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Abstract

Lesion detection is a critical task for medical image understanding. While the problem has been widely
addressed in a supervised semantic segmentation manner, the problem clinically appears more similar to
novelty detection with few or no annotations for the lesion. The reason is two-fold: 1) it is intuitively
easier to collect large dataset from healthy individuals than that from a specific type of lesion individuals,
2) clinicians are generally interested in any abnormalities regardless of its type. This makes unsupervised
methods more attractive solutions. Works such as AnoGAN and VAE with image restoration offer practical
ways to localise lesions by training only on healthy data. However, for the same type of lesion, an obvious
performance gap exists between unsupervised and supervised methods. In this work, we intend to provide
supervision with a small number of lesion data to the unsupervised method with the aim to narrow the gap.
The method is an extension of the unsupervised method of VAE with MAP-based image restoration. In more
details, we train an U-Net on the few examples to predict the likelihood term and impose the supervision
with annotated lesions such that the restoration only occurs for the lesion pixels. We train the unsupervised
method on T2-weighted images of healthy individuals of Cam-CAN dataset and provide a small annotated
dataset consisting of a few subjects from BraTS dataset, and test on an unseen subset of BraTS. With the
addition of the few examples, the method shows an improvement over the unsupervised method while the
gap with the supervised is narrowed but still exists.
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Chapter 1

Introduction

Lesion detection can be seen as outlier detection, where outlier observations, expensive to accommodate in
a prior model, are detected. One common approach for lesion detection is to learn prior distributions from
unlabelled data in an unsupervised framework. However, in most practical scenarios there are often addi-
tionally small amounts of labelled lesion data available. Such a scenario often occurs in medical imaging,
where clinicians often have large amounts of unlabelled healthy subjects available, but due to the tedious
task of manual annotation only performed by trained domain experts, only a few labelled abnormal subjects
available. The labelled abnormal/lesion data, combined with unlabelled healthy subjects, could potentially
be used to increase performance of the unsupervised models by extending these into semi-supervised mod-
els. The problem of automatic brain tumour segmentation is a good example where usually there are many
unlabelled healthy images available, but only a limited amount of labelled images of tumours.

Detecting a lesion, like a brain tumour, is an important and daily task for radiologists. Today, there are
already many satisfying automatic segmentation models being proposed. However, most of these models
are learned in a supervised framework and require lots of labelled data. Additionally, these models are often
restricted by how well the training data generalises the problem and these models typically fail to detect
a tumour that is very different from the training data. For example, using a supervised model for tumour
detection, trained on data from other institutions and machines, typically leads to bad performance. Instead,
a semi-supervised lesion detection method, as proposed in this work, constrained by using unlabelled healthy
data and a limited amount of labelled data, potentially could work well for segmenting brain tumours in
clinical practice.

1.1 Clinical Background

A patient diagnosed with gliomas, a type that accounts for 70% of all brain tumours, has a life expectancy
of only a couple of years [44]. Approximately 2 % of all cancer diagnoses are primary malignant brain
tumors and the lifetime risk of being diagnosed is 0.58 percent according to a study from Michigan State
University in the United states [13]. Due of the high mortality rate, despite low prevalence of less than
0.1% [19], a brain tumour diagnosis is feared and considered very serious. There are several different types
of brain tumours such as already mentioned glioma and also meningioma and pituitary tumours. They all
are the result of abnormal growth of cells in the brain, called neoplasms. Each of the different types have
different prognosis and treatment. The WHO (World Health Organization) is grading brain tumours from
grade 1 to 5 depending on malignancy. Grade 1 gliomas are considered to be curable and are less malignant.
Grade 5 gliomas are very aggressive, often removed with surgery and limit the patients life expectancy to
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CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of different brain scans in MRI (T2 weighted in axial plane) with tumour highlighted.

approximately 2 years after diagnosis [58].
The high mortality rate and aggressiveness of certain brain tumours makes early, fast and correct di-

agnosis important. Early and fast diagnosis is crucial for early treatment, which could reduce the risk of
tumour growing and hence prolonging life expectancy for patients. Brain tumours are usually diagnosed
using imaging, preferable magnetic resonance imaging (MRI), followed by histopathology to confirm the
diagnosis [3]. Image diagnostics of brain tumours are also important for surgery and radiotherapy planning,
tumour analysis, survival prediction and follow-up care.

The varying biological tissues of brain tumours consist of different histologic sub-regions such as
necrotic core, peritumoral edematous, invaded tissue and gross abnormalities. In MRI, these different tis-
sues are causing varying intensity, contrast and shape profiles. As a result of the varying profiles, every brain
tumour has a unique appearance in imaging, causing diagnosis of gliomas with imaging to be considered a
challenging task [7]. As seen in Figure 1.1, brain tumours appear in many forms, shapes and intensities in
MRI. Pixel intensities of brain tumours, in MRI, are not easily distinguished from intensities of healthy tis-
sue. This can be seen in Figure 1.2, that shows a histogram of healthy and tumour tissue. Additionally, brain
tumours have varying spatial location and can be located in all parts of the brain, as seen in the heatmap of
brain tumors in Figure 1.3, .

MRI can produce several different sequences of the same subject, by varying excitation and repetition
times. Each sequence highlights different tissue types, which results in different intensities of the same tissue
from different sequences. To better identify the different sub-regions in brain scans, different MRI sequences

2
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Figure 1.2: Histogram with normal brain tissue and tumour tissue pixel intensity (T2 weighted, axial slice).

Figure 1.3: Spatial heatmap of brain tumours in BraTS dataset [40].

3



CHAPTER 1. INTRODUCTION

are often used together. Normally, physicians use the sequences T1-weighted, T1-weighted with contrast
agent, T2-weighted and fluid attenuated inversion recovery (FLAIR) in MRI diagnostics [2]. Typically, the
T2 weighted sequence best highlights the tumour core, whilst FLAIR highlights the whole tumour best. This
is shown in Figure 2.2, that visualises one axial slice of the same brain tumour in different MRI sequences.

(a) T1-weighted (b) T2-weighted

(c) T1-weighted with contrast agent (d) Fluid Attenuated Inversion Recovery (FLAIR)

Figure 1.4: Axial slices of the same brain tumour in different MRI sequences.

1.2 Previous Work on Brain Tumour Segmentation

To help physicians diagnose and analyse brain tumours, many automated image segmentation models have
been proposed by the research community. An automated image segmentation model aims to automatically
find a pixel classification such as f : X �! S, where X 2 IRN is an image and S 2 {0, ..., C}N is the
corresponding pixel wise label map. Here, N denotes the number of pixels and C denotes the number of
label classes. For the semantic binary segmentation problem of whole brain tumour segmentation, S only
consist of two labels S = 1 or S = 0. Either a pixel is considered as a tumour or not. If a model aims to
find different sub-regions of the tumour, then each sub-region corresponds to its specific class 2 0, ..., CN .

A segmented brain tumour could help improve diagnostics, growth analysis, surgical or radiotherapy
planning and follow-up care. Even though there have been huge leaps in medical image analysis lately,
following the achievements within deep learning, brain tumour segmentation is often still done manually in
clinical practice. One reason for this is due to many methods inability to generalise outside of the training
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data. However, with a good automated segmentation model, physicians would not only save valuable time,
but also increase diagnostic accuracy and create more reproducible measurements of tumours.

1.2.1 Tumour Segmentation in a Pre Deep Learning Era

Early work for automatic brain tumour segmentation dates back three decades, a pre deep learning era. Shad
et al. [53] propose, as early as 1993, a statistical approach using clustering with texture patterns for brain
tumour segmentation. Following in 1995, Vaidyanathan [61] also used a statistical approach by applying a
k-nearest neighbor and spectral fuzzy C-means method. There are also more recent statistical approaches
using classification or clustering, without the use of deep learning, such as Zacharaki and Bezerianos (2012)
[31] and Erus et al. (2014) [24]. They used image patches and principal component analysis (PCA) to
detect tumours as anomalies from healthy tissue. Gibbs et al. (1996) [25] propose, in contrast to the named
statistical approaches, a deterministic approach using a growing edge detection method. Additionally, there
are numerous more methods proposed to solve brain tumour segmentation, not using deep learning, that are
not named here. Some of them are reviewed by Angelini et al. (2007) [5] and Bauer et al. (2013) [8], who
both wrote good survey papers before the deep learning era. We refer to these papers for further reading
about pre deep learning methods for brain tumour segmentation.

1.2.2 History of Deep Learning

Deep learning has over the past decade revolutionised many fields of research and industries, including
medical imaging. During the past decade, research around deep learning has exploded, resulting in many
achievements and new methods being proposed. Already back in 1971, Ivakhnenko [30] wrote a paper that
pioneer what would later be called deep learning. LeCun et al. (1989) [36] pioneered deep learning within
Computer vision by proposing to use backpropagation to train a convolutional neural network (CNN) to
recognise handwritten digits. However, it would take another two decades for the disruptive technique to
take off.

Even though the reader is assumed to be familiar with deep neural networks and CNNs, a short introduc-
tion is given before continuing. Deep neural networks consist of sequentially sets of non linear and linear
functions with trainable parameters ⇥ as NN(X;⇥) = f0 � f1 � f2 � ... � fn [26]. Normally deep neural
networks are referred to as having an input layer f0, followed by a number of hidden layers f1, ..., fn�1 and
an output layer fn. Today, there are numerous different linear and nonlinear functions and architectures pro-
posed for different deep neural networks. One being CNNs, a specialised kind of neural networks, that uses
convolutional operators as function f . CNNs has been proven to be very successful in fields like computer
vision, medical imaging and time series analysis. The convolutional operator is defined as in Equation 1.1
where x is referred to as the input, w is referred to as the kernel (with learnable shared weights) and the
result s(t) are referred to as the feature map. The advantages of using a CNN is that each layer in the deep
neural network have shared weights, additionally the convolution is shift invariant, resulting in the output
not dependent on spatial shifts in the input. It has been shown that CNNs are capable of learning com-
plex features that help the predictions of deep neural networks [65]. CNNs are often implemented in code
by using fast Fourier transform (FFT) to be able to use matrix multiplication instead of a sliding window
approach, which allows backpropagation to be used for training.

s(t) = (x ⇤ w)(t) =
1X

x=�1
x(a)w(t� a) (1.1)
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Deep neural networks are trained and optimised to find appropriate weights for minimising a given
loss function. The optimisation problem is often solved with various gradient descent methods such as
stochastic gradient descent [50], RMSprop [52] and Adam [32]. Gradient descent methods require gradients
with respect to parameters of the network which is normally computed by backpropagation. Hence, every
function of a deep neural network optimised in this fashion needs to be differentiable. Appropriately, deep
neural networks should also have good gradient flow to find the optimum parameters for a given training set.

Back to previous work within deep learning, after LeCuns work in 1989, it would take almost another
two decades until deep neural networks would be widely used and achieve superhuman accuracy in computer
vision problems. In 2012, Ciregan et al. [18] proposed an image classification model outperforming humans
for classifying traffic signs and handwritten digits. Today, deep learning is an important tool for many
research fields such as computer vision, natural language theory, machine translation, bioinformatics and
medical image analysis.

1.2.3 Tumour Segmentation using Supervised Deep Learning

In a supervised learning framework, a set of training examples are available as {(X1, Y1), ..., (Xn, Yn)}. In
the semantic binary segmentation problem, Xi 2 IRN corresponds to the input image with N pixels and
Yi 2 {0, 1}N is the ground truth binary pixel wise segmentation. Supervised deep neural networks aim to
find a good approximation for f : X ! Y , such that f also generalise well outside of the training set.

Last decade, new achievements within deep learning and deep neural networks have paved the road for
many novel methods for brain tumour segmentation. Some early proposed methods for automatic brain
tumour segmentation, in a supervised framework, used deep neural networks for feature extraction and
classification. Two examples of this approach are, Singh et al. (2012) [55] and Amin et al. (2012) [4], who
both propose methods using principal component analysis (PCA) for feature extraction but have different
approaches for classification task, where support vector machines (SVM) contrary to multi-layer perceptions
are used.

Training deep neural networks typically requires lots of training data to achieve good results. This is
due to the millions of parameters being optimised, in addition to make the deep neural network generalise
well outside the training set. In medical imaging, labelling training data for segmentation is a time intensive
and a tedious task that can only be performed by trained domain experts. In addition, to create a good
ground truth training set often several manual segmentations must be performed by different experts, due of
the high interobserver variability between experts [7]. This makes data in medical imaging expensive and
usually medical image datasets are relatively small.

