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Abstract

The goal of this master thesis has been to implement adaptive PI-control of two air
flow heaters in an air sterilization module. This is done by modeling the module and
using the information from the model to estimate the dynamics of the heaters.

The idea of this thesis is to implement adaptive control with as simple control
structures and tuning algorithms as possible, to keep it as generalized and accessible
as possible. This way it will be easier to apply the same framework to other com-
ponents. The implementation uses a range of models to express the thermodynamic
behaviour of two heaters interconnected by a heat exchanger and some piping with
heat losses. Using the models, a recursive least squares algorithm estimates the pa-
rameters of each heater, and finally the heaters are tuned using the lambda-method
and the AMIGO-method. The models are created both from physical models and
from non-physical models based purely on measurement data using the best avail-
able order.

The implementation was done using MATLAB Simulink from which the code
was then ported over to BECKHOFF TwinCat and integrated into the machine code.
Due to time constraints the implementation only got to the simulation stage in Twin-
Cat, but it showed promise and worked as expected. Simulations were also done
in Simulink using measurement data which also showed promise for a functional
framework.
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1
Introduction

This chapter will give some introductory information and relevant background in-
formation for this thesis.

1.1 About Tetra Pak

Tetra Pak has many business areas, but the main areas are processing and packaging
solutions for food. Every day Tetra Pak provides products that meet the needs of
hundreds of millions of people across the globe, with their vision "to make food
safe and available, everywhere" [Tetra Pak 2020].

The A1 packaging machine for TFA [Tetra Pak 2020] is developed and sold by
Tetra Pak. It uses aseptic technology to ensure safe packaging, and is the focus of
this thesis.

1.2 Background

Aseptic packaging
Aseptic packaging is the result of aseptic processing which is a process where ster-
ilized products are packaged in sterile packages under sterile conditions [Tetra Pak
2020]. Today it is the main commercial packaging technique for liquid foods such
as milk, juices and yoghurts and many other liquids.

The packaging material is sterilized by passing it through a bath of hydrogen
peroxide. The hydrogen peroxide is then removed through evaporation by passing
the material through a heating chamber with hot air. The product is sterilized by
quickly heating it up for a short duration before it is packaged. To keep everything
under sterile conditions the surrounding air and the air used in the heating chamber
must also be sterile. This is done by heating up the air to 360 degrees Celsius after
which it is considered sterile.
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Chapter 1. Introduction

Figure 1.1: Air sterilization system overview.

1.3 Problem description

In figure 1.1 the overview of the air sterilization system can be seen. The system
takes pressurized room temperature air T0 as input flow into the air pre heater. The
air then flows into the heat exchanger and out into the air super heater, where it is
heated to 360 degrees Celsius at the exhaust Tsh. The air then continues through the
evaporator and into the heat exchanger. The second output of the heat exchanger
then splits into different branches leading to different parts of the machine.

There are two temperatures that are being measured. The temperature of the
outlet of the super heater Tsh, which is being measured and controlled by the super
heater to be 360 degrees with a margin of ± 10 degrees. The second temperature
Tph is measured on one of the branches at the end of the system, and is being con-
trolled at different temperatures depending on the machine state. This temperature
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1.4 Goals and limitations

is controlled by the pre heater.
The heat exchanger is used as a form of regenerating heat energy. The tempera-

ture of the air only has to reach a peak of 360 degrees a short time to be considered
sterile. The final temperature at the end of the system lies in the range (85, 120)
degrees and as such the heat exchanger helps to both heat up and cool down the
air. The evaporator is only used when the machine is staging into production. Dur-
ing this time hydrogen peroxide is injected into the evaporator and will evaporate
because of the heat. This hydrogen peroxide vapor is then sprayed through the ma-
chine in order to sterilise the interior.

1.4 Goals and limitations

The purpose of this thesis is to investigate the possibility of implementing adaptive
control of the air sterilization sub system of the A1 packaging machine for TFA.
The aim of the adaptive control implementation is to increase the degree of au-
tomation of the A1 machine and will serve as an initial study of the possibility of
adaptive control in many other parts of the machine. To achieve this the work has
been divided into three sub-goals.

Goal 1: Modelling
Modelling of all components of the air sterilization system. This will include ma-
chine testing and different modelling approaches such as grey box modelling and
black box modelling.

Goal 2: Parameter estimation
Online parameter estimation based on input and output data. Model structure and
the number of parameters will be decided based on the result of the modelling.

Goal 3: Adaptive control
Finally an adaptive control law will be implemented with the use of the models and
their estimated parameters.

When the machine is staging into production there are some non linear be-
haviour occurring due to valves changing and the hydrogen peroxide spraying. This
causes major changes to the thermodynamic behaviour of the air and is not being
treated in this thesis. Instead the thesis is limited to dealing with the behaviour of
the machine during production.
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2
Modeling

The following chapter will cover the modeling of the system components. The esti-
mated model parameter values will be presented later in the Results chapter.

