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A. Arbman Hansing

Abstract

Quadratic voting has been proposed as a voting procedure that aggregates preferences in

a near-utilitarian way. A voter’s optimal strategy is, however, not solely a function of her

preferences, but also of her beliefs about how others will vote. This thesis presents a formal

model of quadratic voting that, unlike previous models, allows for heterogeneity in the beliefs

of voters. The specification is then used to answer two questions about the relationship be-

tween beliefs and voting outcomes. Firstly, how does heterogeneity in beliefs impact election

outcomes? Secondly, what incentives do individual voters have to acquire information about

how others will vote? Results suggest that heterogeneity in beliefs leads election outcomes

to represent preferences only noisily. As long as preferences and beliefs are independently

distributed, the detrimental effects on efficiency decline as the number of voters grows large.

If beliefs and preferences are correlated, however, heterogeneous beliefs may lead to outcomes

that are systematically inefficient.
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A. Arbman Hansing

1 Introduction

In firms, organizations, democratic states, and everyday life, collective decisions are often

made through voting procedures. These procedures allow each eligible member of the group

to express her preference by placing a vote, and determines the collective choice of the group

as a function of the votes cast. The structure of a vote, as well as the decision rule determining

the relationship between votes and the collective choice, can be designed in numerous ways.

Despite extensive study, political scientists and economists differ widely in their opinions

about the relative merits of different such systems.

One recurring criticism of common voting systems, such as majority voting, is that they

fail to capture preference intensity. In an election between two alternatives, the vote of

a nearly-indifferent voter is typically weighted equally to that of a voter with an intense

preference for a particular alternative. This feature can lead to a tyranny of the majority,

where the weak preference of a majority trumps the strong preference of a (potentially almost

as numerous) minority. In a referendum on the legality of same-sex marriage, for example, a

nearly-indifferent opposing majority might win even if a large minority in favor cares deeply

about the issue.

Quadratic Voting (QV) has been proposed as a voting system that aims to achieve (ap-

proximately) utilitarian-efficient outcomes in the presence of heterogeneous preference in-

tensities. Under QV, voters choose freely how many votes to cast in each election, paying

a monetary price proportional to the square of the number of votes cast. The alternative

for which the highest number of votes is purchased is implemented. Since the marginal

cost of each incremental vote is increasing, voters with stronger preferences are likely to

purchase higher numbers of votes, yielding them a higher influence on the outcome of the

election. Several formal models have been put forward to illustrate the benefits of such a

system (Lalley & Weyl, 2018, 2019; Laurence & Sher, 2017). QV has also been used with

tentatively positive results in both experimental settings (Casella & Sanchez, 2019) and for

real-world purposes, most notably in the Democratic Party caucus of the Colorado House of

Representatives (Eason, 2019).

In the existing, theoretical literature on quadratic voting, participants decide upon a

number of votes to cast by solving an expected utility maximization problem. Placing a

higher number of votes increases the probability that the election outcome is favorable, but

incurs a private cost that increases on the margin. The two determinants of a voter’s behavior

are hence (i) her preference, including its intensity, and (ii) her perceived probability of

changing the outcome of the election, conditional on placing a certain number of votes. While

preferences have been assumed to vary exogenously, all voters have been assumed identical
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with respect to their beliefs. That is, all voters share the same estimate of how likely they are

to swing the election when placing a certain number of votes. As a consequence, variability in

election outcomes is in these models fully attributable to variability in preferences, effectively

masking the role of strategy-relevant beliefs.

Several contributions have offered critiques of these formal models. Laurence and Sher

(2017) explore the consequences of wealth inequality and differences in the marginal utility of

money, and find that QV may perform poorly for questions on which opinions are polarized

by wealth. They also argue that QV fails an important democratic legitimacy requirement:

that citizens should have equal opportunity to affect election outcomes. Weyl (2017) models,

among other problems, the risk that voters may collude to buy more votes at lower prices.

To my knowledge, however, the possibility of voters differing in beliefs about the closeness of

the election (and hence, the value of an additional vote) remains unexplored in the existing

literature.

The purpose of this thesis is to study how differences in beliefs – in particular, beliefs

about the voting behaviors of other voters – affect the outcome of QV elections. The rest

of the thesis is structured as follows. Section 2 provides a formal introduction to the study

of voting systems and discusses the strategic role of voter beliefs. In Section 3, quadratic

voting is introduced through two previous specifications. I then present my own specification,

incorporating the possibility of heterogeneous beliefs, and demonstrate the conditions under

which it attains efficient outcomes. In Section 4, I explore two applications of this novel

specification. First, I analyze how differences in beliefs may lead to inefficient outcomes.

Second, I model how an individual voter will value information about the voting behavior of

others. Section 5 concludes the thesis.

2 Voting, Beliefs and Strategy

This section provides an introduction to the formal study of voting systems. A set of indi-

viduals N are set to collectively decide on an outcome from a set of possible alternatives X .

Each individual i chooses a vote vi from some set of possible votes V . The structure of a

vote depends on the voting systems. In binary elections, for example, it may be the case that

vi ∈ {Yes, No}, while in elections featuring more options, each vote may constitute a com-

plete ordering of all alternatives, e.g. vi = (1 : Red Party, 2 : Blue Party, 3 : Green Party).

The outcome of the election is determined by a decision rule, i.e. a function Φ : VN → X
that, for each possible set of votes, outputs a uniquely identified collective choice. Voters will

be assumed to choose their voting behavior in order to maximize their expected utility. A
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voter i whose preferences are described by a utility function Ui will hence choose to vote as

v∗i = arg max
vi∈V

E
[
Ui(vi)

]
(1)

where E[Ui(vi)] denotes the utility that she expects to attain when placing a vote vi, subject

to her relevant probabilistic beliefs about the world. For our purposes, we can define a voting

system as a tuple (V ,Φ) describing (i) the structure of admissible votes and (ii) the decision

rule determining the outcome for every possible vector v = [vi : i ∈ N ]. A common voting

system is plurality rule.

Example 1 (Plurality rule). Under plurality rule, each voter places a vote for exactly one

of the available alternatives, and the outcome of the election is determined as the alternative

that receives the highest total number of votes. Formally,

� V = X ; the set of possible votes is the set of alternatives.

