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Abstract

This thesis studies a network game of heterogeneous and asymmetric public goods.
Players allocate their wealth between private and public goods, benefiting from the
public goods provisioned by their out-neighbors on the network graph. Utilities
are given by a Cobb-Douglas function to capture substitutability and decreasing
marginal returns. I prove that the game is well-behaved under a condition relating a
simple network characteristic – the spectral radius – to the preferences of the play-
ers. Under this assumption, the best response dynamic is guaranteed to converge,
and the equilibrium strategy is unique. Equilibrium public good contributions are
then linear in the wealth of others contributors. Next, the game is studied through a
normative lens. I show that equilibrium outcomes, as a rule, are inefficient with re-
gards to important welfare metrics. Three mechanisms on the game are formalized,
drawing on the economic literature of public goods: taxes & subsidies, enforceable
contracts, and redistribution. For each mechanism, the scope of attainable welfare
improvements is characterized and design considerations discussed.
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1
Introduction

Individuals and organizations commonly purchase goods whose benefits are shared
with others. When a firm provides training for its employees, benefits accrue not
only to the firm itself, but to the employees and their future employers. If a family
renovate their façade, they provide a nicer view for their neighbors. This class of
goods, characterized by the inability of the funder to restrict benefits to others, are
referred to as public goods. In economics, public good situations are go-to exam-
ples of how individually rational action may lead to outcomes that are collectively
irrational; when agents disregard the benefits that their actions confer on others, the
resulting outcomes are suboptimal not only for the group as an entity, but for each
individual agent. A large number of interventions have been put forward to allevi-
ate this failure of cooperation, often based on rewarding agents that take action to
benefit others, or creating structures for enforceable agreements.

Network modeling has been proposed as a tool to understand public goods
whose benefits are local to some social or geographical environment. Bramoullé
and Kranton (2007) study a game where players exert some costly effort, and ben-
efit from all effort exerted in their neighborhood. They find that equilibrium out-
comes can be either specialized, with only a subset of players exerting effort, or
distributed, with some level of effort-sharing by all players. Allouch (2015) models
consumers choosing to allocate their income between private and public goods. He
proves uniqueness of equilibrium under an assumption relating the network struc-
ture to the preferences of the players, and explores how income redistribution affects
the amount of public goods provisioned. Elliott and Golub (2019) study the out-
comes of a generalized public goods game normatively, and find that the spectral
radius of a certain benefit matrix uniquely characterizes Pareto-efficient outcomes.

In many real world situations, flows of externalities between agents are messy.
Firstly, effects are heterogeneous – some action might greatly benefit one agent,
leave another indifferent, and hurt a third. Secondly, pairwise relations are often
asymmetrical – the actions of agent A may benefit agent B, even if the actions of B
have no impact on A. These differences in the degree and reciprocity of externalities
have rarely been captured in the existing literature of public goods on networks.
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Chapter 1. Introduction

In this thesis, I consider a game of heterogeneous and asymmetric externalities.
Individuals are connected in a directed network, and choose to allocate their wealth
between private goods consumption and public goods provision. Players that pro-
vide public goods confer benefits heterogeneously among their out-neighbors in the
network. The preferences of each player are described by a Cobb-Douglas utility
function, where the public goods provisioned in a player’s neighborhood is a sub-
stitute for her own provision.

Firstly, the thesis describes equilibrium outcomes of the game. Depending on
their wealth and placement in the network, some players find it rational to provide
public goods while others free-ride entirely on the contributions of their neighbors.
I show that under an assumption relating the spectral radius of the network graph to
the preferences of the players, the existence of a unique Nash equilibrium is guar-
anteed. In addition, the best response dynamic of the game will always converge
to this strategy. I then characterize public goods contributions in this equilibrium
by exploiting a well-known relationship between the inverse of a matrix and a geo-
metric series. This interpretation shows that the network game can be equivalently
described as an infinite number of pairwise games of substitutes and complements
between neighbors and non-neighbors alike.

Secondly, I examine three possible alterations to the game formulation and their
effects on various welfare metrics. The first intervention, taxes & subsidies, aims
to increase the public goods provision of particularly central individuals by altering
the relative prices that they face between private and public goods. I find a set of
individualized taxes and subsidies for which the equilibrium outcome is socially op-
timal in a utilitarian sense. Next, I explore enforceable contracts: agreements where
individuals voluntarily commit to providing more public goods than what is indi-
vidually rational, as long as their neighbors reciprocate this sacrifice. I characterize
a sufficient criterion for the existence of such contracts, and describe the shape of a
contract that is optimal in a weak sense. Lastly, I relax the assumption of wealth as
exogenous, and consider the effects of redistribution on aggregate welfare. I show
that the problem of finding a socially optimal wealth distribution is locally concave,
and propose a simple algorithm to find such a distribution.

The rest of the thesis is structured as follows. Section 2 provides a technical
background of network modeling, game theory and network games. Section 3 gives
an overview of previously proposed network models of public goods. Section 4
presents the game studied in this thesis, derives the individually rational behav-
ior of players, and characterizes the structure of equilibrium outcomes. Section 5
introduces measures of welfare efficiency, briefly discusses the welfare levels of
equilibrium outcomes, and presents three mechanisms to improve welfare outcomes
compared to the base game. Section 6 summarizes findings and discusses avenues
for future research. Proofs and derivations are presented in the appendix.
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2
Technical background

This section introduces the basic concepts of network modeling, game theory, and
networks games, and presents some of the notation and definitions that will be used
throughout the thesis. Readers that are familiar with these areas of study may prefer
to skip ahead.

2.1 On network modeling

A network model is a mathematical model aimed to describe and analyze a system
of interacting entities. For example, a network model might be used to understand
how a pandemic spreads between individuals in a population, how internet users
navigate between the pages of a website, or how goods are traded between countries.
The variety of problems that can be meaningfully fit into this framework has made
network models popular across both natural and social sciences.

The mathematical structure defining a network model is a graph. Formally, we
define a graph G as a tuple (N ,E ,G), where:

• N is a finite set of nodes,

• E ⊆ N ×N is a set of links, where e = (i, j) ∈ E indicates the existence of a
link from node i to node j, and

• G ∈ RN×N
+ is a matrix describing the intensities, or weights, of each link.

The set of nodes N represents the entities of the network model. Depending on
the purpose of the model, the entities may represent agents with preferences (such
as consumers or companies), objects (such as cities or websites) or more abstract
concepts (such as the outcomes of stochastic processes).

The nodes are pairwise connected by a set of links E , where a link from a node
i to a node j represents some way in which i is connected to j. If nodes represent
cities, a link e = (i, j) may signify that there exists a road from i to j; if nodes
represent users of some social medium, the link may indicate that i follows j.

9



2.1 On network modeling
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Figure 2.1 A directed, weighted graph of six nodes. Each link (i, j) is represented
by an arrow from i to j, labeled with the value of Gij.

Lastly, we may want to attach different weights to different links, representing
the intensity of the interactions. These weights will be represented by a matrix G,
where Gij > 0 if and only if (i, j) ∈ E . As is conventional, we will assume that links
are necessarily between distinct nodes, i.e., (i, i) will not be a link for any node i.

I will now introduce a few definitions that will be used in this thesis.
A graph G is undirected if and only if, for every pair of nodes i and j, Gij = G ji.
A graph G is unweighted if and only if, for every pair of nodes i and j, Gij ∈

{0,1}.
A node i is reachable from a node j 6= i if and only if there exists a sequence of

nodes S = (s1 = j,s2, ... ,sk = i) such that (sh,sh+1) ∈ E for all h = 1, ...,k−1.
A graph G is strongly connected if and only if every node is reachable from

every other node. This is the case exactly when G is irreducible.
A node j is an out-neighbor (in-neighbor) of a node i if and only if Gij > 0

(G ji > 0). The (out/in-)neighborhood of i is the set of neighbors of i.
An independent set on a graph G is a set of nodes S ⊂ N such that no node in

S has a out-neighbor in S.
A maximal independent set is an independent set that is not a strict subset of any

other independent set.
A graph G is bipartite if and only if N can be partitioned into two independent

sets.

EXAMPLE 1
Figure 2.1 describes a graph G. A link from a node i to a node j is represented by
an arrow from i to j, labeled by the weight of the of link Gij. The graph is strongly
connected, since every node can be reached from every other node. Node D has
an in-neighborhood of {A,F} and a out-neighborhood of {A,B}. Two of the many
independent sets on G are {A,C} and {B}. The set {A,C} is a maximal independent
set, while {B} is not, since it constitutes a strict subset of another independent set:
{B,F}. m

We will conclude this section with a set of important results relating above-defined
network characteristics to the eigenvalues of the weight matrices.
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2.2 On game theory

THEOREM 1—PERRON-FROBENIUS1

Let G be a graph characterized by the weight matrix G. Then, G has a real, positive
eigenvalue λG equal to its spectral radius ρ(G). Furthermore,

1. if G is strongly connected, then the eigenvector associated with λG is element-
wise positive and unique up to a scaling factor,

2. if G is undirected, then every eigenvalue λ of G is real in the interval
−ρ(G)≤ λ ≤ ρ(G), and

3. G is bipartite if and only if for every eigenvalue λ of G, −λ is also an eigen-
value of G. m

2.2 On game theory

Game theory studies the behavior of rational agents in strategic interactions. A
game, in this formal sense, consists of a set of players who each individually choose
some action and obtain a payoff that depends on the actions chosen by themselves
and others.

Let N represent a set of players. Each player i chooses some action ai from a
set of possible actions Ai. A strategy profile is a set a = {ai : i ∈ N} that specifies
some combination of actions that could be jointly taken by the set of players. A
utility function ui :A→ R specifies the payoff attained by i for each given strategy
profile, where A = ∏i∈N Ai is the space of all possible strategy profiles.2 A game
can hence be fully defined by a tuple (N,A, U), where U = {ui : i ∈ N} is the set
of utility functions.

Generally, players will be assumed to act with the goal of maximizing their
attained utility, subject to the actions of other players. Let A -i represent the set
of strategies that can be jointly chosen by all players except i, and a -i denote an
arbitrary element from this set. The behavior of i can then be said to be governed by
a best response function.