2.1 System overview

An overview of the air sterilization system can be seen in figure 2.1. The tempera-
ture designations in the image will designate the specific air flow, i.e. where in the
system it is, and the temperature at that point. The system consists of the following
components:

• Pre heater: The small heater that heats pressurized air T0 which is at room
temperature, using the applied power Pph. The outflow of air is T1.

• Heat exchanger: A counter flow heat exchanger with inflows T1 and T3, and
outflows T2 and T4.

Figure 2.1: Air heater concept model
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2.2 Heaters

Figure 2.2: Air heater concept model

• Super heater: The large heater with inflow T2, applied power Psh and outflow
Tsh

• Evaporator: The container in between Tsh and T3 is the evaporator which is
a passive component in regards to this thesis. However it still has an effect on
the temperatures as there is a lot of heat loss to the surrounding air.

Temperature measurements are given from Tsh and Tph. They are named as such
because the pre heater controller is using Tph as feedback and similarly the super
heater is controlled based on Tsh. A final thing to mention is the distance of the pipe
between T4 and Tph which is long enough to affect the temperature difference due
to heat losses.

With the goal of implementing an online parameter estimation of the heaters,
modelling has to be performed to be able to estimate the input and output signals
to the heaters. The following signals must be known: T0,Pph,T1 for the pre heater
and T2,Tsh,Psh for the super heater. By assuming that the model for the passive
components, i.e. the heat exchanger, the evaporator and the pipe between T4 and Tph
are time invariant, the few measurements in the system should be adequate.

2.2 Heaters

The pre heater and the super heater are both modeled as first order processes as in
figure 2.2. In the figure Tin stands for the inlet temperature, P stands for the applied
power, T stands for the air temperature inside the heater and Tout stands for the
outlet temperature. Some assumptions are made in this model. The first being that
the temperature of the air inside the heater is homogeneous. The second assumption
is that there is no energy loss from heat transfer to the surrounding air.

Starting with an equation for the heat energy of the internal air T gives:

E = mCp(T −Tre f ) = mCpT (2.1)

where E is the heat energy of the internal air, m is the mass of the internal air, Cp
is the specific heat capacity of the air and Tre f = 0 is a reference temperature in
Celsius to simply the expression.
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Chapter 2. Modeling

With this a heat balance equation can be set up as:

d
dt

E = winCpTin−woutCpTout + kP = wCpTin−wCpT + kP

where w is the mass flow of the air which is assumed to be the same for both the
inlet and the outlet, P is the applied power in percentage, k is a conversion parameter
from percentage to watts, and where it is also assumed that Tout = T . From equation
2.1 and with the assumption that the mass is constant, the following can be derived:

d
dt

E =
d
dt
(mCpT ) = mCp

d
dt

T

=⇒ d
dt

T =
w
m
(Tin−T )+

1
mCp

kP

This can be rewritten as a first order system with two inputs and one output:

d
dt

T =−w
m

T +
[

w
m

k
mCp

][Tin
P

]
And in discrete form it turns into:

T (t +h) = T (t)+h(−w
m

T (t)+
[

w
m

k
mCp

][Tin(t)
P(t)

]
)

= (1− hw
m

)T (t)+
[

hw
m

hk
mCp

][Tin(t)
P(t)

]
= aT (t)+

[
b1 b2

][Tin(t)
P(t)

]
(2.2)

where h is the sampling time and the parameters have been concatenated into three
parameters that express the dynamics of a general heater with two inputs and one
output. The model transfer functions can be seen in equation 2.3.

H(z−1) =
1

1−az−1

[
b1 b2

]
(2.3)

Worth noting here is that the first transfer function can be written as a standard
IIR low pass filter.

H1(z−1) =
hw
m

1− (1− hw
m )z−1

=
b1

1− (1−b1)z−1

Since there will be unmodelled nonlinearities and heat losses involved in reality,
it can be advantageous to have two different denominator polynomials. So the final
form of the transfer functions is given in equation 2.4

H(z−1) =
[

b1
1−a1z−1

b2
1−a2z−1

]
(2.4)
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2.3 Heat exchanger

2.3 Heat exchanger

Modeling of dynamic temperature profiles in a heat exchanger is quite complicated
and the result would likely be an overly complex model. For the purpose of this
thesis it was decided that estimating four transfer functions using black-box model-
ing with data from machine testing is the best course of action. As such the model
order and structure is chosen based on trial and error in search for the best transfer
functions. The resulting transfer functions are shown later in the results.

2.4 Evaporator and pipes

The evaporator will be modeled as a standard discrete low pass filter with some
static attenuation. There will also be a temperature difference between T4 and Tph
in figure 2.1, which is the result of heat loss. So this will also be modeled as a low
pass filter with static attenuation.
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3
Parameter Estimation

This chapter will go over the theory of the online parameter estimation and how it
is implemented.