� Φ(v) = arg maxx∈X |{vi = x; i ∈ N}|; the chosen outcome is whichever alternative

receives the highest number of votes.1
m

Under plurality rule between two competing alternatives, the optimal voting behavior of a

voter is simple: whatever her beliefs about how others will vote, it is optimal to vote for her

preferred alternative. In the terminology of game theory, voting for one’s preferred option is a

dominant strategy. In these situations, May’s theorem (May, 1952) shows that majority rule

is the single voting system that aggregates ordinal preferences to unique collective choices

while (i) treating all voters, and all outcomes, equally, and (ii) responding positively to

preferences.2

If, however, the election is between three or more alternatives, it is no longer necessarily

optimal to vote for one’s preferred alternative. As an example, consider an election between

three alternatives A, B, and C. A voter preferring alternative A to B, and B to C, may

nevertheless choose to vote for B if she does not believe that A will enjoy sufficient support

from other voters to have a chance at winning. Her rational strategy is then determined

partly by her beliefs of how others will vote, as opposed to being uniquely defined by her

preferences. We will refer to this behavior of belief-informed voting as strategic voting. 3

1Here, | · | denotes the cardinality of a set. For the sake of conciseness, we disregard the possibility of ties.
2Positive responsiveness means, slightly simplified, that if the outcome is a draw before an additional

individual is added to the group of voters, then the outcome must change to whichever alternative is preferred
by that individual.

3An alternative definition, used in the context of ordinal voting systems, is that a voter votes strategically
if and only if her vote misrepresents her true preference ordering (Kawai and Watanabe, 2013, Myatt, 2007,
Gibbard, 1973). This definition is less useful in the context of cardinal voting systems such as QV, since
these rarely provide an objective way to derive a ”sincere” vote from a set of (even cardinal) preferences.
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2.1 Strategic Voting

In the example of plurality rule, we saw that the optimal voting strategy may depend on a

voter’s beliefs if the election is between more than two possible outcomes. This problem is

not restricted to plurality rule. Instead, Gibbard (1973) and Satterthwaite (1975) famously

showed that no deterministic, non-dictatorial4 voting system allows for dominant strategies

in the presence of more than two alternatives.5 Strategic voting is hence an inescapable

component of multi-option elections.

Voter beliefs have also been shown to empirically affect voting behaviors. Forsythe et

al. (1993) demonstrate in a laboratory setting that subjects vote differently in plurality rule

situations if shown polls of their peer’s preferences in advance. Cain (1978) studies data from

the 1970 British general election, and finds that third-party voting (i.e., the proportion of

votes for other parties than the Labour and Conservative parties) was lower in constituencies

where the margin between the top parties was small. This pattern is interpreted as evidence

that voters who prefer alternative parties nonetheless have a tendency to vote for either the

Labour party or the Conservative party, if the election is believed to be tightly contested.

The fact that voting behaviors reflect not only preferences, but also strategic beliefs, has

notable detrimental effects on the outcomes and interpretability of elections. One conse-

quence is that voters that are well-informed about how others will vote may systematically

attain more preferable election outcomes than voters without such knowledge. This is not

an intended feature of voting systems, that are typically motivated as means of aggregating

preferences. While there are domains, such as financial markets, that are designed to grant

larger influence to better-informed participants, voting systems are not such a domain – in

particular when the information in question is not about the outcomes of policies, but about

the voting behaviors of others.

Furthermore, when voters’ actions are affected by their beliefs, preferences can no longer

be inferred from election results. In Swedish parliamentary elections, for example, seats are

distributed proportionally between all parties receiving at least 4% of the national vote. Vot-

ers whose preferred party is expected to receive significantly less support than this threshold

will likely hesitate to vote for their first choice. The public support of the ideas put forward by

this party will hence likely be underestimated by their election result. In the US, self-identified

”independent” voters have outnumbered both Democrats and Republicans throughout the

last decade (Gallup Inc., 2020). If self-identifying as independent is interpreted as a pref-

erence for third parties, then the fact that almost all votes in presidential elections are for

4A voting system is dictatorial if its outcome depends only on the vote of a single voter, i.e. if Φ(v) = Φ(vi)
for a single i ∈ N .

5This result was further generalized to every stochastic voting system except the random dictatorship by
Hylland (1980).
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Democrat or Republican candidates suggests that strategic voting is ubiquitous. This, in

turn, makes it challenging to determine the nature of independent voters’ disagreement with

the major parties.6

We have now seen that strategic voting has an inescapable role in elections between

three or more alternatives, to potentially detrimental effects on both the efficiency of election

outcomes and the interpretability of voting results. As illustrated in Example 1, common

voting systems avoid these adverse consequences in binary elections, since the same behavior

is then optimal regardless of one’s beliefs. As we will see, however, QV may suffer from

strategic voting even when only two options are under consideration. The remainder of

this thesis will be aimed at understanding the relationships between strategic beliefs, voting

decisions, and election outcomes in quadratic voting.

3 Quadratic Voting

This section introduces the concept of quadratic voting (QV). The first part sets up the

mechanics of the voting system, specifies the assumed preferences of voters, and defines the

primary efficiency criterion used to evaluate the outcomes of the election. The second part

briefly discusses two solution concepts previously proposed by Lalley and Weyl (2018, 2019).

The third part introduces the belief-centered model put forward in this thesis, and specifies

assumptions under which this model coincides with the previously proposed models.

3.1 General Setup

Consider a set of individuals N tasked to make a collective decision between two alterna-

tives: maintaining the current state of affairs, and implementing some proposed change. The

outcome of the decision is described by the binary variable X:

X ∈ {0 : Maintain status quo, 1 : Implement some change}. (2)

Each voter i chooses a number of votes to cast vi ∈ R, where vi > 0 represents |vi| votes

in favor of the proposed change, and vi < 0 represents |vi| votes in favor of the status quo.

Each voter pays a monetary cost c(vi) = v2i to cast the votes.

