Autonomous Bufter Preparation

HPLC Systems

Orbit, Normal use of
.. T fons ce e HPLC system, User
Logging volumes consumes buffer J—
Port positions method solutions. i Y

Gives
option to
confirm or
change
ABS script.

Summarize

s script and [
if ABS

needs refill

Checks ABS I
Bl inventory

If buffer inventory
is going below a
threshold

Automated
Buffer System

LLUND

UNIVERSITY

Generates a script |l
suggestion.

Lukas Onnestam

Department of Chemical Engineering
Master Thesis 2020

Autonomous Buffer Preparation

Master Thesis

Author: Lukas Onnestam

Tutor: Niklas Andersson
Examinator: Bernt Nilsson

Department of Chemical Engineering, Chromatography Group
Lund University
Sweden
September 1, 2020

Abstract

Every laboratory involved with liquid chromatography (LC) has to
solve the issue of a supply of mobile phase. In the case of reversed-phase
liquid chromatography the mobile phase is polar in nature and most com-
monly aqueous solutions. With a source of distilled water in-house the
possibility of creating a mobile phase supply is within reach. A pair of
retired LC systems is being repurposed for an automated mobile phase
production, and these solutions should have buffering capacity. This the-
sis will be dedicated to deliver buffer solutions by mixing conjugating
acid/base salt stock solutions with distilled water by automating said sys-
tems. The automation is made possible by the Python-based Orbit library
developed at Department of Chemical Engineering, Lund University.

Both experimental setup and programming had to be employed for this
endeavour. An signal called ”accumulated volume” was experimentally
investigated for reliability and accuracy, to be used as a run criteria in
automation programming. It was found to be able to deliver volumes
within 1.5% difference to target volume (7 ml) at high flowrates (100
ml/min).

Programming work spawned new programs with the tasks of keep-
ing track of inventory of a system as well as receiving requests of buffer
solution and construct scripts in order to deliver.

Conclusively, the current state of the material involved in this project
is not a finished automated buffer system. However it is significantly
progressed and promising for being an addition to the plethora of tools
available for the LC laboratory.

Sammanfattning

Varje laboratorie som anvinder sig av vitskekromatografi maste 16sa
fragan kring forsorjning av mobilfas. Om man huvudsakligen anvénder sig
av omvind-fas viatskekromatografi sa dr den mobila fasen poldr och bestar
for det mesta av vattenlosningar. Har man en kélla till destillerat vatten
sa ar det inte langt till att kunna producera sina egna lGsningar.

Ett par av pensionerade vatskekromatografi system ska omanvindas
till ett automatiserat system for produktion av mobilfaslésningar. Det ar
ett krav att dessa losningar skall ha en buffrande formaga och tillracklig
kapacitet. Denna uppsats kommer handla om att visa hur bufferlésningar
kan goras genom att blanda konjugerande syra/bas/salt stamldsningar
med destillerat vatten genom att automatisera ovan beskrivet system.
Denna automatisering dr mojlig genom det Python-baserade biblioteket
Orbit, som &r utvecklat hos avdelningen i kemiteknik vid Lunds Univer-
sitet.

Bade experimentella uppstéllningar och programmering anvéindes som
tillvigagangsséitt for att undersoka det hér fallet. En signal vid namn acku-
mulerad volym var experimentellt testade for palitlighet och triaffsdkerhet,
for att kunna anvidndas som ett kriterium i automatiseringsprogrammen.
Det visade sig kunna generera volymer inom 1.5% skillnad av malvolymen
(7 ml) vid hoga floden (100 ml/min).

Programmeringsarbetet gav upphov till nya program som skall halla
reda pa vilket material varje system har tillgingligt, men ocksa ta emot
bestéillningar av bufferlésningar och konstruera skript for att leverera.

Sammanfattningsvis, det nuvarande tillstdndet av materialet som har
tagits fram i detta projekt &r inte ett fardigt automatiserat system. Daremot
sa dr det pa god viag och visar pa lovande férmagor att kunna anvindas
till bufferlésningsproduktion.

i

Acknowledgement

The end of a journey like for so many students before I have quite a few to show
my utmost gratitude.

First of, Niklas Andersson who has been my tutor this spring simply put;
you are great! Your enthusiasm for the work that you do is admirable, and the
effort in supporting me is immensely appreciated.

My examinator and initial person of contact for this thesis project Bernt
Nilsson, I thank you wholeheartedly for the openness and welcoming environ-
ment you create.

Nervous as anyone new at a unfamiliar place is, I came to the Department
of Chemical Engineering and felt accepted incredibly fast. Everyone of you that
I shared time with in the lab, fika room and corridors, thank you.

The path to get this project initiated and underway, you know who you are;
Helena A, Gorel E, Anna K, for making me see the world more straight than I
could on my own.

Also a huge thank you to the leaders of Theatre Without Borders the fall of
2019; Magnus, Daniel and Tony - you guys taught me things I did not think I
needed to know.

Oskar H, I got to know you within the walls of Katte high school and you
have been with me ever since. Without your support through encouraging words
or a Happy Meal with toy included, I do not know what degree of a wreck I
would be. For all the wondrous memories till here and forward, sincerely thank
you.

Finally, but not the very least, my family; father, mother, Elin, Amanda
and the dog Olle. I would have not made it this far without everyone of you in
my heart.

1l

Contents

1

2

Introduction

Background

2.1 Chromatography

2.2 Buffer Preparation
2.2.1 Market Products . . .

2.3 Overview of Orbit

Method and Materials

3.1 System Flowcharts
3.1.1 System at the start of
3.1.2 Final configuration . .

3.2 Experimental work.

project

3.2.1 Preparation of stock solution
3.2.2 Case 1: Setup of ” Accumulated Volume” test
3.2.3 Case 2: Setup of ”Man vs Machine” test

3.3 Coding in Python.
3.4 AKTA-system

3.5 Buffer program and experimental setup structure
3.5.1 Orbit code initial overview of the user files

Result and Discussion
4.1 Experiments.

4.1.1 Case 1. Accumulated Volume
4.1.2 Case 2. Man- vs Machine-made buffer solution

42 Code
4.2.1 Overview, information
4.2.2 SystemlInventory.py .
4.2.3 BufferService.py . . .
4.2.4 system_buffer
4.2.5 process_buffer

Conclusion

Future Work

path

6.1 Items in this project that is Work-In-Progress
6.2 Sources of error in this project

6.3 Ideas for future work projects

References

iv

15
15
15
16
18
18
19
21
22
23

26

27
27
28
28

29

8 Appendix 30

8.1 Basic Python Concepts 30
8.1.1 Attributes, or Common data types (list, dictionary, string,

float) 30

81.2 def 30

813 class 31

8.1.4 Pickle, a serializing tool 31

1 Introduction

Delving into science and its intricate categories of fields one might find oneself
in a laboratory. Such a place is equipped with instruments that could be used to
reveal more of the physical world we live in. One such instrument is the liquid
chromatography (LC), an established method in the analytical chemistry field.