3.1 Least squares estimation

A simple way of estimating parameters is a linear regression method such as least
squares estimation [Johansson, 2019]. The equation is seen in 3.1

θ̂ = (ΦT
NΦN)

−1
Φ

T
NYN (3.1)

where θ̂ is the parameter estimation vector, ΦN is the regressor matrix and YN is
the output vector. This method is good for offline parameter estimation with mea-
surement data. However for online estimation a recursive version i recommended
as large matrix algebra is inefficient to perform for each iteration.

3.2 Recursive least squares estimation

The recursive equivalent of equation 3.1 with a forgetting factor is the recursive
least squares (RLS) algorithm [Johansson, 2019] in 3.2

θ̂k = θ̂k−1 +Pkφkεk

εk = yk−φ
T
k θ̂k−1

Pk =
1
λ
(Pk−1−

Pk−1φkφ T
k Pk−1

λ +φ T
k Pk−1φk

) (3.2)

where indexing shows iteration, ε is the estimation error, P is a parameter covariance
estimate, φ is the regressor vector and λ is a forgetting factor which is chosen
offline.
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3.3 Implementation

Things to note are that P0 and θ0 are chosen offline, and the significance of the
forgetting factor λ . The purpose of the RLS is to track time varying parameters,
so it is reasonable to care more about recent measurements than old measurements.
By using the forgetting factor the algorithm will put more emphasis on more recent
measurements, where a rough estimate of the amount of data points that are used
can be calculated in equation 3.3

1
1−λ

(3.3)

3.3 Implementation

The purpose of the RLS is to estimate the parameters of the two heaters in the
system. The idea being that over time the heaters might be affected by degrading
efficiency or applied power to the heater might change. This could either slow it
down or make it faster. The models for the heaters 2.4 have been repeated below
for convenience. Since H1 only describes the effect that the inlet temperature has
on the outlet, it is reasonable to assume that the first transfer function will stay
constant over time. It can also be argued that the pole of H2 should stay constant
through time, since the system dynamics should not change, only the efficiency of
the system. With this in mind the model can be separated into two as in equation
3.4

H(z−1) =
1

1−az−1

[
b1 b2

]
(2.4)

H(z−1) = H1(z−1)+H2(z−1)

H1(z−1) =
b1

1−a1z−1

H2(z−1) =
b2

1−a2z−1 (3.4)

By separating them the output can also be separated into two outputs

Yout = Y1 +Y2

Y1 =
b1

1−a1z−1 Tin

Y2 =
b2

1−a2z−1 U

With H1 and Tin known Yout1 can be calculated. And with that the system can be
rewritten on linear regression form as in equation 3.5
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Chapter 3. Parameter Estimation

Y2 = Yout −
b1

1−a1z−1 Tin

Y2 =
b2

1−a2z−1 U

Y k
2 −a2Y k−1

2 =Ukb2

= yk = φkθ (3.5)

So in the end the parameter estimation can get away with just estimating one pa-
rameter for each heater. This is desirable as less parameters means better estimation
of each parameter.
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4
Controller design

This chapter will look at the controller design and the tuning methods used.

4.1 Control

The current control of the two heaters is implemented as two PI-controllers. Given
the slow nature of the system, which will be more apparent later, it is reasonable to
keep such a simple control design. As such the adaptive control will be a problem
of optimizing PI-controllers based on estimated system parameters. The method
for choosing the control parameters will be based on the lambda-method and the
AMIGO-method. These are two different methods for choosing a PI-controller for
a given system based on a step-response test. However they can also be used for a
system with a known model.

Lambda-method
In a general case the lambda-method is used to tune a PI or PID-controller based
on a step-response test of the system. This test will give the static gain Kp, the time
delay L and the time constant T of a first-order representation of the system. With
a known model of the system these variables can all be calculated instead and be
used in the lambda-equation for a PI-controller 4.1 [Hägglund, 2017].

K =
1

Kp

T
L+λ

Ti = T (4.1)

In this equation K is the proportional gain and Ti is the integration time of the
controller. It is up to the user to define λ but common practise is to choose it as
λ = T , which will result in a closed loop system with about the same time constant
as the process.
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Chapter 4. Controller design

AMIGO-method
Like the lambda-method, the AMIGO-method is also based on a step-response test
where Kp, L and T are given. The difference is that there is no user defined variable,
instead the control is chosen based solely on the AMIGO-equation 4.2 [Åström and
Hägglund, 2006].

K =
0.15
Kp

+(0.35− LT
(L+T )2 )

T
KpL

Ti = 0.35L+
13LT 2

T 2 +12LT +7L2 (4.2)

Robustness
Both the lambda-method and the AMIGO-method should ensure a stable closed
loop system given that the parameter estimator can properly estimate the parame-
ters. However to ensure stability of the closed loop system the proportional gain K
will be saturated with both an upper and a lower limit. This will also handle initial
transients from the parameter estimator. Note that with constant denominators of
the heaters and a constant time delay, the integration time of the controllers will
remain constant. Only the proportional gain will vary over time so there is no need
to limit Ti.