DEFINITION 1
For each player i and strategy profile a -i, the best response Bi : A -i → P(Ai) is
defined as

Bi(a -i) = arg max
ai∈Ai

{ui(ai, a -i)} . (2.1)

where a -i denotes the actions of all players except i, and P is the power set opera-
tor. m

1 For proofs, cf. theorems 4.1.3 and 8.4.4 in Horn and Johnson (2012) and proposition 3.4.1 in Brouwer
and Haemers (2011).

2 Here, we assume that the action space available to each player is not conditional on the choices of
the other players. This is the case for all games considered in this thesis.
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2.3 Network games

In the games considered in this thesis, the individually rational behavior of each
player will be uniquely determined by the actions of the other players. The best re-
sponse functions will hence be single-valued. A set of profiles of particular interest
are those where every action is a best response to the actions of the other players.

DEFINITION 2
A (pure-strategy) Nash equilibrium is a profile a∗ such that, for every player i,

a∗i ∈ Bi(a∗-i). (2.2)
m

In words, a profile is a Nash equilibrium exactly if no player can increase their util-
ity by deviating from their current action, assuming that the other players’ actions
remain unchanged. This concept can be generalized to stochastic actions, where
the strategy of a player is defined as a probability distribution over her permissi-
ble actions. A mixed Nash equilibrium is, in this case, a vector of such strategies
for which no player will benefit from unilaterally changing her own (probabilistic)
strategy. This generalization is not insightful to the analysis in this thesis, and we
will hence refer to the pure-strategy Nash equilibria as simply Nash equilibria.

2.3 Network games

The traditionally separate fields of network modeling and game theory have in re-
cent years been combined with the goal of studying topics as diverse as juvenile
crime [Patacchini and Zenou, 2012], firm R&D investment [Goyal and Moraga-
Gonzalez, 2001], and social risk-sharing [Ambrus et al., 2014]. In these network
games, players are represented by nodes on a graph, while a link (i, j) indicates that
the utility of node i depends in some way on the action of node j. For our purposes,
a network game is fully characterized by a graph G, an action space A and a set of
utility functions U .

DEFINITION 3
A game (N ,A, U) is a network game on a graph G if and only if each player i∈N is
represented by a node on G, and each utility function ui depends only of the actions
of i and her out-neighbors in G. m

A simple example of a network game is a coordination game.

EXAMPLE 2—A NETWORK COORDINATION GAME
Let a set of n nodes N = {1,2, ... ,n} play a binary coordination game on a graph
G. Each player i chooses a binary action ai ∈ {0,1} and receives a payoff of

ui(a) =−
∑
j∈N

Gij|ai−a j|, (2.3)

where G is the weight matrix of the graph G. m
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2.3 Network games

In the coordination game, each node i receives 0 utility for each out-neighbor that
chooses the same action as her, but a negative utility of Gij if j chooses a differ-
ent action. Nodes, aiming to maximize their utility, will hence strive to coordinate
with (i.e. take the same action as) their out-neighbors, determining the relative im-
portance of each neighbor by the weight of the link between them. Two trivial Nash
equilibria of the game are a = 0 and a = 1, but certain network structures may admit
additional solutions.

More generally, the coordination game induces a player i to take a higher action
(i.e. to choose ai = 1, rather than ai = 0) if more of her neighbors take higher actions.
We will refer to this game feature as complementarity.

DEFINITION 4
A game exhibits (strategic) complementarity if, for every pair of players i, j and
strategies z′i ≥ zi, z′j ≥ z j:

ui(z′i,z j)−ui(zi,z j)≤ ui(z′i,z
′
j)−ui(zi,z′j). (2.4)

m

Analogously to a coordination game, we can define an anti-coordination game as a
game where nodes aim to take different actions from their neighbors.

EXAMPLE 3—A NETWORK ANTI-COORDINATION GAME
Let a set of n nodes N = {1,2, ... ,n} play a binary anti-coordination game on a

graph G. Each player i chooses an action ai ∈ {0,1} and receives a utility of

ui(a) =
∑
j∈N

Gij|ai−a j|. (2.5)

where G is the weight matrix of the graph G. m

Unlike the coordination game, this game does not in general allow trivial equilibria.
An exception is if the graph is bipartite, i.e. if the set of nodesN can be partitioned
into two independent sets of nodes. In this case, profiles where the set of nodes
taking a particular action is exactly one of these subsets constitute equilibria. Ad-
ditionally, in contrast to the coordination game, a player’s optimal strategy in the
anti-coordination game depends negatively on the strategies of her neighbors. This
feature is common in network games and referred to as substitutability, since the
actions of player’s neighbors acts as a substitute for her own action.

DEFINITION 5
A game exhibits (strategic) substitutability if, for every pair of players i, j and strate-
gies z′i ≥ zi, z′j ≥ z j:

ui(z′i,z j)−ui(zi,z j)≥ ui(z′i,z
′
j)−ui(zi,z′j). (2.6)

m
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2.3 Network games

Whether a real-world phenomenon exhibits complementarity, substitutability, or
some combination thereof is an important consideration when designing a game-
theoretic model of the phenomenon. Another such consideration is whether the ac-
tion spaces of players are discrete or continuous. A common game form featuring
continuous action spaces is a quadratic game.

EXAMPLE 4—A QUADRATIC GAME
Let xi ∈Ai =R+ represent the level of effort exerted by player i. Then, a quadratic
game can be defined by three parameters α , β , γ as

ui(x) = αxi +βx2
i + γ

∑
j∈N

Gijxix j, (2.7)

where β < 0. m

Quadratic games on the form of Example 4 are among the most commonly analyzed
network games. The character of the game is largely determined by the sign of γ . If
γ is positive, the game exhibits complementarity – players will exert higher levels
of effort the higher the efforts of their neighbors. If γ is negative, the effort levels
of neighbors are instead substitutory – having a neighbor that exerts high levels of
effort is a reason to exert less effort yourself.

Despite their popularity, quadratic games are not ideal for the study of public
goods provision. The primary reason for this is that they are unsuccessful at simul-
taneously capturing positive externalities (nodes should always benefit when their
neighbors increase their effort levels) and substitutability (nodes should respond to
increased provision in their neighborhood by decreasing their own provision). The
next section will present a few models that fulfill this desideratum.

14



3
Literature review

A number of network game models have been proposed to study the private provi-
sion of public goods on networks. In this section, I will describe four such models of
particular prominence. The models differ in important ways – the action spaces may
be discrete or continuous, the purpose of the analysis positive or normative – but
several conclusions appear to be robust to this variance. Unless otherwise noted, all
the following models assume the network graph to be undirected and unweighted.

3.1 Galeotti et al. (2010)

Galeotti et al. (2010) discuss a binary public goods game in which nodes can choose
between being active (xi = 1) or passive (xi = 0). For every node, the action space is
hence Ai = {0,1}. Being active incurs a private cost of c (where 0 < c < 1), while
remaining passive is free. However, each node enjoys 1 unit of utility as long as she
herself, or at least one of her neighbors, is active. Equivalently, the utility of a node
i is defined as

ui(x) =


0, xi =

∑
j∈N Gijx j = 0

1− c, xi = 1
1, otherwise.

(3.1)

In words, each node prefers to have an active neighbor, but would choose to be
active herself if this is not the case. In particular, a Nash equilibrium is any profile
where the set of active nodes constitute a maximal independent set on the network
graph. In this case, every node is either active or has an active neighbor (but not
both).

3.2 Bramoullé and Kranton (2007)

Bramoullé and Kranton (2007) consider a model where agents choose a level of
private effort ei ∈ R+, and benefit equally from all effort exerted in their neighbor-

15



3.3 Allouch (2015)

hood. The action spaceAi is hence the set of non-negative real numbers. The utility
of each agent is given by

ui(e) = b
(

ei +
∑
j∈N

Gije j

)
− cei (3.2)

where b(·) is some strictly increasing and strictly concave benefit function. The in-
dividually optimal response dictates that nodes exert non-zero effort if and only
if the aggregate effort in their neighborhood is less than some threshold value
e∗ : b′(e∗) = c. The authors discuss two particular classes of Nash equilibria for the
game: specialized profiles, where ei = e∗ or ei = 0 for every node i, and distributed
profiles, where 0 < ei < e∗ for every i. They find that the set of specialized equilibria
is exactly the set of profiles where the nodes exerting non-zero effort constitute a
maximal independent set on the network graph.

The paper also studies game outcomes in terms of welfare, defined as the aggre-
gate utility of all nodes. In particular, they compute welfare-optimal effort profiles
for simple graph structures and offer a method for comparing the relative welfare
efficiency of different Nash equilibria. They conclude by analyzing the interaction
between network structures and equilibrium welfare, noting that the addition of
links has an ambiguous effect on aggregate welfare.

3.3 Allouch (2015)

Allouch (2015) studies private provision of public goods when individuals make
explicit trade-offs between private goods consumption and public goods provision.
Each node i has access to some exogenous wealth wi, and chooses to spend it on a
combination of private goods xi and public goods qi, with each unit of either good
costing 1 unit of wealth. Possible actions are hence tuples (xi,qi) from the action
set

Ai = {xi, qi ≥ 0 : xi +qi = wi}. (3.3)

As in Bramoullé and Kranton (2007), nodes benefit fully from all public goods pro-
visioned in their neighborhoods. Utility functions are strictly increasing and strictly
quasiconcave on the form

ui

(
xi, qi+

∑
j∈N

Gijq j

)
. (3.4)

Allouch finds that the Nash equilibrium profile is unique under a network normality
assumption, associating the Engel curves of the players3 to the lowest eigenvalue
of the adjacency matrix. As is common in public goods games, the equilibrium

3 i.e. each player’s demand for public goods as a function of her wealth.
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3.4 Elliott and Golub (2019)

generally consists of a set of contributors – nodes with non-zero provisioning of
public goods, and non-contributors, for which qi = 0 in equilibrium.

Inspired by a classic neutrality result from Bergstrom et al. (1986), Allouch
moves on to consider the impact of income transfers on the provision of pub-
lic goods. He finds that in the specified network game, a transfer will change the
amount of public goods provided unless the set of contributors constitute a clique4

on the network graph. In general, changes in aggregate provision are instead related
to the Bonacich centrality of the affected nodes.

