , 1 ) , amean (1 , i ) , ’∗ ’ , ’ Co l o r ’ ,C{ i }) ;
76 end
77

78 % Make l i n e a r r e g r e s s i o n l i n e
79 [ P , S ] = p o l y f i t ( refmean , amean ’ , 1 ) ;
80 y f i t = P(1) ∗ re fmean+P(2) ; % P(1)=s l o p e and P(2)=i n t e r c e p t
81 ho ld on
82 p l o t ( refmean , y f i t , ’ k�. ’ )
83 x l im ( [ min ( re fmean )�max( r e f ) ∗0.025 max( re fmean )+max( r e f ) ∗0 . 0 2 5 ] )
84 y l im ( [ min ( a r e a s )�2000 max( a r e a s ) +2000])
85 x l a b e l ( ’ Chosen Re f e r en c e Content (% w/w) ’ )
86 y l a b e l ( ’ Observed mean NIR Area from Raw Data ’ )
87 g r i d on
88 Rsqarea = 1 � (S . normr/norm ( amean � mean ( amean ) ) ) ˆ2 ;
89 t e x t (min ( r e f ) ,max( a r e a s ) �3000 ,[ ’Rˆ2 = ’ , num2str ( Rsqarea ) ] )
90

91 e l s e i f meanarea == 2
92 end
93

94 r e f = [ re fmean (1 , 1 ) ; re fmean (1 , 1 ) ; re fmean (1 , 1 ) ; . . .
95 re fmean (2 , 1 ) ; re fmean (2 , 1 ) ; re fmean (2 , 1 ) ; . . .
96 re fmean (3 , 1 ) ; re fmean (3 , 1 ) ; re fmean (3 , 1 ) ; . . .
97 re fmean (4 , 1 ) ; re fmean (4 , 1 ) ; re fmean (4 , 1 ) ; . . .
98 re fmean (5 , 1 ) ; re fmean (5 , 1 ) ; re fmean (5 , 1 ) ; . . .
99 re fmean (6 , 1 ) ; re fmean (6 , 1 ) ; re fmean (6 , 1 ) ; . . .

100 re fmean (7 , 1 ) ; re fmean (7 , 1 ) ; re fmean (7 , 1 ) ; . . .
101 re fmean (8 , 1 ) ; re fmean (8 , 1 ) ; re fmean (8 , 1 ) ; . . .
102 re fmean (9 , 1 ) ; re fmean (9 , 1 ) ; re fmean (9 , 1 ) ; . . .
103 re fmean (10 ,1 ) ; re fmean (10 ,1 ) ; re fmean (10 ,1 ) ] ;

Preprocessings.m

1 % SNV ( Standard Normal Va r i a t e t r a n s f o rma t i o n )
2 [ Xsnv30 ]= snv ( a ) ;
3

4 % MSC ( M u l t i p l i c a t i v e S c a t t e r C o r r e c t i o n )
5 [ xmsc30]=msc ( a , 1 , s i z e ( a , 2 ) ) ;
6

7 % 1 s t de r ( Sav i t z ky�Golay 1 s t d e r i v a t i v e )
8 [ Xde130]= p o l y d i f ( 11 , 2 , 1 , a ’ ) ;
9

10 % 2nd de r ( Sav i t z ky�Golay 2nd d e r i v a t i v e )
11 [ Xde230]= p o l y d i f ( 11 , 2 , 2 , a ’ ) ;

PCAmodel.m

1 % PCA model
2 [ c o e f f , s co r e , l a t e n t , t squa red , e x p l a i n e d ] = pca ( a ) ;
3 [ g , h]= s i z e ( a ) ;
4

5 % P lo t s PC1 vs PC2
6 f i g u r e , ho ld on
7 f o r i =1:g
8 i f g == 30
9 C = Col30 ;

10 p l o t ( s c o r e ( i , 1 ) , s c o r e ( i , 2 ) , ’∗ ’ , ’ Co l o r ’ ,C{ i }) ;
11 end
12 end
13 x l i n e (0 , ’ : k ’ ) ;
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14 y l i n e (0 , ’ : k ’ ) ;
15 x l a b e l ( ’PC1 ’ ) , y l a b e l ( ’PC2 ’ )
16 expraw = e x p l a i n e d ;
17

18 i f i s e q u a l ( a , Xsnv30 )
19 x l a b e l ( ’PC1 ’ ) , y l a b e l ( ’PC2 ’ )
20 expsnv = e x p l a i n e d ;
21 end
22

23 f i g u r e , ho ld on
24 f o r i =1: l e n g t h ( e x p l a i n e d )+1
25 G = cumsum( l a t e n t /sum( l a t e n t ) ) ;
26 G = [ 0 ;G ] ;
27 p l o t ( i �1,G( i , 1 ) , ’�bo ’ )
28 t i t l e ( ’ E xp l a i n ed Va r i ance ’ )
29 x l a b e l ( ’Number o f PCs ’ )
30 y l a b e l ( ’ Pe r cen t Va r i ance Exp l a i n ed i n X ’ )
31 end
32