Operated with the proper equipment and parameters one could distinguish
between proteins of different shape. But in order to have such an instrument
running a consumable solution with specific quality and properties is required.
Namely, a single or multiple buffer solutions to bring the protein through the
tubing, pumps, sensors and column.

Nevertheless, buffer solutions are a crucial component of a working LC sys-
tem. Of course, producing these solutions oneself is favorable for a control of
error but also in the economic department.

This project will explore the possibility to employ a pair of AKTA—systems
(high-pressure LC, or HPLC) for an automated product of buffer solutions. This
will relieve workload, increasing time designated for research using the HPLC
systems.

2 Background

2.1 Chromatography

Despite that this project involves pair of chromatography units the work involves
no actual chromatography processes. However, the product for this project is a
system that produce buffer solution, which fills a multitude of crucial functions
in chromatography. So it makes sense to briefly cover chromatography here.

Chromatography is analytical separation method based on differences in
chemical compounds attraction to a secondary phase. This secondary phase is
a solid porous or packed material in which the primary mobile phase is flowing
through, this is called liquid chromatography. During analysis the mobile phase
consists of two parts, the sample and a buffer solution. Often the sample is
containing multiple types of chemical compounds which again, interact with the
solid phase, and thus require different time to travel through the solid phase.
After the separation via the solid phase the mobile phase is led into sensor
equipment, like UV, conductivity and pH. These sensors are what the user sees
as output and presented in a connected computer software. Since the mobile
phase consists of buffer in majority it allows for stable chemical conditions, most
notable pH, throughout the process run. [2]

2.2 Buffer Preparation

So what is a buffer solution and how do you make one? A buffer solution main
property is to resist changes in pH. This chemical property is mathematically
defined as the inverse logarithm of the hydrogen ion concentration and denoted
[H*] in units of mole per cubic decimeter, see Equation 1. This denotation
is actually a shorthand for [H3O"] which forms when a Brgnsted-Lowry acid
donates a proton, that H™ essentially is, and a water molecule accepts it.

pH = —log[H"] = zOQﬁ 1)

The reaction formula for this proton donation for a weak acid (HA) is de-
scribed in Equation 2. What is important about the acid being ”weak” is that
this reaction is instead an equilibrium reaction, effectively only a portion of all
the weak acid molecules react with water. This reaction can also be reversed,
with increased levels of H3OV it reacts with the conjugate base (A™) into water

and weak acid again.
HA+ H,O = H30" + A™ (2)

This protonation/deprotonation equilibrium reaction is described in math by

Equation 3. .
_ [H07][A7]
Ko = lajino) ¥

The value of K, is chemical specie specific and is also useful to convert to
its logarithmic counterpart.

1
K, = —logK, = log— 4
p 0g 95 (4)

Equation 4 combined with Equation 3 and Equation 1 displays a relation be-
tween this chemical specific property pK, and pH.

[A7]
[HA]

K, = pH + log [conjugate base]

=pH + log (5)

[weak acid]

If you have a chemical specie that has a pK, value within the conventional pH
range of 0 to 14 and mixing equal amount of the specie and its conjugating base
you end up with Equation 6.

pH = pK, (6)

This is the case for weak acids and weak bases as well which coincidentally have
their pK, take on these values. If you would attempt to increase or decrease
the pH it would require more resources to do so compared to a water system
without this weak acid/conjugating base present. [1]

For a chromatography system this behaviour is desired for a mobile phase
[3]. Buffer solutions which they are called is mixed by combining a conjugating
acid/base pair in an aqueous solution. Example of such a pair would be Acetic
acid CHsCOOH (1), Sodium Acetate CH3COONa(s) each diluted in water and
then mixed together in an equimolar fashion you get buffer solution.

2.2.1 Market Products

Since chromatography is a very robust and widely used technique in a life science
setting [3] a couple of products exists to provide a system producing buffer
solutions of high quality.

A company by the name Sartorius offer solutions aimed at life sciences and
one such product promises a wide range of uses one being buffer preparation,
given the consumer chose this configuration. Named Flexact@® BP is the Buffer
Preparation variant and has a capacity of producing from 50 L to 3000 L in an
automated process. [11]

Another example of a market available buffer preparation solution is from
Cytiva called BioProcess IC System, this company is the same which currently
owns the AKTA-line discussed later. BioProcess IC System is a separate system
to buffer production, it also operates on an automated basis with single compo-
nent stock solutions as a feed material. This systems design of being a separate
ultimately means that it could provide buffer to other system types other than
chromatography. [10]

A second option to their dedicated system is an actual integrated buffer
preparation system in a chromatography unit named AKTA Avant. This variant
is adjusted to being part of the chromatography unit and therefore more space
effective than previous product. [9]

2.3 Overview of Orbit

Orbit is an in-house code library developed in Python, designed to control pri-
marily chromatography processes via communication protocols by the Chro-
matography Group at the Department of Chemical Engineering, Kemicentrum,
Lund University [4]. It allows for very complex run operations of chromatogra-
phy systems, increasing extent of separation and thereby analysis.

In essence, Orbit consist of a tenfold text files that work together to retrieve
and send information to Unicorn which in turn allows for running the AKTA
system through a command prompt. The user has to only create three distinct
types of files for their specific need, lets say in case of a complex chromatography
run. See 1 for a simplified overview of Orbits structure.

Firstly, write a system-file that depicts the AKTA system and all its units
and tubing, i.e. pumps, valves and sensors. One notable Orbit file that is really
useful when writing the system-file is the Unit_library.py-file. In it a lot of the
specific units in a couple of AKTA systems has been described, and for the user
it is only a matter of importing the file and referring to the correct units. An
important property of the valve units in the system-file is to declare where each
valve port leads to, this is referred to as "maps”.

Secondly, create a process-file for the specific experiment that is to be run.
Here common operations could be defined that is going to be repeated through-
out the run.

Lastly, create a script-file which calls for the system and process-files specific
operations, in which order they happen, under which operating parameters,
which signals to be logged and then order the run command prompt. This sends
all the users self declared information to Orbit which in turn runs Unicorn and
the AKTA system. The script file is the most frequently changing file of all the
user-files related to Orbit, which means a new script is produced between runs
with few parts remaining the same.

b rary.pY
ynit_library
ient_“bfar‘lxpy

cl ctions-PY
system_buffer com °”-fun,s py
curve_anavs=?* HJN|CORN

'S

Database-PV
Evawate'py
|nterfaces,PV
process:PY
kta.pY

Unicorn_ap"—

Figure 1: General overview of information structure revolving Orbit, Unicorn and
AKTA.

3 Method and Materials

3.1 System Flowcharts

Two flowcharts will be presented here in this section. The first describes the
system at the beginning of the project and the second is for the final config-
uration of the same system. Later the laborative experimental part will have
their own highlighted variant of the system to test that specific part that the
experiment is designed for.

3.1.1 System at the start of project

At the very beginning of the project the dual AKTA Explorer setup was as
describe in figure 2. Remember the different valves are named based on their
original purpose as a chromatography process system, so the name ”Sample
Valve” do not make any sense compared to what its current use actually is.