Early proposed methods that use deep learning, often have small private datasets and use a variety
of different metrics for measuring performance. This makes comparing these different methods for the
same problem difficult. In order to solve the issues of small private datasets and incomparable metrics and
push state of the art, Medical Image Computing and Computer Assisted Interventions (MICCAI) organised
the public research challenge Multimodal Brain Tumor Segmentation Challenge (BraTS), in 2012. The
contestants were provided a relatively big labelled dataset and the performance of the submitted methods
were measured with the same metric. BraTS challange 2013 and 2015, S. Pereira et al. (2016) [47] achieved
first and second place, by using a 2d patch wise CNN. Dong et al. (2017) [22] applied an U-Net architecture,
proposed by Ronneberger et al. (2015) [51] (further reading in Section 2.3), on brain tumour segmentation
problem with good results, scoring high in BraTS 2015 challenge. Today, while state of the art methods like
from Myronenko (2018) [42], winner of BraTS 2018, gets more and more complicated, Isensee et al. (2018)
[29] shows that a well trained U-Net still achieves competitive results. Myronenko and Isensee et al. both
achieve over 0.9 mean dice for segmenting the whole tumour on BraTS test dataset. BraTS challenge 2017
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training dataset consists of 285 3d brain scans [7], all with T1-weighted, T1-weighted with contrast agent,
T2-weighted and FLAIR sequences.

1.2.4 Tumour segmentation using Unsupervised Deep Learning

Unsupervised learning provides a solution to the large amount of labelled training data required in a su-
pervised learning framework by approximating distributions of unlabelled data. There are many techniques
for unsupervised learning such as clustering, with K-means and mixture models, autoencoders, adversarial
networks, sparse dictionary learning and generative models.

For example in unsupervised learning for brain tumour segmentation, a probability distribution of healthy
brain images, or features of such, can be learned and tumours can be detected as outliers from these healthy
distributions. This assumes that features of healthy tissue can be learned and features of lesions can be dis-
tinguished from non lesion features. In addition to not requiring annotated datasets, unsupervised methods
like these also allow for detection of any brain lesion regardless if it is represented in the training dataset or
not. However, to learn good distributions, in latent space, of data with high dimensionality, e.g. images, has
proven to be quite challenging. So far, supervised learning methods have been outperforming unsupervised
learning methods by good margins, especially for the problem of semantic segmentation. However, recently
there have been many interesting methods proposed that bridge this gap in performance.

Recent success within generative models, like variational autoencoder (VAE) [33] (further reading in
Section 2.1) and generative adversarial network (GAN) [27], allow for learning more complex data distribu-
tions for unlabelled data, paving the way for new unsupervised segmentation methods. Recently proposed
methods for brain tumour segmentation, such as Chen and Konukoglu (2018) [15], Baur et al. (2019) [10]
and You et al. (2019) [64], have been using these generative models to outperform earlier unsupervised
methods.

Both Chen and Konukoglu and Baur et al. propose to first learn distributions from healthy brain images
and secondly detect brain lesions as outliers from the learned distributions. The first step, to learn prior
distributions, is done by either different kinds of autoencoders or GANs. The detection is then performed
by reconstructing images containing brain lesions and assuming the lesion segmentation maps as the recon-
struction error, i.e. the difference between the original and reconstructed image. The idea is that the learned
prior model can not faithfully reconstruct regions with lesions and therefore will these regions have a larger
reconstruction error. Even though these methods achieve promising results, often a large number of false
positives is predicted. This might come from the generative models failing to learn rich priors for detailed
features, causing high reconstruction error also for healthy tissue.

You et al. approach the problem of brain lesion segmentation by casting the segmentation problem
into an image restoration problem. The restoration aims to restore lesion regions to corresponding pseudo
”healthy” regions. The absolute difference between the restored and the original image is then assumed
to be the lesion. You et al. solves the restoration problem with maximum a posterior probability (MAP)
estimation and Bayes theorem. Before the restoration, a normative prior is learned, through a set of healthy
images, with VAE [33] or the extended version, Gaussian mixture variational autoencoders (GMVAE) [21].
In the restoration, the likelihood term is approximated with total variation norm (TV norm), assuming brain
tumours to have sparse gradients. An in depth description of this method can be found in Section 2.2.

Chen and Konukoglu points out that unsupervised methods, similar to mentioned above, can be inter-
esting for a couple of reasons. Firstly, the way these models mimic human learning is itself an interesting
research topic. Secondly, even previously unseen lesions are easily detected, without any need of an exten-
sive labelled training dataset of specific lesions. Lastly, these models are an essential step to develop further
semi-supervised methods that could produce considerable improvements by leveraging both labelled and
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unlabelled data.

1.2.5 Tumour Segmentation using Semi-supervised Deep Learning

In a semi-supervised framework there are both labelled and unlabelled data available during training. In
practice, there are often large amounts of unlabelled data and a smaller amount of labelled data. Two
examples of early non deep learning semi-supervised methods for brain lesion detection is Meier et al.
(2014) [39] who adopted a semi-supervised decision forest and Wang et al. (2014) [62] who propose an
interactive segmentation called 4D active cut.

Semi-supervised learning using deep neural networks has been proven to be successful for various tasks
[45]. However, proposed methods for semi-supervised brain lesion segmentation are hard to find. Other
methods applied on other segmentation problems, especially within medical imaging, are yet interesting as
they potentially also can be applied for brain lesion segmentation.

For MS lesion segmentation Baur et al. (2017) [9] proposed a semi-supervised method, fine-tuning an
U-Net using auxiliary manifold embeddings. Another method was proposed by Bai et al. (2017) [6], who
showed improved performance by training a CNN for cardiac MR image segmentation in a semi-supervised
framework. Furthermore, Perone and Cohen-Adad (2018) [48] extended a mean teacher approach [56] to
MRI spinal cord grey matter segmentation and showed increased performance against supervised baseline
methods. In computer vision there are several semi-supervised methods proposed for improving results
leveraging unlabelled data such as [45, 56, 14] and these would potentially work in medical imaging as well.
However, most of the described methods still require a relative large amount of labelled data to perform at
full potential.

1.3 Focus of this Work

Recent strives within generative modelling has improved state of the art for various tasks, one being unsuper-
vised semantic segmentation. However, these unsupervised methods still can not compete with supervised
methods in terms of performance. We mean to propose a competitive semi-supervised lesion method that
leverage unlabelled data and small amounts of labelled data. Our hopes are that we can bridge the gap
between supervised and unsupervised learning.

Specifically, this thesis will explore a supervised extension of the method proposed by You et al. for
brain lesion segmentation. Particularly, this extension refers to learning the likelihood term in a Bayesian
formulation, which today is modelled with TV norm. With a learned prior and likelihood term, we detect
lesions similarly as You et al. by casting the segmentation problem as a restoration problem in image space
solved by MAP estimation. The goal of this work is to increase the performance of You et al. and compete
with supervised methods using only a small amount of labelled data. The focus of this work is to explore
supervised ways to learn the likelihood term. Improving the method of You et al. itself and/or the normative
prior is not considered focus of this work, since this is already studied in the original paper by You et al.

Firstly, this thesis presents a method, extended from You et al., for binary semantic segmentation of
brain lesions using a semi-supervised framework. Secondly, we will investigate how much labelled data is
required for achieving comparable performance as unsupervised and supervised baselines models. Since
labelled images are expensive, we aim our proposed method to improve results for only extremely limited
data, i.e. 1-10 MRI scans.

Brain tumours are a type of lesions and the problem of brain tumour segmentation is clinically relevant
and a widely researched problem, and hence a good problem to apply the proposed method on. Additionally,
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for testing there are relatively big open datasets available from research challenges and also many proposed
methods to benchmark against. However, our proposed method can also be trained and used for other
semantic segmentation tasks. Especially in a setting where labelled data is scarce but a large amount of
unlabelled normal data is available.

Additionally, as a side result of our method, restoring a lesion image to a pseudo ”healthy” counterpart
image, could potentially itself be a solution for the pseudo ”healthy” synthesis problem. In clinical practice
there is a value in creating a pseudo ”healthy” image for a few reasons. One being segmentation of healthy
tissue for follow up analysis of healthy tissue after surgery or radiotherapy. There are many methods for
automatic segmentation of healthy brain scans. However, these typically fail when there is a lesion present
and if a pseudo ”healthy” image can be found from a lesion image these methods might perform better.

1.4 Thesis Organisation

Firstly, this thesis introduces the problem of brain tumour segmentation, both with clinical background
and previous proposed methods. Furthermore, Chapter 2 is devoted to explain related work which our
proposed method utilises or benchmark against. Chapter 3 explains our proposed method, that has two
different approaches for learning the likelihood. Experimental setup, datasets, visualisation and a quan-
titative comparison of methods and baselines are provided in Chapter 4. Lastly, the approach, results
and future work are discussed in Chapter 5. A full project git repository can be found here: https:
//github.com/jkkronk/semisupervised_lesion_seg.
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Chapter 2

Related Work

Our proposed method makes use of previous success within deep learning methods for generative models
and semantic segmentation described in this chapter. Furthermore, a semi-supervised baseline method used
for performance comparison is described in Section 2.4. Lastly, an overview of related work within pseudo
healthy synthesis is given in Section 2.5.

2.1 Variational Autoencoders (VAE)

VAE [33] is a generative model, trained in an unsupervised framework, that efficiently approximates stochas-
tic variational inference and intractable probability density functions of latent variables given higher di-
mensional training data, X . The model assumes that X originates from unobserved continuous random
variables z, which itself is generated from a random process of both the prior distributions p(z) and the
likelihood p(X|z). In a probability model perspective, VAE introduces joint probability of X and lower
dimensional latent variables z, formulated as marginal likelihood p(X) =

R
p(X|z)p(z). To find latent

variables z for a given dataset X we need to learn the likelihood p(z|X), i.e. the true posterior density of
p(z|X) = p(X|z)p(z)

p(X) . The true posterior is most often intractable and impossible to solve and instead of
solving it, VAE approximates the true posterior p(z|X) with a probabilistic encoder network q(z|X). Like-
wise, the likelihood term p(X|z) is approximated with an decoder/reconstruction network. The decoder
network samples z from prior learned Gaussian distributions using the reparameterization trick. A vector
z is sampled, using learned µX and �X , with the reparameterization z = µX + �X", " 2 N(0, 1). The
reparameterization trick allows the model to be differentiable and backpropagation can be used for training.
An overview figure explaining VAE structure can be seen in Figure 2.1.

The encoder and decoder networks is trained using Kullback-Leibler (KL) divergence, a measurement
of the divergence between the prior distribution and encoded prior, and the reconstruction loss through
the network. Together they form the evidence lower bound (ELBO) which, if maximised, minimises KL
divergence and serves as lower bound for p(x). The full loss function of a VAE is formulated in Equation
2.1, where X̂ is the reconstructed input X . When applied to imaging problems, normally both the encoding
and decoding network is implemented as CNNs. However, they can also be implemented with for example
a multiplelayer perceptions network.

L = KL(p(z|X), p(z)) + Eq(z|X)(log p(X|z)) (2.1)

Beyond learning the prior distribution p(X), VAEs also makes it possible to sample unseen data from the
learned distribution. This makes it possible to synthesise new unseen data, similar to the training data, from
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Figure 2.1: Overview structure of VAE.

the learned prior distributions. The synthesis is done by first sampling µ and � form a normal Gaussian
distribution N(0, 1). Then a z vector is produced using the the reparameterization trick. Lastly, the z

vector is fed into the decoder network, learned to faithfully reconstruct latent variables. Figure 2.2c shows
images synthesised from a VAE trained on a training dataset similar to MRI brain scans as seen in Figure
2.2a. Figure 2.2b shows the reconstructed test images from Figure 2.2a. Due to strong and complicated
dependencies between pixels, learning the probability density functions for high dimensional data, such as
images, is difficult. Nevertheless VAE is a good approximation.

There are several proposed extensions of VAE, such as [21, 49, 34]. These extensions typically aim to
better approximate the the true posterior p(z|X). GMVAE, for example, uses Gaussian mixture models,
instead of a normal Gaussian priors, to represent latent variables z. This expands the allowed space for
latent variables, which leads to better representation of z.

The general goal to learn probability density functions of VAE are similar to the goal of GANs [27].
However, instead of approximating a distribution of latent variables, GANs directly learn the distribution
via adversarial networks. GAN has recently become a popular model for image synthesis tasks.

2.2 Unsupervised Lesion Detection via Image Restoration with a Normative
Prior

Advances within generative models, like VAE, approximating prior models through latent variables, al-
lowed new methods for unsupervised lesion segmentation by detecting lesions as outliers of distributions
from healthy brain scans. New methods, such as [10, 46, 15], used variants of autoencoders or GANs to
approximate prior distributions for healthy data. The detection process was then done by reconstructing le-
sion images and detect lesions as regions with high reconstruction error, i.e. the difference between original
image and reconstructed image. The idea was that the trained model can not faithfully reconstruct lesions as
they have not been seen in the training data. While achieving competitive results, compared to earlier work,
these models produces a considerable number of false positives.