First-order approximation
The above tuning methods assume a system model with first-order characteristics
with no zeros. To approximate a higher order system as first-order system a general
rule of thumb is to sum all the time constants of the poles and subtract all the time
constants of the zeros. The time delay and the static gain stays the same.
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5
Implementation

This chapter will look at the implementation of the thesis.

5.1 Simulink

The simulations in MATLAB were done using Simulink where the final simulation
model can be seen below in figure 5.1.

The actual implementation is the three subsystems to the bottom left. They are
called upon in order starting with the Temperature estimator, followed by the Pa-
rameter estimator and lastly the Adaptive control tuning. The Controller sub-
system consists of two controllers for the two heaters and the Sterilization system
contains all the models made for the whole system.

Temperature estimator
The temperature estimator takes the two measured temperatures Tph and Tsh and
estimates the temperatures T1 and T2. It also has T0, Uph and Ush as inputs to syn-
chronize the iterations after the estimations.

Estimation of T1 The first step is to estimate T4 and T3 by using the model for the
evaporator and the inverse model of the pipes. After that T1 can be estimated using
equation 5.1.

T̂4(k) =
1

pipe(z)
Tph(k)

T̂3(k) = evaporator(z)Tsh(k)

T4(k) = G21(z)T1(k)+G22(z)T3(k)

⇔T̂1(k) =
1

G21(z)
(T̂4(k)−G22(z)T̂3(k)) (5.1)
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Chapter 5. Implementation

Figure 5.1: Full simulink simulation model
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5.2 TwinCat

Estimation of T2 With T1 and T3 known the estimation of T2 is done as in equation
5.2

T̂2(k) = G11(z)T̂1(k)+G12(z)T̂3(k) (5.2)

It can be noted that non-causality and time delays are no issues here as these
calculations can be done some iterations later. The end result is to update the adap-
tive control which can handle some delayed calculations. However some focus has
to be put on making sure that all the output values are of the same iteration so some
delays will also have to be added.

Parameter estimation
The Parameter estimator now has access to all inputs and outputs of both the
heaters. By running two RLS algorithms in parallel with the adjustments that were
described in chapter 3, the numerator of both the heaters are estimated. In figure
5.1 the output also includes the denominators in case they would be adjusted to also
estimate these. However for the moment these are simply constants.

Adaptive control tuning
Lastly the Adaptive control tuning is run using the estimated heater models. For
the super heater this is straight forward as the transfer function from Ush to Tsh is
only the heater model. For the pre heater it is slightly more tricky as the transfer
function from Uph to Tph also includes the heat exchanger, the pipes and the evap-
orator. Since the system contains feedback and the transfer functions contains time
delays a proper transfer function cannot be derived for the full system. Instead a
transfer function from T1 to Tph can be approximated and then used instead when
computing the control parameters.

In figure 5.2 an overview of how Uph affects Tph can be seen. To tune the pre
heater using one of the methods require that this whole system is approximated as a
first order system. The input signals T0 and Ush can be seen as disturbances so they
can be discarded in this case. By rewriting figure 5.2 to figure 5.3 and estimating a
transfer function for H we have a system that can be used for the tuning of the pre
heater.

5.2 TwinCat

The implementation in Beckhoff TwinCat is essentially exactly the same as in
simulink. Using the PLC Code Generator in Simulink the above three subsystems
were ported over to TwinCat where they are called upon in the same manner as in
Simulink.
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Chapter 5. Implementation

Figure 5.2: Model overview for the pre heater.

Figure 5.3: Simplified overview for the pre heater.
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6
Results

This chapter will cover the result of this thesis.

6.1 Modeling

During the modeling of the system some issues arose regarding the simplicity of
the models. Since none of the models take the surrounding room temperature into
consideration, it can be said that they are essentially linearized around the room
temperature of the model estimation data. This became apparent when the same
models were used with new measurement data from about one month after the initial
modelling was done.

In this section the model output for all the models will be compared to the mea-
surement data for both the first and the second measurements. All the components
will be tested individually, meaning that they will use measurement data as inputs
and the output will be compared to the measurement data output. During the sec-
ond measurements there is a setpoint change at around t = 1750 s. The models
are linearized around the second setpoint, which is the setpoint that is kept during
production. This is why the modeling generally performs better after the change.
However due to the difference in room temperature they tend to have some static
deviation from the measurements. Before this setpoint change there are some steps
taken in the machine that affect air flow and other things that affect the system,
which is why there are some spikes and other weird behaviour going on.

Pre heater
The final pre heater model was estimated as 6.1 where both the discrete and the
continuous transfer functions are shown.

