
“output” — 2020/6/28 — 9:57 — page 1 — #1

Customized Processor Design for 5G Data Link
Layer Processing

Lukas Forsberg
elt15lfo@student.lu.se

Patric Wargeus
elt14pwa@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Joachim Rodrigues

Examiner: Erik Larsson

June 28, 2020

“output” — 2020/6/28 — 9:57 — page 2 — #2

c© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund

“output” — 2020/6/28 — 9:57 — page i — #3

Acknowledgements

We would like to thank the staff at Huawei Technologies Sweden AB in Lund for
their help, especially our supervisors Johan Hokfelt and Daniel Hedberg.

We would also like to thank Zdenek Prikryl and staff at Codasip for their quick
and helpful responses to the many questions that came up throughout the thesis.

i

“output” — 2020/6/28 — 9:57 — page ii — #4

ii

“output” — 2020/6/28 — 9:57 — page iii — #5

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Purpose . 2
1.3 Constraints . 2

2 Background 5
2.1 5G New-Radio . 5
2.2 Processing Architecture . 9

3 Method 15
3.1 Design Guidelines . 15
3.2 Project Phases . 15
3.3 Incremental Development . 20
3.4 Workflow Example . 20

4 Processor Architecture 27
4.1 Pipeline . 27
4.2 Memory Access . 28
4.3 Application Specific Registers . 28
4.4 Specialized Instructions . 29

5 Results and Discussion 33
5.1 Comparison with ARM Microprocessors 33
5.2 Code Size . 39
5.3 ASIP vs HAC . 39

6 Conclusions and Final Thoughts 43
6.1 Conclusion . 43
6.2 Codasip Studio Review . 43
6.3 Final Thoughts . 44

A 45
A.1 RISC Instructions . 45
A.2 Application Specific Instructions . 47

iii

“output” — 2020/6/28 — 9:57 — page iv — #6

A.3 Abbreviations . 48

References 51

iv

“output” — 2020/6/28 — 9:57 — page v — #7

List of Figures

2.1 NR release schedule [8]. 6
2.2 User and control-plane protocol stack[8]. 7
2.3 Layer-2 protocol stack for 5G uplink [8]. 8
2.4 Header structure for 5G NR release 15 [8]. 8
2.5 ASIP vs GPP and HAC [12]. 11
2.6 Role of ADLs . 12
2.7 Codasip flowchart . 13

3.1 Original 3GPP behavioural description[8]. 20

v

“output” — 2020/6/28 — 9:57 — page vi — #8

vi

“output” — 2020/6/28 — 9:57 — page vii — #9

List of Tables

5.1 Cortex-M7 [15] . 33
5.2 Cortex-M33 [16] . 34
5.3 Power consumption and area of the ASIP at different stages, all syn-

thesized at 400 MHz and 7 nm. 34
5.4 Cycle count for tasks without interruption. 36
5.5 Cycle count for tasks with interruption. 36
5.6 Context Switch Instruction on ARM. 37
5.7 ARM Cycle count for tasks without interruption. 37
5.8 ARM Cycle count for tasks with interruption. 37
5.9 ASIP vs ARM performance factor without interruption. 38
5.10 ASIP vs ARM performance factor with interruption. 38
5.11 Lines of code in different implementations of the ASIP. 39

A.1 List of RISC instructions divided into which functions they perform. . 46
A.2 List of instructions divided into tasks, and their respective resource

usage. 47

vii

“output” — 2020/6/28 — 9:57 — page viii — #10

viii

“output” — 2020/6/28 — 9:57 — page ix — #11

List of Code

1 Compiler example. 19
2 Pseudo-code based on description in figure 3.1 and system model. . 21
3 C-code example with ASIs highlighted within brackets. 22
4 CodAL code example of a register definition. 22
5 CodAL code example of an instruction. 23
6 CodAL code example of an instruction execution in the pipeline EX

and WB stages. 24
7 Example of autogenerated Verilog code. 25
8 FU example in CodAL. 30

ix

“output” — 2020/6/28 — 9:57 — page x — #12

x

“output” — 2020/6/28 — 9:57 — page xi — #13

Abstract

This thesis aims to explore the workflow related to designing an application specific
instruction-set processor (ASIP). An ASIP is a processor similar to a hardware ac-
celerator (HAC) in terms of performance and efficiency, but containing elements
of general purpose processors (GPPs) when it comes to programmability and flex-
ibility. The thesis centers around the design of an ASIP which will handle layer-2
processing in the 5G uplink i.e. keeping track of resources that are used by the
user-equipment (UE) device. The ASIP and its related workflow are a relatively
new concept in the wireless communications field; historically the large phone
manufacturers have bought or licensed intellectual property (IP) from large chip
designers such as ARM or Qualcomm, and then designed their applications around
the framework that these chipsets provide. The main driving factor behind this
exploration of the ASIP as a competitor to the GPP and the HAC is the relative
maturity of design tools and the need for ever smaller devices, where efficiency
in both power and size while keeping performance high is of utmost importance.
Along with greater efficiency, today’s devices are also often required to have some
sort of design flexibility to facilitate changing standards or device usage cases.

The design tool chosen for use in this thesis is Codasip Studio, which has a
workflow similar to other chipset design tools: a description of the architecture
and it’s instruction set architecture (ISA) is constructed, then after testing this be-
havioural representation it is sequentialized into the pipeline model and simulated.
The final step is testing the firmware and peripherals on the simulated processor,
before a VHDL or Verilog design is generated by the tool ready to export for
register-transfer level (RTL) synthesis. The ASIP in this thesis is designed to run
seven tasks which it switches between depending on what type of data processing
is required or available at the moment. The design finalized in the thesis contains
three tasks that are completely implemented and one task that is partially com-
pleted but not synthesized in RTL. The assumption that the remaining tasks have
a similar complexity means that the results can be extrapolated to give an approx-
imation of the entire processor. The total number of implemented instructions is
88. Of these 88 instructions, 55 are ASIs and 33 are part of the base instruction
set, the set needed for the processor to be Turing complete, and therefore able to
act as a GPP. The synthesized ASIP design is compared to several ARM equiva-
lents in power consumption, area usage and instruction efficiency; the amount of
instructions that are needed to complete the test firmware loop. The results prove

xi

“output” — 2020/6/28 — 9:57 — page xii — #14

that the ASIP is a superior choice to the other processors, in this specific use case,
by providing much higher throughput at roughly the same power consumption and
area usage. In regards to the HAC comparison, no data was available to compare
with in this specific case, so the comparison in this thesis is mostly a subjective
one in regard to the design process.

xii

“output” — 2020/6/28 — 9:57 — page xiii — #15

Popular Science Summary

How do you design a processor today? When you think of the processor in your
mobile phone, what tasks does it have to perform? Should it be able to run all
your applications as well as handle network communication, or should it only run
certain specific tasks, and how would the specific tasks impact the size and power
consumed by the processor? There are many different approaches to this design
problem, in previous generations of mobile networking standards, phone companies
have often used general purpose processors (GPPs) for the network communication
processing. A GPP is a processor designed to work sufficiently for a wide array of
different applications, while generally not excelling at any single task. This is an
inefficiency that becomes problematic in 5G, where performance and low power
consumption are more important than ever. What if the company that designed
the software instead decided to build a processor tailored exactly to the needs it
had?

The flexibility of a processor is often defined by it’s programmability i.e. how
much can it’s functionality be changed after it is in the final product. General
purpose processors are generally the most flexible and dedicated hardware such
as hardware accelerators (HAC) the least. Holding the middle ground between
the two are application specific instruction-set processors (ASIPs); which are able
to move closer to either of the former depending on the needs of the design. To
design an ASIP efficiently there needs to be a clear idea of what kind of task it
should perform, since the physical form of the processor will change depending on
what it should do. When this is decided, a design tool is needed to create a model
of the processor, which can then in turn be used by other tools to provide the
final physical description of the processor. If the tool used is well designed it can
significantly speed up the process and provide the user with useful information and
means to test the design without having to physically construct it. One such tool
is Codasip Studio, and when it is used together with it’s own language to describe
an ASIP; it gives area and power consumption results very similar to current
advanced GPPs with the added benefit of the ASIP being much more efficient at
performing the specific task it is designed for. If a similar tool was used to design
an HAC for the same application, the performance results might be a bit better,
but it’s behaviour would also not be able to be changed after the fact. That is the
most compelling thing about ASIPs, they can be designed to be exactly as flexible
as needed so no part of the processor is wasted or superfluous. Design tools such

xiii

“output” — 2020/6/28 — 9:57 — page xiv — #16

as Codasip Studio enable simplifications in the development process which make
it faster and easier to use than traditional development methods.

xiv

“output” — 2020/6/28 — 9:57 — page 1 — #17

Chapter 1
Introduction

1.1 Motivation

The introduction of 5G is said to mark a new milestone for the future of mobile
networking and brings significant improvements over previous generations through
increased bandwidth, reduced latency and increased reliability [1]. Increased net-
work performance will pave the way for new technologies and innovations such as
self-driving cars [2], Industry 4.0 [3], and the Internet of things (IoT) [4]. However,
this comes with a price, due to the end of Moore’s law and Dennard scaling, the
improvement in performance and power consumption has stagnated on today’s
general purpose processors (GPP) [5]. As a result, the increased data transfer rate
that 5G brings will become increasingly difficult for a GPP to handle efficiently
without increasing power consumption and chip area. This becomes an issue es-
pecially for for mobile phones and IoT devices, which have very strict limitations
on power availability and size. One solution to the problem for many developers
has been to rely on specialised hardware for demanding data processing, however
this also causes problems as the flexibility of hardware implementations is very
low. In order to develop hardware without the risk of it being already outdated
at release, and for it to able to handle high data processing rates with low power
consumption, a different approach is required. Application specific instruction-set
processors (ASIPs) running specialised instruction set architectures (ISA) are one
such approach. ASIPs have historically held the middle ground between GPPs and
dedicated hardware such as hardware accelerators (HAC), in that they combine
the flexibility of GPPs with some of the speed of the HAC.

Huawei is a major player on the wireless market, accounting for roughly 15% of
sold mobile telephones in 2019 [6]. Huawei is investing heavily in 5G development,
both in the network and user plane, and are posed to become industry leading
when 5G becomes the standard. Huawei is well aware of the problems that the
combination of extreme data rates and ever shrinking device size bring, and is
therefore developing and testing new solutions. Previously much of the network
functionality in their devices was performed on hardware accelerators (HACs) and
GPPs integrated on ASICs. Due to the previously mentioned low flexibility of
HACs and low performance of GPPs, it is of interest to investigate if parts of
the data processing can be implemented on an ASIP. The idea is to maintain the
performance of dedicated hardware while maintaining the flexibility of a GPP. The

1

“output” — 2020/6/28 — 9:57 — page 2 — #18

2 Introduction

ASIP design process is heavily reliant on developmental tools; due to this and the
impact of the current political climate on suppliers, it is of also in Huawei’s interest
to investigate available alternatives in this domain. This thesis will therefore
investigate whether it is possible to develop an ASIP with a new ASIP design
tool that can handle the processing requirements of new 5G standards while still
keeping some of the flexibility required to be updated to new 5G releases, as well
as provide a first hand look at a new development process for ASIPs.