At the very top of the flowchart eight positions for possible stock solutions is
represented by Stock 1, Stock 2 incremental up to Stock 7 and finally (distilled)
Water. These are connected to a valve with eight ports and one outlet leading to
a pump denoted Pump A1. The outlet of the pump is connected to the Sample
Valve, this is the main path this valve will deliver fluid to the Mizing Flask
and there is secondary paths to Waste and Next System. The route described
between the Stock units to the Mixing Flask is how the actual mixing of buffer
process begins.

When the desired stock solutions has been added an operation of pH adjust-
ment is performed. The pH is monitored by having the primary inlet of Pump
B1 in the Mixing Flask delivering the buffer solution in making to the pH sensor
(AKTA Explorer in-House sensor). When exiting the sensor and into the Outlet
Valve the primary path is back into the Mizing Flask, with secondary paths
to Waste and Next System. This route creates a loop in order to continuously
monitor the pH during a run.

The actual addition of base or acid to the buffer solution in making is what
System 2 is dedicated to. Pump A2 with a 5M hydrochloric acid (HCI) at the
inlet and outlet leading into the Mixing Flask. Pump B2 connected to a 4M
sodium hydroxide (NaOH) and outlet in the Mizing Flask.

Stock 1 Stock 2 | I Stock 7 Water

| v v/
Buffer Y\
Valve

System 2
./ PumpAl
Acid Base
Sample Waste -
r | Valve m \
Pump A2 Pubnp B2 Outlet Next
N Valve / System
| | !
| e

: Pump B1 Water

‘\,_77_777_77_7},' T

Figure 2: Initial configuration of the dual AKTA Explorer system at the beginning of
project.

3.1.2 Final configuration

As with all things natural, changes will be made. Although for the physical setup
a lot of Fridas original work has been expanded upon rather than remade. The
figure below is an illustration of the final flowchart representing the system, see
figure 3 . No indication of conductivity and UV sensor being included previously,
so these were added as an extension of the pH loop and now an option in orbit
to include or exclude for a particular run. A water source is available for rinsing
the Melander system (S2). Pump Al had no connection for its second inlet
which now is connected to the Mizing Flask, now it is possible to empty the
Mixing Flask with both pumps at same time if one wishes.

Stock 1 Stock 2 EEN Stock 7 Water

System 2

Acid Water Base

- a !
Sample Waste
N pumpA2 N/ Pubnp B2 Outlet ‘L‘: Next
W ‘_;“ System ‘_‘;'

\\ / NS
pH

| (cont] (Lot]
o

. PumpB1 Water

Figure 3: Updated flowchart for the buffer system. Notable additions is a water source
in System 2, possibility to include conductivity and UV sensors in the pH loop. Minor
inclusion is the added tubing from mixer flask to pump Al.

Physical setup of Horvath and Melander AKTA Explorer chromatography
units see Figure 4 below.

Figure 4: Physical AKTA dual Explorer system. Horvath (S1, system 1) on the left
and to the right Melander (S2, system 2). Mixing flask inbetween and waste bucket
below table.

3.2 Experimental work.

Executing code on the computer, investigating whether the machinery performs
the tasks that the code represents. How the investigative part is done is usually
through data sampling, either from Unicorn’s own generated values, or taking

physical measurements like total volume pumped through the system. Some
simple analytical sampling was done with pH-instrument, but more so for veri-
fying the chromatography machine’s in house pH-instrument.

3.2.1 Preparation of stock solution

Of course, preparation of stock solutions that is used to prepare buffers was a
part of the laborative work. Most stock solutions consists of a single ingredient
of a relative high concentration to that of the finished buffer solutions, example
is 500 mM NaAc compared to the buffer with 31.9 mM NaAc. Sodium ac-
etate trihydrate (NaAc * 3H20), sodium chloride (NaCl) and sodium hydroxide
(NaOH) are prepared into stock solutions by weight measurement of each salt
and diluted in a volumetric flask. NaCl and NaOH in salt form were anhydrous.
Acetic acid on the other hand was prepared from a pure concentration liquid
(100% HAc) and simply diluted with distilled water.

All calculations for preparation of stock solutions the excess volume effect
of partial molar properties was ignored and assumed ideal interactions instead.
Nevertheless, all solutions are diluted with distilled water, by the in-house pro-
duction, and no non-aqueous based solutions were included for production of
buffer.

3.2.2 Case 1: Setup of ” Accumulated Volume” test

Case 1 is a test designed to show difference or limitations of valve switching as
a method to produce desired volumes from the pumps each system is equipped
with. A secondary purpose was to explore if a Unicorn parameter ” Accumu-
lated Volume” could be used as criteria for the valve switching. As opposed of
using the Python-side clock to determine when to stop flow. Each pump has a
viable range of flowrate between 0.01 ml/min to 100 ml/min. Expecting to en-
countering difficulties at high flowrates and small volumes, 50 and 100 ml/min
and target volume 7 ml was decided. The 7 ml target volume is from experi-
ence producing buffer solutions of 150 ml required this volume from the stock
solutions. A volumetric flask was installed pump A of system S1. The script
ordered 12 repeats of above run parameters for a target total of 84 ml as the
volumetric flask had a range of 10 to 100 ml markings. All stock solutions are
expected to behave similar to water as working fluids.

In the figure shown below, it demonstrates the simple rearrangement of the

outlet of pump A in system 1 from the mixing flask to a 10 to 100 ml volumetric
flask.

Figure 5: Physical setup, outlet from pump A to a volumetric flask.

Here is a crop out of the flowchart figure highlighting with a green glow
which path is run through this experiment case, see figure 6

1 Stock 2 mEEnE Stock 7 Water

Buffer

N
/' Pump Al
/

\
%
\

X

Sample —— Waste «——
Valve
Fl . ‘ Cond

|x|ng
Iask

Figure 6: Part of flowchart included in this experiment case, outlet from pump A to a
volumetric flask.

3.2.3 Case 2: Setup of ”Man vs Machine” test

This test was an early test to let the system produce a buffer of three compo-
nents, NaAc 31.9 mM, NaCl 50mM and HAc 18.1 mM with pH 5 at a final
volume of 150 ml. Log pH and conductivity measurements and try to mix a
buffer solution by hand as close to the same recipe as possible. Run the hand-
made solution through the same instruments the system use and log pH and
conductivity. Additionally, same stock solutions to produce the machine buffer
is used for the hand-made one.

Below, Table 1 depicts the target volumes for each specie with the used
stock solutions concentrations for a 150 ml final volume, where the remainder

10

is distilled water. Since these volumes are limited to the value accuracy of the
pipettes available, tenth of a millilitre being the smallest increment and hence
no smaller order decimal values.

Table 1: Target volumes from stock solutions for machine- and human-made buffer
solutions for a final volume 150 ml.