The utility of each voter is quasilinear in wealth. In addition, let ui ∈ R denote voter i’s

willingness to pay to implement the proposed change with certainty, instead of maintaining

the status quo with certainty. Hence, ui > 0 if and only if i strictly prefers the outcome X = 1

6Of course, an alternative interpretation is that ”independent” voters are simply open to vote for either
major party, in which case the informational problem of strategic voting is likely smaller.
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over X = 0. Since utility is assumed to be quasilinear in wealth, the willingness to pay ui

can equivalently be described as i’s preference over election outcomes. Furthermore, we will

sometimes refer to |ui| as the preference intensity of i. This can be thought to capture the

extent to which the voter cares about the particular issue at hand. In sum, the preferences

of each individual i are fully described by the utility function

Ui(X, vi) = X · ui − v2i . (3)

The outcome of the election is determined as the alternative which receives the highest

number of votes: X = 1 if and only if
∑

i∈N vi ≥ 0. X can therefore be thought of as a

function partly determined by vi. A utility-maximizing voter will hence take two aspects into

consideration when determining how to vote. Firstly, placing a larger number of votes will

increase the probability of a favorable election outcome. Secondly, however, it will also incur

a higher private cost. Furthermore, due to the quadratic cost of votes, the marginal cost of

placing an additional vote in increasing in vi.

Let v∗i denote the number of votes purchased by i in some (later defined) equilibrium.

The motivation of quadratic voting is that it claims to achieve a particular type of efficiency,

defined in Lalley and Weyl (2018).

Definition 1 (adapted from Lalley and Weyl (2018)). A voting system is robustly efficient

if, for any u, the equilibrium votes v∗ satisfy:

sign

(∑
i∈N

v∗i

)
= sign

(∑
i∈N

ui

)
(4)

or, equivalently, if the alternative for which the aggregate preference is the highest, is always

implemented in equilibrium. m

We may notice that efficiency, in this sense, is a utilitarian criterion; a voting system is

efficient if and only if it consistently implements the alternative for which the aggregate

utility is maximized. Plurality rule fails this criterion, since it may well be the case that a

majority prefers one alternative, while the aggregate preference is higher for the other option.

For example, it may be the case the ui < 0 for a majority of a voters i, but that the sum
∑

i ui

is nonetheless greater than 0. In this case, plurality voting implements the choice X = 0,

while the efficient choice is X = 1.

This efficiency criterion can be argued for on two distinct grounds. Firstly, it can be

interpreted as a utilitarian criterion – it requires the implementation of whatever alternative

maximizes aggregate utility. This may seem like a desirable characteristic for those who view
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voting as a means to implement outcomes that are collectively optimal in a consequentialist

sense. It will, however, likely fail to impress those that view voting from rights-based7 or

contractualist8 perspectives.

The criterion from Definition 1 can, however, also be justified as a way of guaranteeing

Kaldor-Hicks efficiency. In the case of voting outcomes that are inefficient in the above sense,

a Pareto improvement can always be achieved by changing the election outcome and letting

the winners pay compensation to the losers. To see this, let N− and N+ denote the set

of voters for which ui < 0 and ui > 0, respectively. Similarly, let U− =
∑

i∈N−
|ui| and

U+ =
∑

i∈N+
|ui| denote the aggregate preference of each group. Then, a voting system is

efficient if any only ifX = 1 exactly when U+ > U−. If an inefficient system proposesX = 0 in

this case, then there exists a wealth transfer of T from N+ to N− (where U− < T < U+) that

leads to a Pareto improvement. This transfer would increase the aggregate utility attained

by N+ by (U+ − T ) > 0 and that of N− by (T − U−) > 0. In an efficient voting system,

transfers of these kinds can never constitute such improvements.

Unlike major voting systems, QV involves monetary transactions. It is, however, not

intended to be source of revenue for the organizer of the election. The amount paid for

votes is typically assumed to be repaid in full to the voters, such that for an election with

N voters, each voter i will receive a refund of 1
N−1

∑
j 6=i v

2
j . Since this amount is received

independently of i’s voting decision it does not impact her behavior, and is hence overlooked

in the remainder of this thesis. Notably, it is also possible to implement versions of QV

based on artificial currencies. One such system, proposed by e.g. Laurence and Sher (2017),

is to provide every voter with a fixed amount of vote credits that are then used to purchase

votes (at a quadratic price) across a pool of elections. While this is often how QV has been

implemented in practice, the theoretical literature has primarily covered monetary QV. This

thesis will adhere to this norm.

3.2 Two Previous Solution Concepts

We have now defined the general setup of the quadratic voting model. Yet, to understand

the outcomes it produces, we must further discuss how voters decide on a number of votes

to place. Recall that every voter perceives voting as a trade-off between two goals: firstly,

that of attaining her preferred election outcome with as high probability as possible, and

secondly, that of minimizing her cost of voting. Lalley and Weyl (2018, 2019) propose two

distinct models for how voters solve this problem, that will be succinctly laid out in this

7e.g. arguing that individuals have an intrinsic right to influence decisions that affect them.
8e.g. believing that individuals voluntarily agree to take part in collective decision-making because they

expect to benefit personally.

9



3.2 Two Previous Solution Concepts A. Arbman Hansing

section. Slight adaptations from the original presentations have been made for pedagogical

and consistency purposes.

3.2.1 Price-taking equilibrium

The first solution concept, from Lalley and Weyl (2018)9, involves voters perceiving them-

selves as purchasers of influence Ii ∈ R, rather than votes vi. Assume that in each election,

the supply of such influence is finite and denoted by S. The vote-price of influence, denoted

p > 0, is the cost, in votes, of one unit of influence. Purchasing a certain level of influence

Ii is hence associated with a cost of (pIi)
2. Since voters will demand higher levels of influ-

ence if the price is low, there exists a market-clearing equilibrium price p∗ and corresponding

influence levels {I∗i ; i ∈ N} for which

(i) I∗i = arg maxIi

{
ui · Ii − (p∗Ii)

2
}

for every i ∈ N , and

(ii)
∑

i I
∗
i = S.

The (implicit) price of influence p∗ is set in such a way that the supply is exerted, i.e.

that
∑

i I
∗
i = S. The key assumption in this solution concept is that voters will, without

necessarily communicating, converge on a particular perceived price p∗. This is the number

of votes that they expect is required to attain one unit of influence.

From (i), we find that voters in equilibrium will choose to buy a level of influence

I∗i =
ui

2(p∗)2
, (5)

corresponding to equilibrium votes of

v∗i ≡ p∗I∗i =
2

p∗
· ui. (6)

Since v∗i is proportional to ui with a coefficient 2
p∗
> 0 that is shared among voters, we find

that

sign

(∑
i∈N

v∗i

)
= sign

(∑
i∈N

2

p∗
· ui

)
= sign

(∑
i∈N

ui

)
. (7)

In this price-taking equilibrium model, quadratic voting is hence robustly efficient according

to the specification in Definition 1.