1.2 Purpose

The purpose of this thesis is to design an ASIP that handles uplink communication
in the user-plane with the help of Codasip Studio [7]; an ASIP design tool software,
and analyze both the results and the design process in comparison to implementing
the application using other methods. The design process will be centered around
implementing an ISA that can provide high throughput for 5G networking, as well
as flexibility for future updates to the 5G standard and beyond. The ASIP is part
of a system-on-chip (SoC) subsystem that handles header management of radio
link control (RLC) and packet data convergence protocol (PDCP) information in
layer 2 of the uplink according to the standard set by 3GPP in 5G release 15
[8]. The design of the ASIP will require the creation of an instruction accurate
(IA) model and a cycle accurate (CA) model. The end goal of the thesis is to
attempt to provide information on throughput, chip area, power consumption
and ISA flexibility; through both simulations and register transfer level (RTL)
synthesis, that can then be used to compare the ASIP with other hardware and
GPP solutions. The thesis will also serve as a review of the Codasip Studio tool
and describe in detail the ASIP workflow, where the processor is designed around
the application.

1.3 Constraints

The design of a processor from scratch is a demanding project even for a team
of engineers, therefore a few constraints will be imposed on the thesis to make it
more manageable for two students. Huawei will provide the SoC design structure
that the ASIP will fit into as well as pseudo-code for many of the functions that
the ASIP is intended to perform. As for the processor design itself; very long
instruction words (VLIW) might provide benefits to the flexibility of the ISA, but
will also increase compiler complexity and is therefore beyond both time frame
and scope of this thesis. The functionality of the ASIP aims for coarse grain pro-
grammability; the ISA, building blocks, functional units and specialised memories
are only customized for a specific application and the ASIP is not meant to be
used in any other circumstance. The ISA implementaion will therefore not contain
redundant instructions that might be used in future, the sought after flexibility
will instead be implemented in the instructions that are already proposed in the
pseudo-code provided. The thesis will not focus greatly on compiler construction
either; usually this is very important for testing the processor and firmware, but

“output” — 2020/6/28 — 9:57 — page 3 — #19

Introduction 3

in this case the expected firmware size will be small enough that it can be written
in Assembly without any problems.

“output” — 2020/6/28 — 9:57 — page 4 — #20

4 Introduction

“output” — 2020/6/28 — 9:57 — page 5 — #21

Chapter 2
Background

2.1 5G New-Radio

The technical work on 5G New-Radio (NR) began in spring 2016 as part of a
study item in 3GPP release 14, the work was based on an initial kick-off workshop
in 2015. Many technical solutions were studied and proposed in this early stage
and due to the tight time schedule, some were appropriated already in this phase.
The work continued throughout 2017 and became a standalone work item with
it’s first specification being released in conjunction with release 15, mostly to meet
commercial pressure from early 5G developers. This thesis will be working with
release 15, finalised in 2018, with it’s late release frozen in mid-2019 according to
2.1. The later revision to release 15 offers standalone 5G access, without the need
for LTE functionality in the network, but also includes backwards compatibility
with the LTE standard. Standalone 5G provides many benefits, some of the most
important are[9]:

• Use of higher frequency bands in a much wider spectrum; licensed spectrum
from 1-52.6 GHz with support for unlicensed extension planned in release
16. This gives much better support for very wide transmission bandwidths
and as a result much higher data rates.

• Simplified design to help with network energy performance and reduction of
interference.

• Forward compatibility adds overhead and support for yet unknown use cases
and technologies.

• Lower latency to improve performance and connection as well as enabling
new use cases.

• A design focus facilitating and encouraging the use of beamforming and a
massive number of antennas for both data transmission and control-plane
procedures such as initial access.

These points can be seen as a brief overview of the motivation behind the
development of 5G; the main points that apply to this thesis and the ASIP it
proposes are found in the structural definitions of layer-2 processing. A general
view of the user-plane and control-plane protocol stack can be seen in Figure

5

“output” — 2020/6/28 — 9:57 — page 6 — #22

6 Background

Figure 2.1: NR release schedule [8].

2.2; where UE denotes the user-equipment (UE) device and gNB, the g-node-b
or network connection. Many of the protocol layers are similar to those seen in
LTE or 4G; the main difference is in the use of the service data adaption protocol
(SDAP), where a number of different quality-of-service (QoS) flows can be used to
route IP-packets according to their specific QoS requirements. The SDAP is only
active when the user is connected to the 5G core network i.e. when operating in 5G
standalone mode. The main focus of the ASIP designed in this thesis is handling
PDCP and RLC headers in the 5G uplink, a data flow chart of which can be seen
in Figure 2.3. After the digital user-plane layers come the logical layers before
antenna transmission; medium-acess control (MAC) handles multiplexing of logical
channels, hybrid-ARQ transmissions, scheduling and scheduling functions. MAC is
an older but widely used protocol that has had it’s header structure changed in NR
to facilitate lower latency transmissions than in LTE, the revised header structure
can be seen in Figure 2.4. MAC provides functionality to the RLC layer in the
form of logical channels; either control channels used for transmission of control
and configuration information or traffic channels used for user data. The outermost
layer of the user-plane is the physical layer (PHY), where coding/decoding and
modulation/demodulation, multi-antenna mapping as well as mapping of logical
channels to specific time and frequency resources (physical channels) is done. This
brief overview of the user-plane protocol stack is followed by a more detailed
overview of the protocols relevant in this thesis, PDCP and RLC. The detailed
overview will give some indication about which parts of the protocol processing is
performed by the ASIP.

2.1.1 Overview of the PDCP and RLC

The following descriptions are taken from 3GPP’s series 38 of specifications[8],
so to avoid duplicating the information, the focus of this section is to give an
overview of what functions the ASIP designed in this thesis performs. The PDCP
performs many functions, the main being header compression to reduce the total
number of transmission bits, and can operate together with the RLC in both

“output” — 2020/6/28 — 9:57 — page 7 — #23

Background 7

Figure 2.2: User and control-plane protocol stack[8].

unacknowledged (UM) and acknowledged (AM) mode. The header compression
is done using the robust header compression (ROHC) framework, which is a set
of standardised compression algorithms widely used in mobile communications.
Apart from header compression the PDCP is also responsible for ciphering and
eavesdropping protection in both user and control planes, both to protect end-user
data and to ensure that control messages are accurate and from the correct source.
The PDCP is also responsible for reversing these operations at the receiver side,
i.e. deciphering and decompressing. The PDCP layer is configured by upper layers
and each PDCP entity can be mapped to one, two or four RLC entities and each
UE device can have several different PDCP entities; each of which carries the data
of one radio bearer. The ASIP does not perform all of these tasks, for each PDCP
entity it will:

• Inform upper layers to set up relevant data structures when a new PDCP
entity is established.

• Keep track of the transmisson/reception status, which is the window state
for the PDCP entity i.e. when a certain entity is allowed to send or receive.

• Keep track of resend and suspend operations for each PDCP entity and
inform upper layers.

• Increment and decrement the sequence number (SN) of each PDCP entity
to keep track of when they can be discarded.

• Store number of memory references to each entity and inform upper layers to
discard data if it is no longer referenced and is outside the allowed sequence
number.

• Handle ACK and NACK information received from RLC and inform upper
layers of which PDCP entities are affected.

“output” — 2020/6/28 — 9:57 — page 8 — #24

8 Background

Figure 2.3: Layer-2 protocol stack for 5G uplink [8].

Servicing the PDCP is the RLC, a lower level protocol which is closer to
the send/receive physical channels than the PDCP. The RLC mainly handles the
transfer of upper layer packet data units (PDUs), error correction through ARQ
and all operations related to RLC service data units (SDUs), as well as RLC
establishment and re-establishment if connection is lost. Since several RLC entities
can be associated with each PDCP entity, the RLC layer acts as a connection
handler for the PDCP layer; it keeps track of where and when data can be sent on
each radio bearer associated with a specific RLC entity. The functions performed
by the ASIP on the RLC entities are very similar to the PDCP case, the only real
difference being the different data structure and the fact that the RLC entity has
it’s own SN and performs similar operations on it’s own variables.

Figure 2.4: Header structure for 5G NR release 15 [8].

“output” — 2020/6/28 — 9:57 — page 9 — #25

Background 9

2.2 Processing Architecture

2.2.1 General Purpose Processors

A general purpose processor is exactly what the name indicates, general. It is
designed to work with sufficient performance at a very high variety of applications.
General purpose processors are designed to score high in terms of performance in
general benchmark suits such as the SPEC benchmark, which test the performance
for a mixed range of applications. Embedded systems on the other hand, are often
developed to do a very specific task, therefore a good performance score in a
diverse range of applications is not necessarily a good thing. The primary aim of
an embedded system is to satisfy the design goals for the problem at hand, with
general purpose computing being less important. [10]

General purpose processors are often equipped with hardware optimizations,
a few examples are:

• Memory caches to reduce memory access time.

• Branch prediction schemes to reduce control hazards.

• Scoreboard/Tomasulo algorithm implementations to prevent data hazards.

These optimizations require a lot extra of hardware resources such as regis-
ters and combinational logic which in non-general purpose applications could be
unused. If the order, timing and reuse of arriving data is known, there is no need
for caches. In applications where the program flow is already known at system
construction, there is no need for branch predictions or Scoreboard/Tomasulo al-
gorithm. Therefore the total area and power consumption could be significantly
reduced by removing these optimizations. The total chip area and it’s power
consumption is extremely important for modems supporting 5G-NR, due to the
limited energy and area resources available to small devices. The modems are also
often planned to be produced in large numbers, thus it is important to make them
as cheap as possible to produce while still meeting power and area constraints.
Usually when hardware manufacturing companies are faced with the problem that
a general purpose processor is not sufficient for a specific task, they go with an
HAC solution instead. HAC designs do however come with their own limitations,
as described in next section.

2.2.2 Hardware accelerators

Every new mobile generation has introduced higher transmission speeds, and this
together with the ever shrinking device and transistor size has made it increas-
ingly difficult to construct and maintain design tools which can keep up with the
development. The number of transistors on a chip increases linearly together with
design complexity and this leads to a disparity between chip complexity and de-
velopment time if current design tools do not allow the increase in productivity to
follow the transistor amount curve. This disparity between the transistor amount
used in modern very large scale integration (VLSI) chips and the growth rate in
design productivity (number of transistors/staff-month) has increased heavily the

“output” — 2020/6/28 — 9:57 — page 10 — #26

10 Background

last 20 years. The problem has been called "The Design Productivity Crisis" and
it is forcing VLSI chip manufacturers to increase the development time for each
new generation of hardware. To overcome this difficulty, chip manufactures are
currently focusing on finding ways to make the abstraction level of the design pro-
cess as high as possible and also to make the design reuse rate as high as possible
[11]. The limiting factor in today’s digital hardware development is therefore more
in the design tool and it’s productivity limitations, and not inherently a part of
the HAC architecture, as the increasing device complexity has made older tools
and hardware description languages (HDL) too slow for many design processes and
their time constraints. Many developers are therefore choosing to resort to soft-
ware solutions instead as developing and debugging these solutions is often many
times cheaper and quicker than developing and debugging a hardware solution.

Another limiting factor of HAC design is that the construction of silicon mask
set for hardware is becoming more expensive to manufacture. Decreased tran-
sistor size will results in increased material cost and higher failure rates. The
programmable nature of an ASIP or a GPP enables manufacturing of larger vol-
umes at less risk due to the fact that similar applications can be mapped to the
same hardware and can be used for different generations of products to a larger
extent than an HAC. In addition programmable solutions also provides a lower
risk in case of firmware and hardware flaws, due to their programmability, and
often a shorter time to market than pure hardware designs. This is important
in a competitive field, such as the release of 5G-NR, where different actors are
competing against each other to deliver a marketable product as soon as possible
that defines the 5G standard.