33 % P lo t s PC1 vs Re fVa lue s
34 f i g u r e , ho ld on
35 p = max( s i z e ( r e f ) ) ;
36

37 f o r i =1:p
38 i f g == 30
39 C = Col30 ;
40 p l o t ( r e f ( i , 1 ) , s c o r e ( i , 1 ) , ’∗ ’ , ’ Co l o r ’ ,C{ i }) ;
41 end
42 end
43 x l i n e (0 , ’ : k ’ ) ;
44 y l i n e (0 , ’ : k ’ ) ;
45 x l a b e l ( ’ Re f e r en c e Content (% w/w) ’ ) , y l a b e l ( ’PC1 ’ )
46 x l im ( [ min ( r e f )�max( r e f ) ∗0.025 max( r e f )+max( r e f ) ∗0 . 0 2 5 ] )
47 g r i d on
48

49 % PC2 vs Re fVa lue s
50 f i g u r e , ho ld on
51 p = max( s i z e ( r e f ) ) ;
52

53 f o r i =1:p
54 i f g == 30
55 C = Col30 ;
56 p l o t ( r e f ( i , 1 ) , s c o r e ( i , 2 ) , ’∗ ’ , ’ Co l o r ’ ,C{ i }) ;
57 end
58 end
59 x l i n e (0 , ’ : k ’ ) ;
60 y l i n e (0 , ’ : k ’ ) ;
61 y l a b e l ( ’PC2 ’ ) , x l a b e l ( ’ Re f e r en c e Content (% w/w) ’ )
62 x l im ( [ min ( r e f )�max( r e f ) ∗0.025 max( r e f )+max( r e f ) ∗0 . 0 2 5 ] )
63 g r i d on

pretreatplot.m

1 % P lo t s p r e t r e a t e d s p e c t r e
2 f i g u r e , ho ld on
3 p1 1 = p l o t ( wavelengthzoomed , a ( 1 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
4 p1 2 = p l o t ( wavelengthzoomed , a ( 2 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
5 p1 3 = p l o t ( wavelengthzoomed , a ( 3 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
6 p2 1 = p l o t ( wavelengthzoomed , a ( 4 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
7 p2 2 = p l o t ( wavelengthzoomed , a ( 5 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
8 p2 3 = p l o t ( wavelengthzoomed , a ( 6 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
9 p3 1 = p l o t ( wavelengthzoomed , a ( 7 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;

10 p3 2 = p l o t ( wavelengthzoomed , a ( 8 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
11 p3 3 = p l o t ( wavelengthzoomed , a ( 9 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
12 p4 1 = p l o t ( wavelengthzoomed , a ( 1 0 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
13 p4 2 = p l o t ( wavelengthzoomed , a ( 1 1 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
14 p4 3 = p l o t ( wavelengthzoomed , a ( 1 2 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
15 p5 1 = p l o t ( wavelengthzoomed , a ( 1 3 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
16 p5 2 = p l o t ( wavelengthzoomed , a ( 1 4 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
17 p5 3 = p l o t ( wavelengthzoomed , a ( 1 5 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
18 p6 1 = p l o t ( wavelengthzoomed , a ( 1 6 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
19 p6 2 = p l o t ( wavelengthzoomed , a ( 1 7 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
20 p6 3 = p l o t ( wavelengthzoomed , a ( 1 8 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
21 p7 1 = p l o t ( wavelengthzoomed , a ( 1 9 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
22 p7 2 = p l o t ( wavelengthzoomed , a ( 2 0 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
23 p7 3 = p l o t ( wavelengthzoomed , a ( 2 1 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
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24 p8 1 = p l o t ( wavelengthzoomed , a ( 2 2 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
25 p8 2 = p l o t ( wavelengthzoomed , a ( 2 3 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
26 p8 3 = p l o t ( wavelengthzoomed , a ( 2 4 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
27 p9 1 = p l o t ( wavelengthzoomed , a ( 2 5 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
28 p9 2 = p l o t ( wavelengthzoomed , a ( 2 6 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
29 p9 3 = p l o t ( wavelengthzoomed , a ( 2 7 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
30 p10 1 = p l o t ( wavelengthzoomed , a ( 2 8 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
31 p10 2 = p l o t ( wavelengthzoomed , a ( 2 9 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
32 p10 3 = p l o t ( wavelengthzoomed , a ( 3 0 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
33 x l a b e l ( ’Wavenumber (cmˆ{�1}) ’ ) , y l a b e l ( ’ P r ep r o c e s s ed Data ’ )
34 l e g end ( [ p1 1 p2 1 p3 1 p4 1 p5 1 p6 1 p7 1 p8 1 p9 1 p10 1 ] , . . .
35 { ’ P r e s s 1 ’ , ’ P r e s s 2 ’ , ’ P r e s s 3 ’ , ’ P r e s s 4 ’ , ’ P r e s s 5 ’ , ’ P r e s s 6 ’ , . . .
36 ’ P r e s s 7 ’ , ’ P r e s s 8 ’ , ’ P r e s s 9 ’ , ’ P r e s s 10 ’ })
37 x l im ( [ min ( wavelengthzoomed ) max( wavelengthzoomed ) ] )
38 s e t ( gca , ’ x d i r ’ , ’ r e v e r s e ’ )