3.4 Elliott and Golub (2019)

Elliott and Golub (2019) study Pareto efficient outcomes in a general formulation
of a public goods game.5 Nodes can exert some effort ai ≥ 0 that is costly to them-
selves, but beneficial to others in the network. Utility functions ui(a) are concave,
strictly decreasing in ai, and weakly increasing in a j for j 6= i. As a consequence,
the trivial equilibrium of the game is, by design, a = 0. The authors find that the
scope for Pareto-efficient cooperation is related to a benefit matrix B(a), consisting
of the marginal rates of substitution between one’s own effort and those of one’s
neighbors:

Bij(a) =


−

dui
da j

dui
dai

, i 6= j,

0, i = j.

(3.5)

In particular, an allocation a is Pareto efficient if and only if the spectral radius of
B(a) is equal to 1. If this is not the case, then there exists a vector d such that for
some small ε > 0,

ui(a+ εd)> ui(a) (3.6)

for every i. That is, if every node agrees to increase her effort by some tiny amount
εdi, then the utility gain from the increased efforts of others outweigh the personal
cost, and every node is made better off.

A particular set of Pareto efficient profiles, Lindahl outcomes, are characterized
by a centrality property: B(a)a = a. Elliott and Golub show that these outcomes
share a particular microfoundation – they arise when nodes face a certain set of
individualized subsidies and taxes reminiscent of Lindahl taxes. This is exemplified
by a normative analysis of the model from Bramoullé and Kranton (2007).

4 A clique is a subset of nodes where every pair of nodes is connected by a link.
5 For a formal definition of Pareto efficiency, see section 5.1.
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4
Game specification and
equilibrium analysis

In this section, we will introduce the game considered in this thesis. The game draws
on the specification of Allouch (2015), but is more specific in preferences and more
general in the structure of the network. We will then derive the individually rational
behavior of the players in this game, and characterize equilibrium outcomes. Lastly,
we will prove a sufficient condition for the uniqueness of equilibrium, and explore
a particular interpretation of the equilibrium under this assumption.

4.1 The game

A set of players N are connected as nodes on a directed graph characterized by
the weight matrix G. The nodes may represent private individuals, firms, or larger,
cohesive agents like nation states. Each node i has access to some exogenous wealth
wi > 0 that she chooses to spend on a combination of private goods (denoted by
xi ≥ 0) and public goods provision (qi ≥ 0). For our purposes, private goods are
goods that primarily benefit the purchaser (e.g. food for an individual, or a new
highway for a state), while public goods are goods whose benefits accrue to a larger
set of actors (e.g. donations to the local sports team for an individual, or increased
funding for climate change research for a state).

Let 1 unit of either good cost 1 unit of wealth, so that the allocation chosen by
a node must satisfy a budget constraint of xi +qi = wi. Each node benefits from her
own private goods consumption only, but from the public goods provisioned by all
her out-neighbors. Individual preferences over consumption bundles are described
by a Cobb-Douglas utility function

ui(x,q) = xα
i

(
qi+

∑
j∈N

Gijq j

)β

(4.1)
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4.1 The game

where the preference parameters α,β ∈ (0,1) are shared among nodes. A strategy
profile is a vector q = (qi : 0≤ qi ≤ wi, i ∈N ) that describes a certain combination
of feasible choices made by the nodes. Since x can be inferred from the budget con-
straint, the profile q sufficiently describes the choice of each node. We will assume
throughout that the graph G is strongly connected.

An instance of the game can be fully described by a tuple (G,w,α,β ). This
game specification has a set of notable properties that shape the behavior of the
nodes. Some properties are common in public goods models, while others are more
unique to the game considered in this thesis.

Marginal returns. The Cobb-Douglas utility function is strictly increasing in xi
and qi. Nodes hence exhibit a strict preferences for higher levels of consumption of
both private and public goods, regardless of their consumption levels. The marginal
returns to each type of good, however, is decreasing in that type of good and in-
creasing in the other type of good. The marginal return to private goods ( dui

dxi
), for

example, is decreasing in xi but increasing in qi. This feature aims to capture the
intuition that individuals benefit more from an additional unit the less they have of
the good in question.

Positive externalities. Since Gij ≥ 0 by assumption, increased public goods pro-
vision by one node has weakly positive effects on every other node. While the ben-
efits of increasing xi accrue exclusively to node i, the benefits of increasing qi are
distributed throughout her out-neighborhood. In this context, it is likely that selfish
nodes will contribute less to public goods than their neighbors would want them to,
and that everyone could be made better off by increased cooperation. This will be a
topic of study in a later part of this thesis.

Substitutability. The more public goods are provisioned in a node’s neighbor-
hood, the less she will benefit on the margin from increasing her own provision. In
particular, Gij denotes node i’s rate of substitution between her own public goods
provisioning and that of her neighbor j. That is, i would be indifferent between a
decrease of Gij units in qi, and a decrease of 1 unit in q j. In the important special
case where G is a binary matrix, a node is indifferent between an increase in her
own public goods provision and an equal increase in the provision of one of her
neighbors. This game feature is commonly referred to as full substitutability.6

Heterogeneity. Unlike most previous network models of public goods, this spec-
ification makes no assumption on the relative magnitude of weight links. This het-
erogeneity is ubiquitous in the real world – some individuals have the opportunity
to greatly help others with little effort, while others must make significant sacrifices
to confer even small benefits on their fellows. In addition, relations of externali-
ties are asymmetrical as a rule – for example, the way that the actions of a state
affects a company bears little similarity to how the actions of the company affects

6 A recent real-world example of substitutability in the funding of public goods is when the US gov-
ernment on April 14th, 2020 halted its funding of the World Health Organization. Less than 24 hours
later, the Bill & Melinda Gates Foundation and the Finnish government had both announced that they
would increase their funding in response.
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4.2 Best response function and existence of equilibrium

the state. Our specification aims to capture these dynamics better than the norm of
unweighted, undirected networks.

4.2 Best response function and existence of equilibrium

Consider a game setting where each node chooses to spend her wealth wi on some
combination of private and public goods. Aiming to maximize utility and taking
the actions of other nodes as given, a node i will decide on a level of public goods
provision q∗i as:

q∗i = arg max
0≤qi≤wi

(wi−qi)
α

(
qi +

∑
j∈N

Gijq j

)β

(4.2)

where xi = wi− qi incorporates the budget constraint. Since ui is concave in qi for
a fixed wi, the optimal choice is uniquely defined. We can hence define, for a given
q -i, the best response function Bi(q -i) = q∗i as the optimal public goods provision
for individual i.

PROPOSITION 1
For any node i and profile q -i, the best response is found as

Bi(q -i) = max

 1
α +β

βwi−α

∑
j∈N

Gijq j

 ,0

 (4.3)
m

The derivation of Proposition 1 is found in Section A.1 of the appendix. Notably, the
best response is negatively linear in the provision of neighbors down to a saturation
at 0. Furthermore, the highest rational public good provision is β

α+β
wi, which is

optimal for nodes with no out-neighbors contributing to public goods.
Recall that a Nash equilibrium is a profile q∗ for which q∗i = Bi(q∗-i) for every

node i. This means that no node would be better off by changing its strategy unilat-
erally. The set of such equilibria can be helpfully studied by letting C = {i : q∗i > 0}
denote the set of nodes that contribute to public goods in each equilibrium. Apply-
ing the best response condition, we find that a profile q∗ is a Nash equilibrium if
and only if

(
I +

α

α +β
GC

)
q∗C =

β

α +β
wC (4.4)

αG-C,Cq∗C ≥ βw -C (4.5)
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where the subscript C indicates the submatrix or subvector corresponding to the set
of contributors.7 The first constraint corresponds to the choice of the contributors,
and the second to the choice of the non-contributors.

PROPOSITION 2
For any graph structure G, wealth distribution w, and preference constants α,β ,
there exists at least one Nash equilibrium profile. m

Proof. Let B(q) denote the vector of best responses for each node in an allocation
q. A profile q∗ is then a Nash equilibrium if and only if it is a stationary point on B.
Since B is a continuous function from a compact, convex set to itself, the existence
of a stationary point follows directly from Brouwer’s fixed point theorem.

4.3 A few examples of equilibria

EXAMPLE 5—SYMMETRIC RING GRAPH
Consider a symmetric ring graph of 4 nodes, where each node is connected to its

neighbors by a link with a weight of 1. Let wi = 1 for every i and α = β = 0.5.
Then, the single Nash equilibrium profile is (x∗i ,q

∗
i ) = ( 3

4 ,
1
4 ) for every i. Notably,

each node provides less public goods than she would in the absence of a network
( 1

4 , compared to 1
2 without a network), but benefits from a larger total neighborhood

provision.

1
4

1
4

1
4

1
4

Figure 4.1 Symmetric ring graph. Nodes are labeled by their public goods provi-
sion in equilibrium.

EXAMPLE 6—DIRECTED LINE GRAPH
Let n identical nodes be connected through a directed line graph, where each node

benefits from the provision of the node to the right (see Figure 4.2). Given the same
wealth distribution and preferences as in Example 5, the single equilibrium outcome

7 Similarly, the subscript -C denotes non-contributors. G-C,C is hence the submatrix of G containing
the rows corresponding to non-contributors and the columns corresponding to contributors.
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is (from left to right):

q =

[
...,

11
32

,
5

16
,

3
8
,

1
4
,

1
2

]
(4.6)

m

The top provider is the only node that does not benefit from the efforts of others.
The second-rightmost node, free-riding on the provision of her neighbor, contributes
the least. This, in turn, leads the third-rightmost node to provide a higher amount.
The oscillation pattern continuous indefinitely, with provision levels approaching 1

3
asymptotically with each step to the left.

1
3

... 11
32

5
16

3
8

1
4

1
2

Figure 4.2 Directed line graph. Node labels and sizes correspond to public goods
provision in equilibrium.

EXAMPLE 7—MULTIPLE EQUILIBRIA
Consider an undirected star graph of 5 nodes, with the center being node 1. Let

α = β = 1
2 and w1 = 2, wk = 1 for k ≥ 2. This game admits an infinite set of Nash

equilibria, with three possible sets of contributing nodes. For any θ ∈ [0,1], the
profile q1 = 1−θ , qk = θ/2 for k ≥ 2 constitutes an equilibrium. Notable, the set
of equilibria constitutes a convex set. This is, however, not necessarily true in the
general case.

