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Abstract

Electrolytic capacitor components degrade when exposed to thermal stress which
can cause failures in electrical devices. Several recent works have studied the life-
time of these components by using accelerated life testing. This work, however,
takes a new approach by utilising vast amounts of temperature data and regression
techniques. Axis Communications collects large amounts of non-personalised data
from network cameras in real-time, which could be used for lifetime predictions.
However, there are various problems with the collected data, such as jitter, inter-
ruptions, and missing data. Methods to resolve these problems are developed and
validated.

To predict the lifetime of an individual two different models are developed, a Ran-
dom forest model and a Baseline model. The Baseline model is used as a validation
of the performance of the Random forest model. The models require temperature
data to create predictions. The goal is to achieve a mean absolute normalised error
of less than 10 %, while simultaneously minimising the required amount of data.
The Random forest model achieves the target mean absolute normalised error with
significantly less data than the Baseline model.

Furthermore, distributions of the lifetime predictions are formed, as they could help
guide future product design. The distribution of the predictions is compared to the
true distribution with statistical tests. The distribution of the Random forest pre-
dictions is concluded to be more similar to the true distribution than the Baseline
model.

Keywords: Random forest, Lifetime predictions, Electrolytic capacitors, Thermal
stress, Network cameras, Missing value imputation.






Abbreviations

Al Artifical Jitter

BM Baseline Model

CDF Cumulative Distribution Function
Cv Cross Validation

DTB Data Transfer Box

EDF Emperical Distribution Function
ii.d. Independent and Identically Distributed
IoT Internet of Things

KS Kolmogorov-Smirnov

L Lifetime

LC Lifetime Consumption

MANE Mean Absolute Normalised Error
MCAR Missing Completely At Random

ML Machine Learning
MSE Mean Squared Error
RF Random Forest

TS Time Series

YLC Yearly Lifetime Consumption
YTL Yearly Time to Live
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Introduction

1.1 Background

The number of internet of things (IoT) devices is growing, resulting in an increased
demand for maintenance and opportunities for continuous and automated device
health monitoring. Forecasting the health of devices is a growing application of
machine learning (ML). The forecasts are important tools for optimising the use
of resources and to increase customer satisfaction. ML applications require data.
Axis Communications (Axis) has extensive time series (TS) data (non-personal) on
network cameras and several metrics that might be indicative of the device health
of a camera individual. Such as image quality, process-specific memory and CPU
consumption, as well as the temperature and power consumption of various compo-
nents. This thesis will focus on modelling the thermal stress in electrolytic capaci-
tors by studying temperature time series.

Electrolytic capacitors are polarised capacitors composed of an electrolyte-
impregnated paper layer sandwiched between two highly roughened metal foils
(usually aluminium) serving as anode and cathode [Gupta et al., 2018]||. The elec-
trolytic capacitors provide high capacitance values, high volumetric efficiency, and
an excellent price over performance ratio [Gupta et al., 2018]].

However, the electrolytic capacitor generally has the shortest lifespans among the
components in power electronics [Gupta et al.,|2018]]. These capacitors are present
in most Axis camera products, and engineers at Axis consider them to be amongst
the most temperature sensitive components in the cameras. Consequently, it is of
great importance to study the lifetime and reliability of these components. The con-
structed models of lifetime are essential for designers to design and guarantee the
reliability/life of electrical components.

One of the primary wear-out mechanisms in electrolytic capacitors is the loss of
electrolyte by vapour diffusion through the seals [Sankaran et al.,|[1997]]. Other re-
ports suggest that the main wear out mechanism is deterioration of the electrolyte.
This causes the capacitance to degenerate and when the capacitance decreases be-
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Chapter 1. Introduction

low a particular value (often 20 percent of its initial value), the capacitor will no
longer be able to store the necessary energy [Cherry et al., 2018]], which causes
other components to malfunction.

Generally, capacitors are studied by accelerated life testing techniques [Cherry et
al.,|2018]], [Albertsen, 2010], where the capacitors are exposed to more harsh con-
ditions compared to their normal operating condition. However, this report proposes
a novel approach by studying actual temperature data measured from the source.

The expected lifetime of a capacitor can be quantified from a formula depending
on temperatures [Cherry et al., |2018]]. Provided that a temperature time series is
available for a year, it is possible to determine how much of a capacitor’s lifetime
is consumed during that year. From a health monitoring point of view, it would be
useful to be able to predict the yearly lifetime consumption (YLC) of heat tolerance
for a camera knowing the temperature time series for less than a year. Therefore,
studying how the YLC could be predicted and the amount of data required to obtain
reasonable prediction accuracy would be of value to Axis. Furthermore, once YLC
is available for a larger population of cameras, it can guide future camera design.
This would potentially power data-driven design.

No previous analysis of these temperature time series has been performed, and
therefore the possible forecasting horizon and accuracy are unknown. As the YLC
is dependent on temperature, the quality of temperature data is crucial for making
lifetime predictions. Consequently, this work will also focus on methods for in-
creasing the quality of the temperature data by interpolating missing values. Simple
techniques such as linear interpolation as well as the possibility of developing and
applying a more advanced interpolation method will be investigated and evaluated.

12



1.2 Purpose

1.2 Purpose

The purpose of this master thesis is to support data-driven design decisions of cam-
era capacitor components. This will be achieved by investigating the lifetime of
cameras with respect to long term heat exposure in capacitors. Since a substantial
amount of temperature data is missing, a sub-goal is to improve the data quality by
different interpolation techniques. The main goal is to obtain a quantitative assess-
ment of how well the yearly lifetime consumption (YLC) can be predicted and find
a threshold for the amount of data required to achieve predictions with a certain ac-
curacy. The predicted YLC will be used to describe the heat exposure of an extended
camera population, providing knowledge for more refined design decisions.

13



2
Theory

2.1 Component Lifetime

The lifetime of an electrolytic capacitor depends on electrical parameters such as
ripple currentﬂ and operating voltages. It also depends on environmental variables
such as humidity, temperature and vibration [Cherry et al.,2018]]. In this work the
lifetime is assumed to only depend on thermal stress. An argument for making this
assumption is that some of the previously mentioned effects might actually cancel
to some extent. The effect of ripple current can actually extend lifetime in some
ranges according to [Parler and Dubilier, 2004, while humidity and vibrations can
decrease lifetime [Cherry et al., 2018]]. Although, the effect of making this assump-
tion has not been studied.

The lifetime equation used is derived from the Arrhenius equation [Chesworth,
2008, first described by Svante Arrhenius in 1889, explaining the temperature de-
pendence of reaction rates in physical chemistry. From the Arrhenius equation, it
is possible to derive an equation describing the lifetime of electrolytic capacitor
components [Gupta et al.,|2018]], [Bocock, n.d.|

Definition 1. Lifetime (L). Given an input temperature T, the lifetime L denotes the
period in time (hours) that the capacitor component is expected to be functional,

defined as

To—T—Toffset
c

L(T):=Ly2 2.1
The component specific constants are

e Ly € Ro, lifetime at temperature T = Ty - Toffsets

* ¢ € R, a constant depending on the capacitor,

I Ripple current is the voltage deviation that occurs when converting an alternating current to a direct
current.
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2.1 Component Lifetime

* Tottset = T — Tsensor 1S the temperature (°C) offset between component and
sensor. In this work it is assumed to be equal to three.

e Tp € R is the reference temperature (°C).

Eq. (Z:I) for a component is only valid right after that component was manufac-
tured. However, the rate of lifetime consumption is always the inverse of L(T'). The
constants are specific to the capacitor used in each product, they are presented in

Appendix A Table

Let 7; be the temperature at time t then definition [T] allows for calculation of a new
metric called lifetime consumption.

Definition 2. Lifetime Consumption (LC). Given a temperature vector

T = [T} ... T;] where temperature is sampled once per hour at times t where j <
t <i. Lifetime consumption is the fraction of the component’s total lifetime that has
been consumed, defined as

2.2)

The entire camera life is consumed when LC reach 1. As will be clear later in this
work, the temperature data is only available for a much shorter time period than
the actual lifetime of the components. The lack of data describing the full life cycle
of actual camera components would make predicting component lifetimes into an
unsupervised regression problem. However, the lifetime prediction is reduced to a
supervised regression problem by making an observation and an assumption; From
the data, it seems very plausible that weather temperature has a significant impact
on the camera temperature (observation). By assuming that the temperature profile
is similar from year to year, it is possible to calculate the actual lifetime based on
data from one year. Some cameras are located indoors, for those the temperature are
more stable over time making the prediction more accurate. Based on this assump-
tion the yearly lifetime consumption is formed.

Definition 3. Yearly lifetime consumption (YLC). Given a temperature vector Ty
= [Ty ... Ty] of length N the fraction of the lifetime that has been consumed over a
year|’|is approximated as

1

760 N
YLC(T) := T ; (2.3)

2 The effect of leap year will be disregarded.
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Chapter 2. Theory

where 8760 is the number of hours per year. E.g if four months of data is available,
the sum is multiplied by a factor three. The factor % is necessary to compensate
for lack of data. With this factor the YLC can be approximated regardless of how
much data is available. It will be clear later that there is a large variety in the amount
of temperature data available. In fact the available data is always less than one year,

there are no time series that are one year long.

For visualisation and a more intuitive understanding of lifetime consumption a new
metric is defined:

Definition 4. Yearly Time to Live (YTL). The lifetime of a component given a YLC
is defined by

YTL:= YLC ~. (2.4)

YLC is the fraction of the component’s total lifetime spent per year, hence YTL is
the number of years the component would last if YLC was constant from year to
year.