PLSinitial.m

1 % Pa r t i a l l e a s t s qua r e s (PLS) model b u i l d i n g
2

3 % INPUT :
4 % X mat r i x o f i ndependen t v a r i a b l e s ( e . g . s p e c t r a ) ( n x p )
5 % Y ve c t o r o f y r e f e r e n c e v a l u e s ( n x 1)
6 % A number o f PLS components to c o n s i d e r
7

8 X = a ;
9 Y = r e f ;

10

11 ncomp = l e ng t h (Y)�1; % De f au l t i n i t i a l v a l u e
12 [ n , p ] = s i z e (X) ;
13 [ X load ings , Y load ings , Xscores , Yscores , beta , PLSPctVar ] = p l s r e g r e s s (X,Y, ncomp) ;
14 PLSPctVarp lot = [ z e r o s ( 2 , 1 ) , PLSPctVar ] ;
15 f i g u r e
16 p l o t ( 1 : ncomp , cumsum(100∗PLSPctVar ( 2 , : ) ) , ’�bo ’ ) ;
17 y l im ([� i n f 100 ] )
18 x l a b e l ( ’Number o f PLS components ’ ) ;
19 y l a b e l ( ’ Pe r cen t Va r i ance Exp l a i n ed i n Y ’ ) ;
20 t i t l e ( ’Model Qua l i t y by Number o f Components i n Y ’ )
21

22 choosea = inpu t ( ’ Choose number o f PLS components : 1 , 2 , 3 , 4 . . . , 1 0 ��> ’ ) ;
23 i f choosea == 1
24 A = 1 ;
25 e l s e i f choosea == 2
26 A = 2 ;
27 e l s e i f choosea == 3
28 A = 3 ;
29 e l s e i f choosea == 4
30 A = 4 ;
31 e l s e i f choosea == 5
32 A = 5 ;
33 e l s e i f choosea == 6
34 A = 6 ;
35 e l s e i f choosea == 7
36 A = 7 ;
37 e l s e i f choosea == 8
38 A = 8 ;
39 e l s e i f choosea == 9
40 A = 9 ;
41 e l s e i f choosea == 10
42 A = 10 ;
43 end
44

45 PLScomponents = cumsum(100∗PLSPctVar ( 2 , : ) ) ;
46 Exp l a i n e dVa r i a n c e = PLScomponents ( : ,A)
47

48 % P lo t s b c o e f f i c i e n t s
49 [ n , p ] = s i z e (X) ;
50 [ X load ings , Y load ings , Xscores , Yscores , betaPLS ] = p l s r e g r e s s (X,Y,A) ;
51 y f i tPLS = [ ones (n , 1 ) X]∗ betaPLS ;
52 f i g u r e
53 p l o t ( wavelengthzoomed , betaPLS ( 2 :max( s i z e ( wavelengthzoomed ) ) +1 , : ) )
54 x l im ( [ min ( wavelengthzoomed ) max( wavelengthzoomed ) ] )
55 s e t ( gca , ’ x d i r ’ , ’ r e v e r s e ’ )
56 x l a b e l ( ’Wavenumber (cmˆ{�1}) ’ ) ;
57 y l a b e l ( ’ b c o e f f i c i e n t s from PLS ’ ) ;
58 g r i d on
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PLSfinal.m

1 % F i n a l PLS p l o t
2

3 [ n , p ] = s i z e (X) ;
4 [ X load ings , Y load ings , Xscores , Yscores , betaPLS ] = p l s r e g r e s s (X,Y,A) ;
5 y f i tPLS = [ ones (n , 1 ) X]∗ betaPLS ;
6

7 f i g u r e
8 f o r i =1:1:30
9 C = Col30 ;

10 p l o t (Y( i , : ) , y f i tPLS ( i , : ) , ’∗ ’ , ’ Co l o r ’ ,C{ i }) ;
11 ho ld on
12 end
13

14 % Make l i n e a r X=Y l i n e f o r r e f e r e n c e and r2 v a l u e
15 x l i n e = [ min (Y)�0.025∗max(Y) ; max(Y)+0.025∗max(Y) ] ;
16 y l i n e = [ min (Y)�0.025∗max(Y) ; max(Y)+0.025∗max(Y) ] ;
17 p l o t ( x l i n e , y l i n e , ’ k�. ’ ) ;
18 x l a b e l ( ’ Re f e r en c e Content (% w/w) ’ ) ;
19 y l a b e l ( ’ P r e d i c t e d Re f e r en c e Content (% w/w) ’ ) ;
20 g r i d on
21 s l o p e = 1 ;
22 yCa lc = s l o p e ∗Y;
23 Rsq y l i n e = 1 � sum ( ( y f i tPLS � yCa lc ) . ˆ 2 ) /sum ( ( y f i tPLS � mean ( y f i tPLS ) ) . ˆ 2 )
24 t e x t (min (Y)�0.025∗max(Y) ,max(Y)+0.025∗max(Y) , [ ’Number o f PLS Components : ’ , num2str (A) ’ , Rˆ2 = ’ , num2str