Similarly to these methods, You at al. (2019) [64] propose use of variants of VAE to approximate
the prior distributions for healthy brain scans. However, instead of using the reconstruction directly, the
detection is cast as restoration in image space. The restoration is solved by MAP estimation, where the prior
is combined with a likelihood term. The MAP estimation is solved iteratively with gradient descent to find
a restored image where the lesion tissue is replaced with pseudo ”healthy” tissue. The method is inspired by
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(a) Examples of test data.

(b) Reconstructed test images from Figure 2.2a.

(c) Random synthesised brain scans by sampling µz and �z from normal Gaussian distributions, N(0, 1).

Figure 2.2: Results of VAE using axial T2-weighted MRI brain scans from Cam-CAN dataset [54] for
training.

Tezcan et al. (2018) [57], who propose a similar method for MR image reconstruction.
With Bayes’ theorem, the MAP estimation is formulated as 2.2, where an image with lesion is denoted

as Y 2 IRN, N is the number of pixels. The restored pseudo ”healthy” image is denoted as X 2 IRN. p(Y )
can be neglected as it does not depend on X . Furthermore, p(Y |X) and p(X) can be separated by taking
the logarithm of both sides. Hence, Equation 2.2 is simplified to 2.3. This Bayesian formulation allows
to find a restored X , that maximises the posterior distribution p(X|Y ), from the likelihood term p(Y |X)
and the normative prior p(X). The likelihood term p(Y |X) acts as a data consistency term and punishes
changes in the restoration whilst the prior tries to change the image according to a learned prior. You et al.
approximated the normative prior using autoencoder models, like VAE and GMVAE trained on healthy data
to maximise the ELBO(X). A overview scheme of the method can be seen in Figure 2.3.

argmax
X

p(X|Y ) = argmax
X

[
p(X)p(Y |X)

p(Y )
] (2.2)

argmax
X

log p(X|Y ) / argmax
X

[log p(X) + log p(Y |X)] (2.3)

You et al. assumes lesions as structurally compact with sparse gradients and approximate the likelihood
p(Y |X) with TV norm [37]. This assumption corresponds to the lesion D = |X � Y | as having a low
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Figure 2.3: Overview of the unsupervised method for lesion detection using a normative prior [64]. Image
source from [16].

TV norm. With this, a hyper parameter � is introduced to balance the likelihood and normative prior.
By approximating p(x) to ELBO(X) along with approximating p(Y |X) with TV norm, Equation 2.3 is
approximated to Equation 2.4.

argmax
X

log p(X|Y ) ⇡ argmax
X

[ELBO(X) + �||X � Y ||TV ] (2.4)

As both the ELBO(X) and the TV norm are differentiable, with respect to the input image X , the
MAP estimation in Equation 2.4, is solved by gradient descent. In each iterative step, Xi is updated with
Equation 2.5, where X0 = Y and Xn = X̂ (the restored image). The gradient descent steps, with step size
↵, continues until the function has converges, i.e. gradients of the ELBO(X) and the TV norm are close to
zero for a number of iterations.

Xi+1 = Xi + ↵
@

@Xi
(ELBO(Xi) + �||Xi � Y ||TV ) (2.5)

Determining the hyperparameter � is done empirically by observing restoration of healthy subjects.
Restoring healthy subject should yield a restoration error as small as possible. By choosing a high �, whilst
still only little or no restoration error is seen when restoring healthy data, should result in good performance
when restoring lesions. You et al. showed that � was quite robust and good results was still found with a �

slightly off.
As described earlier, detecting the lesion D is done by taking the absolute difference of the original and

restored image, as D = |X�X̂|. This results in a lesion map with continues values where pixel values in D

are 0  D  1. To create a semantic binary segmentation from the lesion map, a threshold must be chosen.
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You et al. propose to choose the threshold by first restoring healthy images, which should result in a lesion
free segmentation. Secondly, the threshold is set as the lowest threshold to satisfy a pre set false positive
rate for the healthy segmentations. This method was first described by Konukoglu and Glocker (2017) [35].

You et al. outperform previous state of the art results for unsupervised lesion detection. Tested on the
BraTS dataset for tumour segmentation, the proposed method achieves up to AUC = 0.83 and dice score up
to 0.46(±0.23).

2.3 U-Net

Ronneberger et al. (2015) [51] propose a CNN architecture, named U-Net, for fast and accurate biomedical
image segmentation in a supervised framework. With a deep convolutional network, based on work from
Long and Selhammer [38], Ronneberger et al. created a state of the art image segmentation network. Still
today, methods using variants of U-Net achieve competitive results for various medical image segmentation
tasks [29]. Ronnerberger et al. also showed that U-Net can achieve good performance even for relatively
small datasets, by applying data augmentation and keeping the segmentation task relatively domain specific.

The network architecture of U-Net, seen in Figure 2.4, has a symmetric encoder-decoder structure form-
ing an U shaped structure, hence the name. The encoder contracts the input image and consists of four
layers where in each layer two 3x3 convolution operators, followed by a rectified linear unit and a 2x2 max
pooling operator are applied. The max pool operator down samples the image by two, while each layer
also increases feature layers by two. The decoder network reconstructs the segmentation by upsampling
the features in the bottleneck to the same shape as the input image. In each of the four decoder layers the
input is first upsampled and then concatenated with the corresponding encoder layer in order to localise the
features. After the concatenation, similarly as in the encoder, two 3x3 convolution operators followed by a
rectified linear unit are applied. Lastly, a convolution operator layer is used to get the right number of output
classes, which in binary classification is one. The network is normally trained by maximising the similarity
between the output and a ground truth segmentation map.

In the original paper, Ronnerberger’s propose the architecture for segmentation of neuronal structures
in electron microscopic stacks with input size of 512x512. The bottleneck has a size of 28x28, with a
receptive field of 78x78 before up sampling. In total, the original U-Net architecture has 7,759,521 trainable
parameters.

Dong et al. [22] applied a U-Net architecture on brain tumour segmentation task participating in BraTS
challenge 2015. A depth of 4 max pool layers and an input size of 240x240 2d slices was used. This achieved
a Dice score for the whole tumour of 0.86. Additionally, 3d U-Net [17], using 3d convolutional operators,
have been proposed. A 3d U-Net for brain tumour segmentation leverage the volumetric 3d nature of MRI.
However, these models require lots of training data and are usually expensive to train.

2.4 SimCLR - Contrastive Learning

Lately, methods for semi-supervised learning, leveraging unlabelled data, have become popular due to their
ability to substantially improve performance in various tasks. [14, 56, 45] are just a few of many examples
where using unlabelled data improved performance for supervised models. SimCLR [14] is a contrastive
self-supervised learning algorithm that showed improved state of the art performance with a semi-supervised
task. SimCLR aims to learn good representations from unlabelled data using strong data augmentation and
contrastive loss. The method can be used independent of architecture, in problems where for example
labelled data is scarce but a large dataset of unlabelled data is available.
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Figure 2.4: Network architecture for the original U-Net. Image source from [51].

The general goal of contrastive learning is to learn representations by punishing differences, maximis-
ing agreement, between two similar inputs and contrary contribute to differences, minimising agreement,
between two dissimilar inputs. This is done with Noise Contrastive Estimator loss function in Equation
2.6. Here, x+ is an augmented version of x, whereas x

� is a dissimilar data from x. The sim() function
is a distance function, proposed to be cosine similarity or dot product, and g() is the neural network with
trainable weights. An overview of the training scheme of simCLR can be seen in Figure 2.5.

NCEloss = � log
exp(sim(g(x), g(x+)))

exp(sim(g(x), g(x+))) +
PK

k=1 exp(sim(g(x), g(x�k )))
(2.6)

SimCLR can be applied to a wide variety of neural networks using a semi-supervised framework. For
example, the U-Net segmentation network might improve its performance by first pretraining the encoder
with constrictive loss using unlabelled data. The encoder is then learned to maximise agreement for similar
inputs, and correspondingly minimise agreement for different inputs. Following, the whole U-Net is then
fine-tuned with labelled data. The pretraining potentially helps learning important features in the encoder
and initialises parameters better for fine-tuning on labelled data. This idea is similar to how transfer learning
would improve performance.

2.5 Pseudo Healthy Synthesis

The problem of creating a pseudo ”healthy” image from a lesion image is, due to the nature of the problem,
a challenging topic within medical imaging. Firstly, there is a lack of paired non healthy and healthy data,
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Figure 2.5: Overview of training scheme for contrastive loss using simCLR [14]. Image source from [14].

as these data pairs is very hard or impossible to collect. Secondly, coming up with good quantitative metrics
for evaluation of pseudo ”healthy” images are hard. Lastly, creating pseudo ”healthy” images, is a ”one to
many problem” and a lesion image might have many possible solutions. Nevertheless, a few methods for
synthesising pseudo ”healthy” images has been proposed and lately these methods has become so good that,
for an untrained eye, its hard to distinguish a synthesised image to a real one.

Bowles et al. (2017) [11] propose a segmentation model based on image restoration where pairs of T1
and FLAIR MRI sequences were used to find a pseudo ”healthy” counterpart in the FLAIR sequence. Even
if this work is promising, as it relies that the lesions is visible in FLAIR but not in T1 sequence, its practical
use is limited. Since brain tumours are more or less visible in all sequences this approach is not suited for
our problem.

Xia et al. (2020) [63] propose an adversarial learning method to synthesise pseudo ”healthy” brain im-
ages from lesion images. The approach is to first disentangle the lesion image to a corresponding pseudo
”healthy” image and a lesion segmentation map. This is done with a generator and segmentation network.
Next, the two disentangled components get reconstructed back to the original image via a reconstructor
network. Although the main goal from this work is not a lesion segmentation, the authors provided segmen-
tation results from both the output of the segmentation network and through the reconstruction error. When
trained in an unpaired fashion, with no paired segmentation lesion pairs, and evaluated on BraTS dataset for
tumour segmentation, the method achieves a Dice score of 0.74 for the segmentation output and 0.7 through
the reconstruction error. However, as this method requires ground truth segmentation maps, (unpaired or
paired), it is not suitable for a setting, like ours, with few ground truth annotations. Results of synthesised
lesion images can be seen in Figure 2.6. One can see that tumour areas gets reconstructed faithfully, however
the method also changes the healthy tissue, which is not desirable.
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Figure 2.6: Resulting synthesis of lesion images. Left: Original lesion images; Right: Synthesised pseudo
”healthy” images. Image source from [63].
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Methods

In this chapter we are first going to present an overview of the proposed methods used for brain lesion
detection, resulting in a binary segmentation, via image restoration. Secondly, learning the normative prior
is explained in Section 3.2. Following, two proposed approaches of learning the likelihood is described in
Section 3.3. Lastly, Section 3.7 describes used data augmentation for our method.

3.1 Overview

Our proposed method can be seen as a supervised extension of the method proposed by You et al. [64]
for unsupervised lesion detection via image restoration with a normative prior. Our idea is to leverage
the prior information, learned in an unsupervised framework, combined with a likelihood term, learned in
a supervised framework with limited amounts of data, to restore a lesion image into a pseudo ”healthy”
image. The method detects lesions and results in a binary semantic segmentation, tested on whole tumour
segmentation problem.

In this work we assume that a lesion can be modelled as additive noise, D 2 IRN, to a pseudo ”normal”
image, X 2 IRN. An image with a lesion is then described as Y = X +D. If X is available, the lesion can
be obtained by the absolute difference between Y and X , D = |Y �X|. Since X is not given, first we need
to restore X from Y . This restoration corresponds to the pseudo ”healthy” synthesis task, which we solve
using MAP estimation and Bayes theorem, similar to You et al., as in Equation 2.2 and 2.3. Here, p(Y |X)
is the likelihood term and p(X) is the normative prior. The MAP estimation optimisation problem is solved
through gradient descent, where X is iteratively updated with the gradient of log p(Y |X) + log p(X), with
respect to X , as Equation 3.1. ↵ is the step size of the gradient descent and initially X0 = Y . Restoration
continues n steps until convergence.

