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Abstract

For a drone to be able to navigate in an indoor environment, it needs to under-
stand its surroundings and locate itself to be able to plan a trajectory to its �nal
destination. This thesis aims to solve the global localization problem, i.e. esti-
mate a drone’s position and orientation in a previously mapped indoor environ-
ment by using a monocular camera and computer vision, which is an important
�rst step towards autonomous navigation

To make a drone able to understand its surroundings, a camera is attached
to it and computer vision algorithms are used to extract important informa-
tion about features in the environment represented in images. Using an open
source software, COLMAP the features can be recreated in a map. A feature
in the map is represented by a 3D-point and a descriptor, which describe the
location and the structure of the feature in the world. Many points create to-
gether a point cloud. To be able to use the point cloud as a map for navigation,
the scale ambiguity problem needs to be solved. Because of similarity properties
of the projection model used in COLMAP, the point cloud can have arbitrary
orientation and scale. A distance in the map can then be arbitrarily big, which
makes it impossible to plan a trajectory. Therefore, the point cloud is rotated
to match the orientation of the gravity direction and is scaled to metric scale by
using sensor data from i.a. the drone’s IMU. By extracting features from images
when the drone is ⇥ying, descriptors representing the features can be computed
and compared with descriptors in the point cloud map. Point correspondences
are then generated between the map and image. They are later used to solve the
Perspective-three-point problem to derive a pose estimate of the drone in the
environment.

The results presented in this thesis indicates that it is possible to use this
procedure when estimating a drone’s pose in an indoor environment. The pro-
cedure was only tested for two simple data sets. The details of the procedure,
which were possible to evaluate closer showed a stable result, however had room
for improvements.

Keywords: Global localization, Crazy⇥ie, indoor navigation, SLAM, point cloud map,
monocular camera
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Chapter 1

Introduction

1.1 Background
In 2019, approximately 14 700 burglaries were reported in Sweden [6]. A home alarm system
is a good way to protect people’s homes, valuables, properties and for people to feel safe
and secure in their own homes. Verisure is a security company located in Malmö, which is
specialized in home alarm systems. Their alarm system consists of di⇤erent sensor units, e.g.
window magnets, movement detectors and cameras, which monitor the home to protect it
from intruders.

If an alarm is triggered, it needs to be veri�ed. This can be done by security o↵cer call-
outs or by specialized sta⇤ at an alarm centre who interpret and analyse, for instance, images
from camera detectors. The former is very expensive and time consuming. The latter is cheap
and fast, but comes with other di↵culties and problems. To verify an alarm safely, cameras
are needed in all rooms to cover every corner of the home. This makes installation and main-
tenance costs higher and can create a sense of discomfort by the home owner, because of the
decrease of privacy.

An idea to a solution to this problem is to use a camera attached to a small drone. In
case of an alarm, the drone can localize the triggered alarm unit and ⇥y autonomously to its
position and streamnecessary informationwith the camera to an alarm centre for veri�cation
purpose. The drone has a landing platform, where it can charge while the alarm is inactive.
This solution would not decrease the home owner’s sense of privacy, would require minimal
installation and veri�es alarms fast and safe. However, it also comes with new technical
challenges as indoor navigation, collision avoidance and ⇥ight and landing control.

For an autonomous vehicle, navigation is very important. Usually the problem is split
into three sub problems; localization, mapping and path planning. To be able to navigate
in an environment, a map is needed so that the drone can interpret its surroundings and
determine its location (i.e. position and orientation) before it can plan a route to its �nal
destination.

9



1. I⌥�⇧⌃��⌅�✏⌃⌥

In this master thesis, the problem of global localization will be covered, which is the
determination of the drone’s position and orientation in a previously mapped environment.
Both a map and a localization algorithm will be created and implemented.

1.2 Related work
To solve the global localization problem another similar problem will be studied, i.e. the
simultaneous localization and mapping problem (SLAM), which will be thoroughly covered
in the following section. The main di⇤erence between global localization and SLAM is that
in global localization the map of the environment is created in advance, while in SLAM the
map is built concurrently as the drone explores the environment. The reason why SLAM
is studied is that the problem is well-covered. There are many di⇤erent types of solutions
to the SLAM-problem, from which ideas and inspiration can be collected to �nd a suitable
solution to the speci�c requirements and limits of the home alarm application introduced in
this thesis.

Also external localization systems like Loco Positioning system [4] was considered. Then
anchors are placed in the room and are used to triangulate the position of the drone, like a
mini GPS system. However, systems like this require more installation, since several anchors
need to be placed at di⇤erent positions in the home. Another disadvantage is the visual aspect
of having several anchors attached to the walls. It is then a design issue.

1.2.1 Simultaneous localization and mapping
Simultaneous localization and mapping is the process of concurrently building a map of sen-
sor data connected to landmarks of the environment and using thismap to obtain estimates of
the vehicle’s position [11]. This problem is well known and studied in the �eld of autonomous
robots and is considered one of the main problems when trying to build autonomous robots.

Localization and mapping are two problems that are tightly coupled. To be able to know
a robot’s location, a map of the environment is needed. To be able to build a map of the envi-
ronment, the robot needs to know where it is located to interpret its surroundings correctly.
This makes the problem di↵cult to solve and it also makes the solution sensitive to errors. If
the estimated position has a small error, the map built from the found landmarks also has the
same error. The estimation errors accumulate while the robot is moving in the environment
and the robot’s estimated position can drift away from its true position. This also makes it
very di↵cult for the robot to understand if it has already visited a place once. This is the so
called loop closure problem [11].

There are many di⇤erent solutions to the SLAM problem. The structure of the solutions
depend mainly on the application and which type of sensor is used. Since in this project,
a camera will be attached to the drone to verify alarms, it can at the same time be used
as sensor unit. Cameras are compact, accurate and can provide rich information about the
environment which other sensors can not. By analysing a sequence of images, the drone
can understand its direction of motion, orientation and position relative to landmarks in
the environment. This makes it possible for the drone to recognize an already visited place.
Cameras can also grant information about objects in the environment, which can be useful.

10
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1.2.2 Visual-SLAM
Visual-SLAM methods are divided into direct and feature based methods. Direct methods
use the whole image as input information to estimate the motion. Processing all pixels make
these methods very computationally demanding and often a GPU is required. Feature based
methods on the other hand only use a sparse set of distinct features in the images, such as
points and lines, which in the world correspond to corners and edges. Therefore, they require
less computational power. A feature extractor is required to �nd and to extract features in
the images. The point correspondences are used to triangulate the points’ positions and the
camera pose. Some important feature based SLAM solutions are presented below.

FastSLAM [23] is a particle �lter based solution. A state vector is used to keep track of
camera poses and landmarks. The state vector and a covariance matrix are updated for every
new image. If new landmarks are detected, these are added to the state vector. FastSLAM
produces a solution which is e↵cient and robust. It can operate over an environment with
thousands of landmarks, whichmakes it suitable for use in a small enclosed space. If the space
is unlimited or very large, then the state vector gets too big for the method to operate in real
time, because of the increase of computation time. The state vector representation makes it
also di↵cult to detect whether a place has been visited or not (loop closure problem).

In solutions like FastSLAM, tracking and mapping are conducted simultaneously when
updating the state vector. This makes mapping and tracking very tightly linked. Images in
the image sequence can contain redundant information if the camera has little movement of
none at all. Updating the state vector takes time and in this case it does not add any new
information. This motivates a method to separate the tracking and mapping steps. In the
article Parallel tracking and mapping (PTAM) [18] tracking and mapping were separated and
run in two di⇤erent parallel threads. This made it possible to use more robust methods for
localization, like presented in MonoSLAM [8]. In this article, a single monocular camera
was used to perform real time tracking in an unknown environment and by using a sparse
feature map of the environment. In PTAM, also the problem of redundant information could
be better dealt with by ignoring redundant images and focus instead on useful keyframes.
Since not all images are used, the computational time constraint for the system to run in real
time loosens. The processing of the keyframe needs to be completed before next keyframe
is added. This makes it possible to create more detailed maps, which makes the tracking
more accurate. All or a subset of the keyframes are later used in a last step to perform the
computationally expensive but highly accurate batch method, bundle adjustment (BA). BA
re�nes the map and camera poses by globally optimize over the parameters to get globally
consistent estimates.

PTAM uses FAST-corners detector to detect features. Pixels in a small patch around the
feature are used to describe the point.

Another important SLAM solution is ORB-SLAM [24], which is based on the procedure
of PTAM. In ORB-SLAM also FAST-corners detector is used to detect features, but instead
of using a patch to describe the feature, it uses a binary 256-bit descriptor. The descriptors
are extremely fast to compute and it is very easy to compare them using the Hamming norm.
Therefore, newly found descriptors can be compared to already found descriptors and loop
closure is possible.

The most recent SLAM-system of interest is the Visual-inertial Monocular SLAM with
map reuse [25]. The authors of the article present a method to fuse camera and IMU sen-
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sory data so that incremental motion get computed with a very high precision. This makes
tracking more accurate. They also present a method to solve the scale ambiguity problem
for monocular cameras, which is more thoroughly described below in section 1.2.3, using
accelerometer data and the incremental motion estimates.

1.2.3 The scale ambiguity problem
A map which is created by a monocular SLAM system, is a⇤ected by the scale ambiguity
problem. The projection model for a monocular camera is only de�ned up to a similarity
transform. In other words, the camera poses and the 3D-points in the map can be arbitrarily
scaled, rotated and translated. The 3D-points will still be projected to the same 2D-points in
the image. A consequence is therefore, that the map will not be in metric scale nor have an
orientation that relates to the gravity direction. The scale and orientation of the world can
only be recovered if information about the world is added to the system. This can be done
by introducing IMU sensory data, which was performed in Visual-inertial Monocular SLAM
[25].

It is very important to solve the scale ambiguity problem in applications where there is
some form of control and path planning. Otherwise the scale of the error is unknown. The
trajectory in the map will not be the same as the trajectory in the world. It is also of interest
to know the direction of gravity in the map, since the accelerometer is sometimes used to
understand the vehicle’s movement.

It is not possible to determine the orientation around the gravity vector (north, south,
east, west) without additional sensors. Therefore, orientation has to be chosen arbitrarily,
but must be kept �xed in the application to not disrupt the planned trajectory.

1.3 Main idea
As mentioned in the end of section 1.1, the global localization problem is the determination
of the drone’s position and orientation (pose) in a previously mapped environment. Since in
a home alarm system application, the drone moves in the same space and the environment
will most likely not change drastically between alarm activations, the map can be created
in advance. This enables the map to be built without a real time constraint. Because of
the time limit of the thesis, the software to create the map is not completely made from
scratch. The 3D-points in the map are generated by using an open source software called
COLMAP. COLMAP can reconstruct a sparse 3D-point cloud by extracting SIFT-features
from a sequence of overlapping images (keyframes) from the environment. SIFT is a feature
detector and extractor, which is very commonly used because of its scale and rotation in-
variancy. However, computing and matching SIFT-features can not be conducted as fast as
when ORB is used. COLMAP performs the bundle adjustment step, which is very important
to correct accumulated errors in the map. BA is then conducted without any risk of slowing
down the determination of the location of the drone. Since only the localization of the drone
will be conducted in real time, only the solution to this problem is under a real time con-
straint. By creating a sparse feature map instead of using a direct method, and by describing
the 3D-points with ORB-descriptors instead of SIFT-descriptors, the computations required

12
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to determine the drone’s pose decrease. This makes it easier to create a system which could
work in real time.

The map consists of a cloud of 3D-points with ORB-descriptors. Every 3D-point cor-
respond to a real point in the environment. The map is therefore called “point cloud map”.
However, before it can be used as a map, the scale ambiguity problem needs to be solved.
Since a monocular camera will be used, the point cloud can have arbitrary scale and orienta-
tion, whichmakes it di↵cult to use as amap for path planning. The problemwill be solved by
integrating IMU and pose data when creating the point cloud map, which will be thoroughly
described in section 3.2.2 and section 3.2.3.