2.2.3 Application Specific Instruction-Set Processor

ASIP design can generally be described as the creation of a new processor, where
the instruction set and architecture are customized for a targeted set of applica-
tions. The design goal for an ASIP is to be more efficient then a GPP in terms of
area and power consumption and at the same time have similar performance as an
HAC. Some reductions in design quality are inevitable in terms of area, delay and
power when comparing a ASIP to an HAC, but this is weighted against the pro-
ductivity benefits of software solutions [12]. Typical ASIPs are based on a simple
reduced instruction set computer (RISC) architecture which allows the ASIPs ISA
to be targeted by a standard compiler. The ISA is then enhanced with dedicated
instructions and special application specific registers to increase performance for
the target application. As pictured in Figure 2.5 a major design consideration
when constructing an ASIP is the relationship between efficiency and flexibility.
It is important to decide early in the design project where in Figure 2.5 the ASIP
should belong. In this project efficiency is valued highest due to the requirements
placed upon it by a market compatible 5G-NR modem; high performance, low
power and low production cost. These requirements place this project’s ASIP in
the upper left of Figure 2.5 marked by "Project ASIP".

“output” — 2020/6/28 — 9:57 — page 11 — #27

Background 11

2.2.4 Design Tools for ASIP design

Using a HDL such as VHDL or Verilog to design the processor described in this
thesis would be a very complex and time consuming task and would most likely
result in a high development cost. The processor is usually the most advanced
piece of hardware on a chip and relying on low-level VHDL and Verilog design
tools would most likely not be sustainable for companies like Huawei, who are
constantly under pressure to get products to market as quickly as possible. To
make the ASIP design process feasible, programming languages specifically used
for high level processor description called architecture description languages (ADL)
has emerged within the VLSI industry. These ADL’s can be seen as a high level
HDL and relieves the hardware developer of implementation responsibility which
are then passed on a ASIP design tool. The ASIP design tool then parse the ADL
code and generates a RTL of the target processor.

An ADL is not only used to simplify the hardware development process, but
is also used to construct a compiler targeting the processor’s ISA. To take serious
advantage the productivity benefits of the software solutions, a compiler for some
programming language has to be constructed for the ASIP. Software written in
assembly tends to be far more complex to develop and debug which in turn de-
creases productivity compared to writing code in a high level language. Therefore
an efficient compiler for languages such as C or C++ becomes more important
as the code size grows. Constructing a custom compiler targeting an application
specific ISA can be very complex due to the wide range of instructions that are
normally contained within the ISA. However, a compiler is necessary to reach a
sufficient ASIP design productivity rate due to the ease of use of being able to
target the processors ISA from a higher abstraction level. To summarise, the pur-
pose of an ADL is to be able to generate a RTL of the target processor from a
single model description along with it’s compiler, cycle accurate and instruction
accurate instruction set simulators, a testbench and other verification tools.

Figure 2.5: ASIP vs GPP and HAC [12].

“output” — 2020/6/28 — 9:57 — page 12 — #28

12 Background

In recent years there has emerged a couple of ASIP design tools which try
to automate and simplify as much of the ASIP design process as possible. The
current tool dominating the market is Synopsys’ "ASIP Designer" but the smaller
competitor Codasip "Codasip Studio" has increased in popularity during the last
couple of years. Both design tools use their own ADL for the ASIP’s model
description. The tools provide a interface where the designer can easily describe
the ISA, the pipeline stages and the compiler. The tools then generate, based
on the description provided, a RTL description of the processor and a C/C++
compiler. These kinds of tools are essential for an efficient and sustainable ASIP
design process. A graphical representation of the capabilities of a typical ADL can
be seen in Figure 2.6.

Figure 2.6: Role of ADLs

2.2.5 Codasip

Codasip Studio is an ASIP design tool developed by the relatively new startup
company Codasip. The tool aims for rapid and automated ASIP design methodol-
ogy while simultaneously generating high performance register-transfer level (RTL)
descriptions together with a C/C++ compiler for the processor. The processors
hardware and functionality is described in the tool’s own C-like ADL called Co-
dAL. The design process in Codasip Studio is divided into two main stages, the
instruction accurate model (IA) and the cycle accurate model (CA). The IA model
is used to describe the initial processor instruction set on a functional level without

“output” — 2020/6/28 — 9:57 — page 13 — #29

Background 13

any microarchitectural details. From this high level description, the tool can then
generate a C/C++ compiler, assembler and simulator for testing and debugging.
When the IA model is implemented and tested, the designers can proceed with
the CA model which includes the microarchitectural details such as pipelining,
timing and signaling. The tool can then generate a simulator for the microarchi-
tectural description as well as RTL hardware descriptions in either VHDL, Verilog
or SystemVerilog. The ASIP design model is divided into three parts in the studio
environment, the IA, CA and shared model resources. A flowchart of Codasip’s
design flow can be seen in Figure 2.7.

Figure 2.7: Codasip flowchart

“output” — 2020/6/28 — 9:57 — page 14 — #30

14 Background

“output” — 2020/6/28 — 9:57 — page 15 — #31

Chapter 3
Method

This thesis will involve the design of a processor using the Codasip Studio ASIP
design tool. Which means that Codasip’s own ADL, CodAL will be used to design
and simulate the processor. In addition a C compiler targeting the ASIP’s base
ISA described in Appendix A.1 will be constructed and generated with the help
of the Codasip Studio environment. The firmware will be written in assembly.
The SoC environment in which the ASIP will operate will be simulated to test
the ASIP in Codasip Studio by describing the functionality and behaviour of the
external peripherals in C++ .

3.1 Design Guidelines

As described previously, the ASIP will be designed to closer resemble an HAC
than a GPP. This means that the ASIP will be equipped with a large set of
application specific instructions (ASI). These ASIs will implemented mostly as
static, non-configurable functional units with low flexibility and high performance.
The processor will be synthesized on a 7 nm transistor technology, and is expected
to run at a frequency of 400 MHz or lower. This implies that pipeline stages could
be designed relatively deep; in other words signals are expected to be able to pass
through a large amount of digital logic in the time span of one clock cycle. A
synthesis report of the generated RTL will be done once the processor is finished.

3.2 Project Phases

3.2.1 Instruction Accurate Model

The instruction accurate model phase is the first phase in the ASIP design process
and is where the ASIs are defined. For each instruction the assembly syntax
and the binary representation have to be described in the CodAL model. Once
complete an assembler and disassembler targeting the ASIP’s ISA can be generated
by the tool. In addition the functional aspect of the instructions can be described
in a software manner to allow for early stage simulation and prototyping of the ISA
without the microachitecture being defined. Only the hardware that is relevant
for the functionality for specific instructions has to be defined in the IA model,

15

“output” — 2020/6/28 — 9:57 — page 16 — #32

16 Method

such as general purpose registers and application specific registers used by the
instructions.

Once the assembly syntax, binary representation and functionality is described
for each instruction, it is possible to generate a C or a C++ compiler targeting
the custom ISA. This step requires the addition of directives for the compiler
on how to interpret certain instructions. The application specific instructions to
be implemented in this project are not supposed to be used by the compiler,
but rather it is the programmer’s responsibility to call them directly from the
C code with intrinsic function calls. The ASIP’s firmware will therefore mostly
be a C program calling intrinsic functions which simply tells the compiler to put
an application specific instruction at a specific code line. As opposed to when
the compiler schedules a ASI based upon a set of expressions in C Therefore the
construction of the compiler will be rather simple and was given low priority in
this thesis.

3.2.2 Testing of IA model

The second phase involves testing the ASIs described in the first phase to guar-
antee that they are aligned with the application’s functional specification. The
tool provides a framework to unit test the application specific instructions. The
framework allows the tester to define the state of architectural registers for each
clock cycle the test is running. Python scripts can also be written to check for
error codes in the return registers once the test has finished execution. In this
manner automated test suites can be designed in an effective manner.

In this project the existing testing framework was not used extensively. This
was due to the fact that the framework requires an existing and working C or
C++ compiler generated within the tool. The generation of a functioning compiler
was determined to not fit within the thesis time plan, and since the firmware is
to be written in Assembly, it was not considered crucial to the project. The IA
testing methodology used in this project was instead designed as follows; two test
instructions, "test_start" and "test_end" which both take the instruction to be
tested as argument. The "test_start" sets up the initial state of the application
specific registers used by the instruction to be tested. The "test_end" is used after
the tested instruction has executed and checks so it manipulated the instruction
specific registers correctly. This solution allowed for each instruction to be tested
in isolation which simplifies debugging. The error checking was done with the
simulator’s builtin functions used for debugging, such as the typical assert function,
which takes a boolean expression and a specified error message as argument. The
function terminates the simulation if the expression is false and displays the error
message. These instructions where omitted at synthesis.

3.2.3 Cycle Accurate Model

In the cycle accurate (CA) phase the microarchitecture and the pipeline stages
are described and implemented. The CA model is developed in what could be
seen as a high level HDL. Unlike the IA model, microarchitectural resources such
as signals, external ports, bus interfaces to data/instruction memory, functional

“output” — 2020/6/28 — 9:57 — page 17 — #33

Method 17

units and the pipeline stages’ specific resources have to be described. After the CA
model is complete a CA simulator can be generated to test the entire processor
implementation. It is from this CA model that the RTL description is generated
and analyzed. The tool’s profiler provides some functionality to compare different
CA model implementation in terms of area and power usage but it can’t give an
exact figure in real standard units.

3.2.4 Testing of CA model

The ASIP’s functionality is based around routing and processing incoming data
from the SoC environment. Therefore to test the ASIP functionality in a cycle
accurate manner, a cycle accurate SoC environment simulation has to be created as
well. The tool provides different approaches for simulation of external components.
The first approach is to simply feed the ASIP simulator with a text file which
contains the input values of the ASIP’s ports at specific clock cycles. The second
approach is to link together the ASIP simulator with a SystemC model. The third
is to use the tool’s builtin support for describing external components in C++ .
The latter was chosen for this thesis because the dynamic behaviour of the SoC
did not fit the text file alternative. Furthermore the C++ behavioural description,
in this specific case, is the easiest to connect to the ASIP simulator because the
framework is provided with the tool. In the SystemC case some extra wrappers
have to be constructed to link together the ASIP and the SystemC model.

3.2.5 Optimization

Once the CA model is tested and the ASIP works as tended, optimization can be
done on the model description. The optimizations performed on the ASIP where
mainly:

• Group together similar instructions so they can take advantage of the same
functional unit and decoder to increase resource sharing.

• Replace complicated arithmetical operations with simpler bitwise operations
to save hardware.

• Reduce the total amount of registers by letting tasks share resources if there
is no risk for resource hazards.

• Limit the number of registers used by ASIs.

“output” — 2020/6/28 — 9:57 — page 18 — #34

18 Method

3.2.6 C Compiler Generation

The C compiler was constructed and finalised at the end of the project. The
ASIs are not supposed to be used by the compiler unless they are called by their
corresponding intrinsic function from a C program. The ASIs in this project
perform very specific data processing and due to the performance requirements of
the ASIP it has to be guaranteed from a software perspective the ASI are called
as intended. Therefore it is logical to put the responsibility for the ASI call on
the programmer and not on the compiler. Directives to the compiler was added
in the IA model to simply ignore each ASI and generate a header file with the
definitions of the intrinsic functions. Codasip Studio has the capability to generate
a compiler which can analyse normal C code and determine if an expression could
be translated into a custom instruction. This was done for the Base ISA described
in Appendix A.1. The functionality of an instruction has to be defined in the
IA model and the studio can determine from its functional description what the
instructions does and the C expression it corresponds to, an example is showed in
code 1. It is required to specify information about which registers the compiler
can use and the registers’ intended use. For example the program counter register
and the register file which holds the general purpose registers. Registers that
store the stack pointer, base pointer, return address, function results and function
parameters have to be specified as well.