Xi+1 = Xi � ↵


@

@Xi
[log p(Xi) + log p(Y |Xi)]

�

= Xi � ↵


@

@Xi
log p(Xi) +

@

@Xi
log p(Y |Xi)

� (3.1)

Before carrying on with more specific details about the normative prior and the likelihood, let’s recall
that You et al. divides their method into two steps: 1) learning a normative prior of a healthy brain autonomy
and 2) casting lesion detection as image restoration and detecting lesions as regions with high restoration
error. Likewise, we divide our method into these two steps, where the two steps are identical in both meth-
ods. However, our extension includes learning the likelihood term, which in an unsupervised framework is
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not possible. Hence we add an extra step in our method. The full proposed method can then be divided into
the following three steps:

1. Learning a normative prior using unsupervised learning

2. Learning the likelihood term using supervised learning

3. Restore lesion regions to pseudo ”healthy” and detect lesions as regions with high restoration error

3.2 Learning the Prior

We make use of the same method for learning prior distributions for normal data as You et al. In our case
the normal data corresponds to a healthy brain autonomy. Since learning the prior is not the focus of this
work, we refer to the work of You et al. for a more in depth description and further reading.

As described in Section 2.1, VAEs can be used to approximate probability density functions of latent
variables z 2 IRn given a higher dimension input X 2 IRN, where n << N . VAEs define a lower bound for
approximating the prior distribution p(X), using the reconstruction loss and KL divergence, together called
ELBO(X). While training, we optimize parameters of VAE network to maximise p(X) by minimising the
ELBO(X) for a healthy dataset. While testing, minimising the ELBO(X) for abnormal test data results
in a pseudo ”normal” counterpart image given the learned prior.

The network architecture for the used VAE is, identical to what You et al. propose, a CNN with residual
blocks. The encoder’s residual blocks, shown in Figure 3.1, contain a combined straight path and shortcut
path. The straight path contains two consecutive convolutional operators (3x3), with stride 1 and stride 2.
Each convolution has a leaky rectified unit as activation function. The shortcut consists of one convolution
(3x3), with stride 2. Similarly, the shortcut also has a leaky rectified unit as activation function. Following
each convolution is a batch normalisation operator that allows for higher learning rates and ease training.
The encoder is built up of six residual blocks, where an input of 128x128 results in latent variables of
size 512. The decoder consists, similar to the encoder, of six up-convolutional residual blocks. These up-
convolution blocks are identical as the encoder residual blocks but use up-convolution operators, instead
of normal convolution operators, to decode the image from the latent variables. The 512 sampled latent
variables result, after the decoder, in a 128x128 output. For further details, see architecture printout in
Appendix Section A.3.

For our proposed method any autoencoder model, for example VAE and GMVAE, approximating nor-
mative prior distribution p(X) can be used. However, since the focus of this work is not to extend, improve
or explore different models approximating the normative prior, a VAE network is used. VAE is a well known
and an accepted model to approximate the prior.

In MAP estimation, the normative prior p(X) is restricted with a likelihood term p(Y |X), punishing
large deviations from Y . In our case, we use the likelihood term to restrict ELBO(X) and punish changes
in healthy tissue.

3.3 Learning the Likelihood

Our approach is to use, either an implicitly or explicitly, trained segmentation network, NN✓(Y,X), that
multiplied by �ELBO(X) approximates the gradient of likelihood term p(Y |X) and acts as the data con-
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Figure 3.1: Residual block of encoder as implemented in the VAE.

Figure 3.2: Schematic overview of the restoration process.

sistency term for the normative prior p(X). The idea is that the prior restores lesions good enough, but fails
with encapsulating detailed variances which result in normal tissue being wrongly restored. The proposed
segmentation network restricts normal tissue from being restored by the normative prior. The gradient de-
scent step in Equation 3.1, can with our approach be written as Equation 3.2 where p(X) is approximated
with ELBO(X). The segmentation network is a neural network, with sigmoid output activation function,
that gives a pixel wise probability, 0  p  1, for lesions. If approximated correctly, normal tissue should re-
sult in the segmentation network to output one and hence cancel out gradients of ELBO(X). Respectively,
lesion tissue should result in zero and hence allowing ELBO(X) to change these regions. A schematic
overview of the restoration process is illustrated in 3.2.

Xi+1 = Xi � ↵


@

@Xi
ELBO(Xi)� (

@

@Xi
ELBO(Xi)) · NN✓(Xi, Y )

�
(3.2)

While testing, we make use of both the separately trained prior and likelihood term to obtain a pseudo
”healthy” image, i.e. in our case the tumour regions are restored to ”healthy” while healthy regions are
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not. The segmentation map is then obtained by the difference between the restored and original image,
S = |Xn � Y |. Algorithm 1 illustrates an overview of how the restoration is performed while testing.

Algorithm 1 Testing: f : X �! Ŝ, X 2 IRN

X0 = Y

for i in range(n) do
X̂s = NN✓(Y,Xi)

Xi+1 = Xi � ↵

h
@

@Xi
ELBO(Xi)� ( @

@Xi
ELBO(Xi)) · X̂s

i

end for
Ŝ = |Xn � Y |

In Algorithm 1 there are two parameters to set, ↵ and n. ↵ is the size of the gradient descent step and
should practically be set as low as possible, keeping in mind that a low step size increases convergence time
for the optimisation problem. The restoration iteratively continues n steps, until convergence, i.e. when the
gradients are close to zero for a number of steps.

The proposed network architecture for the segmentation network is a modified U-Net [51] where the
network is reduced considerably in order to prevent overfit. An original U-Net architecture has proven to
perform good on limited amount of data, however in our setting we have extremely limited amount of data.
Additionally, the final segmentation result is a combination of the segmentation network and normative prior
output, hence the segmentation network does not need to perform as if it is a standalone segmentation net-
work. Reducing the network size and the space allowed for network parameters should help reduce overfit.
We propose the same encoder and decoder with skip connections as the original U-Net. Nonetheless, we
reduce layers to 3 and initial features to 2. This shrinks the U-Net substantially, whilst hopefully producing
a better end result since overfit is potentially reduced. We name our network as a ”shallow U-Net”. The
detailed network architecture printout can be found in Appendix Section A.2.

We train the segmentation network with Adam optimiser [32], an optimisation method proven to success-
fully train deep neural networks efficiently. Adam is an optimisation algorithm that is based on, AdaGrad
[23] and RMSProp [59], with adaptive estimation of lower order momentum. To prevent overfit we perform
early stop when the validation loss starts to increase. Learning rate is set with a naive approach, where the
network is trained and learning rate is chosen to the best, in terms of performance for the validation data.
We propose two different ways of learning the likelihood: one implicit and one explicit way with different
loss functions.

3.3.1 Implicit Learning

The first proposed approach to train the segmentation network is in an iterative implicit manner, optimised
with Dice loss function as Equation 3.3. Here, the segmentation network is trained to find a good implicit
segmentation in each restoration step. DiceLoss, defined as Equation 3.4 and also known as F1-Loss, have
been proven to work good for training CNNs for medical images [41]. Especially, Dice loss works good
for problems with unbalanced classes such as brain tumour detection. Other loss functions, binary cross
entropy and structural similarity, were also tested but Dice loss seemed to fit our problem best in terms of
performance and training speed. S 2 {0, 1} corresponds the ground truth semantic segmentation, labelling
lesions as 1 and normal tissue as 0. Training the network in this implicit manner results in a segmentation
that will punish deviations outside of the lesions while restoring.
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Figure 3.3: Training scheme for the neural network NN✓(Y,X), where each restoration block corresponds
to Equation 3.2. The dotted arrows show the graph for backpropagation and the continues arrows show the
restoration process.

Loss✓ = DiceLoss(NN✓(Y,Xi), (1� S)) (3.3)

DiceLoss(X, X̂) = 1� 2XX̂ + 1

X + X̂ + 1
0  X  1, X̂ 2 {0, 1} (3.4)

Training the network is done in an iterative manner, as Figure 3.3, which correspond to restoring and
training the image simultaneously as Equation 3.5. Here, n is the number of restoration steps and m is the
number of epochs. This iterative approach allows the network to see every restored image which, in theory,
extends the dataset to include lower grade tumors restored from higher grade tumours. One could see this as
a sort of data augmentation. Additionally, this iterative approach allows data augmentation, further explained
in Section 3.5, to be performed inside each restoration step. This is implemented by having two forward
passes through the network, one forward pass with augmented input for the loss function and one forward
pass with direct input for the next restoration step. Two forward passes allows each restoration step to be
more faithful since there is no augmentation performed for the step, only on the loss function. Additionally,
a more aggressive data augmentation can be used since the normative prior does not need to reconstruct the
augmented image. For better and more stable optimisation of network parameters ✓, the loss is aggregated
and ✓ updated after each restoration. The full algorithm for the training is illustrated in Algorithm 2.

✓ = argmax
✓

mX

j=0

nX

i=0

Loss✓ (3.5)

3.3.2 Explicit Learning

The second proposed approach, for training the segmentation network, is in an explicit manner, where the
network is optimised to achieve the best final segmentation, rather than, as the implicit approach, optimised
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Algorithm 2 Training Implicit: ✓ = argmax✓
Pm

j=0

Pn
i=0 Loss✓

for j in range(m) do
X0 = Y

L = 0
for i in range(n) do

X̂s = NN✓(Y,Xi)
L = L+DiceLoss(X̂s, (1� S))

Xi+1 = Xi � ↵

h
@

@Xi
ELBO(Xi)� ( @

@Xi
ELBO(Xi)) · X̂s

i

end for
⇥net = ⇥net � �1

@
@✓net

L

end for

to achieve a good gradient step to a good pseudo ”healthy” restoration. The explicit learning approach has
the same restoration fashion and network architecture as the implicit approach. However, training aims to
minimise the loss function as Equation 3.6, where the network learns to optimise the final segmentation. Xi

is the partly restored image in each restoration step and X0 = Y is the original input image. The ground truth
segmentation S is defined as 0 for healthy tissue and 1 for lesion tissue. K is an activation function factor,
explained in the next paragraph. An overview of the training is further described in Algorithm 3. This
approach is promising since it is aimed to optimise the final segmentation and the segmentation network
itself is guiding the prior term, rather than restricting it as in the implicit approach.

Loss✓ = DiceLoss(tanh(K(Xi �X0)
2), S) (3.6)

Algorithm 3 Training Explicit: ✓ = argmax✓
Pm

j=0

Pn
i=0 Loss✓

for j in range(m) do
X0 = Y

L = 0
for i in range(n) do

X̂s = NN✓(Y,Xi)

Xi+1 = Xi � ↵

h
@

@Xi
ELBO(Xi)� ( @

@Xi
ELBO(Xi)) · X̂s

i

L = L+DiceLoss(tanh(K(Xi+1 �X0)2), S)
end for
⇥net = ⇥net � �1

@
@✓net

L

end for

Since the segmentation map, (Xi � X0), has continues values in the interval �1  Xn � X0  1 it
can not be directly compared and optimised to the binary ground truth segmentation. Hence, an activation
function must map values of the segmentation map to a binary map. This could be done by a customised
hyperbolic tangent function, as tanh(x2) = ex

2�e�x2

ex2+e�x2
. This activation function is shown in Figure 3.4. The

segmentation map power by 2 allows both positive and negative changes to be labelled as lesions. The
problem with the proposed activation function is that it does not allow small values in the segmentation
map to be mapped to 1. Since our data is normalised between 0 and 1, intensity value for the segmentation
map will naturally only be small values. To solve this, a K hyper parameter is added as a factor to the
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Figure 3.4: Plot of activation function: y = tanh(x2).

Figure 3.5: Training scheme for the neural network NN✓(Y,X), where each restoration block corresponds
to Equation 3.2. The dotted arrows show the graph for backpropagation and the continues arrows show the
restoration process.

segmentation map. Choosing a correct value K turns out not to be trivial. One could say that any false
positives in the segmentation map should be punished and hence set K to a large value. However, setting
a very large value of K affects the gradients of network parameters ✓ while training and might result in
unstable learning. We set the K parameter empirically with the help of an additional validation set and
choose a K that maximises the performance for both training and validation set.

In difference to the implicit approach, the explicit approach can be trained in two different fashions.
Either, backpropagation is done in each detached restoration step and losses aggregated, shown in 3.5,
similar to how the implicit method is trained. Else, the restoration is kept connected and backpropagation of
loss is only performed once after the restoration is complete. This fashion, shown in 3.6, has similarities to
how recurrent neural networks are trained. This training fashion requires more memory which can be solved
by lowering the batch size. It is not straight forward which approach is theoretically best for our setting.
However, backpropagation from the end result is somewhat more appealing since it optimises only the end
segmentation result. To keep the implementation simple and be able to easily compare the implicit and
explicit approach, we choose to implement the explicit approach with a disconnected graph and aggregated
loss, i.e. the same implementation as the implicit approach.
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Figure 3.6: Training scheme for the neural network NN✓(Y,X), where each restoration block corresponds
to Equation 3.2. The dotted arrows show the graph for backpropagation and restoration process.