9The notation used in this section is based on a previous version of the paper, which is also found in
Laurence and Sher (2017).
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3.2.2 Symmetric, Bayesian model

In the price-taking model described above, voters were assumed to perceive an identical price

of influence p∗, but the emergence of this agreement was not specified. This section presents

a possible game-theoretic microfoundation for such an agreement, also specified in Lalley and

Weyl (2019).

Assume that each voter i is aware of her own preference ui and the probability distribution

fu from which the preferences of other voters are drawn. She does not, however, know the

realizations of uj for j 6= i. A voter i purchasing vi votes attains a utility of

Ui(vi) = Ψ(vi + V-i) · ui − v2i (8)

where V-i ≡
∑

j 6=i vj and Ψ : R→ [0, 1] is a function of class C∞ such that Ψ(V )− 1
2

is odd

and limV→∞Ψ(V ) = 1. In other words, Ψ(vi+V-i) is a continuous function approximating the

discrete step function X = X(vi + V-i), that takes the value 0 if vi + V-i < 0 and 1 otherwise.

The reason for this slight complication is proof-theoretical, rather than substantive. Voters

will aim to maximize

E
[
Ψ(vi + V-i) · ui − v2i

]
(9)

subject to their beliefs about V-i. A necessary condition for optimality is hence

v∗i =
ui

p(v∗i )
, where p(vi) =

1

2 · E[Ψ′(vi + V-i)]
. (10)

The authors go on to show that this game allows a Nash equilibrium, and if the number of

voters is sufficiently large, p(vi) is approximately constant in vi. This entails that the optimal

voting strategy v∗i is approximately linear in ui and that

P

(
sign

(∑
i∈N

v∗i

)
= sign

(∑
i∈N

ui
p(v∗i )

)
= sign

(∑
i∈N

ui

))
(11)

is high. The inefficiency, defined as the probability of an election outcome that is suboptimal

in light of the preferences ui, approaches 0 as the number of voters grows large.
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3.3 A Belief-Centered Model

The previous section laid out two solution concepts to the QV model – one based on voters

perceiving themselves as purchasers of influence (sharing identical estimates of the price

thereof), the other based on voters knowing the distribution of preferences fu and voting

on the assumption that this distribution is common knowledge, and that other voters are

rational expected utility maximizers.

While these solution concepts elegantly convey the idea that QV has beneficial efficiency

qualities in the abstract, they rely on strong symmetry assumptions. Notably, all voters

share a common belief in the distribution of preferences, as well as how voters translate said

preferences to voting strategies. What happen if voters, for whatever reason, do not adhere

to these assumptions?

In this section, I will lay out a model of QV that allows each voter to have arbitrary

beliefs about the voting behavior of others. I will specify how voters choose a strategy in this

setting, and exemplify one set of assumptions for which QV is still robustly efficient in this

framework.

Like before, let the preference of each voter i be characterized by a scalar ui, describing the

utility that i attains if the election results in a proposed change, compared to the continuation

of the status quo. Let vi denote the number of votes purchased by i, and V-i =
∑

j 6=i vj denote

the sum of votes purchased by other voters. Then, the utility of i is determined as

Ui(vi|V-i) =

ui − v2i , if vi + V-i ≥ 0

−v2i , if vi + V-i < 0,
(12)

where the first case corresponds to the enactment of the proposed change, and the second to

the continuation of the status quo.

Voters are assumed to choose vi to maximize expected utility, subject to their beliefs

about the voting behavior of others. Let v∗i denote this optimal voting strategy. In the

absence of uncertainty about how others will vote, this behavior is trivially computed.

Proposition 1. Assume that a voter i is certain of the value of V-i. Then,

v∗i =

0, if sign(ui) = sign(V-i) or |ui| < V 2
-i ,

|V-i| · sign(ui), otherwise.
(13)

m

This result follows directly from the maximization of Equation 12 with respect to vi for fixed

values of V-i. The intuition behind the result is that a voter will find it worthwhile to purchase
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a non-zero number of votes only if (i) abstaining from voting would lead to an undesirable

outcome and (ii) the number of votes required to swing the election is sufficiently low to

motivate the cost of the votes. As we move toward the case where the voter is uncertain

about the value of V-i, the same considerations will apply; the optimal voting behavior will

be determined by the probability that the voter assigns to being able to swing the election

without purchasing an excessively costly number of votes.

To study the voting choice of an individual that is uncertain of how others will vote, we

will introduce the subjective probability operator Pi and the belief function f . For any event

A, Pi(A) denotes the probability that i assigns to the realization of A.

Definition 2. Let i be a voter whose beliefs are described by the subjective probability

operator Pi. Then, the belief function f of i is a function such that for every V1, V2 ∈ R,

Pi(V1 ≤ V-i ≤ V2) =

∫ V2

V1

f(V )dV. (14)

m

The belief function f is a probability density function, satisfying f(V ) ≥ 0 for all V and∫∞
−∞ f(V )dV = 1. Having defined an uncertainty measure over V-i, we can now compute the

subjective expected utility of i when placing vi votes as

E
[
Ui(vi)

]
≡
∫
V

Ui(vi|V )f(V )dV (15)

= −v2i + ui

∫ ∞
−vi
f(V )dV (16)

= −v2i + ui

(∫ 0

−vi
f(V )dV +

∫ ∞
0

f(V )dV

)
(17)

In this expression, −v2i is the deterministic cost associated with placing vi votes,
∫∞
0
f(V )dV is

the probability that i assigns to the election resulting in a change if she abstains from voting,

and
∫ 0

−vif(V )dV is the probability of changing the outcome of the election, conditionally on

placing vi votes. These probabilities are illustrated by the size of the blue and orange areas

in Figure 1.
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Figure 1: Graph of a possible belief function f . The size of the blue area represents the probability
of winning the election without voting, i.e. the probability assigned to V-i ≥ 0. The orange area
marks the additional probability of winning when placing vi votes.

Having a closed-form expression for E[Ui(vi)], we can compute the optimal vote v∗i as

v∗i = arg max
vi

{
E
[
Ui(vi)

]}
(18)

= arg max
vi

{
−v2i + ui

∫ ∞
−vi
f(V )dV

}
. (19)

Without further assumptions on f , we can say little about the characteristics of v∗i . Two

conclusions may, however, be drawn. Firstly, refraining from voting (v∗i = 0) may be optimal

only for indifferent voters (for whom ui = 0) and voters that perceive it to be impossible to

swing the election (for whom f(V ) = 0 in a neighborhood of 0). All other voters will place

at least some small number of votes. Secondly, if f is continuous, then a necessary condition

for optimality is that 2v∗i = ui · f(v∗i ).