“output” — 2020/6/28 — 9:57 — page 19 — #35

Method 19

1 element i_add
2 {
3 // The opcode fo r an i n s t r u c t i on
4 use opc_add as opc ;
5

6 // Define number o f genera l purpose r e g i s t e r used
7 use reg_gpr as gpr_src2 , gpr_src1 , gpr_dst ;
8

9 // Assembly r ep r e s en ta t i on
10 assembly { gpr_dst "= ADD " gpr_src1 " , " gpr_src2 } ;
11

12 // Binary r ep r e s en ta t i on
13 binary { opc gpr_src1 gpr_dst gpr_src2 } ;
14

15 // Provide compi ler with informat ion o f the i n s t r u c t i o n
16 semantics
17 {
18 uint32 src1 , src2 , r e s u l t ;
19

20 // Read two gpr indexes from in s t r u c t i o n argument
21 s r c1 = rf_gpr [gpr_src1] ;
22 s r c2 = rf_gpr [gpr_src2] ;
23

24 // Two gprs are added t o g e t h e r
25 r e s u l t = s r c1 + sr c2 ;
26

27 // The r e s u l t o f the add i t i on i s s to red in a gpr
28 rf_gpr [gpr_dst] = r e s u l t ;
29 /∗
30 ∗ The compi ler now knows t h i s i n s t r u c t i on
31 ∗ can be used to add two va lue s t o g e t h e r
32 ∗ and s t o r e the r e s u l t .
33 ∗ The compi ler can t h e r e f o r e map the C statement
34 ∗ a = b + c ;
35 ∗ to t h i s i n s t r u c t i on .
36 ∗/
37 } ;
38 } ;

Code 1: Compiler example.

“output” — 2020/6/28 — 9:57 — page 20 — #36

20 Method

3.3 Incremental Development

In the beginning of the project a waterfall design process model was considered
where all steps described above would be done after each other in one iteration.
Due to the risk of not completing the entire project in time and hence miss out
on essential parts of the ASIP design process, an agile development methodology
called the incremental build model was chosen instead. With an incremental build
model the ASIP is designed, implemented and tested incrementally and a little
more is added each time [13]. This implies that even if the entire processor would
not be finished according to the original specifications in time , there would still
exist a working processor with a sub part of the functionality implemented. The
project was divided into two iterations. In the first iteration the base processor
and ASIs for the two most simple tasks were constructed. In the second iteration
ASIs for two more complex task were implemented.

3.4 Workflow Example

This section aims to give a brief overview of the workflow that this thesis aims
to test, and that this project will be performed according to. The starting point
for this project is a design document that has been prepared with regards to
the standards document that is written by 3GPP with every new release of a
5G standard. An excerpt from 3GPP release 38 can be seen in Figure 3.1. The
standards provided by 3GPP can be seen as a framework that all parties must abide
by, with some leeway in terms of UE implementation decisions. The example in
Figure 3.1 is from the PDCP uplink behavioural definition and describes how long
the system should keep track of PDCP SDUs and when they should be discarded.

At reception of a PDCP SDU from upper layers, the transmitting
PDCP entity shall:
- start the discardTimer associated with this PDCP SDU (if config-
ured)
For a PDCP SDU received from upper layers, the transmitting
PDCP entity shall:
- associate the COUNT value corresponding to TX_NEXT to this
PDCP SDU;

NOTE 1: Associating more than half of the PDCP SN space of con-
tiguous PDCP SDUs with PDCP SNs, when e.g., the PDCP SDU’s
are discarded or transmitted without acknowledgement, may cause
HFN desynchronization problem. How to prevent HFN desynchro-
nization problem is left up to UE implementation.

Figure 3.1: Original 3GPP behavioural description[8].

“output” — 2020/6/28 — 9:57 — page 21 — #37

Method 21

From the behavioural description the system designer can make decisions based
on the implementation and internal structure of the UE device. In this case, the
PDCP SDUs are received from a higher level software interface that also acts as
a bridge to system memory. The ASIP should in this case check the associated
reference counter (RC) and sequence number (SN) of a particular PDCP entity
and release the related memory if the entity is not used and can be discarded
according to the 3GPP definition of how long an entity should be saved. The
pseudo code in Code 2 is the first step in the implementation process, and can be
used together with the 3GPP description of PDCP entities to decide how the UE
device should keep track of them.

1

2 Loop (COUNT){
3 Read cur rent RC r e l a t e d to the SN o f the PDCP en t i t y
4 Decrease RC value
5 I f ((RC a f t e r sub s t r a c t opera t i on == 0) AND (SN ==

RC_Release_Next)) {
6 Read sdu address (PDCP func (Entity_Id , Count)) [
7 Release memory
8 RC_Release_Next++
9 Return MEM_RC column memory based on RC_Release_Next

judgement
10 Return PDCP_TX_REC column memory based on

RC_Release_Next judgement
11 }
12 Else {
13 Write updated RC value to MEM_RC
14 }
15 }

Code 2: Pseudo-code based on description in figure 3.1 and
system model.

The next part in the process is not mandatory, but makes behavioural analysis
and later stages easier. Here, the pseudo code and entity descriptions are translated
into C-code that is executable; which can then be used to confirm that the code
performs according to expectations, as well as find complex instruction sequences
that can be turned into ASIs. In Code 3 the instruction sequences that are within
ASI brackets are highlighted as potential ASI candidates and also contain a call
to a function that increases a cycle counter; to give a rough estimate of the cycle
consumption of the program that will run on the ASIP. The C-code also works
as a starting point for the firmware description of the ASIP, as it is essentially a
behavioural description. Worth mentioning is that the C-code in code segment
3 is not a complete representation of Code 2, but rather a part of a larger task
description.

“output” — 2020/6/28 — 9:57 — page 22 — #38

22 Method

1 while (NumRcToBeReleased > 0) {
2

3 ASI {MauLoadPdcpStates_Addr (PdcpSn ,
NumRcToBeReleased) }

4

5 for (int i =0; i< NumRcToBeReleased ; i++) {
6

7 ASI {arAddr = addr . f r on t () ; addr . pop () ; }
8

9 ASI {MaaDeallocatePdcpSdu (arAddr) ; }
10

11 ASI { uint18 tmp = PdcpEntity [PEID] . RcRelNext ;
12 PdcpEntity . RcRelNext , PdcpEntity .WinMask ;
13 PdcpEntity [PEID] . RcRelNext , PdcpEntity .

WinMask ;
14 RcReleaseFlag = RcReleaseFlag | |
15 (((PdcpEntity . RcRelNext & cRcRowIdxMask) ==

cRcRowIdxMask) &&
16 ((PdcpEntity . RcTxNext & ~cRcRowIdxMask) !=

tmp)) ; }
17 }

Code 3: C-code example with ASIs highlighted within
brackets.

Before the instructions described in C-code can be translated into CodAL, the
architecture of the processor needs to be described. The main architecture element
in the IA model of the ASIP is the register description, and to be able to translate
the instructions fully, a move away from variable manipulation to register value
manipulation is required. Code 4 shows the architecture definition of a register in
CodAL, where the size of the register in this case is the size of the PDCP entity
that is to be stored in it.

1

2 register bit [PDCP_ENTITY_W] r_pdcp_entity{
3 reset = true ;
4 default = 0 ;
5 } ;

Code 4: CodAL code example of a register definition.

To then translate the C-code from the previous part into functioning CodAL
code, the instructions that are proposed as ASIs should be extracted and described.
Code 5 shows how the final ASI instruction from the above code is described in
CodAL, where the function "DEF_OPC" defines the opcode in three different
ways. The instruction is then created as an element and is given an Assembly
value, in this example just the opcode because it has no inherent inputs, and a

“output” — 2020/6/28 — 9:57 — page 23 — #39

Method 23

binary value. The instruction semantics section then describe the behaviour of
the instruction in the IA model, where temporary variables are allowed to be used
together with registers. In the last row of the code segment a call to read the
databus is sent; in this case the read is described as a function, where it will later
need to be described as a port read from an external component which is described
in a C++ behavioural file.

1

2 DEF_OPC(SetReleaseFlag , " SetRe leaseFlag " ,
OPC_SetReleaseFlag)

3 element i_SetReleaseFlag {
4

5 use opc_SetReleaseFlag as opc ;
6

7 assembly{opc } ;
8 binary{opc REMAINING_BITS(OPC_W) } ;
9

10 semantics {
11 uint32 temp ;
12

13 temp = (r_pdcp_entity [PDCP_ENT_RC_REL_NEXT] + 1)
14 & r_pdcp_entity [PDCP_ENT_WINMASK] ;
15

16 r_pdcp_memref_entity = r_pdcp_entity [1 6 9 . . 1 3 8] : :
17 (uint18) temp : : r_pdcp_entity

[1 2 1 . . 0] ;
18

19 r_rc_release_flag = read_databus (GetReleaseFlag) ;
20 } ;
21 } ;

Code 5: CodAL code example of an instruction.

After the IA model architecture and instruction descriptions are complete and
tested, they can then be turned into a CA model by sequentializing the instructions
into a pipeline description along with a pipeline architecture model and instruction
decoders. To translate the instruction in the previous code segment into a CA
model it is divided into it’s pipeline parts, of which only two out of four are
shown in 6. In the execute stage (EX) the value of the opcode passed on from the
previous decode stage is compared against a table of values and if it matches one,
the instruction is completed in the same cycle. This means that all variable are
described as intermediate signals between registers, and that reads and writes to
registers are done separately. Here it can also be seen that the function calls to
produce a value from an external component are replaced by actual value writes
to a port. After the instruction is executed the writeback stage (WB) is where the
values are finalized, read and stored in their respective registers.

“output” — 2020/6/28 — 9:57 — page 24 — #40

24 Method

1 event ex : pipeline (p ipe .EX)
2 {
3 semantics{
4 switch (r_ex_opcode) {
5

6 case OPC_SetReleaseFlag :
7

8 i f (! bus_is_busy) {
9

10 p_CmdStrobe = 1 ;
11 p_CmdOpcode = GetReleaseFlag ;
12

13 r_pdcp_entity = r_pdcp_entity [1 6 9 . . 1 3 8] : :
14 (uint18) ((r_pdcp_entity [

PDCP_ENT_RC_REL_NEXT] + 1) &
15 r_pdcp_entity [PDCP_ENT_WINMASK]) : :
16 r_pdcp_entity [1 2 1 . . 0] ;
17 } ;
18 break ;
19 } ;
20 }
21 }
22

23 event wb : pipeline (p ipe .WB)
24 {
25 semantics{
26 switch (r_wb_opcode) {
27 case OPC_SetReleaseFlag :
28 r_rc_release_flag = p_ReadData

[0 . . 0] ;
29 break ;
30 } ;
31 }
32 }

Code 6: CodAL code example of an instruction execution in
the pipeline EX and WB stages.

“output” — 2020/6/28 — 9:57 — page 25 — #41

Method 25

The final part of the workflow, after testing the CA model to confirm function-
ality, is to let Codasip Studio interpret the code and produce synthezisable VHDL
or Verilog. This code is autogenerated and is usually rather difficult to read, but
for reference Code 7 is the Verilog that is generated from the final register value
assignment in the previous example. Worth noting is that the registers are here
seen as D-flipflops and signals are routed according to if they are inputs or outputs
from the register.

1 assign r_pdcp_entity_D = ((ACT == 1 ’ b1) && tmp_var) ?
{{30{1 ’ b0 }} , {r_pdcp_entity_Q [1 6 9 : 1 3 8] ,
tmp_conv_BITWISE_AND[1 7 : 0] , r_pdcp_entity_Q [1 2 1 : 0] } } :

{202{1 ’ b0 }} ;

Code 7: Example of autogenerated Verilog code.