3.3.3 Gradient Learning

While exploring different approaches for learning the likelihood term we tried several different strategies.
Although the restoration process is similar in all of the tested approaches, there are many ways to define a
loss function for training the network.

One other approach we tried was to learn from the gradient descent steps. The idea was drawn from
the work of Adler and Öktem (2017) [1] who proposed a method for solving ill-posed inverse problems
using iterative deep learning networks. Their approach consists of learning gradient steps to solve a optimi-
sation problem similar to our goal. Our idea was to update the gradient step with Equation 3.7 where the
neural network guides the gradient in a learned direction. The network was trained in an iterative manner
while restoring and the loss function was defined to minimise the difference between the gradient and the
segmentation map as in Equation 3.8. However, this loss function is only valid for the first iteration of the
restoration since there is only a ground truth segmentation for the full lesion available and naturally in each
restoration step the lesion is partly restored. Hence, when the image is partially restored the segmentation
map is not valid and the network will train to restore already restored ”healthy” regions. This approach is
promising but the drawback of only being able to learn from one restoration step limits its performance.

Xi+1 = Xi � ↵


@

@Xi
ELBO(Xi)� NN✓(Y,X)

�
(3.7)

Loss✓ = DiceLoss(


@

@Xi
ELBO(Xi)� NN✓(Y,X)

�
, S) (3.8)

3.4 Choosing Threshold for Binary Segmentation

The restoration error found when restoring image X to X̂ is the segmentation map, Ŝ = |X � X̂|. Here,
the segmentation map has continues values in range 0  Ŝ  1. To create a binary segmentation map, as
S 2 0, 1, we need to choose a threshold for the continues segmentation map. With the available data there
are two proposed options to achieve this.

First option is a naive approach of simply choosing the best threshold that yields best performance while
restoring the training data. The best threshold is considered to be the threshold with the highest Dice score,
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calculated as in Equation 3.9. This approach assumes that the training dataset generalises well outside the
training data. However, in our setting, since we have a large dataset of unlabelled data, we can also leverage
this data to set a good threshold.

Dice =
2||X \Xn||
|X|+ |Xn|

=
2TP

2TP + FP + FN
(3.9)

The second option for calculating threshold, also the approach of You et al, is to leverage the unlabelled
data. In our setting the unlabelled data is consisting of ”healthy” image scans without lesions. If this data
is being restored, the resulting segmentation map should not show any lesion regions. This approach was
first introduced by Konokoglu and Glocker (2017) for reconstructing subject-specific effect maps. The idea
is to first choose an acceptable false positive rate for the healthy brain images. After restoring these and
obtaining the segmentation map, the threshold is chosen to be as low as possible, whilst achieving the set
false positive rate. This approach allows for pre-defined amounts of change in healthy tissue and assumes
that there will be more change in regions with lesions.

In experiments we will report results of both these approaches to investigate which is best for our setting.
Even if the second option is good in theory, the training set might generalise the test good enough and result
in higher performance, especially when the training set is large.

3.5 Data Augmentation

To improve generalisation capabilities of the used neural networks, we make use of data augmentation.
Recall that our problem only allows use of a limited labelled training dataset. Data augmentation plays
an important role in ”increasing” our dataset, which leads to improved generalisation of the used neural
networks. Better generalisation leads to less overfit and better performance outside the training data. We
have implemented our data augmentation as a composition of random transforms and augmentation is done
on the fly. The proposed transforms was chosen after reading the review paper of Nalepa et al. (2019) [43].

We used two different sets of transformations while training our methods. First data augmentation, as
seen in Table 3.1, was used to augment data for training the VAE. For each new training epoch pre-processed
data gets randomly transformed, which results in a ”infinite” dataset.

The second set of transformations, as seen in Table 3.2, is performed, in each restoration step, while
training the segmentation network with the implicit and explicit approach. By performing two forward
passes through the network, one forward pass for the loss function and the second forward pass to take a
gradient step, a more aggressive data augmentation can be used. Since the VAE will only see non augmented
data it can still achieve a faithful prior, whilst the segmentation network leverage a more aggressive data aug-
mentation. Figure 3.2 shows random data augmentation for a single slice using data augmentation as Table
3.2. Data augmentation was implemented using imgaug library, https://imgaug.readthedocs.
io/en/latest/.
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Transform Parameter
Horisontal Flip 0.5%

Rotate random(±10 deg)
Elastic Deformation ↵ = random(0, 100), � = 10

Scale random(±0.20%)
Average Blur random(0,4)

Linear Contrast random(±0.2)
Intensity Multiply random(±0.2)

Table 3.1: Random transformations used for data augmentation while training the VAE.

Transform Parameter
Horisontal Flip 0.5%

Vertical Flip 0.5%
Rotate random(±20 deg)

Elastic Deformation ↵ = random(0, 200), � = 20
Scale random(±0.20%)

Average Blur random(0,4)
Linear Contrast random(±0.3)

Intensity Multiply random(±0.2)

Table 3.2: Random transformations used for data augmentation while training the segmentation network.

Figure 3.7: Data augmentations with random transformations as Table 3.2 on same axial T2-weighted slice.
The top left image is the original non augmented input image.

28



Chapter 4

Experiments and Results

This chapter will explain the experimental setup and present results from our method and baselines. Firstly,
after description of experimental setup, we will visualise results for each baseline and the proposed methods
separately. Secondly, a quantitative comparison between the methods will be presented.

4.1 Experimental Setup

4.1.1 Datasets

Our method was trained and tested on brain tumour segmentation problem, using T2-weighted 2d axial
slices. T2-weighted sequence was chosen because of its extensive use for both healthy and brain tumour
MRI scans. It is possible for the method to be extended and applied leveraging 3d volumetric inputs and
more channels, e.g. T1-weighted, T1-weighted with contrast enhancement and FLAIR. However, extending
the method to 3d volume segmentation will introduce more spatial dependencies which might require a
larger dataset. Additionally, 3d volumetric segmentation can be seen as out of scope for this work and hence
we did not explore it further. Extending the method to include more sequences might be possible, however
this would make implementation of restoration process more complicated as every sequence needs to be
restored separately and lesion detection might not be as straight forward. As the focus of this work was to
present proof of a working method, extra sequences were not considered essential or important and were
therefore left out.

Two datasets, Cam-CAN [54] dataset and BraTS 2017 challenge dataset [7], were used for training our
neural networks. Moreover, a hold out subset of the BraTS challenge dataset was used for testing. The
Cam-CAN dataset consists of 653 T2-weighted MRI scans of healthy adult individuals. The 653 subjects
were randomly divided into 500 training subjects and 153 validation subjects. The scans were already skull-
stripped and co-registered to the same anatomical template. The T2-weighted scans are 256x256x192 and
with resolution of 1x1x1 mm per voxel. We use the Cam-CAN dataset as both an unlabelled dataset for
training the VAE, and also for choosing the threshold to achieve a binary segmentation map.

The BraTS 2017 challenge training dataset consists of 285 MRI scans of glioblastoma (HGG) and lower
grade glioma (LGG) patients with ground truth segmentations. The dataset is obtained from several differ-
ent institutions and machines, which results in relatively high variances in sizes, resolution, sharpness and
contrast within the dataset. Ground truth segmentations were manually done by several raters following a
standard protocol, and approved by neuroradiologists. Annotations of tumours consist of four labels, GD-
enhancing tumour, peritumoral edema, necrotic and non-enhancing tumor. However, because of the nature
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of our approach, we labelled all of these mentioned labels as tumour tissue and our segmenting problem
is what BraTS challenge calls whole-tumour segmentation. The BraTS dataset was already skull-stripped,
co-registered and interpolated to the same resolution. Since the official test dataset of BraTS challenge
dataset is not fully available for public, we randomly separated the training set into a new training set of 235
subjects and a test set of 50 subjects.

To understand how much labelled data is required for our method, we trained each model with 1/3/10/30/100
number of subjects. To understand the variation between models trained on different subjects, each model,
with 30 or less subjects, was trained 5 separate times with randomly chosen subjects. The validation set was
randomly chosen as 15% of the total slices from the chosen subjects. To be able to compare results, identical
subjects were trained on the proposed and baseline methods.

4.1.2 Data Preprocessing

Our data preprocessing consists of steps as described in the list below. All steps are further explained in this
subsection.

1. Bias field correction

2. Normalising (0,1)

3. Resize and Crop to 128x128

4. Histogram matching

Data preprocessing is important when working with MRI mainly because of two reasons. Firstly, in raw
MRI there is often a bias field present which is expressed as an added low-frequency and smooth signal to
the underlying real data. The bias field is causing pixel intensities of the same tissue type to be dependent
on where they are spatially located. Bias field removal is a well studied topic. N4ITK, proposed by Tustison
et al. (2010) [60], is an improved N3 bias correction method and it is recognised for its robust performance.
As a first step in our data preprocessing pipeline, we make use of N4ITK for bias field correction.

Secondly, MRI does not have a consistent intensity scale, e.g. pixel values of identical tissue, taken
in two separate scans in different environments, might not result in the same intensity value. Hence, in
prepossessing MRI data the images need to be normalised and brought to the same scale. We normalise
every slice to the interval 0  X  1 with equation 4.1.

Y =
Y �min(Y )

max(Y )�min(Y )
(4.1)

After bias field correction and normalisation, as described above, we resize the image to the same reso-
lution. Further, we crop each slices to 128x128 to remove uninteresting background regions and make every
slice fit our proposed network architecture. Lastly, we perform histogram matching on BraTS data using
random subjects from the Cam-CAN dataset. Histogram matching reduces the differences between both
datasets. This is important since we make use of both datasets simultaneously in our method.

4.1.3 Evaluation Metrics

In order to compare the proposed methods to other baselines we chose to evaluate them all with the quan-
titative metrics area under the ROC curve (AUC) [12] and Dice score [20]. AUC measures the total area
under the ROC curve, which plots the true positive rate against the false positive rate. AUC is in no need
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of a binary segmentation map, since it is invariant of the segmentation thresholds and rather measuring the
quality of the models prediction. Dice score, as defined in Equation 3.9, on the other hand needs a binary
segmentation map for measuring the quality by calculating the degree of spatial overlap between the pre-
diction and ground truth. In medical imaging both AUC and especially Dice score is extensively used as
evaluation metrics, and hence they are chosen to evaluate this work.

4.1.4 Implementation Details

The proposed methods was implemented using pytorch and full project code repository is available at
https://github.com/jkkronk/semisupervised_lesion_seg/. All models were trained
using a batch size of 32 on Nvidia Titan X and Xp GPUs.

4.2 Results for Baselines

4.2.1 Unsupervised Lesion Detection via Image Restoration with a Normative Prior

Our method is an extension of the method proposed by You et al. naturally we compare our results to this
method. Keeping in mind that You et al. only leverage unlabelled data and the likelihood term is modelled
with TV norm, then our extension should at least improve its performance.

Differently to the proposed methods from You et al. we trained the VAE, for learning the normative prior,
with data augmentation. BraTS dataset and Cam-CAN dataset have some differences, such as sharpness,
contrast and intensities, and data augmentation while training the VAE can help to better reconstruct images
from BraTS dataset. We used an identical VAE to approximate the normative prior in both the proposed
methods and the unsupervised restoration. The VAE was trained, with the unlabelled ”healthy” dataset
Cam-CAN, using Adam optimiser with learning rate 10�3. The training continued for 300 epochs until the
validation set started to diverge, which took about 40h. In the restoration process, each slice was restored
with 250 steps, with a step size of 3⇥10�3. The � hyperparameter, governing the influence of the TV norm,
was empirically set to 2.

We visualise the results from our implementation of unsupervised lesion detection in Figure 4.1. It is
quite impressive that an unsupervised method like this can detect lesions quite well without having any prior
knowledge about them. However, in some cases the methods fails and produce a grossly wrong segmenta-
tion. When tested on our dataset, out implementation of the unsupervised method performed AUC = 0.80,
Dice(FPR � 0.01) = 0.34 and Dice score of around 0.35. This performance is comparable to the perfor-
mance You et al. presented.