Hph(z−1) =
[

0.02748
1−0.9725z−1 z−2 0.05145

1−0.9725z−1

]
Gph(s) =

[ 0.02748s+0.1393
s+0.1393 e−0.4s 0.05145s+0.2608

s+0.1393

]
(6.1)
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Chapter 6. Results

with the sampling time h = 0.2 and with the inputs T0 and Uph. The time varying
parameter is expected to be the second discrete numerator b2ph = 0.05145. In fig-
ure 6.1 the model output is compared to the measurement data in simulink. From
this comparison it is quite clear that the model seems to cover the dynamics of the
heater quite well and should be sufficient. It is also very apparent from the setpoint
change that the model is quite heavily linearized around the heat losses of the sec-
ond setpoint. After the setpoint change the static offset is likely because the second
measurements were taken one month later during the spring, where the room tem-
perature could very well be higher which would result in this kind of behaviour.
This would not only affect the heat losses to the surrounding air, but also the inflow
of air to the pre heater which is room temperature. So the reason for the static offset
is most likely because of the room temperature.

Super heater
The final super heater model was estimated as 6.2

Hsh(z−1) =
[

0.0005
1−0.9995z−1 z−40 0.001672

1−0.9993z−1

]
Gsh(s) =

[ 0.0005s+0.002501
s+0.002501 e−8s 0.001672s+0.008363

s+0.00336

]
(6.2)

with the sampling time h = 0.2 and with the inputs T2 and Ush. The time varying
parameter is expected to be the second discrete numerator b2sh = 0.001672. In figure
6.2 the model output is compared to the measurement data in simulink. This model
is not quite as good as the pre heater model even for the first measurements, which
is likely because the super heater is quite large. During the modeling there was quite
a large payoff between simplicity and performance. Since a RLS is going to try to
estimate the parameters it was decided that a simple model was the best approach.
However the simplified model that assumes homogeneous temperature inside the
heater probably fails here. As with the pre heater there seems to be a static offset
that is slightly below the data in the end of the second measurements, which again
is probably because of room temperature difference and heat losses associated with
it.

Heat exchanger
The final heat exchanger model was estimated to eq. 6.3
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6.1 Modeling

(a)

(b)

Figure 6.1: Pre heater model output using: (a) the first measurement data, and (b) the
second measurement data. The red graph is the model output and the black graph is
the measurement output. The x-axis is in seconds.
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Chapter 6. Results

(a)

(b)

Figure 6.2: Super heater model output using: (a) the first measurement data, and
(b) the second measurement data. The red graph is the model output and the black
graph is the measurement output. The x-axis is in seconds.
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6.1 Modeling

H11he(z−1) = z−2−0.003102+0.006345z−1−0.003242z−2

1−1.994z−1 +0.9942z−1

H21he(z−1) = z−1 0.01466+0.005184z−1−0.007031z−2

1−1.724z−1 +0.7274z−2−0.001071z−3

H12he(z−1) = z−2 0.004195−0.004782z−1 +0.0005879z−2

1−1.994z−1−0.9942z−2

H22he(z−1) = z−1 0.02728−0.05867z−1 +0.03173z−2

1−1.724z−1 +0.7274z−2−0.001071z−3

Hhe(z−1) =

[
H11he(z−1) H12he(z−1)
H21he(z−1) H22he(z−1)

]
(6.3)

with the sampling time h = 0.004 s. In figure 6.3 the model output is compared to
the measurement data in simulink. The higher frequency of the measurement data in
6.3 (a) is currently unexplained and has not shown up again since, so it is likely not
a phenomenon to consider important. Besides that it looks like the model is working
better for T4 than for T2, but the static gain is still almost the same and with the slow
dynamical nature of T2, it should be fine. What is interesting here is that there is
a positive static offset for T4 (d) instead of a negative offset for the earlier models.
This is quite surprising since the heat exchanger in the machine is not thermally
isolated and gives off quite a lot of heat energy to the surrounding air. This has not
been understood as of yet.

Evaporator and pipes
The transfer functions for the Evaporator and the Pipes are given in equation 6.4

HEvaporator(z−1) =
0.000035705

1−0.999958z−1

HPipes(z−1) =
0.2801−0.2797z−1

1−0.9995z−1 (6.4)

where the sampling time is h = 0.004. Note here that the transfer function for the
Pipes is a low-pass filter with finite attenuation for infinite frequency. However when
looking at the bode plot in figure 6.4 it still attenuates higher frequencies.

In figures 6.5 and 6.6 the model outputs are compared to the measurement data
in simulink. The disturbance frequency in fig 6.5 (a) can again be ignored.