Since the drone will rest on a landing platform when the alarm is inactive, the start
position will be known as the platform will have a �x location.

To be able to localize the drone in the map, feature points from the images are compared
to the descriptors in the map. This gives point correspondences between the map and the
image. By solving the Perspective-three-point problem, a pose estimate can be derived.

1.4 Crazyflie
The thesis is carried out in cooperation with the company Bitcraze, who develops the drone
Crazy⇥ie. The Crazy⇥ie is a nano sized drone that weighs only 27 grams. Its small size makes
it safer for indoor usage. In case of a crash, the kinetic energy will not be high enough to
cause large damage to people, pets or interior.

Bitcraze also develops a ⇥ow deck which can be attached to the Crazy⇥ie. The ⇥ow deck
consists of two sensor units: a time of �ght sensor and an optical ⇥ow sensor. The inbuilt
system of the drone can estimate the pose more accurately when these two sensors are added.

1.5 Limitations
There are some disadvantages when using a nano sized drone like Crazy⇥ie. The disadvan-
tages cause some limitations of the project. The small size of the drone limits its lifting ca-
pacity. Therefore, all components need to be light-weight. The small battery has a capacity
of 240 mAh which needs to give power to both the Crazy⇥ie and the camera system attached
to the Crazy⇥ie. This shortens the time of ⇥ight to about one minute. Since the camera needs
to be so small, the quality of the images is limited.

When this master thesis is conducted, there is no possibility to implement a solution of
the problem on-board of the Crazy⇥ie. Therefore, all computations are made o⇤-board on
a computer which is connected to both camera system and the Crazy⇥ie. A consequence of
this is that a time delay occurs in the system.

Because of the project’s time limit, only simulations of the system will be performed and
evaluated. The system will not be tested in real time nor will the result of the localization
algorithm be used to control the Crazy⇥ie.

The system to collect data was built in a way that made it hard to ⇥y the drone and at
the same time collect IMU and pose data. Therefore the data was collected while holding the
drone in the hand and moving it around.
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1.6 Purpose and goals
The purpose of this thesis is to establish global localization of a drone in an indoor environ-
ment by achieving the following three goals and subgoals:

1. Build a system to collect data.

• Choose hardware components that works with the restrictions Crazy⇥ie entails.

• Calibrate camera and camera-IMU system.

2. Create a point cloud map of the environment in a metric scale.

• Use open source software COLMAP to create point cloud.

• Rotate point cloud so that the direction of gravity points in the same direction
as the negative z-axis.

• Scale point cloud to metric scale.

• Translate point cloud in z-direction so that the origin is located at ⇥oor level.

• Find ORB-descriptors to 3D-points in point cloud.

3. Determine the drone’s position and orientation in the point cloud map by using com-
puter vision and by solving the Perspective-three-point problem.

For system evaluation, the following questions will be answered:

• Is it possible to implement a solution using the Crazy⇥ie with the weight, battery time,
and camera quality restrictions?

• How accurate is the estimation of the scale factor of the point cloud?

• Is it possible to pair ORB-descriptors with 3D-points, which COLMAP created by
detecting SIFT-features?

• How accurate is the positioning of the drone? How noisy is it?

• How fast can the implemented solution perform in simulations? Is it fast enough to
be used in real time in the future?

1.7 Contribution
The content of this thesis could contribute to a new product to the Verisure alarm systems. It
contains a basic idea of how an autonomous drone can be used in a home alarm application.
Speci�cally an idea of how the navigation of the drone could be implemented is presented.

A new idea is presented of how a ⇥ow deck attached to the Crazy⇥ie could be used to
easily obtain a more accurate scale factor when scaling the point cloud to metric scale.

This master thesis also contribute to the understanding if the descriptors in a point cloud
map constructed by SIFT-features could be described by ORB-features instead.
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1.8 Thesis outline
In the introducing chapter, the main idea and the important related work, which inspired
to the procedure in this thesis, were presented. In chapter 2 the relevant theory needed to
understand the procedure of the method and implementation is presented. In chapter 3 the
method of how the three steps listed in Purpose and goals (section 1.6) are achieved. The
section is divided into three subsections, which resemble the three steps. In chapter 4 the
results are presented followed by chapter 5 where a discussion about the result is held. Lastly,
in chapter 6 the conclusion of the thesis is presented along sidewith a Further research section
about suggested further testing and improvements of the solution.
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Chapter 2

Theory

In this chapter, the relevant theory is presented. First, the camera and distortion models are
explained to derive the transformation between camera and image. Followed by the expla-
nation of rigid body transformation, where di⇤erent rotation representations are presented.
After transformations have been thoroughly explained, a section about important statistical
tools follows, which are used both in the implementation but also to analyse the results. Lastly
a section about computer vision theories and algorithms are presented and the perspective-
three-point problem is explained in the end.

2.1 Projection: from camera to image

2.1.1 Camera model - pinhole
To be able to express how points are projected from a three dimensional world to an image
plane, a camera and image distortion model are needed. The simplest camera model is the
pinhole camera model. It does not take into account geometric distortion. Therefore, the
distortion has to be compensated for separately.

Figure 2.1: The basics of a pinhole camera model. Image from [36].
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In the pinhole model, a camera is compared to a box with a small hole that lets little
light through, see Figure 2.1. The rays of light that goes through the small hole hits the back
of the box. If a �lm is placed in the back, objects can be projected onto that �lm and an
image is created. The point, where the small hole is located is called center of projection or
camera center. The projection reduces the dimensions from 3D to 2D and also information
like distances and angles are lost. Because of the similarity property of triangles, the image
plane can be put in front of the camera center in the model.

Figure 2.2: The �gure shows the projection of a 3D-point, P, onto
the image plane, P�. Here C is the center of projection and f is the
focal length.

The origin of the coordinate system is put in the center of projectionC. The focal length
f , is the distance between the principal point (px, py) and center of projection. A point P is
projected onto the image plane. The projected point is calledP�, see Figure 2.2. The similarity
property of triangles gives the projection formula

xi = f xs

zs
, (2.1)

yi = f ys

zs
. (2.2)

Next step is to transform to pixel coordinates system. De�ned as Figure 2.3 illustrates.

Figure 2.3: The point P� is expressed in the camera’s reference frame.
The x and y axes from the camera reference frame are projected onto
the image plane to visualize the relation between them and the pixel
coordinate system.
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The pixel coordinates are,

xpix = kxxi + px =
f kxxs + zs px

zs
, (2.3)

ypix = kyyi + py =
f kyys + zs py

zs
, (2.4)

where kx and ky are scale factors. By denoting fx = f kx and fy = f ky, the transformation
can be written in matrix form as

�
⇥⇥⇥⇥⇥⇥⇥⇥⇤

u
v
w

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⌃ =

�
⇥⇥⇥⇥⇥⇥⇥⇥⇤

fx 0 px 0
0 fy py 0
0 0 1 0

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⌃

⌥ � ⌦
K

�
⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇤

xs
ys
zs
1

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⌃
. (2.5)

By xpix = u/w and ypix = v/w, the pixel coordinates are obtained.

2.1.2 Distortion model - fisheye
A point’s pinhole projection is P� = (a, b, 1). De�ning

r2 = a2 + b2, (2.6)
� = arctan r. (2.7)

When �sheye distortion apply, then according to the article in [17],

�d = �(1 + k1�
2 + k2�

4 + k3�
6 + k4�

8) (2.8)

and the distorted projection coordinates are

xdist =
�d
r a, (2.9)

ydist =
�d
r b, (2.10)

which in pixel coordinates are

xpix =
fxxdist + zs px

zs
, (2.11)

ypix =
fyydist + zs py

zs
. (2.12)

2.2 Rigid body transformation
A rigid body transformation is a geometric transformation of euclidean space, which pre-
serves the euclidean distance between points. The transformation describes the relation be-
tween two points of reference (the origin) of two reference frames. It consists of a rotation
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and a translation. A point’s coordinates in one frame can then easily be expressed in the other
frame, which is illustrated in Figure 2.4.

Figure 2.4: The �gure shows two di⇤erent coordinate systems. The
pointP can be expressed in both reference frames. Tomove between
the two frames, a transformation is needed, describing the relative
rotation and translation between them.

2.2.1 Rotations
There are several ways to describe a rotation, e.g. by a quaternion, a rotation matrix or a
rotation vector. In this project, quaternions are used. In some software, other formalisms
were used. Those rotations were converted to quaternions.

The advantage of using quaternions is that multiplications does not take that much com-
putation time compare to matrix multiplication and it takes less space to store a 4 dimen-
sional vector compare to a rotation matrix, which is de�ned by 9 numbers.

In the following section, the di⇤erent formalisms will be described and how to convert
to quaternion space.

Quaternion
Given two complex numbers A = a+ bi andC = c+ di, a quaternion in quaternion spaceH
can be constructed by q = A+C j and by de�ning k = i j . A quaternion is a four-dimensional
vector and is de�ned as (Cayley-Dickson construction)

q = qw + qxi + qy j + qzk, (2.13)
where {qw, qx, qy, qz} ⇥ R and {i, j, k} are three imaginary unit numbers de�ned so that

i2 = j2 = k2 =i jk = ⇤1,
i j = ⇤ ji = k, jk = ⇤ k j = i, ki = ⇤ik = j.

(2.14)

In this project the following operations and properties of the quaternion are used.
Multiply two quaternions

p ⌅ q =

�
⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇤

pwqw ⇤ pxqx ⇤ pyqy ⇤ pzqz
pwqx + pxqw + pyqz ⇤ pzqy
pwqy ⇤ pxqz + pyqw + pzqx
pwqz + pxqy ⇤ pyqx + pzqw

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⌃
. (2.15)
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Quaternion conjugate is de�ned as

q⇧ = qw ⇤ qxi ⇤ qy j ⇤ qzk. (2.16)

The norm of a quaternion is de�ned as

⌃q⌃ =
↵

q ⌅ q⇧ =
�

q2
w + q2

x + q2
y + q2

z . (2.17)

Quaternion inverse is de�ned as

q⇤1 =
1
⌃q⌃q

⇧. (2.18)

The unit quaternion, which has the property ⌃q⌃ = 1, is also called rotation quaternion and
is used to represent the 3D rotation group.
Rotating a point x1 by q, where q is a rotation quaternion and x1 is point extended from
3 dimensions to 4 dimensions by adding zero at the front. The rotated point x2 is in 4 di-
mensions and can be transformed to 3D space by dropping the �rst element in the vector.

x2 = q ⌅ x1 ⌅ q⇧. (2.19)

Combining two rotations q1 and q2

x2 = q1 ⌅ x1 ⌅ q⇧1,
x3 = q2 ⌅ x2 ⌅ q⇧2,
x3 = (q2 ⌅ q1) ⌅ x1 ⌅ (q⇧1 ⌅ q⇧2).

(2.20)

Since multiplying two quaternions gives another quaternion (see 2.15),

q3 = q2 ⌅ q1,

q⇧3 = (q2 ⌅ q1)⇧ = q⇧1 ⌅ q⇧2,
x3 = q3 ⌅ x1 ⌅ q⇧3.

(2.21)

For lighter convention, ⌅ will be written · in sections below. It must not be mixed up with
normal multiplication.

Rotation matrix
The rotation, de�ned by a rotation matrix R, is a rotation about the axes of a coordinate
system. It is of dimension 3x3 and it can rotate a point by

x� = Rx. (2.22)

The rotation matrix has the useful properties:

RT = R⇤1,

det(R) = 1,
(2.23)

which makes it easy and fast to check if the obtained rotation matrix is in fact a rotation
matrix.