Cameras with a short life are especially interesting from a product design perspec-
tive. For those the YLC value is large and the YTL value is small. Therefore YLC
is a better measure of the degradation of a camera component and is used in cal-
culations. When computing errors in estimating the YLC or YTL values, the mean
square error and mean absolute error penalises larger values more. YTL is better for
visualisation since it tells directly how long a component will be functioning.
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2.2 Data Pipeline

2.2 Data Pipeline

Before the data from the cameras can be analysed it flows through a data pipeline,
which involves both data lakes and databases. Fig. 2.1 below illustrates this entire
process.

The data lake makes it possible to store data of any type. It can be unstructured (such
as emails or PDFs), semi-structured (like CSV-files or JSON-files) or structured
(rows and columns) like it is in a database.

The data collection process starts with a request for data from a camera individual
once per hour per connected camera. However, to avoid a momentarily increase of
bandwidth for locations with a large number of cameras, the time of the request
is selected at random every hour for every camera. The 'raw’ data, extracted from
the cameras, is unstructured and is initially placed in a data lake hosted by a cloud
storage provider. This data is then pre-processed and stored in another data lake
(with semi-structure). It is then structured and moved to a third data lake. This
storage solution is used for long term storage and contains all of the collected data,
whereas the first two only contain data form the past two weeks.

From the long term storage solution, the data is transferred via an application called
"data transfer box” (DTB). The DTB type casts the data and moves it to another long
term storage solution located at Axis as well as a search database (Elasticsearch).
The search database only contains data from the past three months and is used for
quick analysis or visualisation. The long term storage unit is called ’onprem’. It
contains all the collected data and is where the data in this work is extracted from.

2.3 Data

Axis communications has approximately 200 different camera products and sell
approximately three million cameras per year. Only a small subset of these cameras
provide (non-personal) data for Axis.

Let the temperature T be a random variable

T:Q—R,

drawn from some distribution and 7* be a realisation of that random variable. The
distribution function is then given by Fr(T*) = P(T < T*). Differentiating gives
the probability density function fr(7*) = ﬁFT(T*).

For camera individual i and time 7, a realisation of a random variable is a random
variate T%,. For individual i, a vector describing the temperature process as a func-
tion of time is given by T; = [T} ... Ty,;], where individual i has N; data points.
When these vectors are stacked, they form a two-dimensional array T, given by
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Chapter 2. Theory

\ If (unstructured)

Pre-
processed (semi-
structured)

N

‘-“ Datalake
| (Structured)

L

— )
Search
database

L)

Figure 2.1 Axis’s data pipeline. The cloud represents cloud storage and the orange rectan-
gle represents storage at Axis. The yellow circle represents the cameras.

iy T, ... Ty
nhy Ty ... Dy,

= . . . , 2.5)
Tvi Tvz ... Tuny

where M is the number of individual cameras. From here on, in the interest of sim-
plicity, all lengths are denoted N.

2.4 Data Quality

In order to get good accuracy in predicting the lifetimes it is necessary to have good
quality of the temperature data which forms the basis of this analysis. However,
there are several problems with the data:
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2.4 Data Quality

1. Sampling frequency,

2. lJitter,

3. Measurement errors,

4. Missing values,

5. Interruptions in time series,

6. Short length of the time series.

To get good accuracy in calculations and predictions of the YLC, it is necessary
to deal with these problems. Here it is outlined how these problems arose and how
they were handled. The problems 1, 3 and 6 cannot be controlled but are explained
for completeness.

1. The temperature is sampled, i.e. a reduction of a continuous signal to a dis-
crete signal is made. If the sampling frequency is low, it creates distortions.
Restrictions in storage and network bandwidth create restrictions in sampling
frequency. The data is sampled once per hour (sampling frequency 2.78-10~*
Hz). If data was available more often, the definition of lifetime (definition[T])
would have to be reworked and could then be more accurate.

2. Axis wishes to limit the stress on a customer’s internet connection. Hence the
data is not collected all at once because this might cause a spike in bandwidth
when a customer has many cameras at the same location. Instead it is sampled
during the hour, using a random delay in retrieval time. This creates a jitter in
the signal. Jitter is the sampling deviation from true periodicity of a periodic
signal.

To test the effect of the jitter, a simple test is performed. For all time series, a
new data set is formed by adding an artificial jitter (AJ) to each temperature
in T. The jitter is added by replacing each temperature point 7; by

TN =T, +d(T;41 - T,)

where d ~ U (0, 1) creating T4, For all time series YLC? is calculated from
the new data set and then compared with YLCy from T. The effect of jitter is
studied using the mean absolute normalised error between true YLC values
and YLC values with an added artificial jitter as

1 M

Al __
MANE™ = MEI
i=

YLCin — YLCIR

2.
YLC; v 26)
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Chapter 2. Theory

3. In all measurements there are errors, often modelled as an additive normally
distributed noise. The measurement noise is considered an insignificant prob-
lem.

4. The time series contains significant amounts of missing data. This is consid-
ered the most serious data complication; every point needs to have a value.
Fortunately, it is possible to amend this problem by interpolation. This issue
will be discussed in detail later. When a missing value is substituted by an
interpolated value an error is created.

There are different types of missing values, the type of missing values here
are considered to be missing completely at random (MCAR). Missing values
are MCAR if the events that lead to the particular data point being missing
are independent of the observable variables and unobservable parameters of
interest and occur entirely at random [Seaman et al., [2013]]. The main rea-
son for missing data is considered to be internet connection failure. This is
independent of temperature, and therefore analysis performed on data is un-
biased. Since the data are time series, it is crucial to interpolate the missing
data points. Each timestamp needs a value; otherwise, it is not possible to
perform the analysis.

5. Interruptions in the time series occur, for instance, when a camera is turned
off and then turned back on. This also creates missing values. Fig.[A.T]in the
Appendix A shows a histogram of the lengths of interruptions.

6. The length of the time series varies substantially among different individuals.
For some individuals there are 11 months of temperature data is available. For
all others there is less data available. Therefore there are never any true YLC-
values, instead a compensating factor is introduced in the equation defining
YLC, definition [3|and Eq. (3).

2.5 Data Preprocessing

Concatenation of time series

It is important to analyse the effect of the interruptions in the time series. Suppose
the analysis concludes that the interruptions do not cause significant changes in the
temperature process. In that case, it is possible to concatenate the time series, and
interpolate the missing values, which would increase both the size and the value of
the time series.

For camera i, T;;,, and Tiy, . 4y are two time series with an interruption in be-
tween them at time ¢,, lasting 4 hours. The following differences are formed.

20



2.6 Interpolation Techniques

A’T] = ’Tiatr+h+l -
ATy =T, —T;

E,lr ) (27)
2.8)

dr—h—1*
AT denotes the temperature difference after and before the interruption. A7, de-
notes the difference between the temperature before the interruption and the tem-
perature & steps before the interruption. AT is created as a fair comparison to ATj.
ATy and AT, was computed for multiple interruption events, in order to obtain a
distribution of the differences. If there isn’t a significant difference between the
distributions, it is confirmed that, generally, no change in the temperature process
existed for interruptions in the time series.

Box-Cox transformations

A common technique that can be used to stabilise variance and make the data more
normally distributed is the Box-Cox transformation [Box and Cox,|1964]], which is
defined as:

@ _ [ AT -1) A0,
YT log () A=0,

where in general y; may be any numeric data and A is determined from maximising
the log-likelihood:

N 5 N
L(A) = —Elog{cy (M)} +(A—1)) log(y),
=1

where 6, (A) is the estimated standard deviation of the transformed data, using the
parameter A [Jakobsson, 2013]). This technique is applied to the target values when
training and predicting YLC in Random forest models. Before any other processing
such as error calculations and graph plotting, the data is transformed back using the
inverse transformation given by

1

(Ayﬁ“ + 1)I A 40,

()
el A=0.

Vi =

2.6 Interpolation Techniques

In mathematical optimisation, a loss function is a function that maps a value onto
a real number representing some loss connected with the value. In this setting this

21



Chapter 2. Theory

value is the temperature interpolation value. Typically the interpolation technique is
chosen based on which one minimises the loss functions mean square error (MSE)
and/or mean absolute error (MAE) the most. The MSE is given by

=

MSE = T — (2.9)

i=1 ]D

where T;; is the true temperature and f}’t is the imputed value of 7;;, when it is
missing, and D; = {¢t € R, T;, is missing} is the set of the indices of missing values
for time series i.

The mean absolute error is easier to interpret. It yields the mean temperature differ-
ence per missing point, and is defined as:

MAE— —

M

2 X [7i- (2.10)
i=11€D;

To evaluate the performance of different interpolation techniques, two data sets will
be used. One with time series without sequences of missing values, and one with the
same time series but with sequences of removed data points with random starting
points. The length of the sequences will be the same for every time series. The
second data set will then be interpolated. This procedure will then be conducted with
many different lengths of the sequences. The selection of interpolation technique
will be based on the MSE and the MAE, and the chosen one will be used to impute
missing values throughout the work.

Linear interpolation

Linear interpolation is a simple method, for each value that is missing, 7; is given
by the following formula (2.11)), taking the closest preceding point (t,, 7,) and the
closest succeeding point (t, 7) of the missing value as input.

Definition 5. Linear interpolation. Given a preceding point (t,, T,) and succeeding
point (t, Tp) the linear interpolation is given by

t—1,

T, =T,+ (T, - T,) @2.11)

th—ta

Naive interpolation

There is 24 hour periodicity in the temperature time series, therefore another tech-
nique that could be used is a 24-hour interpolation, named ’'naive interpolation’.
The naive interpolation replaces the missing value with the value that was 24 hours
earlier. If missing value appears within the first 24 hours linear interpolation is used.
It is defined as
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2.6 Interpolation Techniques

Definition 6. Naive interpolation. The value at time t is given by the value at time
t- 24 ift > 24, otherwise linear interpolation is used were (t,, T,) is the preceding
point and the succeeding point (t,, Tp).