Full system
With everything put together the full system can be simulated and compared to
measurement data. In figure 6.7 the measurement of Tph can be seen. For the first
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(a) T2 (b) T4

(c) T2 (d) T4

Figure 6.3: Heat exhanger model output using: (a) and (b) the first measurement
data, and (c) and (d) the second measurement data. The red graph is the model
output and the black graph is the measurement output. The x-axis is in seconds.

measurements it cannot quite follow the behaviour of the data but the gain is still
very close, so the modeling could not be much better realistically. For the second
measurements the behaviour looks similar to the behaviour of the pre heater, which
makes sense. The positive offset can be explained by the large overshoot of the
super heater, which can be seen in figure 6.8 (b). This temperature feeds back into
the heat exchanger through the evaporator. The overshoot itself is because of the
unmodeled behaviour of the system when air flows and other things affect it before
it goes into production. There is unfortunately not enough data to see if figure 6.8
(b) will converge to the measurements, but since figure 6.2 (b) is close it should be
somewhat close at least. In figure 6.8 (a) there is some manual setpoint changes to
the system to see how the super heater reacts with more excitation. While it seems
to handle it fairly well it looks like the time delay is a bit off. However it should not
matter in the end as the setpoint for the super heater is always set to 360 degrees, so
it should not be particularly excited under normal circumstances.
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(a)

Figure 6.4: Bode plot for the transfer function of the pipes

Temperature estimator
The end result of the modeling is the temperature estimator that estimates T1 and
T2. In figures 6.9 and 6.10 these estimates can be seen compared to measurement
data. The estimate T̂1 seems to be working very well and with only a slight static
offset in the end in figure 6.9 (b). The estimate T̂2 is not quite as good, however
when keeping in mind that T2 changes very slowly and that the static gain is still
close, it should be good enough. Note also that in 6.10 (a) there are some initial
conditions that are causing some issues with the plot. For some reason MATLAB
had a difficult time trying to estimate these conditions.

6.2 Parameter Estimation

In this section the parameter estimation results will be covered. Both of the RLS
estimators are run with the sample time h = 0.2 seconds so they will estimate the
same parameters as in equations 6.1 and 6.2.

Pre Heater
For the pre heater the RLS is run with Pinit = 1000,λ = 0.999. With this λ the RLS
will be very slow to pick up changes in the parameters which is fine for this system.
There is nothing that depends on fast changes to the system so for that reason the
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(a)

(b)

Figure 6.5: Evaporator model output using: (a) the first measurement data, and (b)
the second measurement data. The red graph is the model output and the black graph
is the measurement output. The x-axis is in seconds.
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(a)

(b)

Figure 6.6: Pipes model output using: (a) the first measurement data, and (b) the
second measurement data. The red graph is the model output and the black graph is
the measurement output. The x-axis is in seconds.

33



Chapter 6. Results

(a)

(b)

Figure 6.7: Full system model output Tph using: (a) the first measurement data, and
(b) the second measurement data. The red graph is the model temperature and the
black graph is the measurement output. The x-axis is in seconds.
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(a)

(b)

Figure 6.8: Full system model output Tsh using: (a) the first measurement data, and
(b) the second measurement data. The red graph is the model temperature and the
black graph is the measurement output. The x-axis is in seconds.
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(a)

(b)

Figure 6.9: Temperature estimator output T̂1 using: (a) the first measurement data,
and (b) the second measurement data. The red graph is the estimated temperature
and the black graph is the measurement output. The x-axis is in seconds.
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(a)

(b)

Figure 6.10: Temperature estimator output T̂2 using: (a) the first measurement data,
and (b) the second measurement data. The red graph is the estimated temperature
and the black graph is the measurement output. The x-axis is in seconds.
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slower the better, as the slow estimation should give better estimates. In figure 6.11
it is run with measurement data as input. It is not surprising that the estimate is way
off at the beginning in (b) compared to the offline model, as the system is not in
the linear region of the model. The offset in the end is again likely because of room
temperature difference. It can be interpreted as the gain of the system with some
scaling done by the denominator of the transfer function. So what it estimates is a
system with a higher gain than the offline model. This makes sense as with a higher
room temperature the system does not suffer as much heat loss, which means that it
can input less effect to get the same result. So it is the same as having a higher gain.

Super Heater
For the Super heater the RLS is run with Pinit = 1000,λ = 0.999. The same reason-
ing regarding the value of λ is done here as for the pre heater. In figure 6.12 it is
run with measurement data as input. It seems to converge to a value slightly higher
than the offline model, which again makes sense. It does however seem to be quite
sensitive to noise.

6.3 Control tuning

This section will look at the control tuning of the two controllers. To begin with the
simplified model estimation for the pre heater will be shown. Then the two methods
will be shown in an offline tuning followed up by an online tuning.

Pre heater approximation
In figure 6.13 the approximation of H in figure 5.3 is shown, along with equation 6.5
for the continuous transfer function. The step responses look very similar and should
be good enough. However the bode diagram is giving some more information about
the static gain. The behaviour is the result of a system with a mix of both fast and
very slow poles where there is a magnitude difference of up to 4. It was decided that
this approximation was good enough, however more time could have been spent on
a better approximation.