Specie | Stock Conc. [mM] | Volume [ml]
NaAc 499 9.4
NaCl 2500 2.9
HAc 477 2.6
H,0 - 135.1

Procedure of hand-made buffer solution; the three stock solution species
were carefully pipetted to a volumetric flask of 100 ml, and subsequently filled
with stock distilled water to the 100 ml mark. Solution transferred to final flask
container, another batch of 50 ml stock distilled water measured up in the same
volumetric flask and lastly these 50 ml too were transferred to the final flask for
a total volume of 150 ml.

Initially, the final flask was connected to the pH loop in the AKTA dual
Explorer system, run at different flowrates for a couple minutes each and making
sure no pH fluctuations was present. Thereafter, a constant flowrate was issued
and manual pipettation of 5M hydrochloric acid or 4M sodium hydroxide to the
hand-made solution during the run. Until the pH was within the same limits
(pH = 5.00 +/- 0.05) as for the machine-made solution.

3.3 Coding in Python.

Divided into two parts; The coding language itself and the other is; Orbit which
has its rules and structures but it is written in Python. The coding and running
said code if it executes properly is a very time consuming part of the whole
project. A lot of trial, error and learning is behind this section, as the projectee
had no prior experience of Python and only 7.5 credits of Java. For Orbit, there
is reports available explaining its structure and logic as Orbit itself has been a
continuous project the last couple of years by the Chromatography group of the
Chemical Engineeering Department [4, 5]. It is by all means a good introduction,
although good understanding comes from using already functioning material like
the buffer-file bundle by Frida Heskebeck. A brief overview is included later in
this section.

As for the gritty coding in the Python language a lot of online resources
was applied as lexicons, to name a few w3schools, docs.python.org, programiz
and stackoverflow. They are all great to look up built-in functions in python
and common coding issues. Python is a text-based language which basically
means you could open most files in Notepad on Windows, higher flexibility and
quality of life is available in Spyder and Anaconda. Spyder is the substitute

11

for Notepad and provides numerous tools to make coding easier and faster to
create and troubleshoot. Anaconda is replacing the function of Run command
prompt. Both available at the Chemical Engineering departments computers.

3.4 AKTA—system

The AKTA system originates from a company called Pharmacia back in 1994
and was developed for primarily protein purification. The product series has
been inherited and is presently owned by Cytiva. Production of protein by
AKTA systems is in the scale of micrograms to tens of grams, i.e. labora-
tory scale. The system version in question is AKTA Explorer 100 (code nbr:
24450377) which is discontinued and succeeded to AKTA avant 150 or AKTA
pure versions.

The system allows for automatic control of flow and monitoring of sensor
signals like UV, conductivity and pH as a means of following the purification
process. Features that allow for different elution methods, such as automatic,
simple and step-gradient by utilizing a pair of pumps to change the composition
of buffer mixture during the process. The system is outfitted with multiple six-
port valves that allows for selection of buffer solution, flow direction through
column, allowing sample into system and open for washing of equipment, to
name a few [7]. Placement of these valves in relation to column, sensors and
pumps opens up for high configurability of the system.

An entire protein purification can be preprogrammed in its accompanied
software Unicorn, although depending on choice of technique for injection of
protein sample some manual interaction is involved. Unicorn software reflects
the system units and during run also the configuration of valves, which ports
that are open to where et.c.. [§]

3.5 Buffer program and experimental setup structure

The part of Frida Heskebecks master thesis work [6] describes a proof of concept
for an automation of a pair of AKTA Explorer chromatography units. Code-side
consists of a file bundle; system_buffer.py, process_buffer.py and script_buffer.py,
which allows the user to produce a 50 mM NaAc buffer solution. Physical-side
is of course the system itself, the pair of chromatography machines which is
rewired to fit the code and work towards a separate magnetic-mixing flask.
When buffer is finished it is produced towards either the waste or ”nextSystem”
representing a to-be delivery unit or storage unit. However, when resuming
this work nextSystem consists of a secondary flask. The original flowchart is
included in the flowchart section, see figure 2.

3.5.1 Orbit code initial overview of the user files

Mentioned earlier in subsection 2.3 system_buffer, process_buffer and script_buffer
is the user files for this particular setup to produce buffer solutions. In this sec-
tion the core functionalities and apparent missing functionalities will be covered.

12

First of, the user file system_buffer.py contain written code declaring valves,
pH sensor and pumps and relevant mapping reflected in the flowchart Figure 2.
A breakdown of the initial version of system_buffer.py is shown in Figure 7.
Mapping here refers to what each unit different connections leads to, example:
Sample Valve port 5 is paired with a text string like ”flask”. On initial inspec-
tion functionality like tubing declaration, conductivity & UV sensor and stock
solution flasks were missing.

Existing

Missing N .
functionality

functionality

User files 1. Vavles, pH sensor
and pumps declared

1. Tubing declaration

system_buffer

2. Conductivity and UV
sensor process_buffer

2. Relevant mapping
done

3. Stock solution flasks 2ol ey

Figure 7: User file: system_buffer.py. Existing and missing functionality overview.

The process_buffer.py file was missing a dedicated wash program of the entire
systems equipment as well as a function to transfer finished product from mixing
flask to a destination. But existing functionality being pH adjustment event,
loading of stock solution to mixing flask and minor Python functions like ”set
pump flowrate”. For the visual breakdown of the functionality see Figure 8.

Missing . Exi-stingr
functionality unctionality
User files .
1. pH adjustment
system_buffer feedback looping event
1. No after run system _
wash program. process_buffer 2. Stock s.olutlon
loading
2. Transfer of finished script_buffer

3. Minor functionsi.e.

buffer product set pump flowrate

Figure 8: User file: process_buffer.py. Existing and missing functionality overview.

Lastly, the script_buffer.py file is able to be run in both test mode (where
pH changes was simulated) and real mode producing a 50 mM NaAc buffer
solution. A lot of the parameters were explicitly defined with values (i.e.: flow
= 50. % float value) which is of course needed at some point. However, some

13

variables could be redefined to changeable attributes, such as the concentration
of a stock solution being imported from a database. This way attempting to
increase the portion of recyclable parts of the script. Remember, as stated in 2.3
the script is the code that most frequently has to be changed between runs. So
construction of a ”script producer” function with the help of a template could
be of use towards automation. Finally a visual breakdown could be viewed in
Figure 9

Existing

Missing ; i
functionality

functionality

User files

1. Reusability could be 1. Parameters declared
system_buffer

improved by making for production of
stock solutions and 50mM NaAc buffer
volumes from values process_buffer solution

into variables.

script_buffer

Figure 9: User file: script_buffer.py. Existing and missing functionality overview.

14

4 Result and Discussion

4.1 Experiments

A couple of defined experiments is presented below to complement heavy weight
on code work in this project.

4.1.1 Case 1. Accumulated Volume

The resulting data is presented here in figure 10. A simple linear regression is
included for both series of 50 and 100 ml/min accompanied by their R? value
and approximated equation. Of course, ideally the expected equation should
be y = 7.0x + 10.0, where y is accumulated volume and x is phase number.
This data did not warrant worry as in the most deviating serie were 50 ml/min
with a slope equal to 6.9011 which is a 1.43% deviation. No further intricate
statistical analysis was performed with this in mind.