1

0 0

0 0

0

1
2

1
2

1
2

1
2

1
2

1
4

1
4

1
4

1
4

Figure 4.3 Three equilibria for the same game. Contributors in grey.

4.4 Specialized equilibria

A common feature of public goods games on networks, found in e.g. Galeotti et
al. (2010) and Bramoullé and Kranton (2007), is the existence of equilibria where
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4.5 Best response dynamic and uniqueness of equilibrium

the set of contributors constitute a maximal independent set on the network graph.
Formally, this means that there exists an equlibrium profile q∗ such that

q∗i = 0 ⇐⇒
∑
j∈N

Gijq∗j > 0 (4.7)

for every i. This class of outcomes is referred to as specialized equilibria, since they
involve a set of nodes that specialize in the provision of public goods, and a disjoint
set of nodes that free-ride on the provision of their neighbors.

Unlike the games of Galeotti et al. (2010) and Bramoullé and Kranton (2007),
the game considered in this thesis rarely admits specialized equilibria when nodes
are homogeneous.

PROPOSITION 3
Consider a game on an arbitrary directed graph G. Let wk = w for every node k and
some w > 0. Then, G allows a specialized equilibrium if and only if there exists a
maximal independent set C such that∑

j∈C
Gij ≥

α +β

α
(4.8)

for every i /∈ C. m

This result, derived in Section A.2, places a significant boundary on the existence of
specialized equilibria in our game when wealth is equally distributed. In the impor-
tant special case of an unweighted graph, when Gij ∈ {0,1}, the link-value criterion
is effectively a criterion on the number of out-neighbors of non-contributing nodes.
If α = β , for example, each non-contributing node must have at least two contribut-
ing neighbors. This appears to be a fairly strict requirement.

Why is it the case that specialized equilibria are seemingly rare in our game,
existing only for a particular subset of possible graphs? The informal explanation
is that a node with a public goods-providing neighbor is, in some sense, richer than
an identical node without such a neighbor. As a consequence of the Cobb-Douglas
preferences, a richer node will demand more public goods, and fund the difference
between her own demand and the provision of her neighbor from her own wealth.
This contrasts with the models of Galeotti et al. (2010) and Bramoullé and Kranton
(2007), where the provision level at which a node is not willing to fund additional
public goods is instead identical for all nodes.

4.5 Best response dynamic and uniqueness of
equilibrium

We have now determined that there exists at least one profile q∗ from which no node
would unilaterally deviate. Do we have reason to believe that such an equilibrium
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4.5 Best response dynamic and uniqueness of equilibrium

outcome would arise naturally, e.g. if nodes interact and update their behavior self-
ishly for a long time? To investigate this, let B denote the vector of individual best
responses, and define a best response dynamic as a sequence {qt , t = 0,1, ...} for
which

qt =

{
q0, t = 0
B(qt−1), t ≥ 1,

(4.9)

for some starting profile q0. An interpretation of this process is that, at each time
step t, every node observes the choices of the other nodes at t−1, and updates her
action to the optimal response to those choices. Notice that the stationary points of
this sequence is exactly the set of Nash equilibria; qt = qt−1 if and only if qt is an
equilibrium of the game. We can hence conclude that if the sequence at any point
converges to some profile, then that profile necessarily constitutes an equilibrium of
the game. Furthermore, for every equilibrium q∗, there exists at least one starting
profile q0 for which the sequence converges to q∗ – a trivial example is the case
where the starting profile is equal to the equilibrium point.

As shown in Example 7, we can find game parameters for which the equilibrium
profile is not uniquely defined. If we interpret the set of Nash equilibria as the set
of outcome that are, in some sense, likely to arise when nodes interact, this lack of
uniqueness hinders analysis. Allouch (2015) constitutes a possible starting point for
determining the conditions under which we can guarantee that the equilibrium is
unique. He studies a game that is a generalization of our game in terms of possible
preferences (see Section 3.3), but more restrictive in terms of the structure of the
network. Notably, he considers only undirected and unweighted graphs, whereas
we aim to describe arbitrary network structures.

THEOREM 2—ADAPTED FROM ALLOUCH (2015)
For undirected and unweighted graphs G, the Nash equilibrium is unique if

|λmin(G)|< α +β

α
(4.10)

where λmin(G) is the lowest eigenvalue of G. m

This result serves as a useful precursor to our uniqueness analysis. The lowest eigen-
value is well-defined, since Theorem 1 guarantees that all eigenvalues will be real.
As is common in network game theory, however, the proof relies heavily on the
symmetry of G, which holds only for undirected networks. To make progress on
the more general case of weighted and directed networks, we will make a slightly
stricter assumption.
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4.5 Best response dynamic and uniqueness of equilibrium

DEFINITION 6
A game specified by the network G and preference constants α,β exhibits limited
network effects (LME) if and only if

ρ(G)<
α +β

α
(4.11)

where ρ(G) denotes the spectral radius of G. m

This assumption is stricter than that of Allouch, since ρ(G)≥ |λ | for any eigenvalue
λ of G. The conditions are equivalent in the special case where the network graph
is bipartite, since it follows from Theorem 1 that such a graph has eigenvalues sym-
metric around 0. Under LME, the best response dynamics has the desirable property
of converging toward a certain profile, regardless of starting position.

LEMMA 1
Assume limited network effects. Then, the best response dynamic is contractive;
for every graph G there exists a vecor norm ‖ · ‖ such that for any pair of profiles
q1 6= q2:

‖B(q1)−B(q2)‖< ‖q1−q2‖. (4.12)
m

Consider now that there exist two distinct Nash equilibria, q∗ and q∗∗. Since both
are stationary points of the best response, this would imply that:

‖B(q∗)−B(q∗∗)‖= ‖q∗−q∗∗‖ (4.13)

which contradicts Lemma 1. This proves our uniqueness result.

THEOREM 3
Under limited network effects, the Nash equilibrium is unique for any non-negative
weight matrix G. m

As with other key results, the proof of Lemma 1 is provided in the appendix (Sec-
tion A.3). We have now found that under an assumption only marginally stricter
than that of Allouch (2015), the uniqueness result extends to arbitrary networks.
Furthermore, the uniqueness criterion is independent of the wealth distribution w.
We will now move on to study the shape of the equilibrium outcome under this
assumption.
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4.6 Geometric series interpretation

4.6 Geometric series interpretation

In the previous section we found that the LME assumption was sufficient to guaran-
tee uniqueness of equilibrium. In this section, we will explore another implication of
the assumption, on the shape of the equilibrium public goods provision. Recall from
the equilibrium analysis that a necessary condition for the individual rationality of
contributing nodes is (

I +
α

α +β
GC

)
q∗C =

β

α +β
wC (4.14)

where C = {i : q∗i > 0} indicates the set of contributors in equilibrium. Recall that
under LME, ρ(G)< α+β

α
. Since GC is a submatrix of G, ρ(GC)≤ ρ(G) by neces-

sity. As a result, we find that the matrix(
I +

α

α +β
GC

)
(4.15)

cannot have 0 among its eigenvalues. The matrix is hence invertible and we can
compute q∗C as:

q∗C =
β

α +β

(
I +

α

α +β
GC

)−1

wC . (4.16)

Since the equilibrium is unique, an equilibrium profile exists for only a single pos-
sible set of contributors C, that depends on the wealth distribution w. For a given
equilibrium, however, the public good provision of each contributing node will be
a linear combination of the wealth of other contributing nodes.

The equilibrium contribution can be understood further by exploiting a well-
known relationship between the inverse of a matrix and the geometric series.

LEMMA 2—HORN AND JOHNSON (2012)8

For any square matrix A, it holds that

ρ(A)< 1 ⇐⇒ (I−A)−1 =

∞∑
k=0

Ak. (4.17)
m

Letting A = − α

α+β
GC , the assumption ρ(A) < 1 coincides exactly with the LME

assumption.

PROPOSITION 4
Assume limited network effects. Then, equilibrium public goods contributions are
given by

q∗C =
β

α +β

(
∞∑

k=0

(−1)k
(

α

α +β

)k

Gk
C

)
wC. (4.18)

m

8 Theorem 5.6.15.
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4.6 Geometric series interpretation

This result follows directly from applying Lemma 2 to Equation 4.16, letting
A =− α

α+β
GC . Rewriting Proposition 4 node-wise, we find that for each i ∈ C:

q∗i =
β

α +β

∑
j∈C

(
∞∑

k=0

(−1)k
(

α

α +β

)k

ρ
(k)
jh

)
w j (4.19)

where ρ
(k)
jh is the aggregate weight of walks of length k from j to h in the subgraph

consisting of only contributors. So, the contributions are a linear combination of
the wealth of the contributors, with weights that are larger in magnitude for shorter
walks and with alternating signs depending on whether the length is even or odd.
When the set of contributors is strongly connected, cycles between them imply that
the number of such paths is infinite. The impact of a path on provision is, however,
declining exponentially in the length of the path.

This exercise highlights the fact that a game of substitutes on a network is
equivalent to an infinite sum of pairwise games of substitutes and complements.
Every node plays games of substitutes with their out-neighbors, decreasing their
own contributions as their neighbors contribute more. Simultaneously, however, the
out-neighbors react the same way to the choices of their out-neighbors. So, in ef-
fect, the more the neighbors of a node’s neighbors contribute, the less her neighbors
contribute, and the more she contributes in turn. The efforts of a neighbor k steps
away is complementary if k is even, and substitutory if k is odd.

A special case of some interest is when the subgraph of contributors is bipartite,
i.e. when the set of contributing nodes can be partitioned into two subsets such
that each node has no out-neighbors in its own subset. In this case, the equilibrium
contribution of each node is increasing in the wealth of nodes in her own subset,
and decreasing in that of the nodes in the other subset.
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5
Normative analysis

So far, this thesis has aimed to describe the set of outcomes that are likely to realize
when individuals act selfishly, assume others to act selfishly, and have no enforce-
able means of cooperation. A standard result of the economic literature on public
goods is that this individually rational outcome is likely to be collectively inefficient
in the presence of externalities.