Happroximation(s) = e−0.8s 0.97
25s+1

(6.5)

Offline control tuning
An initial assessment of the viability of the methods can be gained from looking at
the tuning offline first.

The first order parameters for the two heaters are given in table 6.1, using the
rule of thumb for the approximation of the time constant. In table 6.2 the offline PI-
control parameters are calculated using the model parameters in table 6.1. In figure
6.14 the step response of the closed loop system can be seen with these controllers.
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(a)

(b)

Figure 6.11: Parameter estimator estimate of b1ph using: (a) the first measurement
data, and (b) the second measurement data. The red graph is the estimated parameter
and the black graph is the offline estimate. The x-axis is in seconds.
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(a)

(b)

Figure 6.12: Parameter estimator estimate of b1sh using: (a) the first measurement
data, and (b) the second measurement data. The red graph is the estimated parameter
and the black graph is the offline estimate. The x-axis is in seconds.
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(a)

(b)

Figure 6.13: Approximation of the system following the pre heater. The approxima-
tion in orange and the modelled system in blue.
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Model parameters
pre heater super heater

Kp 1.82 2.49
L 1.2 8
T 32.18 297

Table 6.1: Model parameters for the first order approximation of the heaters.

Control parameters
pre heater super heater

K Ti K Ti
Current 14 40 3 50
Lambda-method 0.53 31.98 0.3912 297.42
AMIGO-method 4.707 11.12 4.907 81.39

Table 6.2: Control parameters for the offline tuning of the PI-controllers using the
lambda-method and the AMIGO-method. The current control parameters in the ma-
chine are also included.

Looking first at the current control of the pre heater it is clear that there are some
oscillations caused by an aggressive control. The lambda-method avoids this but is
considerably slower. There is also some overshoot for the lambda control, however
this is because the super heater can be seen as a ramp-like disturbance on the system,
which is difficult for a PI-controller to handle. Finally the AMIGO-method seems to
be even more aggressive than the current control which results in heavy oscillations.
The reason for this is described in [Åström and Hägglund, 2006], which states that
the ratio of the dead time and the time constant for the pre heater is difficult to
handle for the AMIGO-method.

For the super heater the current control has a very slight overshoot and behaves
very similar to the AMIGO-method that has zero overshoot. The lambda-method
however has an extreme overshoot and the control is much too slow for the system.
This is because the system has a very large time constant and the lambda-method
used here is using λ = Ti. There are better ways of choosing the value for λ in
this case, but since the AMIGO-method looks good and the lambda-method is best
for the pre heater it was decided to proceed with the AMIGO-method for the super
heater.

Online control tuning
The online control tuning using measurement data can be seen in figure 6.15 using
the second measurements. Since the inputs to the control tuner are the estimated
parameters in figures 6.11 and 6.12, they are repeated in 6.15. It looks like the pro-
portional gain is in some sense mirrored by the parameter estimates around the of-
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(a)

(b)

Figure 6.14: Step response for the tuning of the pre heater (a) and super heater (b).
In the figures the red graph is the current control in the machine, the black graph
is the lambda tuning and the yellow graph is the AMIGO tuning. The x-axis is in
seconds.
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fline parameters of the models and the controllers. This makes sense since a smaller
estimated model parameter would in this case give a lower model gain, which a con-
troller would want to make up for by increasing the proportional gain. Notice also
that the initial transient of the pre heater causes the proportional gain to saturate at
2, which is the saturation limit given to the controller to ensure reasonable control
parameters. The integral gain of the controllers have the same appearance as the
proportional gain except for some scaling. In another application with time varying
time constants these could also be estimated which would cause more variations in
the integral time of the controllers. But in this case, since the time constants are
constant, the integral time is also constant.

6.4 Simulations in Simulink

Finally with the full system implemented in Simulink the end result can be seen in
figure 6.16. The parameter estimation converges nicely after the parameter change
but the noise affects the estimation and the tuning quite heavily, given that the noise
itself is rather small. However the applied noise is still much more severe than what
is realistically encountered in the real machine.

6.5 Simulations in TwinCat

After porting over the simulink code to TwinCat a similar simulation was done using
the simulation environment with the actual code for the machine. In figure 6.17 the
result of this simulation can be seen for each of the heaters.
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(a) ph.NUM (b) sh.NUM

(c) Pph (d) Psh

(e) Iph (f) Ish

Figure 6.15: Online control tuning for the pre heater (left) and for the super heater
(right). The red graphs are the online control parameters and the black graphs are the
offline control parameters. Note that P stands for the proportional gain and I = P/Ti
for the integral gain. The x-axis is in seconds.
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(a) Tph (b) Tsh

(c) ph.NUM (d) sh.NUM

(e) Pph (f) Psh

(g) Iph (h) Ish

Figure 6.16: Online control tuning for the pre heater (left) and the super heater
(right). At t = 400 the efficiency of the pre heater is reduced by 0.2 and at t = 600
the efficiency of the super heater is increased by 0.2. Measurement noise is added
at t = 1000 and t = 1400. The x-axis is in seconds.
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Figure 6.17: Online control tuning for the pre heater (left) and the super heater
(right) in TwinCat. The efficiency of the heaters are changed at t = 1200, 1700 and
1900. The x-axis is in seconds.
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7
Discussion

This chapter will cover the discussion of the results of this thesis.