3.3.1 Sufficient conditions for efficiency

The above specification makes no assumptions on the shape of the belief function f of each

voter apart from it constituting a probability density function. From the expression for the

optimal voting strategy, Equation 19, it is clear that the beliefs are a crucial determinant of

how a rational voter will act. In fact, the only positive effect of voting on utility is driven by

the belief that V-i might be close enough to 0 for a voter to plausibly swing the election. Any

claim regarding the efficiency of outcomes from QV must hence be based on assumptions on

these beliefs. Here, I will provide two conditions on the beliefs of different voters that jointly

imply robustly efficient outcomes.

Firstly, assume the beliefs f of each voter to be identical. In the case of an election with

100 voters, this means that each voter shares the same subjective probability distribution

over how the other 99 voters will choose to vote. This holds, for example, in the model

14
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presented in Section 3.2.2. If beliefs are identical, voters with identical preferences will vote

identically; ui = uj implies v∗i = v∗j for every pair of voters i, j.

This condition, while strong, is not sufficient for efficiency, because it does not describe

how the optimal voting scheme v∗i changes with the value of ui. For this, an additional

assumption is necessary, namely that f is constant in a sufficiently large neighborhood of 0.

By sufficiently large we mean that for any possible preference ui, the belief function f(V )

is constant for |V | < v∗i . Hence, each voter i must consider the probability of swinging the

election to be linear in vi, for the values of vi that she realistically considers to place. Since

v∗i is itself a function of f (see Equation 19), this condition has a recursive nature, but the

intuition is straight-forward: a voter must consider the possibility of swinging the election to

be twice as high when buying two votes instead of one, but not necessarily when buying two

billion votes instead of one billion votes.

If the above condition holds, then f(V ) = c for some c > 0 on this neighborhood of 0.

The optimal voting strategy can then be computed as

v∗i = arg max
vi

{−v2i + ui

∫ ∞
−vi
f(V )dV } (20)

= arg max
vi

{−v2i + ui

∫ ∞
−vi
c · dV } (21)

= arg max
vi

{−v2i + ui · vi · c} (22)

=
1

2
cui. (23)

The number of votes purchased by each voter is hence linear in her preference ui. Recall that

robust efficiency requires that

sign

(∑
i∈N

v∗i

)
= sign

(∑
i∈N

ui

)
, (24)

which holds in this case, since

sign

(∑
i∈N

v∗i

)
= sign

(∑
i∈N

1

2
cui

)
= sign

(∑
i∈N

ui

)
. (25)

How plausible is the assumption that f(V ) is approximately flat around 0? Intuitively, it

appears defensible when the number of voters is large. In this case, the range of plausible

values of V-i would likely be much wider than for the plausible values of v∗i , analogously to

how the variance of a sum of N independent random variables increases with N . Voters would

15
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then believe that |V-i| >> |v∗i | with high probability, and likely assign similar probabilities to

(for example) V-i ≈ 1
2
·vi, V-i ≈ vi and V-i ≈ 2·vi, for the values vi that they are considering. If

the number of voters is low, however, the same argument need not apply, and the assumption

of f being flat around 0 appears less well-founded.

4 Application

We have now specified a belief-centered model of QV that allows for arbitrary, asymmetrical

beliefs among voters. This model highlights that the optimal voting behavior is crucially

determined by a voter’s beliefs, and suggests that the robust efficiency of voting outcomes is

achieved only in particular circumstances – for example when beliefs are identical and flat

around 0.

In this section, we will explore two ways in which this novel specification can help us

gain insight into voting behaviors and likely outcomes of quadratic voting. First, we will

consider how the efficiency of outcomes is impacted when voters differ in beliefs. To this

aim, we will simulate elections where the preference ui and belief ci of each voter is sampled

randomly from some joint distribution. We can thereby compute how each such simulated

participant would have voted, and hence the outcome of the election. By repeating this type

of simulation for different distributions of ui and ci, we can analyze the case when preferences

and beliefs are independent as well as the consequences of correlations between them.

Second, we will analyze the incentives of an individual voter to acquire information, such

as polling data, about how others will vote. As voters with more accurate beliefs tend

to achieve better outcomes in strategic voting situations, we expect them to be willing to

pay non-zero amounts for this kind of information. This is modeled by considering a voter

adhering to Bayesian rationalism, i.e., having some prior belief about how other will vote

that she updates (in accordance with Bayes’ rule) upon observing new evidence. I provide an

expression for the expected value of an arbitrary piece of information, as long as the recipient

of the information has a priori knowledge of its evidential accuracy.

This section can be thought of as an exploratory analysis of the relationships between

beliefs and voting behaviors in quadratic voting. To the extent that these relationships are

modeled quantitatively, the parameter values used are intended to illustrate certain mecha-

nisms, rather than to realistically describe real-world situations. The purpose is to add to

the list of potential ways that QV outcome can be less efficient in practice than in theory,

rather than to generate sharp predictions about the relative magnitude of different problems.
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4.1 Efficiency Effects of Heterogeneous Beliefs

The fundamental argument in favor of QV is its alleged property of implementing efficient

outcomes, i.e., outcomes that maximize the aggregate utility of participating voters. To what

extent can we expect this property to be attained when voters differ in beliefs? This section

will explore this key question through a simple Monte Carlo simulation study.

Let the belief of each voter i be characterized by a probability density function fi. Assume,

as in Section 3.3.1, that each fi is constant in a neighborhood 0, i.e. that fi(V ) = ci > 0 for

sufficiently small magnitudes of V. We will refer to the constant ci as the perceived pivotality

of i, since it describes the likelihood that i assigns to swinging the election, conditionally on

placing a certain number of votes. From Equation 19, we find that a voter with preference

ui will choose to vote as

v∗i = arg max
vi

{
− v2i + ui

∫ ∞
−vi
f(V )dV

}
(26)

= arg max
vi

{
− v2i + ui · vi · ci

}
(27)

=
1

2
· ci · ui. (28)

An election between such voters will be determined by the sign of
∑

i v
∗
i , which is identical

to the sign of
∑

i ciui. The outcome is efficient insofar as this sign is equal to the sign of∑
i ui.