An apparent limitation of the experiment is the smallest unit displayed on
the volumetric flask was 1 ml, example is the reading of a value is either 6 or 7
not 6.5 ml.

Accumulated volume as criterium signal

Linear Fit, 100 ml/min

100
90 y =7,0714x + 10,033 B 50 ml/min
= 20 R? =0,9997
£
o 70
g 60 100 ml/min
2 50 Linear Fit, 50 ml/min
3 40 y=6,9011x + 10,286
2 30 R2 = 0,9999 Linear (50
g 50 ml/min)
10 .
0 —Linear (100
ml/min
0 15 /min)

5 0
Phase Number (#])

Figure 10: Accumulated volume versus phase number.

Remember, this experiment setup was setup with small final volumes, range
of 150 to 200 ml, in mind and 100 ml/min is the highest flow rate according
to design for AKTA Explorer pumps. Expected reasonable final volume would
instead be upwards of 800 to 1000 ml and the added concentrated ingredient
solution would increase in proportion.

15

4.1.2 Case 2. Man- vs Machine-made buffer solution

Starting by presenting the sampled signal for the machine-made buffer solution.
Included signals are; flow, pH, accVol (accumulated volume), cond (conduc-
tivity), S2flow (flowrate of Melander). A couple of highlighted data points of
interest is included in the figures, such as 'final pH’, for easier reading of the at
times cluttered imagery. Additionally, all the previously mentioned signals are
represented in normalised values. An example of this is, maximum pH in figure
11 is 5.26 which is displayed as the value of 1 and the final pH value is adjusted
to 5.05 which corresponds to 0.96 in the figure. This allows for all the signals to
be viewed together throughout the run. Please refer to the legend on the right
hand side in each figure for actual max values for each signal.

Figure 11 shows the system running flows of 50 ml/min, starting and stop-
ping, this is the sequence for producing stock solution volumes to the mixing
flask hence all the vertical beige lines between minute zero and five. Once this
is done the pH adjustment process is initiated and the flow is put to a constant
50 ml/min and the conductivity with pH changes when the buffer solution runs
through the sensor loops. What happens onward is Melander (S2) producing
volumes of 0.05 ml with a flow rate (S2flow) of 1 ml/min (its max value) to the
mixing flask. The behavior for the sixty minutes of remaining run time is start-
ing, stopping, measuring pH twice and repeat. Eventually at roughly minute 55
the pH start to change and finally reaching the desired pH target of 5.05.

Machine produced A3 excluding Final Wash

=
N

72,73335047;
0,96007604

d7A "

[EY
N

-

t

flow, max=50 ml/min

B

v .

5 :

®0,8 e -+ pH, max=5,26

oo Y, H ’ ’

£ {

5 i

S06 § accVol, max=2218,6
w 7’

Tjo l ; ml

% 0,4 : .- cond, max=8,626
g t mS/cm

50,2 S2flow

S

S A Final pH =5,05

c 0

= 0 20 40 60 80

time (minute)

Figure 11: Diagram for buffer system run producing a solution of 31.9mM NaAc, 18.1
mM HAc and 50 mM NaCl. The data is displayed in fractions of their own maximum
value during the entire run, in order to be able to plot all the signals together. Note:
maximum value is not always the final value, which is important for the marked data
point at the end of pH. 96% percent of 5.31 is 5.05 (within threshold of acceptable
final pH).

16

Obviously, the extensive run time of this machine-made buffer solution is
long and the issue was a simple one. Previously a washing segment had been
added to the acid and base pump and tubing which leaves several millilitres
of distilled water, approximation of this volume could be between 3 to 5 ml.
This volume had to be pushed out before actual acid was added to the solution
and thus the long time period before pH would change. Since each repetition
of adding acid and measuring pH would take a little more than a minute each
time, the volume added each time is as little as 0.05 ml and therefore taking
this long. An obvious flaw in the programming not taking this into account.

Moving on to the human-made buffer solution which got hooked up to the
sensor loop. In figure 12 the different flowrates is shown and a stable pH and
conductivity reading is displayed.

Self made A3, before pH adjustment
1,2 1,00008324;

0,992452838 .
R — -flow, max=50ml/min

|]
o8 & 0~ L. pH, max=5,30

0,6
—accVol, max=217,03ml
0,4 i

i | cond, max=6,132 mS/cm

Fraction of max value during entire
run

02 : o/ 1,00008324; S I
| 0,173893019
0 B pH stable, pH=5,26
0 2 4 6 8 10

time (minutes)

Figure 12: Displaying the run of hand-made buffer solution through the sensor loop,
before said solution had its pH adjusted. A stable pH and conductivity reading is
occurring roughly one minute in and after a total of 38.74 ml buffer volume pumped
through the sensor loop.

Finally, the hand-made solution had a separate run for its pH adjustment
at a constant flowrate of 30 ml/min. Since this adjustment of pH was manual,
in other words using a 3 ml pipette to add droplets of 5M HCI to the buffer
solution meanwhile waiting and monitoring for a change in pH from the sensors.
Procedure went as follows; start pumps, verified stable pH reading, added 2
droplets of acid, new reading of pH 5.21, adding 3 droplets of acid, new reading
of pH 5.00 and followed by a couple of minutes to confirm stable reading. See
figure 13 below for the graphic representation of this procedure.

17

Human made A3 buffer solution, pH adjustment

1,2
—-pH, max =
— 1 romee s = 5,31
0,8
E 1,650066547; accVol max =
g 0,6 0,941619596 141,25 ml
o
© 0,4
g cond, max =
0,2 6,284 mS/cm
0 .
0 5 4 6 A final pH=5,00

Time (minutes)

Figure 13: Run of the pH adjustment for hand-made buffer solution at a constant
flowrate of 30 ml/min. Additions of two droplets at roughly minute 0.9 and three
droplets at minute 1.2. As per same concept as earlier figures, the included signals
are based on fractions of maximums for each signal and max values are stated in the
legend on the right hand side.

In retrospect, an error in the method of this hand made buffer solution. The
pH adjustment displayed was performed on an already 150 ml so these additional
volumes of acid is technically exceed the intended final volume. In this case the
amount of acid was minimal and thus not exacerbating the potential error.

To conclude, both the human- and machine-made buffer solutions has their
issues and would warrant a reiteration of each experiment. The distilled wa-
ter in acid/base tubing for the machine-made and the human-made technically
exceeding the desired volume of 150 ml with the acid droplets during pH ad-
justment. However, one could argue that both of these issues are negligible as
the distilled water is a stock ingredient as well and five droplets compared to
150 ml is relatively small.

This case indicates that the system is well underway to be able to produce
sufficient quality buffers for in-house use.

4.2 Code
A few additions made to work with the Orbit library. Most of the code produced

comes with creator-made comments to clarify and ease the understanding and
use.