“output” — 2020/6/28 — 9:57 — page 26 — #42

26 Method

“output” — 2020/6/28 — 9:57 — page 27 — #43

Chapter 4
Processor Architecture

This chapter will cover important parts of the processors architecture and moti-
vations behind its design choices.

4.1 Pipeline

The processor consists of four pipeline stages each of which is described briefly
below.

1. Instruction Fetch (FE)

• Initiate a request to read instruction data at the address given by the
program counter (PC) from the memory unit.

• Determine value for the next PC, usually next address in line if there
is no context switch, hardware loop or branch interference.

2. Instruction Decode (ID)

• Read the instruction data from the instruction cache, if memory unit
is not ready the processor stalls.

• Read the register data if the instruction has any register arguments
and store it in special source registers used by the execute stage.

3. Execute (EX)

• For base ISA ALU operations described in Appendix A.1, insert source
registers as input to ALU unit and store output in special result reg-
ister.

• For ASIs, execute the functional unit associated with the instruction.
ASRs may be both read and written to.

• If it is a external communication ASI, perform a read request or write
data to the SoC interface ports.

• At a load or store instruction to the data memory, initiate the memory
operation.

27

“output” — 2020/6/28 — 9:57 — page 28 — #44

28 Processor Architecture

4. Write Back (WB)

• For base ISA ALU operation, write back what is in the result register
to specified register given in the instruction argument.

• For load instruction write back the requested data to specified register
given in the instruction argument.

• At a read request to the SoC, write data provided from the SoC to a
dedicated ASR for the specific ASI.

4.2 Memory Access

The processor is using a von Neumann architecture where program instructions
and data share the same memory and pathways and memory address width is
32-bits. The memory access protocol used is a AMBA 3 AHB-Lite Protocol where
the processor is the master and the memory unit is the slave.

4.3 Application Specific Registers

Usually on GPPs all program data is stored in the data memory of the proces-
sor. The data memory usually consists of an external memory block consisting of
dynamic random-access memory (DRAM) cells called main memory. DRAM cells
are slow to read and write data from compared to other memory types, but are
cheap in regards to chip area due to the DRAM cell only consisting of a capacitor
and a transistor. Static random-access memory (SRAM) cells on the other hand
are faster to read and write from but cost more area than DRAM because they
consist of six transistors. Most modern GPP and computer systems utilize both
types of memory with a load/store architecture where data is loaded from the
main memory into the fast SRAM registers when the data is needed. Fetching
data from the main memory and loading it into registers will therefore be slow
and cause delays in the processor execution. To get around this problem, proces-
sor manufacturers traditionally implement fast accessible memories called caches
in between the register memory and the main memory. The caches contain data
previously used (temporal locality) and a block of data close to the data previously
used (spacial locality). When data is being fetched from main memory the system
will look and see if the data is in the cache before looking in the main memory,
consequently speeding up the memory access.

On the ASIP designed in this thesis all primary processing data is stored
in ASRs and not in main memory. The data structures used in the application
are known at ASIP construction, therefore the data structures can be allocated
directly in hardware as registers inside the processor and will be accessible directly
at all times without any delay. This optimisation will eliminate the need for data
caches and data memory and the load and store architecture will primarily not be
utilized on the ASIP. Allocating dedicated registers for data structures will cost
more in terms of area compared to storing data structures in main memory, but
will increase performance considerably.

“output” — 2020/6/28 — 9:57 — page 29 — #45

Processor Architecture 29

The ASRs will be accessed directly by ASIs. Which ASRs the ASI will use to
read and write from will be hard coded into the ASI and won’t be configurable
from software. The flexibility comes from that each ASR is mapped in a register
mapping structure where the ASR is divided or combined into 32 bit chunks de-
pending on it’s size. These 32 bit chunks are then accessible by the base RISV-V
ISA through a specific index number. As an example; in assembly register "r36"
is mapped to an ASR which holds the start address of a hardware loop for task 0
and register "r52" is mapped to an ASR which holds all error and exception flags
used by the ASIs. This will enable future software changes to the ASIP because
the ASR then becomes accessible from a software level with normal instructions
such as addition, subtraction , comparisons e.t.c.

4.4 Specialized Instructions

This subsection will cover the different categorise of specialised instructions de-
signed to solely target the application.

4.4.1 External Communication

The ASIP is only tasked with performing a part of the data processing in the
RLC and PDCP protocols described in section 2.1.1. The other part of the data
processing is performed by other hardware blocks on the SoC. The ASIP therefore
needs to communicate data in an efficient manner with the surrounding hardware
blocks on the SoC which leads to a big part of the ASIP’s ISA consisting of
instructions which read or write to the SoC. Which ASRs or hardware block that
are written and read from is hard-coded into the ASI.

A specification of the data transfer protocol to be implemented on the ASIP
was provided by Huawei. The protocol requires a very wide full duplex parallel
port interface which enables the ASIP to both read and write many bits of data
each clock cycle. A read operation from the ASIP will take two clock cycles to
finish; in cycle 1 the ASIP requests data and in cycle 2 the data is transmitted
on the read port. A write operation will only take one clock cycle. The two cycle
read operation was what motivated the four stage pipeline design together with
the load and store functionality.

4.4.2 Data Processing

ASIs tasked with specific data processing on some ASRs have their own functional
unit (FU) allocated used only by the specific instruction. This design choice ac-
celerates data processing considerably but comes with a trade-off; there is no
flexibility within the functional units. If the way data is processed within the
instruction needs to be changed, it has to either be replaced with a complete soft-
ware implementation with the base ISA, or the ASRs the ASI is processing data
on have to be altered after the instruction is executed. The total on chip area also
increases due to specialized hardware has to be allocated for each instruction. An
example of how a functional unit may look can be seen in the CodAL code snippet
below.

“output” — 2020/6/28 — 9:57 — page 30 — #46

30 Processor Architecture

1 /∗
2 ∗ Inputs to the f unc t i ona l un i t .
3 ∗ Inputs can o r i g i n a t e from e i t h e r the i n s t r u c t i on ’ s
4 ∗ argument or a s p e c i f i c va lue in an ASR.
5 ∗/
6 stat ic void functional_unit_example (u int2 in_data1 ,
7 uint2 in_data2 , u int2 in_data3 ,
8 uint18 in_data4 , u int18 in_data5 ,
9 uint18 in_data6){

10

11 // Temporary s i g n a l s only used i n s i d e the FU
12 uint8 s ignal_4 ;
13 uint10 singal_5 , s ignal_6 ;
14 bool s ignal_1 , signal_2 , signal_3 , s ignal_7 ,
15 s ignal_8 , s ignal_9 ;
16

17 // Stores r e s u l t temporary , used l a t e r in the FU
18 s ignal_1 = in_data1 != 1 ;
19

20 // Stores r e s u l t permanently in a g l o b a l r e g i s t e r
21 reg_1 = signal_1 ;
22

23 s ignal_2 = in_data2 != in_data3 ;
24 reg_2 = signal_2 ;
25

26 s ignal_3 = in_data4 != in_data5 ;
27 reg_3 = signal_3 ;
28

29 // S e l e c t s a c e r t a in range o f b i t s
30 s ignal_4 = in_data4 [7 . . 0] ;
31 s ignal_5 = in_data5 [1 7 . . 8] ;
32 s ignal_6 = in_data6 [1 7 . . 8] ;
33

34 s ignal_7 = in_data5 == in_data6 ;
35 s ignal_8 = (s ignal_4 == 0) &&
36 (s ignal_6 != signal_5 | | s ignal_7) ;
37 reg_4 = signal_8 ;
38

39 s ignal_9 = signal_1 | | s ignal_2 | | s ignal_3 ;
40 reg_5 = signal_9 ;
41

42 reg_6 = signal_9 | | s ignal_8 ;
43 }
44 }

Code 8: FU example in CodAL.

“output” — 2020/6/28 — 9:57 — page 31 — #47

Processor Architecture 31

4.4.3 Exception Handling

Sometimes faulty data is received or some other extra processing has to be per-
formed which is not expected to happen under normal execution. To reduce branch
penalties which are a result of conditional execution, a set of generalised excep-
tion handling instructions were implemented on the ASIP which jump out of the
program’s main loop if an exception occurs. An ASR was allocated which holds a
bitmap over error flags that are set by certain data processing instructions; if any
of these bits are set when the exception instruction is called it will jump to the ex-
ception handling routine. Within the exception routine appropriate measures can
be taken depending on the exception that occurred. The ASIs constructed for the
exception routine were constructed with more programmable flexibility than the
main program. This decision was motivated by the fact that the exception routine
won’t be executed on a common basis; therefore the performance reduction within
the exception routine due to increased flexibility won’t hurt overall performance
and might result in area reduction. For example, exceptions are approximated to
happen every 200 iterations so if the main program loop takes 15 clock cycles to
execute and the exception routine takes 5 cycles with maximum hardware opti-
misation and minimum flexibility, and 10 clock cycles the other way around; the
increased flexibility would only take roughly 0.2% of the ASIP’s total execution
time.

4.4.4 Zero Overhead Loops

Each program task has a main loop; when the task has finished it will restart
and run from the beginning again. At the end of the loop it will be a branch
penalty of three clock cycles due to an unconditional branch instruction having to
be issued and the branch is not resolved until the execution stage in the pipeline.
To resolve this, hardware loops are implemented. The start and end address of the
main loop for each task is saved within ASRs by an ASI which will configure the
hardware loop. Each clock cycle on the instruction fetch stage the current program
counter is compared to the current running task’s end address, if they are equal
the program counter will be set to the task’s start address instead, removing the
branch penalty.

Some tasks requires conditional nested loops within the main loop that are
dependent on a counter value, if the counter is zero the task should exit the
loop and at each iteration the counter is decremented. This was implemented
similarly to the main hardware loops as described above but in addition an ASR
was allocated for the counter and is checked if it is non zero in the instruction
fetch stage. This optimisation saves 4 clock cycles compared to if the base ISA
had been used where a decrement instruction has to be followed by a branch if not
zero instruction.

4.4.5 Zero Overhead Context Switch

As mentioned previously, the firmware running on the processor is divided into
a set of tasks that are more or less independent from one another. When the
ASIP is requesting access to data from an external resource it takes a varying

“output” — 2020/6/28 — 9:57 — page 32 — #48

32 Processor Architecture

amount of time until that data is ready. Therefore when one task is requesting
some external data it has to pause execution and wait for the data to arrive. If
there exist other pending or ready tasks it is unnecessary to stall the entire pro-
cessor to wait for the data to arrive. To increase efficiency the processor should
therefore simply switch to a ready task if the current running task is requesting
external data. On a normal GPP, context switching is usually implemented on
a software level and is expensive in terms of clock cycles due to the overhead of
the context switch. Normally a context switch requires the processor to save the
current state of the process such as the stack variables and registers containing the
stack pointer, frame/base pointer, return address e.t.c in the data memory of the
processor. To work around this, the concept of each task having its own stack in
the data memory is scrapped on this ASIP. Each task will have its own set of ASRs
where data is stored and processed, instead of in the data memory. Primarily the
data memory is not used and the program stack is shared among the different
tasks. Due to these optimisations the task switching can be done completely by
hardware and will be performed with an ASI in only two clock cycles.

The hardware implementation of the context switch scheduler works as follows:

Step 1: Instruction execution where the argument is the input to wait for.

Step 2: The instruction data in the fetch and decode stage of the pipeline is saved in
a ASR respectively. More specifically the address of the current PC and the
instruction data of the next instruction to be executed. This is saved away
to later on be able restore the pipeline when the issuing task is scheduled
again. The input argument which indicates what I/O event the issuing task
is waiting for is also saved away in a ASR called IO_status_reg.