To convert a rotation matrix to a quaternion is a bit tedious, and the theory behind it
will not be mentioned here. There are libraries in MATLAB and in python to do this, which
are easy to use.
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Rotation vector
A rotation vector is 3-dimensional vector where a rotation is expressed as one rotation around
an axis. The vector is constructed by multiplying the angle with a unit vector,

r = �ê = �

�
⇥⇥⇥⇥⇥⇥⇥⇥⇤

ex
ey
ez

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⌃ . (2.24)

A rotation vector can easily be converted to a quaternion by the following formulas

qw = cos �2 , qx = sin �2ex, qy = sin �2ey, qz = sin �2ez. (2.25)

2.2.2 Translation
The translation vector t describes how the origin of the reference frame has moved compared
to the other reference frame,

t = [tx ty tz]T . (2.26)

2.2.3 Transformation representation
The rotation and translation can be but together to describe the transformation from one
coordinate system to another (see Figure 2.4). The general formula is

P1 = RP2 + t. (2.27)

where R is a rotation matrix, describing the rotation from reference frame 2 to 1 and t is the
translation vector. The inverse transform is

P2 = R⇤1P1 ⇤ R⇤1t. (2.28)

When describing the relation between world and camera coordinate system, C = ⇤R⇤1t is
the vector to the camera center (see �gure 2.4).

When using a rotation matrix, the transformation in equation 2.27 can be assembled to
a 4 by 4 transformation matrix, T , by expressing the rotation and translation as two 4 by 4
matrices, so called homogeneous coordinates

�
⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇤

p1x
p1y
p1z
1

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⌃
=

�
⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇤

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⌃

�
⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇤

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⌃

�
⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇤

p2x
p2y
p2z
1

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⌃
=

�
⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇤

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⌃

⌥ � ⌦
T

�
⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇤

p2x
p2y
p2z
1

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⌃
. (2.29)

If a quaternion is used to describe the rotation, then the transformation is

P1 = q · P2 · q⇧ + t, (2.30)

where the points P1, P2 and t are extended to 4 dimensions as described in equation 2.19.
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2.3 Statistic tools
2.3.1 Interquartile range
The Interquartile range (IQR) is a statistic measure of variability in a data set.

Let S be an ordered set of measurements. The set is split into four equally big sets, called
quartiles. The three values that separates the subsets are called �rst, second and third quar-
tiles, denoted Q1, Q2 and Q3. The IQR measure is de�ned to be

IQR = Q3 ⇤ Q1. (2.31)

The IQR is used to detect outliers P, i.e.

P = {x ⇥ S : x < Q1 ⇤ 1.5 · IQR or x > Q3 + 1.5 · IQR}. (2.32)

The IQR is computed for the data set. If there is an outlier, it is removed and the IQR is again
computed with the new data set. This is repeated until there are no more detected outliers.

2.3.2 Principal component analysis
PCA is a method to project correlated data from a n-dimensional space to a space with lower
dimension. By doing so, the interpretability of the data increases but at the same time min-
imal information is lost. The method creates new variables, which are linear combinations
of the old ones. The variables are uncorrelated and that maximizes the variance in each di-
mension [16]. The �rst principal component is the dimension with the highest variance, the
second principal component is the dimension with second highest variance and so on. The
�rst principal component can be de�ned as the best �tting line to the data, e.i. the line that
minimizes the average squared distance from a point to the line.

To compute the �rst principal component, the data needs to be centered. The mean of
the data i subtracted from the data. Singular value decomposition, X = USVT , is performed
on the data X . Here U is an m◊m unitary matrix, S is an m◊ n diagonal matrix and V is an
n ◊ n unitary matrix. The �rst vector in V , which corresponds to the largest singular value,
is the direction of the desired “best �tting” line.

2.3.3 RANSAC
Random sample consensus (RANSAC), �rst presented in [10], is a iterative method to esti-
mate the parameters in a mathematical model from a set of observed data, which contains
a signi�cant percentage of measurement errors. The method is non-deterministic. More
iterations increases the probability of �nding a correct model.

RANSAC uses the smallest possible subset of the data to estimate the parameters of the
model. The subset is chosen randomly. The rest of the data is used to validate the model. An
error tolerance is needed to determine if a data point is an inlier or an outlier. The process
is repeated. The new estimated model is compared with the best model from the previous
iterations and the one with the higher number of inliers is considered a better model. A
threshold for the number of inliers can be used to determine if the correct model was found.
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2.4 Computer Vision
Computer vision is an interdisciplinary �eld of how computers can gain high level under-
standing about the world by processing and analysing digital images. It is inspired by how
the human vision system works and enables computers to do complex tasks like; image clas-
si�cation, scene reconstruction, object recognition, pose and motion estimation.

OpenCV [27] is an open source library with tools which are useful when implementing
a computer vision application. The software is free and easy to use. Tools for i.a. feature
detection, extraction and matching were used from this library.

2.4.1 Feature detection and extraction
For a computer to be able to understand which parts of an image contain the important
information, algorithms that detect speci�c patterns are used, so called feature detectors.
A feature in an image can be described visually as a point, a line or a corner. A detector
identi�es the interesting parts of the image and an extractor extracts the important infor-
mation[19]. The interesting point’s pixel coordinates in image is called keypoint. The point
and an area around it is described by a descriptor, so that (ideally) the descriptor is invariant
under changes in illumination, scale, rotation and translation [38]. The computer can later
process the information in keypoints and descriptors to make decisions depending on what
the computer “saw”.

There exists di⇤erent detectors and extractors. In this thesis SIFT and ORB will be men-
tioned and therefore only these will be described. Both descriptors are invariant to scale and
rotation [37].

SIFT
SIFT stands for Scale invariant feature transform. It was �rst presented in [20]. SIFT is a very
popular feature detector and extractor. It has been proven to be very useful in many �elds
of computer vision [31] and is one of the most accurate feature algorithms [37]. The SIFT-
descriptor is based on histograms of oriented gradients (HOG). It is derived by computing
gradients (orientation and magnitude) for each pixel in a small patch (16x16 pixels) around
the keypoint. The patch is divided into four regions and a gradient direction histogram over
8 directions is computed for each region. The histograms are put together for all regions in
the patch, leaving a 128 dimension vector [20]. SIFT is good for detecting blobs in an image,
i.e. parts in the image where there is a di⇤erence in intensity or color between pixels [37].

ORB
ORB stands for Oriented FAST and Rotated BRIEF. It is feature detector and descriptor
based on the FAST keypoint detector [30] and uses a binary descriptor based on BRIEF [7].
It was �rst presented in [31]. ORB has a similar matching performance and is less sensitive
to image noise compared to SIFT [31]. ORB is very fast when both detecting and matching
features. It is approximately ten times faster than SIFT [19], which makes it more suitable in
a real time application.
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The BRIEF descriptor (Binary Robust Independent Elementary Features) uses simple bi-
nary tests between pixels in the image patch where the feature is located to compute the
descriptor. When used in ORB, an improved BRIEF is used, which is more stable in rotation
[37]. ORB is good for detecting corners in an image [37], i.e. the intersection between two
edges or a point.

2.4.2 Feature matching
Features sometimes need to be compared to know if two features correspond to the same
real point. Often is matching based on the distance measures between two descriptors. If
the distance is small, then the match is considered good. For ORB, the hamming distance
is used, which is de�ned as the number of mismatching bits between two binary descriptors
[5]. This means that comparing two descriptors is conducted very fast and a only a CPU is
needed [7]. When matching string based descriptors like SIFT, L1 or L2 norm is used [37],
which takes much more time than computing the hamming distance.

2.5 Perspective-Three-Point problem
The perspective-n-point problem is the problem of estimating the camera pose given a set
of n correspondences between 3D-points in the world and 2D-points in an image. If n = 3,
then the perspective-three-point problem (P3P) is obtained. It has been showed that three is
the minimum number of required correspondences to get a �nite number of pose estimates
[15]. Solving P3P can generate up to four geometrically feasible solutions.

Let P be the center of projection and A, B and C are 3D-points with the 2D-point cor-
respondences u, v and w. Further denote p = 2 cos⇥, q = 2 cos ⇤ and r = 2 cos ⌅. The
equations for the triangles PBC, PAC and PAC form then the equation system

Y 2 + Z2 ⇤ YZ p ⇤ a�2 = 0
Z2 + X2 ⇤ XZq ⇤ b�2 = 0 (2.33)
X2 + Y 2 ⇤ XYr ⇤ c�2 = 0.

The solutions for X , Y and Z are the physical solutions to the problem. In Figure 2.5 the
problem is visualized geometrically. A full geometric solution to the problem can be found
at [15].

Figure 2.5: The P3P-problem.
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Chapter 3

Method

In this chapter the method and implementation of the built system is described. The project
was mainly implemented in Python. The source code to the Git repository can be found at
the link [26].

3.1 Preparation

3.1.1 Hardware
Besides the drone Crazy⇥ie, Bitcraze also develops expansion decks, which can be attached
to the Crazy⇥ie. One of interest is the ⇥ow deck, which consists of two sensor units: a
time of ⇥ight sensor (ToF) which measures the distance to the ground with high precision
and an optical ⇥ow sensor that measures the velocity relative to the ground [3]. The ⇥ow
deck makes the drone understand its movement a lot better than if only IMU measurements
are used. Since measurements from the accelerometer need to be integrated twice to get
a position estimate, the error from noise in the sensor can get very big. When using the
⇥ow deck, the velocity measurements in xy-plane only needs to be integrated once to get
the position estimate and the ToF sensor in z-direction gives the absolute distance in that
direction. Therefore it reduces the positional drift and is more precise.

Bitcraze’s Crazy⇥ie is designed for development projects. The code is open source and its
�rmware is easy to install and to use. It also has useful functionalities such as logging variables
from sensors and setting parameters for control. The Crazy⇥ie communicates through a long
range and low latency radio that reaches up to 1 km. A USB-dongle (Crazyradio PA) is used
to connect the Crazy⇥ie to the computer. The Crazy⇥ie is also equipped with a 10-DOF
IMU, which consists of accelerometer, gyroscope, magnetometer and high precision pressure
sensor [1].
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(a) Crazy⇥ie 2.1. Image from [1]. (b) Flow deck v2 expansion deck.
Image from [3].

(c)Crazyradio PAdongle. Image
from [2].

Figure 3.1: Hardware components from Bitcraze.

The battery is a 240 mAh LiPo battery. It has nominal voltage of 3.7 V [1]. This requires
that additional components attached to the drone can operate at this voltage and does not
consume too much power. An additional requirement is the weight of the components. As
mentioned in the Limitation section, the Crazy⇥ie has an upper bound of its lifting capacity.
It can maximum carry 15 g [1]. Which means that the camera and video transmitter have to
be very small. The company RunCam produces nano sized cameras and video transmitters
which meet these requirements. The speci�c camera used for this project is the RunCam
nano2. It has a �eld of view of 155-170 °and a horizontal resolution of 700 TVL [32]. The
video transmitter that was used for this project is the RunCam TX200U. The video receiver,
that was used in this project was the Eachine ROTG02.

(a) RunCam nano 2. Image from
[32].

(b) RunCam TX200U video
transmitter. Image from [33].

(c) Eachine ROTG02 video re-
ceiver. Image from [9].

Figure 3.2

The hardware components that were used in this project are speci�ed in Table 3.1 and
the �nal set-up can be seen in Figure 3.3.
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Table 3.1: Table of hardware components used in the project.

Part Name/model Producer
Drone Crazy⇥ie 2.1 Bitcraze

Expansion deck Flow deck v2 Bitcraze
Camera Nano2 RunCam

Video transmitter TX200U RunCam
Cable self made

Camera/video transmitter mount self made
Video receiver ROTG02 Eachine

Radio communicator Crazyradio PA 2.4 GHz Bitcraze
Processing unit Thinkpad T470s Lenovo

Figure 3.3: The �nal set-up. A 3D printed holder for camera and
video transmitter was designed to keep the parts steady and in place.
A rubber band was used to make sure that the camera could not
move and to keep cables clear from the propellers. The ⇥ow deck is
not visible in the picture, since it is attached at the bottom of the
drone.