Assume that for each voter i, ui and ci are sampled randomly from some joint, two-

dimensional distribution fuc. How likely is it that the outcome of the election coincides with

the preferred outcome, i.e. what is

P− ≡ P

(
sign

(∑
i

ciui

)
= sign

(∑
i

ui

))
(29)

for different generating functions fuc, and numbers of voters? Similarly, we might be inter-

ested in the expected welfare loss of an election where voters differ in beliefs. To this end,

we will define the utility loss L of an election as

L =


1
N

∣∣∣∑i ui

∣∣∣, if sign (
∑

i ciui) 6= sign (
∑

i ui)

0, otherwise,
(30)

where N denotes the number of voters. This quantity takes a value of 0 if the election

outcome is optimal, and 1
N
|
∑

i ui| otherwise. Similarly, the expected loss E[L] is equal to 0
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if any only if the optimal outcome is implemented with probability 1.

4.1.1 Independent sampling

As a base case to illustrate the detrimental efficiency effects of heterogeneity in beliefs,

consider the scenario where preferences and beliefs are independently distributed. Let

ui ∼ U(−1, 1) and ci ∼ U(0, 1). Figure 2 shows simple point estimates, i.e. observed average

values, of P(X = 1), P−, and E[L], for N = 1, ..., 104 voters. As expected in this symmetric

case, about half of all elections result in X = 1 regardless of N . In addition, the number

of inefficient outcomes is fairly constant around 16% for any N ≥ 3. The expected loss per

voter, however, decreases with N . This follows directly from the central limit theorem – the

distribution of 1
N

∑
i ui will asymptotically approach a zero-mean Gaussian distribution with

variance decreasing in N . The average voter will hence grow ”asymptotically indifferent” to

the election outcome as the number of voters grows large.

Figure 2: Monte Carlo estimated probabilities of X = 1 and inefficient election outcomes (left) and
average loss (right) as a function of the number of participating voters. Shaded areas represent con-
fidence intervals at significance level α = 0.05 (exact binomial intervals are used for the probability
estimates, while the average loss intervals are computed from asymptotic normality). Based on 104

simulations for each number of voters.

This simple simulation contrasts with the case of shared beliefs, ci = c for every voter i, where

P− = E[L] = 0 with certainty. The mere introduction of noise into beliefs is hence detrimental

to the efficiency of voting outcomes, even if this noise is independent of the preferences of

voters. In large elections, however, the expected efficiency loss of belief heterogeneity tends

to 0 as long as preferences and beliefs are independent.
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4.1.2 Correlated sampling

In the real world, however, few variables that describe individuals are independent or even

uncorrelated. It is not difficult to hypothesize that there may be patterns in which individ-

uals perceive themselves as pivotal in QV elections. Perhaps highly educated voters (with

preferences predictably different from the population as a whole) estimate their pivotality

more accurately than the average person. Or perhaps some particular ideological group tend

to overestimate their impact on the election results. To model belief-preference correlation,

consider the case where we sample ci and ui jointly, allowing for the following relationship:

ui ∼ U(−1, 1) (31)

ci = ρ

(
ui + 1

2

)
+ (1− ρ)ĉi (32)

where ĉi ∼ U(0, 1) and 0 ≤ ρ ≤ 1. (33)

From this generation, it is still the case that ui ∈ [−1, 1] and ci ∈ [0, 1], but higher ui have

a tendency to come together with higher ci – a relationship that grows with ρ. In the edge

cases, ui = 1 leads to ci ∼ U(ρ, 1) and ui = −1 leads to ci ∼ U(0, 1− ρ).

Even a relatively low correlation ρ, like ρ = 0.1 in Figure 3 below, leads to X = 1

becoming the dominant outcome as the number of voters grows large. It does, however,

require about 10000 voters for the probability of X = 1 to approach 100%. Interestingly,

the average loss (right) approaches 0 for large N even as the probability of an inefficient

outcome increases. The reason for this is similar to that of the independent sampling; as

long as E[ui] = 0, the sum 1
N

∑
i ui will converge towards 0. In words, our assumption that

the mean person is indifferent about election outcomes leads large populations to be nearly

indifferent on average.

19



4.1 Efficiency Effects of Heterogeneous Beliefs A. Arbman Hansing

Figure 3: Simulation results for correlated sampling.

4.1.3 Non-zero mean preferences

So far, we have found that heterogeneous beliefs induce noise in elections. This lowers the

average efficiency of chosen outcomes even when the average voter is indifferent, but the

effects diminishes as the number of voters grows large. Now, consider the case where voters

on average prefer one outcome over the other, but those who prefer the other outcome are

more confident in their ability to swing the election. Let ū ∈ R denote the average preference

and ρ the preference-belief correlation. Sample ui and ci as:

ui = ū+ ûi (34)

ci = ρ

(
ûi + 1

2

)
+ (1− ρ)ĉi (35)

where ĉi,∼ U(0, 1) and ûi ∼ U(−1, 1) (36)

The interesting case is when ū < 0, when the average voter is skeptical to the proposed

change, but enthusiastic voters are more likely to view themselves as pivotal. This makes

preferences and beliefs ”pull in different directions”. Figure 4 shows the simulation results

for ρ = 0.1, ū = −0.01:
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Figure 4: Simulation results for non-zero mean preferences with correlated beliefs.

With these parameter values, beliefs trump preferences – as the number of voters increases,

the number of elections with a positive outcome (X = 1) approaches 100%. The average

utility loss (right) exhibits a non-monotone pattern – it is high for <10 voters, low for about

100 voters, and high again for >1000 voters. I conjecture that the high loss when the number

of voters is low is due to statistical noise (it’s relatively more common e.g. that one outlier

voter, perceiving herself as highly pivotal, swings the election in an inefficient direction) while

the high loss for high N is due to the systematic relationship between ci and ui.

In this series of simulations, we have seen that when voters differ in their perceived

pivotality, the ability of QV to implement efficient outcomes deteriorates. As long as beliefs

and preferences are uncorrelated, this issue primarily arises when the number of voters is

low. If certain preferences go together with certain beliefs, however, efficiency is seriously

harmed regardless of the number of participating voters.

The next application will discuss one possible way in which differences in beliefs may

arise: different voters may have access to different information.