. T; 24, ift > 24
t = — .
T,+ (T, —T,) [’bf’;’a, otherwise
This interpolation technique will always have a value to insert if there are values in
the first 24 positions, which are guaranteed by using linear interpolation.

The Vallier interpolation method

To obtain a more sophisticated method for imputing missing values, a combination
of the naive predictor and linear interpolation called Vallier interpolation was de-
veloped. This method aimed to capture a sudden increase in day temperature. The
method utilises the two temperatures before and after the segment of missing val-
ues, the temperatures 24 hours prior to them, and the temperatures 24 hours prior to
the missing values.

Consider a time series with a segment of & consecutive missing values. Let the index
of the value before the segment be denoted #y and the index of the value after the
segment be denoted 71, i.e.

T = Ty+hn+1-
Let the estimate of the temperature at time #y + r be denoted ]A}()H for1 <r<h.
Then let the temperature 7;,_»44, be the temperature 24 hours prior to T;,,, and
consider the two temperature differences:

APOR =T sayr— Ty 24, (2.12)

ABACK = T oy — Ty —2ar, (2.13)

where T;, 24 is the temperature 24 hours prior to 7;), and T;, 24 is the temperature
24 hours prior to T;, .

AFOR ABACK TFOR TBACK

From and the temperatures 7, 17" and 7; "™ are defined as:

FOR FOR
Tto+r = Tto + A 9
BACK BACK
TtoJrr = Tfl —A )
where T,'OR, and T,PA°K is represented in Fig. 2.2{ by the green and blue curve,

respectively. Note that the estimate of T;, 1, by Ttgf becomes less accurate as r

TBACK

increases and vice versa for i
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Chapter 2. Theory

The final estimate at f is obtained by a combination of the two forecasts, T,g?f, and
T,OBf,CK. The closer the time is to fy (i.e. for small » when ¢ = #p + r), more weight is
given to the estimate 7}525. Conversely as time approaches ¢, more weight is given

to T,3CK, The estimate is defined as:

5 (o DIEOR 4 r TR
fotr h+1 ’

and the curve of the estimated temperatures is represented by the red curve in Fig.

22

(2.14)

temperature
A

— backward
— result

> time

to—24 tgy—24+r 11 —24 o to+r 0
Figure 2.2  An illustration of the Vallier interpolation.

If h > 24, it is not possible to compute ABACK for any of the values as the value
T, —24 in equation (2.13)) is missing. Therefore, 7;, 54 is replaced by the forward
estimate 7, + AFOR, which is then used for computing ABACK. Then the two values
for AFOR and ABACK are used according to Eq. to interpolate the missing
values.
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2.7 Validation of the Target

2.7 Validation of the Target

Since the available data is limited and does not contain a full year of temperature
data for any individual, the true YLC value is unknown. Therefore, YLC calculated
with a factor compensating for the lack of data will be used as the target value for
the machine learning model. An analysis is performed to control and quantify the
error in the target variable that is created from lack of data. The aim is to keep all the
time series that can deliver a target value within £5% of the true value and discard
the rest. The YLC will be estimated for all cameras with 11 months of time series
data. As defined by Eq. (2.3), which multiplies the 11 months YLC by a factor %
The YLC will then be compared to other estimated YLC values computed from
different amounts of data varying from 1 to 10 months.

It is of interest to know how the YLC varies, depending on which month/months
that is chosen for the computation. Therefore, the YLC will be estimated for every
possible combination of consecutive months for every data amount (1-10 months),
e.g., the YLC computed from one month of data will be computed 11 times, once for
every possible month. Fig. [3.7]in section [3.2] shows these results for one arbitrary
time series from the camera model M3045-V. To calculate the error of the target
value, the mean absolute normalised error (MANE) was used. It is for an individual,

1 & |YLCy — YLCy4
MANE! = — } | —2_ ==& 2.15
Kk; YLCy ’ (2.15)

where

¢ d denotes the amount of data in months,

YLCy is the YLC with 11 months of data,

. ?L\Cd,k is the YLC computed with d amounts of data for one of the K possible
combinations.

K = 12 — d denotes the number of different YLC calculations that can be
done.

Then the average of MANE over all individuals for each camera product is calcu-
lated as:

I

1 2

MANE] = . 2’1 MANEY, (2.16)
1=

where I, denotes the total number of individuals for a camera product p.
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Chapter 2. Theory

Since the underlying capacitor constants and distribution of the temperature data
vary with product, the time series length requirement to accept a target value of
YLC will be specific for each camera product. The required length of the time series
for camera product p will be determined based on MANEg. The time series length

requirement is the shortest length d that has a MANEZ < 0.05.

2.8 Random Forest

The Random forest algorithm [Breiman, 2001] is an ensemble machine learning
method used for classification and regression. It utilises an aggregation of the results
from many decision trees to create a prediction.

Each tree is constructed from a bootstrapped data set, which is of the same size as
the original data set. It is created by drawing samples with replacements from the
original data set [Friedman et al., 2001]].

A tree is constructed by splitting the data set multiple times based on different fea-
tures until some stopping criterion is reached. For instance, until each terminal node
contains at most a pre-selected minimum number of samples. Fig. [2.3]illustrates a
simple decision tree for classification.

Before each split, a selected number of random features are considered. The feature
which yields the best tree, depending on some criterion, is used for the separation.
For classification, it is usually Gini impurity, and for regression, it is often the mean
square error [Cutler et al.,[2012].

This process is then repeated B-times, which yields B different decision trees. For
regression the final output g(x) is obtained by averaging over all the trees [Fried-
man et al.,[2001], i.e.

B 1
fi(x) = 3 Y Ey(x),

b=1

where B is the number of trees and E},(x) is the output of a particular tree.
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2.8 Random Forest

Has
feathers?
True False
Can fly? Has horn?
True False True False
Hawk QOstrich Rhino Tiger

Figure 2.3 A simple decision tree example. The leaf nodes contains the animals.

Hyperparameters

Compared to many other ML-algorithms, Random forest does not necessarily re-
quire a lot of tuning [Probst et al.,2018|]. However, some tuning is usually necessary
[Fernandez-Delgado et al.,[2014]]. Although optimisation of all the hyperparameters
would be preferable, only some will be tuned in this work, as many of them are
highly correlated. The first one is the number of trees (B) used for constructing the
model. The second one is the number of random features the model should consider
before each split, and the third one is the minimum node size. Furthermore, the size
of the bootstrapped data set will be tuned as well as whether or not to bootstrap
the data set. The other changeable hyperparameters are the max depth of the tree,
the number of samples required to perform a split, and the separation criterion. For
these three the default values will always be used. The parameters which will be
tuned will be denoted:

¢ B - The number of trees in the forest.
¢ D - The minimum number of samples in the final nodes (leaf-nodes).
e F - The number of random features considered before each split.

* § - Sample size of the bootstrapped data set.

The number of trees in the forest Increasing the number of trees generally won’t
increase the risk of overfitting [Breiman, 2001]] and the number of trees should be
set as high as computationally feasible [Probst and Boulesteix, 2017]]. Therefore,
the number of trees will be selected by balancing the run time and the results.

The number of random features The number of random features to consider be-
fore each split has been shown to generally be the most important feature to optimise
with regard to performance [Hutter et al., 2014]], [Probst et al.,2019]. Studies have
shown that an increase in performance is obtainable by only optimising this pa-
rameter [Bernard et al., 2009, [Diaz-Uriarte and De Andres, 2006]. However, the
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possible gain in performance varies between different data sets. If the number of
relevant features is low compared to the total number of features, the model could
be trained on irrelevant features making it perform worse. On the contrary, using
a smaller F' decreases the correlation between the trees, making the model more
stable when averaging over the trees. Generally for regression, the default value of
F is [Friedman et al.,[2001]:

_ total number of features
o 3

Minimum number of samples in the final node The depth of the tree is directly
correlated to the selected number of minimum samples in the final nodes. A low
value yields a deeper tree and vice versa. For a single tree, the bias will decrease with
a decreasing sample size in the final nodes, but the variance will increase. Averaging
over multiple trees will reduce this variance but usually for regression, the minimum
node size in the leaf nodes is set to five [Friedman et al., 2001]]. However, [Segal,
2004] showed that tuning this parameter can boost the result of the model.

Bootstrapping 1t is possible to use the original data set when building the trees for
the model and skip the procedure of creating a bootstrapped data set for every tree.
Then, only the selection of a random subset of features before each split contributes
to the randomness of the model, as every tree is built from the same data set.

Sub sample size 1f bootstrapping is used, one could bootstrap a smaller data size
than the original one to create even more diverse trees.

Hyperparameter optimisation

A basic way of finding the optimal hyperparameters is by performing a grid search.
A grid is constructed from manually selected ranges for the hyperparameters. A
parameter sweep is then conducted, and a model is built with every possible com-
bination of the hyperparameters. The one which obtained the best results is chosen.
Usually, cross validation is used for evaluating the results. As the dimensions of
the grid increase, this approach becomes computationally expensive. An alternative
is a randomised search over the grid. The hyperparameters are then drawn at ran-
dom, and the number of tries is selected based on computation capacity. Of course,
many other, more sophisticated methods exist, such as sequential model-based opti-
misation [Jones et al.,|1998]]. Sequential model-based optimisation has been proven
successful for hyperparameter optimisation for Random forest [Probst et al., 2019].
Since there is sufficient computational power to perform a grid search, this tech-
nique will not be further investigated.