( R s q y l i n e ) ] )

Own MATLAB code used for data handling of the protein powder samples of di↵erent particle sizes:

Particlesmain.m

1 %% Sta r t
2 c l e a r a l l ;
3 c l o s e a l l ;
4 c l c
5

6 % 1 mm
7 run P a r t i c l e s i z e .m
8 peaks1 = l o c s ;
9

10 % 0.5mm
11 run P a r t i c l e s i z e .m
12 peaks05 = l o c s ;
13

14 % 0.25mm
15 run P a r t i c l e s i z e .m
16 peaks025 = l o c s ;
17

18 % 0.125mm
19 run P a r t i c l e s i z e .m
20 peaks0125 = l o c s ;
21

22 % < 0 .125mm
23 run P a r t i c l e s i z e .m
24 peakss0125 = l o c s ;

Particlesize.m

1 % Loads raw data from e x c e l and makes you choose s p e c t r a
2 run HarnesData .m
3

4 % P lo t s raw NIR data
5 f i g u r e , ho ld on
6 p1 1 = p l o t ( wave length , X ALL ( 1 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
7 p1 2 = p l o t ( wave length , X ALL ( 2 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
8 p1 3 = p l o t ( wave length , X ALL ( 3 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
9 p2 1 = p l o t ( wave length , X ALL ( 4 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;

10 p2 2 = p l o t ( wave length , X ALL ( 5 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
11 p2 3 = p l o t ( wave length , X ALL ( 6 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
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12 p3 1 = p l o t ( wave length , X ALL ( 7 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
13 p3 2 = p l o t ( wave length , X ALL ( 8 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
14 p3 3 = p l o t ( wave length , X ALL ( 9 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
15 p4 1 = p l o t ( wave length , X ALL ( 1 0 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
16 p4 2 = p l o t ( wave length , X ALL ( 1 1 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
17 p4 3 = p l o t ( wave length , X ALL ( 1 2 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
18 p5 1 = p l o t ( wave length , X ALL ( 1 3 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
19 p5 2 = p l o t ( wave length , X ALL ( 1 4 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
20 p5 3 = p l o t ( wave length , X ALL ( 1 5 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
21 p6 1 = p l o t ( wave length , X ALL ( 1 6 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
22 p6 2 = p l o t ( wave length , X ALL ( 1 7 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
23 p6 3 = p l o t ( wave length , X ALL ( 1 8 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
24 p7 1 = p l o t ( wave length , X ALL ( 1 9 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
25 p7 2 = p l o t ( wave length , X ALL ( 2 0 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
26 p7 3 = p l o t ( wave length , X ALL ( 2 1 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
27 p8 1 = p l o t ( wave length , X ALL ( 2 2 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
28 p8 2 = p l o t ( wave length , X ALL ( 2 3 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
29 p8 3 = p l o t ( wave length , X ALL ( 2 4 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
30 p9 1 = p l o t ( wave length , X ALL ( 2 5 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
31 p9 2 = p l o t ( wave length , X ALL ( 2 6 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
32 p9 3 = p l o t ( wave length , X ALL ( 2 7 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
33 p10 1 = p l o t ( wave length , X ALL ( 2 8 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
34 p10 2 = p l o t ( wave length , X ALL ( 2 9 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
35 p10 3 = p l o t ( wave length , X ALL ( 3 0 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
36 x l a b e l ( ’Wavenumber (cmˆ{�1}) ’ ) , y l a b e l ( ’ R e f l e c t a n c e ’ )
37 l e g end ( [ p1 1 p2 1 p3 1 p4 1 p5 1 p6 1 p7 1 p8 1 p9 1 p10 1 ] , . . .
38 { ’ P r e s s 1 ’ , ’ P r e s s 2 ’ , ’ P r e s s 3 ’ , ’ P r e s s 4 ’ , ’ P r e s s 5 ’ , ’ P r e s s 6 ’ , . . .
39 ’ P r e s s 7 ’ , ’ P r e s s 8 ’ , ’ P r e s s 9 ’ , ’ P r e s s 10 ’ })
40 x l im ( [ min ( wave l ength ) max( wave l ength ) ] )
41 y l im ( [ 0 90 ] )
42 s e t ( gcf , ’ u n i t s ’ , ’ p o i n t s ’ , ’ p o s i t i o n ’ , [ 1 0 , 1 0 , 1000 , 400 ] )
43 s e t ( gca , ’ x d i r ’ , ’ r e v e r s e ’ )
44

45 % Raw data wi th i n i t i a l o u t s o r t i n g o f n o i s e
46 % Makes you choose zoomed s p e c t r a l a r ea
47 run Wavenumber .m
48