Step 3: Each tasks IO_status_reg is then checked to see if they are ready to execute.
information about which IO request is ready is read through a dataport on
the ASIP sent each clock cycle from the SoC environment.

Step 4: If there is a ready task, next task is scheduled with a static scheduling
priority scheme. Task 0 has highest, task 1 has second highest and all
the way down to 7 which has lowest priority. This scheduling scheme was
considered sufficient for the scope of this thesis. A full simulation of the SoC
enviroment has to be constructed before the real-time constraints could be
fully analyzed, this was not ready within the time scope of this project
therefore it was assumed that starvation would not be an issue.

Step 5: The data saved in step 2 is inserted into the pipeline stages fetch and decode
the next clock cycle. The execution stage is stalled one clock cycle at a
context switch. Consequently there is a two clock cycle penalty at a context
switch and one if no context switch is needed.

Step 6: If no ready task is found the processor sleeps and wakes up at an IO event.

“output” — 2020/6/28 — 9:57 — page 33 — #49

Chapter 5
Results and Discussion

This chapter will present the results obtained throughout the thesis, and discuss
and compare them in relation to other current processor architectures. The ASIP
will be compared in-depth to a similar GPP solution, and more generally to a
HAC solution.

5.1 Comparison with ARM Microprocessors

To give a good idea of where the ASIP stands against a normal microprocessor
it will be compared with the ARM Cortex-M family in terms of power consump-
tion and area usage. The Cortex-M family is according to ARM is "optimized
for cost and energy-efficient microcontrollers" and "provides low-latency and a
highly deterministic operation, for deeply embedded systems." [14]. This family
of processors was considered to resemble the ASIP and it’s intended usage the
most. The specific cores that are compared to the ASIP are the highest and mid-
tier processors; the M7[15] and the M33[16]. The processor characteristics in the
tables below are retrieved from ARM’s offical webpage.

Table 5.1: Cortex-M7 [15]

ARM-Cortex-M7

Transistor Technology (nm) 40 28 16
Gate Voltage (Vg) 0.99 0.81 0.72

Dynamic Power (µW/MHz) 58.5 31.8 18.5
Floor Planned Area (mm2) 0.105 0.052 0.028

33

“output” — 2020/6/28 — 9:57 — page 34 — #50

34 Results and Discussion

Table 5.2: Cortex-M33 [16]

ARM-Cortex-M33

Transistor Technology (nm) 40 28 16
Gate Voltage (Vg) 0.99 0.81 0.72

Dynamic Power (µW/MHz) 12 3.8 3.9
Floor Planned Area (mm2) 0.028 0.014 0.008

5.1.1 Power Consumption and Area Usage

Table 5.3: Power consumption and area of the ASIP at different
stages, all synthesized at 400 MHz and 7 nm.

Non-Optimized Optimized Optimized Without Task 3 Estimated Total
Combinational Area (µm2) 1738 1771 1573 2571
Non-Combinational Area 1186 1189 1097 1989
Buffer/Inverter Area 244 253 216 573
Total Cell Area (mm2) 0.00292 0.00296 0.00267 0.00412

Power Consumption (mW) 13.958 13.963 13.871 14.331

The optimized values seen in Table 5.3 are with the optimizations described in
section 3.2.5. The estimated total is an extrapolation of the results of the optimized
synthesis with and without task 3; if we assume that the task complexity is roughly
the same. The power consumption is calculated at 400 MHz and 100% cell load
where switching power (dynamic power) is >90% of the total power consumption.

To get an estimate of the power consumption of the ASIP, a number of as-
sumptions had to be made. Since the model isn’t complete and integrated into the
SoC structure, it is difficult to get an accurate value for the power consumption.
If the assumption is that roughly 10% of the ASIP is activated each clock cycle,
the estimated power consumption for the entire ASIP is about 1.4 mW according
to Table 5.3. The uncertainty is very high since a proper testbench and stimuli
source is missing in the calculation but in comparison to the ARM 16 nm core
in Table 5.2, which is the most similar in design to the ASIP, it should consume
around 1.6 mW at 400 MHz; not too far off from the ASIP’s result. To get a
properly measured value of the ASIP’s power consumption, the design needs to
be completed, with all seven tasks implemented. The firmware also needs to be
converted into a stimuli file that can be input into the synthesis tool to simulate
what inputs the ASIP receives during normal operation.

When it comes to the estimated total area, the result in Table 5.3 is more
representative of the final design, the only thing that a completed design would
add is the interconnect area between the ASIP core and the SoC, which is usually
very small compared to the cell area. Since the ASIP is synthesized with a 7 nm
technology the respective ARM result needs to be extrapolated from the 16 nm
values. In Table 5.2 the area usage is halved when going from 40 to 28 nm, and then
reduced by about 43% when going from 28 to 16 nm. Decreasing the transistor
size will give diminishing returns with each step because of design overheads, but

“output” — 2020/6/28 — 9:57 — page 35 — #51

Results and Discussion 35

if the 0.0005 mm2/nm reduction between 28 and 16 nm is kept, then the 7 nm
technology would result in an area of around 0.0045 mm2; this can be compared
to 0.00412 mm2 for the ASIP. Since the M-33 is in the middle of the performance
spectrum, the comparison might not be entirely fair. If the ASIP is compared to
the higher-end M-7 model in Table 5.1, there is a greater disparity between the
results. The M-7 at 7 nm and 400 MHz would be expected to consume roughly 3.9
mW and take up around 0.014 mm2. A comparison to a lower-end model would
have been a good addition, but the difference in transistor technology and size for
lower-end models was determined too high to facilitate a meaningful comparison.

The power consumption results don’t necessarily give a complete overview of
the behaviour of the processor. As can be seen in Table 5.10, the amount of
instructions that need to be executed on a GPP is much higher than on the ASIP;
therefore the execution time of the same program will be much longer. A longer
execution time means that the processor needs to draw power for a longer amount
of time, resulting in an overall higher power consumption. The results in Table 5.3
can therefore be seen as a static comparison; the 100% on-time power consumption
of the processor. Since the ASIP acts as part of a 5G modem, the assumption is
also that it will spend a majority of the time in a sleep state since there will not
always be data to send or process; further reducing the overall power consumption.

The result of the optimizations descried in section 3.2.5 can be observed in
Table 5.3. An interesting result is that the optimized CodAL code actually re-
sulted in slightly more on-chip area than the unoptimized code. The most likely
explanation is that the synthesis tool managed to perform the optimizations in
section 3.2.5 by itself. It can be concluded it is unnecessary to perform any major
hardware optimisations on a CodAL level because it can be done by the synthesis
tool. As a results of this more time can be spent on development of new features
rather then optimizing old code, which can increase the speed of the development
process.

5.1.2 Instruction Count

In total 35 ASIs were fully implemented on the ASIP and 55 instructions in total
were defined in the IA model, the result can be observed in Appendix A.2. Ac-
cording the design specification the ASIP is supposed to have seven different tasks
when the design is finished. In this project ASIs were fully completed for three of
the seven task and one was only completed as a IA model, the last task was not
finished due to time constraints. The last task contained 20 ASIs.

The Firmware, written in assembly, was executed in Codasip’s ASIP simula-
tor. The ASIP is assumed to have a clock cycles per instruction (CPI) of one.
The two things that could affect the CPI on the ASIP is unexpected stalls from
instruction memory fetch and the SoC environment. Stalls from instruction mem-
ory is redeemed as very low due to the total program size on the ASIP won’t be
more then a 1000 lines of assembly, therefore a small and fast memory could be
implemented to store program instructions. Stall from SoC environment is hard
to estimate at this point but is assumed to be very low. The amount of clock
cycles spent in each task is written in the tables below. The amount of clock
cycles spent on each task was calculated from to the first instruction in FE stage

“output” — 2020/6/28 — 9:57 — page 36 — #52

36 Results and Discussion

to the last instruction in FE stage. To get the time for a task to fully complete
which is the first instruction in FE stage and last instruction in the WB stage, one
has to add 3 cycles to each entry in the tables. The tasks was executed in four
rounds each to get an overview of the performance. A task can execute with or
without an exception occurring, and for each data request to the SoC environment
a context switch may occur dependent on if data from SoC environment is read or
not. These are dynamic events and are not controlled by the ASIP. Therefore the
number of executed instructions was counted for two separate cases. The first case
is when a task is making a context switch at each external data request, results is
seen in Table 5.5. The second case is when data is always ready and no context
switch is required before the task is finished; results for this case are seen in Table
5.4. Both Table 5.5 and 5.4 list instruction count for each task separately and for
all three tasks combined.

Table 5.4: Cycle count for tasks without interruption.

Task Executed Instructions
With Exception Without Exception

1 17 8
2 17 8
3 29 22
all 63 41

Table 5.5: Cycle count for tasks with interruption.

Task Executed Instructions
With Exception Without Exception

1 20 10
2 20 10
3 34 26
all 74 46

5.1.3 Equivalent ARM Instruction Count

To compare the performance increase against an ARM implementation on an in-
struction level a software implementation for task 1 and 3 was made in C. Task
2 is omitted because it is very similar to task 1. The difference between the two
tasks is basically which registers the data is stored and written to. The software
implementation was compiled using the GNU ARM cross compiler [17] targeting
the Armv8-M Mainline ISA which is used by the M7 core[15]. The instructions
generated for each task in the output assembly code was counted and the data path
of the code was analysed to estimate the amount of instructions executed. The

“output” — 2020/6/28 — 9:57 — page 37 — #53

Results and Discussion 37

context switch instruction, which is the most complex instruction on the ASIP,
was written in a separate C-program and was omitted from the task 1 and task 3
program; the results can be seen in Table 5.6. For simplicity when estimating the
amount of instructions executed, it was assumed that data requests to the SoC
environment would be without delay and up to 320-bit could be sent in one clock
cycle from the ARM processor. According to ARM’s official web page[15] the M7
cortex is equipped with a 32-bit AHB peripheral port which indicates it has the
capability to send 32-bits of data per clock cycle. Therefore the estimate is not
completely correct but it gives a lower-end estimate of the ARM core’s potential
performance.

Table 5.6: Context Switch Instruction on ARM.

Instructions Generated AVG Instructions Executed
153 292

Table 5.7: ARM Cycle count for tasks without interruption.

Task Executed Instructions
With Exception Without Exception

1 227 191
3 372 323
all 826 705

Table 5.8: ARM Cycle count for tasks with interruption.

Task Executed Instructions
With Exception Without Exception

1 1103 775
3 1832 1491
all 4038 3041

“output” — 2020/6/28 — 9:57 — page 38 — #54

38 Results and Discussion

5.1.4 Instruction Count Comparison

The estimated instructions executed on the ARM machines is divided with the
instructions executed for each task on the ASIP. This gives a performance increase
factor in regards to executed instructions.

Table 5.9: ASIP vs ARM performance factor without interruption.

Task Executed Instructions
With Exception Without Exception

1 13.35 23.875
3 12.82 14.68
all 13.1 17.2

Table 5.10: ASIP vs ARM performance factor with interruption.

Task Executed Instructions
With Exception Without Exception

1 55.15 77.7
3 53.88 57.34
all 54.56 66.1

As seen in Table 5.10 the ASIP outperforms the ARM machines when com-
paring number of executed instructions by a factor of 54 with exceptions and 66
without. The main performance increase originates from the hardware context
switching and without it the performance increase would only be around a factor
of 13 as seen in Table 5.9. The context switch scheduler is performing a lot of
data processing to select which of the 7 tasks to run next, but most of it can be
done in parallel which explains why the implementation is much more efficient in
hardware.

It has to be emphasized that the comparison with the ARM processors is a
static comparison and it is not cycle accurate. The comparison is only in regards
to the total amount of executed instructions. The instruction level comparison
was done by analysing the assembly code and therefore does not include things
such as:

• Stalls due to cache misses.