4.2 Value of Information

We have found that the optimal voting strategy, and hence the expected utility, of each voter

depends on her beliefs. Does this imply that voters with more accurate beliefs systematically

attain higher levels of utility, than peer with less accurate beliefs? If so, how much would

an individual voters be willing to pay for accurate information about the voting behavior of

others?

This section presents a framework for how Bayesian voters estimate the value of infor-

mation about the voting behavior of others. The first part provides a primer on the central
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concepts of Bayesian rationality. The second part specifies how these relate to the situation

of a QV participant observing some piece of information, and the third formalizes how highly

the participant values said information.

4.2.1 Bayesian rationality

Bayesian rationality is a method of probabilistic reasoning specifying how to update beliefs in

light of new information. It owes its name to Bayes’ rule, that states that for any hypothesis

H and evidence E (such that P(E) > 0), it holds that

P(H|E) =
P(E|H) · P(H)

P(E)
. (37)

The formula tells us that the correct probability to assign to a hypothesis H after observing

evidence E, i.e. P(H|E), is proportional to the product of the likelihood of the evidence given

the hypothesis, P(E|H), and the prior probability P(H) assigned to the hypothesis before

observing evidence. P(E) denotes the prior probability assigned to observing the evidence

E, rather than some distinct piece of evidence Ẽ.

In its original form, Bayes’ rule is specified for discrete events. The formula can, however,

be trivially translated to continuous hypotheses and evidence. Letting f denote probability

density functions, the equivalent update rule is

f(h|e) =
f(e|h) · f(h)

f(e)
(38)

where f(h) is often referred to as the prior belief, f(e|h) as the likelihood function, and f(h|e)
as the posterior belief.

4.2.2 A Bayesian voter

For some voter i, let

� f0(V-i) denote her prior belief over V-i before observing the evidence in question,

� e represent the evidence: a noisy observation of the true value of V-i such that f(e|V-i)
is known and symmetric around V-i,

� fe(e) denote i’s belief over what evidence will be observed, and

� fp(V-i|e) describe i’s posterior belief over V-i after observing a particular piece of evi-

dence e.
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From the continuous version of Bayes’ rule, we find that these quantities must be related as

fp(V-i|e) =
f(e|V-i) · f0(V-i)

fe(e)
(39)

where the denominator

fe(e) =

∫
V

f0(V )f(e|V )dV (40)

can be interpreted as a normalizing constant to ensure that the posterior is indeed a probabil-

ity density for any observed e. We can train our intuition about Equation 39 by considering

two extreme cases.

First, assume that the observed evidence e is perfect, that is, equal to the true value V-i

with certainty. If this is the case, then f(e|V-i) is a degenerate distribution – f(e|V-i) = 0 for

any e 6= V-i. In this case, the posterior fp(V-i|e) will also take on a non-zero value at a single

point only. Hence, any voter observing perfect evidence will (intuitively) be certain about

the value of V-i afterwards.10

As an alternative example, let the voter be certain about V-i before observing evidence,

i.e., let f0(V
∗
-i ) > 0 for a single value V ∗-i . Then, the voter will still be sure that this is the

correct value after observing evidence, as long as f(e|V ∗-i ) > 0 for the observed e.11 This

captures the intuition that additional information has no (ex-ante) value for someone who is

already certain about the value of a parameter.

4.2.3 Value of information

Having formalized how voters update their beliefs in the light of new information, we can

now determine how that information might induce better voting decisions. Without evidence,

Equation 16 shows that a voter i will expect to attain a utility of

E0[Ui|v∗i ] = −(v∗i )2 + ui

∫ ∞
−vi

f0(V )dV (41)

= −(v∗i )2 + ui · P0(v
∗
i + V ≥ 0) (42)

10This assumes that, for the true value V ∗
-i , f0(V ∗

-i ) > 0.
11If, for some observed e, f(e|V-i) · f0(V-i) = 0 for every V-i, then the posterior belief is not well-defined.

We will disregard this problem by assuming that each voter assigns non-zero prior probability to the true
value V ∗

-i .
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where P0 refers to the subjective probability with respect to the prior f0. If she expects to

observe evidence, she will instead expect to attain a utility of

Ee

[
Ep

[
Ui|vei

]]
= −Ee

[
(vei )

2
]

+ ui · Ee

[
Pp(v

e
i + V ≥ 0)

]
(43)

where Ee is the expectation over what evidence will be observed, vei is the optimal vote after

observing a particular evidence e and Pp is the probability with respect to the posterior

distribution fp (that depends on the evidence).

The difference between equations 41 and 43 shine light on the value of the evidence.

Evidence can be beneficial in two distinct ways:

1. the evidence can lead i to vote less in expectation, if Ee

[
(vei )

2
]
< (v∗i )2, and

2. the evidence can lead to a higher probability of winning the election, if it is the case

that Ee

[
Pp(v

e
i + V ≥ 0)

]
> P0(v

∗
i + V ≥ 0).

Notably, both of these positive effects can occur simultaneously. Consider the following

example.

Example 2 (Perfect evidence). Let i be a voter with ui = 2 and a prior belief f0(V ) = 1
2

for −1 ≤ V ≤ 1. From Equation 19 we find that, without information, she will place v∗i = 1
2

votes at a cost of (v∗i )2 = 1
4
. Furthermore, she will expect to win with a probability of 3

4
,

that is, the probability that she assigns to V-i + 1
2
≥ 0.

Now, assume that she will obtain perfect evidence, i.e. observe some e = V ∗-i . Her optimal

vote is then given by Proposition 1. If she observes e ≥ 0 (which, from her prior, she expects

will happen with 50% probability), she will infer that V-i ≥ 0 and place no votes, since she

expects to win without voting. If she observes −1 < e < 0, she will place vei = |e| votes – just

enough to win the election. Since her prior is that the true value V ∗-i is necessarily greater

than or equal to −1, she considers any smaller value of e impossible. Consequently, prior to

observing evidence, i expects to pay 1
6

for her votes12, and win with probability 1.

The evidence has hence both reduced the expected cost of her votes from 1
4

to 1
6
, and

increased her perceived probability of winning from 3
4

to 1.13 m

Seeing that voters expects to attain a higher utility from observing some evidence, it is

natural to introduce a term for the value of this evidence.