49 % P lo t s zoomed raw NIR data
50 f i g u r e , ho ld on
51 p1 1 = p l o t ( wavelengthzoomed , a ( 1 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
52 p1 2 = p l o t ( wavelengthzoomed , a ( 2 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
53 p1 3 = p l o t ( wavelengthzoomed , a ( 3 , : ) , ’ Co l o r ’ , [ 121/255 , 35/255 , 142/255 ] ) ;
54 p2 1 = p l o t ( wavelengthzoomed , a ( 4 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
55 p2 2 = p l o t ( wavelengthzoomed , a ( 5 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
56 p2 3 = p l o t ( wavelengthzoomed , a ( 6 , : ) , ’ Co l o r ’ , [ 0/255 , 136/255 , 53/255 ] ) ;
57 p3 1 = p l o t ( wavelengthzoomed , a ( 7 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
58 p3 2 = p l o t ( wavelengthzoomed , a ( 8 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
59 p3 3 = p l o t ( wavelengthzoomed , a ( 9 , : ) , ’ Co l o r ’ , [ 47/255 , 62/255 , 234/255 ] ) ;
60 p4 1 = p l o t ( wavelengthzoomed , a ( 1 0 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
61 p4 2 = p l o t ( wavelengthzoomed , a ( 1 1 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
62 p4 3 = p l o t ( wavelengthzoomed , a ( 1 2 , : ) , ’ Co l o r ’ , [ 153/255 , 0/255 , 0/255 ] ) ;
63 p5 1 = p l o t ( wavelengthzoomed , a ( 1 3 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
64 p5 2 = p l o t ( wavelengthzoomed , a ( 1 4 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
65 p5 3 = p l o t ( wavelengthzoomed , a ( 1 5 , : ) , ’ Co l o r ’ , [ 3/255 , 15/255 , 79/255 ] ) ;
66 p6 1 = p l o t ( wavelengthzoomed , a ( 1 6 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
67 p6 2 = p l o t ( wavelengthzoomed , a ( 1 7 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
68 p6 3 = p l o t ( wavelengthzoomed , a ( 1 8 , : ) , ’ Co l o r ’ , [ 252/255 , 118/255 , 52/255 ] ) ;
69 p7 1 = p l o t ( wavelengthzoomed , a ( 1 9 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
70 p7 2 = p l o t ( wavelengthzoomed , a ( 2 0 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
71 p7 3 = p l o t ( wavelengthzoomed , a ( 2 1 , : ) , ’ Co l o r ’ , [ 232/255 , 53/255 , 72/255 ] ) ;
72 p8 1 = p l o t ( wavelengthzoomed , a ( 2 2 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
73 p8 2 = p l o t ( wavelengthzoomed , a ( 2 3 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
74 p8 3 = p l o t ( wavelengthzoomed , a ( 2 4 , : ) , ’ Co l o r ’ , [ 31/255 , 208/255 , 130/255 ] ) ;
75 p9 1 = p l o t ( wavelengthzoomed , a ( 2 5 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
76 p9 2 = p l o t ( wavelengthzoomed , a ( 2 6 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
77 p9 3 = p l o t ( wavelengthzoomed , a ( 2 7 , : ) , ’ Co l o r ’ , [ 0/255 , 0/255 , 0/255 ] ) ;
78 p10 1 = p l o t ( wavelengthzoomed , a ( 2 8 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
79 p10 2 = p l o t ( wavelengthzoomed , a ( 2 9 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
80 p10 3 = p l o t ( wavelengthzoomed , a ( 3 0 , : ) , ’ Co l o r ’ , [ 246/255 , 208/255 , 77/255 ] ) ;
81 x l a b e l ( ’Wavenumber (cmˆ{�1}) ’ ) , y l a b e l ( ’ R e f l e c t a n c e ’ )
82 l e g end ( [ p1 1 p2 1 p3 1 p4 1 p5 1 p6 1 p7 1 p8 1 p9 1 p10 1 ] , . . .
83 { ’ P r e s s 1 ’ , ’ P r e s s 2 ’ , ’ P r e s s 3 ’ , ’ P r e s s 4 ’ , ’ P r e s s 5 ’ , ’ P r e s s 6 ’ , . . .
84 ’ P r e s s 7 ’ , ’ P r e s s 8 ’ , ’ P r e s s 9 ’ , ’ P r e s s 10 ’ })
85 y l im ( [ 0 90 ] )
86 x l im ( [ min ( wavelengthzoomed ) max( wavelengthzoomed ) ] )
87 s e t ( gca , ’ x d i r ’ , ’ r e v e r s e ’ )
88

89 % Ca l c u l a t i n g mean s p e c t r a f o r mat r i x a and peak l o c a t i o n s
90 nonan = rmmiss ing ( a ) ;
91 meanvector = mean ( nonan ) ;
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92 [ pks , l o c s ] = f i n d p e a k s ( meanvector , wavelengthzoomed ) ;
93 f i g u r e
94 f i n d p e a k s ( meanvector , wavelengthzoomed )
95 s e t ( gca , ’ x d i r ’ , ’ r e v e r s e ’ )
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A5 - MATLAB Copyright