4.2.2 U-Net

The implemented U-Net has the same architecture as the original U-Net but. However, different data aug-
mentation was used to increase generalisation of the network and to better suit the problem of brain tumour
segmentation. The network was trained using Adam optimiser with learning rate of 10�4 and early stop
when the validation set performance started to decrease. Training the U-Net took about 2-8h depending on
how much training data was available. The detailed architecture of the network can be found in Appendix
Section A.1. Visualisation of the resulting segmentation map can be seen in Figure 4.2. We notice that the
resulting segmentation looks quite well already when using only 10 subjects. Full test results for U-Net can
be found in Appendix Table A.3.
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Figure 4.1: Visualisation over restoration method using unsupervised lesion detection [64]. Row 1: Orig-
inal image; row 2: Restored pseudo ”healthy” image; row 3: Resulting segmentation map; row 4 Binary
segmentation map using false positive rate 0.01; row 5: Ground truth segmentation

Figure 4.2: Segmentation result using U-Net. Row 1: Original image; row 2: Segmentation using 1 subject;
row 3: Segmentation using 10 subject subjects; row 4: Segmentation using 10 subjects; row 5: Segmentation
using 100 subjects; row 6: Ground truth segmentation

32



CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.3: Segmentation results using a pretrained U-Net with simCLR. Row 1: Original image; row 2:
Segmentation using 1 subject; row 3: Segmentation using 10 subject subjects; row 4: Segmentation using
10 subjects; row 5: Segmentation using 100 subject; row 6: Ground truth segmentation

4.2.3 SimCLR / U-Net - Contrastive Learning

To compare our proposed methods with a baseline that also leverage the unlabelled data, provided in our
setting, we implemented simCLR to pretrain the encoder part of the U-Net. The idea is that after the pretrain-
ing, the encoder parameters are better initialised and fine tuning the encoder and decoder part, as an original
U-Net, should result in at least slightly better performance. The network architecture was identical to the
baseline U-Net. We used the original git repository [https://github.com/sthalles/SimCLR] for
implementation of contrastive loss. Furthermore, we used dot product as similarity function and the con-
trastive learning was trained using Adam optimiser with learning rate of 10�4 and weight decay of 10�6.
Early stop was used and the pre-trained model was saved when the validation loss was minimised. The
U-Net training parameters were identical to when training without simCLR. Visualisation of the resulting
segmentation map can be seen in Figure 4.3. The segmentation results can easily be compared to the results
from a vanilla U-Net and its hard to say if there are any improvements from only looking at the segmenta-
tions. Full test results for pre-trained U-Net using simCLR can be found in Appendix Table A.4.

4.3 Results for proposed methods

The training for the two methods proposed in this thesis have two separate steps. First, a VAE was trained to
approximate a normative prior. The VAE was trained identically as in the baseline method for unsupervised
lesion detection, described in Section 4.2.1. Secondly, the segmentation as was trained, in a supervised
setting, to approximate the likelihood term. After the training, the restoration and segmentation of test
images was performed.
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Figure 4.4: Visualisation over restoration method using implicit learning and 1 subject. Row 1: Original
image; row 2: Restored pseudo ”healthy” image; row 3: Segmentation map; row 4: Binary Segmentation
with fpr = 0.01; row 5: Ground truth segmentation

4.3.1 Results for Implicit Learning

The segmentation network was trained using Adam optimiser with learning rate 10�3 for 100-200 epochs
and early stop when validation loss started to increase. Training took about 6-18h, depending on how many
subjects were trained. The hyperparameters for restoration were empirically set to n = 10 steps with a
step size of ↵ = 3 ⇥ 10�1. We noticed that increasing the number of restoration steps did not increase
the performance, it only increased training time. The step size was set to yield best results and reconstruct
tumours as much as possible. Full test results for the implicit approach can be found in Appendix Table A.1.

Figures 4.4, 4.5 and 4.6 visualise the result from the implicit approach using 1, 10 and 100 subjects
for training. We notice that the method is pretty good at restoring a lesion image to a pseudo ”healthy”
counterpart, at least for an untrained eye. When adding more subjects to the training set both the restoration
and segmentation seem to get more accurate. Additionally, we can notice that, when trained with only a
few subjects, the implicit method is having problem when there are bight ventricles present in the image.
Segmentation performance, especially using only few subjects typically results in more false positives.

4.3.2 Results for Explicit Learning

The setup to train the segmentation network with the explicit learning approach is similar to the implicit
approach, but with a different loss function. The parameters for the restoration were changed, to step size of
1⇥10�1, to allow better training using the explicit loss function. The K factor parameter for the explicit loss
activation function was set empirically with the help of an extra validation subject. We chose a K = 100,
as it maximises the performance for the extra validation subject. Similar to training with the implicit loss,
the network parameters were optimised using Adam optimiser with a learning rate of 10�3 and early stop to
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Figure 4.5: Visualisation over restoration method using implicit learning and 10 subjects. Row 1: Original
image; row 2: Restored pseudo ”healthy” image; row 3: Segmentation map; row 4: Binary Segmentation
with fpr = 0.01; row 5: Ground truth segmentation

Figure 4.6: Visualisation over restoration method using implicit learning and 100 subjects. Row 1: Original
image; row 2: Restored pseudo ”healthy” image; row 3: Segmentation map; row 4: Binary Segmentation
with fpr = 0.01; row 5: Ground truth segmentation
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Figure 4.7: Visualisation over restoration method using explicit learning and 1 subjects and K = 1000.
Row 1: Original image; row 2: Restored pseudo ”healthy” image; row 3: Segmentation map; row 4: Binary
Segmentation with fpr = 0.01; row 5: Ground truth segmentation

minimise overfit.
Figures 4.7, 4.8 and 4.9 visualise the result from the explicit approach using 1, 10 and 100 subjects for

training. Firstly, we can see that the method is not working well for neither synthesising a pseudo ”healthy”
image nor performing a good segmentation. When trained on only one subject there are considerable amount
of false positives and the method also to some extent misses tumours completely. Full test results for the
explicit learning can be found in Appendix Table A.2.

4.4 Quantitative Comparison

Table 4.1 presents a quantitative comparison between the methods with different number of subjects. Mod-
els, trained with 30 subjects or less, is presented with mean scores from testing 5 different models with
different training subjects. We trained our models on 1/3/10/30/100 subjects to compare performance. Ad-
ditionally, Figures 4.10 and 4.11 show proposed and baseline methods compared to number of subjects.
Firstly, we notice that already with use of one subject the performance of our methods are increased, com-
pared to the performance of the unsupervised lesion detection method proposed by You et al. Moreover,
while using only one subject we show that our method have slightly better performance than a simCLR and
a vanilla U-Net. However, already with 3 subject or more the U-Net performs as good or better than our
methods. We also notice that the simCLR approach only increase the Dice score slightly when used for
pre-training the U-Net. We clearly see a distinct difference in results between implicit and explicit learning
approach. The implicit approach outperforms the explicit approach by good margin and we can see that the
explicit approach can not compete with baseline methods.
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Figure 4.8: Visualisation over restoration method using explicit learning and 10 subjects. Row 1: Original
image; row 2: Restored pseudo ”healthy” image; row 3: Segmentation map; row 4: Binary Segmentation
with fpr = 0.01; row 5: Ground truth segmentation

Figure 4.9: Visualisation over restoration method using explicit learning and 100 subjects. Row 1: Original
image; row 2: Restored pseudo ”healthy” image; row 3: Segmentation map; row 4: Binary Segmentation
with fpr = 0.01; row 5: Ground truth segmentation
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Methods AUC Dice (naive) DICE (fpr 0.01) DICE (fpr 0.05)
You et al. 0.80 – 0.34 0.35

(a) Result comparison using 0 subjects.
Methods AUC Dice (naive) Dice (fpr 0.05) Dice (fpr 0.01)
Implicit Learning 0.86(±0.02) 0.51(±0.05) 0.51(±0.07) 0.53(±0.05)
Explicit Learning * 0.80(±0.04) 0.38(±0.03) 0.41(±0.04) 0.41(±0.03)
U-Net 0.85(±0.02) 0.49(±0.06) – –
SimCLR / U-Net 0.84(±0.02) 0.50(±0.13) – –

(b) Result comparison using 1 subject. * Uses one extra labelled subject for tuning the K-factor.
Methods AUC Dice (naive) Dice (fpr 0.05) Dice (fpr 0.01)
Implicit Learning 0.90(±0.02) 0.61(±0.03) 0.61(±0.05) 0.63(±0.02)
Explicit Learning 0.83(±0.05) 0.48(±0.09) 0.45(±0.07) 0.47(±0.07)
U-Net 0.90(±0.02) 0.58(±0.07) – –
SimCLR / U-Net 0.87(±0.05) 0.59(±0.07) – –

(c) Result comparison using 3 subjects.
Methods AUC Dice (naive) Dice (fpr 0.05) Dice (fpr 0.01)
Implicit Learning 0.91(±0.03) 0.64(±0.03) 0.54(±0.12) 0.64(±0.05)
Explicit Learning 0.85(±0.04) 0.55(±0.04) 0.45(±0.07) 0.48(±0.06)
U-Net 0.94(±0.01) 0.70(±0.03) – –
SimCLR / U-Net 0.94(±0.01) 0.70(±0.04) – –

(d) Result comparison using 10 subjects.
Methods AUC Dice (naive) Dice (fpr 0.05) Dice (fpr 0.01)
Implicit Learning 0.95(±0.01) 0.67(±0.04) 0.65(±0.07) 0.67(±0.03)
Explicit Learning 0.88(±0.02) 0.56(±0.04) 0.46(±0.11) 0.49(±0.10)
U-Net 0.97(±0.01) 0.78(±0.02) – –
SimCLR / U-Net 0.98(±0.01) 0.79(±0.01) – –

(e) Result comparison using 30 subjects.
Methods AUC Dice (naive) Dice (fpr 0.05) Dice (fpr 0.01)
Implicit Learning 0.96 0.73 0.67 0.75
Explicit Learning 0.90 0.61 0.41 0.61
U-Net 0.98 0.82 – –
SimCLR / U-Net 0.98 0.82 – –

(f) Result comparison using 100 subjects.

Table 4.1: Summarised result comparison between proposed and baselines methods. Dice (naive) corre-
sponds to choosing threshold via the training set for implicit learning and setting the threshold to 0.5 for
U-Net and SimCLR.
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Figure 4.10: Plot showing Dice score depending on subjects for the proposed methods and baselines.

Figure 4.11: Plot showing AUC score depending on subjects for the proposed methods and baselines.
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Chapter 5

Discussion and Conclusions

5.1 Discussion

The results show that the proposed semi-supervised method can compete with both unsupervised and su-
pervised baselines methods, especially when only limited labelled training data is available. We were able
to show that the implicit approach for learning the likelihood achieves our goal and results in better per-
formance than the unsupervised baseline method of You et al. Additionally, this method can compete with
supervised U-Net and semi-supervised U-Net baselines while using less than 10 subjects for training. There
is further work to fully leverage the performance of the proposed methods, however they already show po-
tential and initial results are promising. Fortunately, we suggest that there are some improvements that could
already be implemented. These improvements are further explained in Section 5.2.

Of the two proposed approaches for learning the likelihood, the implicit approach shows more potential
than the explicit approach. Before discarding the explicit approach, other aspects should further be explored,
such as fully understanding the K hyper parameter and how to set it to achieve higher performance. We do
not yet fully know how sensitive the explicit approach is to changes in K and from our experience, a correct
K factor can achieve as high or higher performance as the implicit approach. Nevertheless, as the results
indicate, a badly chosen K factor can have devastating results on performance and choosing a K factor
empirically with a validation set is shown not to be a good solution. Although, as the implicit approach both
performs better and is more simple, any further investigation should first focus on the implicit approach
before the explicit approach.

Further implications of this work is coming from a byproduct of our method. As we restore lesion tissue
to pseudo ”healthy” tissue we create a pseudo ”healthy” image from the original brain. This can be useful
in clinical practice when a clinician wants to analyse healthy anatomical structures of a brain scan with
lesions. Today, most methods for automatic segmentation of healthy tissue typically fail when there is a
lesion present in the scan. If our method can produce an image where the tumour is replaced with ”healthy”
tissue these automatic segmentation models might gain in performance. This subtask of synthesising a
pseudo ”healthy” brain scan can be compared to the method of Xia et al. and it would be interesting to
compare the results between our method and theirs.

One interesting finding can be seen in the restored pseudo ”healthy” images shown by Figure 5.1. Firstly,
we see in the left images that the front left horn of the lateral ventricle is being restored quite faithfully and
fits in the surrounding tissue. It even matches the front right ventricle which is quite impressive. Secondly,
in the right images, we see an impressive restoration of the upper ventricles. This shows the potential and
strength of the VAE for restoring the image to a pseudo ”healthy” counterpart. However, these restorations
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Figure 5.1: Restoration using implicit method with 1 subject. Two lesion images (top) and corresponding
restored pseudo ”healthy” images (bottom).

also show that the restored tissue is typically more blurry than normal healthy tissue, which is a common
problem when working with VAE. The blurry restoration can be clearly seen when restoring grey matter,
where typically our model smears out details too much. Nevertheless, better approximations of the prior,
using for example GMVAE or GANs, might solve this issue.