3.1.2 Collect data
Data for both calibration and the project was collected with a self built system as shown in
Figure 3.4. In the �gure, the blue line marks the code written speci�cally for this project. In
Data Recorder, images from the camera were read by using the VideoCapture class [28] from
OpenCV [27]. Every image was saved into a folder and marked with a timestamp in nano
seconds when it was logged.

Also data from the Crazy⇥ie was logged here. It was connected to the computer by the
radio dongle. Bitcraze’s own Crazy⇥ie client has a system for logging variables. The data of
interest was the one from the accelerometer and the pose estimate. The estimate of the pose
was made by the extended Kalman �lter (EKF) in the Crazy⇥ie. The EKF is a recursive �lter
which is used to estimate states in non-linear dynamic systems where the measurements are
noisy (in this case, from the accelerometer, the gyroscope and the⇥ow deck). The EKF de�nes
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a global coordinate system, where the origin is at the start position and the orientation of the
axes are the same as the local coordinate system of the drone. The pose data was expressed
in the global reference frame of the drone. The known relation between the world and the
global coordinate system of the Crazy⇥ie is that the scale is the same but orientation depends
on where the Crazy⇥ie starts. In the home alarm application, the idea was to use a landing
platform for when the Crazy⇥ie is charging and the alarm is inactive. The start position
and orientation of z-axis was therefore known. The orientation of x and y-axis could be
arbitrarily directed as in a positive oriented reference frame. The knowledge of the relation
between world and the global coordinate system of the drone was used when the scale of the
point cloud shall be estimated, see section 3.2.3.

The logging of the variables were done by connecting the Crazy⇥ie client to ROS. ROS
stands for Robot operating system, and is an open source software which is used to create robot
applications [29]. InROS, executable�les are seen as nodes. They can communicatewith each
other by publishing messages to topics or by subscribing to topics. The Crazy⇥ie client is a
node that publishes messages onto an IMU topic and a pose topic. The node, which consists
of Data Recorder, subscribes to the mentioned topics and logs the data in two di⇤erent csv
�les together with a timestamp in nano seconds.

Figure 3.4: Overview of system for collecting data. The blue en-
closed area marks where the data was logged. Inside the ROS-�eld,
the circles are nodes and the squares are topics.

3.1.3 Calibration
To �nd the intrinsic (calibration matrix K , see equation 2.5) and distortion parameters (k1,
k2, k3, k4, see equation 2.8) of the camera and the spatial and temporal relations between
IMU and camera, the system needs to be calibrated. This was done by using Kalibr [22],
which is a visual-inertial open source calibration system. Two toolboxes were used, Multiple
camera calibration (based on [21]) and IMU-Camera calibration (based on [14] and [13]). The
�rst returns the intrinsic and distortion parameters of the camera. The second returns the
time shift between IMU and camera and the transformation matrix Tcam,IMU , from IMU to
camera coordinates. The time shift between the IMU and camera occurs because the data
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from the two sensors travel di⇤erent paths before it gets logged, see Figure 3.4.
The calibration of the camera can be shortly summarized as follows: a planar target was

generated with known dimensions. In this project, the aprilgrid shown in Figure 3.5 was used
as target. The world coordinates of the corners in the target was therefore known. Images of
the target were taken from all angles to excite all axes for better parameter estimation. An
algorithm for corner detectionwas used to determine the corners’ pixel coordinates. Since the
target has known 3D structure, the intrinsic parameters were under some constraints. The
intrinsic and distortion parameters can then be estimated by using the method presented in
[39].

Figure 3.5: The aprilgrid that was used as target in the calibration.
The dimensions of the target could be measured and were speci�ed
in advance before calibration.

3.1.4 3D reconstruction by COLMAP
COLMAP is an open source software, which has a Structure-from-motion (SfM) [34] and
Multi-view-stereo (MVS) [35] pipeline with a graphical interface. COLMAP can do image-
based 3D reconstructions of the scenery where the images were collected.

After data of an environment was collected (images, IMU and pose), the image set was
sampled to a subset. Depending on how fast the drone moved while collecting the data,
di⇤erent sample rates were chosen. Since images with almost the same camera pose contains
the same information, a larger sample rate value was chosen if the drone moved slow and a
smaller sample rate value was chosen if the drone moved fast. However, the images must have
an overlap.

The images in the subset were undistorted, by using OpenCV’s �sheye library and the
now known calibration matrix and distortion parameters.

The undistorted images were then used to create the point cloud by using COLMAP’s
reconstruction tool. The �rst step was to specify the camera model and its intrinsic param-
eters, followed by extracting features. COLMAP uses SIFT to detect and extract features.
The extracted features are then matched and veri�ed geometrically before the SfM step was
performed. A sparse reconstruction was returned, which consists of camera poses and the
coordinates of the reconstructed 3D-points. The output could later be used to do a dense
reconstruction by MVS. That was not of interest in this project. Only images of dense recon-
structions are shown in the result to make it easier to interpret the point clouds and for the
interested reader.

The interesting information in the output is speci�ed below and where it can be ex-
tracted. How the information will be used, is explained in section 3.2 further down below.
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The output �le images, see Table 3.2, contained the camera pose for all images used
in the reconstruction. The poses were speci�ed as the transformation from point cloud
(PC) coordinate system to camera coordinate system. It was described by a quaternion,
qi = [Q1 Q2 Q3 Q4], and a translation vector, ti = [TX TY TZ]T . Here i, marks the
index of the images used in the reconstruction. By using the convention in equation 2.30, the
transformation between every camera pose and PC can be written

Pc,i = qi · PPC · q⇧i + ti, (3.1)

where Pc,i and PPC are the same point but de�ned in camera i’s respectively PC’s coordinate
system.

Every image has a list of detected feature points in that speci�c image. In the list, the
points’ pixel coordinates (Xpix, Ypix) and their POINT3D_ID were speci�ed. A point’s ID
was used to keep track of the corresponding 3D-point in the reconstruction. If the feature
point was not in the reconstruction, the ID was ⇤1.

Table 3.2: The text box shows the structure of how the data was
stored in the images-�le. The camera pose and the detected points’
2D coordinates was of interest.

# Image list with two lines of data per image:
# Image number, Q1, Q2, Q3, Q4, TX, TY, TZ
# list of detected features as (Xpix, Ypix, POINT3D_ID)
# Number of images: 2, mean observations per image: 2
1 -0.408716 0.0432985 0.888736 -0.203038 0.653312 0.900915 3.20866
416.13668823 415.53173828 2431 416.13668823 415.53173828 2142
2 0.851773 0.0165051 0.503764 -0.142941 -0.737434 1.02973 3.74345
498.82876587 299.39712524 1532 130.46496582 2.64335108 3231

The output �le points3D, see Table 3.3, contains the coordinates of all 3D-points in the
reconstruction, de�ned in PC coordinate system.

Table 3.3: The text box shows the structure of how the data was
stored in the points3D-�le. Here only the coordinates of the 3D-
points were of interest.

# 3D-point list with one line of data per point:
# POINT3D_ID, X, Y, Z
# Number of points: 3
3231 -0.676148 0.318962 0.959069
3235 -0.590244 0.405555 1.87921
3239 -0.175178 0.375718 2.16493

3.1.5 Data sets
Two data sets were used in this project; Pictures and Kitchen. The data sets were collected
in two di⇤erent environments. The �rst data set was simpler. Only one object was in its

32



3.2 C⇧⇣✓�⇣ ⇢⌃✏⌥� ⌅⌘⌃��  ✓⇢

environment; a white door with pictures and cards hanging on it. The point cloud which
was constructed of the object was consequently two dimensional and was therefore easy to
interpret. This data set was the �rst to be used to evaluate the system.

The second data set was more complex. The data was collected in a kitchen. The created
point cloud was therefore three dimensional. This data set was used to evaluate if the proce-
dure, presented in this project, could work in an environment similar to where the system is
supposed to work: in a real room.

The image set of Pictures and Kitchen contain 286 and 622 images respectively. Of these,
19 and 31 images from Pictures and Kitchen respectively were used to create the reconstruction
in COLMAP and later also to �nd ORB descriptors to the �nal point cloud.

Figure 3.6: Flow chart of the steps in Preparation. The same sub-
set of images used in the reconstruction will be used to create the
point cloud map, as well as the output from both the calibration
and COLMAP.

3.2 Create point cloud map
In the output from COLMAP, the point cloud coordinates were a⇤ected by the scale ambi-
guity problem, mentioned in section 1.2.3. The 3D-points and the camera pose estimates do
not have the same scale, orientation or translation as the world, as illustrated in Figure 3.8
and also Figure 3.7. The orientation of the point cloud (PC) coordinate system was chosen
by COLMAP to be the same as one of the camera pose estimates. Therefore, it was not of
interest to use PC coordinate system to describe the map, since otherwise is the magnitude
of the pose error unknown and adding a control loop would be impossible. The point cloud
needs to be transformed to a reference frame, which conform to the world’s reference frame,
i.e. gravity direction in negative z-direction and a metric scale. As mentioned in section 3.1.2,
the EKF of the Crazy⇥ie de�nes a global reference framewithmetric scale and the Crazy⇥ie is
equipped with IMU, which can distinguish the direction of gravity. By using this information
the scale ambiguity problem can be solved.

The easiest way to describe the point cloud in world reference frame instead, was to �nd
the transformation between PC’s and world’s reference frames using sensor data from the
EKF and IMU. This was done in three steps. First the point cloud was rotated so that gravity
direction of the point cloud was parallel to the world’s gravity direction. Secondly, the point
cloud was scaled to a metric scale. Lastly, the point cloud was translated, so that the origin
was placed on ⇥oor level. These steps put together formed the wanted transformation, which
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Figure 3.7: The �gure shows an overview of all reference
frames/coordinate systems that were used in the project.

created the point cloud map.
For the drone to be able to use this map for localization, every point also needed to have a

feature descriptor, which described the the environment. This was done last in the following
section.

When the point cloud map has been created, all information; 3D-point coordinates, de-
scriptors and start pose estimate was saved in a npy-�le. Which will be loaded into the
localization algorithm in the initialization step. Figure 3.12, last in this section, illustrates
the ⇥ow chart of how the point cloud map is created.

Figure 3.8: The left�gure shows a scenery, consisting of a square, and
the orientation of the world’s coordinate system. The right �gure
shows the same scenery, but in PC local coordinate system. Both
orientation and scale of the scene is di⇤erent. The visible feature
points are encircled and the corresponding points in the cloud can
be seen as black dots.

3.2.1 Find closest data
The collected data was not logged with the same frequency. The camera has a frame rate of 25
fps, while the Crazy⇥ie client collected 100 samples of data from IMU and pose every second.
Not every image was later used to do the reconstruction, see Figure 3.9. Of the image stream,
every 15th image of the Pictures data set and every 20th image of the Kitchen data set was used
in the reconstruction. Every image in the subset was therefore matched with the temporally
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closest data point in both IMU and pose data sets by looking at the timestamps. The known
time shift between the camera and IMU was taken into consideration. This was for later use
in the sections 3.2.2 and 3.2.3 further down below.

Figure 3.9: IMU and pose data were logged with a higher frequency
than the images. The subset of the images used in the reconstruction
and to create the point cloud map were matched to the IMU and
pose data which were temporally closest for later use.

3.2.2 Rotate
As described in the introduction to the section 3.2, a transformation that described the re-
lation between PC and world coordinate system was desired. The �rst step to achieve the
goal was to �nd a rotation quaternion, qrot , which described the rotation between the two
reference frames, i.e.

Prot = qrot · PPC · q⇧rot. (3.2)

To determine qrot , the matched image frames and accelerometer data was used. Since the
drone moved in almost constant speed, the biggest contribution to the accelerometer was
the gravity, which pointed in a positive z-direction of the world. In Figure 3.10, the vector
is called aimu. The vector was normalized to unit vector to make the following computations
simpler.

The transformation between camera and IMU, Tcam,IMU , was known from calibration.
According to equation 2.29, the upper left corner of Tcam,IMU , was the rotation matrix, which
can be converted into a quaternion, qimu.