4.2.1 Overview, information path

Figure 14 presents a summarization of how the two new class files SysInv.py and
BuSer.py works in relation to each other but also existing structures. SysInv is

18

short for SystemInventory.py and BuSer is for BufferService.py.

The user is using Orbit as normal for the use of another HPLC system,
an underlying code structure records the use of buffer solution and feeds this
information to Syslnv.

A threshold is checked if some buffer solution is running low in the users
HPLC system. This prompts a call to BuSer which generates a script sug-
gestion and checks its own inventory if it can produce the specific solution. A
summarization is the presented to the user which then could change it or confirm
and run it.

Normal use of

HPLC Systems .. Orbit,
e fons | HPLC system, User
| loggingvolumes | 7 Eoid consumes buffer J—
A method solutions. s

Gives
option to
If buffer inventory Summarize = confirm or
is going below a s script and [change

threshold if ABS ABS script.
: needs refill

i .:':. Automated

C_heCks nEn Buffer System

B inventory

Generates a script i
suggestion.

Figure 14: Path of code information for the new files in relation to existing code. A

good place to start reading this figure is to start at the User, or smiley, and then
proceed counter-clockwise.

The following sections will explain in further detail what the different files
do and which options is available.

4.2.2 SystemlInventory.py

Short connotation is SI or Syslnv, is a class designed with simple functions that
writes down data on what the system has in store. Python has its own serializing
method; Pickle, which in SIs case creates and calls a file SIDLog.pickle where
information is stored.

It made sense to create an attribute of the dictionary type where its keys is
each specie the user has included. Retrieving the value from a key would grant
the user another dictionary, effectively the pickle file is an encrypted nested
dictionary. This specie specific dictionary includes properties like: position in
system, sum of volume entries, list of volume entries, list of dates for the volume
entries and concentration.

19

This gives the system its own memory and opens up possibility for an auto-
mated code-side decision making, like figuring out if the system have enough of
said specie to produce a requested buffer. However, that kind of functionality
is intended to be inside of a class discussed later, namely BufferService.

Table 2 describes the intended structure of the dictionary described above.

Table 2: Example of typical information available from a single entry of the pickle file.
Top row is not part of the file but help defining what each column stands for. SID
abbreviation for SystemInventory Dictionary.

Dictionary/[’specieX’] keys values
SID[hac’] = { 'position’ ‘ad’
— "concentration’ 499
— ‘sumvol’ 323
— "vollog’ list(volume entries)
— "dates’ list(corresponding dates) }

SI has a constructor that allows the user to pass a path to the folder which
contains the pickle file, otherwise if no such path is included it will assume
the path folder is the current working directory. Constructor will attempt to
read the pickle file and loads up a temporary copy of the dictionary and finally
an argument can be passed to state what mode to run, ’test’ or 'real’. Mode
alternatives reflects the modes in orbit ’test’, 'real’ and ’ask’, where the last
mentioned will be translated into 'real” for SI.

First function is ’getValue’ which allows you to retrieve specific values from
a designated specie. An alternative is to not designate a target specie, then the
function calls turns into an iterable usable in loops checking for some criteria.
This alternative is known in Python coding as a generator function. This gener-
ator function is applied to help the system_buffer file to know which Flask units
are filled with what and how much.

Following functions are getSpecieList and getSIDict, first one gives the user
a list of all species (primary keys) included in the pickle file. Second one, gives
you the actual dictionary itself that SI is working with, in case you can not be
bothered with SI or need to cross check something.

Moving on, printContent will present the user with the entire content of
the pickle file in a structured manner. Sections with specie name in alphabetic
order, all single values presented first in each section followed by the extensive
volume log with corresponding dates. Note, the volume log could be very long
after a while, time constraints disallowed for production of a systematic memory
dump of the oldest log entries.

setValue function allows for initializing a new specie to the file as well as
changing already existing specific data. updateVolLog function is actually sim-

20

ilar to setValue but specifically designed for volume entry like when stock solu-
tion is dispensed, negative volumes to appropriate stock is written down. The
function also allows for concentration entry alongside the volume in the case of
refilling a stock solution where a volume still remains in the stock container.
Concentration calculations are made to accommodate for both solutions to a
new concentration and also written down. Lastly, OpenWriteAndClose is a
simple command to save and overwrite work in the pickle file.

Figure 15 provides a simple overview for the content of SystemInventory.py.

Syslinv

Class Constructor

getValue

getSpecielList
getSIDict
printContent
setValue

updateVollLog

OpenWriteAndClose

Figure 15: Function overview for SystemInventory class file.

4.2.3 BufferService.py

BuSer is most common short, BS is not used for somewhat obvious reasons. This
class is intended to be a ”One-Call-And-Done” for ordering buffer solutions to
be produced, however it should be runable manually too. This class retrieves
information on what resources are left from SI and make a determination if it
can produce the requested solutions.

The constructor of this class is required to be run, it gives the user the
possibility to enter optional arguments such as test/real mode and workpath.

During a real mode run the main function ResoEval (Resource Evaluation)
will read the designated pickle files and check if sufficient material (concentra-
tion * volume) exist in the system. This function needs a new ”order” to be
run, whereas an ”order” is defined as a single or bundle of ”task”s (”buffer so-
lution”s). Similar to ordering food at a restaurant, you can in a single order
issue for multiple meals of different kinds. ResoEval primary use is to generate
the script to be used later for buffer production.

21

The intention to have this ”order”-level is so that the script algorithm could
give priority to tasks that was ordered before recent ones. Or in the case of a
certain order given priority over other orders made before and after.

The function ResoEval gets a special figure detailing its operations in Fig-
ure 16b below.

BuSer

ResoEval, code sequence

Class Constructor] Reads order and identifies each
buffer solution requested.

Calls CalcMole for mole mass
ResoEval requiredto produce each.

Creates a list each entry is a dictionary
CalcMole with date for each buff sol.

- Reads the currentitems in production, checks
NewRecipe if any item is finished and archivesit if so.

ReadNbrOfTasks Check current reserved mole mass for
the items in production

RunSchedule Calls SysInv for ABS inventory, checks if
OrderLogging sufficient mole mass is available.

Script structuring, with the help of above
N criteria checks only producible solutions
SaveWork will be included. [Work in progress]

OpenAndRead

(a) Breakdown of functions in the BufferService (b) The code sequence overview of ResoEval
class file. function in BufferService class.

Figure 16: Overview of BufferService class functions and the code sequence of a par-
ticular function called ResoEval.

4.2.4 system_buffer

Some maps of valves and pumps has been adjusted to reflect changes and ad-
ditions to the physical system. Also an Orbit-side new Unit ”Flask” has been
added as well as introduction of function calls to SI for information regard-
ing what these contain, as solution in these is expended for buffer production.
Aforementioned earlier in SystemInventory.py the getValue generator function
allows for the system_buffer file to update itself. Effect of this is that if a user
specifies with help of SysInv that a new specie is installed in a new position the
system_buffer file does not need further editing to reflect it.