12Ee[(v
e
i )2] =

∫ 0

e=−1
|e|2fe(e)de = 1

6 , where fe(e) = f0(e), since her ”prior of what evidence she will
observe” is the same as her prior over the value of V-i.

13One may note that if instead ui = 1, then the evidence increases the expected cost of voting. The value
of the information is still positive, however, since this increase in cost is compensated by a higher probability
of a favorable election outcome.
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Definition 3. Let e be some noisy observation of V ∗-i . Then, the (ex-ante) value of informa-

tion VoI of e for a voter i is

VoI = Ee

[
Ep

[
Ui|vei

]]
− E0

[
Ui|v∗i

]
. (44)

In Example 2, the voter i expects a utility of 5
4

without evidence14, and 11
6

with evidence15.

The value of information can be computed as

VoI =
11

6
− 5

4
=

7

12
. (45)

The voter will hence be willing to pay 7
12

monetary units to attain the information in question.

With lower-quality evidence (i.e. when f(e|V ) is not a degenerate distribution), the value of

information must typically be computed through numerical methods.

The above analysis provides support for the claim that participants in QV elections have

incentives to inform themselves about the voting behaviors of others. Since this incentive is

likely to be larger for voters with intense preferences, there is a risk that such voters would

go to greater lengths than the average voter to estimate their pivotality accurately. This, in

turn, is a potential source of belief heterogeneity.

5 Conclusions and Discussion

The topic of this thesis has been to explore the role of strategic beliefs in quadratic voting:

how does the optimal voting behavior depend on a voter’s beliefs about other voters, and how

does heterogeneity in said beliefs impact election outcomes? To this end, I have formalized

a novel, belief-centered model of voting behaviors. I have then explored two applications

of this model: one analyzing how heterogeneity in beliefs affects voting outcomes, and one

formalizing an individual voter’s incentive to acquire information about how others will vote.

The first application finds that belief heterogeneity has detrimental effects on the out-

comes of QV elections, even if beliefs and preferences are independently distributed. If the

purpose of the voting system is to aggregate preferences, then belief heterogeneity can be seen

as a noise introduced into the aggregation process – the higher the levels of heterogeneity and

the lower the number of voters, the smaller the likelihood that the optimal alternative will

be chosen. If beliefs and preferences are correlated, the heterogeneity in beliefs is no longer

just a noise in the aggregation process, but also a bias. Outcomes can then be systematically

inefficient even as the number of voters grows large.

14Paying 1
4 for 75% probability of winning (and gaining ui = 2 utility).

15Paying in expectation 1
6 for certain win.
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The second application specifies how a rational voter may have a willingness to pay for

information about the voting behavior of others. This highlights that QV may give dispropor-

tionate influence to well-informed individuals and interest groups. Although this tendency

exists in any voting system when more than two alternatives are under consideration, we

have at least three reasons to believe if might have a particularly large impact under QV.

Firstly, QV encourages participants to vote strategically even in binary elections, such as the

final stages of many countries’ presidential elections.

Secondly, the set of possible votes is infinite in QV (corresponding to the entire real

axis). Placing an optimal number of votes therefore requires nuanced estimation of the

minuscule probability of swinging the election. Under plurality rule, in contrast, voters

typically consider no more than a few different vote options. The threshold for information

to impact a voter’s strategy is therefore higher. Thirdly, the traditionally most common

method of acquiring voting-relevant information – polls – is likely to be less useful under

QV. This will be the case at least as long as said polls do not reliably capture preference

intensities.

In summary, voting under QV appears to require higher levels of cognitive ability and

information than under most other common voting systems. This may in and of itself generate

heterogeneity in the voting strategies employed by different voters, which would in turn

lead to higher inefficiency than predicted by the ”belief-symmetric” models in the existing

literature.

Throughout this thesis, voters have been assumed to follow the rational choice model of

voting: they vote with the sole motivation of potentially affecting the election outcome in a

direction that aligns with their preference. In recent decades, this framing of voter motivation

has been criticized. For example, it has been argued that an individual voter typically has

a relatively modest stake in the outcome of each election (rarely above the order of a few

thousand dollars), and should in many voting situations hardly expect to change the election

outcome with a higher probability than perhaps one in a million. The expected utility of

voting – the product of the probability of swinging the election and the benefit of a favorable

outcome – would then likely be in the magnitude of cents. This is, it is argued, far from

sufficient to compensate for the inconvenience of making a trip to a polling station. This

observation, coined the paradox of voting in the seminal work of Downs (1957), challenges

the rational choice model of voting.

Three solutions are commonly proposed to the alleged paradox. Firstly, it may simply be

the case that voters vastly overestimate their probability of swinging an election. They may

hence, subjectively but erroneously, estimate voting to be worthwhile from a selfish, expected

utility maximizing perspective (Acevedo & Krueger, 2004). This hypothesis would, if true,
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give further weight to the concerns put forward in this thesis, since it implies that voters

have systematically biased beliefs about their probability of impacting election outcomes.

Secondly, individuals may choose to vote for prosocial reasons; they may value not only the

potential benefits of a new policy to themselves, but to other individuals, too (Edlin et al.,

2007). This greatly increases the total expected benefits of voting, to the point of making it

rational for sufficiently altruistic voters. Thirdly, a voter may gain utility not primarily from

the outcome of an election, but from the act of voting itself – perhaps by being perceived

as a responsible citizen, signaling some tribal membership, or experiencing a sense of civic

duty (Riker & Ordeshook, 1968). If this were true, beliefs about pivotality are likely to be of

little relevance for voting decisions, and the formal method of analysis deployed in this thesis

largely misguided.

Of course, voter motivations may differ substantially between contexts – a citizen voting

for presidential candidates may have different decision criteria from a board member voting

about budget priorities for a corporation. Although many examples in this essay have been

drawn from the political sphere, QV can be used equally well for collective decision-making in

private organizations or informal situations. If motivations of voters are context-dependent,

then the same is likely to hold for the strategic role of beliefs.

This thesis is an exploratory analysis of the strategic and informational aspects of quadratic

voting. The arguments put forward are generally driven by simplified examples, and the

extent to which the problems apply in real-world elections is far from determined. One par-

ticularly promising avenue of future research is therefore more empirical and qualitative. In

the real world, what considerations do QV participants state as influential to their voting

decisions? How salient are arguments about the expected closeness of the elections? Do

voting strategies change significantly with experience? This class of research questions seem

fitting for experimental study.
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