Also the transformation between the camera and PC was known from COLMAP’s cam-
era pose estimation (see equation 3.1). It was therefore possible to express the vector aimu in
PC’s coordinate system instead. Since the orientation of aimu only was of interest, the trans-
lation vector of all transformations can be removed. By indexing all images in the subset and
denoting the index set I , the equations

ac,i = qimu · aimu,i · q⇧imu, (3.3)
aPC,i = q⇧i · ac,i · qi, (3.4)

were derived for every i ⇥ I . By putting equation 3.3 and 3.4 together, the following equation
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is obtained

aPC,i = (q⇧i · qimu) · aimu,i · (q⇧imu · qi), (3.5)

which described the transformation between IMU and PC reference frames for the camera
pose used when taking the image i.

Figure 3.10: The �gure shows the di⇤erent global coordinate sys-
tems. With the vectors aPC,i , where i ⇥ I , it was possible �nd the
quaternion qrot , which described the wanted rotation.

This was done for all i ⇥ I , which leaved n = |I | number of aPC vector estimates. The average
of the vector was computed as

āPC =
1
n

n�

i=1
aPC,i. (3.6)

The desired rotation was the one which rotated z-axis to aPC . To do this, the rotation vector
r was found by the cross product. Since aPC was normalized and z = [0 0 1], both vectors
are unit vectors Therefore, r was also a unit vector.

r = āPC ◊ z =

�
⇥⇥⇥⇥⇥⇥⇥⇥⇤

ex
ey
ez

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⌃ . (3.7)

The angle of rotation �, de�ned as Figure 3.11 illustrates, is

cos � = z · āPC , (3.8)
� = arccos(z · āPC). (3.9)

Figure 3.11: The rotation vector r was perpendicular to the plane,
spanned by z and aPC . The angle between z and aPC , �, was then the
rotation angle.
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When both the rotation vector and rotation angle were known, the formula from 2.25 was
used to obtain qrot , i.e.

qrot = cos �2 + sin �2exi + sin �2ey j + sin �2ezk. (3.10)

Every point in the point cloud was rotated using the formula in equation 3.2.

3.2.3 Scale
The next step was to scale the point cloud to metric scale, so that the scale of the point cloud
map was the same as the world. This was done by using the pose data from the Crazy⇥ie’s
extendedKalman�lter, whichwas expressed in the drone’s global coordinate system. Asmen-
tioned in section 3.1.2, the scale of the global coordinate system and the world’s coordinate
system was the same. Since the ⇥ow deck was used, the pose estimates got very accurate.

From the camera pose estimates, the camera center in PC coordinates was computed,
C = ⇤q⇧ · t · q, for every image frame. Also from the matched pose data, the position of the
camera center in world coordinates was known for every image frame.

By computing the euclidean distance,

d =
�

(x j ⇤ xk)2 + (yj ⇤ yk)2 + (z j ⇤ zk)2 ⌥ j, k ⇥ I and j �= k, (3.11)

between two camera positions in both coordinate systems, the scale factor,

si =
dPC,i

dw,i
, (3.12)

could be computed. The scale factor was computed for every combination of two camera
positions, giving n(n ⇤ 1)/2 scale factor estimates. Remember that n denoted the number of
images in the subset.

Because of noise in both camera pose estimates and pose data, the computed scale can
vary. Outliers were removed by IQR, leaving N measurements. The average scale factor was
then computed

s̄ = 1
N

N�

i=1
si. (3.13)

Every point in the rotated point cloud was scaled by

Ps =
1
s̄ Prot. (3.14)

3.2.4 Translation
Lastly, the point cloud was translated so that the origin of the coordinate systems coincided.
This was done by looking at the position of the�rst camera in bothworld and PC coordinates.
The positional di⇤erence in x, y and z was computed,
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Every point in the point cloud was corrected according to these di⇤erences. Since the ⇥ow
deck’s ToF sensor measured the absolute distance to the ⇥oor, the origin should be placed at
⇥oor level.

In the equation 3.15, xPC , yPC and zPC are the camera center in PC coordinate system
and xw, yw and zw are the camera center in world coordinate system. The transformation for
translating the point cloud was then obtained as

Pw = Ps ⇤

�
⇥⇥⇥⇥⇥⇥⇥⇥⇤

x̄
ȳ
z̄

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⌃ . (3.16)

If the transformations were put together for rotating 3.2, scaling 3.14 and translating 3.16
the points in the cloud, the wanted transformation was derived

Pw =
1
s̄ (qrot · PPC · q⇧rot) ⇤

�
⇥⇥⇥⇥⇥⇥⇥⇥⇤

x̄
ȳ
z̄

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⌃ . (3.17)

In section 1.3, it was mentioned that the start position of the drone was known because of
the �xed location of the landing platform. When collecting the data for building the point
cloud map, it was assumed that the drone started from the platform. Therefore could the
�rst pose estimate from COLMAP be used to give a rough start pose estimate. Since the
point cloud has been translated, the estimated start position should correspond to the start
position in the world. However, the start orientation could be arbitrarily.

3.2.5 Find ORB-descriptors
COLMAP used SIFT to detect and extract features from the images. Since SIFT is based on
histograms of gradients, it has to compute a gradient for each pixel in a patch. This takes
time and SIFT was therefore less suitable to use in a real time application. Instead it was a
lot faster to use binary descriptors, like ORB. A binary descriptor can encode information of
a patch in a binary string using only comparison of intensity images. Comparing two ORB-
descriptors can also be done very fast when using the Hamming distance. Every point in the
cloud should therefore be described by an ORB-descriptor rather than a SIFT-descriptor.

To goal was to pair as many 3D-points as possible to an ORB-descriptor. This was done
by using the same image subset that was used to create the point cloud in COLMAP. By
using OpenCV, ORB-features were detected and computed for every image in the subset.
The positions of all ORB-keypoints in an image were known. As described in the previ-
ous section 3.1.4, all keypoints that were detected by SIFT in an image were speci�ed in a
list with a POINT3D_ID that connected keypoints to their corresponding 3D-point in the
cloud. By pairing ORB-keypoints with SIFT-keypoints, 3D-points got connected to ORB-
descriptors. The keypoints were paired by taking the ORB-keypoint which was closest to a
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SIFT-keypoint, by computing the euclidean distance. A threshold was used to remove pairs
with the euclidean distance bigger than one pixel.

This was repeated for every image in the image subset. If more than one ORB-descriptor
was matched to a 3D-point, all descriptors were saved in a list. The 3D-points that did not
get an assigned ORB-descriptor, were removed from the cloud.

To make the following result and discussion further down below easier to formulate and
understand, some shorter and describing words were instead used for the following three sets:
the set of visible 3D-points in an image was called SIFT-set, since the points were created
using SIFT-features, the set of detected ORB-keypoints in an image was called ORB-set,
and the set of visible 3D-points in an image with an assigned ORB-descriptor was called
SIFT ORB-set.

When using the function inOpenCV, which detected and computeedORB-features from
the images, a parameter had to be speci�ed, saying how many features the function should
try to �nd and extract. In this project the parameter was set to 3000. The limited quality
of the images made it di↵cult for the function to �nd that many features. However, the
parameter was chosen to be big to make the ORB-set as large as possible. The idea was; if
the ORB-set was large, then the intersection between the SIFT-set and ORB-set would be
as large as possible, which was the SIFT ORB-set. A large SIFT ORB-set implies that
there were many 3D-points in the point cloud map. A map with more 3D-points was more
describing and representative of the environment than a map with less points, meaning that
the localization could get more accurate.

Figure 3.12: The ⇥ow chart shows the di⇤erent steps in creating the
point cloud map.

3.3 Localization algorithm
The localization algorithm used the information from the images from the camera, which
was attached to the drone to estimate its pose. When the drone was moving in a previously
mapped environment, it used the detected features in the images and compared them to the
information in the map to understand where in the map it was localized. The goal when
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creating the map was to create a map that corresponds to the world’s scale and orientation.
By knowing where it was localized in the map, it also knew where it was localized in the
world.

Before the drone could start moving around, the system was initialized by loading the
map, start position estimate, calibration matrix and distortion parameters of the camera.
The �rst image that was read into the system was used to validate and/or determine the start
pose estimate. After that, the initialization step was done and the drone could start moving
around.

Below are the main steps of the algorithm listed. Followed by a ⇥ow chart showing the
di⇤erent paths the algorithm could take when trying to �nd a pose estimate. The di⇤erent
paths and steps are explained more thoroughly further down in this section.

The main steps of the localization algorithm are:

• Detect and compute ORB-features in the image from the camera.

• Match ORB-descriptors from the image to ORB-descriptors in point cloud map to get
correspondences between 3D-points and 2D-points.

• Solve the P3P-problem using RANSAC to obtain a pose estimate.

Figure 3.13: The ⇥ow chart shows the di⇤erent steps in the localiza-
tion algorithm.

First, an image was read from the image stream from the camera. The image was undis-
torted by using the intrinsic and distortion parameters known from calibration. ORB-features
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were detected and computed in the image. The parameter, which decided howmany features
the function should try to �nd was set to 3000, i.e. same as when creating the point cloud
map. The idea was to create a big overlap between the descriptors in the map and the de-
scriptors detected in the image, meaning that the number of possible correct matches should
increase. This could then also increase the accuracy of the pose estimate.

Next step was tomatch descriptors. In the algorithm developed in this project, there were
di⇤erent paths to match descriptors and to get point correspondences, see Figure 3.13. The
di⇤erent paths depend on the current state and what was known about the previous pose.

If the drone already had a pose estimate, then the moved distance was checked, e.i. the
euclidean distance between the current pose and the previous pose. If it was the �rst time
computing an estimate, then moved distance was “None”. The start pose estimate was not so
accurate, therefore Brute Force match was used to match descriptors.

If the moved distance was ⌦ 0.6 m, then the algorithm was assumed to be working. The
visible points were back projected to the image plane and amatching descriptor was searched
for in a small radius around it.

If the moved distance was > 0.6 m, then the pose estimate was most likely wrong, since
the drone would not move so fast. This solution was rejected. By using Brute force match
and try to match descriptors with all descriptors in the whole cloud, a new pose estimate was
derived. In the same way a start pose was estimated, if it was not already known.

When the descriptors had been matched, then the P3P-problem was solved by using
RANSAC to get a pose estimate.

Some of the steps are more thoroughly described below.

3.3.1 Compute subcloud
When the pose estimate was known, the transformation between image plane and world was
also known. All 3D-points in the point cloudmap could be projected into the image reference
frame. By checking the x and y pixel coordinates, it was easy to determine if the corresponding
2D-point could be visible in the image. The size of the image was (640,480) pixels. Then the
point was not visible if the point’s pixel coordinates were outside the intervals

xpix < 0 ⇤ ⇧ ,
xpix > 640 + ⇧ ,
ypix < 0 ⇤ ⇧ , (3.18)
ypix > 480 + ⇧ .

Since the drone probably had moved a little and the previous estimation was not 100 % ac-
curate, a tolerance ⇧ = 10 pixels was added to the limits. By computing the visible subcloud,
the number of 3D-points and descriptors used in the matching step decreased. Which could
reduce computation time and risk of false matches.

3.3.2 Brute force match
When the pose estimate was not known, for example if the start pose was not known or if
the previous estimated pose was rejected, then the ORB-descriptors in the image need to be
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compared to all descriptors in the point cloud map. The matching was conducted in a brute
force way: all ORB-descriptors in the image were matched to a descriptor in the point cloud
map. A match was evaluated by the hamming di⇤erence of the descriptors. As mentioned
previously, a 3D-point might have been described by several ORB-descriptors. The set of
matches could contain a speci�c 3D-point more than once. By going though all matches,
duplicates could be removed. Then the match with the lowest distance was chosen. If the
hamming distance was bigger than 80, then the match was considered not to be good enough
and was removed. From the matches, correspondences between 3D-points and 2D-points
were obtained.