Copyright MATLAB code prepared by others used for data preprocessing for both cellulose gluten and protein

powder data:

snv.m

1

2 %# fun c t i o n [ xsnv ]= snv ( x )
3 %#
4 %# AIM : Standard Normal Va r i a t e Tran s f o rmat i on
5 %# Row cen t e r i n g , f o l l ow e d by row s c a l i n g .
6 %#
7 %# PRINCIPLE : Removal o f the row mean from each row , f o l l ow e d
8 %# by d i v i s i o n o f the row by the r e s p e c t i v e row
9 %# standa rd d e v i a t i o n .

10 %#
11 %# INPUT : x : (m x n ) mat r i x w i th m s p e c t r a and n v a r i a b l e s
12 %#
13 %# OUTPUT: xsnv : (m x n ) mat r i x c o n t a i n i n g snv t r an s f o rmed s p e c t r a
14 %#
15 %# AUTHOR: Andrea Cand o l f i
16 %# Copy r i gh t ( c ) 1997 f o r ChemoAC
17 %# FABI , V r i j e U n i v e r s i t e i t B r u s s e l
18 %# Laa rbeek l a an 103 1090 J e t t e
19 %#
20 %# VERSION : 1 .1 (28/02/1998)
21 %#
22 %# TEST: Roy de Maesscha lck
23 %#
24

25 f u n c t i o n [ xsnv ]= snv ( x ) ;
26

27 [m, n]= s i z e ( x ) ;
28 xsnv=(x�mean ( x ’ ) ’∗ ones (1 , n ) ) . / ( s t d ( x ’ ) ’∗ ones (1 , n ) ) ;

msc.m

1

2 %# fun c t i o n [ xmsc ,me , xtmsc ]=msc ( x , f i r s t , l a s t , x t )
3 %#
4 %# AIM : Mu l t i p l e S c a t t e r C o r r e c t i o n :
5 %# To remove the e f f e c t o f p h y s i c a l l i g h t s c a t t e r
6 %# from the spectrum . ( Compensat ion f o r p a r t i c l e s i z e
7 %# e f f e c t s . )
8 %#
9 %# PRINCIPLE : Each spectrum i s s h i f t e d and r o t a t e d so tha t i t f i t s

10 %# as c l o s e l y as p o s s i b l e to the mean spectrum o f the data .
11 %# The f i t i s a ch i e v ed by LS ( f i r s t �deg r ee po l ynom i a l ) .
12 %# The c o r r e c t i o n depends on the mean spectrum o f the
13 %# t r a i n i n g s e t .
14 %#
15 %# INPUT : x : (m x n ) mat r i x w i th m s p e c t r a and n v a r i a b l e s
16 %# f i r s t : f i r s t v a r i a b l e used f o r c o r r e c t i o n
17 %# l a s t : l a s t v a r i a b l e used f o r c o r r e c t i o n
18 %# (A segment i s s e l e c t e d which i s r e p r e s e n t a t i v e f o r the
19 %# ba s e l i n e o f the s p e c t r a . )
20 %# xt : (mt x nt ) mat r i x f o r new data ( o p t i o n a l )
21 %#
22 %# OUTPUT: xmsc : (m x n ) mat r i x c o n t a i n i n g the s p e c t r a a f t e r
23 %# co r r e c t i o n wi th msc
24 %# me : mean spectrum (1 x n ) o f x
25 %# xtmsc : (mt x nt ) mat r i x c o n t a i n i n g the new s p e c t r a a f t e r
26 %# co r r e c t i o n wi th msc
27 %#
28 %# AUTHOR: Andrea Cand o l f i
29 %# Copy r i gh t ( c ) 1997 f o r ChemoAC
30 %# FABI , V r i j e U n i v e r s i t e i t B r u s s e l
31 %# Laa rbeek l a an 103 1090 J e t t e
32 %#
33 %# VERSION : 1 .1 (28/02/1998)
34 %#
35 %# TEST: Roy de Maesscha lck
36 %#
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37

38 f u n c t i o n [ xmsc ,me , xtmsc ]=msc ( x , f i r s t , l a s t , x t ) ;
39

40 i f n a r g i n==1;
41 f i r s t=i npu t ( ’The f i r s t v a r i a b l e f o r the c o r r e c t i o n : ’ ) ;
42 l a s t=i npu t ( ’The l a s t v a r i a b l e s f o r the c o r r e c t i o n : ’ ) ;
43 end
44

45 [m, n]= s i z e ( x ) ;
46 me=mean ( x ) ;
47

48 f o r i =1:m, % f o r the x data
49 p=p o l y f i t (me( f i r s t : l a s t ) , x ( i , f i r s t : l a s t ) , 1 ) ; % l e a s t squa r e f i t between mean spectrum

and each spectrum ( f i r s t �deg r ee po l ynom i a l )
50 xmsc ( i , : ) =(x ( i , : )�p (2 ) ∗ ones (1 , n ) ) . / ( p (1 ) ∗ ones (1 , n ) ) ; % each spectrum i s c o r r e c t e d
51 end
52

53 i f n a r g i n ==4; % c o r r e c t i o n o f new data by u s i n g the
mean spectrum from x .