In this section, I will begin by formalizing two common metrics of welfare effi-
ciency – utilitarian efficiency and Pareto efficiency – and show that equilibrium out-
comes of our game are generally inefficient with respect to these metrics. I will then
explore how these inefficiencies can be alleviated by respecifying certain aspects of
the game. I will refer to these respecifications as mechanisms, in a slightly wider
definition of the term than that of e.g. Hurwicz and Reiter (2006). The mechanisms
will preserve the non-cooperative nature of the game, but alter the optimization
problems facing the individuals by changing preferences, constraints or enforce-
ability of cooperation. Specifically, I will consider the effects of taxes & subsidies,
enforceable contracts, and redistribution.

5.1 Efficiency metrics

To evaluate the desirability of different outcomes on impartial grounds, we need to
define criteria of welfare efficiency. Two commonly used such criteria, suitable for
our purposes, are Pareto efficiency and utilitarian efficiency. I will here define them
formally, and make a few remarks about how they relate to the game considered in
this thesis.

DEFINITION 7
A profile q is (weakly) Pareto-efficient if and only if, for every other profile q̃:

1. there exists an individual i such that ui(q)> ui(q̃), or

2. uj(q) = uj(q̃) for every j. m
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5.1 Efficiency metrics

Analogously, I will say that a profile q constitutes a Pareto improvement from q̃ if
and only if ui(q) ≥ ui(q̃) for every i. Pareto efficiency is a weak welfare criterion
in the sense that, in many circumstances, the set of efficient outcomes is rather
large. An equivalent formulation is that a profile q is Pareto efficient if and only
if it maximizes

∑
i θi ui(q) for some set of "welfare weights" θi > 0, i ∈ N . This

alternative formulation emphasizes that an outcome can be Pareto efficient even if
it values the welfare of some nodes much higher than that of other nodes. In fact,
this property of not requiring (nor allowing) interpersonal welfare comparisons is
often put forward as both the primary virtue of and strongest objection to Pareto
efficiency. The Pareto criterion is typically not described as a sufficient condition for
a good outcome, but the lack of Pareto efficiency is used to argue that an outcome is
obviously bad. Unfortunately, equilibrium outcomes in our game are typically not
Pareto efficient.

PROPOSITION 5
An equilibrium profile q∗ is Pareto inefficient if there exists two contributors i and
j that are mutually reachable on the subgraph of contributors. m

The proof (found in Section A.4) builds on the fact that in equilibrium, contributors
are almost-indifferent to increasing qi on the margin, but would strictly prefer for
their out-neighbors to increase their public goods provision. So, for any cycle on
the subgraph of contributors, there exists an ε > 0 such that if everyone on the cycle
increased their public good provision by ε , they would all be made better off. In
addition, the nodes that did not form part of the cycle would not be made worse off,
since at least as much public goods would be provisioned in their neighborhood as
before. This means that such an increase would constitute a Pareto improvement,
and hence the equilibrium profile could not be efficient.

An alternative measure of welfare efficiency is what what we will call utilitarian
efficiency.

DEFINITION 8
A profile q is utilitarian-efficient if and only if for every other profile q̃:

U(q) =
∑
i∈N

ui(q)≥
∑
i∈N

ui(q̃) =U(q̃) (5.1)
m

I will sometimes refer to a utilitarian-efficient profile as a social optimum. The use of
this terminology presupposes some additional philosophical assumptions, e.g. that
the individual utility functions are cardinal metrics of welfare, that interpersonal
utility comparisons are possible and calibrated by the utility functions, and that the
social goal is to maximize aggregate welfare.

Utilitarian efficiency is a stricter criterion than Pareto efficiency in the sense
that every utilitarian-efficient profile is guaranteed to be Pareto efficient. In fact,
using the welfare weights definition of Pareto efficiency described above, the set of
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5.2 Taxes & subsidies

utilitarian-efficient outcome is exactly the subset of Pareto-efficient outcomes for
which θi = θ for every i.

By most standards, a Pareto-inefficient outcome is more obviously undesirable
than a utilitarian-inefficient outcome. In the latter case, there exists an alternative
outcome in which the population as a whole can be made better off, but this might
come at the expense of certain individuals. In the former case, however, there are
alternative outcomes in which everyone is better off.

THEOREM 4
If α +β < 1, then the aggregate welfare function

U(q) =
∑
i∈N

ui(q) (5.2)

is strictly concave over the hyperrectangle 0≤ q≤ w. m

This result, derived in Section A.5, follows from the concavity of the individual
utility functions. Theorem 4 guarantees that a utilitarian optimum is easy to find
for a given game (G,w,α,β ) as long as α +β ≤ 1. In addition, the strict concavity
of the function and the convexity of the domain implies that the optimal profile is
unique.

LEMMA 3
If α +β < 1, then there exists a unique utilitarian-efficient profile qu. m

In the case where α +β = 1, the function U(q) is only weakly concave. The utili-
tarian optimum is then not necessarily unique, but the set of optimal profiles is still
guaranteed to be convex.

I will now consider three mechanisms commonly proposed to alleviate public
goods problems: taxes & subsidies, enforceable contracts, and redistribution. For
each mechanism, I will give a brief introduction, present a formalization suited for
our network game, and discuss some ways in which outcomes are improved with
respect to efficiency metrics.

5.2 Taxes & subsidies

The fundamental welfare problem of public goods is that self-interested individu-
als disregard the effects of their actions on others when choosing which action to
take. A common approach to remedy this inefficiency is to design rules that aim
to internalize these effects into the decision process of each individual, aligning the
selfish interest with the public interest. When the decision in question relates to what
goods to buy, a natural mechanism is to adjust the relative prices of different goods,
reducing the prices of goods with social benefits, and increasing the prices of goods
that do harm to others. Several theoretical approaches have been proposed to set
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5.2 Taxes & subsidies

such prices9 and in the real world, many governments subsidize pro-social behav-
ior (such as philanthropic donations) while taxing activities with negative external
effects (like alcohol consumption).

Within our game formalization, consider a government planner that aims to
maximize aggregate welfare and has the capacity to subsidize and tax the consump-
tion of each individual. Specifically, the planner may set individual prices Pi

x,P
i
q for

every i, such that i must pay Pi
x units of wealth for 1 unit of private goods, and Pi

q
units of wealth for 1 unit of public goods. Node i will then choose an allocation
(xs

i ,q
s
i ) as:

(xs
i ,q

s
i ) = arg max

xi,qi

ui(x,q) (5.3)

= arg max
xi,qi

xα
i

(
qi +

∑
j∈N

Gijq j

)β

(5.4)

s.t. Pi
xxi +Pi

qqi = wi (5.5)

xi,qi ≥ 0. (5.6)

Call this game of individualized prices a subsidized game. Denoting the aggregate
public goods provisioned in the neighborhood of i by Qi ≡ qi +

∑
j∈N Gijq j, with

appropriate superscripts, we find a simple relationship between the prices of a sub-
sidized game and the allocations of contributors.

PROPOSITION 6
In any subsidized game, and for any contributor i:

Qs
i

xs
i
= Pi ·

β

α
, where Pi ≡

Pi
x

Pi
q
. (5.7)

m

In words, the optimal ratio between private good and public good consumption
is linear in the relative price of the two goods. As a result, there is a predictable
relationship between the prices set by the planner and the allocation choices of the
nodes. Combined with knowledge of the structure of favorable outcomes, this result
can be used to set socially preferable prices.

COROLLARY 1
Let qu be a utilitarian-efficient profile in a non-subsidized game. Then, for every
contributor i:

Qu
i

xu
i
= Mi ·

β

α
(5.8)

where Mi = 1+
∑
j∈N

G ji
u j(qu)/Qu

j

ui(qu)/Qu
i

(5.9)
m

9 Notable examples are Lindahl taxes (cf. Roberts (1974)) and Pigouvian taxes (cf. Pigou (1920)).

31



5.3 Contracts

Here, Mi can be interpreted as a multiplier effect from the public goods provision of
i; the social value of qi on the margin is a factor Mi greater than its value to i. We can
note that the optimal ratio between Qi and xi is equal to the equilibrium ratio only
for nodes with no out-neighbors – the only case when the socially optimal action is
identical to the selfish action is in the absence of externalities.

Corollary 1 describes the socially optimal allocation in the utilitarian optimum,
and Proposition 6 describes how prices can be set to incentivize arbitrary allocations
for any node. Together, these results indicate that the social optimum can always be
implemented in an incentive-compatible way through personalized subsidies.

THEOREM 5
Assume that a social optimum qu from a non-subsidized game is known. Then qu

will be a Nash equilibrium of the subsidized game with prices

Pi
x

Pi
q
=

{
Mi, qu

i > 0
1, qu

i = 0
(5.10)

and Pi
xxu

i +Pi
qqu

i = wi for every i. m

This result establishes, perhaps unsurprisingly, that a planner with the capacity to
set individualized prices, as well as knowledge of a social optimum, can set prices
that implement said optimum in an incentive-compatible way. Since the problem of
finding a social optimum is concave (see Theorem 4), knowledge of game parame-
ters is in practice sufficient to find this profile.

On a theoretical note, the optimal prices for contributors are the only prices that
fulfill the Samuelson criterion [Samuelson, 1954] for efficient public goods provi-
sion, i.e. that the marginal rate of transformation (in this case, the relative price) is
equal to the summed marginal rate of substitution Mi. For non-contributing indi-
viduals, any relative price that is sufficiently low to ensure that it is optimal for the
node to only produce private goods is sufficient. The final budget constraint ensures
that qu is in the space of afforded profiles. It also establishes that no individual is
net taxed nor subsidized at equilibrium.

In conclusion, individualized taxes and subsidies allow a planner to implement
any social optimum, as long as the planner has complete information about the
game. The optimal prices subsidize the public goods provision of nodes in relation
to the degree of benefit they confer on others.

5.3 Contracts

The previous section on taxes and subsidies emphasized the welfare inefficiency
arising in the public good game as a failure of incentives. An alternative perspective
on the same problem is that of a failure of cooperation – even if two individuals
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would both be better off by jointly changing strategy, our game formulation did not
provide them with a way to make agreements that they knew would be honored.