3.3.3 Back project and match
When the pose estimate was known, then the algorithmwas assumed to be working. The time
di⇤erence between every image in the stream was small and the drone moved in a velocity so
that themoved distance between every image was small. If the camera only hadmoved a small
distance, then the 3D-points that werematched to a 2D-point in the previous image were very
likely to be found very close to the previous position in the next image. By computing the new
subcloud and projecting the 3D-points in the subcloud back to pixel coordinates, a descriptor
was searched for in a radius of 25 pixels around the projected point. It was very likely to get
a correct match. Matches that had a hamming distance bigger than 80 were removed. From
the matches, correspondences between 3D-points and 2D-points were obtained.

3.3.4 Pose estimation
When the point correspondences were known, the P3P-problem, described in section 2.5,
could be solved to �nd a pose estimate. The set of matches contained outliers. By using the
procedure of RANSAC, see section 2.3.3, the pose estimate got less sensitive to the false data.
The three point correspondences, which were needed to solve P3P-problem, were chosen
randomly from the set of matches. The geometric system of equations in 2.33, were solved
to �nd the pose of the camera. The rest of the matches were used to validate the model by
back projecting the 3D-points to pixel coordinates and computing the euclidean distance to
its corresponding 2D-point. If the distance was less than eight pixels, then the match was
considered an inlier. The procedure was repeated 1000 times and the camera pose with the
most inliers were chosen as the correct pose.
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Chapter 4

Results

The results are presented in four steps. First the results from calibration are presented. Sec-
ond, the result from when creating the point cloud map. Third, the result from the localiza-
tion algorithm and last, the results from two noise tests. The two data sets that where used
are presented separately.

4.1 Calibration
For the calibration 841 images were used, of which 39 were used to estimate all parameters
and the rest were used to validate the intrinsic and distortion parameters.

The reprojection error was: [⇤0.000025 ± 0.457717, 0.000010 ± 0.497190] in pixels.

Table 4.1: Camera calibration parameters; focal length and principal
point in pixels.

fx fy px py
330.990 337.430 317.778 231.0133

Table 4.2: Distortion parameters.

k1 k2 k3 k4
⇤0.0592 ⇤0.00581 ⇤0.00442 0.00312

The transformation matrix Tcam,IMU extracted from calibration was:

Tcam,IMU =

�
⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇤

⇤0.0112 ⇤0.999 ⇤0.0132 ⇤0.00855
0.0304 0.0129 ⇤0.999 0.0134
0.999 ⇤0.0116 0.0302 ⇤0.0127
0.0 0.0 0.0 1.0

⌅
⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⌃
. (4.1)
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The rotation matrix can be converted to a rotation vector to make it clearer how the rotation
was de�ned:

rcam,IMU = �ê = 2.076[0.564 ⇤ 0.579 0.589]. (4.2)

The rotation angle � is in radians.

Figure 4.1: The intrinsic and distortion parameters were used to
undistort images. Here is the result of a test of how well the cam-
era and distortion models performed. The top row are images taken
with the RunCam nano2 camera and the bottom row are the same
images but undistorted by using the models.

4.2 Create point cloud map
The results of creating the point cloud map for the two data sets are presented separately
below. Since the �rst data set is ⇥at and the second data set is of a 3D environment, di⇤erent
methods were used to evaluate the results of the steps in creating the point cloud map.

Sometimes results will be shown just for demonstration reasons. In both sections, a dense
reconstruction is shown, in the �rst section a scatter plot of the point cloud as it looked from
the beginning is shown, in the second section images showing how features are found in an
image and how points get assigned a descriptor is shown.

4.2.1 Pictures data set
COLMAP can make a dense reconstruction of the point cloud. The dense reconstruction
was never used in this project, but since it is built from the point cloud that was used, it gets
easier to interpret the point cloud visually by looking at the dense reconstruction, see Figure
4.2.
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Figure 4.2: Dense reconstruction by COLMAP of the Pictures data
set. Visualized in Meshlab.

The point cloud was built by using a sequence of 19 images, depicting di⇤erent parts of
the images hanging on the wall. COLMAP used SIFT to detect and extract features from
the images. The features from the di⇤erent images were matched and veri�ed geometrically
before the scene was reconstructed by following the procedure of Structure from Motion.

Figure 4.3: An example image from the data set Pictures. The left
image is the original and the right is after the image has been undis-
torted.

The total result of rotating, scaling and moving the point cloud can be seen in Figure 4.4
and Figure 4.5.
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Figure 4.4: The left �gure shows the output point cloud from
COLMAP. The right �gure shows the point cloud map, where the
point cloud has been rotated, scaled and translated. Also some
points have been removed, since not all points get an assigned de-
scriptor. Both coordinate systems have the same orientation tomake
the visual change more noticeable. By visually comparing the point
cloud to the dense reconstruction and the example image, it is easier
to interpret the point cloud. The main structures of the images can
be seen, which makes it possible to check if orientation, scale and
height are reasonable.

Figure 4.5: The �gures shows the point cloud from the side. The left
�gure shows the output point cloud from COLMAP and the right
�gure shows the point cloud map. By comparing the two �gures, it
appears that the point cloud in the left �gure is not completely ⇥at.
It also contains more noise than the right �gure.
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Figure 4.6: The �gure shows the data of the scale estimates before
outliers are removed. It contains 170 data points, which are dis-
tributed on the x-axis and the magnitude of each estimate in showed
on the y-axis. By IQR, 7 data points are removed. The �nal scale fac-
tor estimate is 24.37.

By identifying the largest respectively smallest x and z value of the points’ positions, the
di⇤erence between them was computed. The distance between the points were measured
with a ruler in the real world. Also the distance to the ⇥oor z0 was measured.

Table 4.3: The table shows the di⇤erence between speci�c points in
the world respectively in the point cloud map.

Point cloud map World
xmax ⇤ xmin 0.382 m 0.37 m
zmax ⇤ zmin 0.436 m 0.41 m
zmin ⇤ z0 0.532 m 0.58 m

The sizes of the sets; SIFT, ORB, and SIFT ORB were computed for every image. The
average size of the sets are presented in the table below. To give a reminder: the SIFT-set is
the set of visible 3D-points in an image, the ORB-set is the set of detected ORB-features in
an image, and the SIFT ORB-set is the set of 3D-points with assigned ORB-descriptor.

Table 4.4: Table shows the average sizes of the three sets of all images
used when creating the point cloud map.

Set Average size
SIFT 652.79 points/image
ORB 2448.05 points/image

SIFT ORB 138.95 points/image

The point cloud contained 2267 points from the start. After removing the points with
no descriptor, the point cloud contained 1021 points.
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4.2.2 Kitchen data set

The point cloud of a 3D environment is more di↵cult to present in a 2D-image without it
becoming messy and di↵cult to interpret. Therefore only the scatter plots from the point
cloud map is shown. To demonstrate the result of the steps in creating the point cloud map,
the camera positions are used instead. Since the position data from COLMAP’s pose estima-
tion and the position data from the EKF is less dense and clearly structured, the result from
the three steps are easily visualized. The point cloud is transformed in the same manner.

Figure 4.7: Dense reconstruction by COLMAP of the Kitchen data
set. Visualized in Meshlab.

Figure 4.8: An example image of the Kitchen data set. The left image
shows the original and the right shows the same image after it has
been undistorted.
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Figure 4.9: The �gure shows the point cloud map. The point cloud
from COLMAP has been rotated, scaled and translated. Points have
been removed, which were not assigned a descriptor. The orienta-
tion of the coordinate system is approximately the same as in the
dense reconstruction. By comparing the cloud to the dense recon-
struction, it is easier to interpret the cloud.

(a) Start. (b) After points have been rotated.

(c) After points have been scaled. (d) After points have been translated.

Figure 4.10: The red crosses mark the camera pose estimates from
COLMAP. The blue line is the position data from the drone.
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Figure 4.11: The �gure shows the data of the scale estimates before
outliers are removed. Of 464 data points, which are distributed on
the x-axis and the magnitude of each estimate in showed on the y-
axis, 145 data points are removed by IQR. The �nal scale factor es-
timate is 2.196.

Figure 4.12: The �gure shows an example image from the Kitchen
data set. The blue markers shows all detected ORB-features in the
image. The green markers shows the positions of the projected 3D-
points from the cloud, which were detected using SIFT. The red
markers show the projected points which have an assigned ORB-
descriptor.
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The sizes of the sets; SIFT, ORB, and SIFT ORB were computed for every image. The
average size of the sets are presented in the table below. To give a reminder: the SIFT-set is
the set of visible 3D-points in an image, the ORB-set is the set of detected ORB-features in
an image, and the SIFT ORB-set is the set of 3D-points with assigned ORB-descriptor.

Table 4.5: Table shows the average sizes of the three sets of all images
used when creating the point cloud map.

Set Average size
SIFT 500.8 points/image
ORB 2848.64 points/image

SIFT ORB 105.0 points/image

The point cloud contained 3216 points from the start. After removing the points with
no descriptor, the point cloud contained 1276 points.

4.3 Localization algorithm

The results of the localization algorithm are presented in two parts. First the result of the
algorithm’s performance in the simpler environment, Pictures data set, is presented. In the
second part, the localization algorithm was tested in the more complex environment, Kitchen
data set. In both cases, the same data sets were used for creating the point cloud map as for
testing the algorithm. Since only a small subset of the image set is used in the reconstruction,
the intersection of descriptors between the two sets is small. Therefore this was not consid-
ered as a problem. The pose estimate from COLMAP could then also be used to evaluate the
algorithm.

The scale of all plots is in meters.

4.3.1 Pictures data set

Below are plots of the trajectory estimated by the localization algorithm in the Pictures envi-
ronment.

The averagemoved distance between two position estimates was 0.0165m and the average
percentage of inliers in the matching step was 86.8%. The largest moved distance was 0.0612
m.
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Figure 4.13: The green jagged line is the trajectory composed by the
position estimates, computed by the localization algorithm of the
camera in the point cloud map of the Pictures data set.

Figure 4.14: The �gure shows the di⇤erent position data. The red
markers are position estimates fromCOLMAP. The blue line is posi-
tion data from the drone’s EKF. The green dashed line is the position
estimate from the localization algorithm.
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The algorithm was timed to get an idea if it was fast enough to run in real time. The
average run time of the di⇤erent steps can be found in the table below.

Table 4.6: Time distribution of the di⇤erent steps in the algorithm.
One loop includes all steps but the initialization step.

Function Run time
Initialization 0.0473 s

Read, undistort image, features 0.0173 s
Compute subcloud 0.00519 s

Match 0.106 s
Solve P3P with RANSAC 0.00247 s

One loop 0.131 s

4.3.2 Kitchen data set
Below are plots of the trajectory estimated by the localization algorithm in the Kitchen envi-
ronment.

The averagemoved distance between two position estimates was 0.0933m and the average
percentage of inliers in the matching step was 59.0%. The largest moved distance was 0.507
m and corresponding inlier matches was then 16.0%.

Figure 4.15: The green jagged line is the trajectory composed by the
position estimates, computed by the localization algorithm of the
camera in the point cloud map of the Kitchen data set.
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Figure 4.16: The �gure shows the di⇤erent position data. The red
markers are position estimates fromCOLMAP. The blue line is posi-
tion data from the drone’s EKF. The green dashed line is the position
estimate from the localization algorithm.

The algorithm was timed to get an idea if it was fast enough to run in real time. The
average run time of the di⇤erent steps can be found in the table below.

Table 4.7: Time distribution of the di⇤erent steps in the algorithm.
One loop includes all steps but the initialization step.

Function Run time
Initialization 0.0511 s

Read, undistort image, features 0.0253 s
Compute subcloud 0.00879 s

Match 0.251 s
Solve P3P with RANSAC 0.00815 s

One loop 0.293 s
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4.4 Noise test
Two noise tests were done to get an estimate of how noisy the algorithm’s positioning was.
The tests were carried out in the same environment as the Kitchen data set. The map, created
with data from Kitchen data set, was used.