Data Partitioning, Overfitting and Cross Validation

A model can capture the structure of the data too well. The variance of the model
then becomes very high, which might result in overfitting. The most established
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way to detect and avoid overfitting is to split the data into different subsets. These
subsets are usually called training set, validation set, and test set. The training set is
used for training the model and contains around 70-80 % of the available data. The
validation set is used for selecting the hyperparameters and the features and contains
10-20 % of the data. The test set is only used for evaluating the final model and is
never used during the development of the model. A significantly lower accuracy or
higher error on the test set or the validation set compared to the training set is an
indication of overfitting.

An alternative to the validation set is to use cross validation. The training data is
then divided into K folds. K — 1 of the folds are then used for training the model,
and one is used for validation. The procedure is then repeated K-times, where a
different fold is used for validation each time. The results from the validation folds
can then be used for determining the hyperparameters in the model.

Concept drift

The fundamental assumption in machine learning is that the training data is inde-
pendent and identically distributed (i.i.d). Concept drift is an example of an i.i.d.
violation when data changes over time.

Suppose the statistical properties of the target values or the relationship between
the features and the target changes over time, in an unforeseen way. In that case, the
data is said to contain a concept drift. To partly mitigate concept drift and to be able
to quantify the effect of concept drift on the model accuracy, a small amount of not
i.i.d. samples taken from the training set could be placed in a sub-set. The sub-set
could be used for the all selections during model development and as an additional
test set to quantify the accuracy of the final model.

Feature selection

When constructing a machine learning model, it is always a challenge to only in-
clude relevant features. Reducing the number of features in the model will reduce
the model’s training time, the complexity of the model, and the risk of overfitting.
If the right set of features is used, the accuracy can increase [Aha and Bankert,
1996]. Feature selection methods are usually divided into three main categories; fil-
ter methods, embedded methods, and wrapper methods [Kohavi, John, et al.,[1997]],
[Guyon and Elisseeff, 2003]]. Wrapper methods utilise the machine learning algo-
rithm which one wishes to use. These methods involve training a new model for
many different subsets of features and then compare the trained models based on
some evaluation criterion, e.g., R2-value [Kohavi, John, et al., [1997|]. The subset,
which yields the best model based on the evaluation criterion is chosen. How the
possible sub-sets of features are chosen varies from different wrapping techniques.
As wrapping methods require training of multiple models, they are the most com-
putational expensive feature selection approach. The training of numerous models
also makes wrapping methods more prone to overfitting.
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Filter methods are independent of any machine learning algorithm. The features are
selected before the training of the model and are chosen based on some statistical
correlation score between the feature and the target value. Consequently, the fea-
tures are selected without regard to how the selected subset of features impacts the
outcome of the machine learning model [Kohavi, John, et al., [1997].

The last of the three embedded methods, perform feature selection during the train-
ing of the model. They are therefore limited to machine learning algorithms, for
which it is possible to do a feature importance evaluation during the training. Ran-
dom forest is such an algorithm. It is possible to evaluate the importance of a feature
when the trees are constructed. As embedded methods only require training of one
model, they require significantly less computing power [Guyon and Elisseeff, 2003|.

Forward sequential selection Forward sequential selection belongs to the cate-
gory of wrapper methods for feature selection. First, a model is constructed from
only one feature for every single feature. The models are then evaluated based on
some metric. Secondly, the feature which gave the best model is used together with
one of the remaining features. A model is developed with every remaining feature,
and the model which obtained the best results with two features is selected. The
same procedure is then repeated, until the adding a feature does not give a model
which performed better than the previously best model. The features which was in-
cluded in the best overall model are used for the development of the final model
[Aha and Bankert, |1996].

Possible features

Many of the features will be computed from a shortened version of the original time
series. This is because it is of interest to study how features extracted from shorter
time series may predict the YLC. The shortened time series will have the same
starting point (t = 1) as the original one. This series is a vector of n temperature data
points given by T, = [T} ... T,] where n is the number of data points used in the
shorted time series. Therefore T, contains the same data as T defined in Eq. (2.3
truncated to n data points. From this vector of temperature data, many features are
calculated to investigate how specific transformations of temperature might predict
YLC.

Recall the YLC deﬁnition YLC,(T) := 8760 Yo L L VEGA] this equation is used for
what is called "YLC-transformation". This transformatlon takes an arbitrary number
of temperature data points and returning an estimated YLC-value. This is written as
YLC,(-), where (-) may be for example mean, where the mean value would be the
only input value (n = 1) giving

1

YLC,, mean = 8760 ——=—
L(T,)’
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since the mean temperature is given by 7,. n gives the length of the temperature
vector. All features and their description are shown in Table 2.1]

Feature selection approach The feature selection will be conducted with one par-
ticular length of the short time series, and with the features shown in table as
a re-evaluation of the features for every n is considered too complicated. In addi-
tion, a feature containing random numbers will be included in the feature selection
process, mainly as a confirmation that the other features contributes to the model.
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Table 2.1 Description of the features which will be used in the feature selection. The fea-
tures are shown for one individual. Here YLC,(-) denotes a YLC transformation of (-). Tar-
get* - YLCy is the target variable. Baseline model** - YLC,, is the YLC-transformation of
all the temperature feature data, it is denoted as "Baseline model" throughout this work.

Feature Description Type

Target*: YLCy The YLC computed on Ty. Float

T Standard deviation The standard deviation of T,,. Float

T mean The mean of T,,. Float

T max The max of T),. Float

T min The min of T,,. Float

Baseline model**: YLC,, | The YLC computed from T,. Float

YLC, mean The YLC computed from T mean. | Float

YLC, max The YLC computed from T max. | Float

YLC,, min. The YLC computed from T min. Float

Month The month of the first value in T,,. | Integer

c ¢ constant in Eq. (T). Integer

Ly Ly constant in Eq. (T}. Integer

Ty Ty constant in Eq. (T). Integer

T ql10 The 10th quantile of T,. Float

T q90 The 90th quantile of T,,. Float

YLC, q10 The YLC computed from 7 q10. Float

YLC, q90 The YLC computed from 7" q90. Float

Product The product type. Integer
If the camera has capability

IR (Infrared radiation) of creating images Boolean
from infrared radiation.

Audio detection If the camera can detect audio. Boolean

Outside If the camera is built for Boolean
outdoor environment.

ISS (Image sensor size) The size of the image Float

sensor in the camera. (Inches.)

Model selection

The R2-value or R*-score of predictions based on model are defined as

RP=1

where

o % Zi‘i] (YLCLN - YLCi,predicted)2

XM (YLCiy — YLCiy)?

I 1M
YLCin = 3 Y YLCin.
i=1

For selecting models the mean absolute normalised error is also used
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MANE, = 1 f YLCin — YLC,i predicted ’
M= YLCy,i

(2.18)

After the feature selection, the grid search will evaluate the different models based
on the R%-score from cross-validation on the training set and for the different values
of n (length of the temperature vector). Following, one particular value of n will be
selected and a subset of models with this n will be further analysed. They will be se-
lected based on their R?-score from the cross validation and their hyperparameters.
Models with different hyperparameters will be included in the subset. A model with
only standard hyperparameters will also be included in this subset. The accuracy on
the validation set and test set will be tested for every model in this subset. They will
also be compared to a Baseline model, which serves as a benchmark to beat when
evaluating the performance of the Random forest models.

For the other values of r, only the models with the highest mean R>-score from the
cross validation will be presented.

2.9 Hypothesis Testing

It is of interest to know how the distribution of the YLC varies depending on which
data set is used for the estimation. yle denotes a vector of YLC-values. Three dif-
ferent data sets, ylc,,, ylcy and ylcgy are available for this investigation. Here yle,,
and ylcy are vectors of YLC-values calculated based on T, = [T} ... T,] and Ty =
[Ty ... Ty] respectively, according to Eq. (2.3). ylcgy contains the predictions of the
Random forest model.

Baseline model

In this work ylc, is denoted as the Baseline model (BM). This provides a good
benchmark to compare the other models to. If it is not possible to beat the bench-
mark, modelling with Random forest is not necessary.

Hypothesis testing - theory

Empirical distributions based on these vectors are formed. It is of interest to inves-
tigate to which degree these distributions are similar. In order to draw conclusions
from the comparison some theory is necessary.

Let Fy(x) = P(X < x) be some cumulative distribution function (CDF) and Fx s (x)
be the empirical distribution function (EDF) constructed from M samples, sampled
from the Fx (x) distribution. Let Gx (x) and (A;x,M(x) be defined similarly for some
other distribution. In general an EDF Fy j(x) is defined as
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where

1 - 1 if X,' S X
Xi<x} =1 0 otherwise ’

is the indicator function of the event X; < x.

Several pairs of EDFs will be compared and presented in the result section of this
thesis. It is of interest to test whether two distributions have statistically close to
having the same mean and more generally, to test the hypothesis that two empirical
distributions are statistically close. These results give important insight into how
much data is necessary to create a good estimate of YLC and its distribution.

Hypotheses

Two hypotheses are formed. Firstly the null hypothesis that the means of the two
populations are equal and secondly that the two samples come from the same distri-
bution. These hypotheses are tested with a paired ¢-test and a Kolmogorov-Smirnov
test, respectively. More formally

Hy : E[F (x)] = E[G(x)],
H, :E[F(x)] # E[G(x)],

is the hypothesis that the two samples have the same mean. Here Hy and H, de-
note the null and the alternative hypothesis respectively. The hypothesis of same
distribution is given by

Hy: F(x) =G(x),
H, : F(x) # G(x).