Figure 17 describes the brief overview of what is new compared to what
units existed before this project. To clarify, colValve is short for column valve
and connects the outlet from the UV and conductivity sensor sequence back to
the mixing flask. inlPumpsS2 allows for control of the inlet valves of pumpA2
and pumpB2 in system 2, the secondary inlet is for a water resource used in
washing program.

22

/ System_buffer \

| |

Pre-existing New units
units

colvalve

samplValve

R
~—_

outlValve

Retrieves

outlValve2 information
from Sysinv.

Figure 17: Overview of pre existing and new units for the system_buffer file.

4.2.5 process_buffer

Two new Events (e_Transfer and e_LoadLog), e_pHControl revisited, one PhaseOp-
tion o_FinalWash has been added. The contents of process_buffer could be com-
pared to different programs in a dishwasher, selecting a program on a dishwasher
makes it perform a series of specific instructions. In the case of process_buffer
you yourself could create these programs and what they do for your specific
system.

The PhaseOption o_FinalWash creates a sequential but extensive wash op-
eration of all possible volume holding units like; pumps, tubing, analytical in-
struments and the mixing flask. An optional argument can be passed to specify
how many times the mixing flask is rinsed with clean water, default is two.
Earlier washing of acid and base pumps was non-existent so avoiding having the
pump membranes in constant contact with strong agents like HCl and NaOH,
as membrane rupture is not a desired incident.

The so called OnOffControl mimics the behavior in LoadStockAndPump-
Wash where desired volume is pumped through a valve, then changes from flask
to waste and the flowrate is consequently turned off. This control method was
explored in the AccVol testing and found to be surprisingly robust, for more
details refer to its dedicated subsubsection 4.1.1.

23

Flowrate

Time

,"’.’\;::)_________________

Figure 18: Hlustration of OnOffControl-sequence in event LoadLog when loading stock
solution to the mixing flask.

Moreover, the change to an Event from PhaseOption allows for easier condi-
tional control, as in Events an accumulated volume signal is repeatedly retrieved
from Unicorn. This is then used to check versus the desired volume input, set
by the user. For comparison, PhaseOption allows you to state sequentially what
should happen and relies on the computer clock for when instructions happen,
rather than the actual process parameters.

Furthermore, e_Transfer is a simple event that pumps the solution out of
the mixing flask and to a destination, at time of writing it is either waste or
nextSystem (an ordinary flask). Additionally, it checks if the previous processes
has water yet to be added to the buffer which is finally added to the mixing
flask and then as well pumped to the destination. This is intended to work as
a water plug forcing the final product to where it should be.

24

\ /
b // Pump Al

Sample Waste

-
Valve

Outlet

Valve Next System

—— 1 T
Mixing Flask /

Water

Figure 19: A crop out of the final flowchart configuration. Highlight of the intended
path for Transfer event to use when moving solution from mixing flask to nextSys.

25

5 Conclusion

To sum up this project, the AKTA shows promising capability to be able to
produce buffer solutions of sufficient quality for use in HPLC systems. However,
more setup of digital infrastructure needs to be implemented as well as tested
before an automated version could be employed.

26

6 Future Work

This is the bittersweet part, all the things that could be done or could have
been done. The very obvious things for the system is completing the functions
that actually makes the automation go around.

6.1 Items in this project that is Work-In-Progress

Firstly, fully flesh out the script generating function ResoFwal to create priority
based scheduling for the buffer system. Such a priority system could look very
different depending on what one considers important. One example is; line up
buffer solutions of similar ingredient content. Another could be; produce the
most urgent solution first, lets say the one with lowest volume or highest rate of
consumption. However, one could start with simply apply a "no priorities”-type
of approach.

Secondly, small issues here and there but issues nonetheless. Creating a
threshold check function in SysInv for initiating a call to BuSer. Apply the
same code for checking the ABSs own inventory and finally summarizing this
information for the user to confirm.

Process regulation is of course a very enticing concept to implement. Cur-
rently the start and stop of flow to and from the AKTA systems pumps are
controlled by valves, also known as a step response. Control theory or simple
manual tuning of a PID controller is possible to implement for the flow control
but also the pH adjustment sequence.

Please refer to figure 20 for highlights of these issues.

HPLC Systems CEEEE Orbit, Normal use of HPLC

‘%l £ as a system, consumes
P— buffer solutions. T
Port positions A M et h 0 d ‘/

Legend
Orange glow =
not complete
Yellow glow =
not started yet

Gives option
to confirm
Summarizes RSl or change

If buffer inventory .
script and if [ABS script.

is going below a
threshold

ABS needs

refill

Automated
Buffer System

Figure 20: Highlighted points of Work-In-Progress (WIP) in yellow and orange. Yellow
being items with no work started yet and orange is items which has a significant work
progress but not finished for testing.

27

6.2 Sources of error in this project

Suspicion regarding the build up of error in volume documentation, meaning
how well will the volume written in code correspond to the real volume in a
source flask? Sure, the Accumulated Volume testing could indicate that little
worry is warranted for an afternoon of running the system. Although, that
test was performed prior to the actual implementation of variable volume as
an attribute to code-side objects representing these source flasks. One could
consider this as validation work that the writer fret he did not have time to
perform.

6.3 Ideas for future work projects

A list of ideas that is beyond the scope of this project and for a later time as
an expansion of the system, see below.

e Deterministic statistic function on used material for predictions of how
much stock of each specie is required

e Research how solid material could be consistently measured and dissolved
into a stock solution.

e Physical setup of "nextSys” in a more elaborate storage of finished buffer
solution or actual pump work to system in need of said solution.

e Integrate a buffer filtration unit in the system.

e Create a direct link to a distilled water source, in our case: the in-house
tap system.

28

7 References

1]
2]

Irwin H Segel and Leigh D Segel. “pH and Buffers”. In: elS (Aug. 21,
2001). DOI: https://doi.org/10.1038/npg.els.0003117.

Ullmann’s Encyclopedia of Industrial Chemistry. Basic Principles of Chro-
matography. 2011. URL: https://search.ebscohost.com/login.aspx?
direct=true&db=cat07147a&AN=1ub.6244115&site=eds-1live&scope=
site (visited on 05/29/2020).

Mohammad Azam Mansoor. “Liquid Chromatography”. In: eLS (June
2015). DOI: 10.1002/9780470015902.a0002679 . pub3.

Niklas Andersson et al. “Design and control of integrated chromatography
column sequences”. In: Biotechnology Progress (Jan. 2017). DOI: https:
//doi.org/10.1002/btpr.2434.

Niklas Andersson. The Orbit Controller. Research report. Department
Chemical Engineering, Lund University, 2018.

Frida Heskebeck. “Towards autonomous antibody purification”. Master
Thesis. Department of Chemical Engineering, Lund University, 2019. URL:
http://lup.lub.lu.se/student-papers/record/8981399 (visited on
05/15/2020).