54 [ mt , nt ]= s i z e ( x t ) ;
55 f o r i =1:mt ,
56 p=p o l y f i t (me( f i r s t : l a s t ) , x t ( i , f i r s t : l a s t ) , 1 ) ; % l e a s t squa r e f i t between mean spectrum

and each new spectrum ( f i r s t �deg r ee po l ynom i a l )
57 xtmsc ( i , : ) =(x t ( i , : )�p (2 ) ∗ ones (1 , n ) ) . / ( p (1 ) ∗ ones (1 , n ) ) ; % each new spectrum i s c o r r e c t e d
58 end
59 end
60

61 end

deriv.m

1

2 %# fun c t i o n [ dx ] = d e r i v ( x , der , window , o r d e r )
3 %#
4 %# AIM : D e r i v a t i v e computat ion by u s i n g the #Sav i t s k y�Golay#
5 %# a l go r i t hm .
6 %#
7 %# PRINCIPLE : D i f f e r e n t i a t i o n by c o n v o l u t i o n method .
8 %#
9 %# INPUT : x � Data Matr i x : (nxm) n s p e c t r a m v a r i a b l e s

10 %# der � (1 x1 ) deg r ee o f the d e r i v a t i v e ;
11 %# i t must be <= ord e r
12 %# window � ( o p t i o n a l ) , (1 x1 ) the number o f p o i n t s
13 %# in f i l t e r , i t must be >3 and odd
14 %# ord e r � ( o p t i o n a l ) , (1 x1 ) the o r d e r o f the po l ynom i a l
15 %# I t must be <=5 and <= (window�1)

16 %#
17 %# OUTPUT: dx � Matr i x o f d i f f e r e n t i a t e d f u n c t i o n (nxm)
18 %#
19 %# SUBROUTINE :
20 %# weight .m
21 %# gen f a c t .m
22 %# grampoly .m
23 %#
24 %# AUTHOR: Lu i s a Pa s t i
25 %# Copy r i gh t ( c ) 1997 f o r ChemoAc
26 %# FABI , V r i j e U n i v e r s i t e i t B r u s s e l
27 %# Laa rbeek l a an 103 1090 J e t t e
28 %# Mod i f i ed program o f
29 %# Si jmen de Jong
30 %# Un i l e v e r Resea rch Labora to r ium V l aa r d i ng en
31 %#
32 %# VERSION : 1 .1 (28/02/1998)
33 %#
34 %# TEST: K r i s De B r a e k e l e e r
35 %#
36

37 f u n c t i o n dx = d e r i v ( x , der , window , o r d e r )
38

39 [ nr , nc ]= s i z e ( x ) ;
40 i f ( na rg in <4)
41 o r d e r = 2 ;
42 d i s p ( ’ Po l ynomia l o r d e r s e t to 2 ’ )
43 end
44 i f ( na rg in <3)
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45 window=min (17 , f l o o r ( nc /2) ) ;
46 d i s p ( [ ’ Windows s i z e s e t to ’ , num2str ( window ) ] ) ;
47 end
48 i f ( na rg in <2)
49 d i s p ( ’ f u n c t i o n dx = d e r i v ( x , de r ) ’ )
50 end
51

52 m = f i x ( window /2) ;
53

54 p = round ( window /2) ;
55

56 o=o rd e r ;
57

58 f o r i =1:window
59 i 0=i�p ;
60 f o r j =1:window ,
61 j 0=j�p ;
62 w( i , j )=we ight ( i0 , j0 ,m, o , de r ) ;
63 end
64 end
65 y r ( : , 1 :m)=x ( : , [ 1 : window ] ) ∗w( : , 1 :m) ; % F i r s t window
66 f o r i =1:( nc�2∗m) % Middle
67 y r ( : , i+m)=x ( : , [ i : ( i +2∗m) ] ) ∗w( : , p ) ;
68 end
69 a=nc�2∗m; % Las t window
70 y r ( : , ( nc�m+1) : nc )=x ( : , a : nc )∗w( : , p+1:window ) ;
71 dx=y r ;
72

73 end

weight.m

1

2 %# fun c t i o n [ sum ] = we ight ( i , t ,m, n , s )
3 %#
4 %# AIM : D e r i v a t i v e computat ion by u s i n g the Sav i t s k y�Golay
5 %# a l go r i t hm : Weight computat ion .
6 %#
7 %# PRINCIPLE : Computat ion o f the we ight .
8 %#
9 %# INPUT : i � i n d e x o f the i t h data po i n t