The p-value is the probability of obtaining results at least as extreme as the results
actually observed, assuming that the null hypothesis is correct.

p=P(X > x|Hy).
If the p-value is below the significance level «, the null hypothesis (Hy) is rejected,

otherwise it is said that the test fails to reject the null hypothesis and the null hy-
pothesis is kept in lack of other evidence. In this work o = 0.05 is used.
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T-test for paired samples

A t-test is any statistical hypothesis test in which the test statistic follows a Student’s
t-distribution under the null hypothesis. The paired z-tests assume that the mean of
the two distributions are normal distributed. This assumption holds for large sam-
ples for non-normal distributions by the central limit theorem. It tests the hypothesis
that two samples have the same mean. The samples are paired because both data set
contain data from the same TS. The paired ¢-test is preferred since it is more pow-
erful than the unpaired #-test. In short, the statistical power is the probability that
the test correctly rejects the null hypothesis [Brownlee, 2018|]. Evidently a more
powerful test is preferred.

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test (KS-test) can test whether two arbitrary distributions
are the same [unknown, [2020]]. It is a rank-order test that tests whether or not two
empirical distribution functions (F;(x), G,(x)) can be considered to come from the
same continuous distribution function F (x) = G(x) [Hodges, [1958]]. The test statis-
tic is given by

Dy, = sup |Fy (x) — Gu(x)],
xeR

which is the largest vertical distance between the EDFs.
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Results

3.1 Camera Products

The camera products that were studied are listed in Table[A.T|in Appendix A. That
table also shows the accompanying constants relevant for calculating the YLC. The
products were chosen based on the list of the products with most individuals with
temperature data. The Fig.[A.3]and[A.4]in Appendix A show pictures of the products
that were studied.

3.2 Data Quality - Results

Artificial jitter

Al
Recall Eq. (Z6), MANEA! = Ly¥, W’ comparing the YLC calcu-
lated from data with and without added artificial jitter. The mean absolute nor-
malised error of 1073 are noted. E.g. for a camera with a lifetime of 20 years an
0.1% error of YLC would be give an error in YTL of 7 days, which is considered
negligible. This is comparable in size to disregarding the effect of leap year.

Interpolation results

For this analysis, only time series from the camera model M2026-LE-MK II were
included. A total of 3986 different time series was considered when evaluating the
interpolation methods. Fig. show the performance of the different methods.
Fig. 3.1] shows the MSE computed according to Eq. (2.9), and Fig. [3.2] shows the
MAE computed according to Eq. (2.10). The Vallier interpolation method is best for
most of the number of removed points. An arbitrary time series with interpolated
data from each technique is shown in Fig.[3.3] and it is clear that the Vallier interpo-
lation technique adequately follows a change in the mean temperature. Therefore,
Vallier interpolation was used for interpolating all the missing values.

36



3.2 Data Quality - Results
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Figure 3.1 The resulting MSE for the dif- Figure 3.2 The resulting MAE for the dif-
ferent methods. ferent methods.
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—— Original data
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Figure 3.3 A visualisation of the different methods on an arbitrary time series with 48
missing values. The blue, orange, and green graphs are linear interpolated, naive interpolated,
and Vallier interpolated data respectively. The red graph represents the original data.

Concatenated time series

The difference between the last temperature in a time series and the first tempera-
ture in the following one is called *Temp diff between’ and is given by Eq. 2.7).
The temperature difference between the last value in the first time series and the
temperature m steps back is called *Temp diff within’ and is given by equation
(2:8). One thousand randomly selected gaps between time series from the product
M2026-LE-MK II were included in this analysis. Fig.[3.4]shows a scatter plot of the
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temperature differences and the gap lengths. Fig. [3.3]is a histogram of the temper-
ature differences. Fig.[AJ]in Appendix A shows a histogram over the length of the

gaps.

® Temp diff between .
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Figure 3.4 Scatter plot over the tempera-

ture differences defined by Eq. 2.7) - 2:8),
and the length of the gaps.

Figure 3.5 Histogram over the tempera-
ture differences defined by Eq. 2.7) - 2-8).

The two distributions of AT were compared with two statistical tests. If the distri-
butions could be concluded to be the same, this indicates that generally, an interrup-
tion does not cause a change in the temperature process. Consequently, there is no
distinction between the missing values caused by the interruptions and the regular
missing values (point 4. in Section[2.4).

The paired t-test gave a p-value of 0.534 under the null hypothesis that the two
distributions had the same expected value. Therefore, the null hypothesis was not
rejected. The Kolmogorov-Smirnov test gave a statistic of 0.062, which led to a p-
value of 0.043. Thus, the null hypothesis that two independent samples were drawn
from the same continuous distribution was rejected.

Box-Cox transformation

From the training data the A value was calculated to A = —0.1897. Fig.[3.6] shows
Box-Cox transformed target data. The data looks more normally distributed when
it is transformed. This might improve the performance of the Random forest model
but the effect was not studied.
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Figure 3.6 Comparison of the target YLC-values (left) and the Box-Cox transformed YLC-
values (right). The right figure looks more normally distributed.

Target validation

The validation of the YLC for a single camera individual can be seen in Fig. 3.7]
Fig. shows the YTL computed from all the possible combinations of months
for various amounts of data. Fig.[3.7(b)]shows how the MANE3045.v varies for the
different number of months (Eq. (Z.13)). Averaging the results in this plot over all
the individuals from the same product resulted in the graph in Fig.[3.8] as described
by Eq. (2.16). For the camera model M3045-V, this gave a MANEy3045.v of 5 % at
5.85 months. Thus, 5.85 months of data were determined to be sufficient for a target
value for cameras of model M3045-V. Table[3.1]lists the resulting data requirements
for all the other camera models as well as the number of available time series with
11 months of data.
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Figure 3.7 An arbitrary individual example of how the YTL can vary depending on which
and how many months are used in the estimation. The time series used in this example was
from the camera model M3045-V.
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Normalized mean absolute error

p 3 6 8 0
Number of months
Figure 3.8 This figure shows the mean absolute normalised error from the product M3045-
V Eq. @16). A MANE of 5 % was reached at 5.85 months, which means that 5.85 months

of temperature data are needed for a time series from M3045-V to be used as a valid target
value. Here 238 time series were used.

Table 3.1 The required length of the time series for different camera models in order to
obtain a sufficiently accurate target value.

Product Required #month Outdoor #cameras
M3045-V 5.85 No 238
M2026-LE-MKII ~ 9.97 Yes 57
M3046-V 3.76 No 109
M3044-V 7.82 No 115
M3106-LVE-MKIT  10.2 Yes 23
C360P 4.37 No 1
M3047-P 5.98 No 49
M2026-LE 9.02 Yes 32
M3048-P 2.88 No 5

C Dome WV 1.00 No 1
M3046-1-8mm 7.27 No 5
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3.3 Random Forest

Data partitioning

A total of 2328 samples was used for the development of the models. 64 % of the
samples were included in the training set, 16 % were included in the validation set
and 20 % were included in the test set. The number of samples in each set can
be seen in Table [A.2]in Appendix A. The data partitioning was done completely
at random. A non-IID data set, to study potential concept drift in the data was not
included.

Feature selection

The sequential forward feature selection was conducted on the training set with the
hyperparameters in Table and the features shown in Table The number of
data points given to the model (n) can also be seen in the Table 3.2] The results of
the feature selection can be seen in Fig. [3.9] and Table [3.3] The first 10 features
were chosen to be further included in the development of the models. The models
were evaluated based on the mean R2-value of the 5 validation sets from 5 folds
cross-validation on the training data.

Table 3.2 The hyperparameters used for the feature selection process. F varied between
1-7 as it was set to the total number of used features/3.

Hyperparameters Values

Bootstrap True

F 1-7

S 1

D 5

B 300

n 384 (16 days)
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Jicmean PROD min  month yicmax yin 185 R auio  C  LZERO yic q90 TZERO outside sid ylcmin a30 mean max ylcqi0 rand  al0

Figure 3.9 The mean R2-score of the cross validation folds for the sequential forward se-
lection method. The highest score is marked with a red cross and was obtain with the first 10
features. The ranking of the features can also be seen in Table@

Table 3.3 The resulting ranking of the features from the feature selection, see Fig. for

illustration.

Feature Rank
YLC,, mean 1
Product 2
T min 3
Month 4
YLC, max 5
YLC, 6
ISS (Image sensor size) 7
IR (Infrared radiation) 8
Audio detection 9
C 10
Ly 11
YLC, q90 12
To 13
Outside 14
T Standard deviation 15
YLC, min 16
T q90 17
T mean 18
T max 19
YLC, q10 20
Random 21
T ql0 22

Hyperparameter search

The grid search was performed on the hyperparameter space shown in Table [3.4]
Apart from the hyperparameters in Random forest, the table also shows the different
amounts of data (n) the models were given. A total of 7840 models were developed
for every n, and altogether 156800 models were built. The models were initially
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evaluated based on the mean R>-score from 5 fold cross-validation on the training
set.

Table 3.4 The range of the hyperparameters for which the grid search was performed. For
all possible combinations a Random forest model was constructed and its performance was
evaluated using CV.

Hyperparameter Grid

Number of estimators (B) 100, 400, 700, 1000, 2000, 3000, 5000
Number of features (F') 1,2,3,4,5,6,7,8,9, 10
Min number of samples at 3.4.5.6.7.9. 12, 18

leaf node (D)
Bootstrap True, False
Sub-sample size (S) 0.3,0.5,0.75,0.85,0.9,0.95, 1

1,3,6,12,24,48,72, 96, 144,
192, 288, 384, 480, 720, 960,
1440, 2160, 2880, 3600, 4800

Number of data points
given to the model ()

Selected models

Four of the highest-ranked models with n = 384 (16 days) were chosen and further
evaluated on the validation and test data set to check for overfitting. The models that
were chosen are

e MI - The highest ranked model

M2 - The highest ranked model of the models which used bootstrapping.
e M3 - The highest ranked model of the models which used B = 5000.