Figure 4.17: Result of the positioning in the�rst noise test. For easier
visual interpretation, the result is shown from above. The green line
is the position estimate of the camera.

In the �rst test, the idea was to move the drone in as straight trajectory as possible in
x-direction. The drone was placed on a chair, which was pushed forward in the kitchen.
The distance to the ⇥oor, 0.525 m, stayed constant while the position in y-direction might
have varied a little. The movement was tried to be done with a constant velocity. The true
position of the drone would then form a straight trajectory. There is no way of knowing the
exact trajectory in the map. Therefore, a line is �tted to the position estimates and is used
as ground truth of the trajectory in the test. The line was �tted to the 3D-position estimates
by using Principal component analysis, see section 2.3.2. The vector, de�ning the line was
denoted ⌃v.

The average euclidean distance from all position estimates to the line were computed.
This was done by computing the vector ⌃ui , which is de�ned as the vector from a point on
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the line to the position estimate i, and projecting this vector onto the vector ⌃v. Then the
obtained projected vector was denoted ⌃wi ,

wi =
⌃ui · ⌃v
⌃⌃v⌃2 ⌃v ⌥i = 1...n. (4.3)

The norm di = ⌃wi ⇤ ui⌃ is the desired closest distance between the point i and the line. The
average of the distance was computed

d̄ = 1
n

n�

i=1
di = 0.0615 m. (4.4)

Figure 4.18: A scatter plot of the position data in the �rst noise
test. The blue line is �tted to the 3D-points using the �rst principal
component.

Figure 4.19: The result of the positioning in the �rst noise test. To
the left is the result in xy-plane and to the right is the same result
but in xz-plane.
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In the second test, 27 images taken with the same camera pose were used. Only very small
di⇤erences in light between the images could be seen. Those di⇤erences depended on the
quality of the camera. The position data was analysed by computing the standard deviation
in the three dimensions separately

⌥x =

�✏
1

n ⇤ 1

n�

i=1
(x̄ ⇤ xi)2 = 0.0463 m, (4.5)

⌥y =

�✏
1

n ⇤ 1

n�

i=1
(ȳ ⇤ yi)2 = 0.0554 m, (4.6)

⌥z =

�✏
1

n ⇤ 1

n�

i=1
(z̄ ⇤ zi)2 = 0.0497 m. (4.7)

Figure 4.20: Scatter plot of the result of the second noise test. The
red marker in the center is the mean of the data points. The two
plots show the same result but from two di⇤erent angles.
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Chapter 5

Discussion

The discussion has a similar disposition as chapter 3 and 4. The methods and results from
creating the point cloud map and from the localization algorithm are discussed in separate
sections. All substeps from when creating the point cloud map are thoroughly discussed in
separate subsections. When discussing the results from these sections, all results from both
data sets are used to evaluate the methods. Calibration, Crazy⇥ie and ⇥ow deck are discussed
in separated sections, while the rest of the interesting results and methods are covered in the
introduction 5.1. There are also sections to discuss and evaluate the noise tests and the run
time of the localization algorithm. In the end of the chapter, general problems about the
procedure are discussed.

5.1 Introduction
The result of the procedure to solve the global localization problem was overall good.

It was possible to implement a solution on the Crazy⇥ie with the hardware in Table 3.1
and the restrictions that Crazy⇥ie entails, see section 1.5. Since data had to be collected
while holding the drone in the hand, the battery was not used as if the Crazy⇥ie would ⇥y.
Therefore, it was not evaluated if the battery time restriction caused a problem.

It was possible to implement a solution with the limited camera quality. However, the
quality did a⇤ect the result. The localization algorithm performed better when the drone
moved closer to objects. The quality of images are better when the objects are closer, which
means that the features are more clear. The system was only tested in daylight. The image
quality was not tested nor evaluated in other lighting.

5.2 Crazyflie and flow deck
Through out the process of implementing the solution, other problems and limits related to
the EKF and the ⇥ow deck were discovered. One big problem was that the EKF sometimes
got very erroneous pose estimates. This seemed to happen when the drone moved fast in
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z-direction, e.g when the drone was picked up from the ground. The position estimates in
x- and y-direction could obtain errors with magnitude up to one meter. This problem was
avoided by starting collecting the data when the drone was already up in the air.

Big errors in the pose data also arised when the drone rotated around the z-axis. The EKF
did not estimate the rotation perfectly and therefore did the estimate drift away more and
more from the true position in x- and y-direction every time the drone rotated. Therefore did
the drone not rotate when collecting data for creating the map. The descriptors representing
the points in the map are therefore very one sided, since the point of view are very similar
between images. This can cause the algorithm to only work well when the drone moves in a
similar trajectory as when it collected the data. When the drone follows a di⇤erent trajectory,
it might not recognize the features in the world anymore.

Using the ⇥ow deck also entailed a problem. The ToF sensor measures the absolute dis-
tance in negative z-direction in the local reference frame of the drone. If the drone would
⇥y over an object when collecting data for creating the point cloud map, then the pose data
contains big errors and the scale get falsely estimated. This can of course be easily avoided
by not moving over objects. However, there might be environments where this is impossible.

5.3 Calibration
The result of calibration was visually evaluated in Figure 4.1. The bottom three images show
that the lines and corners have been straightened. The reprojection error was small in both
x- and y-direction. This signi�es that the camera and distortion model were well estimated.

The transformation matrix between the camera’s and IMU’s reference frame, was veri�ed
by measuring the distance between the camera center and IMU center in all directions. For
this, a ruler was used. The precision of the measurements was not that high. However, high
enough to be able to state that the translation between the camera’s and IMU’s reference
frames are well estimated. Also the rotation seems to be correct, which can be stated by
comparing the rotation vector of the rotation, see equation 4.2, with the orientation of the
two reference frames, see Figure 3.7 how the coordinate systems are de�ned.

5.4 Create point cloud map
It was di↵cult to evaluate if the point cloud map corresponded well to the environment
it should represent. The two data sets that were used were di⇤erent in their complexity.
In contrary to the Kitchen data set, the points in Pictures data set lied in a plane and had a
clear structure, which made it easier to identify which points in the cloud corresponded to
a speci�c image/card on the wall. This was mainly due to the white background, which did
not cause any background blur. The Pictures data set was also smaller than the Kitchen data
set. Therefore, could the data set be better and more accurate be evaluated.

It would be easier to evaluate if the map is correct if the system would include a feedback
control loop to the drone. If the scale and/or rotation of the cloud are falsely estimated it
would be easily detected, since the drone would not ⇥y in the same direction and trajectory
as desired in the map.

60



5.4 C⇧⇣✓�⇣ ⇢⌃✏⌥� ⌅⌘⌃��  ✓⇢

5.4.1 Rotate
Of all methods in creating the point cloud map, the rotate-method was most di↵cult to
evaluate if it worked perfectly. Since Pictures data set was ⇥at, it was possible to visually
evaluate if the point cloud was completely vertical after rotating it. In Figure 4.5 the point
cloud before and after it had been rotated, scaled and translated can be seen. It is clear that
the point cloud is vertical.

In the Kitchen data set, the estimated camera poses from COLMAP were used to visually
evaluate the rotate-method. As can be seen in Figure 4.10, the pose estimate from the EKF
(blue line) and the camera pose estimates (red markers) seem to follow each other very well.
Also the di⇤erence between the �rst and last plot is signi�cant.

The idea of how to estimate the desired rotation (and scale) is based on the known trans-
formations from local drone to camera to PC coordinate systems. The transformation be-
tween local drone and camera has already been evaluated in the section 5.3 above. The trans-
formation between camera and PC coordinate system comes from the estimated camera poses
from COLMAP. If the estimated orientation (or position when estimating the scale) made
by COLMAP is a little o⇤, then also the error propagates to the estimated gravity direction.
However, COLMAP optimizes both camera poses and reconstructed points in the BA step,
which should give reliable estimates.

An important assumption in the procedure of estimating the rotation, was that the drone
moved with constant velocity. This is of course impossible, since the drone has to accelerate
when starting, landing and turning. The contribution of the gravity is a lot bigger than any
contribution of acceleration in the movement. It was never closer investigated if the data
from the accelerometer contained in⇥uences of the movement or other noise sources.

To get a more reliable gravity direction estimate, one of the following procedures are
suggested: implement pre-integration theory to minimize IMU errors (which was done in
[12]), add more measurements (use more images in the reconstruction), identify noisy/false
measurements and remove them. The latter is discussed below.

To identify false measurements, the euclidean norm could be computed of the acceler-
ation measurements. If the norm of a measurement deviates too much from 9.81 the mea-
surement could be ignored. The tolerance should not be bigger than the known sensor noise
(known from sensor producer). It is not possible to assume that the contribution of the
gravity is in positive z-direction of the local reference frame of the drone. This is because
the drone might be tilted when collecting the data. Hence, no ground truth of the gravity
direction exists in the local reference frame of the drone.

5.4.2 Scale
The scale factor in Pictures data set was better estimated than in Kitchen data set. In Table
4.3 the di⇤erence between the largest and smallest x-value respectively z-value of the points
were computed. The di⇤erences were compared to the real world, which was measured using
a ruler. As can be seen in the table, the di⇤erence between world and point cloud map is not
that big. The error is not constant. This can depend on inaccuracy in measurements when
using a ruler or that the points in the cloud were falsely matched to the real points in the
world.

In Kitchen data set, it was more di↵cult to identify which real point in the world a point
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in the cloud corresponds to. The environment was both bigger and had one more dimension,
which made it di↵cult to measure and identify the points in the real world. Therefore, no
ground truth exists when evaluating the scaling. However, the Figure 4.9 indicates that the
scaling is not as accurate as in the other data set. The distance between ⇥oor and ceiling is
roughly estimated to be 2.9 m in the point cloud map. The same distance in the world is
2.4 m. By looking at Figure 4.10, it is clear that the pose data from both EKF and COLMAP
follow each other very well, meaning that the scale estimate seem to be very accurate. The two
observations are contradicting each other. Either the pose estimate from the EKF contains
errors, or the reconstruction made by COLMAP contains erroneous points close to the ⇥oor
and ceiling. The latter could be because both the ⇥oor and ceiling have a patterned structure.
Detected features in these areas can then be confusing for COLMAP and 3D-points are added
to the point cloud which should not be there.

Another idea why the scale factor was better estimated in Pictures, is that the dronemoved
in zy-plane instead of xy-plane. Because of the ToF sensor, the pose estimates get more accu-
rate.

5.4.3 Translation
The result from translating the point cloud was also better for the Pictures data set compared
to the Kitchen data set. In Table 4.3 the distance to the ⇥oor in the map and in the world
are compared for the Pictures data set. The di⇤erence is 0.048 m. A similar measure was not
generated in the Kitchen data set because of the same reason stated in section 5.4.2. However,
there are points located below the z = 0 limit, which means that the ⇥oor level of the map is
not the same as the world. In the translation-method, the pose data from ToF sensor is used
to translate the point cloud in z-direction, therefore should no points be located under this
limit. Since the scale of the point cloud does not seem to be correct, then also the translation
will be false.

5.4.4 Find ORB-descriptors
It was possible to pair ORB-descriptors with 3D-points, which COLMAP created by detect-
ing SIFT-features. By looking at the tables 4.4 and 4.5 it is clear that the SIFT ORB-set,
which is intersection between the SIFT- and ORB-set, is not that big in comparison to the
other two. In Pictures and Kitchen approximately 5.6% respectively 3.7% of the found ORB-
descriptors in an image were used to create the map. For both data sets, approximately 20%
of the visual 3D-points in an image got an assigned descriptor.

In Figure 4.12, the three sets are visualized in an example image from the image subset
used to create the point cloud map in Kitchen. The SIFT-, ORB-, SIFT ORB-set are marked
with green, blue and red markers respectively.