Another interesting finding is visualised in Figure 5.2. Here we see that even if the restoration looks
faithful, the corresponding segmentation is not accurate enough. The results suggest that lesion regions
have the same intensity after and before restoration. This might indicate that assuming a lesion as additive
noise, D = |Y �Xn|, might not be completely accurate. Additionally, assuming the lesion as additive noise
neglects deformation from the lesion in healthy regions. When lesions, for example, squeeze or deform
healthy tissue to something that looks abnormal our method might fail. There might be better assumptions
for the lesion, such as seeing the problem as an ill posed problem as Y = T (Xn)+�Y . However, this would
make restoration a lot harder and more complicated to solve, it might even be impossible to find a solution.
Even if our approximation of the lesion is not solid, we show that it might be good enough to achieve a good
segmentation.

Furthermore, we notice that the segmentation results does not increase as much as baselines U-Net
when more subjects are added. This probably originates in the U-Net generalises better with more subjects,
however our proposed method is restricted by the prior approximation which does not get better when more
subjects is introduced.

5.2 Future Work

To get a better understanding and be able to improve our proposed method, additional future work is needed.
In summary, key points listed below can be further explored/improved. The key points are explained in this
section.

• Tuning of hyper parameters for restoration.

• Explore other network architecture and/or semi-supervised training of the segmentation network.

• Better approximation of prior, using for example GMVAE.
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Figure 5.2: Restoration using implicit method with 100 subjects. From top to bottom: Input image; Restored
image; Segmentation (fpr = 0.01); Ground truth segmentation.

• Extension using 3d volumetric data and/or more MRI sequences.

• Exploration of how to choose K hyperparameter for the explicit learning approach.

• Method tested on different segmentation problem.

Firstly, the understanding of how hyperparameters, such as step size and number of steps in restoration,
affects the method’s performance needs to be improved. The hyperparameters were empirically set with
a validation set, but full evaluation was left out for future work. There might be hyperparameters that
show a more robust and better performance. For example, we did not separate the hyperparameters for
restoration and training in this work. Empirically, we showed that 10 steps usually were best for training
performance. However, during testing the restoration process was restoring more bright lesions, that needed
more iterations to converge. At 10 steps all lesions in the test set were not fully restored. We suggest
improving this by for example using 10 steps for training and as many steps required until convergence is
reached for testing. It would be interesting to see how much such an approach would increase performance.

Secondly, the network architecture for the segmentation network was chosen because of its previously
shown performance for segmentation tasks. However, in our case we might gain performance by choosing
another architecture that suits our method better. Choosing the best network architecture is a research topic
by itself, however, it is quite easy in our implementation to evaluate different architectures directly. For
example, one segmentation network architecture that might perform well is [28]. Additionally, it would also
be possible to leverage the unlabelled data to train the segmentation network in a semi-supervised setting,
with for example simCLR or mean teacher. This would theoretically yield a better segmentation in restora-
tion and hence also improve segmentation performance. Furthermore, a better model for approximating the
normative prior would potentially have a great effect on our method. As a first step, it would be interesting
to see how implementing a GMVAE instead of VAE would improve performance.

Thirdly, an extension of the proposed method, including more MRI sequences and/or volumetric 3d data
would be interesting to explore. Even if there first are some problems to solve before implementing these
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extensions, it potentially will have a positive effect on the performance. Since the 2d slice segmentation
problem we use is a simplified version of the natural 3d volume segmentation problem from MRI, there
might be valuable dependencies in the 3d data that we miss. Additionally, the use of more MRI sequences,
such as T1-weighted, might help the segmentation network to improve. Today, most state of the art methods
for brain lesion segmentation leverages 3d inputs and all sequences. This suggests that our method would
also perform better by doing so.

A further investigation on a better approach to find the best performing K factor for the explicit loss
function is needed. As the approach is quite promising in theory but failing on the K factor, finding a way
to choose the K factor or come around it by choosing another activation function would potentially lead
to higher performance. Additionally, it would be interesting to see how the explicit approach performs if
trained with a connected graph, as mentioned in Section 3.3, where backpropagation is only performed at
the end of the restoration. This might yield a better performance and a more stable training.

Lastly, it would be interesting to understand how the method performs on different datasets and see how
well the method works in other environments both for different segmentation problems and other computer
vision problems. One example the proposed method potentially would work on is image inpainting or
anomaly detection. Additionally, if the method is being used as a restoration method to find pseudo ”healthy”
images it would be interesting to find a metric that evaluates how faithful the restoration is and also test it
against benchmarks such as Xia et al. This would help improvements for a more accurate restoration and
hence also improvements for segmentation results.

5.3 Conclusions

We conclude that our proposed method is promising, but there are still improvements left to be done before
reaching state of the art. Even though the problem was found harder than initially thought, we show that
turning the unsupervised method of You et al. to a semi-supervised extension can improve performance and
even compete with supervised and semi-supervised baselines. Given the list of potential improvements and
future work this thesis can be seen as a foundation for a future method that might show even better results.
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Appendix A

The First Appendix

A.1 U-Net Architecture
UNET(

( e n c o d e r 1 ) : S e q u e n t i a l (
( enc1conv1 ) : Conv2d ( 1 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc1norm1 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 1 r e l u 1 ) : ReLU ( i n p l a c e =True )
( enc1conv2 ) : Conv2d ( 1 6 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc1norm2 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 1 r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( poo l1 ) : MaxPool2d ( k e r n e l s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , c e i l m o d e = F a l s e )
( e n c o d e r 2 ) : S e q u e n t i a l (

( enc2conv1 ) : Conv2d ( 1 6 , 32 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc2norm1 ) : BatchNorm2d ( 3 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 2 r e l u 1 ) : ReLU ( i n p l a c e =True )
( enc2conv2 ) : Conv2d ( 3 2 , 32 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc2norm2 ) : BatchNorm2d ( 3 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 2 r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( poo l2 ) : MaxPool2d ( k e r n e l s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , c e i l m o d e = F a l s e )
( e n c o d e r 3 ) : S e q u e n t i a l (

( enc3conv1 ) : Conv2d ( 3 2 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc3norm1 ) : BatchNorm2d ( 6 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 3 r e l u 1 ) : ReLU ( i n p l a c e =True )
( enc3conv2 ) : Conv2d ( 6 4 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc3norm2 ) : BatchNorm2d ( 6 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 3 r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( poo l3 ) : MaxPool2d ( k e r n e l s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , c e i l m o d e = F a l s e )
( e n c o d e r 4 ) : S e q u e n t i a l (

( enc4conv1 ) : Conv2d ( 6 4 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc4norm1 ) : BatchNorm2d ( 1 2 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 4 r e l u 1 ) : ReLU ( i n p l a c e =True )
( enc4conv2 ) : Conv2d ( 1 2 8 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc4norm2 ) : BatchNorm2d ( 1 2 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 4 r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( poo l4 ) : MaxPool2d ( k e r n e l s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , c e i l m o d e = F a l s e )
( b o t t l e n e c k ) : S e q u e n t i a l (

( b o t t l e n e c k c o n v 1 ) : Conv2d ( 1 2 8 , 256 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( b o t t l e n e c k n o r m 1 ) : BatchNorm2d ( 2 5 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( b o t t l e n e c k r e l u 1 ) : ReLU ( i n p l a c e =True )
( b o t t l e n e c k c o n v 2 ) : Conv2d ( 2 5 6 , 256 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( b o t t l e n e c k n o r m 2 ) : BatchNorm2d ( 2 5 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( b o t t l e n e c k r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( upconv4 ) : ConvTranspose2d ( 2 5 6 , 128 , k e r n e l s i z e = (2 , 2 ) , s t r i d e = (2 , 2 ) )
( d e c o d e r 4 ) : S e q u e n t i a l (

( dec4conv1 ) : Conv2d ( 2 5 6 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec4norm1 ) : BatchNorm2d ( 1 2 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( d e c 4 r e l u 1 ) : ReLU ( i n p l a c e =True )
( dec4conv2 ) : Conv2d ( 1 2 8 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec4norm2 ) : BatchNorm2d ( 1 2 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( d e c 4 r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( upconv3 ) : ConvTranspose2d ( 1 2 8 , 64 , k e r n e l s i z e = (2 , 2 ) , s t r i d e = (2 , 2 ) )
( d e c o d e r 3 ) : S e q u e n t i a l (

( dec3conv1 ) : Conv2d ( 1 2 8 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec3norm1 ) : BatchNorm2d ( 6 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( d e c 3 r e l u 1 ) : ReLU ( i n p l a c e =True )
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( dec3conv2 ) : Conv2d ( 6 4 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec3norm2 ) : BatchNorm2d ( 6 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( d e c 3 r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( upconv2 ) : ConvTranspose2d ( 6 4 , 32 , k e r n e l s i z e = (2 , 2 ) , s t r i d e = (2 , 2 ) )
( d e c o d e r 2 ) : S e q u e n t i a l (

( dec2conv1 ) : Conv2d ( 6 4 , 32 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec2norm1 ) : BatchNorm2d ( 3 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( d e c 2 r e l u 1 ) : ReLU ( i n p l a c e =True )
( dec2conv2 ) : Conv2d ( 3 2 , 32 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec2norm2 ) : BatchNorm2d ( 3 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( d e c 2 r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( upconv1 ) : ConvTranspose2d ( 3 2 , 16 , k e r n e l s i z e = (2 , 2 ) , s t r i d e = (2 , 2 ) )
( d e c o d e r 1 ) : S e q u e n t i a l (

( dec1conv1 ) : Conv2d ( 3 2 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec1norm1 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( d e c 1 r e l u 1 ) : ReLU ( i n p l a c e =True )
( dec1conv2 ) : Conv2d ( 1 6 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec1norm2 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( d e c 1 r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( conv ) : Conv2d ( 1 6 , 1 , k e r n e l s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) )

)

A.2 Shallow U-Net Architecture

sha l low UNet (
( e n c o d e r 1 ) : S e q u e n t i a l (

( enc1conv1 ) : Conv2d ( 2 , 4 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc1norm1 ) : BatchNorm2d ( 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 1 r e l u 1 ) : ReLU ( i n p l a c e =True )
( enc1conv2 ) : Conv2d ( 4 , 4 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc1norm2 ) : BatchNorm2d ( 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 1 r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( poo l1 ) : MaxPool2d ( k e r n e l s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , c e i l m o d e = F a l s e )
( e n c o d e r 2 ) : S e q u e n t i a l (

( enc2conv1 ) : Conv2d ( 4 , 8 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc2norm1 ) : BatchNorm2d ( 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 2 r e l u 1 ) : ReLU ( i n p l a c e =True )
( enc2conv2 ) : Conv2d ( 8 , 8 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc2norm2 ) : BatchNorm2d ( 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 2 r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( poo l2 ) : MaxPool2d ( k e r n e l s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , c e i l m o d e = F a l s e )
( e n c o d e r 3 ) : S e q u e n t i a l (

( enc2conv1 ) : Conv2d ( 8 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc2norm1 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 2 r e l u 1 ) : ReLU ( i n p l a c e =True )
( enc2conv2 ) : Conv2d ( 1 6 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( enc2norm2 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( e n c 2 r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( poo l3 ) : MaxPool2d ( k e r n e l s i z e =2 , s t r i d e =2 , padd ing =0 , d i l a t i o n =1 , c e i l m o d e = F a l s e )
( b o t t l e n e c k ) : S e q u e n t i a l (

( b o t t l e n e c k c o n v 1 ) : Conv2d ( 1 6 , 32 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( b o t t l e n e c k n o r m 1 ) : BatchNorm2d ( 3 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( b o t t l e n e c k r e l u 1 ) : ReLU ( i n p l a c e =True )
( b o t t l e n e c k c o n v 2 ) : Conv2d ( 3 2 , 32 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( b o t t l e n e c k n o r m 2 ) : BatchNorm2d ( 3 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( b o t t l e n e c k r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( upconv3 ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 4 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 3 2 , 16 , k e r n e l s i z e = (2 , 2 ) , s t r i d e = (2 , 2 ) )

)
( d e c o d e r 3 ) : S e q u e n t i a l (

( dec2conv1 ) : Conv2d ( 3 2 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec2norm1 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( d e c 2 r e l u 1 ) : ReLU ( i n p l a c e =True )
( dec2conv2 ) : Conv2d ( 1 6 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec2norm2 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( d e c 2 r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( upconv2 ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 4 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 1 6 , 8 , k e r n e l s i z e = (2 , 2 ) , s t r i d e = (2 , 2 ) )