* M4 - The highest ranked model of the models which used bootstrapping and
B =5000.

MS5 - A model that should perform well according to theory of Random forest.

The attributes of these models are shown in Table [3.5] and their performance on
the validation and test set can be seen in Table[3.6] It is surprising that the models
performs worse on the test set compared to the validation set since neither of the
sets were used in the hyperparameters selection and samples were split at random.

Selected models for varying values of n

The models which obtained the highest mean R’-value on the 5-fold cross-
validation can be seen in Table[3.7]below. It shows that the grid search gave different
sets of optimal hyperparameters for different values of n. In fact only two models
were identical in hyperparameters, the ones with n = 288 and n = 384.
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Table 3.5 Hyperparameters of Model 1-5. Mean test R2-score on cross validation on the
training set, and rank from hyperparameter grid search.

HP / Model M1 M2 M3 M4 M5
Bootstrap False True False True  True
F 2 10 2 10 3

S 095 08 03 0.9 1

D 3 3 3 3 5

B 100 100 5000 5000 5000
n 384 384 384 384 384

Mean R%-score CV  0.883 0.880 0.882 0.880 0.869
Rank 1 94 6 106 2490

Table 3.6 RZ-score of Model 1-5 on the validation and test data set. n = 384.

Objective / Model M1 M2 M3 M4 M5 BM

Validation data 09141 09213 09213 0.9213 0.9070 0.8784
Test data 0.8906 0.8838 0.8906 0.8838 0.8838 0.7813

3.4 Sweep of the Hyperparameter n

The Random forest model 3 was fitted and compared to the Baseline model. Both
models were given increasing amounts of feature data (n). Fig. 3.10]illustrates the
R?-values calculated from Eq. (Z.17). Two models for different values of n are
shown. The figure shows a clear gap between the Baseline model and the random
forest model when the length n is small, O to 60 days the random forest have a
distinct advantage over the Baseline model. However, when passing 60 days the
Baseline model actually performs better.

Fig.[3.T1]illustrates the MANE,-values calculated from Eq. (2.18). This figure also
shows a clear gap between the Baseline model and the Random forest model when
the length n is small. Between 0 and 140 days Model 3 is better than the Baseline
Model. However, when passing 140 days the Baseline model performs better. It is
also interesting to note that the difference in n for RF and BM reaching 0.10 in
MANE,, Model 3 achieves this around 16 days and the Baseline model achieves
this around 70 days.
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3.4 Sweep of the Hyperparameter n

Table 3.7 The hyperparameters of the best models for each n, and their mean test R>-value
from cross validation on the training data.

n  Bootstrapping F S D B Mean test R?
1 True 1 0900 3 100 0.802
3 False 1 0950 3 100 0.818
6 False 1 0500 3 1000 0.826
12 False 1 1 3 100 0.824
24  False 2 0900 3 700 0.834
48  False 2 0500 3 700 0.844
72 True 9 0950 3 700 0.853
96 False 2 0850 3 400 0.860
144 True 10 1 3 400 0.865
192 True 10 0950 3 1000 0.868
288  False 2 0950 3 100 0.874
384 False 2 0950 3 100 0.883
480 False 2 1 3 100 0.884
720 False 2 0900 3 400 0.893
960 False 2 0750 3 1000 0.899
1440 False 3 0950 3 700 0.916
2160 False 3 0950 3 400 0.947
2880 False 3 0900 3 700 0.969
3600 False 4 0500 3 100 0.981
4800 False 5 0850 3 100 0.989
1.00 —*— MANE of Baseline model
0.95 . 0.175 —— MANE of Random Forest with M3
s 2 0.150
= 0.90 %
k=l 2 0.125
%’_ 0.85 Q
0 2 0.100
< 0.80 z
% s ; 0.075
= < 0050
0.70 —— R2 of Baseline model
—— R2 of Random Forest with M3 0.025
0.65
0 50 100 150 200 0 50 100 150 200
Days (n/24) Days (n/24)
Figure 3.10 R?-values of RF M3 and Figure 3.11 MANE-values of RF M3
Baseline model as a function of »n on the and Baseline model as a function of n on
test data set. the test data set.
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Chapter 3. Results

A flowchart of the resulting model selection process can be seen in Fig. [3.12]

Featurewsltehlectlo Hyperparameter Selectioniol Eualustemodels Sweep over n with
h er(arameters - sgarch el A el on)iestand I!\)Iludel 3
;’EOWE] in table) n =16 days validation set

Figure 3.12 Flowchart of the model selection process. Table [3.2]is the table referred to in
the figure.

3.5 Modelling Results

The main modelling results with the test data are presented in Fig. [3.14] 3.15 and
[3.13] For Fig. [3.14 and [3.15] are the samples sorted since they are histograms and
EDFs, it will be easier for the models to accurately predict the distribution rather
than individual samples.

The Fig.[3.13] shows predictions of YLC for different n from Random forest model
3 and the Baseline model paired with a sorted list of test target values. This figure
shows that the variation in absolute values are larger when there are larger YLC
values and vice versa. It shows that studying R*-values gives a high importance to
the values with a large YLC which corresponds with a low YTL (short lifetime).
The components with short lifetime are especially interesting to study from a prod-
uct design perspective. The figure also show that the predictions both of M3 and
Baseline model becomes significantly better when larger n is used.

In Fig.[3.16]histograms are shown of the target, the Baseline- and the Random forest
predictions. Since they are displayed in a histogram, they have been separately or-
dered in ascending order. Therefore the histogram is not paired. This type of plot is
especially useful for providing the design team with data. It is also useful for testing
whether the distribution of the predictions are close to the target distribution. Fig.
3.1°7| shows the EDF and it is clear that the Random forest model 3 gives a closer
prediction to the true distribution than the Baseline model.
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3.5 Modelling Results

02{ — YLC targets
v M3 on test data
01{ x BMon test data

X

00 X~
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Individual i

Figure 3.13 Random forest model 3, Baseline and target values of YLC, sorted by target
in ascending order on the test data. For the upper, middle and lower graph the amount of data
hyperparameter n is 1, 384 (16 days) and 4800 (200 days) respectively. For better visualisa-
tion the number of samples have been reduced. After sorting every 7th sample is kept.
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Figure 3.14 Histograms of Baseline
and M3 predicted YLC-values on the test
set, for n = 384 (16 days).

Hypothesis Testing

Probability

W Target values
[ Predicted YLC with M3
[ Baseline model

0.05 0.10 0.15 0.20 0.25
YLC (1/year)
Figure 3.15 Empirical distribution
function of predicted YLC-values on the
test data set from the Baseline model and
M3, for n = 384 (16 days).

It is of interest to examine how close the Random forest and the Baseline model are
to the true target distribution. Here G, (t) are the EDF of YLC given by Random
forest model 3 and the Baseline model, where n indicates the number of hours that
were used. Fy(t) gives the EDF of the YLC target values. The result is presented in
Table@and@ Random forest model 3, have a significant difference of mean but
a non significant difference in distribution compared to the target distribution. For
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160 W Target values 1.0
[ Predicted YTL with M3

[ Baseline model

Probability
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[ Predicted YTL with M3
[ Baseline model
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Figure 3.17 Empirical distribution
function of predicted YTL-values on the
test data set from the Baseline model and
M3, for n = 384 (16 days).

Figure 3.16 Histograms of Baseline
and M3 predicted YTL-values on the test
set, for n = 384 (16 days).

the Baseline model, it is the opposite, it has a non-significant difference of mean
and a significant difference in distribution.

Table 3.8 The paired #-test of same YLC mean hypothesis Hy : E[F(x)] = E[G(x)]. The
tests are conducted on the test set with n = 384 (16 days).

Comparison t statistic ~ p-value

M3 vs Target -6.302 0.000
Baseline vs Target -1.386 0.166

Table 3.9 The Kolmogorov-Smirnov test of same YLC distribution hypothesis Hy : F (x) =
G(x). The tests are conducted on the test set with n = 384 (16 days).

comparison D, statistic ~ p-value
M3 vs Target 0.046 0.111
Baseline vs Target 0.067 0.004

3.6 Predictions on Extended Data Set

In the data set there are 6954 individuals that have temperature time series that are
at least n = 384 data points long. All of these individuals are put in an extended
data set. This data set is fed into Random forest Model 3 and Baseline model to
forecast the lifetimes of many cameras. Fig.[3.18show a histogram with number of
individuals in the modelling data set and the extended data set. The number of time
series for each product can be seen in Table[A.2]in Appendix A.
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3.6 Predictions on Extended Data Set

HEm All data
B Data used for modelling

800

Number of occurences

1 2 3 4 5 6 7 8 9 10 11 12
Length of data in months

Figure 3.18 Histogram of the amount of data available in months. All individuals have at
least n = 384 temperature data points.

Histograms and empirical distribution functions of model predictions of YLC and
YTL are shown in [3.19] [3.20} [3.21] and [3.22] The predictions of Random forest
model 3 and Baseline model are shown. Note that Fig. [3.19] and show that
Model 3 predict the probability to be smaller for small and large values of YLC,
compared to the Baseline model. Model 3 have a larger peak of occurrences around
0.05.

1200 mmm Random forest M3

Baseline model
0.8

Probability

Number of occurences

mmm Random forest M3
[ Baseline model

0.00 . 0.10 0.15 0.20
0.10 0.15 . YLC (1/year)

YLC (1/year)

Figure 3.20 Empirical distribution
function of predicted YLC, from the
Baseline model and M3, for n = 384 (16
days).

Figure 3.19 Histograms of predicted
YLC, from the Baseline model and M3
for n = 384 (16 days).