• Memory latency.

• Stalls due to miss predicted branches.

• Delays from external communication.

“output” — 2020/6/28 — 9:57 — page 39 — #55

Results and Discussion 39

The ASIP is designed to reduce the occurrence of all the above points. There-
fore a cycle accurate comparisons would most likely result in a much better per-
formance increase with an ASIP implementation than what could be shown with
a static analysis of the assembly code. Ideally the comparisons should have been
made in a cycle accurate manner to include the points above; this could have been
done with either the cycle accurate simulator licensed by ARM or with a physical
ARM core.

5.2 Code Size

Table 5.11: Lines of code in different implementations of the ASIP.

Lines of Code
CodAL CA Model 5323

CodAL CA Model Without Compiler 3503
Auto-generated VHDL 8919

Table 5.11 shows the amount of code that is contained within different parts
of the ASIP. The CodAL CA model contains the pipeline and microarchitectural
description as well as instruction semantics used by the C-compiler. In the version
without the compiler, all compiler related information is removed from the code.
The auto-generated VHDL doesn’t contain any compiler related information so is
best compared to the CA model without a compiler.

5.3 ASIP vs HAC

5.3.1 Compared to HDL Design

One of the main advantages with the ASIP design process considered is that Co-
dasip is easier to work with than HDLs such as VHDL and Verilog. Much of the
complexity introduced by a HDL is taken care of by the studio environment and
relieves the developer of much responsibility. As an example, digital logic does
not have to be specified as being combinational or sequential by the programmer.
The studio will analyze the data paths in the source code and partition what will
be sequential or combinational at RTL generation. The Studio Environment also
comes with an extensive standard library and builtin functionality for bus inter-
faces, pipeline stalls and standard instructions which simplifies the development
process considerably.

When compared with a HDL design process, the main drawback is the tools is
fairly complex and it takes a bit of time to get started. For example implementing
simple accelerators in a HDL could probably be simpler then implementing simple
accelerators on a ASIP. If the application is small the extra overhead introduced
by the ASIP design process such a compiler and pipeline directives could prove
to be more complex then the application itself and therefore not suitable. With
this said the ASIP design scales very well and once a structure for the pipeline

“output” — 2020/6/28 — 9:57 — page 40 — #56

40 Results and Discussion

and the compiler is constructed, it is fairly easy to add more functional units and
instructions into the model.

The data flow and the order the functional units is activated is handled on a
software level. Therefore hardware developers don’t have to think to much about
connecting the different functional block together, the exception is sometime for-
warding is required due to data hazards. Developers can treat each clock cycle in
isolation and only has to consider the inputs and outputs for the specific instruc-
tion. The design is hence divided into independent small and simple hardware
blocks which makes it easy to overlook and debug.

The CodaAl language is a modern language and is very C-like. Large parts of
the CodAL code base looks similar to C-code. This make the learning curve less
steep as the language constructs are recognised by both hardware and software
engineers. It also minimises the gap between software and hardware implementa-
tions and enables people with a software background to a wider extent understand
and read the underlying HDL code; this is very beneficial for teams combining
hardware and software design.

As can be seen in Table 5.11 the amount of code required to synthesize the
processor varies greatly depending on code language. Although the amount of
code written is not the only factor defining development time, it can give a rough
estimate on the productivity increase that an ADL such as CodAL can provide.
Another benefit is that the studio provides compiler generation tools with a mini-
mal time investment, as it is already part of the design process and not something
that has to be done separately. Although the auto-generated code might not be
as precise as code written by a software engineer it still can give a rough estimate
on how much more needs to be done in a HDL than in CodAL to design an ASIP.

5.3.2 Flexibility

The flexibility on an HAC implementation is very low or non-existent. The ASIP
on the other hand is a Turing complete computer and could theoretically per-
form a very wide range of applications due to it being equipped with the base
ISA described in Appendix . Software changes utilising the ASRs used in the im-
plemented tasks would probably not cost many extra instructions compared to a
normal processor because no load and store has to be issued, the base instruction
set can access them directly. Software implementations that are not utilising the
hardware features on the ASIP will probably have to issue about the same amount
of instructions as the ARM processors as seen in Table 5.9 which are about 13 times
more than an ASI.

The C compiler that targets the ASIP’s ISA is only recommended to be use
in parts of the code that is not utilizing any hardware features on the ASIP. The
main reason is the compiler has no information about the ASIs implemented and
it will only schedule a ASI if it’s corresponding intrinsic function is called from
the C-code. Furthermore, the compiler has been restricted to not use the ASRs
used by ASIs when generating the assembly code. Therefore to make changes and
additions to the firmware as efficient as possible is should be done in assembly if
they are targeting ASRs.

As mentioned in the constraints part of the this thesis, instructions that might

“output” — 2020/6/28 — 9:57 — page 41 — #57

Results and Discussion 41

be used in future for flexibility would not be implemented. If this constraint is
lifted there is potential room for flexibility improvements on the ASIP. For example
there could exist a general SoC communication instruction where a command to
the SoC and the registers used to store the return data could be given as an
instruction argument. This would introduce flexibility if the ASIP needs to be
able to send more commands or receive more data from the SoC environment in
the future that was not specified at the beginning of development.

5.3.3 Power Consumption and Area Usage

To give a more in depth analysis of how the ASIP stand against a HAC implemen-
tation, a comparisons in regards to performance should ideally have been made as
it was done with a GPP in this thesis. Creating a RTL for a pure HAC implemen-
tation would not be suitable for the time frame of this project. In addition the
main goal of this thesis was to construct an functioning ASIP and not an HAC.
Therefore a comparisons in terms of performance were omitted.

“output” — 2020/6/28 — 9:57 — page 42 — #58

42 Results and Discussion

“output” — 2020/6/28 — 9:57 — page 43 — #59

Chapter 6
Conclusions and Final Thoughts

6.1 Conclusion

The ASIP designed in the project is estimated to have around the same area
and power consumption as ARM’s smallest and most energy efficient series of
processors. It outperforms the ARM processors with a factor of around 50-60 in
terms of data processing capabilities and therefore presumably also total energy
consumption. Changes in the application will result in a performance decrease on
the ASIP, but it is probably going to perform better then a GPP if the changes
utilize the hardware utilities on the ASIP. If the changes diverge too far from
the ASIP’s originally defined use case it will most likely perform worse than a
GPP due to a lack of hardware optimizations such as branch prediction and data
caches. It is not evaluated in this thesis if an ASIP implementation would be more
or less efficient then an HAC implementation but the ASIP is definitely a much
more flexible design. The ASIP design process with Codasip Studio has some
extra initial complexities such as the pipeline and compiler overhead but is easier
to work with once defined compared to a pure HDL implementation due to the
developer being relieved of much of the responsibility. This project has also shown
that an ASIP design with Codasip Studio could be very suitable for specialized
applications that require high throughput and flexibility within a predefined use-
case.

6.2 Codasip Studio Review

To design a processor is one of the more complex tasks an engineer can receive, and
Codasip Studio has simplified it in an efficient manner. The fact that two students
without any previous ASIP design experience can learn the basics of it in two to
three weeks says a great deal about the tool’s learning curve. The division between
IA model for compiler construction and functional verification and CA model for
microarchitectural definition makes the process easy to divide between software
and hardware engineers. It also makes it easy for rapid design explorations.

The main problem experienced during the project was the CA model’s depen-
dency on a working compiler. The tool is designed to have a compiler ready at an
early stage and it didn’t really fit the project design process where an assembler
would be sufficient. Another problem was that the tool was not designed to have

43

“output” — 2020/6/28 — 9:57 — page 44 — #60

44 Conclusions and Final Thoughts

ASI instructions where the data processed is invisible to the compiler. For exam-
ple, an instruction with no input arguments would be interpreted as doing nothing.
The compiler generator would not process it and no intrinsic function would be
generated. This problem was worked around with the help of the Codasip sup-
port team by "tricking" the compiler generator and feeding it false information.
The conclusion of these issues is that the ASIP designed in this project was a bit
outside of the general design pattern of Codasip Studio. On the other hand with
assistance of the very helpful support team at Codasip all the roadblocks that ac-
crued throughout the design process could always be solved one way or the other,
adding to the flexibility of the program. Therefore the final conclusion is that
Codasip Studio is definitely capable of being used as a design tool for the ASIP
designed in this project and can be continued to be used for further development
of the ASIP.

6.3 Final Thoughts

During the course of this five month thesis project we have learnt a great deal about
the ASIP design process. It has not been without it’s issues however, especially in
the beginning when we where exposed to a completely new development process
which none of us had any previous experience with. With hard work, determination
and an intense learning curve the ASIP was successfully finalized at the end. We
both studied electrical engineering at university but we have both specialized in
different fields during our master’s degrees. Patric has specialized in hardware
and VLSI design and Lukas has specialised in embedded software. This inter-field
competence proved to be essential for the ASIP design process, which required
knowledge within both the hardware and software domains.

The experience we had at the Huawei office was very rewarding in terms of
understanding how different it is working in an industrial research and development
environment compared to at a university. As described in section 3.4 we got insight
into how the product development process works; from idea inception to execution.
We also got valuable insight into how it is to work in an architecture team with
people with a mixed variety of competences where everyone is working together
to reach the same end-goal.

“output” — 2020/6/28 — 9:57 — page 45 — #61

Appendix A

A.1 RISC Instructions

System Calls
Instruction Example Description

nop nop Does nothing, equivalent to a stall
halt halt End program execution

Register data transfer
movsi r1 = movsi 100 Load immediate value into low 16 bits
movhi r1 = movsi 100 Load immediate value into high 16 bits
movz r1 = movz r2,r3 Copy r3 into r1 if r2 is zero
movnz r1 = movnz r2,r3 Copy r3 into r1 if r2 is not zero

Arithmetical and Logical operations
addi r1 = addi r2,100 Add immediate value to r2, store in r1
add r1 = add r2,r3 Add r2 and r3, store in r1
sub r1 = sub r2,r3 Subtract r3 from r2, store in r1
and r1 = and r2,r3 Logical AND r2 and r3, store in r1
or r1 = or r2,r3 Logical OR r2 and r3, store in r1
xor r1 = xor r2,r3 Logical XOR r2 and r3, store in r1
sll r1 = sll r2,r3 Logical left shift r2, r3 bits
srl r1 = srl r2,r3 Logical right shift r2, r3 bits
sra r1 = sra r2,r3 Arithmetical right shift r2, r3 bits

45

“output” — 2020/6/28 — 9:57 — page 46 — #62

46

Comparison
Instruction Example Description

eq r1 = eq r2,r3 If r2 equals r3, r1 is 1, else 0
neq r1 = neq r2,r3 If r2 not equals r3, r1 is 1, else 0
slt r1 = slt r2,r3 (signed) If r2 is less then r3, r1 is 1, else 0
ult r1 = ult r2,r3 (unsigned) If r2 is less then r3, r1 is 1, else 0
sle r1 = sle r2,r3 (signed) If r2 is less then or equal r3, r1 is 1, else 0
ule r1 = ule r2,r3 (unsigned) If r2 is less then or equal r3, r1 is 1, else 0

Memory operations
ld r1 = ld r2 Load 32-bit value from address in r2, to r1

ldhu r1 = ldhu r2 Load unsigned 16-bit value from address in r2, to r1
ldhs r1 = ldhs r2 Load signed 16-bit value from address in r2, to r1
ldbu r1 = ldbu r2 Load signed 8-bit value from address in r2, to r1
ldbs r1 = ldbu r2 Load unsigned 8-bit value from address in r2, to r1
st r1 = st r2 Store 32-bit value in r2 to address r1
sth r1 = sth r2 Store 16-bit value in r2 to address r1
stb r1 = stb r2 Store8-bit value in r2 to address r1

Branch
jump jump 100 Set PC to immediate value
call call 100 Same as jump, also saves current PC in gpr_4

jumpz jumpz r1,100 If r1 is zero, jump to immediate value
jumpnz jumpnz r1,100 If r1 is not zero, jump to immediate value

Table A.1: List of RISC instructions divided into which functions
they perform.