Proposition 5 showed that almost any Nash equilibrium is Pareto-inefficient, by
noticing that groups of nodes can be made better off by jointly increasing their pub-
lic goods provision. Without formal means of cooperation, however, these Pareto
improvements fail to realize. One possible solution is to allow individuals to en-
ter into enforceable contracts, where each node agrees to increase their public good
provision by some amount, conditionally on other nodes also increasing their contri-
butions. Agreements of this sort are commonplace across public good-like problems
in the real world – housemates agree to take turns cleaning shared living spaces;
firms within an industry formulate joint codes of ethics; countries enter accords to
reduce carbon emissions if other countries reciprocate.

Previous game-theoretical models of public goods provision (cf. Bagnoli and
Lipman (1989), Tabarrok (1998)) have particularly focused on threshold-based con-
tracts, where individuals pledge to contribute some amount to the funding of a
project if the aggregate contribution exceeds some predefined level. In this the-
sis’ game formulation, however, this contract structure is awkward; nodes care not
about the aggregate public goods provisioned, but rather about the amount that is
provisioned in their neighborhood. The below formalization is adapted to this het-
erogeneity.

Consider a two-stage game. In the first stage, nodes choose an allocation (x∗i ,q
∗
i )

individually, resulting in a Nash equilibrium outcome as described in section 4.2.
Next, all nodes are offered to enter into an enforceable contract, where each node
commits to increasing their public goods provision by some amount. In exchange,
each node will also benefit from the increased provision of her neighbors. Further-
more, assume that each node has veto power over the contract. Define a contract as a
vector c of increases in public goods provision, such that the contract stipulates that
each node changes her allocation from (x∗i ,q

∗
i ) to (x∗i − ci,q∗i + ci) for some ci ≥ 0.

We will study the set of contracts that constitute a Pareto improvement, and refer to
these contracts as implementable.

DEFINITION 9
A contract c is implementable if and only if, for each i:

ui(x∗− c,q∗+ c)≥ ui(x∗,q∗). m

A simple contract structure would be the uniform contributor contract, where
ci = c > 0 for contributors, and ci = 0 for non-contributors.

PROPOSITION 7
There exists an implementable uniform contributor contract if and only if every
contributor has a contributing out-neighbor. m

This result, proven in Section A.9, follows from the fact the contributors are near-
indifferent to increasing their public goods provision on the margin, while bene-
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fiting substantially from the increased provision of their out-neighbors. They will
hence happily increase their own provision by (at least) some small amount if their
out-neighbors reciprocate this action. In fact, they will even accept highly unfair
contracts, as long as they are small in magnitude.

PROPOSITION 8
Let c be any contract such that ci = 0 for non-contributors and ci > 0 for contribu-
tors. If every contributor has a contributing out-neighbor, then there exists an ε > 0
such that εc is implementable. m

So, any sufficiently small contract restricted to contributors is implementable. A rea-
sonable next question is: out of all these small contracts c, which would be socially
preferred for the group of contributors as a whole? Formally, for a small ε > 0, what
contract c∗ solves:

c∗ = arg max
‖c‖1=ε

{∑
i∈C

ui(x∗− c,q∗+ c)

}
(5.11)

such that ci = 0 for every i /∈ C? For sufficiently small ε and a contributor i, the
implementation of a contract c yields to a utility change of:

∆ui(c)≡ ui(x∗− c,q∗+ c)−ui(x∗,q∗) (5.12)

≈−ci
dui

dxi
+ ci

dui

dqi
+
∑
j∈C

c j
dui

dq j
(5.13)

= (x∗i )
α−1(Q∗i )

β−1

ci(αQ∗i −βx∗i )+βx∗i
∑
j∈C

Gijc j

 (5.14)

= β (x∗i )
α(Q∗i )

β−1
∑
j∈C

Gijc j (5.15)

since αQ∗i = βx∗i for every contributor. The approximative step consists in disre-
garding higher-order terms in the Taylor expansion around q∗, that are negligible
for sufficiently small ε . The optimal contract c∗ can then be found as:

c∗ = arg max
‖c‖1=ε

{∑
i∈C

ui(x∗− c,q∗+ c)

}
(5.16)

≈ arg max
‖c‖1=ε

∑
i∈C

β (x∗i )
α(Q∗i )

β−1
∑

j

Gijc j

 (5.17)

= arg max
‖c‖1=ε/β

[
(x∗i )

α(Q∗i )
β−1
]>

i∈C
(GCcC) (5.18)

s.t. i /∈ C =⇒ ci = 0 (5.19)
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where GC and cC denote the submatrix and subvector corresponding to the set of
contributors. The optimal contract c∗ is hence one for which the i’th entry of GCc∗C
is approximately proportional to (x∗i )

α(Q∗i )
β−1. The optimality of this contract is

limited, however, in the sense that it fails to take into account the welfare of non-
contributors.10 The optimal contract c∗ is uniquely defined if and only if GC is
invertible. This will generally be the case for the arbitrary, weighted and directed
graphs considered in this thesis, e.g. if Gij is sampled from some continuous random
distribution. There are, however, special cases where an adjacency matrix is not
invertible, for example that of a bipartite graph with an odd number of nodes.11

To conclude, this analysis shows that contracts can commonly improve the
welfare-efficiency of outcomes in the game on the margin. This conclusion, how-
ever, rests on local approximations, and we hence find little indication of the mag-
nitude of potential gains from such cooperation.

5.4 Redistribution

So far, our analysis has assumed the wealth endowments w to be exogenous. Now,
consider the case of a planner with redistributive capacity, aiming to distribute some
monetary amount W among nodes to maximize aggregate welfare, without infring-
ing on the individuals’ freedom to allocate their wealth. Let xw and qw denote the
Nash equilibrium profiles for a given w. Furthermore, assume limited network ef-
fects to ensure that this equilibrium is unique for every w. The planner’s problem is
then to find w∗:

w∗ ∈ arg max
w≥0

U(w) (5.20)

= arg max
w≥0

∑
i∈N

ui(xw,qw) (5.21)

s.t.
∑
i∈N

wi =W. (5.22)

How tractable is it to find a solution w∗? As we have seen, the mapping from wi
to the allocation qw

i depends on numerous aspects – the network structure in i’s
neighborhood, the wealth and choices of her neighbors, and (indirectly) the behavior
of unconnected nodes. As a consequence, U(w) is generally not concave. Since the
equilibrium is unique for every w, however, we know that every w gives rise to a
uniquely determined set of contributors Cw, such that qw

i > 0 if and only if i ∈ Cw.
The function U(w) turns out to be well-behaved over each such set.

10 It is, however, guaranteed to be a weak Pareto improvement even for these nodes.
11 It follows from Theorem 1 that the weight matrices of bipartite graphs have eigenvalues that are

symmetric around 0, so if the number of nodes is odd, then 0 must be an eigenvalue of the matrix.
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Figure 5.1 U(w) from Example 8, α = β = 0.4.

PROPOSITION 9
Let α +β ≤ 1. Then, for any C, U(w) is concave over the set {w : Cw = C}. m

This proposition is helpfully understood by considering an example.

EXAMPLE 8
Consider the simple case of two nodes, 1 and 2, connected by links G12 = G21 = 1.
Let W ≡ w1 +w2 = 1 and α = β . The possible sets of contributors are {1}, {2},
and {1,2}. Figure 5.1 shows U(w) for different wealth combinations, with w1 on
the horizontal axis. As we can see, the function is concave over each set of contrib-
utors, but not globally. Somewhat counterintuitively, the socially preferable wealth
distribution is not symmetric. The reason for this is that relative wealth equality in
our game setting leads to higher levels of free-riding than unequal distributions. So,
if w1 ≈ w2, then the aggregate public goods funding is lower than if the difference
in wealth levels is larger. m

Proposition 9 hints at a possible algorithm to find w∗. For each C ⊆ N :

1. Compute the vectors w for which Cw = C.

2. Find a closed-form expression for U(w) and the partial derivatives dU
dwi

for
every i.

3. If there exists a point w for which Cw = C and dU
dwi

= dU
dw j

for every i and j, then
compute U(w) at this point. If this is higher than any previously computed
value, set w̄ = w.

I conjecture that this algorithm guarantees that w̄ = w∗ after a full iteration. For
a formal proof it would be sufficient to show that the set {w : Cw = C} is convex
for any C and that the optimal solution is interior (i.e. that no node is indifferent
between contributing and not contributing on the margin).
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Let us exemplify the algorithm using Example 8. It follows from the best re-
sponses that (recall that α = β ):

Cw =


{2}, w1 ≤ 1

3 ,

{1,2}, 1
3 < w1 <

2
3 ,

{1}, w1 ≥ 2
3 ,

(5.23)

Now, if Cw = {1}, then only node 1 will contribute to the public goods. The aggre-
gate utility becomes:

U(w) =

2∑
i=1

ui(xw,qw) (5.24)

= u1(xw,qw)+u2(xw,qw) (5.25)

= xα
1 qβ

1 + xα
2 qβ

1 (5.26)

=

(
α

α +β
w1

)α (
β

α +β
w1

)β

(5.27)

+(1−w1)
α

(
β

α +β
w1

)β

(5.28)

=

(
w2

1
4

)α

+

(
w1−w2

1
2

)α

, (5.29)

which has a stationary point on the allowed interval for any α = β < 0.5. Similar
computations can be made for Cw = {2} and Cw = {1,2}. The maximum aggregate
utility for each set can then be computed and compared, and the optimal wealth
distribution w found by comparing the maxima across contributor sets.

Example 8 showed that the welfare-optimal wealth distribution has a tendency
towards inequality. Is this a consequence of our particular game formulation, or does
it capture an important dynamic of the public goods problem? On the one hand, it
seems plausible that a billionaire in the real world (on average) will spend a larger
proportion of her wealth on public goods, funding universities, museums or chari-
ties. On the other hand, this does not clearly imply that transferring welfare to rich
individuals is welfare-increasing on aggregate. In our game, the optimal degree of
redistribution is likely sensitive to the magnitude of α +β . For example, doubling
both the private and public goods available to a node will increase her utility by a
factor 2α+β . The empirical literature of subjective well-being, in contrast, gener-
ally finds that reported happiness is logarithmic in wealth, i.e. that a doubling of
consumption leads to a constant increase in welfare.12 In this way, our game might

12 For high levels of wealth, the relationship may be even weaker, see e.g. Kahneman and Deaton
(2010).
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overestimate welfare gains from increased wealth, leading the optimal redistribution
to overly favor unequal outcomes.