Due to time constraints the implementation was unfortunately never used on
an actual machine. However looking at the modeling it looks promising in the lin-
earized area so it would not be too surprising if it ended up working in the end.
Everything seems to be converging to their expected values in terms of model tem-
peratures, parameter estimates and control parameters. However the noise sensitiv-
ity in figure 6.16 is a bit worrisome especially for the super heater. The noise is
barely visible and still the estimation is very noisy. For this specific process this is
likely not an issue given how noise free the measurements are. However for a dif-
ferent process where noise is an issue this might be concerning. Based on the nature
of the time variance of the system dynamics it should not be an issue to low-pass
filter either the measurements or the parameter estimates such that the time variance
is below the break frequency of the filter. In the case of the system in this thesis it
would be a valid approach as any changes to the system would happen very slowly.
When looking at the TwinCat implementation the system seems to perform about
the same, however there is some unexpected frequency showing up in the parameter
estimate of the super heater that is currently unexplained.

For this system the robustness was ensured by setting saturation limits on the
proportional gain to keep the controller within a stable region. These limits were
chosen somewhat arbitrary mostly because this system is robust enough to essen-
tially never become unstable. For a less robust system more thought could go into
these limits. The limits can also serve another purpose, where it would be easy to
implement some kind of alarm that triggers if the control parameters are saturated
for too long. This could show that the component might be damaged. Of course
more intelligent predictive maintenance algorithms can be used in conjunction with
the parameter estimates.

Improvements and further work
There are plenty of potential improvements and further work that can be done. The
modeling could have been improved by taking the room temperature into consider-
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ation. There are two ways of going about this which would both require the addition
of a new temperature sensor for the room temperature. One way to do this would
be to simply remake the models with an additional input being the room tempera-
ture. This might not be so easy as adding another input into the models increases
the complexity. The second way would instead be to use a "lookup table" of lin-
earized models for different room temperatures. These models would essentially be
the same as the models that were developed in this thesis but with different gains
to compensate for smaller or larger heat losses. The issue with both of these im-
provements is that they require testing using different room temperatures which is
cumbersome. Either the machine would have to be put in some kind of heating
chamber, or data would have to be gathered from different parts of the world where
there are different temperatures.

Another thing that might need to be looked at is the implementation of the pa-
rameter estimators. Currently they are run constantly which might cause a problem.
If there is not enough excitation on the system the RLS algorithm will try to estimate
the system based on constant signals, which may result in undesirable behaviour. A
better way could be to try to estimate the covariance of the signals and only run the
RLS when there is sufficient excitation. Another way would be to every once in a
while run the RLS along with some added virtual noise to the heaters to get excita-
tion into the system. What approach to use depends on the system. In this case there
will likely never be enough excitation once it has entered production and converged
to the more or less stationary values. So in this case some added noise to the control
output might be necessary.

The use of the lambda-method in the adaptive tuning can also be improved.
Currently the method is using λ = Ti, however by choosing another value of λ the
performance can be improved. A better value for λ was not developed as the main
focus of this thesis was more so on investigating the viability of the framework,
than it was to optimize it. Finding other tuning methods to expand the toolbox of
the framework is also another way to potentially improve the result, but again this
was not done as the provided methods were enough for this thesis.

A way of reducing the amount of work needed to implement this system would
be to add additional temperature sensors into the system. If measurements for T1 and
T2 were available, the temperature estimator could have been removed completely
from the implementation, leaving only the parameter estimator and the control tuner.
This would also yield more reliable measurements, but of course it would be at a
higher expense.

The implementation should have no problem dealing with a PID-controller in-
stead of a PI-controller as long as there is a PID tuning method available, which
both the AMIGO-method and the lambda-method has variations of.
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8
Conclusion

This thesis investigated and provided a framework for how a simple automatic PI-
control tuning can be done, using an air sterilization module as an example. Using
modeling, parameter estimation and tuning methods such as the lambda-method
and the AMIGO-method, the PI-control can adapt to time varying system changes.
While a final conclusion on the viability of the framework cannot be made the re-
sults are promising.

There are many improvements that can be done, different tuning methods to use,
and practical improvements depending on the process. More details of suggested
improvements can be seen in the discussion chapter.
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