10 %# t � i n d e x o f the t t h Leat Square po i n t o f the
11 %# s d e r i v a t i v e
12 %# m � the number o f p o i n t s i n f i l t e r
13 %# n � o r d e r o f the po l ynom i a l
14 %# s � d e r i v a t i v e o r d e r
15 %#
16 %# OUTPUT: sum � Matr i x o f we ight
17 %#
18 %# SUBROUTINE :
19 %# gen f a c t
20 %# grampoly
21 %#
22 %# AUTHOR: Lu i s a Pa s t i
23 %# Copy r i gh t ( c ) 1997 f o r ChemoAc
24 %# FABI , V r i j e U n i v e r s i t e i t B r u s s e l
25 %# Laa rbeek l a an 103 1090 J e t t e
26 %# Mod i f i ed program o f
27 %# Si jmen de Jong
28 %# Un i l e v e r Resea rch Labora to r ium V l aa r d i ng en
29 %#
30 %# VERSION : 1 .1 (28/02/1998)
31 %#
32 %# TEST: K r i s De B r a e k e l e e r
33 %#
34

35 f u n c t i o n sum=we ight ( i , t ,m, n , s )
36

37 sum=0;
38 f o r k=0:n ;
39 sum=sum+(2∗k+1)∗( g e n f a c t (2∗m, k ) / g en f a c t (2∗m+k+1,k+1) ) ∗ . . .
40 grampoly ( i ,m, k , 0 ) ∗grampoly ( t ,m, k , s ) ;
41 end
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genfact.m

1

2 %# fun c t i o n [ g f ] = gen f a c t ( a , b )
3 %#
4 %# AIM : D e r i v a t i v e computat ion by u s i n g the Sav i t s k y�Golay
5 %# a l go r i t hm : Weight computat ion .
6 %#
7 %# PRINCIPLE : C a l c u l a t e s the g e n e r a l i z e d f a c t o r i a l ( a ) , ( a�1) . . .
8 %#
9 %# INPUT : a � equa l to 2∗m, m i s the l e n g t h o f the f i l t e r

10 %# b � i n d e x o f the data po i n t
11 %#
12 %# OUTPUT: g f � g e n e r a l i z e d f a c t o r i a l v e c t o r
13 %#
14 %# AUTHOR: Lu i s a Pa s t i
15 %# Copy r i gh t ( c ) 1997 f o r ChemoAc
16 %# FABI , V r i j e U n i v e r s i t e i t B r u s s e l
17 %# Laa rbeek l a an 103 1090 J e t t e
18 %# Mod i f i ed program o f
19 %# Si jmen de Jong
20 %# Un i l e v e r Resea rch Labora to r ium V l aa r d i ng en
21 %#
22 %# VERSION : 1 .1 (28/02/1998)
23 %#
24 %# TEST: K r i s De B r a e k e l e e r

25 %#
26

27 f u n c t i o n g f=gen f a c t ( a , b )
28 g f =1;
29 f o r i =(a�b+1) : a
30 g f=g f ∗ i ;
31 end

grampoly.m

1

2 %# fun c t i o n [ y ] = grampoly ( i ,m, k , s )
3 %#
4 %# AIM : D e r i v a t i v e computat ion by u s i n g the Sav i t s k y�Golay
5 %# a l go r i t hm : Weight computat ion .
6 %#
7 %# PRINCIPLE : C a l c u l a t e s the Gram Po lynomia l
8 %#
9 %# INPUT : i � i n d e x o f the data po i n t

10 %# m � i n d e x o f the f i l t e r l e n g t h
11 %# k � o r d e r o f the p o l i n om i a l
12 %# s � o r d e r o f the d e r i v a t i v e
13 %#
14 %# OUTPUT: y � Gram Po lynomia l v e c t o r
15 %#
16 %# AUTHOR: Lu i s a Pa s t i
17 %# Copy r i gh t ( c ) 1997 f o r ChemoAc
18 %# FABI , V r i j e U n i v e r s i t e i t B r u s s e l
19 %# Laa rbeek l a an 103 1090 J e t t e
20 %# Mod i f i ed program o f
21 %# Si jmen de Jong
22 %# Un i l e v e r Resea rch Labora to r ium V l aa r d i ng en
23 %#
24 %# VERSION : 1 .1 (28/02/1998)
25 %#
26 %# TEST: K r i s De B r a e k e l e e r
27 %#
28

29 f u n c t i o n y=grampoly ( i ,m, k , s )
30 i f k>0
31 r1=grampoly ( i ,m, k�1, s ) ;
32 r2=grampoly ( i ,m, k�1,s�1) ;
33 r3=grampoly ( i ,m, k�2, s ) ;
34 y=((4∗k�2)/( k∗(2∗m�k+1) ) ) ∗( i ∗ r1+s∗ r2 ) �(((k�1)∗(2∗m+k ) ) /( k∗(2∗m�k+1) ) )∗ r3 ;
35 e l s e
36 i f ( ( k==0)&(s==0)) , y=1; e l s e y=0; end
37 end