)
( d e c o d e r 2 ) : S e q u e n t i a l (

( dec2conv1 ) : Conv2d ( 1 6 , 8 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec2norm1 ) : BatchNorm2d ( 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( d e c 2 r e l u 1 ) : ReLU ( i n p l a c e =True )
( dec2conv2 ) : Conv2d ( 8 , 8 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec2norm2 ) : BatchNorm2d ( 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
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( d e c 2 r e l u 2 ) : ReLU ( i n p l a c e =True )
)
( upconv1 ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 4 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 8 , 4 , k e r n e l s i z e = (2 , 2 ) , s t r i d e = (2 , 2 ) )

)
( d e c o d e r 1 ) : S e q u e n t i a l (

( dec1conv1 ) : Conv2d ( 8 , 4 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec1norm1 ) : BatchNorm2d ( 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( d e c 1 r e l u 1 ) : ReLU ( i n p l a c e =True )
( dec1conv2 ) : Conv2d ( 4 , 4 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
( dec1norm2 ) : BatchNorm2d ( 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( d e c 1 r e l u 2 ) : ReLU ( i n p l a c e =True )

)
( conv ) : Conv2d ( 4 , 1 , k e r n e l s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) )

A.3 VAE Architecture

ConvVAE (
( e n c o d e r ) : S e q u e n t i a l (

( 0 ) : S e q u e n t i a l (
( 0 ) : Conv2d ( 1 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )
( 1 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( 2 ) : LeakyReLU ( n e g a t i v e s l o p e = 0 . 2 )

)
( 1 ) : ResBlock Down (

( conv1 ) : Conv2d ( 1 6 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( bn1 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( conv2 ) : Conv2d ( 1 6 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )
( bn2 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( s h o r t c u t ) : S e q u e n t i a l (

( 0 ) : Conv2d ( 1 6 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( 1 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( 2 ) : LeakyReLU ( n e g a t i v e s l o p e = 0 . 2 )

)
)
( 2 ) : ResBlock Down (

( conv1 ) : Conv2d ( 1 6 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( bn1 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( conv2 ) : Conv2d ( 1 6 , 32 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )
( bn2 ) : BatchNorm2d ( 3 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( s h o r t c u t ) : S e q u e n t i a l (

( 0 ) : Conv2d ( 1 6 , 32 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( 1 ) : BatchNorm2d ( 3 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( 2 ) : LeakyReLU ( n e g a t i v e s l o p e = 0 . 2 )

)
)
( 3 ) : ResBlock Down (

( conv1 ) : Conv2d ( 3 2 , 32 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( bn1 ) : BatchNorm2d ( 3 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( conv2 ) : Conv2d ( 3 2 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )
( bn2 ) : BatchNorm2d ( 6 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( s h o r t c u t ) : S e q u e n t i a l (

( 0 ) : Conv2d ( 3 2 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( 1 ) : BatchNorm2d ( 6 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( 2 ) : LeakyReLU ( n e g a t i v e s l o p e = 0 . 2 )

)
)
( 4 ) : ResBlock Down (

( conv1 ) : Conv2d ( 6 4 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( bn1 ) : BatchNorm2d ( 6 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( conv2 ) : Conv2d ( 6 4 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )
( bn2 ) : BatchNorm2d ( 1 2 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( s h o r t c u t ) : S e q u e n t i a l (

( 0 ) : Conv2d ( 6 4 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( 1 ) : BatchNorm2d ( 1 2 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( 2 ) : LeakyReLU ( n e g a t i v e s l o p e = 0 . 2 )

)
)
( 5 ) : ResBlock Down (

( conv1 ) : Conv2d ( 1 2 8 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( bn1 ) : BatchNorm2d ( 1 2 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( conv2 ) : Conv2d ( 1 2 8 , 256 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )
( bn2 ) : BatchNorm2d ( 2 5 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( s h o r t c u t ) : S e q u e n t i a l (

( 0 ) : Conv2d ( 1 2 8 , 256 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( 1 ) : BatchNorm2d ( 2 5 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( 2 ) : LeakyReLU ( n e g a t i v e s l o p e = 0 . 2 )

)
)

)
( r e s e n c o d e r ) : S e q u e n t i a l (

( 0 ) : S e q u e n t i a l (
( 0 ) : Conv2d ( 1 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )
( 1 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
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( 2 ) : LeakyReLU ( n e g a t i v e s l o p e = 0 . 2 )
)
( 1 ) : Conv2d ( 1 6 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (2 , 2 ) , d i l a t i o n = (2 , 2 ) )
( 2 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( 3 ) : LeakyReLU ( n e g a t i v e s l o p e = 0 . 2 )
( 4 ) : Conv2d ( 1 6 , 32 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (2 , 2 ) , d i l a t i o n = (2 , 2 ) )
( 5 ) : BatchNorm2d ( 3 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( 6 ) : LeakyReLU ( n e g a t i v e s l o p e = 0 . 2 )
( 7 ) : Conv2d ( 3 2 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (2 , 2 ) , d i l a t i o n = (2 , 2 ) )
( 8 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( 9 ) : LeakyReLU ( n e g a t i v e s l o p e = 0 . 2 )
( 1 0 ) : Conv2d ( 1 6 , 1 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (2 , 2 ) , d i l a t i o n = (2 , 2 ) )

)
( f c 1 ) : ResBlock Down (

( conv1 ) : Conv2d ( 2 5 6 , 256 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( bn1 ) : BatchNorm2d ( 2 5 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( conv2 ) : Conv2d ( 2 5 6 , 512 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )
( bn2 ) : BatchNorm2d ( 5 1 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( s h o r t c u t ) : S e q u e n t i a l (

( 0 ) : Conv2d ( 2 5 6 , 512 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( 1 ) : BatchNorm2d ( 5 1 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)
)
( f c 2 ) : ResBlock Down (

( conv1 ) : Conv2d ( 2 5 6 , 256 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( bn1 ) : BatchNorm2d ( 2 5 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( conv2 ) : Conv2d ( 2 5 6 , 512 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )
( bn2 ) : BatchNorm2d ( 5 1 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( s h o r t c u t ) : S e q u e n t i a l (

( 0 ) : Conv2d ( 2 5 6 , 512 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( 1 ) : BatchNorm2d ( 5 1 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)
)
( d e c o d e r ) : S e q u e n t i a l (

( 0 ) : ResBlock Up (
( conv1 ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 2 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 5 1 2 , 512 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )

)
( bn1 ) : BatchNorm2d ( 5 1 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( conv2 ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 2 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 5 1 2 , 256 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )

)
( bn2 ) : BatchNorm2d ( 2 5 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( s h o r t c u t ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 4 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 5 1 2 , 256 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( 2 ) : BatchNorm2d ( 2 5 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)
)
( 1 ) : ResBlock Up (

( conv1 ) : S e q u e n t i a l (
( 0 ) : Upsample ( s c a l e f a c t o r = 2 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 2 5 6 , 256 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )

)
( bn1 ) : BatchNorm2d ( 2 5 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( conv2 ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 2 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 2 5 6 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )

)
( bn2 ) : BatchNorm2d ( 1 2 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( s h o r t c u t ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 4 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 2 5 6 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( 2 ) : BatchNorm2d ( 1 2 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)
)
( 2 ) : ResBlock Up (

( conv1 ) : S e q u e n t i a l (
( 0 ) : Upsample ( s c a l e f a c t o r = 2 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 1 2 8 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )

)
( bn1 ) : BatchNorm2d ( 1 2 8 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( conv2 ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 2 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 1 2 8 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )

)
( bn2 ) : BatchNorm2d ( 6 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( s h o r t c u t ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 4 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 1 2 8 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( 2 ) : BatchNorm2d ( 6 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)
)
( 3 ) : ResBlock Up (

( conv1 ) : S e q u e n t i a l (
( 0 ) : Upsample ( s c a l e f a c t o r = 2 . 0 , mode= b i l i n e a r )
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( 1 ) : Conv2d ( 6 4 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
)
( bn1 ) : BatchNorm2d ( 6 4 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( conv2 ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 2 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 6 4 , 32 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )

)
( bn2 ) : BatchNorm2d ( 3 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( s h o r t c u t ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 4 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 6 4 , 32 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( 2 ) : BatchNorm2d ( 3 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)
)
( 4 ) : ResBlock Up (

( conv1 ) : S e q u e n t i a l (
( 0 ) : Upsample ( s c a l e f a c t o r = 2 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 3 2 , 32 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )

)
( bn1 ) : BatchNorm2d ( 3 2 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( conv2 ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 2 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 3 2 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )

)
( bn2 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( s h o r t c u t ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 4 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 3 2 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( 2 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)
)
( 5 ) : ResBlock Up (

( conv1 ) : S e q u e n t i a l (
( 0 ) : Upsample ( s c a l e f a c t o r = 2 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 1 6 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )

)
( bn1 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( conv2 ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 2 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 1 6 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )

)
( bn2 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( s h o r t c u t ) : S e q u e n t i a l (

( 0 ) : Upsample ( s c a l e f a c t o r = 4 . 0 , mode= b i l i n e a r )
( 1 ) : Conv2d ( 1 6 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) )
( 2 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)
)
( 6 ) : Conv2d ( 1 6 , 16 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )
( 7 ) : BatchNorm2d ( 1 6 , eps =1e�05, momentum = 0 . 1 , a f f i n e =True , t r a c k r u n n i n g s t a t s =True )
( 8 ) : LeakyReLU ( n e g a t i v e s l o p e = 0 . 2 )
( 9 ) : Conv2d ( 1 6 , 1 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) )

)
)
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A.4 Full Results

Table A.1: Full test results using implicit learning method.

Number of Training Subjects AUC Dice (naive) Dice (fpr 0.05) Dice (fpr 0.01)
1 0.87 0.48 0.49 0.49
1 0.88 0.59 0.60 0.60
1 0.84 0.49 0.55 0.56
1 0.86 0.52 0.50 0.53
1 0.85 0.46 0.42 0.47
3 0.89 0.59 0.64 0.63
3 0.92 0.65 0.64 0.66
3 0.91 0.59 0.51 0.62
3 0.88 0.58 0.62 0.62
3 0.91 0.62 0.62 0.62
10 0.87 0.60 0.43 0.59
10 0.94 0.63 0.63 0.63
10 0.94 0.68 0.68 0.71
10 0.91 0.64 0.64 0.65
10 0.88 0.63 0.63 0.60
30 0.94 0.63 0.64 0.64
30 0.96 0.71 0.71 0.71
30 0.94 0.63 0.64 0.64
30 0.95 0.67 0.55 0.68
30 0.95 0.71 0.72 0.70
100 0.96 0.73 0.67 0.75
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Table A.2: Full test results using explicit learning method.

Number of Training Subjects AUC Dice (naive) Dice (fpr 0.05) Dice (fpr 0.01)
1 0.83 0.34 0.38 0.41
1 0.78 0.39 0.40 0.39
1 0.77 0.37 0.46 0.46
1 0.78 0.42 0.42 0.42
1 0.86 0.40 0.37 0.38
3 0.78 0.31 0.36 0.37
3 0.86 0.53 0.44 0.49
3 0.90 0.56 0.56 0.55
3 0.81 0.52 0.47 0.50
3 0.82 0.47 0.44 0.46
10 0.78 0.52 0.34 0.38
10 0.84 0.58 0.46 0.51
10 0.87 0.59 0.45 0.50
10 0.86 0.54 0.51 0.51
10 0.89 0.51 0.49 0.50
30 0.88 0.57 0.31 0.40
30 0.88 0.63 0.62 0.63
30 0.84 0.51 0.40 0.40
30 0.90 0.55 0.47 0.48
30 0.90 0.56 0.48 0.53
100 0.90 0.61 0.43 0.61
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Table A.3: Full test results using U-Net baselines.

Number of Training Subjects AUC Dice
1 0.84 0.44
1 0.83 0.52
1 0.86 0.56
1 0.85 0.41
1 0.89 0.50
3 0.88 0.57
3 0.92 0.66
3 0.89 0.53
3 0.87 0.50
3 0.92 0.66
10 0.94 0.69
10 0.93 0.67
10 0.95 0.74
10 0.95 0.71
10 0.93 0.67
30 0.96 0.76
30 0.97 0.79
30 0.97 0.77
30 0.97 0.77
30 0.98 0.80
100 0.98 0.82
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Table A.4: Full test results using pre-trained U-Net with simCLR baselines.

Number of Training Subjects AUC Dice
1 0.85 0.48
1 0.85 0.56
1 0.84 0.60
1 0.80 0.32
1 0.84 0.54
3 0.86 0.51
3 0.93 0.70
3 0.87 0.59
3 0.90 0.55
3 0.80 0.59
10 0.94 0.70
10 0.95 0.69
10 0.94 0.74
10 0.96 0.73
10 0.92 0.64
30 0.97 0.77
30 0.97 0.80
30 0.98 0.80
30 0.97 0.78
30 0.98 0.79
100 0.98 0.82
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