Sample Injection - Valco 6 port valve. Valcolnstruments Co. Inc. 2020.
URL: https://www.vici.com/support/app/appllj.php (visited on
07/21,/2020).

AKTATM Laboratory-scale Chromatography Systems, Instrument Man-

agement Handbook. URL: https://cdn.gelifesciences.com/dmm3bwsv3/
AssetStream . aspx ?7mediaformatid=10061&destinationid=10016&

assetid=16189 (visited on 07/17/2020).

AKTA Avant Chromatography System. Cytiva. URL: https://www.cytivalifesciences.
com/en/us/shop/chromatography/chromatography-systems/akta-
avant-p-06264 (visited on 08/20/2020).

BioProcess I1C System. Cytiva. URL: https://www.cytivalifesciences.
com/en/us/shop/chromatography /buffer - preparation-systems/
bioprocess—-ic-system-for-large-scale-buffer-management-p-
03728#related-documents (visited on 07/24/2020).

FlexAct® BP. Sartorius. URL: https://www.sartorius.com/en/products/

process-filtration/flexact - single-use- automated- solutions
(visited on 07/24/2020).

Python Documentation 3.8.3. Python Software Foundation. URL: https:
//docs.python.org/3/ (visited on 06/05/2020).

29

8 Appendix

8.1 Basic Python Concepts

A few basic python concepts is recommended to understand some content of
this report. This entire section dedicated to Python is based on experience and
documentation available at their documentation website for version 3.8.3. [12]

8.1.1 Attributes, or Common data types (list, dictionary, string,
float)

Starting of, in Python coding there is different ways to allocate computer mem-
ory to values like numbers, text et.c. Those ways mentioned here are string,
float, list and dictionary. Reading Python documentation a collective name for
these value types is: attributes.

e String; is one single attribute containing text, an example would be:
stringl = ”"Hello World”

e Float; is also a single attribute but contain a number with decimals, i.e. :
numberl = 3.14.

e List; can contain multiple attributes of different kinds of attributes, a
list could even be empty with no amount of attributes. An important
characteristic of a list is that the order in which attributes appear is always
the same, until changed. ListExamplel = [400, 1, "second”, 3], each time
you use this list the number 400 will appear first in order and the text
value ”second” will appear as the third value.

e Dictionary; similar to a list it can contain none, single or multiple values.
However, these appear in no particular order but instead is connected to
a so-called "key”, which is a string unique to that value it is assigned in
said dictionary. DictExl = {’food’ : ’avocado’, 'not food’ : 3.14}, if you
call for this dictionary like this: DictEx1[food’] it will give you the string
"avocado’

These are only a few attribute types, but hopefully the reader could attain some
confidence approaching the material ahead.

8.1.2 def

For those familiar with programming in languages like Java, this equals to a
function. For those unfamiliar, this is effectively assigning a piece of code to a
specific name with the option to give it input parameters. Very useful if you
know a piece of code will likely need to be used at multiple points in a larger
project, then a function is highly recommended.

Example would be to writing code that calculates the value of an equation,
lets say Einsteins £ = mc?. You suspect that the mass will vary from case to
case, and therefore allow the mass m to be passed as an input argument to a

30

function involving this equation. Every time you call this function it will return
the value of energy, assuming we allow the light of speed to be a constant within
the function.

8.1.3 class

A class is effectively the super ordinate of a function, a class can hold many
functions and attributes. This is an effective way to keep track of a high number
of functions and what each can do, especially when multiple classes of the same
base class is created with slightly different parameter inputs.

A simplistic example would be two pumps of the same design could be ex-
pected to behave similar, thus you could code that is reusable for that design
and in turn for both pumps. But in reality these pumps do different tasks, one
pumps fluid from a reservoir to a reactor tank and the other empties fluid from
the reactor tank to a storage container. In code, a distinction between these two
pumps with a base class of the same type but with different parameters which
could explain how they are connected, when to pump and at what flow rate.

8.1.4 Pickle, a serializing tool

A straightforward way to write down information with a purpose to be used
later is having your program write text in a .txt-file. However, this method has
a couple of issues; one being security, as these files can be read and altered by
anyone having access to said .txt-file. A serialised file offer some protection from
intrusion.

Nevertheless, the main purpose is to change a complex data structure into
a compact byte sized unit and thus increasing storage efficiency.

The reader might reminisce seeing files with extensions like xml and json,
these are information storage files with a serialisation unique to each type of
file. With the appropriate serialization tool these files can be read and ability
reconstruct their complex data counter part.

Pickle is the tool built in Python and is a good choice if information with
Python specific data types is desired to be saved for later use. Data types in
the case of this project is dictionaries but also some functions.

31

	Tom sida
	Tom sida

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20200901152303

 32

 D:20200901142020
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 993
 388
 None
 Left
 11.3386
 0.0000

 Both
 1
 AllDoc
 4

 CurrentAVDoc

 Uniform
 87.8740
 Right

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0k
 Quite Imposing Plus 4
 1

 1
 38
 37
 38

 1

 HistoryItem_V1
 StepAndRepeat

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: best fit
 Scale by 120.00 %
 Align: centre

 D:20200901152410

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 Fixed
 0
 0
 2
 1
 1.2000
 0
 0
 1
 0.0000
 1

 D:20200901152409
 841.8898
 a4
 Blank
 595.2756

 Best
 624
 268
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0k
 Quite Imposing Plus 4
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20200901152421

 32

 D:20200901142020
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 993
 388
 None
 Left
 11.3386
 0.0000

 Both
 1
 AllDoc
 4

 CurrentAVDoc

 Uniform
 87.8740
 Right

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0k
 Quite Imposing Plus 4
 1

 0
 38
 37
 38

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 11.34 points
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20200901152458

 32

 D:20200901142020
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 993
 388
 Fixed
 Right
 11.3386
 0.0000

 Odd
 1
 AllDoc
 4

 CurrentAVDoc

 None
 87.8740
 Right

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0k
 Quite Imposing Plus 4
 1

 7
 38
 36
 19

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move left by 11.34 points
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20200901152514

 32

 D:20200901142020
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 993
 388
 Fixed
 Left
 11.3386
 0.0000

 Odd
 1
 AllDoc
 4

 CurrentAVDoc

 None
 87.8740
 Right

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0k
 Quite Imposing Plus 4
 1

 7
 38
 36
 19

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 11.34 points
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20200901152644

 32

 D:20200901142020
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 993
 388
 Fixed
 Right
 11.3386
 0.0000

 Odd
 1
 AllDoc
 4

 CurrentAVDoc

 None
 87.8740
 Right

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0k
 Quite Imposing Plus 4
 1

 8
 39
 38
 20

 1

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Trim: none
 Shift: move left by 11.34 points
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20200901152655

 32

 D:20200901142020
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 993
 388

 Fixed
 Left
 11.3386
 0.0000

 Even
 1
 AllDoc
 4

 CurrentAVDoc

 None
 87.8740
 Right

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0k
 Quite Imposing Plus 4
 1

 9
 39
 37
 19

 1

 HistoryList_V1
 qi2base