Fig. [3.21] and [3:22] show the inverted YLC, YTL values, i.e. the number of years
a camera is predicted to operate, for the extended data set. The relation between
Model 3 and the Baseline model are the same here.

In Table descriptive statistics of YTL predictions in are shown. Something
interesting to note is that only 0.5 % of the individuals live shorter than 5 years
according to M3.
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Figure 3.21 Histograms of predicted
YTL, from the Baseline model and M3

for n = 384 (16 days).
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Table 3.10 Descriptive statistic of predictions on extended. Values shown in YTL (years).

50

RF M3 BM

#Samples 6954 6954
Mean 20.9 21.7

Std 9.3 14.0

Min 34 2.3

25 % 14.2 12.7

50 % 19.3 17.9

75 % 26.3 26.2

Max 89.7 214
P(YTL<5) 05% 08%
P(YTL < 10) 70% 13%
P(YTL > 30) 13% 19%




4

Discussions

4.1 Data Quality - Discussion

Jitter

From the results of the jitter experiment, it is clear that the jitter that appears in the
signal has an insignificant effect on the YLC and was therefore ignored.

Interpolation techniques

The Naive interpolation performs equally well for all different gap lengths, but
worse than Vallier and linear interpolation. The comparison between the interpo-
lation techniques (Fig. 3.1} [3.2) show that the performance of Vallier interpolation
is comparable to that of linear interpolation for small (1-6 data points) and large (48
data points) gaps. However, it performed significantly better where the missing data
points were in the range of 10-40. Since Vallier interpolation is at least as good or
better than the other available techniques, it was chosen.

A possible source of error is that this evaluation was performed solely on one prod-
uct (M2026-LE-MK 1I). This product was designed for outdoor weather, which in
general leads to a strong periodicity of 24 in the time series. For indoor products,
linear interpolation could perform better. In the future, this could be worth investi-
gating.

Even though Vallier interpolation appears to perform well in general, the fraction
of missing values in the time series used for the development of the model is very
large (see Fig.[A.2). Consequently, the errors created by interpolation is considered
to be a liability in the models.

Concatenation of time series

From the comparison between the two distributions (Fig. [3.5) it was possible to
conclude that the distributions may be the same since only one of the tests (KS-
test) rejected the null hypotheses. If the two distributions were the same, this would
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Chapter 4. Discussions

indicate that the internal temperature process was unchanged between two time se-
ries. This leads to the conclusion that the interruptions did not occur because of the
temperature.

It would have been preferable to conduct the same investigation for the interruptions
between the time series for the other products and not only for M2026-LE-MK II.
Unfortunately, this was not possible at the time of this investigation.

The histogram in the Fig. [A.T|shows that the vast majority of the length of the gaps
between the time series used for the development of the models was 1-2 hours. As
Vallier interpolation shows good performance in this respect, it is determined to be
of less importance than the missing values within the time series.

Target validation

As can be seen from Table [3.1] the required number of months to obtain a valid
target value varies significantly between the products. Generally, outdoor cameras
require a larger number of months. As the temperature outside the cameras heavily
impacts the temperature inside the camera, this was quite expected. The temperature
in outdoor cameras varies significantly more than cameras operating indoors. This
fluctuation affects the YLC of the camera, making it harder to obtain a good estimate
from less data.

For some of the products, the number of individuals was quite low, especially for
C 360-P and C Dome-WYV, where only a single individual from each product was
available due to the absence of long temperature time series. Only one time series
from each of these two products contained 11 months of temperature data. It can of
course be questionable to allow so few individuals for the validation of the target
value. As the alternative was to either remove these products from the data set or use
less data for validation, for instance, 10 months instead of 11, it was concluded that
this would be sufficient. Removing the products from the data set would decrease
the diversity in the data set and limiting the data for the validation could influence
the accuracy in the estimate as well.

For a few of the products which were included in the data set before removing the
invalid targets, there were no individuals with 11 months of data. Therefore, the
individuals from these products had to be removed. Further, the reliability of the
target values could be questioned as only 11 months of data was available.

Bias in the data

It is clear from Table[A.2]in Appendix A that there are imbalances between the data
sets. It is imbalanced in two ways;

1. Individuals per product vary between the products.

2. The sample ratio between the number of individuals per product in the two
data sets "total" and "total modelling".
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4.2  Random Forest

For item 1, as can be seen in the "#Total modelling" column of Table [A.2]in Ap-
pendix A, the product with the largest number of individuals (M3045-V) has 934,
and M3046-1-8mm has the smallest number of individuals (25). Therefore, M3045-
V is present 37 times more than M3046-1-8mm in the data. Consequently, the mod-
els are better at predicting YLC-values of individuals from M3045-V.

For item 2, the largest ratio is given by M2026-LE-MKII and the smallest ratio given
by M3048-P with 18 and 1.4 respectively. This yields a bias in the data, it stems in
part from the tough requirement set in Table [3.1] M2026-LE-MKII (outdoor) re-
quires 9.97 months of data, while M3048-P (indoor) requires only 2.88 months.
Data bias occurs when the available data is not representative of the true popula-
tion. This is considered a significant problem and source of error. The final model
predicts on 1482 individuals from M2026-LE-MKII but only 83 is used for the mod-
elling.

4.2 Random Forest

Feature selection

It seemed reasonable to use values motivated by the literature for the hyperparame-
ters in the feature selection process. The possible influence of the hyperparameters
on the feature importance was not studied. It is possible that another subset of fea-
tures would have been selected if the hyperparameters were changed, as is the case
with the length of the time series (n) given to the model. In addition, no analysis
was conducted on whether or not 16 days would be the optimal length of the time
series, it was just presumed to be a reasonable length.

The features in Table |2.1| was included in the feature selection. From Fig. one
can observe a very small variation in the model’s performance after adding the im-
age sensor size as a feature. The best model was obtained with the use of 10 features.
However, using 17 features gave roughly the same results. The feature containing
random values (rand) was included as the second to last feature, indicating that it
was among the least important features. This indicates that the other features con-
tributed with predictive power for the model.

The feature that gave the best model by itself was YLC,, mean, which was somewhat
expected, since it should express the target value’s behaviour fairly well. However,
YLC,, could be better since it is calculated from all the temperature data given to
the model instead of only the mean value. It is also possible that YLC,, max could
be better since it is the high temperatures that damage the capacitor most.

Apart from the sequential forward feature selection method, other feature selection
methods could have been applied. It is possible that another method would yield a
different model, involving different features. A comparison between different meth-
ods could contribute to a clearer picture of the importance of the different features.
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Furthermore, additional features could have been investigated, such as the proces-
sor of the camera, the power consumption during the interval, and the periodicity
of temperature within the interval. An investigation of these features is, however,
outside the scope of this work.

Hyperparameter optimisation

The range of the hyperparameters for which the grid search was conducted was
concluded to be sufficient, even though some hyperparameters were untuned. The
reason being that the untuned hyperparameters were closely related to the minimum
number of samples at the leaf node (D), as they also affect the pruning of the trees,
but in a different manner. A lower D could have been included in the grid search,
but due to the risk of overfitting, this was not done.

As an alternative to the grid search, a more computationally efficient method could
have been used. However, it was not necessary in this case since computational
time was not a limiting factor. Hence, it was possible to evaluate all interesting
combinations of hyperparameters, and therefore a different method would not have
yielded a better model.

Model selection

It was moderately surprising that a model without bootstrapping gave the best re-
sults of the 5 fold cross-validation on the training set (see Table[3.5]) for some values
of n. The bootstrapping of the training set is supposed to increase the performance of
the Random forest algorithm. Because of this surprising result, the highest-ranked
model with bootstrapping was selected for further analysis as well (M2).

In addition, models with the highest number of estimators (5000) were of interest, as
according to previous studies, it should not harm the model to increase the number
of estimators. Furthermore, the accuracy of the model with only literature motivated
or default hyperparameters were selected. It could be used as a benchmark of the
importance of hyperparameter optimisation for the used data set.

When evaluating the R”-scores of model 1 to 5 on validation and test set as in Table
[3.6] it is clear that Model 3 gave the best results.

Model analysis

When examining the five models’ performance based on two weeks of data, what
initially became clear was the small difference in performance between the models,
even though the hyperparameters’ values and the rank of the models varied. Table
[3.3] shows that if bootstrapping is unused the number of features considered before
each split (F') was set to 2 for the models which gave the best results. This is likely
to compensate for removing one of the factors which contributes to the randomness
of Random forest. Setting F very low increases the diversity between the trees and
decreases the variance, which is necessary, in order for the model not to overfit.
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When bootstrapping was used, the best models used the maximum value of F (10),
thus removing this contribution to the randomness of Random forest and decreasing
the diversity between the trees. However, as both cross-validation was used on the
training set, and as the performance was similar on the validation set, the risk of
overfitting was established to be low.

Model 3 only used a sub-sample size of 30 % of the training set. This was rather
surprising as using a larger percentage would give the model more information,
presumably leading to a better model. However, as 5000 estimators were used in
this case this probably compensated for the small sub-sample size. Because of the
small difference in R2-score between the models in general, the fact that a size of
30 % achieved better results than 100 % could have been by chance.

When considering the best models for the other values of n (Table the relation
between bootstrapping the data set and using few features (and vice versa) appears
to exist for every model. This strengthens the conclusion above about it being neces-
sary to compensate for removing one of the factors which contribute to the diversity
of the trees.

Not a single of the best models used the maximal number of estimators (5000), this
could like previously mentioned be by chance as the difference between the models
for a certain n is very small. Because of the very small variation in accuracy it is not
possible to conclude that including more estimators harms the models.

Model evaluation

As the accuracy between Model 5 and the other models varied only slightly on
the validation and test set, one could argue that the importance of hyperparameter
optimisation for this data set is minimal.