Notably, the redistribution mechanism bears some similarity to the price mech-
anism from section 5.2. Both aim to increase aggregate public good provision – the
tax system by incentivizing nodes to allocate their wealth pro-socially, and the redis-
tributive system by transferring wealth to central nodes so that they will selfishly de-
mand high levels of public goods. Still, the two interventions are orthogonal – while
either can be implemented without the other, they can equally well be combined. In
this highly regulated economy, the planner of some society with aggregate wealth
W may effectively implement any allocation (x,q) satisfying

∑
i xi +qi =W .
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6
Conclusions

Many issues facing individuals, organizations and governments can be understood
as public goods problems. Some are trivial, like the everyday struggle of dividing
household chores, while others are urgent and far-reaching in their stakes, such as
ensuring that countries coordinate to mitigate harmful climate change. Understand-
ing how self-interested agents behave in the presence of public goods – and how
different mechanisms can increase cooperation – may help us achieve better out-
comes across a wide range of domains. Network models may be well-suited to study
these scenarios without making overly simplistic assumptions about the nature of
interactions between agents.

In this thesis, I present a network public goods game of asymmetric, heteroge-
neous externalities. The uniqueness, emergence and structure of equilibrium out-
comes are described in detail and contrasted with other game formulations from
the literature. I then move on to study the game through a normative lens. Defining
metrics to compare the welfare efficiency of different outcomes, I find that equilib-
rium outcomes are inefficient as a rule. Drawing on commonly proposed solutions
to the public goods problem, I formalize three interventions on the base game: two
that are associated with a centralized planner (taxing & subsidizing, and redistri-
bution) and one based on voluntary, decentralized agreements between individuals.
For each mechanism, I discuss design considerations and the scope of welfare gains
that are attainable compared to equilibrium outcomes.

The application of mechanism design to public goods on networks in this thesis
is highly exploratory, covering only a small subset of possible mechanisms in rather
narrow formalizations. Given the rich body of literature on mechanism design for
public good provision, I expect a more rigorous translation of non-network mecha-
nisms to a network setting to be enlightening. Such an analysis could also consider
a broader scope of social goals than this thesis, including societal preferences for
low-inequality outcomes or Rawlsian concerns.

Another direction of future study would be to make weaker informational as-
sumptions than the complete-information case covered in this thesis. Uncertainty
could be defined over the structure of the graph or the distribution of wealth, and
affect either the players or the designer of some mechanism.
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A
Proofs and derivations

A.1 Proposition 1

The node aims to choose xi and qi as to optimize ui(xi,q), taking her own wealth wi
and the actions of other nodes as exogenous. Using the budget constraint xi +qi =
wi, this problem can be reduced to one dimension:

q∗i = arg max
0≤qi≤wi

ui(wi−qi,q) (A.1)

= arg max
0≤qi≤wi

(wi−qi)
α(qi +Q -i)

β , (A.2)

where Q -i ≡
∑
j∈N

Gijq j. (A.3)

The utility function is strictly concave for 0 < qi < wi. This follows from the fact
that every term in the second derivative

d2ui

dq2
i
=−(wi−qi)

α−2(qi +Q -i)
β−2 (A.4)

·
[
α(1−α)(qi +Q -i)

2 (A.5)

+β (1−β )(wi−qi)
2 (A.6)

+2αβ (wi−qi)(qi +Q -i)
]

(A.7)

is strictly negative whenever (wi− qi) and (qi +Q -i) are both strictly positive13.
Therefore, the optimal allocation must be either the unique stationary point (if it
exists on the permissible interval), or a boundary point. Since qi = wi yields ui = 0,
the global minimum, the only relevant boundary is qi = 0. We can hence deduce
that:

q∗i = max
{

qi :
dui

dqi
= 0,0

}
(A.8)

13 Recall that α,β < 1
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A.2 Proposition 3

Lastly, the stationary point is found as:

dui

dqi
=−α(wi−qi)

α−1(qi +Q -i)
β (A.9)

+β (wi−qi)
α(qi +Q -i)

β−1 = 0 (A.10)

⇐⇒ qi =
1

α +β
(βwi−αQ -i) (A.11)

which yields the result:

q∗i = max
{

1
α +β

(βwi−αQ -i) ,0
}
. (A.12)

A.2 Proposition 3

Consider a game setting where each node has equal wealth: wi = w for some w > 0.
Assume that, for some profile q, the set of contributing nodes C = {i : qi > 0} is a
maximal independent set. Then, q is a NE if and only if:

1. for every node i ∈ C, qi =
β

α+β
w, and

2. for every i /∈ C,
∑

j∈C Gij >
α+β

α
.

I will show this equivalence, and then conclude that the existence of a specialized
NE is equivalent to the existence of a maximal independent set C for which (2)
holds.

Proof: If q is a NE, the (1) and (2) hold. Let i ∈ C. Since C is an independent set, i
has no contributing out-neighbor and

∑
j∈N Gijq j = 0. So, the fact that q is a NE

means that (1) is fulfilled, since it follows from the individual rationality of i.
Now, let i /∈ C. If i has total links worth gi ≡

∑
j∈C Gij to neighbors in C, that all

contribute the above amount given by (1), then the best response implies that:

Bi(q) = max

 1
α +β

βw−α

∑
j∈C

Gijq j

 ,0

 (A.13)

= max
{

1
α +β

(
βw−α

(
gi ·

β

α +β
w
))

,0
}

(A.14)

= 0 ⇐⇒ gi ≥
α +β

α
(A.15)

So, i’s strategy is optimal if and only if gi >
α+β

α
. Since q is a NE, this must neces-

sarily hold.
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Proof: If (1) and (2) hold, then q is a NE. This amounts to showing that if (1) and
(2) hold, then each node is playing its best response.

(1) implies individual rationality for every contributing node, which is necessary
for NE. It was also shown that under (1), every qi = 0 is individually rational for
non-contributors if and only if their outdegree towards contributors is at least α+β

α
.

So, (2) and (1) jointly imply NE.
This proves the existence of (and describes precisely) a specialized equilibrium

on any graph where there exists an independent subset C such that every node not
in C has links of at least α+β

α
to a node in C.

A.3 Lemma 1

Recall the best response function for node i:

Bi(q) = max
{

hi(q),0
}
, where (A.16)

hi(q) =
1

α +β

βwi−α

∑
j∈N

Gijq j

 . (A.17)

Denote by B(q) and h(q) the corresponding vectors. For a given G, we want to find
a vector norm ‖ · ‖G for which:

‖B(q1)−B(q2)‖G ≤ ‖h(q1)−h(q2)‖G < ‖q1−q2‖G (A.18)

for every distinct pair q1,q2. Let us start by finding sufficient conditions for the
left-most and right-most inequalities, in that order. For the left-most inequality, a
sufficient condition is that the norm ‖ · ‖G is monotone, meaning that for any y,z:

|yi| ≤ |zi| ∀i =⇒ ‖y‖G ≤ ‖z‖G (A.19)

To see why this is sufficient, note that:

|Bi(q1)−Bi(q2)|=
∣∣∣max

{
hi(q1),0

}
−max

{
hi(q2),0

}∣∣∣ (A.20)

≤ |hi(q1)−hi(q2)|. (A.21)

For the right-most inequality, the norm must fulfill

‖h(q1)−h(q2)‖G < ‖q1−q2‖G (A.22)
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for every distinct pair q1,q2. This simplifies as:

‖h(q1)−h(q2)‖G =
1

α +β
‖
(
βw−αGq1)− (βw−αGq2)‖G (A.23)

=
α

α +β
‖G(q2−q1)‖G (A.24)

< ‖q1−q2‖G (A.25)

Assuming that ‖ · ‖G is even14, this condition is equivalent to

|||G|||G <
α +β

α
(A.26)

where ||| · |||G is the matrix norm induced by ‖ · ‖G. From LME, this holds if
|||G|||G = ρ(G). In conclusion, a norm ‖ · ‖G fulfills our criteria if it is even, mono-
tone, and induces a matrix norm for which |||G|||G = ρ(G).

Denoting by v the dominant eigenvector of G, define a candidate norm as:

‖z‖G = ‖V−1z‖∞ = max
i

{∣∣∣ zi

vi

∣∣∣} , V = diag(v). (A.27)

From Theorem 1, v is entry-wise positive, so the norm is well-defined.15 It should
be clear by inspection that this norm is even and monotone. As for the matrix norm,
let

A =V−1GV (A.28)

and find |||A|||∞ as the maximal absolute entry of A1, where

A1 =V−1GV 1 =V−1Gv =V−1
ρ(G)v = ρ(G)1, (A.29)

yielding |||A|||∞ = ρ(G). This, in turn, means that for any vector z:

‖Gz‖G = ‖V−1Gz‖∞ = ‖AV−1z‖∞ ≤ ρ(G)‖V−1z‖∞ = ρ(G)‖z‖G (A.30)

so |||G|||G ≤ ρ(G). In addition, for any matrix norm it holds that |||G||| ≥ ρ(G),
so we can conclude that |||G|||G = ρ(G). Since the proposed norm fulfills all three
criteria, we can conclude that the best response dynamic is indeed contractive for
this norm.

14 This ensures that ‖q1−q2‖G = ‖q2−q1‖G.
15 Notce that G is non-negative and irreducible.
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A.4 Proposition 5

A.4 Proposition 5

We want to show that if there exists a pair of contributors that are mutually reachable
on the subgraph of contributors, then q∗ is Pareto inefficient. This is equivalent to
the existence of a cycle on the set of contributors, i.e. that there exists a sequence of
contributors S = {1,2, ...,k} such that Gi,i+1 > 0 for each i < k ∈ S and Gk,1 > 0.