“output” — 2020/6/28 — 9:57 — page 47 — #63

47

A.2 Application Specific Instructions

Task Instruction Test Coverage Resource Read Resource Write Memory Access Combinational

Task 1

Instruction 1 100% X
Instruction 2 100% X
Instruction 3 100% X
Instruction 4 100% X
Instruction 5 100% X X X X
Instruction 6 100% X

Task 2

Instruction 7 100% X
Instruction 8 100% X
Instruction 9 100% X
Instruction 10 100% X
Instruction 11 100% X X X X
Instruction 12 100% X

Task 3

Instruction 13 100% X
Instruction 14 100% X
Instruction 15 100% X X
Instruction 16 100% X
Instruction 17 100% X
Instruction 18 100% X X
Instruction 19 100% X X
Instruction 20 100% X
Instruction 21 100% X X
Instruction 22 100% X X
Instruction 23 100% X
Instruction 24 100% X
Instruction 25 100% X
Instruction 26 100% X X X

Task 4

Instruction 27 0% X
Instruction 28 0% X
Instruction 29 0% X X
Instruction 30 0% X
Instruction 31 0% X
Instruction 32 0% X
Instruction 33 0% X X
Instruction 34 0% X
Instruction 35 0% X X
Instruction 36 0% X X
Instruction 37 0% X
Instruction 38 0% X X
Instruction 39 0% X X
Instruction 39 0% X
Instruction 40 0% X
Instruction 41 0% X
Instruction 42 0% X X
Instruction 43 0% X X
Instruction 44 0% X
Instruction 45 0% X
Instruction 46 0% X
Instruction 47 0% X
Instruction 48 0% X X

Hardware
Loops

hwloop 100% X X

Exception
Handling

ExceptionHandler 100% X X
JumpIfNoError 100% X X X

Task
Switching

Instruction 52 100% X X
Instruction 53 100% X X X
Instruction 54 100% X X X
Instruction 55 100% X X

44% 45% 16% 55%

Table A.2: List of instructions divided into tasks, and their
respective resource usage.

“output” — 2020/6/28 — 9:57 — page 48 — #64

48

A.3 Abbreviations

3GPP 3rd Generation Partnership Project
ADL Architecture Description Language
AHB Advanced High Performance Bus
ALU Arithmetic Logic Unit
AM Acknowledged Mode

AMBA Advanced Microcontroller Bus Architecture
ARM Advanced RISC Machine (Company)
ARQ Automatic Repeat Request
ASI Application Specific Instruction
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instruction-set Processor
ASR Application Specific Register
CA Cycle Accurate
CPI Cycles Per Instruction

DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
EX Execute (Pipeline Stage)
FE Fetch (Pipeline Stage)
FU Functional Unit
gNB g-Node-B
GPP General Purpose Processor
HDL Hardware Description Language
IA Instruction Accurate
ID Instruction Decode (Pipeline Stage)
IO Input-Output
IP Intellectual Property
IPC Instructions Per Cycle
ISA Instruction Set Architecture
HAC Hardware Accelerator
IoT Internet of Things
LTE Long-Term Evolution
MAC Medium Access Control
NR New-Radio
PC Program Counter

PDCP Packet Data Convergence Protocol
PDU Packet Data Unit
PHY Physical Layer
RC Reference Counter
RISC Reduced Instruction Set Computer

RISC-V Reduced Instruction Set Computer (5th Generation)
RLC Radio-Link Control
ROHC Robust Header Compression
RTL Register-Transfer Level
QoS Quality of Service
SDAP Service Data Adaption Protocol

“output” — 2020/6/28 — 9:57 — page 49 — #65

49

SDU Service Data Unit
SN Sequence Number

SPEC Standard Performance Evaluation Corporation (Company)
SRAM Static Random Access Memory
SoC System-on-Chip
UE User-End/User-Equipment
UM Unacknowledged Mode

VHDL Very High Speed Integrated Circuit Hardware Description Language
VLIW Very Long Instruction Word
VLSI Very Large Scale Integration
WB Writeback (Pipeline Stage)

“output” — 2020/6/28 — 9:57 — page 50 — #66

50

“output” — 2020/6/28 — 9:57 — page 51 — #67

References

[1] Niklas A. Johansson Y-P Eric Wang Erik Eriksson and Martin Hessler.
“Radio Access for Ultra-Reliable and Low-Latency 5G Communica-
tions”. In: 2015 IEEE International Conference on Communication
Workshop (ICCW). Vol. 1. IEEE. 2015, pp. 1184–1189.

[2] Sami Yangui Raissi Fatma and Frederic Camps. “Autonomous Cars,
5G Mobile Networks and Smart Cities: Beyond the Hype”. In: 2019
IEEE 28th International Conference on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE) (2019). doi: https:
//doi.org/10.1109/wetice.2019.00046. (Visited on 04/12/2020).

[3] Wollschlaeger Martin Thilo Sauter and Juergen Jasperneite. “The Fu-
ture of Industrial Communication: Automation Networks in the Era
of the Internet of Things and Industry 4.0”. In: IEEE Industrial Elec-
tronics Magazine (2017). doi: https://doi.org/10.1109/mie.
2017.2649104. (Visited on 03/27/2020).

[4] Navrati Saxena Abhishek Roy Bharat J. R. Sahu and Hanseok Kim.
“Efficient IoT Gateway over 5G Wireless: A New Design with Proto-
type and Implementation Results”. In: IEEE Communications Maga-
zine (2017). doi: https://doi.org/10.1109/mcom.2017.1600437cm.
(Visited on 04/06/2020).

[5] John L. Hennessy and David A. Patterson. “A New Golden Age for
Computer Architecture”. In: Communications of the ACM (2019).
url: doi.org/10.1145/3282307 (visited on 03/01/2020).

[6] Canalys. Canalys Smarthphone Analysis (sell-in shipments) January
2020. url: https://www.canalys.com/newsroom/canalys-global-
smartphone-market-q4-2019 (visited on 03/03/2020).

[7] Codasip. Extending RISC-V ISA with custom instruction set exten-
sion. url: https://codasip.com/2019/05/23/extending-risc-
v- isa- with- custom- instruction- set- extension/ (visited on
02/07/2020).

51

https://doi.org/https://doi.org/10.1109/wetice.2019.00046
https://doi.org/https://doi.org/10.1109/wetice.2019.00046
https://doi.org/https://doi.org/10.1109/mie.2017.2649104
https://doi.org/https://doi.org/10.1109/mie.2017.2649104
https://doi.org/https://doi.org/10.1109/mcom.2017.1600437cm
doi.org/10.1145/3282307
https://www.canalys.com/newsroom/canalys-global-smartphone-market-q4-2019
https://www.canalys.com/newsroom/canalys-global-smartphone-market-q4-2019
https://codasip.com/2019/05/23/extending-risc-v-isa-with-custom-instruction-set-extension/
https://codasip.com/2019/05/23/extending-risc-v-isa-with-custom-instruction-set-extension/

“output” — 2020/6/28 — 9:57 — page 52 — #68

52 REFERENCES

[8] 3GPP. GPP’s 38 specification series (2020, January 6), 3rd Gener-
ation Partnership Project (3GPP). url: https://www.3gpp.org/
dynareport/38-series.htm (visited on 04/17/2020).

[9] Erik Dahlman Stefan Parkvall Johan Sköld. 5G NR: The Next Genera-
tion Wireless Access Technology. Academic Press, 2018. isbn: 9780128143230.

[10] Michael Gschwind. “Instruction Set Selection for ASP Design”. In:
IBM Thomas J. Watson Research Center (1999). doi: https : / /
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=777382.
(Visited on 04/17/2020).

[11] Masaharu Imai Yoshinori Takeuchi Keishi Sakanushi Nagisa Ishiura.
“Advantage and Possibility of Application-domain Specific Instruction-
set Processor (ASIP)”. In: IPSJ Transactions on System LSI De-
sign Methodology 3 (2010), pp. 161–178. doi: https://ist.ksc.
kwansei.ac.jp/~ishiura/publications/J2010-08a.pdf. (Visited
on 05/14/2020).

[12] K. Keutzer S. Malik A.R.Newton. “From ASIC to ASIP: The Next
Design Discontinuity”. In: Proceedings of the 2002 IEEE International
Conference on Computer Design: VLSI in Computers and Processors
(2002). doi: shorturl.at/lqHQ1. (Visited on 03/12/2020).

[13] D.R. Graham. “Incremental Development: Review of Nonmonolithic
Life-Cycle Development Models”. In: ScienceDirect (1989). doi: https:
//www.sciencedirect.com/science/article/abs/pii/0950584989900499?
via\%3Dihub. (Visited on 04/10/2020).

[14] ARM. Arm Cortex-M Series Processors. 2020. url: https://developer.
arm.com/ip-products/processors/cortex-m/ (visited on 05/19/2020).

[15] ARM Official Website. Cortex-M33. 2020. url: https://developer.
arm.com/ip-products/processors/cortex-m/cortex-m7 (visited
on 05/19/2020).

[16] ARM Official Website. Cortex-M7. 2020. url: https://developer.
arm.com/ip-products/processors/cortex-m/cortex-m33 (visited
on 05/19/2020).

[17] GNU Tools for ARM Embedded Processors Version: 4.8. gcc-arm-
none-eabi. 2020. url: https://github.com/intel/CODK-A-X86/
tree/master/external/gcc-arm/share/doc/gcc-arm-none-eabi
(visited on 05/20/2020).

https://www.3gpp.org/dynareport/38-series.htm
https://www.3gpp.org/dynareport/38-series.htm
https://doi.org/https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=777382
https://doi.org/https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=777382
https://doi.org/https://ist.ksc.kwansei.ac.jp/~ishiura/publications/J2010-08a.pdf
https://doi.org/https://ist.ksc.kwansei.ac.jp/~ishiura/publications/J2010-08a.pdf
https://doi.org/shorturl.at/lqHQ1
https://doi.org/https://www.sciencedirect.com/science/article/abs/pii/0950584989900499?via\%3Dihub
https://doi.org/https://www.sciencedirect.com/science/article/abs/pii/0950584989900499?via\%3Dihub
https://doi.org/https://www.sciencedirect.com/science/article/abs/pii/0950584989900499?via\%3Dihub
https://developer.arm.com/ip-products/processors/cortex-m/
https://developer.arm.com/ip-products/processors/cortex-m/
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m33
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m33
https://github.com/intel/CODK-A-X86/tree/master/external/gcc-arm/share/doc/gcc-arm-none-eabi
https://github.com/intel/CODK-A-X86/tree/master/external/gcc-arm/share/doc/gcc-arm-none-eabi

	Introduction
	Motivation
	Purpose
	Constraints

	Background
	5G New-Radio
	Processing Architecture

	Method
	Design Guidelines
	Project Phases
	Incremental Development
	Workflow Example

	Processor Architecture
	Pipeline
	Memory Access
	Application Specific Registers
	Specialized Instructions

	Results and Discussion
	Comparison with ARM Microprocessors
	Code Size
	ASIP vs HAC

	Conclusions and Final Thoughts
	Conclusion
	Codasip Studio Review
	Final Thoughts

	
	RISC Instructions
	Application Specific Instructions
	Abbreviations

	References