When comparing Model 3 with the Baseline model for different values of n (Fig.
[3.10jand[3.TT), it is clear that Model 3 outperforms the Baseline model for small val-
ues of n. However, the Baseline model still obtains reasonable R%-scores for small
values of n and outperforms Model 3 for n > 2160 (90 days). One possible reason
why BM outperforms Model 3 in this case is that when n approaches N, YLC,, ap-
proaches YLCy. The Baseline model is based on YLC,, and may be very similar to
the targets. That feature is also present in the Random forest. However, the Random
forest may have a harder time to reach a R>-score of 1 fast. This is because the other
features may confuse it, even when YLC, is a very good predictor of YLCy

Further, the Baseline model received a significantly lower R2-value on the test set
compared to the validation set and compared to the other models when n = 384.
Although the different data sets have been investigated, the reason for the variation
in performance between the data sets is still unknown.

Fig. shows a 10 % mean absolute normalised error around 16 days for Model
3 and around 70 days for the Baseline model. Thus, the model managed to reduce
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the required length of time series needed to obtain an acceptable error. This was
a goal of the work, to develop a model that can predict with an accuracy at or
lower than 0.10 in MANE,. Having n of 16 days compared to 70 days gives a large
increase in number of individuals M, later when predicting on the extended data set.
This extended data set contain 6954 individuals compared to the original number of
2328 in the modelling data set.

If the data set were to contain more individuals operating outdoors the difference
between the models would probably be larger since the large variation in temper-
ature during the year generally makes the Baseline model perform worse. Unfor-
tunately, many of the removed individuals (due to the absence of long time series)
were operating outdoors. They would have contributed to a wider diversity in the
time series data. Thus, removing these individuals presumably decreased robustness
in the models.

The ambition was to use the best Random forest model for each value of n (Table
when comparing Random forest to the Baseline model for different values of n
(Fig.[3.10]-3.13). However, this turned out to be very time-consuming, and therefore
Model 3 was used for all the values of n. Model 3 was selected as it obtained the
best R?-values on both the validation and test set (Table when n = 384.

A strength of Model 3 and the Baseline model are the absence of a clear error trend
as a function of the target values. This is concluded from Fig.[3.13]

Distribution analysis

The Kolmogorov-Smirnov test showed that the YLC distribution predicted by the
Random forest model was statistically close to the target distribution. This result
shows the predictive power of the Random forest model 3. They were so similar
that the Kolmogorov-Smirnov test were unable to differentiate between the two dis-
tributions. However, the paired z-test rejected the null hypothesis of same mean.
This implies that the mean of the target YLC distribution was not the same as the
mean of the Random forest YLC predicted distribution. This result is quite surpris-
ing since two distributions that are the same, per definition have the same mean.
However, the KS-test is passed because the distributions are statistically the same
not because they are exactly the same. That is, Random forest model 3 predictions
can pass the KS-test without necessarily passing the 7-test.

The Baseline model passed the ¢-test but not the KS-test. This is perfectly reason-
able, two different distributions can have the same mean. It is however, an indicator
that the Baseline models distribution is not adequately similar to the target distribu-
tion.

For the purpose of this work, the distribution of Random forest predictions is supe-
rior to the Baseline distribution as it is of more value to obtain an accurate distribu-
tion over an accurate mean.
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Concept drift

Unfortunately a non-i.i.d. data was not considered during the development of the
models. This could be improved in the future when more data is available. In order
to mitigate concept drift, the models should be continuously updated as more data
becomes available.

It was decided early in this work that because of the scarcity of data, it was not
feasible to use a non-i.i.d. data set. This data set sometimes included target values
based on very short time series, which led to unreasonably good predictions, as the
amount of data (n) given to the models were about the same length as the time series.
Later, when filtering out some of the short time series based on the target validation,
it was considered less of a problem. However, the decision to not include a non-i.i.d.
data set remained, and is now considered a possibility to improve the models.

Modelling results

If the target distribution of the YLC and the distribution of the Random forest pre-
dicted YLC-values are concluded to be the same, one could argue that the Random
forest predictions in Fig. show the true distribution of the YLC values for the
entire camera population. This was shown to be likely in the Kolmogorov-Smirnov
test comparing the target- with the RF distribution. However, as the lifetime for-
mula for capacitors was simplified in this work the true distribution will likely be
different. How the simplified formula impacts the behaviour of the distribution is
unknown and is worth investigating in the future.
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Concluding Remarks

This work has;

58

. Improved the quality of temperature time series by developing and imple-

menting the Vallier interpolation method to impute missing values.

Achieved the goal of obtaining a quantitative assessment of how well the
yearly lifetime consumption can be predicted.

Developed a model for lifetime prediction which requires significantly less
data (16 days) compared to the Baseline model (70 days), for a mean absolute
normalised error of 10 %.

Concluded that hyperparameter optimisation for Random forest regression
does not improve the performance for this data set.

Obtained a distribution of the lifetime for the entire camera population, which
could be used to guide future design.
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Popularvetenskaplig
Sammanfattning

Det dr av storsta vikt att kondensatorerna som sitter i Axis overvakningskameror
héller lagom ldnge. Om vi har kunskap om livslingden for kondensatorer med olika
kvalité sa kan vi balansera behovet for bra kvalité med att spara pengar. I detta
arbete utvecklas matematiska modeller som anvinder temperaturdata som samlas
in i realtid. Dessa anvinds for att forutspa hur ldnge kondensatorer kommer att
fungera. Genom att anvinda datadrivna modeller kan vi veta med storre sikerhet
hur linge komponenterna haller.

For att 16sa detta problem utvecklas en basmodell och flera Random forest-modeller.
Basmodellen anvdnds som jimforelse och Random forest-modellerna utvecklas for
att bli sa bra som mojligt. Det visar sig att bade basmodellen och den bésta Ran-
dom forest-modellen kan vil forutspa livslingden for kondensatorerna. Eftersom
det finns begriansningar i méngden data for manga kameror dr vi ocksa intresserade
av att férutspa livsldngden till en viss noggrannhet med sa lite data som méjligt. Om
det gar att noggrant forutspa livslingden med en liten mingd data kan vi inkludera
maximalt antal kamera individer och pa sa sitt fa bittre forstaelse vilken kvalité
som dr nodvéndig. Detta klarar Random forest-modellen av betydligt bittre dn bas-
modellen. Med en sénkning fran 70 till 16 dagar dr den mer avancerade modellen
en stor vinst.

Arbetet kan komma att anvindas i kommande produktutveckling pa Axis. Med det
presenterade resultatet skulle elektronikingenjorer kunna gora mer fakta grundade
beslut vilket kan gynna bade Axis som foretag och dess kunder.

Nagot 6verraskande var méngden problem som uppstod med temperaturdatan. Fran
borjan saknades en stor del (cirka 30 %). Detta problem atgirdades genom att inter-
polera saknade virden. Olika interpolations tekniker utvecklas och testas, déirefter
tillimpas den bista.

Tillgéngligt finns vissa sanna virden pa kondensatorernas livslingd. Trots det fanns
det stora problem med att veta vilka av dessa virden som var palitliga. Metoder
for att studera detta utvecklas och jamfors. Nér vi kommit fram till en bra metod
anvinds den for att forsdkra oss om vilka virden som vi kan och inte kan lita pa.
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Figure A.1 A histogram over the lengths of the different gaps of missing data (total 1000
gaps) of the analysed time series from the product M2026-LE-Mk II. Note that the majority
of the gaps have a length under five hours.
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Figure A.2 A histogram of the fraction of missing values in all of the time series used in
the development of model (*Total modelling” in table [A2).
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Figure A.3 Sample pictures of products. Product names given in the figure.
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Figure A.4 Sample pictures of products. Product names given in the figure.

61



Appendix A. Appendix

Table A.1 Capacitor component constants, specific to each product. The constants are de-
fined in section 2,11

Product Ly Ty C Toffset
C Dome V 2000 105 10 3
M3045-V 2000 105 10 3
M2026-LE-MKkII 2000 105 10 3
M3046-V 2000 105 10 3
M3044-V 2000 105 10 3
M3106-LVE-MKII 2000 105 10 3
C360P 2000 105 9 3
M3047-P 2000 105 10 3
P3245-LVE 1000 105 9 3
M2026-LE 2000 105 10 3
M3048-P 2000 105 10 3
M3106-L-MKII 2000 105 10 3
P1365 Mk 11 2000 105 10 3
M3106-LVE 2000 105 10 3
M4206-LV 2000 105 8 3
C Dome WV 2000 105 10 3
M3046-1-8mm 2000 105 10 3
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Table A.2 Number of individuals from each product in the different data sets used for the
development of the Random forest models. The total number of available time series with a
length of at least 16 days is also included in the table under column #Total. The products with
0 individuals was first included but later removed due to lack of time series with 11 months
of data.

Product #Total #Total modelling #Train #Validation #Test
C Dome V 0 0 0 0 0
M3045-V 1897 934 593 151 190
M2026-LE-MKII 1482 83 53 10 20
M3046-V 773 554 349 96 109
M3044-V 653 156 103 27 26
M3106-LVE-MKII 609 41 24 7 10
C360P 391 153 98 24 31
M3047-P 357 133 89 22 22
P3245-LVE 0 0 0 0 0
M2026-LE 271 48 34 6 8
M3048-P 244 176 114 21 41
M3106-L-MKII 0 0 0 0 0
P1365 Mk II 0 0 0 0 0
M3106-LVE 0 0 0 0 0
M4206-LV 0 0 0 0 0

C Dome WV 141 25 18 4 3
M3046-1-8mm 136 25 14 5 6
Total 6954 2328 1489 373 466
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