To show that q∗ is Pareto inefficient, it is sufficient to show that there exists a
different profile for which everyone is at least as well off, and at least one node is
better off. Consider the alternative allocation q+:

q+i =

{
q∗i + ε, i ∈ S
q∗i , i /∈ S

(A.31)

for some ε > 0. For every node i /∈ S, the allocation q+ is at least as good as q∗;
these nodes retain the same quantity of private goods, and enjoy at least as much
public goods. So, q+ is a Pareto improvement from q∗ as long as every node in S is
better off in q+ than in q∗. For i ∈ S, a Taylor expansion around ui(x∗,q∗) yields:

ui(x+,q+)−ui(x∗,q∗) = ε

−dui

dxi
+

dui

dqi
+
∑
j∈S

dui

dq j

+O(ε2) (A.32)

= ε

∑
j∈S

dui

dq j
+O(ε2) (A.33)

= ε

∑
j∈S

βGij(x∗i )
α(Q∗i )

β−1 +O(ε2) (A.34)

where O(ε2) is a sum of higher-degree differential terms proportional to εk for
k ≥ 2.16 By assumption, every i ∈ S has an out-neighbor is S , so this change in
utility is the sum of a strictly positive term that is linear in ε , and a term that is no
greater than proportional to ε2. We can hence find an ε > 0 for which the change in
utility is strictly positive for i ∈ S. The equilibrium profile q∗ must then be Pareto
inefficient, since q+ yields a lower utility for no one, and a strictly higher utility for
every node in S.

A.5 Theorem 4

We will begin by showing that ui(x,q) is strictly concave for a fixed w, assuming
α +β < 1. First, note that we can write this function as a composition

16 Notice that since q∗ is an equilibrium and i is a contributor, dui
dxi

= dui
dqi

when evaluated at q∗.
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A.6 Proposition 6

ui(x,q) = ui(w−q,q) = (wi−qi)
α(qi +Q -i)

β , (A.35)

where Q -i =
∑
j∈N

Gijq j. (A.36)

This function ui(qi,Q -i) is concave if and only if the Hessian Hi

Hi(qi,Q -i) =

 ∂ 2ui
∂q2

i

∂ 2ui
∂qi ∂Q -i

∂ 2ui
∂qi ∂Q -i

∂ 2ui
∂Q2

-i

 (A.37)

is negative semi-definite. A general matrix M = [m1 m2;m3 m4] is negative semidefi-
nite if m1,m4 ≤ 0 and m1 ·m4−m2 ·m3 ≥ 0. Computing the second-order derivatives
for Hi, this is equivalent to:

α ≤ 1, β ≤ 1, 1−α−β ≥ 1 (A.38)
⇐⇒ α +β ≤ 1 (A.39)

If the inequalities are strict (α +β < 1), then the Hessian is negative definite. Now,
notice that Q -i is a non-decreasing, linear function in q. This means that ui(qi,Q -i)
is the composition of a concave function and a concave and non-decreasing function
for α +β ≤ 1. It is hence concave (and strictly so for α +β < 1). This attribute is
inherited by the sum U(x,q) =

∑
i∈N ui(x,q).

A.6 Proposition 6

Each contributor solves the maximization problem

(xs
i ,q

s
i ) = arg max

xi,qi

xα
i

(
qi +

∑
j∈N

Gijq j

)β

(A.40)

s.t. Pi
xxi +Pi

qqi = wi (A.41)

xi,qi ≥ 0. (A.42)

Let x̂i = Pi
xxi and q̂i = Pi

qqi:

(x̂s
i , q̂

s
i ) = arg max

x̂i,q̂i

(
x̂i

Pi
x

)α ( q̂i

Pi
q
+
∑
j∈N

Gijq j

)β

(A.43)

s.t. x̂i + q̂i = wi (A.44)
x̂i, q̂i ≥ 0. (A.45)
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A.7 Corollary 1

Since at any point, one unit of x̂i is exchangeable for one unit of q̂i, a necessary
condition for an interior solution (i.e. that i is a contributor) is that

dui

dx̂i
=

dui

dq̂i
⇐⇒ Pi

q ·
dui

dxi
= Pi

x ·
dui

dqi
(A.46)

⇐⇒ Pi
q ·αxα−1

i Qβ

i = Pi
x ·βxα

i Qβ−1
i (A.47)

⇐⇒ Qi

xi
= Pi ·

β

α
(A.48)

where Qi ≡ qi +
∑

j∈N Gijq j. This concludes the proof.

A.7 Corollary 1

Recall that a utilitarian-efficiency profile is a profile that maximizes

U(q) =
∑
i∈N

ui(w−q,q). (A.49)

In particular, since every node can exchange one unit of xi for one unit of qi. In an
interior solution (i.e. for i ∈ C), a necessary condition for optimality is that

dU
dxi

=
dU
dqi

(A.50)

⇐⇒ dui

dxi
=

dui

dqi
+
∑
j∈N

dui

dqi
(A.51)

⇐⇒ αxα−1
i Qβ

i = β

xα
i Qβ−1

i +
∑
j∈N

G jixα
j Qβ−1

j

 (A.52)

⇐⇒ Qi

xi
=

β

α

1+
∑
j∈N

G ji
u j(q)/Q j

ui(q)/Qi

 (A.53)

= Mi ·
β

α
(A.54)

using the fact that ui(q) = xα
i Qβ

i . The final step of the proof is to rule out the pos-
sibility that qu

i = wi for some contributor i, in which case the above argument need
not apply. This is done by noticing that, since α < 1,

dU
dxi
→ ∞ as xi→ 0 (A.55)

if qu
i > 0, while the dU

dqi
remains finite. It will hence never be socially preferable for

any node to provide only public goods.
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A.8 Theorem 5

We want to show that the Nash equilibrium qs for the subsidized game coincides ex-
actly with the social optimum qu. To this end, we must show that no node i benefits
by deviating from the socially optimal action qu

i , for the given prices.
Start by considering the nodes for which qu

i = 0. For them, it is not socially
worthwhile to contribute, so it is necessarily the case that

dU
dxi

=
dui

dxi
≥ dui

dqi
+
∑
j∈N

dui

dq j
=

dU
dqi

(A.56)

=⇒ dui

dxi
≥ dui

dqi
. (A.57)

Since their relative price is Pi = 1, they will hence not find it worthwhile to spend
wealth on qi rather than xi, given that qs

-i = qu
-i.

For the nodes where qu
i > 0, it follows from Proposition 6 that

Qs
i

xs
i
= Pi ·

β

α
= Mi ·

β

α
. (A.58)

Since qs
-i = qu

-i, the price constraint Pi
xxu

i +Pi
qqu

i = wi means that this can only be
true if qs

i = qu
i . It is hence not individually rational for any node to deviate from qs

if qs = qu.

A.9 Proposition 7 and 8

We want to show that there exists a scalar c > 0 such that for the contract

c : ci =

{
c, q∗i > 0
0, q∗i = 0

(A.59)

it is the case that

ui(x∗− c,q∗+ c)≥ ui(x∗,q∗) (A.60)

if and only if every contributor has a contributing out-neighbor, i.e.

∀i : q∗i > 0 =⇒
∑
j∈N

Gijq∗j > 0. (A.61)

First, notice that the contract does not require non-contributors to change their allo-
cation. Furthermore, since q∗i + ci ≥ q∗i , the public goods provisioned in the neigh-
borhood of each node will be no lower after the contract is enforced than before.
All non-contributors will therefore enjoy as much private good consumption after
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A.9 Proposition 7 and 8

the contract as before and at least as much public goods, so they will not be made
worse off.

Now, consider a contributor i without contributing out-neighbors. The public
goods provisioned in her neighborhood will not increase through the contract. Any
change of allocation will therefore be costly for her, as

ui(x∗,q∗) = (x∗i )
α(q∗i +0)β < (x∗i − c)α(q∗i + c+0)β = ui(x∗− c,q∗+ c) (A.62)

for any c > 0. This is because (x∗i ,q
∗
i ) is defined as the allocation that maximizes

the above utility.
Lastly, view the case of a contributor with at least one contributing out-neighbor,

i.e. a node i for which q∗i > 0 and
∑

j∈N Gijq∗j > 0. The Taylor expansion of ui
around equilibrium is

∆ui(c)≡ ui(x∗− c,q∗+ c)−ui(x∗,q∗) (A.63)

=−ci ·
dui

dxi
+ ci ·

dui

dqi
+
∑
j∈N

c j
dui

dq j
+O(ckch) (A.64)

whereO(ckch) is some sum of finite, higher-order differential terms proportional to
the product of at least two elements of c. Letting ci = c j = c for all i, j ∈ C:

∆ui(c) = c

−dui

dxi
+

dui

dqi
+
∑
j∈C

dui

dq j

+O(c2) (A.65)

= c
∑
j∈C

dui

dq j
+O(c2) (A.66)

Now, notice that

dui

dq j
= βGij(x∗i )

α(q∗i +
∑
j∈N

Gijq∗j)
β−1 > 0 (A.67)

exactly if j is an out-neighbor of i. So, if i has at least one contributing out-neighbor,
then ∆ui(c) can be written as the sum of a term that is strictly positive and linear in
c, and a term that is no greater than quadratic in c. Hence, there exists a c > 0 for
which ∆ui(c)> 0.

For Proposition 8, consider an arbitrary contract for which ci > 0 if and only if
i ∈ C. We want to show that, for any such fixed c, there exists an ε > 0 such that
εc is implementable. The arguments for non-contributing nodes and contributing
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nodes without neighbors still apply. For contributing nodes with neighbors, we can
find ∆ui(εc) as:

∆ui(εc) =
∑
j∈C

εc j
dui

dq j
+O(ε2ckch) (A.68)

=
∑
j∈C

εc j
dui

dq j
+ Õ(ε2) (A.69)

which analogously to the previous proof is greater than 0 for small enough ε , as
long as i has a contributing out-neighbor.

A.10 Proposition 9

Assume that a wealth profile w gives rise to a set of contributors in equilibrium C.
Then, by assumption:

xw
i =

{
wi, i /∈ C

α

α+β
(wi +Qw

-i), i ∈ C
(A.70)

qw
i = wi− xw

i (A.71)

where Qw
-i ≡

∑
j∈N

Gijqw
j . (A.72)

We can hence find the individual utilities as:

ui(xw,qw) = (xw
i )

α

(
qw

i +
∑
j∈N

Gijqw
j

)β

(A.73)

=

{
wα

i (Q
w
-i)

β , i /∈ C
αα β β

(α+β )α+β
(wi +Qw

-i)
α+β , i ∈ C.

(A.74)

Next, notice that for a fixed C, Qw
-i is linear in w. Each utility function ui is hence a

composition of linear function and a power function of exponent at most α +β ≤ 1,
and therefore concave.
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