It was mentioned in section 3.2.5, that it was desired to �nd as many ORB-features as
possible. The idea was that the intersecting set would increase in size and thereby increase
the number of points in themap and also increase the accuracy of the pose estimate. However,
in Figure 4.12 the detected ORB-features are located very close to each other, while the SIFT-
features are more widely spread, meaning that the positional intersection between the two
sets will most likely not increase by extracting as many ORB-features as possible. Since ORB
is designed to detect corners while SIFT is designed to detect blobs, it is obvious that the
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the two extractors will have a limited overlap of features. Therefore, it might not be a good
idea after all to extract that many ORB-features. The environment and the camera quality
limits the amount of good corner features in an image. In both data sets the extractor tried
to �nd 3000 ORB-features. However, in neither data sets there was an image with that many
features. If the extractor is forced to �nd that many, the quality of the features will decrease.
It might be the case that a 3D-point get a “bad” descriptor assigned to it when a descriptor,
describing the feature better, could have be used instead. Therefore, it could be a good idea
to decrease the number of extracted ORB-features. This could also have an impact on the
run time, which will be further discussed in section 5.5.1.

5.5 Localization algorithm
The overall result from the localization algorithm was good. The estimated positions of the
drone formed a trajectory, which looked very similar to how the drone moved in the envi-
ronment when collecting the data. In Figure 4.13 the estimated trajectory from the Pictures
data set is shown. Not only the shape of the trajectory looks correct but also how the drone
has moved in relation to the map. The same result was for the Kitchen data set which can be
seen in Figure 4.15. The estimated trajectories also follows the pose data from the EKF and
the pose estimates made by COLMAP very well, see the Figures 4.14 and 4.16. However, the
estimated trajectories in both data sets are not completely smooth. The position estimates in
Kitchen vary a lot more than in the other data set. The average percentage of inlier matches
was a lot higher for Pictures (86.8%) than for Kitchen (59.0%). It could be that the features in
Pictures are a lot more diverse than in Kitchen. In the latter, there are many repeating corners
in the structure of the images. For example, by looking at the example image in Figure 4.8,
the similar corners from the tiles at the left wall or the small window corners of the cabinet
in the front of the camera could be confusing when trying to match ORB-descriptors to the
3D-points. Also the camera quality makes a di⇤erence here. The resolution is better for im-
ages closer to the object than for images far away. That could also explain why the estimated
trajectory (green jagged line) in Figure 4.16 is very smooth in the far right in the plot, i.e.
when the camera is located very close to the cabinet.

The orientation of the pose estimates could not be separately evaluated. This was because
it is harder to estimate a ground truth. Therefore, there are no measure of how accurate the
estimate was. However, since the pose was used to back project point when i.a. computing the
subcloud, it is known that the estimate was good enough for the algorithm to keep generating
ok estimates. The algorithm never got “lost”, i.e. the moved distance was never larger than
0.6 m.

It is possible that the accuracy of the algorithm could be increased if it is more closely
investigated how tight the constraints can be, which are caused by tolerances, thresholds and
parameters in the four main steps in the algorithm; compute subcloud, Brute force match,
back project and match and pose estimation. The referred variables are for example; the
tolerance ⇧ = 10 pixels when computing the subcloud, the threshold of 80 hamming distance
for removing bad matches, the search radius of 25 pixels when trying to �nd a match when
back projecting points or the allowed reprojection error of eight pixels in the RANSAC step
when estimating the pose. The speci�c values were all set to something that was considered
reasonable. None of the values were optimized in anyway. By�nding better optimized values,
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then the accuracy might increase and the changes might also a⇤ect the run time. The latter
will be further discussed in section 5.5.1.

Also the moved distance threshold (0.6 m) in the algorithm was not optimized. The
threshold is very high. Since the camera has a frame rate of 25 fps, an image is taken every
0.04 seconds. If the drone would move 0.6 m in that time, then the velocity would be about
15 m/s, which is of course unreasonable. The largest moved distance in Kitchen data set was
0.507 m. This measure is therefore very clear to be erroneous, which can also be stated by
looking at the biggest spikes in the trajectory in Figure 4.16. Therefore should the limit have
been lower. Since the moved distance never was over 0.6 m, the Brute force match method
was not thoroughly tested.

5.5.1 Run time
To evaluate the total run time of the algorithm and to answer the question stated in section
1.6 mainly the Kitchen data set is used, since the environment is more representative for the
application. However, both data sets are used to determine where in the algorithm the bot-
tleneck is located and what mainly causes it. For this the run time tables (4.6 and 4.7) will
be used. The discussion below will just touch upon the subject of improvements to speed up
the algorithm. The subject will instead be covered in section 6.2.

By comparing the tables 4.6 and 4.7 it can be seen that the run time for initialization,
read and undistort image, extract features and compute subcloud are approximately the same
for both data sets. The small di⇤erence depends most likely on the di⇤erent map sizes and
how many features were extracted. Matching descriptors took signi�cantly the most time to
compute. In the tables both matching methods are put together, i.e. Brute force match and
back project and match. However, since the algorithm never gets “lost”, mainly the run time
is computed for back project and match. It took longer time to compute matches in Kitchen
than in Pictures. Since the camera in Kitchen is always pointing in the direction of the length
of the room, almost the whole point cloud is also contained in the subcloud. Therefore,
many more points and descriptors are used when determining matches. In back project and
match, the distance between a back projected point and all ORB-descriptors is computed. If
many points are back projected then this operation is conducted many more times than if the
subcloud would be smaller. Contrary in Pictures the cameramoved so that about a third of the
point cloud was visible. The subcloud got signi�cantly smaller than the whole cloud, which
resulted in that the match step was computed tremendously faster. This result con�rms that
it is worth computing the subcloud before moving on to the match step. The last step in the
algorithm, estimating the pose, was very fast for both data sets. However, there is a relative
big di⇤erence between then two data sets. This probably again depends on the size of the
subcloud. Iterating over a bigger data structure takes more time than over a smaller.

The average total run time for one loop in Kitchen was 0.293 seconds. If the drone would
move in what is considered normal walking pace 1.4 m/s, the drone would move 0.41 m be-
tween two poses. This is obviously not fast enough. The drone would not be able to follow
a trajectory accurately and crashing into object would be inevitable. In a home alarm ap-
plication, it is important that the drone can get to a desired position fast, both considered
the battery time limit of the Crazy⇥ie but also so that the alarm gets veri�ed fast to stop a
possible break in. Therefore, it is not wrong to desire a higher velocity than 1.4 m/s. In other
words, it is of great importance to speed up the algorithm before it can work properly in a

64



5.6 N⌃✏⌦⇣ �⇣⌦�

home alarm application.

5.6 Noise test
The results from both noise tests were good considering the parameters have not been op-
timized in the algorithm. The Figure 4.17 shows the result in comparison to the map. The
trajectory is similar to the trajectory moved in the world. The average distance to the esti-
mated trajectory, i.e. the line �tted to the points see Figure 4.18, was 0.0615 m. The estimated
error is relatively small.

In Figure 4.19 it is clear that the line is not completely constant in z-dimension. The
di⇤erence in start and end position of the line in z-direction was 0.0266 m. The small tilt do
not have to mean that the point cloud map has wrong orientation, but it can depend on the
position estimates are more accurate in the end of the trajectory compared to the start. In
the end of the trajectory, the velocity decreased even though the velocity was tried to be kept
constant. More estimates are therefore very close to each other, which makes the line better
estimated to these points. The spread of the z-coordinate of the line was (0.498 m - 0.525 m),
which is very close to the distance to the ⇥oor in the world.

In the second noise test, the x, y and z were separated to see if there was any di⇤erence
in variation in the three dimensions. By looking at the results stated in the equations 4.5, 4.6
and 4.7, there was a slight di⇤erence between the standard deviations in the three dimensions.
Since the di⇤erence was not signi�cant, there is not that much to discuss.

Since the start poses of the both tests were not known, compared to in the result of the
Pictures and Kitchen data sets, the algorithm had to estimate the start pose by using the Brute
force match method. The method succeeded in estimating the start pose, which is clear in
the Figures from the noise tests. There is no position estimate in the beginning which is more
erroneous than the other estimates.

Note that in both tests, the position estimates are used to both estimate the ground truth
and to evaluate the test.

5.7 General problems with main idea
There are some more general problems with the procedure presented in this master thesis of
solving the global localization problem, which not yet have been mentioned.

A big problem with the procedure, is that the map is built for a speci�c scenery. Objects
like chairs and decorations will be moved in the every day life. If a point in the map corre-
spond to a movable object, then either the map will contain redundant points if the object
is removed or the map will contain errors if the position of the object is slightly changed.
The former case does not create a problem, however the redundant points could be removed
and thereby speed up the run time. The latter case can cause bigger problems. Especially if
many objects are moved. Then either the pose get falsely estimated or no solution is found,
since many point correspondences are geometrically wrong. This problem is called the scene
change detection and map updating problem.
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Chapter 6

Conclusion

6.1 Conclusion
The purpose of this thesis was to establish global localization, i.e. estimate a drone’s position
and orientation in a previously mapped indoor environment by using a monocular camera
and computer vision. Three main goals were stated to ful�ll this purpose, i.e. build a system
to collect data, create a point cloud map and determine the drone’s position and orientation
using this map. All three goals were achieved for two data sets, which imply that the proce-
dure de�nitely works to some extent. It was di↵cult to evaluate all di⇤erent details of the
procedure. However, the parts which could be closer evaluated indicated a stable result with
room for improvements.

Since the solution presented in this thesis is developed and adapted to a home alarm
application, a conclusion can be drawn that the global localization problem is not an obstacle
when developing a home alarm application using a drone to verify alarms. However, the
procedure needs to be further tested and there are still many problems to solve before a
working system can be installed in a home.

6.2 Further research
Since only two data sets were used to test and evaluate the procedure, the result is biased. To
really know howwell it performs or to identify weaknesses and other problems, the procedure
needs to be further tested. It is suggested to test the procedure using new data sets. Both
from the same environment used in the thesis and from new environments. The former is
to investigate how sensitive it is to changes in the scenery, di⇤erent lighting and if it can
handle di⇤erent view points of the scene. The latter is to investigate how broadly it can be
used and to identify not yet known weaknesses. Another interesting test, would be to use
the Loco positioning system[4], mentioned in section 1.2, to de�ne a ground truth for better
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evaluation of both the point cloud map and the localization algorithm.
It is also suggested to add a control loop to the system, the procedure could then be more

thoroughly tested in real time. This step is also a vital to implement to obtain a working
home alarm system application.

As mentioned in the conclusion, the procedure has room for improvements. The most
important tomention are; tomake the algorithmmore accurate, stable and faster. To increase
the stability, i.e. to prevent the position estimate to jump uncontrollably, it is suggested to
add a motion model and to fuse IMU data into the system. Then pose estimates which are
unreasonable can be rejected. The drone’s trajectory can then also be smoother and more
accurate than the trajectories in the result presented in this thesis. Then maybe the simple
structure of how the localization algorithm was divided by the threshold of 0.6 m can be
removed. Another suggestion to increase the accuracy of the pose estimate, is to tune the
parameters, which was discussed in section 3.3.

In the discussion in section 5.5.1, it was stated that the run time bottleneck of the al-
gorithm was the matching step, since many comparisons are made between two big sets of
descriptors. One idea to speed up the algorithm is therefore to optimize the number of de-
scriptors in both the map and when extracting features in the algorithm. It was stated in
section 5.4.4 that it was very excessive to try to extract 3000 features. Therefore, it could be
investigated how small this number could be without jeopardising an accurate pose estimate.

Another idea is to implement a method which keep track of how often a descriptor in the
point cloud map is used in an inlier match. Descriptors, which are seldomly or never used,
could be removed from the map. This would reduce redundant information in the map.

Before the application can be installed in a home, some other problems stated in the
section 1.1 have to be solved, i.e. path planning, collision avoidance, ⇥ight and landing control
and also the scene change detection and map updating problem, mentioned in section 5.7.
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